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ABSTRACT 

The expression of ferritin and amyloid precursor protein (APP) is post-

transcriptionally regulated by iron-regulating proteins via binding to a stem-loop structure 

known as an iron-responsive element in the 5’-untranslated region (5’UTR) of ferritin and 

APP mRNAs.  In this study, we used atomic force microscopy (AFM) to visualize the 

conformation of the 5’UTRs of ferritin heavy chain (Ferritin-H), ferritin light chain (Ferritin-

L), and APP mRNA transcripts from human and mouse, and determined the secondary RNA 

structures using selective 2’-hydroxyl acylation analyzed by primer extension (SHAPE).  The 

AFM imaging did not provide high resolution structural information about these RNAs, 

whereas the SHAPE procedure successfully interrogated the secondary RNA structures at 

single nucleotide resolution.  To our knowledge, this is the first time that the secondary 

structures of the entire 5’UTRs of these RNA molecules have been experimentally mapped.  

This study paves the way for the further investigation of RNA-ligand interactions in these 

RNA molecules. 
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CHAPTER 1 

 

Introduction 

 

1.1. Iron storage and ferritin 

 

Iron is an essential element required for normal cell growth and proliferation.  Iron 

participates in the cellular processes of aerobic metabolism and enzymatic reactions, and is 

necessary for the synthesis of myelins, the development of neuronal dendritic trees, and the 

signal transduction of neurotransmitters in the brain.1-3  For the proper function of organs, it 

is crucial to maintain iron homeostasis.  Iron deficiency (also called hypoferremia) results in 

anemia, whereas iron overload (i.e., the build-up of excess iron in the body) induces 

hemochromatosis.3   

 

The ubiquitous iron storage protein, ferritin, is responsible for both intracellular iron 

storage in a nontoxic state, and the controllable release of iron when necessary.4  Mammalian 

ferritin forms a spherical protein cage that contains 24 subunits, each made of a 4-helix 

bundle (see Figure 1).4  There are channels on the protein shell to allow iron exchange and 

proton transfer.  The 24 subunits of the ferritin protein are composed of two functionally-

distinct species encoded by two different genes.  The first species, ferritin heavy chain 

(Ferritin-H), has an apparent molecular weight of 21,000 Da; the second, ferritin light chain 

(Ferritin-L), has an apparent molecular weight of 19,000 Da.  The ratio of Ferritin-H to 

Ferritin-L in a ferritin protein varies in different tissues.4,5   
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Figure 1. The s tructure of  the  mammalian ferritin protein.  (A) Each s ubunit f olds 

into a 4-helix bundle, and (B) the 24 subunits pack to form a spherical shell for iron storage. 

(Adapted, with permission, from Reference 4) 

 

The deposition of iron into the ferritin cavity involves iron and oxygen chemistry.  

Ferrous ions (Fe2+) react with oxygen (O2) and/or peroxide (H2O2) to form a 

ferricoxohydroxide core, which is similar to the mineral ferrihydrite (reactions shown 

below).  Ferritin-H catalyzes the oxidation of Fe2+; whereas Ferritin-L promotes the 

nucleation of ferricoxohydroxide in order to store iron.6,7 

   

2Fe2+  +  O2  +  4H2O  →  2Fe(O)OHcore  +  H2O2  +  4H+  

2Fe2+  +  H2O2  +  2H2O  →  2Fe(O)OHcore  +  4H+  

 



 

3 
 

Excess free (i.e., unbound) iron is cytotoxic because it can react with reactive oxygen 

species such as H2O2 to form highly toxic hydroxyl free radicals (the Fenton chemistry 

reaction is shown below).4  Free radicals can attack other stable molecules and steal their 

electrons.  The attacked molecules then become free radicals themselves, thus setting off a 

chain reaction.  Free radicals can damage DNA, RNA, proteins, and lipids, and cause the 

breakdown of cell membranes.8,9  Therefore, the synthesis of intracellular ferritin must be 

regulated in order to accommodate the need to store excess iron. 

 

 Fe2+  +  H2O2  →  Fe3+  +  OH-  +  ⋅OH      (Fenton reaction) 

 

1.2. Iron-responsive elements in the 5’-untranslated region of ferritin mRNA 

  

 Ferritin expression is post-transcriptionally regulated by two iron-regulating proteins 

(IRP1 and IRP2) via binding to a stem-loop structure known as an iron-responsive element 

(IRE) in the 5’-untranslated region (5’UTR) of the ferritin messenger RNA (mRNA).10-12  

When the intracellular free iron content is low, IRPs specifically bind to ferritin IRE RNA, 

thus inhibiting ribosome binding and the corresponding ferritin translation.  When the iron 

concentration is high, IRP-IRE binding is inhibited, thus allowing the synthesis of additional 

ferritin proteins for iron storage.10   

 

 IREs are conserved RNA motifs that contain an approximately 30-nucleotide-long 

sequence that forms a hairpin stem-loop structure.  The apical loop of the hairpin includes a 
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highly conserved CAGUGN sequence, where N can be A, C, or U, but not G.  Ferritin-H and 

Ferritin-L mRNAs both have an IRE in their 5’UTRs.      

                             

1.3. Iron accumulation and neurodegenerative diseases  

 

 Studies have demonstrated that severe iron accumulation in the brain is correlated to 

neurodegenerative disorders such as Alzheimer’s disease and Parkinson’s disease.13-19  

Alzheimer’s disease is the most common progressive human neurodegenerative disorder, and 

is the fifth leading cause of death in adults aged 65 or older.20  This brain disorder was first 

described by German physician Alois Alzheimer in 1906.21  People with Alzheimer’s disease 

undergo memory decline and thinking and behavioral changes, followed by the loss of self-

care ability.22  There are 5.3 million Americans suffering from Alzheimer’s disease, which 

imposes a heavy burden on those individual’s families and the health care system more 

generally.23   

 

One of the main physiological characteristics of Alzheimer’s disease is the formation 

of extraneuronal senile plaques containing aggregated amyloid β peptide (Aβ), a 40-42 

amino acid product derived from the serial cleavage of the amyloid precursor protein (APP) 

by β-secretase and γ-secretase.24-29  The accumulation of Aβ interrupts synaptic transmission 

and alters synaptic plasticity.  APP is a large type-1 transmembrane protein that is expressed 

in most cell types and is concentrated in the synapses of neurons.25  Beta-secretase, also 

known as β-site APP-cleaving enzyme 1 (BACE1), is a type-1 transmembrane protein that 

has aspartyl protease activity.30,31  BACE1 extracellularly cleaves APP at the N-terminus.32  
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The C-terminal fragment of APP, which contains 99 amino acids (C99), remains bound to the 

membrane.  Gamma-secretase, a protein complex consisting of presenilins, nicastrin, anterior 

pharynx-defective phenotype-1, and PS enhancer-2, further cleaves C99 within the 

transmembrane domain to release an extracellular, hydrophobic Aβ peptide (see Figure 

2).24,26,28  It has been discovered that the deposition of Aβ in the brain is largely due to 

increased APP/BACE1 expression and activity.33-37  In addition, increased oxidative stress 

due to misregulated iron homeostasis also plays an important role in the pathogenesis of 

Alzheimer’s disease.38-40  Elevated iron concentrations have been detected in hippocampus, 

basal nucleus of meynert, senile plaques, and neurofibrillary tangles in the brain of 

Alzheimer’s patients.41,42   

 

 

Figure 2. An ove rview of  t he c leavage of  APP by β-secretase an d γ-secretase. 

(Adapted, with permission, from Reference 24) 
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Parkinson’s disease is the second most common human neurodegenerative disorder, 

with symptoms that include resting tremors, difficulty balancing, moving and talking, 

stiffness of limbs, and dementia.43  The etiology of Parkinson’s disease remains unclear.  

However, several factors play pivotal roles, including the elevated expression level of the 

presynaptic protein α-synuclein (SNCA), and the elevated iron concentration.13,14,44-50  The 

aggregated SNCA is the main component of Lewy bodies, abnormal protein clusters found in 

the brains of Parkinson’s patients.  SNCA duplication and triplication as well as genetic 

variability in the promoter and 3’ untranslated region (3’UTR) have been reported to 

associate with familial Parkinson’s disease.44-46,48,51  Elevated iron concentrations in the 

substantia nigra pars compacta have been implicated in the development of idiopathic 

Parkinson’s disease.52,53   

 

 An individual ferritin molecule can bind up to 4500 iron atoms.4  However, ferritin in 

the substantia nigra of Parkinson’s patients was reported to contain more iron than ferritin in 

the substantia nigra of healthy people.54  The overloaded ferritin was still unable to take up 

enough iron to properly regulate iron levels in the brains of Parkinson’s patients.  

