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Modeling the high-speed switching of far-infrared radiation by photoionization in a semiconductor

Thomas E. Wilson*
Department of Physics and Physical Science, Marshall University, Huntington, West Virginia 25755-2570

~Received 24 November 1998; revised manuscript received 16 February 1999!

Data from an earlier study@T. Vogel et al., Appl. Opt. 31, 329~1992!#on the subnanosecond switching of
119-mm radiation in high-resistivity silicon by pulsed UV laser radiation, is compared with a refined one-
dimensional numerical multilayer model accounting for the generation, recombination, and diffusion of the free
carriers on the resulting far-infrared optical properties of the silicon. The inclusion of recent measurements for
carrier-density and temperature-dependent transport parameters leads to improved agreement between experi-
ment and theory.@S0163-1829~99!03220-8#

I. INTRODUCTION

The photoexcitation of semiconductors with short laser
pulses leads to a rapid change of the free-carrier density if
the photon energy exceeds the band-gap energy. The result-
ing change of the refractive index induces pronounced
changes of the transmissivity and reflectivity, particularly in
the infrared and the far-infrared~FIR! spectral range. The
effect has been used to switch 10-mm CO2-laser radiation by
using a variety of supra-band-gap laser pulses,2 and to switch
FIR laser radiation with subnanosecond risetimes.3 A num-
ber of investigators have also used this method to cavity-
dump both free-electron FIR,4 and optically-pumped,
molecular-gas FIR,5 lasers.

Vogel et al.1 have performed an extensive investigation of
the time-dependent FIR reflectivity in photoexcited high-
resistivity silicon and compared their results to a one-
dimensional multilayer model, which accounted for genera-
tion, recombination, and diffusion of the free carriers in the
semiconductor wafer. A comparison of their experimental
and numerical results showed fair qualitative agreement for
the overall temporal behavior of the reflectivity over an in-
terval ranging from 100 ps to 1 ms; the remaining quantita-
tive disagreement was attributed to the lack of a surface re-
combination mechanism in their numerical simulation. In
this paper, we report on a comparison of the experimental
reflectivity data of Vogelet al. with the numerical results of
a refined model. The newer model includes the effect of
lattice heating and surface recombination, as well as the den-
sity dependence of the diffusivity, the Auger recombination
rate, and momentum relaxation rate, via the mobility.

II. PULSED LASER INTERACTION WITH SILICON:
CARRIER GENERATION AND HEATING

The absorption of pulsed laser radiation by semiconduc-
tors leads to the creation of nonequilibrium carrier densities
and elevated carrier and lattice temperatures. The carriers
generated by the laser pulse absorption are spatially inhomo-
geneous due to absorption, diffusion, and lifetime effects. In
addition, due to laser heating the material properties may
also be spatially inhomogeneous. In the work discussed here
we are interested in situations where 1029-s pulses, with
energy densities of mJ/cm2, interact with the semiconductor.

Under these conditions, it is generally acknowledged6 that
the carrier and lattice temperatures are essentially the same.
The lattice-carrier temperature may become elevated due to
the transfer of the excess energy from recombining electron-
hole pairs, as well as by the direct absorption of supra-band-
gap laser radiation. If the temperature increase is sufficiently
large, a bottleneck can result in the carrier diffusion due to
the induced band bending of the semiconductor. Because the
band gap of most semiconductors decreases with increasing
temperature, the band gap will be lowest near the surface,
where the temperature is highest. Brown7 originally pointed
out that this effect could present barriers to the normal dif-
fusion process.

The overall theory for the coupled diffusion of a photo-
excited electron-hole plasma and the corresponding lattice-
carrier temperature, as per Brown’s suggestion, has been
thoroughly developed by Gallantet al.8 We summarize the
salient features below.

The electron-hole pair current density is written as

JW52DF¹W N1
N

2T
~12r !¹W TG , ~1!

whereD is the ambipolar diffusivity,N is the electron-hole
pair density, T is the carrier-lattice temperature,r 5
2kB

21(]Eg /]T), and Eg is the energy gap. A number of
assumptions have been made in arriving at Eq.~1!; these are:
~1! the carrier distributions are nondegenerate,~2! the carrier
scattering times are determined solely by carrier-phonon in-
teractions,~3! a particular choice for the energy dependence
of the carrier-phonon scattering has been used, and~4! the
spatial variation of the band gap is due to variation of the
lattice temperature only. The evolution of the carrier density
can then be determined through the equation of continuity,
which is given by

]N

]t
1¹W •JW5

~12R!aI ~ t !

