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Abstract 
 

Regulation of α- and β-actin Isoforms in the Contracting  
A7r5 Smooth Muscle Cell 

 
By Dawn Leah Brown-Turner 

 
Two isoforms of actin have been found to be present in A7r5 smooth muscle cells, α- and 

β-actin.  This body of work sets out to examine the different regulatory factors of the two 

actin isoforms during smooth muscle contraction.  The response of the actin isoforms to 

phorbol 12, 13-dibutyrate (PDBu) is markedly different.  α-Actin remodels to podosomes 

around the periphery of the cell, while β-actin merely shortens.  One protein involved in 

smooth muscle contraction induced by PDBu is protein kinase C (PKC).  Two inhibitors 

of PKC, staurosporine and bisindolymaleimide, were used prior to PDBu stimulation and 

after PDBu stimulation to observe the effects of PKC on α- and β-actin stress fiber 

structure and remodeling.  α-Actin showed a decrease in podosome formation when the 

inhibitors were added prior to or after PDBu stimulation.  β-actin demonstrated a loss in 

stress fiber structure in response to PKC inhibitors.  PKC appears to regulate α- and β-

actin differently and could play a role in the differential remodeling seen by these two 

actin isoforms.  Myosin light chain kinase (MLCK) is another enzyme involved in 

smooth muscle contraction.  Even though it does not play a major role in PDBu induced 

contraction of smooth muscle, it has been found to interact with actin at two different 

actin binding sites, allowing crosslinking of actin filaments.  Inhibition of the kinase 

domain of MLCK does not seem to have an effect on the crosslinking abilities of MLCK.  

These two key enzymes of smooth muscle contraction appear to not only be able to 
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initiate smooth muscle contraction, but also regulate reorganization of the two actin 

isoforms during smooth muscle contraction. 
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Chapter I 

General Introduction 

Dissertation Organization 

 This dissertation is divided into four chapters.  The first chapter is an overview of 

the organization of the dissertation followed by a literature review of important topics 

that will be discussed in the following chapters.  Chapter two is a manuscript that was 

published in the Canadian Journal of Physiology and Pharmacology.  In this manuscript 

I investigated the regulatory role of protein kinase C (PKC) on α- and β-actin prior to and 

following initiation of contraction by phorbol 12, 13-dibutyrate (PDBu).  In the third 

chapter, I investigated whether the kinase domain of myosin light chain kinase (MLCK) 

plays a role in the crosslinking of actin filaments.  Chapter four is an overview of the 

results found in the experiments conducted within this body of work, as well as a look 

into what future endeavors could be examined. 

 

Actin Isoforms 

 Actin is an abundant protein in all eukaryotic cell types.  It is a cytoskeletal 

protein that plays a role in numerous functions including maintaining cell shape, cell 

division, endocytosis, exocytosis, secretion, signal transduction, and regulation of 

enzyme activities (Pollard and Cooper, 1976; Welch et al., 1998).  Of interest to the 

current work is the role actin plays in vascular smooth muscle contraction.   

 There are six actin isoforms known to be expressed in mammalian cells.  Each of 

these six isoforms is encoded by an individual gene (Vandekerckhove and Weber, 

1978a).  These six isoforms can be classified into three groups based on isoelectric 
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focusing; α-, β-, and γ-actins (Garrels and Gibson, 1976; Storti et al., 1976; Wahlen et 

al., 1976; Rubenstein and Spudich, 1977).  The three classes of isoforms are highly 

conserved with less than 10% difference between the amino acid sequences (Erba et al., 

1988; Gunning et al., 1983; Hamada et al., 1982; Ng et al., 1985; Vandekerckhove and 

Weber, 1978a).  Sequence analysis conducted by Vandekerckhove and Weber (1978b) 

indicated that most of the variability in the amino acid sequences arises within the first 

several amino acids of the amino-terminal region.  α-Actin contains four charged amino 

acid residues within the first several amino acids of the amino-terminal region.  By 

comparison, β-actin has three acidic residues, Asp-Asp-Asp, in the amino-terminal 

region.  Like β-actin, γ-actin has three acidic residues as well in the amino-terminal 

region, but they are Glu-Glu-Glu.  While there are other differences in the amino acid 

sequence spread throughout the molecule of the various isoforms of actin, it is the 

differences in the amino-terminal region that are likely to determine the specific functions 

and/or interactions of the isoforms, including actin-actin, acto-myosin, and actin-actin-

binding protein interactions (Herman, 1993). 

 Another way to classify the actin isoforms is based on whether they are 

contractile or cytoplasmic actins.  Contractile actins, or muscle actins, play a role in 

muscle contraction.  All α-actin isoforms are contractile proteins.  Cytoplasmic actins are 

also known as non-muscle actins, meaning they are not thought to play a role in muscle 

contraction, but rather play a structural support role in the cell. β-actin is a cytoplasmic 

actin.  γ-actins have isoforms that can fit into either of these groups (Mossakowska and 

Strzelecka-Golaszewska, 1985). 
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 Smooth muscle has been found to express four actin isoforms.  Two of the 

isoforms are smooth muscle (SM) specific α-SM and γ-SM actins, while the other two 

are non-muscle (NM) actins, β-NM and γ-NM actins (Drew and Murphy, 1997).  Of the 

two smooth muscle specific actins, α-SM actin is the isoform found predominantly in 

vascular smooth muscle, comprising up to 70% of the total actin (Fatigati and Murphy, 

1984; Small, 1995).  Of the two cytoplasmic actins, β-actin is more abundant in vascular 

smooth muscle (Franke et al., 1980; Owens et al., 1986; Skalli et al., 1987).  All four 

isoforms, however, can be found in vascular smooth muscle during fetal development 

with β-actin being the predominant isoform (Franke et al., 1980; Owens et al., 1986; 

Skalli et al., 1987).  The switch from predominantly β-actin to α-actin marks the 

differentiation of smooth muscle cells (Owens and Thompson, 1986; Skalli et al., 1987).  

Cells that have undergone differentiation are generally non-dividing cells that have the 

ability to contract (Murphy, 1992).  An interesting phenomenon that has been 

documented is the switching from α-actin as the predominant isoform back to β-actin as 

the predominant isoform after differentiation of the smooth muscle cells.  This 

phenomenon is known as dedifferentiation and results in loss of contractility.  Some 

instances where this has been found include during isolation of cells for primary culture 

(Chamley-Campbell et al., 1979; Chamley-Campbell et al., 1981; Yau-Young et al., 

1981), during cell proliferation and migration (Barja et al., 1986), and during conditions 

like intimal thickening of rat aorta after endothelial injury or human atheromatous plaque 

development (Gabbiani et al., 1984).   

 With the presence of multiple actin isoforms within a given cell type, a common 

question arises as to why a cell would have multiple forms of a protein that is so similar 
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in amino acid sequence and thus structure.  The two common topics that attempt to 

answer this question revolve around the location of the isoforms in the cell and the 

function of the isoforms in the cell.   

 Many studies have looked at the possibility of compartmentalization of the 

various actin isoforms within a given cell type.  As mentioned previously, the actin 

isoforms are often referred to as contractile or cytoplasmic actins.  Results from some of 

these studies indicate that the actin is compartmentalized in such a way as to yield 

contractile domains and cytoplasmic domains.  According to work conducted by Small et 

al. (1986) and Draeger and co-workers (1990), the contractile domains are distinguished 

by the presence of actin and myosin, while the cytoskeletal domains are distinguished by 

actin, intermediate filaments, and dense bodies.  Another study by Lehman (1991) also 

indicated two distinct populations of actin filaments that were isolated from smooth 

muscle cells using two distinct antibodies.  The use of an anti-filamin antibody revealed 

actin filaments associated with tropomyosin, filamin, and calponin.  The presence of 

filamin, an intermediate filament protein, suggests that this set of actin filaments would 

be part of the cytoskeletal domain.  The use of an anti-caldesmon antibody resulted in 

actin filaments associated with tropomyosin and caldesmon.  Caldesmon is known to 

modulate contractile activity, suggesting that this set of actin filaments would be part of 

the contractile domain.   

 In some instances, spatial separation of the actin isoforms in smooth muscle has 

been found.  DeNorfrio et al. (1989) and Herman (1993) have both found α-actin to be 

present in stress fibers, while NM-actins are localized to regions of advancing cortical 

cytoplasm within vascular smooth muscle cells in culture.  Similarly, North et al. (1994) 
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found that in chicken gizzard smooth muscle cells, the two actin isoforms, β-NM-actin 

and γ-SM-actin in this muscle type, are arranged differently within the cytoplasm.  β-

Actin was found to be arranged in a more longitudinal direction and localized to dense 

bodies, dense plaques, and in channels with intermediate filaments.  Again, β-actin was 

found to be closely associated with filamin, except at dense bodies, suggesting a 

cytoskeletal role for β-actin.  A number of studies have indicated that γ-actin, on the other 

hand, is arranged more obliquely within the cytoplasm of the cells (Fay and Delise, 1973; 

Small, 1974; Fisher and Bagby, 1977; Small et al., 1990).  North et al. (1994) suggested a 

model where γ-actin is not present in dense bodies, and therefore, it is not a component of 

the cytoskeletal domain.  However, they do not exclude the possibility that the γ-actin, 

associated with myosin into contractile domains and running obliquely across the cell, 

does not at some point cross through the cytoskeletal domains.   

 In other instances, actin isoforms have not been found to be compartmentalized 

within cells, and in some cases, have been found to copolymerize with each other.  

Experiments looking at the kinetics of polymerization of the various actin isoforms have 

found that under physiological conditions there is little or no difference between the 

polymerization of the various actin isoforms (Gordon et al., 1977; Mossakowska and 

Strzelecka-Golaszewska, 1985; Umemoto and Sellers, 1990).  Drew and co-workers 

(Drew et al., 1991; Drew and Murphy, 1997) found that thin filaments in adult swine 

stomach smooth muscle contained both smooth muscle actins and cytoplasmic actins 

randomly distributed along the filaments.  They could not rule out, however, that 

individual filaments may have specific accessory proteins associated with them that may 

dictate further the functioning of these filaments within the cell either as cytoskeletal or 
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contractile filaments (Langanger et al., 1986).  Song et al. (2000) also showed that 

smooth muscle and nonmuscle actin isoforms are not separated into two populations of 

thin filaments, but rather are copolymerized into the same filaments in smooth muscle 

cells cultured from rabbit aorta.  In this cell type, the two actin isoforms are α-SM-actin 

and β-NM-actin.  They did find, however, that the α-actin tended to make up the portion 

of the actin filament found in the central region of the cell, while the β-actin tended to 

form the portion of the same fiber found at the cell periphery.  Either way, the 

localization of the actin isoforms often times is similar to the expression of the actin 

isoforms:  tissue specific.   

 It is fairly obvious that if actin isoforms are separated into different compartments 

or domains that they may perform different functions.  For example, the work by North et 

al. (1994), showed smooth muscle actins were arranged obliquely and associated with 

myosin, and nonmuscle actins are arranged longitudinally and associated with filamin.  

This clearly demonstrates that the actin associated with myosin is the actin involved in 

the contraction of the cells, while suggesting the nonmuscle actin plays a structural role 

typical of what would be seen of the cytoskeleton in nonmuscle cell types.  However, 

Khaitlina (2001) has cautioned that sorting of actin isoforms into different compartments 

within the cell does not have to mean that they perform different functions but that they 

could be performing the same functions in different regions of the cell.   

 On the other hand, Murphy (1992) suggested two criteria in determining if there 

are functionally different roles for smooth muscle versus nonmuscle actins contained 

within the same cell type.  The first criteria is the presence of two distinct populations of 

thin filaments characterized by the actin isoform composition of the filaments and 
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possibly by the types of actin binding proteins associated with those filaments.  The 

second criteria is the separation of these two populations of actin filaments on the basis 

that only the smooth muscle actins are associated with myosin.  Throughout the 

remainder of the dissertation, I try to satisfy these criteria and demonstrate that the actin 

isoforms within A7r5 smooth muscle cells are two distinct populations with different 

functions as well as different regulatory factors.   