Furthermore, research shows that the ferritin level in Parkinson’s patients was independent of 

iron level, i.e., the increased iron content observed in the brains of Parkinson’s patients was 

not accompanied by an increased ferritin level.54  The absence of ferritin up-regulation might 

be due to the increased binding activity of IRP to the IRE of ferritin RNA in the presence of 

nitric oxide.  Other mechanisms may also be involved.54 
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1.4. IRE in the 5’UTRs of APP and SNCA mRNAs 

 

In 2002, an IRE-type structure was found in the 5’UTR of the APP mRNA.55  In 

2007, an IRE-like stem-loop structure was found in the 5’UTR of the SNCA mRNA.56,57  

These IRE-type sequences interact with IRPs to control the corresponding protein 

synthesis.57,58  The mechanism is similar to that of the iron-dependent translational regulation 

of Ferritin-H and Ferritin-L synthesis via IREs in their 5’UTRs.  Tens of thousands of 

compounds have been screened to identify ligands that can bind to the 5’UTR of the human 

APP mRNA, which would allow the treatment of Alzheimer’s disease by decreasing the 

production of APP and the corresponding Aβ; fifteen compounds were identified as 

inhibiting APP translation by interacting with the 5’UTR of APP mRNA.59-66  The fifteen 

molecules are:  iron chelators desferrioxamine (DFO), iodochlorhydroxyquin (clioquinol), 

M30, HLA20, and VK28 (varinel), copper chelator tetrathiomolybdate, lead and mercury 

chelator dimercaptopropanol, naturally occurring iron and copper chelators (-)-

epigallocatechin-3-gallate (EGCG) and curcumin, bi-functional metal chelator XH-I, 

macrolide antibiotics Azithromycin and Erythromycin, selective serotonin reuptake inhibitor 

and chelator Paroxetine, anticholinesterase Phenserine, and antioxidant N-acetyl cysteine.  

 

Some of the molecules mentioned above showed clinical effectiveness in slowing AD 

dementia.61,64,65  However, the underlying mechanism(s) has not been determined.  For 

example, what conformation does APP mRNA 5’UTR adopt after the binding of a small 

molecule?  Which nucleotides do the ligands bind to in the IRE?  Do the ligands also bind to 

other regions in the 5’UTR of APP mRNA, such as the interleukin-1 responsive acute box?  
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If the molecules mentioned above have the capability to reduce APP expression, can they 

bind to the IRE in human SNCA mRNA 5’UTR to inhibit SNCA synthesis?  Do they have 

the capability to inhibit Ferrtin-H and Ferritin-L translation as well?  It is an advantage if 

these molecules can down-regulate APP and SNCA expression, but certainly a disadvantage 

if they down-regulate the expression of ferritin. 

 

1.5. Objective of the study 

 

In order to substantially improve the understanding of ligand-RNA binding 

mechanisms and to shed light on the design of novel molecules targeted to specific RNA 

motifs, a complete elucidation of the RNA conformation before, during, and after ligand 

binding is necessary.  The objective of this study is to determine the conformations of the 

5’UTRs of human and mouse Ferritin-H, Ferritin-L, and APP mRNA transcripts in the 

absence of the ligand.  The long-term goal of this study is to speed up the discovery of 

potential therapeutic agents for the treatment of neurodegenerative diseases. 

  

1.6. Techniques used in the study 

 

1.6.1. Atomic force microscopy 

 

For this project, two cutting-edge technologies were used to study the structural 

characteristics of RNA.  First, atomic force microscopy (AFM) was applied to visualize the 

conformation of RNA transcripts.  AFM was invented in 1986, and the technique soon 
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became a potent tool for biological research.67-70  The principle of AFM is based on the 

mechanical interaction that occurs between a sample surface and a cantilevered sharp silicon 

tip (5-10 nm radius at the point of the tip), when a small, constant force is applied.  A 

piezoelectric tube scanner is used to scan the tip over the sample surface.  The tip-sample 

interaction is detected by monitoring the deflection of the cantilever using a photodiode 

detector (see Figure 3).67  AFM enables the study of the three-dimensional topography of a 

sample surface with a resolution at the Angstrom level.  The simple sample preparation 

procedure for AFM imaging makes it much more convenient than conventional imaging 

techniques such as X-ray crystallography and electron microscopy.   

 

AFM can be operated both in air and in a liquid solution, and no sample coating or 

staining is required; therefore, the conformation of biological macromolecules (e.g., DNA, 

RNA, and proteins) adsorbed onto a smooth mica surface can be visualized under quasi-

native (i.e., close to physiological) conditions.71-74  Jaeger’s research group has recently used 

AFM to visualize the static RNA nanoarchitectures they designed, including tectoRNA and 

kissing-loop RNA.75  Samori’s research group applied AFM to study the secondary structure 

of Turnip Yellow Mosaic Virus RNA.76  Gamarnik and colleagues used AFM to investigate 

the long-range RNA interactions that circularize the 5’- and 3’-end of the dengue virus.77   
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Figure 3. A schematic diagram of AFM. 

 

1.6.2. Selective 2’-hydroxyl acylation analyzed by primer extension 

 

In addition to AFM visualization, the SHAPE (Selective 2’-Hydroxyl Acylation 

analyzed by Primer Extension) technique was used to determine RNA secondary structures.  

Invented in 2005, the theoretical basis of SHAPE chemistry is that the local nucleotide 

flexibility of an RNA can be monitored by treating the RNA with 2’-hydroxyl-reactive 

electrohphiles such as N-methylisatoic anhydride (NMIA) or 1-methyl-7-nitroisatoic 

anhydride (1M7), which selectively and covalently modify flexible nucleotides (i.e., single-
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stranded RNA nucleotides) at the 2’-ribose position.78-80  Treating RNA with the NMIA/1M7 

reagent (usually ≤ 10 mM) results in modifications approximately once in every several 

hundred nucleotides.  The detection of the modified RNA nucleotides is based on primer 

extension to convert RNA to its complementary DNA (cDNA) by reverse transcriptase.  The 

presence of a 2’-O-adduct causes the reverse transcription to stop exactly one nucleotide 

prior to the modified position, whereas RNA without NMIA/1M7 treatment produces a full-

length cDNA.78  The amplified cDNA fragments are analyzed by conventional slab gel 

electrophoresis (for radio-labeled DNA fragments) or capillary gel electrophoresis (for 

fluorescently-labeled DNA fragments) to provide RNA structural information.81,82  

Compared to traditional RNA structure-mapping techniques such as enzymatic cleavage and 

chemical modification, which are time consuming and evaluate only a subset of nucleotides 

in an RNA, SHAPE chemistry is a rapid, high-throughput technology with single nucleotide 

resolution. 

 

Figure 4 shows an example of SHAPE data obtained from capillary gel 

electrophoresis.  The SHAPE reactivity of each nucleotide of yeast tRNAAsp can be 

determined by subtracting the control peak area from the NMIA peak area and the 

subsequent normalization.  Peaks with high amplitudes correspond to the conformationally 

flexible (i.e., single-stranded) nucleotides, whereas peaks with low amplitudes correspond to 

the conformationally-constrained (i.e., base-paired or tertiary interaction-involved) positions. 

SHAPE data are applicable to constrain RNA structural prediction algorithms and can 

dramatically improve the predication accuracy of the RNA secondary structures. 

 



 

12 
 

  
0

1000

2000

3000

4000

5000

6000

7000

260 0 2700 2 800 290 0 3000 3100 3 200        

Figure 4. An example of  S HAPE data obt ained f rom c apillary ge l electrophoresis. 

Left: S HAPE ra w da ta f rom Saccharomyces cerevisiae tRNAAsp transcript obt ained by 

capillary gel el ectrophoresis.  The blue  t race i s +NMIA sample; t he green trace i s -NMIA 

negative control; black and red traces are two dideoxy ladders (ddC and ddT, respectively).  

The x -axis indicates t he num ber o f da ta poi nts col lected.  T he y -axis enum erates t he 

fluorescence units.  Right: Individual nucleotide reactivity based on SHAPE data.  Red-coded 

nucleotides c orrespond t o 60 -100% of  S HAPE re activity; ye llow-coded nuc leotides 

correspond to 25-60% of SHAPE reactivity; green-coded nucleotides correspond to 10-25% 

of SHAPE reactivity; black-coded nucleotides correspond to 0-10% of SHAPE reactivity. 

 

Figure 5 shows an example of the use of SHAPE chemistry coupled with an 

autoradiography/slab gel electrophoresis detection system to study magnesium-induced 

conformational changes in yeast tRNAAsp.81  Wang and colleagues used 1M7 instead of 

NMIA to run SHAPE experiments because the reactivity of 1M7 is not significantly 

modulated by ions in solution.  As expected, SHAPE reactivity exactly recapitulates the 

native structure of tRNAAsp.  Wang et al. explored Mg2+-dependent structural changes over a 
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wide range of ion concentrations (20 to 0 mM, Figure 5A, 19 left-most lanes).  Smooth 

transitions for almost every nucleotide in tRNAAsp were observed.  A well-defined model for 

the final non-native state was developed based on the SHAPE reactivity information (Figure 

5C).  Removing Mg2+ destabilizes tertiary interactions in the variable loop and thereby 

allows this region to form stable, non-native base pairs with nucleotides in the D-loop.81 
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Figure 5. Mg2+-dependent unf olding of  t RNAAsp.  (A) tRNAAsp modification upo n 

removing Mg2+ as visualized by RNA SHAPE chemistry.  Experiments were performed as a 

function of [MgCl2] in the presence (+) and absence (–) of 1M7 reagent.  (B) Mg2+-induced 
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structural transitions, illustrated for instructive nucleotide positions.  (C) Structural model for 

the unfolding of tRNAAsp in the absence of Mg2+.  Mg1/2 values are listed for nucleotides that 

show greater than a two-fold reactivity change over the titration.  N ucleotides exhibiting 2-

fold or larger changes in reactivity as compared to the native state are colored red (increase) 

and green ( decrease); n ucleotides showing <2-fold c hanges a re colored bl ue ( unreactive, 