\v
exp~2az!2g3N32g2N22g1N,

~2!

where it has been assumed that the pairs are generated at a
depthz through band-to-band absorption by a single pulse of
intensity I (t) and photon energy\v incident on the semi-
conductor at an angle with an associated reflectivityR and
absorption coefficienta. In the experiment of Vogelet al.,
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the UV photon energy is 3.68 eV, which exceeds the indirect
energy gap~1.11 eV!; hence, strong absorption (106 cm21)
occurs near the semiconductor surface. The bulk carrier re-
combination consists of three components: Auger recombi-
nation, radiative recombination, and recombination via lat-
tice imperfections and impurities. These components are
characterized by coefficientsg3 , g2, and g1, respectively.
As discussed below,g3 has recently been shown to be a
function of the injected carrier density and temperature.

Equations~1! and~2! can be combined to give the density
diffusion equation

]N

]t
5¹W •DF¹W N1

N

2T
~12r !¹W TG1

~12R!aI ~ t !

\v

3exp~2az!2g3~N,T!N32g2N22g1N. ~3!

Equation~3! must be solved in the one dimensional approxi-
mation subject to the boundary conditions

N~z5L,t !5Ni

DS ]N

]z D
z50

5S~N2Ni !, ~4!

whereL is the sample thickness,Ni.1012/cm3 is the intrin-
sic equilibrium carrier density appropriate to high-resistivity
silicon andS is the surface recombination velocity, which
depends upon surface conditions. The value ofS ranges from
;102 cm/s for polished and chemically etched surfaces to
;106 cm/s for mechanically polished surfaces. A one-
dimensional approximation is justified, at least in the initial
phase, because the absorption depth of the UV radiation
(1025 mm), and hence the layer in which the free carriers
are created, is small compared with the diameter~1.6 mm!of
the homogeneously irradiated area.

In general, because of the lattice-temperature dependence
of the material parameters and the¹W T term, Eq.~3! must be
solved self consistently with an equation, which describes
the evolution of the carrier-lattice temperature. It will be as-
sumed that the electron-hole pairs instantaneously lose their

excess energy@\v2Eg22( 3
2 kBT)#, imparted to them in the

absorption process, so that the effective heat generation
depth isa21. The thermal diffusion equation can therefore
be written in the form

]T

]t
5

]

]x S DL

]T

]x D1
~12R!I ~ t !ae2ax

C
~\v2Eg23kBT!

1
~Eg13kBT!

C
~g3N31g2N21g1N!, ~5!

where C is the specific heat andDL is the lattice thermal
diffusivity. Heat generation occurs via the bulk recombina-

tion processes in which the energyEg12( 3
2 kBT) lost by the

recombining electron-hole pair is transferred immediately to
the lattice. On a nanosecond time scale little heat is lost from
the surface. On the other hand, heat is generated at the sur-
face if the surface recombination velocity is different from
zero. Equation~5! must therefore be solved subject to the
boundary conditions

KT

]T

]x
1S~N2Ni !~Eg13kBT!50

T~z5L !5300 K, ~6!

where KT ~and DL5KT /C.0.683 cm2/s) is the thermal
conductivity. The values of the material parameters and their
temperature dependence for 300,T,1000 K are given in
Table I. ~An associated asterisk implies either a carrier den-
sity and/or a sample dependence.!

The laser intensity, assuming a sine-square-shaped laser
pulse, can be written as

I ~ t !5H E

dA
sin2S pt

2d D for 0<t<2d

0 otherwise

~7!

where E is the integrated pulse energy,d is the ~FWHM!
pulsewidth, andA is the irradiated area. In the experiments
of Vogel et al., these were 30mJ, 1.7 ns, and 2.0
31022 cm2, respectively.

The coupled, nonlinear diffusion Eqs.~3!–~6! have been
numerically solved10 using the FORTRAN DMOLCH rou-
tine of the IMSL program library~IMSL, Houston, TX!. We
have also1 approximated the semiconductor sample of thick-
nessL5436 mm by a series ofq51500 homogeneous su-
blayers. The thickness of the sublayers was varied between
0.3 nm on the optically-excited side of the sample and 2.6 on
the opposite side according to the following relation

TABLE I. Material properties for silicon.

