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ABSTRACT 

 

THE NEURAL CONNECTIVITY OF THE TORUS SEMICIRCULARIS  
IN THE CAVE DWELLING FORM OF ASTYANAX FASCIATUS 

 
by Timothy B. Angel 

 
Afferent projections of the torus semicircularis were traced in the blind cave form of Astyanax 

fasciatus using HRP tract-tracing techniques, and the results were compared to those found in 

previous studies of closely related sighted teleosts.  

 

Following unilateral injections of tracer to the nucleus centralis of the torus semicircularis, 

retrogradely labeled cells were found in two octaval nuclei of the medulla.  The descending 

octavolateralis nucleus was labeled bilaterally and the anterior octaval nucleus was labeled 

primarily on the ipsilateral side. Both the descending and anterior octavolateralis nuclei are 

known to receive auditory input from CN VIII in sighted fish. In addition, labeled commissural 

fibers could be traced across the midline to labeled cells in the nucleus centralis of the 

contralateral torus semicircularis.  

 

Large Purkinje-like neurons of the contralateral medial octavolateralis nucleus of the medulla 

were labeled with HRP injections to the nucleus lateralis. The medial octavolateralis nucleus 

receives input from the anterior and posterior lateral line nerves known to carry mechanosensory 

information to the CNS. In addition, labeled cells in the contralateral descendens nucleus of V in 

the caudal medulla and in the ipsilateral ventromedial nucleus of the thalamus were found.  Both 

of these nuclei process somatosensory information. Labeled cells were also located in the 

anterior tuberal nucleus of the hypothalamus and minor nuclei of the mesencephalon. 
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These results suggest that the neural input to the torus semicircularis in cave A. fasciatus differ 

little, if any, from those previously found in sighted teleosts studied.  Further, these findings also 

suggest that the torus semicircularis functions as a multimodal processing center with auditory 

input from the descending and anterior octavolateralis nuclei of the medulla, mechanosensory 

information relayed by the medial octavolateralis nucleus, and somatosensory input from the 

descendens nucleus of V and the ventromedial nucleus of the thalamus. 
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INTRODUCTION 

 

Cave animals are inherently interesting due to their ability to survive in an unusual habitat.  Once 

thought to exemplify degeneration, cave animals are now known to represent a constantly 

changing form of life.  Many regressive characteristics exist in cave animals, but there are many 

examples of constructive evolution as well.  The animal model used in this study was the cave-

dwelling, or hypogean, form of the fish  Astyanax  fasciatus which also exists as a river or 

epigean form. 

 

Regressive evolutionary change is the loss of complexity of a body structure.  Constructive or 

progressive evolutionary change is the movement toward increased levels of complexity of a 

body structure.  In addition to body structures, behavioral traits can undergo regressive or 

progressive evolutionary changes.  

 

Examples of regressive evolutionary change in cave dwelling animals in general are a decreased 

number of thoracic vertebrae, loss of skin pigmentation, and reduction or degeneration of eyes 

(Jeffery, 2001).  Some examples of constructive changes in cave-dwelling animals are longer life 

spans, specialized appendages, hypersensitive olfactory, gustatory, and mechanosensory system 

organs (McCormick, 1983; Nieuwenhys, 1983).  In fish, the mechanosensory system refers to the 

lateral line which includes lateral line canals containing neuromasts and free neuromast organs 

scattered over the body surface (McCormick, 1981; Nieuwenhys, 1983).   
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Jeffery (2001) reviewed the literature on A. fasciatus and classified specific traits as examples of 

regressive or progressive change.  The anatomy of the eye has undergone many regressive 

changes including the absence of a cornea, iris, and anterior and posterior chambers.  The lens 

and optic nerve, although present, show considerable degeneration.  The optic tectum, pineal 

gland, vertebrae, scales and pigmentation have all shown regression.  In addition to regressive 

changes in structure, there is notable regression in metabolism, circadian activity, schooling and 

aggressive behavior.   

 

In contrast to regressive changes, constructive specializations have been documented in the 

feeding apparatus; the jaws, taste buds and teeth have all been refined or increased in number. 

The infraorbital bones, egg size, fat content and metabolism have all shown progressive 

evolutionary changes in the cave dwelling form of A. fasciatus.  

 

It should be noted that the auditory (Popper and Fay, 1980) and olfactory systems (Riedel and 

Krug, 1997) in cave A. fasciatus are not enhanced constructively to compensate for lack of sight.  