SHAPE reactivity ≤0.3), orange (moderately reactive, 0.3< SHAPEreactivity <0.7), and red 

outline (hi ghly reactive, SHAPE re activity ≥0.7).  (Adapted, w ith pe rmission, f rom 

Reference 81)  

 

In this study, we used AFM to visualize the conformation of the 5’UTRs of Ferritin-

H, Ferritin-L, and APP mRNA transcripts from two species (human and mouse), and 

determined the secondary RNA structures using SHAPE analysis coupled with a 

fluorescence detection system.  To our knowledge, this is the first time that the secondary 

structures of the 5’UTRs of APP mRNA in human and mouse have been experimentally 

mapped.  This study paves the way for the further investigation of RNA-ligand interactions 

in these RNA molecules. 
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CHAPTER 2 

 

Experimental Methods 

 

2.1. DNA 

 

DNA of human Ferritin-H 5’UTR:  The 200-nucleotide-long DNA template (5’-

ACAAGCGACCCGCAGGGCCAGACGTTCTTCGCCGAGAGTCGTCGGGGTTTCCTG

CTTCAACAGTGCTTGGACGGAACCCGGCGCTCGTTCCCCACCCCGGCCGGCCGCC

CATAGCCAGCCCTCCGTCACCTCTTCACCGCACCCTCGGACTGCCCCAAGGCCCC

CGCCGCCGCTCCAGCGCCGCGCAGCCACCGCCGCCG-3’), forward primer that 

included a T7 promoter sequence (5’-

TAATACGACTCACTATAGGATAAGAGACCACAAGCGACCCGCAGGGCCAG-3’), 

and reverse primer (5’-

GGCGGCGACTAAGGAGAGGCGGCGGCGGCGGCGGTGGCTGCGCGGCGCTG-3’) 

were obtained from Integrated DNA Technologies, Inc. (IDT, San Diego, CA) and were used 

to amplify the 254-base pair Ferritin-H 5’UTR.  The Polymerase Chain Reaction (PCR) 

mixture (1.0 ml total volume) contained 20 mM Tris (pH 8.4), 10% dimethyl sulfoxide 

(DMSO), 50 mM KCl, 2.5 mM MgCl2, 0.2 mM of each dNTP (dATP, dGTP, dCTP, and 

dTTP), 0.5 µM each of forward and reverse primer, 5 pM of DNA template, and 0.025 U/µl 

Taq DNA polymerase.  The PCR product was inspected by ethidium bromide-stained 

agarose gel electrophoresis and purified by ethanol precipitation. 
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DNA of human Ferritin-H short 5’UTR:  To obtain a PCR ready cDNA, Human 

Brain Total RNA (Ambion, Austin, TX) was reverse-transcribed using a high capacity cDNA 

reverse transcription kit from Applied Biosystems (Foster City, CA).  A 224-base pair 

segment of DNA that encodes the Ferritin-H short 5’UTR was amplified using the resultant 

cDNA as a template, along with a forward primer containing the T7 promoter (5’-

TAATACGACTCACTATAGGATAAGAGACCACAAGCGACCCG-3’) and reverse 

primer (5’-GCGGTGGCTGCGCGGCGCTGGAG-3’), both of which were synthesized at 

IDT.  The PCR reaction was performed using 0.2 mL, but was otherwise as described above.  

The product was inspected by ethidium bromide-stained agarose gel electrophoresis and 

purified using the QIAquick PCR purification kit (Qiagen, Valencia, CA).  

 

DNA of human Ferritin-L 5’UTR:  FirstChoice® PCR-ready Human Brain cDNA 

(Ambion, Austin, TX) (2 ng) was used as a template to amplify the 234 base-pair Human 

Ferritin-L 5’UTR.  Both the forward primer, which contained a T7 promoter sequence (5’-

TAATACGACTCACTATAGGGCAGTTCGGCGGTCCCGCGGGTCTGTCTCT-3’), and 

the reverse primer (5’-GAATCTGGGAGCTCATGGTTGGTTGGC-3’) were synthesized at 

IDT.  A 0.2 ml PCR reaction was performed as described above.  The product was inspected 

by ethidium bromide-stained agarose gel electrophoresis and purified using the QIAquick 

PCR purification kit (Qiagen, Valencia, CA). 

 

DNA of human APP 5’UTR:  FirstChoice® PCR-ready Human Brain cDNA (Ambion, 

Austin, TX) (2 ng) was used as a template to amplify the 180-base pair human APP 5’UTR.  

Both the forward primer, which contained a T7 promoter sequence (5’-
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TAATACGACTCACTATAGGAGTTTCCTCGGCAGCGGTAGGCGAG-3’), and the 

reverse primer (5’-AAACCGGGCAGCATCGCGACC-3’) were obtained from IDT.  A 0.2 

ml PCR was performed as described above.  The product was inspected by ethidium 

bromide-stained agarose gel electrophoresis and purified using the QIAquick PCR 

purification kit (Qiagen, Valencia, CA). 

  

DNA of mouse Ferritin-H 5’UTR:  FirstChoice® PCR-ready Mouse Brain cDNA 

(Ambion, Austin, TX) (2 ng) was used as a template to amplify the 186-base pair mouse 

Ferritin-H 5’UTR.  Both the forward primer, which contained a T7 promoter sequence (5’-

TAATACGACTCACTATAGGCAGACGTTCTCGCCCAGAGTCGCC-3’), and the reverse 

primer (5’-GGTGGCGGCGGGGCGAGGCGCGGT-3’) were obtained from IDT.  A 0.2 ml 

PCR reaction was performed as described above.  The product was inspected by ethidium 

bromide-stained agarose gel electrophoresis and purified using the QIAquick PCR 

purification kit (Qiagen, Valencia, CA). 

 

DNA of mouse Ferritin-L 5’UTR:  Mouse Brain Total RNA (Ambion, Austin, TX) 

was reverse-transcribed using a high capacity cDNA reverse transcription kit from Applied 

Biosystems (Foster City, CA).  The resultant cDNA product was used as a template to 

amplify the 224-base pair mouse Ferritin-L 5’UTR.  Both the forward primer (5’-

TAATACGACTCACTATAGAGCAGCGCCTTGGAGGTCCCGTG-3’) and reverse primer 

(5’-GGCTGATCCGGAGTAGGAGCTAAC-3’) were obtained from IDT.  A 0.2 ml PCR 

reaction was performed as described above.  The product was inspected by ethidium 
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bromide-stained agarose gel electrophoresis and purified using the QIAquick PCR 

purification kit (Qiagen, Valencia, CA). 

  

DNA of mouse APP 5’UTR:  The reverse-transcribed mouse brain cDNA product 

described above was used as a template to amplify the 164-base pair mouse APP 5’UTR.  

Both the forward primer (5’-

TAATACGACTCACTATAGGGTTTCCTCGGCGGCGGGAGGCGAGA-3’) and reverse 

primer (5’-CGTGATCCTGCGTGGGCCACCGAGT-3’) were synthesized at IDT.  A 0.2 ml 

PCR reaction was performed as described above.  The product was inspected by ethidium 

bromide-stained agarose gel electrophoresis and purified using the QIAquick PCR 

purification kit (Qiagen, Valencia, CA). 

 

2.2. RNA 

 

RNA from the human Ferritin-H 5’UTR was transcribed from 1.0 ml of a solution 

containing 50 µg of PCR-generated DNA, 40 mM Tris (pH 7.8), 20 mM NaCl, 6 mM MgCl2, 

2 mM spermindine HCl, 10 mM DTT, 1 mM of each NTP (ATP, GTP, CTP, and UTP), 0.1 

U/µl SUPERaseInTM RNase inhibitor, and 2 U/µl T7 RNA polymerase; incubation was at 37 

°C for 4-5 hours.  RNA transcripts were treated with TURBOTMDNase (Ambion, Austin, 

TX) to destroy any remaining DNA.  The DNase was then deactivated by adding 

ethylenediaminetetraacetic acid (EDTA) to a final concentration of 15 mM, followed by 

heating at 75 °C for 15 minutes.  The RNA transcripts were concentrated by ethanol 

precipitation, purified by 8% polyacrylamide gel electrophoresis (PAGE), and recovered by 



 

20 
 

passive elution overnight at 4 °C in a solution containing 0.5 M sodium acetate and 1 mM 

EDTA.  

 

RNAs from the human Ferritin-H short 5’UTR, human Ferritin-L 5’UTR, human 

APP 5’UTR,  mouse Ferritin-H 5’UTR, mouse Ferritin-L 5’UTR, and mouse APP 5’UTR 

were transcribed from 0.2 ml of a solution having the same composition as described above, 

except that only 5 µg of the PCR-generated DNA was used here.  The RNA transcripts were 

purified using a MEGAclearTM Kit (Ambion, Austin, TX) instead of PAGE due to the 

relatively low yields.  The purity and integrity of the seven RNA samples were tested by 

running a RNA 6000 nano-chip on an Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA). 