A7r5 Cell Line 

 The model utilized in this body of work is the A7r5 smooth muscle cell line.  This 

smooth muscle cell line was derived from embryonic rat aorta (Kimes and Brandt, 1976) 

between days 14-17 gestation (Furulli et al., 1998).  These cells do, however, exhibit a 

phenotype much like that of adult smooth muscle cells.  Furulli et al. (1998) examined 

the expression of numerous markers specific to differentiated smooth muscle cells within 

the A7r5 cell line.  Among the markers they chose to study were smooth muscle myosin 

heavy chain (one of the most specific markers for smooth muscle cells), smooth muscle 

calponin, SM22, and smooth muscle α-actin.  They found the A7r5 cell line expressed 

transcripts for all of these smooth muscle cell markers.  The A7r5 cell line retains these 

marker proteins even after being maintained in cell culture conditions for prolonged 

periods of time (Gimona, et al., 2003).  This suggests the A7r5 cell line is a good model 

for study of smooth muscle.   

 As mentioned previously, smooth muscle cells can have a range of phenotypes, 

which can be determined partly by the actin isoform which is dominant.  When cells 

function primarily in contraction, there is a predominance of α-actin (Campbell and 
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Campbell, 1993; Mosse, et al., 1985; Manderson, et al., 1989).  As was mentioned in the 

previous paragraph, smooth muscle α-actin is present within the A7r5 cells and is the 

predominant actin isoform in this cell line.   

 Another important feature of the A7r5 cell line as a model for this work is its 

ability to contract in response to various stimuli.  The work presented here will look at 

contraction of the A7r5 cells in response to phorbol 12, 13-dibutyrate, which will be 

discussed in more detail in a later section.  However, it has been found that cells of the 

A7r5 cell line are also able to contract in response to other stimuli including vasopressin, 

phenylephrin, and elevated potassium levels (Gimona et al., 2003). 

 A final feature about the A7r5 cell line that has made it an ideal model in this 

body of work is its ability to be transfected.  Furulli et al. (1998) examined four rat 

smooth muscle cell lines:  A7r5, adult and pup aortic, and PAC1.  Among these four cell 

lines, A7r5 was found to be the most highly transfected cell line of the four studied in 

terms of the uptake of exogenous plasmid DNA.  As will be seen in later chapters, the 

transfection of the A7r5 cell line with plasmid containing β-actin DNA was a common 

technique used to study the regulation and function of β-actin during phorbol contraction. 

All of these points taken together indicate the A7r5 cell line is a good model for smooth 

muscle research. 

Smooth Muscle Contraction 

 The first step in smooth muscle contraction requires a stimulus to initiate 

contraction.  Such stimuli fall into one of two categories:  electromechanical coupling or 

pharmacomechanical coupling.  In arterial smooth muscle, electromechanical coupling 
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occurs through a change in the membrane potential of the cell either initiated by a 

contractile agonist or by an increase in the extracellular concentration of potassium 

([K+]o) (Rembold, 1996).  Action potentials or an increase in [K+]o activate L-type 

calcium channels allowing calcium to enter the cell, causing the intracellular calcium 

concentration ([Ca2+]i) to rise (Hermsmeyer et al., 1988).  Agonists such as 

norepinephrine (Nelson et al., 1988; Haeusler and De Peyer, 1989; Neild and Koteca, 

1987), histamine (Droogmans et al., 1977; Casteels and Suzuki, 1980; Keef and Bowen, 

1989; Keef and Ross, 1986), and endothelin (McPherson and Angus, 1991) also can 

cause depolarization of the smooth muscle membrane primarily through L-type calcium 

channels or other voltage-gated calcium channels.  In each of these instances, an increase 

in [Ca2+]i occurs, which activates the cellular contractile machinery. 

 Pharmacomechanical coupling in arterial smooth muscle occurs when an agonist 

causes the release of calcium from intracellular stores, when agonists activate either 

voltage-dependent or voltage-independent calcium channels in the plasma membrane to 

allow calcium to enter the cell (at a degree higher than expected with electromechanical 

coupling), or when an agonist increases [Ca2+]i sensitivity (Rembold, 1996).  In any of 

these instances, an increase in [Ca2+]i or a change in the response to a given level of 

[Ca2+]i may occur without a change in the membrane polarity of the cell (Rembold, 

1996). 

 Once a stimulus has caused the [Ca2+]i to increase, the calcium binds to 

calmodulin (Kretsinger and Nockolds, 1973).  Calcium induces a conformational change 

in calmodulin (Seamon, 1980) that allows it to interact with myosin light chain kinase 

(MLCK) (Kamm and Stull, 1985; Walsh, 1994; Somlyo and Somlyo, 1994).  The 
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interaction of calcium-calmodulin with MLCK activates MLCK, allowing it to 

phosphorylate the regulatory light chains of myosin at serine 19 (Adelstein and Conti, 

1975; Gallagher et al., 1997).  This step activates the actin-dependent ATPase activity of 

myosin needed during cross-bridge cycling (Erdodi et al., 1996).  The phosphorylation of 

the regulatory light chains of myosin is the primary regulatory event leading to the 

initiation of smooth muscle contraction (Ogut and Brozovich, 2003; Kamm and Stull, 

1985). 

 

Figure 1.  Schematic of the biochemical events of smooth muscle contraction. 

 After phosphorylation of the regulatory light chains occurs, actin and myosin can 

interact and begin cross-bridge cycling to develop tension and shorten the muscle cell.  In 

smooth muscle, it is thought that the phosphorylation of myosin allows the actin to bind 
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to myosin, suggesting that this phosphorylation event is a regulatory step that occurs prior 

to actin binding to myosin (Hartshorne and Gorecka, 1980).  Once the actin has bound to 

myosin, an inorganic phosphate (Pi) that is bound to the myosin from the previous cross-

bridge cycle is released, leaving an ADP bound to the actinomyosin complex.  The ADP 

is then released from the complex as well causing the myosin to pull the actin to generate 

force and shortening.  Once the ADP and Pi are released, an ATP molecule can bind to 

the myosin of the actinomyosin complex.  Once the ATP has bound, the actin is released 

from the myosin.  The ATPase of the myosin then hydrolyses the ATP into ADP and Pi 

to initiate the cycle again.   

 

Figure 2.  Cross-bridge cycling of actin and myosin during muscle contraction.  J.M. 
Berg, J.L. Tymoczko, and L. Stryer. (2002). Biochemistry.  New York:  W. H. Freeman 
and Company. 

 If phosphorylation of the regulatory light chains of myosin is a regulatory step to 

allow cross-bridge attachment and cycling, then there must be a way to reverse this step 

to cease cross-bridge cycling.  The opposing enzyme to MLCK is myosin light chain 



 

12 

phosphatase (MLCP), which removes the phosphate group from serine 19 of the 

regulatory light chains of myosin (Alessi et al., 1992; Shimizu et al., 1994; Shirazi et al., 

1994).  It is the balance of activities of MLCK and MLCP that determines to what degree 

the regulatory light chains of myosin are phosphorylated (Erdodi et al., 1996).   

 In smooth muscle, however, contraction can be initiated and/or maintained 

without phosphorylation of the regulatory light chains of myosin (Chatterjee et al., 1987; 

Somylo et al., 1988; Adam et al., 1989; Katsuyama et al., 1992).  Often times the 

relationship between the amount of force developed and the degree to which the 

regulatory light chains of myosin are phosphorylated depends on what initiates the 

contraction or the length of time the muscle is contracted (Haeberle et al., 1985; Rembold 

and Murphy, 1986; Jiang and Morgan, 1989; Laporte et al., 1994).  One common theory, 

known as the latch state, tries to explain how smooth muscle can remain tonically 

contracted with the use of very little energy (Dillon and Murphy, 1982).  This theory was 

brought about by observations that even under circumstances where [Ca2+]i is low and the 

level of myosin light chain phosphorylation is low, there can still be a substantial amount 

of force maintained even with a reduction in cross-bridge cycling and ATP hydrolysis 

(Siegman et al., 1984; Rembold and Murphy, 1986).  In the context of this paper, the idea 

that there are other means to initiate contraction without phosphorylation of the 

regulatory light chains is of great importance and will be dealt with in more detail in later 

sections.   
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Phorbol Esters and PKC Isozymes 

 In the experiments we conducted, the A7r5 smooth muscle cell was contracted 

with phorbol esters, specifically phorbol 12, 13-dibutyrate.  Phorbol esters are derived 

from the plant Croton tiglium, as well as from other plants belonging to the family 

Euphorbiaceae (Hecker, 1968).  Phorbol esters were originally utilized as tumor 

promoters (Boutwell, 1974), but since then they have been found to have numerous other 

roles, including the initiation of slow, sustained contractions in vascular smooth muscle 

strips (Danthuluri and Deth, 1984; Rasmussen et al., 1984; Jiang and Morgan, 1987, 

1989; Singer and Baker, 1987).   

 

Figure 3.  Structure of phorbol 12, 13-dibutyrate. 

 

 The mechanism by which phorbol esters work in the cell is by mimicking the 

effects of diacylglycerol (DAG) (Kazanietz, 2005).  DAG is a lipid second messenger 

known to bind to protein kinase C (PKC) (Ron and Kazanietz, 1999).  DAG is typically 

generated in the cell through the interaction of a hormone or other extracellular effector 

that binds to a receptor on the extracellular surface of the plasma membrane that is then 

linked to the enzyme phospholipase C via a G-protein mediated process (Berridge, 1984; 
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Majerus et al., 1986).  Once phospholipase C is activated it cleaves phosphatidylinositol 

4,5-bisphosphate to produce DAG and inositol 1,4,5-triphosphate (Blumberg, 1988).  

DAG can then interact with PKC thereby activating it, as will be described in further 

detail later.  Phorbol esters mimick DAG by binding to the same site on PKC as DAG. 

 PKC was originally discovered in 1977 by Nishizuka and co-workers (Takai et 

al., 1977).  Ten isozymes of PKC have been found; each of which is a product of a 

separate gene with exclusion of PKCβI and PKCβII, which are formed by alternative 

splicing (for reviews see Mellor and Parker, 1998; Newton 1995, 1997).  These 10 

isozymes are divided into three subclasses based on the properties that regulate them.  

The “conventional” or “classic” PKCs include the isozymes PKC α, βI, βII, and γ.  This 

subclass of isozymes is activated by calcium and/or DAG and phorbol esters.  The second 

subclass of isozymes is known as the “novel” PKCs.  This subclass consists of the 

isozymes PKC δ, ε, θ, and η.  The novel PKCs are activated by DAG and phorbol esters 

but not calcium.  The last subclass is known as the “atypical” subclass of PKCs that 

includes PKCζ and PKCι.  This subclass of PKCs is not activated by either calcium or 

DAG and phorbol esters.  The isozymes of PKC that have been found in A7r5 cells 

include PKCα (Kaplan-Albuquerque and Di Salvo, 1998; Fan and Byron, 2000), PKCβ, 

and PKCγ (Fan and Byron, 2000).  Evidence indicates that PKCα is the primary isozyme 

involved in contraction in response to phorbol esters (Hai et al., 2002), which will be 

discussed further in the next section. 

 Ron and Kazanietz (1999) reviewed the structure of the PKC isozymes.  The 

structure of the PKC isozymes consists of a single amino acid chain with two distinct 
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domains joined by a hinge region.  On the carboxy-terminal end is the kinase domain.  

This domain consists of regions that interact with ATP and the specific substrates of the 

isozyme.  On the amino-terminal end of the protein is the regulatory domain.  It is this 

domain that varies most between the isozymes.  The regulatory domain consists of 

binding sites for DAG/phorbol esters and calcium, as well as regions that participate in 

protein-protein interactions that help to regulate activation of PKC and its localization 

within the cell.     

 

Figure 4.  Structure of the subclasses of PKCs.  Modified from Ron and Kazanietz, 1999. 