On the contrary, these fish exhibit hypersensitivity of the mechanosensory system (Jeffery, 2001) 

to compensate for the absence of vision. 

 

Because cave dwelling animals are an evolutionary descendant of their surface ancestors, 

comparisons can be made between them.  However, many of the surface ancestors are now 

extinct making such studies more difficult.  In the case of cave A. fasciatus, that is not so.  

Although there are several different isolated colonies of these fish in Mexico, their common 

ancestor is a sighted river fish or epigean form (river A. fasciatus) that is found in the same area.  
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Further, cave and river A. fasciatus are completely interfertile (Sadoglu, 1956; Wilkens, 1987) 

and can be considered to be divergent forms of the same species that live in very different 

environments. This provides a unique opportunity to make direct comparisons between the 

ancestral and descendant forms of a species, and makes these fish excellent specimens for 

evolutionary study.  Although beyond the scope of this discussion, A. fasciatus has been used as 

an excellent model system for genetic research (see Wilkens, 1971; Wilkens, 1987; Yokoyama et 

al., 1995; Behrens et al., 1998; Jeffery et al., 2001; Yamamoto and Jeffery, 2000 for examples). 

 

 Cave A. fasciatus were readily obtainable from breeding stock, while importation of river A. 

fasciatus was difficult and made their use in this study impossible. In the present study, data 

obtained from the cave form of  A. fasciatus will be compared to those from studies of related 

sighted species. Future research could explore information obtained from the river form and 

compare it to the present information from cave A.  fasciatus. 

 

The focus of this dissertation is a neuroanatomical tract tracing study of the torus semicircularis 

(TS) in the brain of cave A. fasciatus, a region that has not been previously studied. The TS is 

located in the midbrain of fish and is believed to be analogous to the inferior colliculus in 

mammals.  In sighted teleosts this region is thought to be a processing center for auditory, visual, 

and mechanosensory functions, and the neuronal connectivity is relatively constant (Knudsen, 

1977; Northcutt, 1980; Schellart, 1983 ). In A. fasciatus, which has undergone evolutionary 

regression of the visual system and progression of the mechanosensory system, a significant 

change in TS connectivity is predicted. This hypothesis forms the basis for this dissertation.   
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LITERATURE REVIEW 

Introduction 

Many advances in the biological sciences have occurred through the observation of species that 

thrive under unusual circumstances.  One example, cave Astyanax fasciatus, is the focus of this 

dissertation.  Cuvier first conducted observational field studies of the sighted  ancestor of these 

fish in 1819 and coined the scientific name Astyanax fasciatus.  Since the early scientific studies 

of Hubbs and Innes (1936), much has been learned, not only about this particular species, but 

also about the ecology of their habitat. Sighted river A. fasciatus are found in a region extending 

from the northern part of South America to southern Texas. Blind cave A. fasciatus dwells in 

caves only in Mexico, with the largest concentration confined to the Sierra de El Abra region of 

San Luis Potosi and Tamaulipas, Mexico (Mitchell et al., 1977; Miller et al., 1985).  

 

 Astyanax fasciatus was originally thought to consist of five species and subspecies (Wilkens, 

1985, 1988); however, later studies revealed that the Astyanax occurring in Mexico is a variable 

form. Further, genetic analysis of the two does not allow separation into different species (Avise 

and Selander, 1972; Mitchell et al., 1977; Jeffery, 2001). 

  

Many laboratory studies and field observations have shown that river and cave A. fasicatus can 

hybridize (Sadoglu, 1956: Wilkens, 1988; Jeffery, 2001). Therefore, the hypogean fish could be 

characterized as cave dwelling populations of A. fasciatus (Wilkens, 1985, 1988) and could be 

considered to be the descendent of their extant surface ancestors. Although the same species 

(meaning completely interfertile), certain features suggest that these two populations exist as 

different forms.  River A. fasciatus is characterized by an elongated body with silver to black 
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pigmentation and prominent eyes.  Cave A. fasciatus are characterized by a whitish to pink body 

color (due to reduced skin pigmentation) and the reduction or absence of identifiable eyes.     

 

Twenty-nine Mexican caves are known to be inhabited by cave-adapted Astyanax.  The caves are 

grouped by location: the southern El Abra caves, Los Sabinos caves, Yerbaniz caves, northern El 

Abra caves, Micos caves, Nicholas Perez caves, Chamal caves and Gomez Faria caves (Mitchell 

et al, 1977). These fish are plentiful in the Sierra del Abra region, a ridge of highly cavernous 

limestone 125 km long (Mitchell et al., 1977). 