 

 2.3. AFM 

 

A 3.5 µl aliquot of an approximately 1 µM RNA sample in TE buffer (10 mM Tris at 

pH 8.0 and 1 mM EDTA at pH 8.0) was combined with 1.5 µl of folding buffer (final 

concentration, 100 mM Tris-HCl at pH 8.0, 100 mM NaCl, and 6 mM MgCl2) and incubated 

at 37 °C for 20-30 minutes.  The 5.0 µl of solution was deposited on freshly cleaved mica, 

and the RNA was allowed to adsorb to the mica surface for 5 minutes.  The non-adsorbed 

RNA was removed from the mica surface by washing with nuclease-free water, after which 

the sample was dried with a stream of nitrogen.  All images were collected in air using a 

Thermomicroscopes Explorer AFM (Veeco, CA) with a Tube or Tripod scanner.  Images 

were obtained while using either Micromash DP15/HiRes-W/AIBS tips (nominal radius of 

tip curvature ≈ 1 nm, Al reflective side coating, cantilever length = 230 µm, width = 35 µm, 



 

21 
 

resonant frequency = 325 kHz) or NSC15/AIBS tips (nominal radius of tip curvature < 10 

nm, Al reflective side coating, cantilever length = 125 µm, width = 35 µm, resonant 

frequency = 325 kHz).  Thermomicroscopes Scanning Probe Microscopy Lab Analysis 

software was then used to process and analyze the images for leveling and topography 

measurements.   

 

2.4. SHAPE  

 

SHAPE includes three major procedures:  chemical modification of flexible RNA 

nucleotides, reverse transcription to identify modified RNA nucleotides, and finally data 

analysis and the construction of a model of the RNA secondary structure.  The 8 detailed 

steps of SHAPE are itemized below. 

 

1) Folding:  The RNA was heated at 95°C for 2 minutes, and then cooled on ice to 

eliminate multimeric forms.  The RNA began in 0.5× TE buffer (pH 8.0), folding buffer 

(final concentration, 100 mM Tris-HCl at pH 8.0, 100mM NaCl, and 6 mM MgCl2) was 

added to the RNA solution.  This new solution was incubated at 37°C for 20 minutes.  After 

incubation, half of the solution was transferred into a second tube.  

    

2) 1M7 modification:  1M7 in DMSO was added to the RNA solution (the first tube) 

at a final concentration of 6 mM, and the solution was allowed to continue incubating for 2 

minutes (greater than five 1M7 half-lives).  A control experiment was run in parallel where 

1M7 was omitted and only DMSO was added (the second tube). 
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3)  An ethanol precipitation was then conducted to recover RNA. 

 

4)  Primer Extension:  A different color-coded fluorophore-labeled DNA primer 

(human Ferritin-H 5’UTR primer: 5’-GACTAAGGAGAGG-3’; human Ferritin-H short 

5’UTR primer: 5’-GCGGTGGCTGCGCGGCGCTGGAG-3’; human Ferritin-L 5’UTR 

primer: 5’-GAATCTGGGAGCTCATGGTT-3’; human APP 5’UTR primer: 5’-

AAACCGGGCAGCATCGCGAC-3’; mouse Ferritin-H 5’UTR primer: 5’-

GGTGGCGGCGGGGCGAGG-3’; mouse Ferritin-L 5’UTR primer: 5’-

GGCTGATCCGGAGTAGGAGCTAAC-3’; and mouse APP 5’UTR primer: 5’-

CGTGATCCTGCGTGGGCCA-3’) was added to the (+) 1M7 and (-) 1M7 reactions.  The 

two samples were incubated at 65°C for 6-10 minutes followed by 35°C for 15 minutes to 

allow primer annealing to the 3’ end of the RNA.  Reverse transcription buffer (including 

final concentrations of 50 mM Tris-HCl at pH 8.3, 75 mM KCl, 3mM MgCl2, 5 mM DTT, 

0.5 mM dATP, 0.5 mM dCTP, 0.5 mM dGTP, and 0.5 mM dTTP) was added and heated to 

52°C, then reverse transcriptase (Superscript III, Invitrogen, Carlsbad, CA) was added to the 

solution and allowed to incubate at 52°C for 15 minutes for primer extension.  Two dideoxy 

sequencing reactions were run in parallel in order to identify peaks in the (+) and (-) 1M7 

reactions. 

 

5)  Recovery of cDNA:  Ethanol precipitation was used to recover cDNA, which was 

then resuspended in highly deionized formamide. 
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6)  cDNA fragment analysis:  The suspended cDNA was loaded onto the Applied 

Biosystems 310 Genetic Analyzer (ABI 310, Applied Biosystems, Foster City, CA).  This 

system uses capillary gel electrophoresis coupled with a fluorescence detection system to 

determine the size of the cDNA fragments. 

 

7)  SHAPE data analysis:  Data collected from ABI 310 underwent baseline 

adjustment, matrixing to remove signal overlap, and mobility shift adjustment using 

ShapeFinder software.83  Integrated SHAPE reactivity at each nucleotide position was 

normalized to a scale from 0 to ~2.   

 

8)  Model Construction:  The normalized SHAPE reactivities were incorporated into 

RNAstructure 4.6 software, which uses both nearest-neighbor free energy parameters and 

SHAPE data as pseudo-energy parameters to develop a secondary structure prediction.84 
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CHAPTER 3 

 

Results  

 

3.1. The 5’UTR of human Ferritin-H mRNA 

 

 The sequence of the 237-nucleotide-long human Ferritin-H mRNA 5’UTR is as 

follows: 

5’-GG AUAAGAGACC ACAAGCGACC CGCAGGGCCA GACGUUCUUC 

GCCGAGAGUC GUCGGGGUUU CCUGCUUCAA CAGUGCUUGG ACGGAACCCG 

GCGCUCGUUC CCCACCCCGG CCGGCCGCCC AUAGCCAGCC CUCCGUCACC 

UCUUCACCGC ACCCUCGGAC UGCCCCAAGG CCCCCGCCGC CGCUCCAGCG 

CCGCGCAGCC ACCGCCGCCG CCGCCGCCUC UCCUUAGUCG CCGCC-3’  

 

3.1.1. AFM images  

 

 An AFM image of the negative control is shown in Figure 6.  The negative control 

was made by depositing 3.5 µl of TE buffer and 1.5 µl of folding buffer (see Experimental 

Methods), without RNA, onto freshly cleaved mica and allowing it to sit for 5 minutes, 

followed by washing with nuclease-free water, and drying with a stream of nitrogen.  Figure 

6A shows a two-dimensional image of the mica surface; Figure 6B is a three-dimensional 

view of the sample surface.  The surface of the sample composed of mica with the negative 
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control solution deposited onto it is almost featureless, with no apparent blobs.  The surface 

roughness is similar to that of the original mica surface.  

 

A 

 

B 

 

Figure 6. AFM i mages of  t he mica surf ace w ith the negative co ntrol solution 

deposited onto i t.  ( A) The two-dimensional view of the sample surface, and (B) the three-

dimensional view of the sample surface. 
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 An AFM image of a sample composed of human Ferritin-H mRNA 5’UTR deposited 

onto a mica surface is shown is Figure 7.  The 237-nucleotide-long RNA molecule folds into 

a complex three-dimensional structure that appears as a blob on the mica surface.  The 

heights of three blobs were measured using the “line analysis” tool in the 

Thermomicroscopes Scanning Probe Microscopy Lab Analysis software, with the maximum 

height of a blob recorded as its height (see Figure 8A).  The heights of the eleven blobs were 

measured as:  0.81 nm, 0.55 nm, 0.35 nm, 0.38 nm, 0.31 nm, 0.21 nm, 0.33 nm, 0.22 nm, 

0.23 nm, 0.13 nm, and 0.12 nm (average ± standard deviation = 0.33 ± 0.20 nm).   

 

 The volume of a blob was determined by drawing four lines on the blob (see Figure 

8B, where only three lines are demonstrated), where line 1 was drawn parallel to the AFM 

tip’s scanning direction (horizontal blue line); line 2 was drawn at an angle that is 135 

degrees clockwise to line 1 (green line); line 3 was drawn at an angle that is 90 degrees to 

line 2 (red line); and line 4 was drawn at 90 degrees to line 1 and 45 degrees to lines 2 and 3 

(vertical line, not shown).  The length of each line was measured at half the maximum height 

of the blob (see Figure 8C), a measurement called Full Width at Half Maximum (FWHM).  

The line with the maximum FWHM value is identified as the Major Axis, and the line with 

minimum FWHM value is identified as the Minor Axis.  The blob was then treated as an 

ellipsoid, and the volume was determined using the formula: Volume = 4/3 π × FWHMMajor 

Axis × FWHMMinor Axis × Height of the blob.  The volumes of the eleven blobs were 1235 nm3, 

823 nm3, 433 nm3, 313 nm3, 220 nm3, 103 nm3, 277 nm3, 112 nm3, 173 nm3, 97.0 nm3, and 

131 nm3, respectively (average ± standard deviation = 356 ± 360 nm3).  There are several 



 

27 
 

possible explanations for the differences in height and volume of the blobs, such as 1) some 

blobs on the mica surface were RNA aggregates; 2) some blobs were degraded RNA 

molecules; and 3) RNA molecules adopted different conformations on the mica surface.   