 

 The C1 region of the regulatory domain is of particular interest to the topic of 

phorbol esters binding to and activating PKC isozymes.  The C1 region is a highly 

conserved region among the PKC isozymes.  This region consists of a pseudosubstrate 

domain (autoinhibitory domain) and cysteine-rich domain(s).  The pseudosubstrate 

domain acts to keep the enzyme inactive by binding to the substrate binding site in the 

catalytic domain when DAG/phorbol esters and/or calcium are not bound to the enzyme 

(Orr et al., 1992).  The pseudosubstrate domain can bind to the substrate binding domain, 

because it resembles the substrates that would be able to bind to this site with exclusion 

of a nonphosphorylated amino acid residue in place of the serine or threonine residue that 
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the enzyme would typically phosphorylate (House and Kemp, 1987).  The cysteine-rich 

domains within the C1 region are the sites where DAG or phorbol esters bind in the 

conventional and novel PKCs (Burns and Bell, 1991; Kazanietz et al., 1995a; Kazanietz 

et al., 1995b; Ono et al., 1989). 

 There are three other highly conserved regions within the PKC isozymes.  One of 

these three is also in the regulatory region and is known as the C2 domain.  The C2 

domain is responsible for the binding of calcium in conventional PKC isozymes.  There 

is a C2-like domain within the regulatory region of novel PKC isozymes as well (Sossin 

and Schwartz, 1993), but it does not play a role in calcium binding to these isozymes.  

The other two highly conserved regions are within the catalytic domain of the isozymes 

and are referred to as the C3 and C4 domains.  The C3 domain contains the site for the 

binding of ATP, while the C4 domain is the site for recognition and binding of the 

substrate.  It is the C4 domain to which the pseudosubstrate domain of the C1 region 

binds to when the PKC isozyme is in its inactive form. 

 Phorbol esters have been found to bind to and activate conventional and novel 

PKC isozymes.  The manner in which they bind involves the presence of a phospholipid 

cofactor, generally phosphotidylserine (Konig et al., 1985).  It is important for the PKC 

isozymes to be associated with phospholipids to regulate the translocation of PKC after 

treatment with phorbol esters (Kazanietz, et al., 2000).  Once the phorbol ester and 

cofactor are bound, a conformational change occurs within the PKC isozyme resulting in 

the removal of the pseudosubstrate domain of the C1 region from the binding site in the 

C4 domain, which causes the activation of the PKC isozyme (Ron and Kazanietz, 1999).   

It has been found that even under conditions where calcium and phosholipid cofactors are 
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limited, phorbol esters still have the ability to activate PKC isozymes (Castagna et al., 

1982). 

Initiation of Contraction by PKC 

 There is much debate on what role calcium plays in vascular smooth muscle 

contraction in response to phorbol.  Several investigators have found that treatment with 

phorbol esters do cause an increase in [Ca2+]i
 leading to contraction of the smooth muscle 

by means of MLCK, as discussed in the earlier section on smooth muscle contraction. 

Others have found that phorbol esters can initiate contraction without an increase in 

[Ca2+]i or phosphorylation of myosin light chain (Sybertz et al., 1986; Jiang and Morgan, 

1987, 1989; Singer 1990).  If myosin light chain is not phosphorylated, then phorbol 

esters could initiate contraction by PKC phosphorylating other proteins that will result in 

contraction (Walsh et al., 1994) or by increasing the sensitivity of the contractile 

response to calcium so that contraction can occur at resting levels of intracellular calcium 

(Jiang and Morgan, 1987). 

 Many studies have been conducted examining the role of calcium in contraction 

of A7r5 cells in response to phorbol esters.  There is conflicting evidence as to whether 

there is an increase in intracellular calcium in the A7r5 cell line in response to phorbol 

esters.  In a study using A7r5 cells, Nakajima et al. (1993) proposed that the increase in 

[Ca2+]i they found in response to phorbol esters appears to be caused by PKC modulating 

calcium currents through voltage-dependent calcium channels (Fish et al., 1988).  Sperti 

and Collucci (1987) also reported an increase in the intracellular calcium in A7r5 cells in 

response to treatment with phorbol diesters, which is blocked by dihydropyridines 
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suggesting influx through voltage-dependent calcium channels.  Rembold and Murphy 

(1988) agreed with Sperti and Colluci with the added information that the effects of PDB 

on intracellular calcium could be dependent on membrane potential of the cells.  On the 

other hand, Galizzi et al. (1987) found that treatment with phorbol esters of A7r5 smooth 

muscle cells causes inhibition of calcium channel activity, suggesting calcium does not 

play a role.  Vigne et al. (1988) has shown that phorbol esters activate sodium-calcium 

exchangers in A7r5 cells, which would cause a decrease in the intracellular levels of 

calcium.  Our laboratory (Li et al. 2001), has found that calcium appears to be necessary, 

at least at low levels, to obtain the characteristic contraction and remodeling of α-actin in 

response to PDBu. 

 In regards to increased sensitivity of the contractile response to calcium, Jiang and 

Morgan (1987) showed results indicating that at resting levels of intracellular calcium, 

phorbol esters can initiate contraction in rat and ferret aorta.  These results confirm in 

vitro studies indicating that phorbol esters and diacylglycerol increase the affinity of PKC 

for calcium from the 1 X 10-6 M range to the 1 X 10-7 M range, which falls within the 

range of resting intracellular calcium concentrations (Nishizuka, 1986; Yamanishi et al., 

1983). 

 Addressing the last issue mentioned previously concerning other possible 

substrates for PKC that could induce contraction in response to phorbol esters, there are 

several that have been mentioned in the literature ranging from proteins previously 

mentioned to be involved in smooth muscle contraction, such as MLCK, myosin light 

chain, and myosin phosphatase, to other proteins that interact with the cytoskeleton, such 

as caldesmon and calponin.  While MLCK has been found to be a substrate for PKC in 
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vitro (Ikebe et al., 1985; Nishikawa et al., 1985), it has been documented that 

phosphorylation of MLCK by PKC does not have an effect on contractility (Stull et al., 

1990).   

 Myosin light chain has also been found to be an in vitro substrate of PKC (Bengur 

et al., 1987; Ikebe et al., 1987).  These in vitro studies indicated that PKC phosphorylates 

myosin light chain at sites different from MLCK.  PKC phosphorylates myosin light 

chain at serine 1, serine 2, and threonine 9, while MLCK phosphorylates myosin light 

chain at serine 18 and serine 19.  Phosphorylation at PKC sites has been found to inhibit 

actin-activated myosin Mg2+ ATPase activity and contraction (Bengur et al., 1987; Sutton 

and Haeberle, 1990).  There have been studies indicating that while myosin light chain is 

phosphorylated at specific sites related to PKC, there is also a degree of phosphorylation 

of myosin light chain that corresponds to the sites typically phosphorylated by MLCK 

(Singer et al., 1989; Singer, 1990; Barany et al., 1992). It has been suggested that the 

phosphorylation at the characteristic MLCK sites could be a result of inhibition of 

myosin phosphatase (Masuo et al., 1994).  The means by which this inhibition occurs is 

by the phosphorylation of CPI-17 by PKC (Kitazawa et al., 1999). 

 There are two other possible substrates for PKC to interact with in the 

cytoskeleton.  One of these is caldesmon.  Caldesmon is a protein that can cross-link 

actin and myosin filaments (Ikebe and Reardon, 1988).  Caldesmon functions to inhibit 

actin-activated myosin Mg2+-ATPase activity (Ngai and Walsh, 1984).  Phosphorylation 

of caldesmon by PKC results in the release of actin thereby releasing the inhibition of the 

actomyosin ATPase (Andrea and Walsh, 1992), which theoretically could lead to 

contraction.  It is thought that this interaction between caldesmon and PKC is not direct, 
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but rather is a result of PKC acting on caldesmon via a cascade involving Ras, Raf, 

mitogen-activated protein (MAP) kinase kinase, and MAP kinase (Adam and Hathaway, 

1993). 

 

Figure 5.  Signal transduction pathway linking PKC to caldesmon (CaD) to initiate 
contraction.  (Walsh et al., 1994) 

 

 Calponin is the other possible PKC substrate found to interact with the 

cytoskeleton (Winder and Walsh, 1993).  Calponin also inhibits actin-activated myosin 

Mg2+-ATPase activity by binding to actin (Winder and Walsh, 1990).  PKC directly 

phoshporylates calponin at serine 175 to release actin and the inhibition of the 

actomyosin ATPase (Winder and Walsh, 1993, 1990), which has the potential to lead to 

smooth muscle contraction.   
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Podosomes 

 Podosomes were first reported in the mid-1980’s as structures that formed where 

cells made contact when grown on an artificial surface (Marx, 2006).  To date, no 

podosomes have been reported to be found in vivo (Marx, 2006).  Podosomes were first 

described in cells that had been transformed by Rous sarcoma virus (David-Pfeuty and 

Singer, 1980) and  in cells derived from monocytes, such as osteoclasts (Marchisio et al., 

1984) and macrophages (Marchisio et al., 1987).  Podosomes are generally 1-2 µm in 

diameter (Marx, 2006) and are finger-like projections that extend up through the cell 

from the ventral membrane, where the cell is in contact with the substrate, toward the 

dorsal surface of the cell (Linder and Aepfelbacher, 2003).  The core of the podosome 

contains columns of actin filaments with proteins associated with actin polymerization, 

such as N-WASp (Mizutani et al., 2002), Arp2/3 (Linder et al., 2000; Burns et al., 2001; 

Kaverina et al., 2003), and cortactin (Schuuring et al., 1993, Ochoa et al., 2000; Pfaff and 

Jurdic, 2001; Mizutani et al., 2002; Destaing et al., 2003).  Surrounding the actin core is a 

ring of proteins typically associated with focal adhesions, such as α-actinin and vinculin 

(Marchisio et al., 1984; Tarone et al., 1985; Marchisio et al., 1988; Sobue et al., 1989; 

Babb et al., 1997; Fultz et al., 2000; Hai et al., 2002; Destaing et al., 2003).  The actin 

core does not appear to be associated with the rest of the actin cytoskeleton (Gimona and 

Buccione, 2006).   

 The function of podosomes is still a matter of debate.  It is generally thought that 

because they adhere to artificial substrates, podosomes play a role in cell adhesion and 

cell motility (Marx 2006).  In other instances, podosomes have been found to play a role 

in remodeling of the cytoskeleton and matrix by controlling the localized turnover of 
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cytoskeleton attachments and degradation of the extracellular matrix (Gimona and 

Buccione, 2006).   

 Fultz et al. (2000) was the first to report the presence of podosomes in A7r5 cells 

as a response to phorbol esters.  However, he did not describe them as podosomes but as 

peripheral bodies.  It was Hai (2002) that first described these peripheral bodies as 

podosomes.  Fultz et al. (2000) found that cells stained with phalloidin and stimulated to 

contract with PDBu developed discrete peripheral structures that were confirmed to result 

from the remodeling of α-actin.  The α-actin was found to disassemble from stress fibers 

and reassemble into these peripheral structures resulting in the loss of most of the α-actin 

stress fibers.  A protein found to be associated with the actin core was α-actinin.  Another 

feature of the peripheral bodies was found to be that they extended vertically up from the 

base of the cell. 

 Hai et al. (2002) confirmed the fact that the peripheral bodies arose from the base 

of the PDBu treated cells, and they connected this to the defining feature of podosomes 

(Nitsch et al., 1989; Wakino et al., 2001).  They also found that vinculin, which is a 

marker for focal adhesions, colocalized to the peripheral structures, suggesting that these 

structures may arise from focal adhesions.  As mentioned previously, podosomes have 

been found to have both α-actinin (Fultz et al., 2000) and vinculin associated with the 

actin core.  The observations published in the work by Fultz et al. (2000) and the 

observations made by Hai et al. (2002) led Hai to label the peripheral bodies as 

podosomes.   
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 Numerous others have begun to study podosomes in A7r5 cells as well.  Kaverina 

et al. (2003) reported that the initiation and maintenance of podosomes in A7r5 cells 

requires Arp2/3-dependent actin polymerization, which is consistent with findings about 

podosomes in other cell types.  They also found that the site of podosome formation 

appears to be at the junction of actin stress fibers with focal adhesions.  Work done by 

Burgstaller and Gimona (2005) further indicated that podosomes in A7r5 cells are sites of 

substrate degradation.  Work continues in this area to define the structure and function of 

these structures. 