 
 
Cave Fish (A. fasciatus) Habitat 
 
Formation of Mexican limestone caves inhabited by cave A. fasciatus has been reviewed by 

several investigators (Breder, 1942; Barr, 1968; Poulson and White, 1969; Mitchell et al., 1977; 

Howarth, 1980; Wilkens, 1988). Limestone accumulated in warm shallow seas and was later 

elevated due to continental uplift. Cracks and crevices gradually developed in the limestone 

allowing water to seep through.  Limestone was solublized by organic acids from the soil 

including nitric, sulfurous, sulfuric, and carbonic acid to enlarge the cracks.  Enlargement of 

these solutional channels by abrasion took place when cobbles, pebbles, and sand derived from 

overlying strata were swept through the caves by flood waters.  

 

Surface water drainage is an important factor for cave A. fasciatus inhabitation of limestone 

caves.  Water from overflow of small streams in the surrounding region further erode the 

limestone and allow small pools to form (Mitchell et al., 1977).  Fish may be washed into these 

pools with the floodwater.  Over time, populations of fish trapped in the pools from flooding 
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form isolated colonies.  During the rainy season, flooded streams also supply a source of food to 

these fish that normally survive in an energy poor environment (Mitchell et al., 1977). 

 

 The cave environment is separated into a twilight zone near the entrance, a middle zone of 

complete darkness and variable temperature, and a deep zone where the temperature remains 

constant and it is completely dark (Poulson and White, 1969; Howarth, 1980).  The unique deep 

zone of the cave environment is where its obligate (troglobitic) fauna appear (Poulson and 

White, 1969). 

 

The climate of the cave interior is much less variable than surface environments.  The 

temperature is approximately the same as the mean annual temperature of the region.  The cave 

atmosphere is humid, commonly between 95 and 100 percent (Poulson and White, 1969).  

Evaporation rates are usually low, but cave air is not necessarily still.  Air currents and even 

strong winds activated by chimney effects and by changes in barometric pressure occur at great 

distances from entrances.  A phenomenon known as “cave breathing” occurs in which air 

currents flow back and forth through constricted passages; these can resonate for periods of a 

few seconds to a few minutes (Poulson and White, 1969). 

 

Colonization of caves by different species is influenced by several factors.  Important factors are 

energy sources and the physical constraints of the caves.  The low food input into a cave system 

makes colonization difficult, however the constant temperature and relative humidity is 

conducive to survival.  Over time, the arrangement of passageways in cave systems changes due 

to erosion and substrate deposition via floodwaters, and interior collapse. This may contribute to 
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the isolation of animals within deep sections of a cave system.  All isolated animals that have 

colonized the deep interior of caves exhibit a common set of physical characteristics over time, 

including reduced skin pigmentation and metabolism, reduced eyes, longer limbs and sensory 

alterations. 

 

Breder’s (1942) observational study of La Cueva Chica cave in Mexico noted few food sources 

for cave A. fasciatus.  Bats and insects were the predominant terrestrial inhabitants.  When 

specimens of cave A. fasciatus were dissected their stomach contents consisted of bat guano 

droppings, smaller fish and their eggs.  Breder suggested that the only regular input of energy 

was from the bats.  Barr (1968) suggested that flooding streams bring in an annual supply of 

leaves, twigs and other organic debris that would help support the insect population such as 

spiders, beetles, flies.  These insects, along with fleas, mites and streblid flies, all parasites of 

bats, also contribute to the overall food chain of cave A. fasciatus. 

 

In summary, the cave environment is relatively constant.  In A. fasciatus caves, the influx of 

energy sources is limited throughout most of the year and all inhabitants ultimately depend on 

bats for food.  Infrequent seasonal flooding contributes to the energy source.  

 

Astyanax fasciatus Cave Populations 

Four major populations of cave fish have been described. The first population of cave A. 

fasciatus was described by Hubbs and Innes (1936) as “Anoptichthys jordani” or “fish without 

eyes”.  These fish were named for Mr. C. B. Jordan who supplied them to Hubbs and Innes 

(Breder, 1942).  These fish were discovered in the southern El Abra cave, La Cueva Chica.  
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Histological and genetic studies by Avise and Selander (1972) and Wilkens (1985, 1987) showed 

that the Chica fish is a hybrid of the surface form (Wilkens, 1988).  Chica fish are raised 

commercially and are commonly found in pet stores.  