 

A 

 

B 
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Figure 7. AFM i mages of  a s ample com posed of t he h uman Ferritin-H m RNA 

5’UTR deposited onto a mica surface.  (A) The two-dimensional view of the sample surface, 

and (B) the three-dimensional view of the sample surface. 

 

A 

      

B 
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C 

      

Figure 8. Illustration of line analysis from the AFM image of the human Ferritin-H 

mRNA 5’ UTR. (A) I llustration of t he he ight m easurement of  a n R NA bl ob, ( B) 

determination of the Major Axis and the Minor Axis for an RNA blob at half the maximum 

height, and (C) illustration of how to measure the full width of a blob at half the maximum 

height (FWHM). 

 

3.1.2. SHAPE data 

 

The human Ferritin-H mRNA 5’UTR transcripts were folded in a solution containing 

6 mM Mg2+ and subjected to the SHAPE procedure.  The SHAPE experiments were repeated 

at least twice.  The raw data from the ABI genetic analyzer underwent a series of 
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modifications in order to remove signal overlap and migration differences due to the cDNA 

fragments being labeled with different colored fluorophores.  Figure 9 illustrates one set of 

SHAPE electropherograms for the human Ferritin-H mRNA 5’UTR.   

 

After alignment and integration to obtain the Gaussian-fitted peak area at each 

nucleotide position for both the (+) 1M7 and (-) 1M7 traces, the background (-) 1M7 peak 

area was subtracted from the corresponding (+) 1M7 peak area.  The absolute SHAPE 

reactivities obtained were normalized by excluding the 2% most reactive fluorescent 

intensities, and then dividing by the average of the remaining 8% most highly reactive 

positions.  The normalized SHAPE reactivities were classified into three categories.  

Nucleotides with high SHAPE reactivities (≥0.7) are expected to be single-stranded; 

nucleotides with low SHAPE reactivities (<0.3) are unreactive, and are expected to be base-

paired; and nucleotides with intermediate SHAPE reactivities (between 0.3 and 0.7) are 

difficult to judge.  Nucleotides in this last category may be single-stranded or could be 

involved in base-pairing/tertiary interactions.  Figure 10 presents the averaged SHAPE 

reactivities from two sets of SHAPE data for the human Ferritin-H mRNA 5’UTR.  

 

Normalized SHAPE reactivity values (0 to ~2) were incorporated into the 

RNAstructure program as a pseudo free energy change term, so as to constrain the prediction 

of the secondary structure of the RNA.  The predicted structure with the lowest free energy 

for the human Ferritin-H mRNA 5’UTR is shown in Figure 11.  The human Ferritin-H 

mRNA 5’UTR shows a high degree of secondary structure, with numerous stem-loops, 

which is expected due to the high GC content in the RNA sequence.  Interestingly, the 
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predicted structure does not contain a single stem-loop IRE where expected at nucleotide 

positions 61-88, as suggested by the presence of an apical loop that contains a CAGUGC 

sequence.  In order to form the IRE stem-loop, nucleotides 68-72 should pair with 

nucleotides 83-79.  However, in Figure 11, nucleotides 68-72 show medium to high SHAPE 

reactivities and are single-stranded, whereas nucleotides 79-82 pair with nucleotides 125, 

123, 122, and 121, respectively.  Based on the structure prediction, nucleotides at the 5’-end 

of the human Ferritin-H mRNA 5’UTR (nucleotides 2-10) form base pairs with nucleotides 

at the 3’-end of the RNA; this base-pairing may disrupt the secondary structure of the other 

regions in this RNA.  We thus deleted 30 nucleotides from the 3’-end of the RNA, and 

synthesized an RNA named “human Ferritin-H mRNA short 5’UTR”.      
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Figure 9. SHAPE data for the 5’UTR of the human Ferritin-H mRNA transcript.  The 

raw output from the ABI 310 genetic analyzer underwent baseline adjustment, matrixing, and 

mobility shift adjustment.  Fluorescence-labeled DNA primer was annealed to the 3’-end of 

this 237-nucleotide RNA.  The blue t race is the +1M7 sample; the black trace is the -1M7 

negative control; green and red traces are two dideoxy ladders (ddG and ddT, respectively).  

The x-axis indicates the number of data points collected.  The y-axis (not shown) enumerates 

the fluorescence units.   
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Figure 10. Single nuc leotide re solution of nor malized SHAPE re activities f or the  

human Ferritin-H mRNA 5’UTR.  Error bars represent standard deviations calculated from 

two independent experiments.    
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Figure 11. The pred icted secondary structure of t he 5’U TR of  hu man Ferritin-H 

mRNA.  Nucleotides a re c olored bl ack (unreactive, S HAPE r eactivity < 0.3), or ange 

(moderately reactive, 0.3 ≤ SHAPE reactivity <0.7), red (highly reactive, SHAPE reactivity 

≥0.7), or grey (no data). 
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3.2. Human Ferritin-H mRNA short 5’UTR 

 

 The sequence of the 207-nucleotide-long human Ferritin-H mRNA short 5’UTR is as 

follows: 

5’-GG AUAAGAGACC ACAAGCGACC CGCAGGGCCA GACGUUCUUC 

GCCGAGAGUC GUCGGGGUUU CCUGCUUCAA CAGUGCUUGG ACGGAACCCG 

GCGCUCGUUC CCCACCCCGG CCGGCCGCCC AUAGCCAGCC CUCCGUCACC 

UCUUCACCGC ACCCUCGGAC UGCCCCAAGG CCCCCGCCGC CGCUCCAGCG 

CCGCGCAGCC ACCGC-3’  

 

3.2.1. AFM images  

 

 An AFM image of the human Ferritin-H mRNA short 5’UTR is shown in Figure 12.  

The 207-nucleotide-long RNA molecule folds into a complex three-dimensional structure 

that appears as a blob on the mica surface.  The heights of eight blobs were measured as:  

1.12 nm, 0.85 nm, 0.79 nm, 0.60 nm, 0.59 nm, 0.50 nm, 0.34 nm, and 0.41 nm (average ± 

standard deviation = 0.65 ± 0.26 nm).  The volumes of the same eight blobs were 2403 nm3, 

2001 nm3, 1451 nm3, 941 nm3, 694 nm3, 982 nm3, 471 nm3, and 357 nm3, respectively 

(average ± standard deviation = 1162 ± 732 nm3).  The averaged volume of the blobs for the 

human Ferritin-H mRNA short 5’UTR (1162 ± 732 nm3) doubles that of the human Ferritin-

H 5’UTR (356 ± 360 nm3), which demonstrates that no correlation has been observed 

between volume and RNA sequence length in this study.     
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A 

 

B 

 

Figure 12. AFM images of a sample composed of the human Ferritin-H mRNA short 

5’UTR deposited onto a mica surface.  (A) The two-dimensional view of the sample surface, 

and (B) the three-dimensional view of the sample surface. 

 



 

37 
 

3.2.2. SHAPE data 

 

The human Ferritin-H mRNA short 5’UTR transcripts were folded in a solution 

containing 6 mM Mg2+ and subjected to the SHAPE procedure.  The SHAPE experiments 

were repeated at least twice.  Figure 13 illustrates one set of SHAPE electropherograms of 

this RNA.  Figure 14 presents the averaged SHAPE reactivities from two SHAPE 

experiments.  The predicted structure with the lowest free energy for the human Ferritin-H 

mRNA short 5’UTR is shown in Figure 15.   

 

Human Ferritin-H mRNA short 5’UTR forms the correct IRE stem-loop structure at 

nucleotide positions 61-88, including a 73CAGUGC78 apical loop.  It is known that C73 

pairs with G77 within the loop, which is required for efficient IRP protein binding.12  Figure 

16 shows that G77 is unreactive (i.e., low SHAPE reactivity) due to its involvement in the 

base pairing.  The 65UGC67 and C84 nucleotides form a bulge in the RNA, which is a 

conserved feature for the ferritin mRNAs.  The G66-C84 base pair is also required for IRP 

binding.  The crystal structure of the IRP1-ferritin IRE complex resolved by Volz’s research 

group has shown that the L-shaped IRP1 interacts with the ferritin IRE stem-loop at two 

positions, the apical loop and the bulge.85,86          

 

 SHAPE data from the human ferritin-H mRNA short 5’UTR demonstrate that the left 

side of the stem (68UUCAA72) of the IRE is more reactive than the right side of the stem 

(83AGGUU79), which means that the left side may be adopting a conformation that brings it 

toward the outside of the RNA, where it would be more accessible to 1M7.  
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Figure 13. SHAPE d ata f or the 5’ UTR of  the  hum an Ferritin-H m RNA s hort 

transcript.  The r aw output f rom t he A BI 310 ge netic a nalyzer unde rwent ba seline 

adjustment, matrixing, and mobility shift adjustment.  Fluorescence-labeled DNA primer was 

annealed to the 3’-end of this 207-nucleotide RNA.  The blue trace is the +1M7 sample; the 

black trace is the -1M7 negative control; green and red traces are two dideoxy ladders (ddG 

and ddA, respectively).  The x-axis indicates the number of data points collected.  The y-axis 