R ~337 nm,u526°) 0.60 1
a 1.03106(1.1T/2000) cm21 9
KT 1585T21.23 W/cmK 9
C 1.9781(3.5431024)T2(3.68)T22 J / cm2 K 9
r 3.25 17
g1* 23105 s21 1
g2 5310214 cm3/s 1
g3* 3.8310231 cm6s21 1
D* 17.9 cm2/s 1
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zi5c$exp@~ i 21!/~n21!ln~L/c11!#21%, ~8!

wherezi is the position of the boundary between sublayersi
and i 21 and c is a constant, here equal to 0.05mm. The
number of resulting sublayers within the UV penetration
depth (a2151026 cm) is .30. An increase in the number
of sublayers did not cause any significant change in the re-
sults.

Figure 1 shows the carrier-density profiles which occur at
different times during, and after, UV excitation for the case
of S50 and using the same constant transport parameters as
Vogel et al. The maximum of the carrier density, which oc-
curs at nearly the same time as the maximum UV power, is

approximately 531018 cm23. The profiles are in agreement
with the simulated profiles depicted in Fig. 1 of Vogelet al.;
unfortunately, there are no experimental profiles for com-
parison.

The calculated temperature profile, which is not shown,
only rises 5.19 K above the ambient temperature~300 K! at
the surface and this maximum occurs near the time for which
the laser power is near its maximum. The small rise in tem-
perature can be explained as follows. Due to thermal diffu-
sion, over the time of laser excitation (2d53.4 ns ) the laser
energy (E530 mJ) spreads throughout a depth (d
;A2DL2d56.831025 cm) much larger than the absorp-
tion depth (a2151026 cm). As a result, the surface tem-
perature increase is rather small, i.e., an estimate for the av-
erage temperature increase throughout the volume is given
by (12R)E/(AdC);4 K, in good agreement with the cal-
culated rise.

We have also calculated the carrier density profiles~not
shown! in the presence of surface recombination for values
up to 104 cm/s. For early times (<10 ns ), the presence of
surface recombination alters the carrier density profiles only
slightly; however, after some microseconds, a pronounced
reduction in the carrier density at the surface is observed.
Similarly, the maximum surface temperature with this level
of surface recombination is only slightly higher than that
calculated in the case of no surface recombination and con-
stant diffusivity, i.e., 305.21 K compared to 305.19 K. Al-
though we initially had suspected otherwise, for the experi-
ments under consideration, the very slight heating effects
from both the laser radiation absorption and carrier recombi-
nation processes do not appear to create any barrier to the
normal diffusion process due to thermally-induced band
bending.

In an effort to improve the model, we have also consid-
ered the following. Auger recombination is well known to
influence the characteristics of semiconductor devices at
high-injection levels~below some 1018 cm23), and the spe-
cific dependence of the Auger band-to-band recombination
on the carrier density and temperature is an active area of
research. For these reasons, the use of a constantg3 in Eqs.
~3!–~4! is not valid. We use the functional dependence pro-
posed by Jonssonet al.11 in which the Auger coefficient is
taken to consist of two parts: thee-e-h Auger coefficientCn
and thee-h-h coefficientCp , i.e.,

g3~N,T!5H Cn1Cp ~cm6/s!

Cn52.8310231~T/300!0.61@5.33102313~T/300!2.27#/$11@N/~231018!#2%

Cp50.99310231~T/300!0.61@1.93102313~T/300!2.27#/$11@N/~231018!#2%.

Another questionable assumption used in the solution of
the carrier profiles shown in Fig. 1 was that of a constant
diffusivity. In undoped silicon, measurements extracted from
transient grating experiments12 show that the effective ambi-
polar diffusivity is a function of injected carrier density. The
diffusivity is reduced from the value 17.9 cm2/s obtained by
using constant electron and hole diffusivities. The reduction
occurs for carrier concentrations exceeding 1015 cm23 and

reaches a minimum of'9 cm2/s near;1018 cm23. At
even higher densities~typically above 1019 cm23 for T
<300°C) degeneracy will occur and the diffusion coefficient
increases steeply with carrier concentration, due mainly to an
increase in the kinetic energy of the carriers. We therefore
have used a functional dependence of the ambipolar diffusiv-
ity upon the carrier density,D(N), obtained from a logarith-
mic fit to data published by Linnros and Grivickas.13