Myosin Light Chain Kinase 

 MLCK has already been mentioned as an enzyme involved in the regulation of 

smooth muscle contraction by phosphorylating the regulatory light chain of myosin 

thereby activating myosin ATPase (Aksoy et al., 1976; Chacko et al., 1977; DiSalvo et 

al., 1978; Gorecka et al., 1976; Ikebe, et al., 1977; Sobieszek 1977).  This section is 

going to focus on the structure of the enzyme, and its role in binding to actin. 

 There are two genes responsible for expressing MLCK in vertebrates, but only 

one gene is expressed in smooth muscle (Stull et al., 1986; Gallagher et al., 1997).  The 

other MLCK gene has been found to be expressed in striated muscle.  MLCK is between 

130-150 kDa depending on what species it is isolated from (Stull et al., 1998).  The 

catalytic site is found near the central region of the enzyme and is similar to other 

serine/threonine protein kinases (Olson et al., 1990; Stull et al., 1986; Gallagher et al., 

1997).  The C-terminal region is known as the telokin domain and is thought to be a site 

for myosin binding (Ito et al., 1989).  There are also two sites to which calmodulin binds 
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to MLCK often referred to as the regulatory sites.  One is found in the N-terminal region 

of the enzyme between amino acids 26-41, and the other is found in the C-terminal region 

between amino acids 787-815 (Olson et al., 1990; Ye et al., 1997; Gao et al., 2001).  The 

calmodulin binding site in the C-terminal region acts to regulate the kinase activity of 

MLCK (Olson et al., 1990).  The calmodulin binding site in the N-terminal region acts to 

regulate the actin binding activity of MLCK (Ye et al., 1997).  MLCK also has two actin 

binding domains within the N-terminal region of the enzyme (Ye et al., 1997).  One of 

the actin binding domains is within amino acids 1-41, while the other is within amino 

acids 138-218 (Ye et al., 1997; Gao et al., 2001).  Notice that one of the actin binding 

sites overlaps with one of the calmodulin binding sites.  This particular actin binding site 

is referred to as a Ca2+/CaM sensitive binding site.  Binding of Ca2+/CaM to this site 

causes MLCK to release actin from this binding site (Ye et al., 1997).  The other actin 

binding site is referred to as a Ca2+/CaM insensitive binding site (Ye et al., 1997).   

 

 

Figure 6.  Schematic structure of MLCK.  Redrawn from Molecular Mechanisms of 
Smooth Muscle Contraction, Chapter 2, Hayakawa et al., 1999.  The red, blue, and green 
color regions indicate the location of the binding of listed molecules to MLCK.   
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 MLCK has been found to bundle actin filaments by cross-linking actin filaments 

between the Ca2+/CaM sensitive and insensitive actin binding sites found within the N-

terminal region of MLCK (Hayakawa et al., 1994, 1999; Gao et al., 2001).  When MLCK 

bundles actin filaments, it also causes an inhibitory effect on the interaction of actin 

and myosin.  This inhibition is relieved in the presence of Ca2+/CaM (Kohama et al., 

1992).  Hayakawa et al. (1999) concluded the bundling activity of MLCK with actin is 

too low to possess any physiological relevance without the interaction of an additional 

protein yet to be identified. 

 

Summary 

 Taken together, the literature indicates that smooth muscle contraction has a 

unique way of developing force that cannot be solely explained on the basis of the 

classical actin/myosin sliding filament theory, even though some of the concepts may 

apply to smooth muscle.  Our laboratory and others have proposed that in smooth muscle 

the actin cytoskeleton undergoes dynamic remodeling during force development.  This 

remodeling is important to maintain actin and myosin at optimal opposition to enhance 

force development and to allow for slow, sustained force development, a unique 

characteristic of smooth muscle contraction. 
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Abstract 

 
In the present study, we investigated the reorganization of α- and β-actin in the 

contracting A7r5 smooth muscle cell.  The remodeling of these actin variants was 

markedly different in response to increasing concentrations of phorbol 12, 13-dibutyrate 

(PDBu).  At the lowest concentrations (≤ 10-7 mol/L), cells showed an ~70% loss in α-

actin stress fibers with robust transport of this isoform to podosomes.  By comparison, β-

actin remained in stress fibers in cells stimulated at low concentrations (≤ 10 -7 mol/L) of 

PDBu.  However, at high concentrations (≥ 10-6 mol/L) ~50% of cells showed transport 

of β-actin to podosomes.  Consistent with these findings, staining with phalloidin 

indicated a significant decrease in the whole-cell content of F-actin with PDBu treatment.  

However, staining with DNase I indicated no change in the cellular content of G-actin, 

suggesting reduced access of phalloidin to tightly packed actin in the podosome core.  

Inhibition of protein kinase C (staurosporine, bisindolymaleimide) blocked PDBu-

induced (5 x 10-8 mol/L) loss in α-actin stress fibers or reversed podosome formation 

with re-establishment of α-actin stress fibers.  By comparison, these inhibitors caused 

partial loss of β-actin stress fibers.  The results support our earlier conclusion of 

independent remodeling of α- and β-actin cytoskeletal structure and suggest that the 

regulation of these structures is different.   
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Introduction 
 

Several isoforms of actin have been isolated from eukaryotic cells that, based on 

their motility in isoelectric focusing, have been classified as α-, β-, and γ-actins.  

Sequence analysis has indicated that actin structure is highly conserved with only minor 

heterogeneity (<10%) among isoforms (Khaitlina 2001).  Nevertheless, there is clear 

evidence for tissue specificity of actin isoform expression.  Four isoforms of actin have 

been identified in mammalian and avian smooth muscle:  α- and γ-smooth muscle and β- 

and γ-nonmuscle or cytoplasmic actin.  The β-actin isoform has been found in all smooth 

muscle tissue examined thus far, whereas, the expression of the remaining isoforms is 

tissue-specific (Hartshorne 1987).  The γ-actin isoform is found in visceral smooth 

muscle (Hartshorne 1987; North et al. 1994; Toullec et al. 1991), whereas α-actin is the 

predominant muscle actin isoform in vascular smooth muscle (Fatigati and Murphy 1984; 

Hartshorne 1987).  The expression of multiple actin species within a single cell type 

suggests that the isoforms serve different functions.  Consistent with this idea, actin 

isoform compartmentalization has been reported in a variety of cell types (Khaitlina 

2001).  Based on immunohistochemistry and the distribution of actin-associated proteins, 

it was proposed early on that smooth muscle cell actins could be separated into 

contractile and cytoplasmic domains containing smooth muscle-specific and nonmuscle 

isoforms, respectively (DeNofrio et al. 1989; Herman 1993; North et al. 1994; Small 

1995).  However, other investigators have challenged the spatial separation of actin 

isoforms in smooth muscle.  Drew and Murphy (1997) reported that actin filaments 

isolated from swine stomach fundus consisted of copolymerized muscle and nonmuscle 

actins at about the same composition ratio of tissue homogenates.  Stromer et al. (2002) 
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showed localization of β-actin, α-, and (or) α/γ-actin and α-actinin at discrete cellular 

and membrane foci, confirming that both muscle and nonmuscle filaments are associated 

with cell dense bodies and plaques in several types of smooth muscle.  Based on their 

observation of low level staining for β-actin throughout filament structure, however, they 

concluded that there was extensive overlap of muscle-specific and nonmuscle isoforms, 

arguing against spatial separation into contractile and cytoplasmic domains.  By 

comparison, Song et al. (2000) showed a distinctly herterogenous distribution of actin 

isoforms in cultured smooth muscle cells.  They noted a predominate localization of β-

actin at the cell periphery associated with vinculin plaques, striated myosin, and α-actinin 

aggregates, whereas α-actin was observed in the central region of the cell associated with 

continuous myosin and punctate α-actinin staining.  However, they further showed an 

apparent transition in composition of individual stress fibers from β-actin to α-actin from 

periphery to cell center, indicating incomplete separation into discrete domains.  

Taken together, these studies suggest at least partial segregation of smooth 

muscle-specific and nonmuscle actin isoforms.  This, in turn, suggests that, despite the 

high level of homology, mechanisms are available for sorting actin isoforms.  Consistent 

with this conclusion, Mounier et al. (1997) have reported direct evidence of differentiated 

sorting of labeled actin isoforms introduced into smooth muscle and nonmuscle cells.  In 

addition to evidence of spatial segregation, several studies have suggested that α- and β-

actin organization may be governed by different mechanisms and could serve different 

functional roles in the contractile and motility properties of fibroblasts and smooth 

muscle cells.  For example, experimental manipulation of α- and β-actin structure and 

expression levels has been shown to selectively alter contraction and cell motility, 



 

45 

respectively (Hinz et al. 2001; Ronnov-Jessen and Petersen 1996; Schedlich et al. 1997).  

Recent evidence has further indicated that the introduction of the NH2-terminal sequence 

of α-actin into myofibroblasts inhibits contractile activity, whereas the NH2-terminal 

peptide of β-actin had no effect (Hinz et al. 2002). 

Our laboratory has reported that the reorganization of α- and β-stress fibers is 

different during phorbol ester-induced contraction of A7r5 cells (Fultz et al. 2000; Li et 

al. 2001a).  During the interval of cell contraction, β-actin fibers remained stable, 

whereas α-actin reformed into intensely fluorescing peripheral bodies that have been 

subsequently identified as podosomes (Hai et al. 2002), suggesting the isoforms were 

subject to different regulatory control.  Gimona et al. (2003) have recently reported that 

actin stress fibers decorated with h1-calponin remained stable, whereas those associated 

with SM22 were transported to podosomes in PDBu-treated A7r5 cells, suggesting 2 

functionally distinct actin filament populations.  However, in contrast to our earlier 

observations, they found that β-actin as well as α-actin was localized at podosomes.  One 

possible explanation of results was the difference in concentrations of PDBu used to 

stimulate cells in the 2 studies.  In the present study we examined the remodeling of α- 

and β-actin in response to a range of PDBu concentrations as well as comparing the 

effects of contractile antagonists on their organization during PDBu stimulation.  The 

results support earlier conclusions of spatial and regulatory segregation of α- and β-actin 

in the A7r5 cell. 
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Materials and Methods 

Cell Culture 

A7r5 smooth muscle cells, derived from embryonic rat aorta and shown to 

maintain the ability to contract to phorbol esters (Fultz et al. 2000; Nakajima et al. 1993), 

were obtained from American Type Culture Collection (Manasass, Va.).  Cells were 

plated on 75-cm2 flasks and grown to approximately 85% confluence at 37oC in a 

humidified atmosphere of 5% CO2 in air.  The cells were maintained in Dulbecco’s 

modified Eagles medium (DMEM) supplemented with 10% fetal bovine serum, 100 

U/mL penicillin G, and 100 µg/mL streptomycin.  Media was changed every other day 

and cells were passaged at least once a week.  Passaging was accomplished by addition of 

trypsin-EDTA solution in PBS and collection of cells by centrifugation. 

 

Confocal Microscopy 

In experiments employing immunostaining, cells were seeded onto glass 

coverslips, placed in 6-well culture plates and returned to the incubator for a minimum of 

24 h to allow for attachment and spreading.  After experimental treatment, cells were 

fixed and permeabilized by addition of ice cold acetone for 1 min.  The cells were 

washed several times with PBS containing 0.5% Tween-20 (PBS-T), pH 7.5, followed by 

a 30-min incubation in blocking solution containing 5% nonfat dry milk in PBS.  α-Actin 

staining was accomplished by incubation of cells in a 1:500 dilution of monoclonal-α-

smooth muscle actin, clone 1A4 FITC-labeled antibody (Sigma Chemical Co., St. Louis, 

Mo.) for 60 min at room temperature.  β-Actin was imaged using a 1:500 dilution of 

monoclonal anti-β-actin, clone AC-15 primary antibody (Sigma) followed by incubation 
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with an Alexa 488 labeled secondary antibody (Molecular Probes, Eugene, Ore.).  Cells 

were imaged by mounting on a Nikon Diaphot Microscope and confocal microscopy 

performed with a Bio-Rad Model 1024 scanning system with a Krypton/Argon laser.  