 

Other populations of cave A. fasciatus have been discovered including the Sabinos fish from La 

Cueva de los Sabinos. These fish were originally described as “Anoptichthys hubbsi” by Alvarez 

(1947). In addition to Sabinos, other populations have also been located in the Yerbaniz caves, 

and most recently in the La Cueva del Rio Subterraneo (Micos fish) (Wilkens, 1988). Alvarez 

(1946) described the population from La Cueva de El Pachon, found in the northern El Abra 

region, as “Anoptichthys antrobius”.  Morphological studies showed that the Pachon population 

is the most distinct population in the Sierra de El Abra.  This is probably due to the cave’s 

considerable vertical isolation from the base level waters (Avise and Selander, 1972).  Cave A. 

fasciatus from the Pachon caves were used in this research because they are least likely to be 

hybridized with the surface form (Wilkens, 1988). 

 

Despite variations in the nomenclature, the different cave populations and the river form are 

genetically similar and are classed together as one interfertile species: Astyanax fasciatus 

(Sadoglu, 1956; Avise and Selander, 1972; Wilkens, 1988).   
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Special Traits of River and Cave A. fasciatus 

Comparative studies of the river and cave forms of A. fasciatus have been conducted.  These 

studies have examined both behavior and sensory characteristics (Breder, 1943; John, 1957; 

Fricke, 1988; Romero, 1984; Schemmel, 1980; Parzefall, 1986; Wilkens, 1988; Teyke, 1990; 

Langecker et al., 1995).  Comparisons with other sighted species will help to define the 

specialized adaptation of  A. fasciatus to cave life.  

 

General Behavior 

Schooling 

In a surface habitat, river A. fasciatus normally schools (Parzefall, 1986).  However, in darkness 

or when blinded, river A. fasciatus do not school and swim in a random spatial distribution 

(Wilkens, 1988).  Unlike river A. fasciatus, cave A. fasciatus do not school either in light or 

darkness (Wilkens, 1988), but do have a tendency to congregate based on olfactory cues  

(Parzefall, 1986). 

 

Aggression 

Breder (1943) described the aggressive behavior characteristics of river A. fasciatus as “erratic 

viciousness”.  Several factors influence the aggressiveness of these fish.  When left in their 

natural habitat, these fish tend to school and are aggressive only during feeding.  However, under 

laboratory conditions when these fish are maintained in smaller aquariums, their aggressive 

tendencies increase dramatically.  River A. fasciatus will attack their mirror image as well as 

specimens separated by a plane of glass.  Aggressive behavior also is directed against the 

phenotypically different cave A. fasciatus.  This aggressive behavior is released visually 
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(Wilkens, 1988).  In darkness or in enucleated river A. fasciatus, aggressive behavior is 

practically nonexistent.  Cave A. fasicatus exemplify a reduced aggressive behavior and 

diminished territoriality. 

 

Fright Reaction  

In river A. fasciatus the fright reaction response was documented (Pfeiffer, 1963 as translated 

and reviewed by Wilkens, 1988; Fricke, 1988).  Experiments by Fricke (1988) concluded that an 

alarm substance, secreted into the surrounding water when damage occurs to the body of another 

fish, causes river A. fasciatus to react violently with characteristic zig zag movements and erratic 

behavior. This fright reaction can last for several hours. Cave A. fasciatus do not react in this 

manner.  Fricke (1988) demonstrated that only during feeding do the cave populations avoid an 

area where the alarm substances have been released.  He believes this avoidance reaction is the 

only part of the alarm behavior still present in cave A. fasciatus (Fricke, 1988; Parzefall, 1986). 