FIG. 1. Time-dependent evolution of the carrier density profile
in Si after UV excitation.~a! Six equidistant time steps from 1 to 6
ns. ~b! Six equidistant time steps from 1 to 6 microseconds.
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Figure 2 shows the numerical profiles that result from the
density-dependent characterizations of the Auger band-to-
band recombination and ambipolar diffusivity. The smaller
nonconstant diffusivity results in higher injected carrier den-
sities at the surface (;2x), compared to those of Fig. 1. At
later times, one notices the effects, as described above, of an
incorporated surface recombination velocity ofS51
3103 cm / s . Forinstance, the peak carrier densities have
migrated away from the surface, although the peak values
remain of the same order of magnitude as those at the surface
in the case of no surface recombination. Also, the maximum
calculated surface temperature is again only slightly higher
than that calculated in the case of no surface recombination
and constant diffusivity.

III. COMPLEX DIELECTRIC CONSTANT

The Drude model14 treats the free carriers in a solid as
classical point charges subject to random collisions. The sim-
plest version of the Drude model is adopted in which the
collision damping is independent of the carrier energy. The
linear interaction between an isotropic medium and electro-
magnetic radiation is, in general, described by a frequency-
dependent complex dielectric constant«(v), being the
square of the complex refractive indexn5nR1 inI . Further-
more, when the medium is anisotropic, both the dielectric
constant and refractive index are space dependent. The
Drude model has been successfully used to model the mini-
mum in the infrared reflectivity of photoexcited silicon as a

function of the laser fluence,15 and to model the index of
refraction as a function of FIR frequency in extrinsically
doped silicon; although in the latter case an extended Drude
model with an energy-dependent carrier-relaxation rate was
necessary.16 Other than the work of Vogelet al.,1 we know
of no experimental study for which measurements of the FIR
reflectivity of photoexcited silicon, as a function of the delay
time from the excitation laser pulse, have been published.
According to the Drude model for a plasma with equal num-
bers of electrons and hole, the dielectric constant in SI units
is

«5«`1
is

v«0
5«`2

vpe
2

v~v1 iG e!
2

vph
2

v~v1 iG h!
, ~9!

where«`511.7 is the contribution of the dielectric and the
parameter indicese and h refer to electrons and holes, re-
spectively.Ge/h51/te/h is the damping rate withte/h the
average collision time. The plasma angular frequencyvp(e/h)

is defined byvp(e/h)
2 5Ne2/«0me/h , whereN is the carrier

density,e is the electronic charge,«0 is the free-space per-
mittivity, andme/h is the effective carrier mass. The damping
rate Ge/h is obtained from the mobility by Ge/h
5e/(me/hme/h). For silicon,me50.26m0 andmh50.37m0.16

Vogel1 used the constant mobility values17 me
51350 cm2/(V s ) andme5480 cm2/(V s). We have also
included the density dependence of the ambipolar mobility,
which can be obtained from the ambipolar diffusivity by the
Einstein relationD5kT/em. The density-dependent values
were obtained by scaling the diffusivity data of Linnros and
Grivickas.13 The electron and hole mobilities become equal
to the ambipolar mobility for carrier densities above
1014 cm23. ~However, the extraction of the scattering times
of electron/holes from the ambipolar mobility may be an
oversimplified approach and not justifiable. In addition, for
carrier densities greater than 531017 cm23 ~the Mott tran-
sition in silicon!, an extrapolation from the Brooks-Herring
mobility formula ought to be used as the Einstein relation is
not valid.18 These objections may be more fully addressed in
future work.!

The real and imaginary parts of the complex refractive
index, as functions of the real and imaginary parts of the
complex dielectric function, are given by

2nR
25«R1~«R

21« I
2!1/2

2nI
252«R1~«R

21« I
2!1/2 ~10!

In Fig. 3, we display the real (nR) and imaginary (nI) parts
of the refractive index as calculated from the carrier density
profiles of Fig. 2 where we have used density-dependent mo-
bilities. The maximum surface value for the real part of the
refractive index is nearly doubled~10.6 versus 5.9! com-
pared to that~not shown!associated with the carrier density
profiles of Fig. 1. On the other hand, the maximum surface
value of the imaginary part of the refractive index is reduced
– a value of approximately 16 compared to nearly 20 in the
case of the carrier density profiles of Fig. 1.