Micrographs were constructed by projection of Z-plane acquisitions and analyzed by 

Lasersharp and Confocal Assistant Software (BioRad, Hercules, Calif.).  The ratio of 

cellular filamentous (F-actin) to monomeric (G-actin) actin was estimated using dual 

staining with phalloidin and DNase I by a modification of the method of Knowles and 

McCulloch (1992).  Cells were fixed with ice-cold acetone for 1 min, rinsed with PBS 

(3X) and then incubated with Alexa Fluor-DNase I and Alexa Fluor-phalloidin 

(Molecular Probes, Eugene, Ore.) for 1 h.  Cells were thoroughly rinsed with PBS and 

embedded in Gel-Mount media (Fischer, Chicago, Ill.) on glass slides.  Cells were then 

visualized using a Bio-Rad 1024 scanning confocal microscope with laser settings kept 

constant for all experimental groups.  Nuclear fluorescence was eliminated using Paint 

Shop Pro.  Whole-cell pixel counts were obtained by boxing cells using the rectangular 

tool with ImageJ program (NIH, Bethesda, Md.).  F-actin to G-actin ratios were 

calculated by dividing pixel counts obtained for phalloidin and DNase I staining, 

respectively, for each cell.  Because 20% to 30% of cells do not respond to PDBu, cells 

showing robust podosome formation were selected for evaluation. 

 

Cell treatments and analysis of actin remodeling 

PKC inhibitors staurosporine and bisindolymaleimide were added at a final 

concentration of 10x the reported IC50 or Ki value.  The effect of the compounds were 

evaluated in their ability to alter α-actin and β-actin structure both during PDBu-
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stimulated (5 x 10-8 mol/L) reorganization and after PBDu-induced reorganization was 

established.  For the former experiments, an inhibitor was added 30 min before PDBu 

with the cells fixed for imaging 30 min after PDBu stimulation.  For the latter, the 

inhibitor was added 30 min following PDBu with cells fixed for imaging at 30 min after 

the introduction of inhibitor.  Vehicle-control cells were fixed at identical intervals as the 

inhibitor-treated cells. 

Based on the work of Chrzanowska-Wodnicka and Burridge (1996) showing that 

internal strain on the cytoskeleton was required for formation of stress fibers, we assumed 

that contractile antagonists would result in significant loss of tension bearing structures.  

Consequently, in addition to qualitative assessment of actin stress fibers (fiber breakage, 

compression), an attempt was made to obtain quantitative information concerning loss of 

structure.  Surprisingly, the contractile antagonists did not result in loss of α-actin stress 

fibers.  Rather, the protein kinase inhibitors blocked α-actin stress fiber remodeling to 

podosomes when added before PDBu and caused a reversal of podosome formation with 

reformation of stress fibers when added after PDBu.  Therefore, counts of cells exhibiting 

podosome formation were used as a measure of inhibitor effect on α-actin remodeling.  

Cell counts were performed in 3 separate experiments with a total of approximately 300 

cells counted per experiment.  Cells were scored by 2 viewers and the counts were 

averaged.   

In contrast to α-actin, inhibitors caused noticeable loss in β-actin structure.  To 

estimate losses in β-actin stress fibers, confocal images of treated and control cells were 

obtained at fixed confocal settings and analyzed using Image J software (NIH).  Using 

the line scan tool, the cell was bisected in the long axis at mid-cell and the resulting plot 
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was imported into Microsoft Office Excel (Fig. 1).  The point of lowest intensity was 

selected as baseline and the graph was then analyzed using Peakfit 4.0 software to 

determine the area under the curve (I = total intensity).  This value was then divided by 

line pixel number (p) to normalize for line length.  The final value, β-actin filament 

intensity = I/p was calculated using Excel. 

Western blot analysis 

A7r5 cells were plated on 150 mm x 25 mm tissue culture dishes and grown to 

approximately 85% confluence as described in the cell culture section.  Cells were treated 

with vehicle (Control) or 10-7 mol/L PDBu for 30 min to allow cells to contract.  After 

contraction, control and PDBu treated cells were collected by addition of trypsin-EDTA 

and centrifugation.  Cells were resuspended in 300 µL RIPA lysis buffer containing 

Complete protease inhibitor cocktail tablet (Roche Diagnostics, Indianapolis, Ind.) for 30 

min on ice.  To separate G-actin from F-actin, the cell lysates were centrifuged at 

100,000g for 1 h at 4oC.  Upon completion of centrifugation, the supernatant was 

removed for analysis of G-actin.  An amount of lysis buffer equal to the supernatant was 

added to the pellet and allowed to soften on ice for 1 h.  The pellet was then resuspended 

and sonicated for analysis of F-actin.  Concentration of total protein per sample tube was 

determined using BCA (Pierce) protein assay.  Samples were denatured in SDS sample 

buffer and subjected to 12.5% SDS-PAGE.  Protein was transferred to PVDF membrane 

(Pierce) using a Fischer Biotech semi-dry blotting unit.  Blots were blocked for 1 h with 

5% nonfat dry milk in PBS followed by washing 3 times for 5 min each.  The blot was 

then probed with a 1:500 dilution of monoclonal-anti-actin, α-smooth muscle primary 
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antibody (Sigma, St. Louis, Mo.) for 1 h followed by washing.  The blot was then 

incubated for 1 h with anti-mouse Ig, horseradish peroxidase-linked secondary antibody 

(Amersham Biosciences, Piscataway, N.J.) followed by washing.  Horseradish peroxidase 

activity was detected using the ECL Western Blotting Detection system (Amersham 

Bioscience). 

Data analysis 

Analysis of differences between treatment means was performed by 1-way 

ANOVA followed by Student’s unpaired t test (Sigma Stat, SPSS, Chicago, Ill.).  

Differences between means were considered significant if p ≤ 0.05.  Averaged results are 

presented as mean ± SE throughout the text. 
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Results 

Actin concentration response to PDBu 

There was a marked dichotomy in the concentration-response of PDBu-stimulated 

α- and β-actin reorganization into podosomes (Table 1; Fig. 2).  A total of 40% to 70% of 

cells stained for α-actin showed robust podosome formation with an approximate 70% 

loss in stress fibers (Table 1) at the lowest PDBu concentrations (10-8 mol/L and 10-7 

mol/L).  In contrast, few cells imaged for β-actin showed evidence for podosome 

formation (Fig. 2) and loss of stress fibers (Table 1) at lower PDBu concentrations.  

However, approximately 50% of these cells exhibited formation of these structures at 

PDBu concentrations ≥ 10-6 mol/L (Fig. 2). 

Dual staining of control cells with phalloidin and DNase I indicated F-actin 

incorporation into stress fibers (Fig. 3A) with G-actin diffusely distributed within the cell 

body (Fig. 3B).  Contraction of the cell with 10-7 mol/L PDBu resulted in an apparent loss 

in stress fibers with translocation of F-actin to podosomes (Fig. 3C), a pattern of 

reorganization that appeared to be intensified in cells treated with 10 -5 mol/L PDBu (Fig. 

3E).  Interestingly, there was a clear redistribution of G-actin to the cell periphery with 

PDBu treatment (Fig. 3D, 3F).  Particularly in cells contracted with 10-5 mol/L PDBu, G-

actin appeared to diffusely distribute about the F-actin-containing core of podosomes.  As 

expected from visual evaluation of images, simultaneous staining with phalloidin and 

DNase I indicated a significant reduction in the ratio of F-actin to G-actin in PDBu-

treated cells (Table 2).  However, this change was due to a decrease in F-actin 
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fluorescence with no evidence of significant alteration in the cellular content of G-actin.  

This suggests that PDBu stimulation did not result in a net depolymerization of actin but 

that the balance of actin from stress fibers was incorporated as tightly packed filaments in 

the core of podosomes.  Consistent with this idea, Western blot analysis indicated no 

change in the content of F- and G-α-actin in PDBu-treated compared with control cells 

(Fig. 4).  

Effects of protein kinase inhibitors on actin structure 

Figure 5 shows the distribution of α- and β-actin in unstimulated and PDBu-

treated (5 x 10-8 mol/L) A7r5 control cells.  In the resting cell, both isoforms are 

incorporated into stress fibers arranged in parallel.  During PDBu-induced contraction, 

the 2 actins undergo distinct modes of reorganization.  As the cell contracts, α-actin 

structure exhibits a loss (~70%) in stress fibers (Table 1) with the formation of 

podosomes.  By comparison, β-actin stress fibers shorten in the interval following PDBu 

(Fig. 5) without loss in structure (Table 1).  The introduction of PKC inhibitors prior to 

PDBu resulted in variable effects on α-actin structure (Table 3A; Fig. 6).  Both 

staurosporine and bisindolymaleimide blocked α-actin remodeling to podosomes.  

However, these cells showed well developed α-actin stress fibers suggesting sufficient 

strain on filaments to maintain these structures and their anchorage sites at focal 

adhesions.  Staurosporine but not bisindolymaleimide caused significant losses in β-actin 

stress fibers (Table 3B; Fig. 6) when added prior to PDBu.  The addition of PKC 

inhibitors after PDBu addition and the establishment of actin reorganization resulted in 

the reversal of podosome formation and re-establishment of an extensive system of α-
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actin stress fibers (Table 3A; Fig. 7).  By comparison, inhibitor treatment of cells after 

PDBu stimulation resulted in highly significant losses in β-actin stress fibers (Table 3B; 

Fig. 7). 
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Fig. 1.  Quantitative assessment of actin filament structure loss.  Images of 

(A) control and (C) inhibitor-treated cells were obtained at fixed confocal 

settings and analyzed using Image J software.  Each cell was bisected in 

the long axis by line scan and the resulting plot (B, D) imported to 

Microsoft Office Excel.  The graph was analyzed by Peakfit 4.0 software to 

obtain the area under the curve (I = total intensity) that was divided by line 

pixel number (p) to normalize for cell width.  The final number, filament 

intensity = I/p, was calculated in Excel. 
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Fig. 2.  The concentration-response of α- and β-actin remodeling to PDBu.  (A) 

Images of cells showing α-actin and β-actin structure after 30 min incubation at 10-8 

or 10-5 mol/L PDBu.  α-Actin was imaged using a monoclonal α-smooth muscle 

actin, clone 14C FITC-labeled antibody.  β-Actin was imaged by use of a 

monoclonal anti-β-actin, clone AC-15 primary antibody followed by an Alexa 488-

labeled secondary antibody.  (B) Graphical presentation of the percentage of cells 

imaged for α- or β-actin that exhibited podosome formation at increasing 

concentrations of PDBu.  The results indicate a significant difference in the response 

of the 2 isoforms.  α-Actin showed robust localization at podosomes even at the 

lowest concentration studied.  By comparison, β-actin remained in stress fibers and 

was transported to podosomes only at high (≥10-6 mol/L) concentrations of PDBu. 
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Fig. 3.  Visualization of F-actin and G-actin in control (unstimulated) and 

PDBu-stimulated (5 x 10-8 mol/L) A7r5 cells.  Cells were fixed with acetone 

and then stained with Alexa Fluor-Phalloidin and Alexa Fluor-DNase I for 

imaging with a Bio-Rad 1024 scanning confocal microscope.  The images are 

typical of cells showing F-actin translocation from stress fibers to podosomes 

with redistribution of G-actin to the periphery about the podosomes after PDBu 

treatment.  Bar represents 50 µm. 
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Fig. 4.  Western blot analysis of monomeric (G-actin) and 

filamentous (F-actin) α-actin in unstimulated (control) and 

PDBu-treated A7r5 cells.  Cells were lysed and, following 

centrifugation, protein from the pellet and supernatant 

were separated on 12.5% SDS-PAGE.  Blots were probed 

with monoclonal anti-actin α-smooth muscle primary 

antibody followed by anti-mouse, horseradish peroxidase-

linked secondary antibody.  Values were calculated as 

percent of total α-actin protein.  Bars indicate the average 

of 6 independent experiments. 
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Fig. 5.  The reorganization of α- and β-actin in unstimulated and PDBu (5 

x 10-8 mol/L) stimulated control cells.  Cells were stained with FITC-

labeled phalloidin, monoclonal α-smooth muscle actin, clone 14A FITC-

labeled antibody, or a monoclonal anti-β-actin, clone AC-15 primary 

antibody followed by an Alexa 488-labeled secondary antibody.  The 

results demonstrate the loss in stress fibers and localization of α-actin at 

podosomes.  By comparison, β-actin is retained in stress fibers that shorten.  