(not shown) enumerates the fluorescence units.   
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Figure 14. Single nuc leotide re solution of nor malized SHAPE re activities f or the  

human Ferritin-H mRNA short 5’UTR.  Error bars represent standard deviations calculated 

from two independent experiments.    
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Figure 15. The predicted secondary structure of the 5’UTR of the human Ferritin-H 

mRNA short transcript.  Nucleotides are colored black (unreactive, SHAPE reactivity <0.3), 

orange ( moderately r eactive, 0.3 ≤ SHAPE reactivity <0.7), red (highly reactive, SHAPE 

reactivity ≥0.7), or grey (no data). 
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3.3. Mouse Ferritin-H mRNA 5’UTR 

 

 The sequence of the 169-nucleotide-long mouse Ferritin-H mRNA 5’UTR is as 

follows: 

5’-GG CAGACGUUCU CGCCCAGAGU CGCCGCGGUU UCCUGCUUCA 

ACAGUGCUUG AACGGAACCC GGUGCUCGAC CCCUCCGACC CCCGCCGGCC 

GCUUCGAGCC UGAGCCCUUU GCAACUUCGU CGUUCCGCCG CUCCAGCGUC 

GCCACCGCGC CUCGCCCCGC CGCCACC-3’  

 

3.3.1. AFM images  

 

 An AFM image of the mouse Ferritin-H mRNA 5’UTR is shown in Figure 16.  The 

169-nucleotide-long RNA molecule folds into a complex three-dimensional structure that 

appears as a blob on the mica surface.  The heights of five blobs were measured as:  0.73 nm, 

0.59 nm, 0.53 nm, 0.48 nm, and 0.30 nm (average ± standard deviation = 0.53 ± 0.16 nm).  

The volumes of the same five blobs were 1136 nm3, 851 nm3, 555 nm3, 468 nm3, and 680 

nm3, respectively (average ± standard deviation = 738 ± 265 nm3).   
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A 

 

 B 

 

Figure 16. AFM i mages of  a sa mple com posed of t he m ouse F erritin-H m RNA 

5’UTR deposited onto a mica surface.  (A) The two-dimensional view of the sample surface, 

and (B) the three-dimensional view of the sample surface. 
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3.3.2. SHAPE data 

 

The mouse Ferritin-H mRNA 5’UTR transcripts were folded in a solution containing 

6 mM Mg2+ and subjected to the SHAPE procedure.  The SHAPE experiments were repeated 

at least twice.  Figure 17 illustrates one set of SHAPE electropherograms of this RNA.  

Figure 18 presents the averaged SHAPE reactivities from two SHAPE experiments.  The 

predicted structure with the lowest free energy for the mouse Ferritin-H mRNA 5’UTR is 

shown in Figure 19.   

 

Mouse Ferritin-H mRNA 5’UTR forms the correct IRE stem-loop structure at 

nucleotide positions 29-61, including a 44CAGUGC49 apical loop.  The 36UGC38 and C55 

nucleotides form a bulge in the RNA.  SHAPE data from the mouse ferritin-H mRNA 5’UTR 

demonstrate that nucleotides in the apical loop and the bulge of the RNA are reactive; 

nucleotides in the stem of the IRE are unreactive.  
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Figure 17. SHAPE da ta f or the  5 ’UTR of  the  m ouse F erritin-H m RNA tra nscript.  

The r aw out put f rom t he A BI 310 ge netic a nalyzer underwent baseline a djustment, 

matrixing, and mobility shift adjustment.  Fluorescence-labeled DNA primer was annealed to 

the 3’-end of this 169-nucleotide RNA.  The blue trace is the +1M7 sample; the black trace is 

the -1M7 ne gative c ontrol; gr een a nd r ed t races a re t wo di deoxy l adders ( ddG a nd ddA , 

respectively).  T he x -axis indicates t he num ber of  da ta p oints c ollected.  The y-axis ( not 

shown) enumerates the fluorescence units.   
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Figure 18. Single nuc leotide r esolution of  nor malized S HAPE r eactivities f or the  

mouse Ferritin-H mRNA 5’UTR.  Error bars represent standard deviations calculated from 

two independent experiments.    
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Figure 19. The predicted secondary structure of the 5’UTR of the mouse Ferritin-H 

mRNA t ranscript.  Nucleotides are colo red black (unreactive, S HAPE r eactivity <0.3), 

orange ( moderately r eactive, 0.3 ≤ SHAPE reactivity <0.7), red (highly reactive, SHAPE 

reactivity ≥0.7), or grey (no data). 
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3.4. Human Ferritin-L mRNA 5’UTR 

 

 The sequence of the 217-nucleotide-long RNA, which contains the 201-nucleotide-

long human Ferritin-L mRNA 5’UTR plus 16 nucleotides that extend into the coding region 

of the human Ferritin-L mRNA, is shown below. 

5’-GG GCAGUUCGGC GGUCCCGCGG GUCUGUCUCU UGCUUCAACA 

GUGUUUGGAC GGAACAGAUC CGGGGACUCU CUUCCAGCCU CCGACCGCCC 

UCCGAUUUCC UCUCCGCUUG CAACCUCCGG GACCAUCUUC UCGGCCAUCU 

CCUGCUUCUG GGACCUGCCA GCACCGUUUU UGUGGUUAGC UCCUUCUUGC 

CAACCAACCA UGAGCUCCCA GAUUC-3’ 

  

3.4.1. AFM images  

 

 An AFM image of the human Ferritin-L mRNA 5’UTR is shown in Figure 20.  The 

RNA molecule folds into a complex three-dimensional structure that appears as a blob on the 

mica surface.  The heights of fourteen blobs were measured as:  1.22 nm, 1.35 nm, 1.33 nm, 

0.55 nm, 1.23 nm, 0.81 nm, 0.77 nm, 0.93 nm, 0.88 nm, 0.83 nm, 0.94 nm, 1.35 nm, 1.19 

nm, and 0.81 nm (average ± standard deviation = 1.01 ± 0.26 nm).  The volumes of the same 

fourteen blobs were 3355 nm3, 4407 nm3, 5845 nm3, 943 nm3, 2711 nm3, 768 nm3, 1241 nm3, 

1671 nm3, 1404 nm3, 1463 nm3, 2780 nm3, 1384 nm3, 3212 nm3, and 1241 nm3, respectively 

(average ± standard deviation = 2316 ± 1481 nm3).   
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A 

 

B 

 

Figure 20. AFM i mages of  a sa mple com posed of t he hu man Ferritin-L m RNA 

5’UTR deposited onto a mica surface.  (A) The two-dimensional view of the sample surface, 

and (B) the three-dimensional view of the sample surface. 
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3.4.2. SHAPE data 

 

The human Ferritin-L mRNA 5’UTR transcripts were folded in a solution containing 

6 mM Mg2+ and subjected to the SHAPE procedure.  The SHAPE experiments were repeated 

at least twice.  The predicted structure with the lowest free energy for the human Ferritin-L 

mRNA 5’UTR is shown in Figure 21.  Human Ferritin-L mRNA 5’UTR forms the correct 

IRE stem-loop structure at nucleotide positions 27-57, including a 41CAGUGU46 apical 

loop.  The 33UGC35 and C52 nucleotides form a bulge in the RNA.   

 

 

Figure 21. The predicted secondary structure of the 5’UTR of the human Ferritin-L 

mRNA tra nscript.  Nucleotides ar e colored black (unreactive, S HAPE r eactivity < 0.3), 

orange ( moderately r eactive, 0.3 ≤ SHAPE reactivity <0.7), red (highly reactive, SHAPE 

reactivity ≥0.7), or grey (no data). 
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3.5. Mouse Ferritin-L mRNA 5’UTR 

 

 The sequence of the 207-nucleotide-long mouse Ferritin-L mRNA 5’UTR is as 

follows: 

5’-GA GCAGCGCCUU GGAGGUCCCG UGGAUCUGUG UCUUGCUUCA 

ACAGUGUUUG AACGGAACAG ACCCGGGGAU UCCCACUGUA CUCGCUUCCA 

GCCGCCUUUA CAAGUCUCUC CAGUCGCAGC CUCCGGGACC AUCUCCUCGC 

UGCCUUCAGC UCCUAGGACC AGUCUGCACC GUCUCUUCGC GGUUAGCUCC 

UACUCCGGAU CAGCC-3’  

 

3.5.1. AFM images  

 

 An AFM image of the mouse Ferritin-L mRNA 5’UTR is shown in Figure 22.  The 

RNA molecule folds into a complex three-dimensional structure that appears as a blob on the 

mica surface.  The heights of fourteen blobs were measured as:  0.78 nm, 0.92 nm, 1.04 nm, 

0.64 nm, 0.83 nm, 0.65 nm, 0.90 nm, 0.87 nm, 1.02 nm, 0.96 nm, 0.61 nm, 0.81 nm, 0.90 

nm, and 0.70 nm (average ± standard deviation = 0.83 ± 0.14 nm).  The volumes of the same 

fourteen blobs were 1103 nm3, 1183 nm3, 1022 nm3, 782 nm3, 828 nm3, 709 nm3, 952 nm3, 

1040 nm3, 933 nm3, 1220 nm3, 486 nm3, 749 nm3, 1365 nm3, and 619 nm3, respectively 

(average ± standard deviation = 928 ± 247 nm3).     
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A 

 

B 

 

Figure 22. AFM i mages of  a sam ple com posed of t he mouse Ferritin-L mR NA 

5’UTR deposited onto a mica surface.  (A) The two-dimensional view of the sample surface, 

and (B) the three-dimensional view of the sample surface. 
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3.5.2. SHAPE data 

 

The mouse Ferritin-L mRNA 5’UTR transcripts were folded in a solution containing 

6 mM Mg2+ and subjected to the SHAPE procedure.  The SHAPE experiments were repeated 

at least twice.  The predicted structure with the lowest free energy for the mouse Ferritin-L 

mRNA 5’UTR is shown in Figure 23.  Mouse Ferritin-L mRNA 5’UTR forms the correct 

IRE stem-loop structure at nucleotide positions 30-60, including a 44CAGUGU49 apical 

loop.  The 36UGC38 and C55 nucleotides form a bulge in the RNA.  