FIG. 2. Time-dependent evolution of the carrier density profile
in Si after UV excitation for nonconstant transport parameters and
S5103 cm/s.~a! Six equidistant time steps from 1 to 6 ns.~b! Six
equidistant time steps from 1 to 6mm.
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IV. CHARACTERISTIC MATRIX METHOD
AND REFLECTIVITY

The reflectivity of optically absorbing inhomogeneous
materials can be treated using the characteristic matrix
method for stratified media.19 If the so-called characteristic
matrix M( z) of a stratified medium is known, the propaga-
tion of a plane wave in the medium can be calculated. In this
context, one approximates the inhomogeneous one-
dimensional layer, as a strata ofq homogeneous sublayers
@as per Eq.~8!# of individual thicknessesDzk5zk112zk , k
51,2, . . . q. The inhomogeneous layer itself extends from
z150 to z5zq11 and is bounded on each side by a homo-
geneous semi-infinite medium~air in our case!. The complex
coefficientsr and t of reflection and transmission are then
given by

r5
~m111m12pq12)p12~m211m22pq12!

~m111m12pq12)p11~m211m22pq12!
~11!

t5
2p1

~m111m12pq12)p11~m211m22pq12!
. ~12!

The complex quantitiesmi j ( i , j51,2) are the elements of
the characteristic matrix taken atz5zq11 . In the particular
case when the magnetic-field vector is perpendicular to the
plane of incidence~TM wave!, corresponding to the experi-
mental arrangement of Vogelet al., the complex quantities
pk andvk ~needed below!are defined by

pk5A«k

mk
cosuk5

nk

mk
cosuk ~13!

vk5Amk

«k
cosuk5

Amk

nk
cosuk . ~14!

Here, «1 ~and «q12) and m1 ~and mq12) are the complex
dielectric constant and the relative permeability of the first
~and last!bounding medium andu1 ~anduq12) is the com-
plex angle between the direction of propagation and thez
direction in the first~and last!medium. The characteristic
matrix M k of the kth homogeneous sublayer is given by

M k5S cos~k0pk11Dzk!
2 i

vk11
sin~k0pk11Dzk!

2 ivk11 sin~k0pk11Dzk! cos~k0pk11Dzk!
D ,

~15!

wherek0 is the wave number 2p/l0 of the FIR radiation of
vacuum wavelengthl0. The overall characteristic matrix of
the inhomogeneous layer is then given by

M ~zq11!5)
k51

q

M k . ~16!

In order to perform the matrix multiplication of Eq.~16!, one
first needs thepk and vk ; these may be obtained from a
backward recursion resulting from a complex form of Snell’s
law of refraction applied across the sublayers, i.e.,

vk5A1/nk
22~nk11 /nk!

4~1/nk11
2 2vk11

2 ! ~17!

pk5nk
2vk . ~18!

The starting quantitiesvq12 andpq12 ~which also are equal
to v1 and p1, respectively!are determined by«1 and m1
51 of the first bounding nonmagnetic medium~air!, and the
real angle of incidence of the TM FIR radiation. Finally, the
reflectivityR and the transmissivityT are determined by

R5ur u2; T5
pq12

p1
utu2. ~19!

V. COMPARISON OF THE EXPERIMENTAL
AND THEORETICAL RESULTS

In Fig. 4, we show the calculated reflectivity for the case
of constant transport parameters for a number of successively
increasing values of the surface recombination velocity.
Shown for comparison is the experimental data which was
scanned from the original publication. Although fair qualita-
tive agreement is seen@the case ofS50 cm/s is identical to
that of Fig. 11~a! of Vogel et al., the inclusion of recombi-
nation does not significantly improve the agreement. The
simulations show a more narrow secondary reflectivity fea-
ture than the data for long delay time. One also notes that the
maximum for the calculated reflectivity is more than 10%
larger and decays more rapidly during the first 10 nanosec-
onds, than the experimental data.

Figure 5 displays the reflectivity profiles calculated using
the density-dependent transport properties discussed above.
Although the long-time behavior is not improved, the maxi-

FIG. 3. Time-dependent evolution of the index of refraction in
Si after UV excitation for five equidistant time steps from 1 to 5 ns
as calculated from the data in Fig. 2.~a! real part~b! imaginary part.
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mum simulated reflectivity~84%! is much closer to the ex-
perimental value~82%! and this agreement is not substan-
tially altered for the values of the surface recombination
listed. Also one notices a slower decay during the first 10 ns
compared to Fig. 4, which is in better agreement with the
data. However, compared to Fig. 4, the reduced diffusivity
leads to somewhat higher values of the reflectivity in the
time region of 100-1000 ns for similar surface recombination
values and thus poorer agreement with experiment for these
delay times.