 

Special Senses 

Olfactory 

There are minor differences between the olfactory systems of cave and river A. fasciatus. While 

their noses are similar, cave A. fasciatus have shallower olfactory pits with a larger naris thus 

exposing their olfactory epithelial folds to a greater extent (Wilkens, 1988). These findings might 

suggest differences in this system may impact the olfactory neural connections of the brain, 

however more research would have to be done to make these determinations.  
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Gustatory Behaviors 

River A. fasciatus school in rivers and clear fresh water ponds.  They catch living and dead prey 

by active visually guided movement.  When river A. fasciatus feed on the bottom they do so at a 

steep angle of 80° (Parzefall, 1986; Wilkens, 1987).  In contrast cave A. fasciatus search the floor 

of their environment at a 55° angle. At this angle they expose their taste buds that can be found 

on the ventral side of their head (Schemmel, 1967 [German language] reviewed in Wilkens, 

1988).  The average angle maintained between the body and ground does not differ between 

most cave populations (Schemmel, 1980).  The Micos fish, which have a functional but reduced 

eye, show significant variability (Wilkens, 1988).  Schemmel (1980) bred the cave and river 

forms and found the offspring showed a variable expression of the feeding trait.  This suggests 

the angle at which these fish feed on the bottom has a genetic component. 

 

Auditory Ability 

Fish detect sounds similarly to other vertebrates (Popper and Fay, 1980, 1993) using an inner ear 

and peripheral structures that carry sound to the inner ear (Popper and Fay, 1980).  The inner ear 

in most fish, including teleosts, has three semicircular canals and three otolith organs, the 

saccule, utricle, and lagena (Popper and Fay, 1993).  In teleosts, these otolith organs are separate 

structures rather than a gelatinous mass as in primitive bony and cartilaginous fishes.  The 

sensory epithelium or macula associated with each of these otoliths contains sensory hair and 

supporting cells (Popper and Fay, 1980).  The sensory hair cells have an apical ciliary bundle 

consisiting of a kinocilium and a large number of stereocilia.  The kinocilium is always 

positioned to one side of the bundle and the lengths of the stereocilia decrease further away from 
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the kinocilium.  The sensory hair cells are physiologically polarized when the otolith organs 

respond to motion.  Afferents from these otoliths target several medullary areas such as the 

anterior, tangential, magnocellular, medial, and descending octaval nuclei via the eighth cranial 

nerve (CN VIII). Information is then relayed to the auditory midbrain regions including the torus 

semicircularis from the auditory medulla (Popper and Fay, 1980).  

  

Breder’s (1943) observational studies concluded no significant difference in auditory ability for 

the different populations of cave A. fasciatus. Popper and Fay (1980) studied the hearing ability 

in eight species of fish including cave A. fasciatus using behavior sound pressure audiograms 

and concluded both river and cave A. fasicatus had comparable hearing capacities over a wide 

range of sounds.   

 

Lateral Line 

Many aquatic and marine vertebrates possess a lateral line, a sensory system composed of lateral 

line canal organs and free neuromasts that detect low frequency vibrations and water movements 

around the animal (Webb, 1989; Northcutt et al., 2000).   A neuromast is the sensory organ of the 

lateral line system.  Each neuromast consists of hair cells and supporting cells covered by a 

gelatinous cupulae similar to those in the semicircular canals of all vertebrates (Popper and Fay, 

1980; Katsuki and Yanagisawa, 1982) and are arranged in a canal alongside of the animal just 

caudal to the operculum to the caudal peduncle, or just prior to the tail.  The head portion of the 

lateral line canal system divides into the supra and infraorbital region (Wilkens, 1988).   
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The lack of eyes in cave A. fasciatus leads to considerable variability and fragmentation in the 

lateral line around the orbit. However, there are no other differences between the head portion of 

the lateral canal system of river or cave A. fasciatus (Wilkens, 1988).  

 

In river A. fasciatus, free neuromasts (found outside the lateral line canal) are distributed over the 

head, body, and caudal fin, as is typical among other teleosteans  (Schemmel, 1967 [German 

language] reviewed in Wilkens, 1988). With respect to total number and distribution, no 

significant differences in free neuromasts are found between river or cave A. fasciatus (Wilkens, 

1988). 

 

Teyke (1990) found micro-anatomical differences in neuromasts of river and cave A. fasciatus.  

In cave A. fasciatus the cupulae of the neuromasts are larger than those of river A. fasciatus (300 

vs. 50 µm).  The length of the cupulae is an important determinant of the sensitivity of the 

neuromasts, as longer cupulae protrude further out of the boundary layer that surrounds the fish 

during swimming and, are therefore exposed to faster water currents (i.e., they receive a stronger 

hydrodynamic stimulus).  Teyke suggested that the longer cupulae of neuromasts are a functional 

improvement of the lateral line system that would compensate for the loss of vision.  He reported 

a further difference from the river form, with the cave A. fasciatus having holes at the distal ends 

of the two lateral flanges of the neuromast cupulae.  No hypothesis for the functional 

significance of this modification was given. 