  

 

Figure 23. The predicted secondary structure of the 5’UTR of the mouse Ferritin-L 

mRNA tra nscript.  Nucleotides are colo red black (unreactive, S HAPE r eactivity <0.3), 

orange ( moderately r eactive, 0.3 ≤ SHAPE reactivity <0.7), red (highly reactive, SHAPE 

reactivity ≥0.7), or grey (no data). 
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3.6. Human APP mRNA 5’UTR 

 

 The sequence of the 163-nucleotide-long RNA, which contains the 149-nucleotide-

long human APP mRNA 5’UTR plus 14 nucleotides that extend into the coding region of the 

human APP mRNA, is shown below. 

5’-GG AGUUUCCUCG GCAGCGGUAG GCGAGAGCAC GCGGAGGAGC 

GUGCGCGGGG GCCCCGGGAG ACGGCGGCGG UGGCGGCGCG GGCAGAGCAA 

GGACGCGGCG GAUCCCACUC GCACAGCAGC GCACUCGGUG CCCCGCGCAG 

GGUCGCG AUGCUGCCCG GUUU-3’  

 

3.6.1. AFM images  

 

 An AFM image of the human APP mRNA 5’UTR is shown in Figure 24.  The RNA 

molecule folds into a complex three-dimensional structure which appears as a blob on the 

mica surface.  The heights of three blobs were measured as:  0.37 nm, 0.40 nm, and 0.35 nm 

(average ± standard deviation = 0.37 ± 0.03 nm).  The volumes of the same three blobs were 

476 nm3, 546 nm3, and 408 nm3, respectively (average ± standard deviation = 477 ± 69 nm3).     

 

 

 

 

 



 

54 
 

 

A 

 

B 

 

Figure 24. AFM i mages of  a  s ample c omposed of  t he human A PP mRNA 5’ UTR 

deposited onto a mica surface.  (A) The two-dimensional view of the sample surface, and (B) 

the three-dimensional view of the sample surface. 
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3.6.2. SHAPE data 

 

The human APP mRNA 5’UTR transcripts were folded in a solution containing 6 

mM Mg2+ and subjected to the SHAPE procedure.  The SHAPE experiments were repeated 

at least twice.  Figure 25 illustrates one set of SHAPE electropherograms of this RNA.  

Figure 26 presents the averaged SHAPE reactivities from two SHAPE experiments.  The 

predicted structure with the lowest free energy for the human APP mRNA 5’UTR is shown 

in Figure 27.   

 

The human APP mRNA 5’UTR contains an IRE stem-loop structure that is different 

from the IREs in the 5’UTRs of the Ferritin-H and Ferritin-L mRNAs; therefore, it is named 

IRE-Type II.  Instead of having a 6-nucleotide apical loop comprised of CAGUGN (N can be 

A, C, or U, but not G), as present in the Ferritin IREs, the human APP IRE contains a 13-

nucleotide loop comprised of nucleotides 83GGCAGAGCAAGGA95 (see Figure 27).  The 

85CAGA88 sequence in the apical loop is called an “amyloid” CAGA box.  The mammal 

CAGA box is a Smad protein binding site for Smad3 and Smad4.87  The “amyloid” CAGA 

box within the IRE region of the human APP mRNA 5’UTR is believed to provide additional 

regulation of the synthesis of the human APP protein and to facilitate the production of Aβ.87 

 

In addition to the difference in the apical loop, nucleotides 79CGCG82 in the human 

APP mRNA 5’UTR pair with nucleotides 99GCGC96 to form a 4-base-pair stem, whereas 
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IREs in the ferritin mRNA 5’UTRs have a conserved 5-base-pair stem.  In addition, instead 

of having a UGC-C type of bulge, the human APP IRE contains a 78G-G100 bulge.   

In the human APP mRNA 5’UTR, most nucleotides within positions 101-123 are 

reactive, which means that these nucleotides may adopt a conformation that makes them 

more accessible to 1M7.  Interestingly, this RNA region is located within the interleukin-1 

responsive element (called the acute box) domain, where interleukin-1, a cytokine released 

early in the acute phase of the immune response, binds in order to regulate and stimulate APP 

protein synthesis. 

 

 

Figure 25. SHAPE data for the 5’UTR of the human APP mRNA transcript.  The raw 

output f rom t he A BI 310 ge netic analyzer un derwent ba seline adjustment, matrixing, a nd 

mobility shift adjustment.  Fluorescence-labeled DNA primer was annealed to the 3’-end of 

this 163-nucleotide RNA.  The blue t race is the +1M7 sample; the black trace is the -1M7 

negative control; green and red traces are two dideoxy ladders (ddG and ddT, respectively).  
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The x-axis indicates the number of data points collected.  The y-axis (not shown) enumerates 

the fluorescence units.   

 

 

 

 

 

Figure 26. Single nuc leotide r esolution of  nor malized SHAPE re activities f or the  

human APP m RNA 5’ UTR.  Error ba rs re present s tandard de viations calculated f rom tw o 

independent experiments.    
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Figure 27. The pred icted secondary structure of t he 5’U TR of  t he human APP 

mRNA t ranscript.  Nucleotides are colo red black (unreactive, S HAPE r eactivity <0.3), 

orange ( moderately r eactive, 0.3 ≤ SHAPE reactivity <0.7), red (highly reactive, SHAPE 

reactivity ≥0.7), or grey (no data). 
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3.7. Mouse APP mRNA 5’UTR 

 

 The sequence of the 147-nucleotide-long mouse APP mRNA 5’UTR is as follows: 

5’-GG GUUUCCUCGG CGGCGGGAGG CGAGAGCACC GGGAGCAGAG 

CGAGCGCGGG GCCACCGGAG ACGGCGGCGG CGGCGCGGAC ACAGCCAGGG 

CGCGGCGGAU CUUCCACUCG CACACGGAGC ACUCGGUGGC CCACGCAGGA 

UCACG-3’  

 

3.7.1. AFM images  

 

 An AFM image of the mouse APP mRNA 5’UTR is shown in Figure 28.  The RNA 

molecule folds into a complex three-dimensional structure that appears as a blob on the mica 

surface.  The heights of five blobs were measured as:  2.60 nm, 2.90 nm, 2.50 nm, 2.90 nm, 

and 1.90 nm (average ± standard deviation = 2.56 ± 0.41 nm).  The volumes of the same five 

blobs were 2509 nm3, 1881 nm3, 1054 nm3, 2006 nm3, and 1162 nm3, respectively (average ± 

standard deviation = 1722 ± 609 nm3).     
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A 

 

B 

 

Figure 28. AFM i mages of  a sa mple composed of t he mouse A PP mRNA 5’U TR 

deposited onto a mica surface.  (A) The two-dimensional view of the sample surface, and (B) 

the three-dimensional view of the sample surface. 
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3.7.2. SHAPE data 

 

The mouse APP mRNA 5’UTR transcripts were folded in a solution containing 6 mM 

Mg2+ and subjected to the SHAPE procedure.  The SHAPE experiments were repeated at 

least twice.  Figure 29 illustrates one set of SHAPE electropherograms of this RNA.  Figure 

30 presents the averaged SHAPE reactivities from two SHAPE experiments.  The predicted 

structure with the lowest free energy for the mouse APP mRNA 5’UTR is shown in Figure 

31.   

 

The IRE-like stem-loop structure in the mouse APP mRNA 5’UTR contains a 9-

nucleotide apical loop comprised of nucleotides 77GCGGACACA85, which does not contain 

an “amyloid” CAGA sequence.  Nucleotides 74GGC76 pair with nucleotides 88CCG86 to 

form a 3-base-pair stem (see Figure 31).  Rather than having the UGC-C type of bulge 

present in the ferritin IREs, the predicted mouse APP IRE structure contains a 6-nucleotide 

internal loop.   
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Figure 29. SHAPE data for the 5’UTR of the mouse APP mRNA transcript.  The raw 

output f rom t he A BI 310 ge netic analyzer un derwent ba seline adjustment, matrixing, a nd 

mobility shift adjustment.  Fluorescence-labeled DNA primer was annealed to the 3’-end of 

this 147-nucleotide RNA.  The blue t race is the +1M7 sample; the black trace is the -1M7 

negative control; green and red traces are two dideoxy ladders (ddG and ddA, respectively).  