In addition, it was found that if the UV pulsewidth in the
simulation was decreased while maintaining constant pulse
energy, that the rise in reflectivity~not shown!began earlier
but that the peak in the reflectivity still occurred at the same
time as the simulations shown in Figs. 4-5, i.e., near 3 ns.

The simulations shown both in Fig. 4 and in Fig. 5 have
assumed that the front and rear sample faces are parallel; in
the experiment, the sample faces were wedged. An attempt
was made to account for the variation~2 microns! in the
actual sample thickness over the diameter of the FIR beam.
The FIR beam is able to penetrate to the rear face only in the
case of small plasma density; therefore, it will be assumed
that with negligible error, one can average the computed re-
flectivity over a large number of samples~100 in our case!,
each of which differing only from the next thinnest sample
by the addition of a silicon slice of thickness of 0.02 microns
and intrinsic silicon dielectric constant, placed onto the rear
of the sample. The range in thicknesses was adjusted so that
the average was equal to the actual sample thickness under
consideration~436 microns!. The resultant time-dependent
FIR reflectivity averaged over 100 such samples was not
noticeably different from that resulting from a calculation
employing only a single sample thickness and is not shown.

VI. SUMMARY

In an effort to obtain better agreement with measurements
by Vogel et al.1 of the time-dependent far-infrared reflectiv-
ity of silicon, we have performed numerical simulations of
~1! the time and space dependencies of the photoexcited
electron-hole carrier densities and carrier-lattice temperature,
~2! the corresponding time and space dependencies of the
real and imaginary parts of the far-infrared index of refrac-
tion and finally,~3! the resulting time-dependent far-infrared
reflectivity.

Since it is possible8 for a bottleneck in carrier diffusion,
resulting from the induced band-bending of the semiconduc-
tor, to occur in the presence of a sufficiently severe tempera-
ture inhomogeneity, we have investigated whether such an
effect may have been present in the data of Vogelet al. We
have therefore simultaneously solved coupled nonlinear dif-
fusion equations for the carrier density and the carrier-lattice
temperature, also taking into account carrier recombination
as a boundary condition at the photoexcited surface. That the
temperature distribution would peak at the surface is clear–a
result of the heat released by the excess energy of pair cre-
ation in the thin UV laser radiation absorption layer accord-
ing to Beer’s law, as well as by the heat generated at the
imperfect surface by carrier recombination. Simulation has
shown, however, that the temperature inhomogeneity is far
too mild to pose any obstacle to carrier diffusion. Also, as
Fig. 4 illustrates, the added effect of surface recombination
by itself does not lead to any substantial improvement in the
level of agreement between simulation and data.

We have also used recent measurements of the carrier-
density dependence of both the carrier diffusivity13 and the
Auger recombination coefficient,11 in Eqs. ~3! and ~4!. The
resulting decrease in the diffusivity with high-carrier density
leads to approximately a factor of two increase in the peaks
of the carrier density profiles for early~1-10 ns!times. We
can state also with some confidence that, over the range of

FIG. 4. Reflectivity using constant transport parameters for a
variety of S values.

FIG. 5. Reflectivity using carrier density-dependent transport
parameters for a variety ofS values.
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carrier densities considered, the carrier-dependent diffusivity
more strongly affects the FIR reflectivity profile than the
carrier-dependent Auger recombination coefficient.

Furthermore, we have also incorporated the density de-
pendence of the mobilities~from the density-dependent dif-
fusivity via the Einstein relationship! in the expressions for
the complex index of refraction and dielectric constant. In
particular, we find that the decrease in the carrier mobility
with large carrier density is the primary reason for the closer
agreement between simulation and data for:~1! the calcu-
lated FIR reflectivity maximum~84% and 82%, respec-
tively!, and~2! the time decay of the FIR reflectivity in the
time interval from 1-10 ns. Otherwise, the refinements in the
model do not lead to substantial quantitative improvement.

In particular, the secondary peak in the reflectivity is much
broader than the calculations predict. Also, we note that a
calculation of the FIR reflectivity averaged over a large num-
ber of samples of slightly varying thicknesses, adjusted so
that the average thickness equals that of the actual sample,
does not differ noticeably from the reflectivity resulting from
a calculation using only a single sample.
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