Bar represents 50 µm. 
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Figure 6 
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Fig. 6.  Changes in α- and β-actin structure resulting from the addition of 

PKC inhibitors, staurosporine and bisindolymaleimide, 30 min prior to PDBu 

(5 x 10-8 mol/L) stimulation.  α-Actin was imaged using a monoclonal α-

smooth muscle actin, clone 14A FITC-labeled antibody.  β-actin was imaged 

using a monoclonal anti-β-actin, clone AC-15 primary antibody followed by 

an Alexa 488-labeled secondary antibody.  Inhibitors or vehicle was added 

30 min prior to PDBu and the cells were fixed for staining 30 min after 

PDBu.  The results indicate that inhibitors blocked PDBu-induced losses in 

α-actin stress fibers and formation of podosomes.  By comparison, 

staurosporine caused a significant loss in β-actin structure.  Bar represents 50 

µm.   
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Figure 7 
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Fig. 7.  Changes in α- and β-actin structure resulting from the addition of PKC 

inhibitors, staurosporine and bisindolymaleimide, after stimulation of cells with 

5 x 10-8 mol/L PDBu and the formation of podosomes.  Inhibitors were added 30 

min after PDBu and cells were fixed for staining 30 min after inhibitor addition.  

α-Actin was imaged using a monoclonal α-smooth muscle actin, clone 14A 

FITC-labeled antibody.  β-Actin was imaged using a monoclonal anti-β-actin, 

AC-15 primary antibody followed by an Alexa 488-labeled secondary antibody.  

The results indicate that inhibitors reversed podosome formation with re-

establishment of α-actin stress fiber structure.  By comparison, both inhibitors 

caused significant losses in β-actin stress fiber structure.  Bar represents 50 µm. 
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 α-Actin β-Actin 

Control 147.7 ± 12.1 73.0 ± 3.1 

PDBu 43.8 ± 5.7* 77.5 ± 4.5 

% Change -70.4 +6.1 

 

Table 1.  Comparison of α-actin vs. β-actin filamentous structure in the 

A7r5 cell. 

Note:  Confocal microscopy line scan analysis of actin filamentous 

structure in control and PDBu-stimulated (5 x 10-8 mol/L) cells.  

Results are presented as fluorescence intensity/pixel number (I/p).  A 

minimum of 10 cells were evaluated in each group.  *p ≤ 0.05 vs. 

control. 
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 F-Actin G-Actin Ratio (F/G) 

Control 100.0 ± 6.5 100.0 ± 8.4 1.68 ± 0.12 

PDBu (10-7 mol/L) 55.1 ± 4.1* 85.9 ± 11.2 1.08 ± 0.05* 

PDBu (10-5 mol/L) 74.5 ± 5.0* 106.1 ± 9.4 1.11 ± 0.04* 

Table 2.  The ratio of cellular F-actin to G-actin obtained from whole 

cell fluorescence intensity measurements of A7r5 cells simultaneously 

stained with phalloidin (F-actin) and DNase I (G-actin). 

Note:  Prior to fixation for staining, cells were unstimulated (control) or 

were contracted by addition of 10-7 mol/L or 10-5 mol/L phorbol 12, 13-

dibutyrate (PDBu).  Only those PDBu-treated cells showing robust 

podosome formation were selected for evaluation.  A minimum of 6 cells 

were studied in each group.  F- and G-actin values are presented as 

percent of control.  Ratios were calculated by dividing pixel counts from 

phalloidin fluorescence measurements by those from DNase I 

measurements.  *p < 0.05 vs. control. 



 

65 

 

 

Inhibitor Before PDBu After PDBu 

(A) α-Actin   

Staurosporine 30.2 ± 2.0* 9.1 ± 3.1*† 

Bisindolymaleimide 4.3 ± 1.6* 12.2 ± 3.3* 

Pooled Control 100.0 ± 3.5 100.0 ± 2.8 

(B) β-Actin   

Staurosporine 71.1 ± 5.4* 74.6 ± 7.3* 

Bisindolymaleimide 91.4 ± 2.8 74.5 ± 4.2* 

Pooled Control 100.0 ± 5.8 100.0 ± 4.3 

 

 

 

 

Table 3.  A comparison of the effects of protein kinase C 

(staurosporine, bisindolymaleimide) inhibitors on PDBu-induced 

reorganization of α- and β-actin in A7r5 cells. 

Note:  Inhibitors were added 30 min before stimulation with PDBu (5 

x 10-8 mol/L) to evaluate their effect on active cytoskeletal 

remodeling or 30 min after PDBu to evaluate their effect on PDBu-

induced changes in remodeled structure.  Results for α-actin are 

based on cell counts indicating the percent of cells showing PDBu-

stimulated podosome formation.  Results for β-actin are based on cell 

line scans measuring fluorescence intensity as an index of β-actin 

stress fiber structure.  In each case, values are expressed as percent of 

values obtained from PDBu-stimulated inhibitor vehicle controls.  *p 

< 0.05 vs. control, † p < 0.05 before vs. after PDBu. 
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Discussion 

In previous work, we showed that the reorganization of the 2 major isoforms of 

actin was markedly different in response to low concentration (10-8 mol/L) phorbol ester 

stimulation and contraction in A7r5 smooth muscle cells (Fultz et al. 2000).  α-Actin was 

observed to reform from stress fibers into peripheral bodies now identified as podosomes 

(Hai et al. 2002), whereas β-actin remained in stress fibers that shortened during the 

contraction of the cell.  Differences in the modes of actin isoform remodeling could be 

important for implications regarding regulatory control and function in smooth muscle.  

However, a more recent report (Gimona et al. 2003) has demonstrated that at high 

phorbol ester concentration, β-actin also localizes at podosomes.  The present results 

confirm these previous findings and further indicate a marked dichotomy in the 

concentration-response of actin isoform reorganization to PDBu.  α-Actin showed robust 

podosome formation with a maximum in the percentage of cells exhibiting these 

structures observed at 10-7 mol/L PDBu.  By comparison, PDBu concentrations at 10-6 

mol/L or greater were required for similarly robust relocation of β-actin at podosomes 

(Fig. 2).  We suggest 2 possible explanations of these results.  Evidence has been reported 

suggesting that podosome formation is mediated through activation of PKCα (Gatesman 

et al. 2004).  It has been further shown that PKCα exhibits a PDBu concentration-

dependent translocation either to the subplasmalemma (10-7 mol/L) or to the perinuclear 

region (>10-7 mol/L) in A7r5 cells (Li et al. 2001b).  Hence, differences in PDBu 

concentration-dependent localization of actin isoforms could reflect differences in the 

localization of the regulatory machinery controlling α- and β-actin structure.       
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Alternatively, increasing concentrations of PDBu could result in a higher level of 

PKC activation or the activation of additional regulatory pathways.  PDBu has been 

shown to bind and activate conventional and novel PKC isozymes with high affinity (Kd, 

10-9 mol/L) (Kazanietz et al. 1993) that leaves little reason to believe that concentrations 

ranging at 10-6 mol/L would be required for full activation of the enzyme.  Moreover, our 

work has shown that cells stimulated at 10-8 mol/L PDBu may contract profoundly, with 

shortening of β-actin fibers to the point that the resolution of individual fibers is lost in 

the absence of β-actin localization at podosomes (Fultz et al. 2000).  On the other hand, 

there is substantial evidence that phorbol esters at high concentration may utilize other 

receptors than PKC (Kazanietz 2000) and activate PKC-independent pathways (Rapuano 

and Bockman 1997).  Hence, whereas the physiological significance of biological 

responses at high concentrations of phorbol ester is uncertain, the results raise the 

interesting possibility that α- and β-actin contractile remodeling is regulated by different 

pathways. 

Consistent with previous observations of PDBu-induced stress fiber loss, 

quantification of whole cell fluorescence in cells simultaneously stained with phalloidin 

(F-actin) and DNase I (G-actin) indicated a significant decrease in the ratio of 

filamentous to monomeric actin in PDBu-treated cells (Table 2).  However, this change 

occurred without significant increases in G-actin, suggesting there was no net 

depolymerization of actin despite the obvious loss of stress fibers in these cells.  A 

possible explanation is the net incorporation of stress fiber actin into the tightly packed 

filaments forming the podosome core (Gimona et al. 2003), which would be expected to 

stain less completely than stress fibers.  Consistent with this idea, Western blot analysis 
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indicated effectively identical F-actin content in PDBu-treated (76.7% ± 2.2%) compared 

with unstimulated control cells (80.0% ± 3.2%).  How such a translocation of actin to 

podosomes occurs is not certain.  Verkhovsky et al. (1997) has described actin polarity 

sorting with direct translocation of filaments to podosome-like structures in contracted 

fibroblasts.  However, more recent evidence suggests that podosome formation is 

initiated by de novo actin polymerization at the stress fiber/focal adhesion interface 

(Kaverina et al. 2003).  Interestingly, we observed the redistribution of G-actin to the 

periphery and about the podosomes in PDBu-treated cells (Fig. 3).  A likely explanation 

of this pattern of localization is that the podosomes are focal points for high rates of actin 

filament turnover.  Because of evidence suggesting that phorbol-induced podosome 

formation is mediated by PKC (Gatesman et al. 2004; Hai et al. 2002), we investigated 

the effects of selected protein kinase inhibitors on α- and β-actin structure when added 

either before or after 10-7 mol/L PDBu.  Two PKC inhibitors were studied:  

staurosporine, an inhibitor of PKC (Chabannes et al. 2001; Matsumoto and Sasaki 1989) 

that may affect various serine/threonine kinases at high concentration (Peet and Li 1999) 

and bisindolymaleimide I, a selective inhibitor of PKC (Toullec et al. 1991).  Both 

staurosporine and bisindolymaleimide have been shown to suppress force development in 

smooth muscle (Wright and Hurn 1994; Yamamoto et al. 1995; Yang et al. 2001).  

Inhibition of PKC blocked or reversed α-actin localization at podosomes leaving stress 

fibers intact (Table 3A), which is consistent with a direct role of PKC in destabilization 

of stress fibers and the stabilization of podosome formation.  Unlike the effect of the 

inhibitors to stabilize α-actin stress fibers, these compounds caused detectable losses in 

β-actin stress fibers (Table 3B), particularly when added after PDBu stimulation.  This 
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suggests that PKC contributes, at least in part, to the stability of β-actin stress fiber 

structure during PDBu stimulation. 

In summary, lack of similarity in the organizational response of α- and β-actin to 

different concentrations of PDBu or the introduction of protein kinase inhibitors indicates 

these isoforms could be subject to different regulatory influences.  In turn, this raises the 

possibility that the 2 isoforms could serve different functions in the contracting smooth 

muscle cells.  In the present study we demonstrate reversal of podosome formation and 

re-establishment of α-actin stress fibers with partial loss of β-actin stress fiber structure 

in the presence of PKC inhibitors.  These results suggest that the destabilization of stress 

fibers and transport and (or) maintenance of α-actin at podosomes is actively regulated 

by PKC.  In contrast, the stability of β-actin stress fiber structure is at least partially 

dependent on PKC activity during PDBu-induced cytoskeletal remodeling. 
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Abstract 
 

Previous work in our laboratory has suggested a role for myosin light chain kinase 

in the crosslinking of actin filaments (Thatcher et al., 2007).  This role for MLCK was 

attributed to non-kinase domains within the protein.  However, the possibility remained 

that the kinase activity of MLCK and the resulting tension generated in tension bearing 

structures within the cell could contribute directly to the remodeling of the cytoskeleton 

during contraction.  In the present study, we investigated the role of the kinase domain of 

MLCK in the crosslinking of actin filaments.  Experiments were conducted using two 

inhibitors of the kinase domain of MLCK, ML-7 and ML-9, added prior to phorbol 12, 

13-dibutyrate (PDBu) and after PDBu contraction of cells to determine the effects on 

active cytoskeletal remodeling and on PDBu-induced changes in cytoskeletal structure, 

respectively.  The effects of these inhibitors were examined in both α- and β-actin.  