 

John (1957) conducted a behavioral study of the lateral line ability of cave and river A. fasciatus.  

He put the fish in a tank with a variety of solid objects they had to learn to swim around without 
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colliding with them.  John concluded that both naturally blind cave fish and river fish blinded by 

the investigator depended upon their mechanosensory (lateral line) system instead of spatial 

learning ability when detecting solid objects in their environment.    

 

Abdel-Latif et al. (1990) disrupted both cave and river A. fasciatus lateral line organs by placing 

hairs directly in the canals.  Care was taken not to damage the free neuromasts.  They recorded 

spontaneous swimming behavior.  All fish with disrupted lateral line systems swam at slower 

velocities than those in the control group with normal lateral line canals.   These results 

suggested that normal swimming requires a functioning lateral line system.   

 

Problems with Fish Brain Nomenclature 

Multiple naming schemes exist for different nuclei and regions of fish brains. This has created 

confusion in the nomenclature (see Braford and Northcutt, 1983; McCormick, 1983; 

Nieuwenhuys and Pouwels, 1983; Northcutt, 1983; Northcutt and Davis; 1983 chapters for 

comparisons). While the diencephalon is one of the most well documented regions of the brain, it 

is also a good example of confused nomenclature. Nonhomologous cell groups were given the 

same name by different investigators, and homolgous structures were given different names 

(Striedter, 1990a, 1990b). 

  

To alleviate confusion, Northcutt and Braford (1984) compared the diencephalon of the teleost 

species Carassius auratus, the common goldfish, to non-teleost bony fishes, including the 

longnose gar, Lerisosteus osseus and bichir, Polypterus.  Northcutt and Braford established that 

some cell groups could be recognized in all three taxa, while others differed from species to 
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species.  With nearly 30,000 living species of teleosts, and additional variations among them, 

Northcutt and Braford proposed that the description of the goldfish brain be used as a standard 

for comparison with other teleosts in the future.  While many investigators have followed 

Northcutt and Braford nomenclature, others have not and confusion still exists.  A recent trend in 

the literature has been to apply Northcutt and Braford’s terminology to the brain of other teleosts, 

even when it is not clear that the cell groups being named are indeed homologous to those of the 

same name in goldfish (Striedter, 1990).  To eliminate as much confusion as possible, the 

nomenclature of Northcutt and Braford will be used in this dissertation.  
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Brain of the Cave Astyanax fasciatus 

There have been few investigations involving the brain of river or cave A. fasciatus. Voneida’s 

(1973) comparative study of retinotectal projections in cave and river forms of A. fasciatus 

revealed fibers terminating in the most rostral portion of the tectum. Sligar and Voneida (1976a, 

1976b) investigated tectal efferents in cave A. fasciatus. They examined ascending, descending, 

and intertectal projections of the tectum using lesions and stains for degenerating fibers. The 

primary fiber bundle that exits the tectum is a major pathway that bifurcates into two fascicles. 

The large fascicle becomes a contralateral projection as part of the tectobulbar tract that descends 

along the lateral edge of the TS.  Some fibers leave this bundle to synapse in the torus.  A 

comparative study of retinal projections of cave and river A. fasciatus was also published the 

same year by these authors.   

 

Reidel (1997a, 1997b) published a study mapping the forebrain of cave A. fasciatus. He used 

degeneration, DiI, and HRP axonal tracing techniques with similar results. The first portion 

(1997a) covered general anatomy of the telencephalon including gross morphology and a 

histological description of the olfactory bulbs and telencephalon proper.   He plotted the 

connections of the forebrain with other brain areas by the medial and lateral forebrain bundles. 

Riedel examined the projections of the olfactory bulb in the forebrain of cave A. fasciatus and 

traced the connections of olfactory tracts to a variety of telencephalic areas.   

 
Fish and Ghosh (1992) did a comparative study of the six occulomotor muscles in cave and river 

A. fasciatus. While the extraocular muscles contained a slightly reduced number of fibers, 

extraocular motor nuclei located in the brainstem were comparable in number and overall 

morphology.  Further, studies have been made on cave A. fasciatus involving changes in the 
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central nervous system and the reduction of visual input  (Voneida and Fish, 1984). In addition, 

retinotectal and tectal synaptic organization has been studied.  These studies showed the optic 

tectum responded to mechanosensory information.  In addition, central projections of the 

trigeminal and lateral line nerves in cave A. fasciatus were examined by Voneida et al. (1983). 