The x-axis indicates the number of data points collected.  The y-axis (not shown) enumerates 

the fluorescence units.   
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Figure 30. Single nuc leotide r esolution of  nor malized S HAPE r eactivities f or the  

mouse AP P mRNA 5’ UTR.  Error ba rs represent st andard deviations cal culated from two 

independent experiments.   
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Figure 31. The predicted secondary structure of the 5’UTR of the mouse APP mRNA 

transcript.  Nucleotides ar e co lored black (unreactive, SHAPE r eactivity <0.3), orange  

(moderately reactive, 0.3 ≤ SHAPE reactivity <0.7), red (highly reactive, SHAPE reactivity 

≥0.7), or grey (no data). 
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CHAPTER 4 

 

 Discussion 

 

 The AFM study of RNA conformation was not very successful.  The length of the 

seven RNA transcripts investigated was between 140-240 nucleotides.  Due to the relatively 

short length of the RNA molecules and their complex three-dimensional folding, AFM 

imaging only shows them as blobs.  The difference in volume and height of the blobs 

representing these RNA molecules is somewhat random (see Table 1); no correlation has 

been observed between volume or height and RNA sequence length in this study.  The day-

to-day variation of the AFM instrument and tip conditions are considered to be important 

factors relative to these results.     

 

 In addition to the differences between RNA molecules of different types, the volume 

and height of the blobs for the same RNA molecule deposited onto the same mica surface 

show large variations (see standard deviations, SD, in Table 1).  There are several possible 

explanations for the differences in height and volume of the blobs for the same RNA 

molecule, including 1) some blobs on the mica surface were RNA aggregates; 2) some blobs 

were degraded RNA molecules; and 3) the RNA molecules adopted different conformations 

on the mica surface.  Overall, this study shows that AFM imaging is not an efficient way to 

visualize relatively short RNA molecules unless there are some distinct features present.  For 

example, Jaeger’s research group visualized the dimerization of a 230-nucleotide RNA 
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molecule via “kissing-loop” interaction; the AFM images showed double or triple blobs 

caused by these “kissing-loop” structures.75 

 

Table 1.  Summary of the averaged height and volume of the blobs in AFM images 

for each RNA molecule investigated (“nts” = nucleotides). 

   RNA 

Human 
Ferritin-H 
mRNA 
5’UTR 
(237 nts) 

Human 
Ferritin-H 
mRNA 
short 
5’UTR 
(207 nts) 

Mouse 
Ferritin-H 
mRNA 
5’UTR 
(169 nts) 

Human 
Ferritin-L 
mRNA 
5’UTR 
(217 nts) 

Mouse 
Ferritin-L 
mRNA 5’ 
UTR (207 
nts) 

Human 
APP 
mRNA 
5’UTR 
(163 nts) 

Mouse 
APP 
mRNA 
5’UTR 
(147 nts) 

Height 
of the 
blob in 
nm 
(Avera
ge ± 
SD) 

0.33±0.20 0.65±0.26 0.53±0.16 1.01±0.26 0.83±0.14 0.37±0.03 2.56±0.41 

Volum
e of the 
blob in 
nm3 
(Avera
ge ± 
SD)  

356±360 1162±732 738±265 2316±1481 928±247 477±69 1722±609 

        

 SHAPE chemistry was used to map the secondary structures of the seven RNA 

transcripts at single nucleotide resolution.  To our knowledge, this is the first time that the 

secondary structures of the 5’UTRs of APP mRNA from human and mouse have been 

experimentally mapped.  Several research groups have used traditional X-ray crystallization 

techniques or enzymatic cleavage and/or chemical modification approaches to determine the 

conformation of the IRE region (30-50 nucleotides) in the Ferritin-H and Ferritin-L mRNA 

5’UTR, in the presence and absence of small molecule or protein ligands, but none of them 
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determined the structure of the entire 5’UTR of these RNA molecules.85,86,88-91  This study 

paves the way for the further investigation of RNA-ligand interactions in the 5’UTR of IRE-

containing mRNAs. 

 

The seven RNA molecules show a high degree of secondary structure, with numerous 

stem-loops structures.  The Human Ferritin-H mRNA short 5’UTR, mouse Ferritin-H mRNA 

5’UTR, human Ferritin-L mRNA 5’UTR, and mouse Ferritin-L mRNA 5’UTR form the 

expected IRE stem-loop structure, which includes a CAGUGN apical loop (N can be A, C, or 

U, but not G).  The first nucleotide C pairs with the fifth nucleotide G within the loop for 

efficient IRP protein binding.  In addition to the apical loop, these IRE structures in the 

5’UTR of the Ferritin mRNAs also contain a conserved 5-base-pair stem, followed by a 

UGC-C type of bulge.  The G-C base pair in the bulge is required for IRP binding.    

 

The APP mRNA 5’UTR in human and mouse contains an IRE stem-loop structure 

that is different from the IREs in the 5’UTRs of the Ferritin-H and Ferritin-L mRNAs.  

Instead of having a 6-nucleotide apical loop comprised of CAGUGN, where N can be A, C, 

or U, but not G, the human APP IRE contains a 13-nucleotide loop comprised of the 

nucleotides GGCAGAGCAAGGA.  The mouse APP IRE contains a 9-nucleotide apical loop 

comprised of the nucleotides GCGGACACA.  The human APP IRE contains a 4-base-pair 

stem, followed by a G-G bulge.  The mouse APP IRE contains a 3-base-pair stem, followed 

by a 6-nucleotide internal loop.  
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In addition to the IRE stem-loop, the 5’UTR of the Ferritin-H, Ferritin-L, and APP 

mRNAs also contain an IL-1β-dependent acute box.92-95  The acute boxes in the Ferritin 

mRNA 5’UTRs are located at the 3’-end of the 5’UTR.  For example, the core region of the 

acute box in the human Ferritin-H mRNA 5’UTR includes nucleotides 

191CGCCGCGCAGCCACCGCCGCCGCCG215, where little structural information was 

obtained.  This occurred because the fluorescently labeled DNA primer was annealed to the 

3’-end of the RNA molecule for the SHAPE procedure.  During primer extension, the large 

primer peaks mask the structural information of the neighboring (i.e., the 3’-end) nucleotides.   

 

The core region of the acute box in the human Ferritin-L mRNA 5’UTR is located at 

nucleotides U111 through G136, which contains a single-stranded region and a stem-loop 

structure.  The core region of the acute box in the human APP mRNA 5’UTR is located at 

positions 101-125, where most nucleotides are reactive.   

    

The SHAPE technique was successfully used to map the secondary structures of the 

seven RNA molecules in the absence of the ligand.  The next step of our study is to 

determine the secondary structures of the RNA molecules in the presence of different ligands 

at various concentrations.  A slab gel electrophoresis system will be used instead of capillary 

gel electrophoresis to separate and size radio-labeled cDNAs.  This will allow us to run 20-30 

SHAPE reactions in parallel on one gel, and to visualize the gradual structural transition 

undergone by the RNA.  The transition mid-point will be determined and the ligand binding 

site will be predicted.   
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CHAPTER 5 

 

Conclusions 

 

In order to substantially improve the understanding of ligand-RNA binding 

mechanisms and to shed light on the design of novel molecules targeted to specific RNA 

motifs, a complete elucidation of the RNA conformation before, during, and after ligand 

binding is necessary.  Tens of thousands of compounds have been screened to identify 

ligands that can bind to the 5’UTR of the human APP mRNA, which would allow the 

treatment of Alzheimer’s disease by decreasing the production of APP and the corresponding 

Aβ; fifteen compounds were identified as inhibiting APP translation by interacting with the 

5’UTR of APP mRNA, which includes an IRE stem-loop structure.  However, the underlying 

mechanism(s) of these RNA-ligand interactions has not been determined.  For example, what 

conformation does APP mRNA 5’UTR adopt after the binding of a small molecule?  Which 

nucleotides do the ligands bind to in the IRE?  Do the ligands also bind to other regions in 

the 5’UTR of the human APP mRNA, such as the interleukin-1-responsive acute box?  If the 

molecules mentioned above have the capability to reduce APP expression, can they bind to 

the IRE region in the 5’UTR of the human Ferritin-H and Ferritin-L mRNA to inhibit the 

translation of these intracellular iron storage proteins as well?  It is an advantage if the 

ligands can down-regulate APP expression, but certainly a disadvantage if they down-

regulate the expression of ferritin.   
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The objective of this study was to determine the conformations of the 5’UTRs of 

Ferritin-H, Ferritin-L, and APP mRNA transcripts from two species (human and mouse) in 

the absence of the ligand.  We used AFM to visualize the conformation of these RNA 

molecules, and determined the secondary RNA structures using SHAPE analysis coupled 

with a fluorescence detection system.  To our knowledge, this is the first time that the 

secondary structures of the 5’UTRs of APP mRNA in human and mouse have been 

experimentally mapped.  The AFM imaging did not provide high resolution structural 

information about these RNAs, whereas the SHAPE procedure successfully interrogated the 

secondary RNA structures at single nucleotide resolution.  This study paves the way for the 

further investigation of RNA-ligand interactions in these RNA molecules. 
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