Inhibition of the kinase domain of MLCK caused a decrease in podosome formation in 

cells stained for α-actin when added prior to PDBu or after PDBu indicating kinase 

activity was essential for resting and PDBu-induced α-actin structure.  By comparison, 

the MLCK inhibitors had no effect on β-actin structure when added before PDBu 

stimulation or after PDBu stimulation.  The results allow no conclusions regarding the 

role of the kinase domain of MLCK in the crosslinking of actin filaments by MLCK.  

However, the results indicate that MLCK kinase activity is necessary for α-actin but not 

β-actin cytoskeletal structure during the PDBu-induced contraction.  
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Introduction 

Myosin light chain kinase (MLCK) is a 130-150 kDa protein with a primary 

function in smooth muscle of regulating contraction (Stull et al., 1998).  MLCK is 

activated by Ca2+/calmodulin (CaM) binding to specific sites on the protein (Kamm and 

Stull, 1985).  Once activated, MLCK phosphorylates the regulatory light chain of myosin 

thereby activating the myosin ATPase and allowing the contraction to occur (Aksoy et 

al., 1976; Chacko et al., 1977; DiSalvo et al., 1978; Gorecka et al., 1976; Ikebe et al., 

1977; Sobieszek 1977). 

More recently, MLCK has been found to play a role in bundling actin filaments 

(Hayakawa et al., 1994).  MLCK contains two sites within its N-terminal region that bind 

to actin (Ye et al., 1997) and can bind two different actin filaments to cross-link the actin 

filaments into bundles (Hayakawa et al., 1994).  The actin binding site between amino 

acids 1-41 overlaps with a Ca2+/CaM binding site that regulates the interaction of MLCK 

with actin at this site (Olson et al., 1990; Ye et al., 1997; Gao et al., 2001) and has been 

referred to as the Ca2+/CaM sensitive binding site (Ye et al., 1997).  The second actin 

binding site is found between amino acids 138-218 (Ye et al., 1997; Gao et al., 2001).  

Because this site is not affected by binding of Ca2+/CaM, it is referred to as the Ca2+/CaM 

insensitive site (Ye et al., 1997; Gao et al., 2001).  In the presence of Ca2+/CaM, actin is 

released from the Ca2+/CaM sensitive site, which then allows it to interact with myosin in 

the contractile process.   

Previous work in our laboratory has indicated that MLCK is associated with both 

α- and β-actin isoforms (Thatcher et al., 2007).  MLCK was found to be closely 

associated with α-actin along stress fibers in control cells as well as in podosomes of 
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PDBu-induced contracted cells.  MLCK was associated with β-actin stress fibers in 

control cells and continued to be associated with β-actin in a diffuse manner around the 

perinuclear region of the cell upon contraction of the cell with PDBu.  Taken together, 

this data indicates interaction of MLCK with both actin isoforms known to be present in 

the A7r5 cell line, not merely the α-actin isoform thought to be involved in contraction of 

smooth muscle cells.   

The focus of this earlier work (Thatcher et al., 2007) centered on the effects of 

inhibiting the N-terminal region of MLCK on actin organization.  Through 

downregulating MLCK using siRNA or by the addition of peptide containing amino acids 

1-41 of MLCK either by microinjection or by peptide-mediated uptake, inhibition of the 

N-terminal region of MLCK caused dissolution of α-actin stress fibers in the central 

region of control A7r5 cells, while cells induced to undergo contraction by the addition of 

phorbol 12, 13-dibutyrate (PDBu) exhibited a 70% reduction in podosome formation.  β-

actin was found to disassemble with diffuse distribution of this isoform throughout the 

cell when N-terminal inhibitors were introduced into control cells and PDBu treated cells.   

The present study examines the role of the kinase domain of MLCK in the 

structural organization of α- and β-actin in control and PDBu treated A7r5 cells.  The 

inhibitors ML-7 and ML-9, which inhibit MLCK by binding at the kinase domain, were 

utilized to study the impact on actin cytoskeletal structure.  α- and β-Actin structure were 

examined with inhibitors added alone to determine the effects on control cells as well as 

cells in which the inhibitors were added prior to and after the addition of PDBu to induce 

contractile cytoskeletal remodeling.  The idea behind the study was to determine if the 

inhibition of kinase activity leading to changes in the internal tension within the cell had 
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similar effects on actin structure to that seen during inhibition of N-terminal actin binding 

domains. 
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Materials and Methods 

Cell Culture 

A7r5 smooth muscle cells, derived from embryonic rat aorta and shown to 

maintain the ability to contract to phorbol esters (Fultz et al. 2000; Nakajima et al. 1993), 

were obtained from American Type Culture Collection (Manasass, Va.).  Cells were 

plated on 75-cm2 flasks and grown to approximately 85% confluence at 37oC in a 

humidified atmosphere of 5% CO2 in air.  The cells were maintained in Dulbecco’s 

modified Eagles medium (DMEM) supplemented with 10% fetal bovine serum, 100 

U/mL penicillin G, and 100 µg/mL streptomycin.  Media was changed every other day 

and cells were passaged at least once a week.  Passaging was accomplished by addition of 

trypsin-EDTA solution in PBS and collection of cells by centrifugation. 

 

Immunocytochemistry and Confocal Microscopy 

In experiments employing immunostaining, cells were seeded onto glass 

coverslips, placed in 6-well culture plates and returned to the incubator for a minimum of 

24 h to allow for attachment and spreading.  After experimental treatment, cells were 

fixed and permeabilized by addition of ice cold acetone for 1 min.  The cells were 

washed with PBS containing 0.5% Tween-20 (PBS-T), pH 7.5, followed by a 30-min 

incubation in blocking solution containing 5% nonfat dry milk in PBS.  α-Actin staining 

was accomplished by incubation of cells in a 1:500 dilution of monoclonal-α-smooth 

muscle actin, clone 1A4 FITC-labeled antibody (Sigma Chemical Co., St. Louis, Mo.) for 

60 min at room temperature.  In order to visualize β-actin, a β-actin-EGFP expression 

plasmid was purchased from Clontech (Palo Alto, CA).  The green fluorescent protein-
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actin fusion protein has been successfully utilized in a wide range of cell types (Aizaws et 

al., 1997; Faix et al., 1998; Noegel and Schleicher, 2000; Okada et al., 1999) and has 

been shown to be a suitable probe for the study of actin organization and dynamics in 

several mammalian cell lines (Choidas et al., 1998).  Cells were transfected in culture 

flasks with 2-6 µg of plasmid using lipofectamine (Life Technologies, Rockville, MD) 

according to the manufacturer’s standard protocol.  Fluorescence of the β-actin-GFP 

fusion protein was typically observed within 2 days and experiments were performed 

within 3 or 4 days after transfection.  Cells were imaged by mounting on a Nikon Diaphot 

Microscope and confocal microscopy performed with a Bio-Rad Model 1024 scanning 

system with a Krypton/Argon laser.  Micrographs were constructed by projection of Z-

plane acquisitions and analyzed by Lasersharp and Confocal Assistant Software (BioRad, 

Hercules, Calif.).   

Cell Treatments and Analysis of Actin Remodeling 

MLCK inhibitors ML-7 and ML-9 were added at a final concentration of 10-5,   

10-6, 10-7, or 10-8 M.  The effect of the compounds were evaluated in their ability to alter 

α-actin and β-actin structure both during PDBu-stimulated (10-7 M) reorganization and 

after PBDu-induced reorganization was established.  For the former experiments, an 

inhibitor was added 30 min before PDBu with the cells fixed for imaging 30 min after 

PDBu stimulation.  For the latter, the inhibitor was added 30 min following PDBu with 

cells fixed for imaging at 30 min after the introduction of inhibitor.  Vehicle-control cells 

were fixed at identical intervals as the inhibitor-treated cells. 

To estimate losses in α- and β-actin stress fibers, confocal images of treated and 

control cells were obtained at fixed confocal settings and analyzed using Image J 
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software (NIH).  Using the line scan tool, the cell was bisected in the long axis at mid-

cell and the resulting plot was imported into Microsoft Office Excel (Fig. 1).  The point 

of lowest intensity was selected as baseline and the graph was then analyzed using 

Peakfit 4.0 software to determine the area under the curve (I = total intensity).  This value 

was then divided by line pixel number (p) to normalize for line length.  The final value, 

β-actin filament intensity = I/p was calculated using Excel. 

Cell counts were conducted on α-actin stained cells to determine changes in 

podosome formation over the various concentrations and treatment groups.  In each 

treatment group, a minimum of 100 cells were counted in total noting the number of cells 

that exhibited podosome formation.  The counts were reported as a percentage of cells 

that exhibited podosome formation.  Cell counts were not conducted on β-actin cells.  

Previous work (Brown et al., 2006) has indicated that cells treated with PDBu at a 

concentration of 10-7 M and stained for β-actin or transfected with the β-actin construct 

exhibited podosomes in less than 20% of the cells.  For this reason, cell counts were not 

conducted, but rather stress fiber loss was evaluated.   

Data Analysis 

Analysis of differences between treatment means was performed by 1-way 

ANOVA followed by Student’s unpaired t test (Sigma Stat, SPSS, Chicago, Ill.).  

Differences between means were considered significant if p ≤ 0.05.  Averaged results are 

presented as mean ± SE throughout the text. 
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Results 

Previous work has revealed a marked difference in the response of α- and β-actin 

to PDBu stimulation at a concentration of 10-7 M (Figure 1) (Fultz et al., 2000; Brown et 

al., 2006).  In control cells, both α- and β-actin are present in stress fibers that run the 

length of the cell.  Upon stimulation with PDBu, α-actin is found to lose stress fiber 

structure with the majority of the stress fibers remodeling into podosomes around the 

periphery of the cell.  β-actin does not remodel into podosome structures but rather the 

stress fibers appeared to shorten with the change in the size of the cell. 

MLCK inhibitors were added prior to or after PDBu stimulation to evaluate their 

effect on cytoskeletal remodeling or their effect on PDBu-induced changes in remodeled 

structure, respectively.  In order to examine the effects of ML-7 and ML-9 on α-actin 

cytoskeletal structure, podosome formation was evaluated (data not shown).  In cells 

treated with inhibitors prior to PDBu stimulation, the percentage of cells exhibiting 

podosomes decreased (Figure 2).  The same trend was seen in cells treated with the 

MLCK inhibitors after stimulation with PDBu (Figure 3).  These results suggest that ML-

7 and ML-9 prevent podosome formation when added prior to PDBu stimulation and 

reverse podosome formation when the inhibitors were added after PDBu stimulation. 

To evaluate the effects of the inhibitors on β-actin stress fiber structure, filament 

intensity of the cells was determined using line scan analysis (Table 1).  In all treatment 

groups except ML-7 at a concentration of 10-8 M, no significant differences were found 

in the β-actin stress fiber structures when inhibitors were added before or after PDBu 
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stimulation (Figure 4 and 5).  It is unclear why 10-8 M ML-7 would result in a loss in β-

actin structure when added both before and after PDBu.  The Ki for ML-7 is 300 nM and 

10-8 M of the inhibitor would fall well below this concentration suggesting the results 

reflect experimental artifact.     
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Figure 1.  Comparison of control and PDBu treated cells exhibiting α-actin or β-actin.  

Control cells stained for α-actin exhibit numerous stress fibers running the length of the 

cell.  α-Actin stained cells treated with PDBu (10-7 M) exhibit robust podosome 

formation around the periphery of the cell with loss of stress fiber structure.  β-Actin 

control cells also exhibit numerous stress fibers running the length of the cell.  Cells 

treated with PDBu (10-7 M) continue to show β-actin stress fibers running the length of 

the cell without the presence of podosome formation.   

  
Control PDBu 
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β-actin 
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Figure 2.  Cells stained for α-actin and treated with the MLCK inhibitors ML-7 or ML-9 

30 minutes prior to PDBu stimulation.  There is a trend for a decrease in podosome 

formation within these cells suggesting the prevention of podosome formation.   
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Figure 3.  Cells stained for α-actin and treated with the MLCK inhibitors ML-7 or ML-9 

for 30 minutes following PDBu stimulation.  There is a trend for a decrease in podosomes 

in these cells suggesting a reversal in podosome formation. 
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Figure 4.  Cells stained for β-actin and treated with the MLCK inhibitors ML-7 or ML-9 

for 30 minutes prior to PDBu stimulation.  As indicated in table 1, with the exception of 

10-8 M treatment, ML-7 had no effect on β-actin stress fibers.
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Figure 5.  Cells stained for β-actin and treated with the MLCK inhibitors ML-7 or ML-9 

for 30 minutes after PDBu stimulation.  As indicated in table 1, only with the exception 

of 10-8 M treatment, ML-7 had no effect on β-actin stress fibers.
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 Table 1.  A comparison of the effects of ML-7 and ML-9 at varying concentrations on β-

actin structure of A7r5 cells when added before or after stimulation with PDBu. 

 

 Before PDBu After PDBu 

Pooled Control 100.0 ± 2.3 100.0 ± 2.3 

PDBu 93.3 ± 2.2 93.3 ± 2.2 

ML-7 10-8 M 84.6 ± 2.8* 84.6 ± 2.5* 

ML-7 10-7 M 95.2 ± 2.5 101.6 ± 3.5 

ML-7 10-6 M 107.4 ± 3.1 108.1 ± 3.7 

ML-7 10-5 M 106.6 ± 3.3 101.8 ± 3.2 

ML-9 10-8 M 92.9 ± 3.1 96.9 ± 3.8 

ML-9 10-7 M 95.1 ± 3.0 106.4 ± 3.0 

ML-9 10-6 M 92.2 ± 3.0 89.9 ± 2.6 

ML-9 10-5 M 90.8 ± 3.2 92.0 ± 2.9 

Note:  Inhibitors were added 30 min before stimulation with PDBu (10-7 M) to evaluate 

their effect on active cytoskeletal remodeling or 30 min after PDBu to evaluate their 

effect on PDBu-induced changes in remodeled structure.  Results are based on cell line 

scans measureing fluorescence intensity as an index of β-actin stress fiber structure.  

Values are expressed as percent of values obtained from PDBu-stimulated inhibitor 

vehicle controls.  *  p < 0.05 vs. pooled control 
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Discussion 
 

The concept of a dual role of MLKC in smooth muscle contraction was a novel 

hypothesis first proposed by our laboratory.  In addition to its kinase properties enabling 

force development through the interaction of myosin and actin filaments, we proposed 

that MLCK actin binding could maintain the actin/myosin contractile machinery in 

opposition in the resting cell and release tension bearing actin filaments upon activation 

of MLCK, allowing sliding filament dynamics and contractile remodeling.  Because of 

the novelty of this hypothesis very little information is available in the literature.   

In initial studies examining MLCK actin binding (Thatcher et al., 2007), MLCK 

was shown to be closely associated with both α- and β-actin in control and PDBu-treated 

cells by means of colocalization and fluorescence resonance energy transfer (FRET) 

analysis.  Next, MLCK was downregulated  40-55% with the introduction of MLCK-

siRNA.  Upon downregulation of MLCK, cells demonstrated a loss in stress fiber 

structure and rounding of the cell.  In cells stained with α-actin, the central region of the 

cells were devoid of stress fibers, while the periphery of the cells demonstrated a network 

of α-actin stress fibers.  β-Actin stained cells, on the other hand, generally lacked stress 

fibers all together with β-actin forming a network in the perinuclear region of the cell.  

Cells treated with PDBu demonstrated both isoforms relocating to podosomes around the 

periphery of the cell in negative control cells.  However, cells treated with MLCK-siRNA 

showed a nearly 70% reduction in podosome formation and resembled cells treated with 

MLCK-siRNA without being stimulated with PDBu.   

Another set of experiments were conducted introducing peptides containing 

sequences overlapping the actin binding domains of MLCK into A7r5 cells to 
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competitively inhibit actin binding.  Two sets of peptides were used.  One set contained 

the amino acids 1-41, while the other set only contained the amino acids 1-25.  The 

second set of peptides had no effect on control or PDBu treated cells stained for α- actin.  

However, introduction of the 1-41 peptides into cells either by microinjection or by 

peptide-mediated uptake caused the same results found in the MLCK-siRNA 

experiments.  This work indicated the Ca2+/CaM insensitive actin binding site of MLCK 

showed to cause crosslinking of actin stress fibers played a role in determining actin 

structure.  The crosslinking role of MLCK appears to be important in maintaining the 

actin structure in resting cells possibly by stabilizing the actin stress fibers.  It is thought 

that during Ca2+-dependent contraction MLCK releases actin at the Ca2+/CaM sensitive 

binding site to allow actin to be moved by myosin contributing to force development.  In 

a Ca2+-independent contraction, such as that produced by phorbol, actin is not released 

from MLCK, which may be important to remodeling of actin during PDBu induced 

contractions.  In any case, the results from Thatcher et al., (2007) provided compelling 

evidence that actin filament binding by MLCK plays a major role in actin structural 

arrangement in the cell before and during contraction by PDBu. 

While our early results indicated MLCK contributes to the stabilization and 

remodeling of actin in control and PDBu treated cells, whether this effect was due 

exclusively to non-kinase properties of MLCK was not certain. As mentioned by 

Thatcher et al., (2007), it is possible that a loss in basal kinase activity of MLCK could 

lead to loss of stress fiber structure if MLCK is responsible for maintaining some internal 

strain in the cell.  Chrzanowska-Wodnicka and Burridge (1996) have found stress fiber 

formation in the presence of internal strain.  Therefore, it was of interest to determine if 
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inhibition of MLCK kinase activity and possible tension development caused changes in 

actin cytoskeletal structures similar or different from the results of Thatcher et al., (2007).  

If the results were found to be similar, it would suggest that MLCK binding of actin 

filaments was essential for tension development and through this mechanism, influenced 

cytoskeletal structure.  

In the current studies, MLCK inhibitors showed a trend in decreasing the number 

of cells that exhibited α-actin remodeling to podosomes, which is in agreement with the 

findings in Thatcher et al., (2007) where inhibition of the Ca2+/CaM insensitive actin 

binding site caused a decrease in podosome formation by approximately 70%.  The two 

sets of data taken together suggest that the crosslinking of α-actin by MLCK combined 

with tension development could influence α-actin remodeling during PDBu-induced 

contraction.   

However, inhibition of the kinase domain had no consistant effect on β-actin, 

structure.  This result differs from the results of Thatcher et al., (2007) concerning β-actin 

and the inhibition of the Ca2+/CaM insensitive actin binding site which caused dissolution 

of β-actin fibers resulting in diffuse staining of the cell for β-actin.  And while the 

interaction of MLCK and α-actin could play an important role in tension development 

and cytoskeletal remodeling during PDBu-induced contraction, it appears that the 

interaction of MLCK and β-actin does not require kinase activity or tension development 

for structural integrity.   

The results taken together seem to point to a role for the crosslinking of α-actin 

by MLCK in tension development and cytoskeletal remodeling in contraction of the A7r5 
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cell.  Thatcher et al. (2007) suggests a model for the crosslinking of actin by MLCK and 

the role it plays in Ca2+ dependent smooth muscle contraction.  The model proposes that 

MLCK binds to α-actin by the Ca2+/CaM sensitive actin binding site and to β-actin by the 

Ca2+/CaM insensitive binding site.  With the efflux of Ca2+, Ca2+ complexes with 

calmodulin to interact with MLCK causing release of α-actin by MLCK.  The release of 

actin in close association with myosin and simultaneous phosphorylation of myosin 

allows crossbridge cycling in the absence of sarcomere structure found in other muscle 

types.  The present results suggest this model may be feasible for explaining the 

interaction of MLCK and α-actin but not β-actin.   
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Chapter IV 
 

Summary and Conclusions 

General Discussion 

Two isoforms of actin have been found to be present in vascular smooth muscle 

cells.  It has long been thought that only the α-actin isoform takes part in the contraction 

of the cell, while β-actin is present only to support structure within the cell.  However, if 

the concentration of PDBu is high enough, β-actin will remodel into podosomes around 

the periphery of the cell in the same manner α-actin remodels at much lower 

concentrations of PDBu.  At a concentration of 10-7 M PDBu, which activates a 

physiological level of PKC to cause contraction, α-actin is found to remodel into 

podosomes in about 70% of the cells, while β-actin was found to remodel into 

podosomes in only 20% of the cells.  Staining the cells with phalloidin to label all actin 

filaments and DNase I to label globular actin showed a decrease in filamentous actin with 

no change in globular actin.  Examining the amount of filamentous and globular actin in 

control and PDBu treated cells by Western Blot analysis indicated no change in 

filamentous actin in PDBu-treated cells, suggesting phalloidin is unable to reach and  be 

detected in the tightly packed actin found in the core of the podosome.  This marked 

dichotomy in actin isoform remodeling suggests differential regulation of the actin 

isoforms during smooth muscle contraction.   

Treating the cells with PKC inhibitors, staurosporine and bisindolymaleimide, 

prior to and after PDBu stimulation, showed an inhibition of α-actin remodeling to 

podosomes when added prior to PDBu stimulation and reversed podosome formation 
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with re-establishment of stress fibers when added after PDBu stimulation.  β-actin was 

evaluated based on stress fiber structure and exhibited a loss in stress fiber structure when 

the PKC inhibitors were added prior to or after PDBu stimulation.  The results from these 

studies indicate differential isoform reorganization during PDBu contraction, as well as 

different modes of regulation of the two actin isoforms structure.   

Another protein important in smooth muscle contraction is MLCK.  MLCK is 

well known as the enzyme involved in the initiation of smooth muscle contraction in 

Ca2+- dependent contractions.  MLCK has also recently been found to crosslink actin 

filaments.  The crosslinking of actin is considered a non-kinase function of the enzyme.  

We wanted to determine if the kinase domain and tension development played a role in 

MLCK binding to actin and contractile remodeling of actin structure by using two 

inhibitors of MLCK, ML-7 and ML-9.  These inhibitors were found to cause a decrease 

in podosome formation in cells stained with α-actin when added prior to or after PDBu-

induced contraction.  The use of the inhibitors in cells expressing β-actin did not show a 

change in β-actin structure when the inhibitors were added prior to or after PDBu 

stimulation.  Therefore, the kinase domain of MLCK and tension development appears to 

play a role in cytoskeletal remodeling of α-actin in the contracting A7r5 cell.  However, 

the kinase domain of MLCK with tension development does not seem to have an effect 

on β-actin structure during contraction of the A7r5 cell. 

 

Future Studies 

With so many avenues left to explore in smooth muscle contraction, there are an 

endless number of proteins that could play a role in the regulation of α- and β-actin.  
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Another protein that we have done a little work with is Rho kinase.  Rho kinase is a 

member of a signaling cascade that is thought to play a role in actin filament assembly 

and possibly a role in bundling actin filaments (Tang and Anfinogenova, 2008).   

Another avenue to explore is to determine how α-actin remodels into podosomes.  

Our lab has done some live cell, time course studies examining β-actin during contraction 

of the cell since it is a GFP-labeled protein.  Attempts have been made to replicate these 

experiments using a tagged α-actin with no success because of the inability to make a 

construct to express the tagged protein.  It is uncertain whether α-actin depolymerizes 

and repolymerizes at podosomes, or if the actin is taken into the podosome core as a 

filamentous actin.  Such a construct could shed light on this subject.   
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