Further, Fish and Voneida (1979) studied the neurons in the optic tectum of both cave and river 

A. fasciatus. 

 

Torus Semicircularis  

Little is known about the torus semicircularis (TS) in cave A. fasciatus, however by comparing 

them with closely related fish, inferences may be drawn about the connectivity of the TS in the 

cave fish.  The TS is found in the brain of most fish and other aquatic vertebrates such as frogs 

and crocodiles and is thought to be a multimodal-sensory processing center (Pritz and Stritzel, 

1990; Feng and Lin, 1991).  In teleost fish, the TS is situated dorsolaterally in the mesencephalic 

tegmentum and is thought to integrate information coming from the auditory and lateral line 

systems in fish (Cuadrado, 1989). Acoustic information and lateral line information are 

processed separately in two nuclei of the torus. Nucleus centralis (NC) receives auditory input 

and lies medial, while nucleus lateralis (NL) lies lateral and processes lateral line input (for 

examples see Page and Sutterlin, 1970; Echteler, 1984; Cuadrado, 1989 and see review by 

Braford and Northcutt, 1983). 

 

 While cytoarchitectural studies of the TS reveal many details of the cellular arrangement of the 

TS, they contribute limited information to the understanding of its connectivity. There have been 

several indirect studies of the connections of the TS while examining other brain areas such as 
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the tectum in sighted teleosts.  Information obtained from these studies was used when 

identifying like brain areas connected to the TS in the brain of cave A. fasciatus.  These studies 

will be discussed in detail. 

 

Cytoarchitecture of the Torus 

Knudsen (1977) conducted an extensive study of the nuclear subdivisions of the TS using two 

species of catfish, Ictalurus nebulosus and Ictalurus punctatius.  He used both degeneration 

experiments and Golgi-Cox staining techniques to identify the TS.  The TS is bounded by the 

nucleus isthmi ventrally and laterally by the lateral lemniscus and NL while the mesencephalic 

ventricle forms the dorsal and medial boundaries.  

 

Both the the NC and NL are found at caudal levels, but only NL is found at the rostral pole of the 

TS. NC is described as a cylindrical group of cells with an overlying covering or rind of fibers 

beginning at the caudal pole of the TS and stopping prior to the posterior commissure.  The NC 

begins from its caudal perspective as an enlarged circular cell group that flattens against the 

ventricular surface and decreases in size as it projects rostrally.   

 

NL is shaped like an “L” with its base at the rostral end of the TS.  This portion of the cell group 

is tipped in a medioventral orientation and is bounded by the mesencephalic ventricle dorsally 

and NC medially.  The tectobulbar tract (TBT) contacts the NL ventrally.   At rostral regions of 

the TS, the tectobulbar tract transects the NL (Knudsen, 1977). 
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Knudsen’s axonal degeneration tract tracing experiments demonstrated that fibers projecting to 

the NC travel in the medial half of the lateral lemniscus.  He saw a major ascending output 

exiting the rostral end of NC and projecting to the ventromedial thalamus.  The NL receives 

bilateral input from the lateral line lobes traveling in the lateral bundle of the lateral lemniscus.  

Incoming lemniscal fibers enter the nucleus lateralis ventrally and terminate throughout most of 

its dorsoventral extent.   

 

Two regions have been identified within the NL, one medial (pars medialis) and the other lateral 

(pars lateralis).  They are separated by a fibrillar sulcus and both nuclei have similar if not the 

same structure (Knudsen, 1977; Cuadrado, 1989).  In addition to the acoustic and lateral line 

inputs to the TS, some teleosts receive electroreceptive impulses, for example, catfish (Knudsen, 

1977). In electroreceptive fish, a region of the nucleus lateralis receives electrical impulses. In 

addition to medial-lateral segregation of sensory inputs, the TS is somatotopically organized. 

Lateral line inputs from the head project to rostral areas and inputs from the tail to caudal areas 

(Knudsen, 1977). Knudsen examined, in the same study, the TS from three other families of 

catfish including a South American catfish, Pimelodus clarias, and two East Asian species, 

Plotosus anguillaris (marine) and Parasilurus asotus (fresh water).  He concluded that the 

structural and functional subdivision of the TS into an auditory NC and a lateral line NL is likely 

to apply to teleost fish in general.   

 

Cuadrado (1989) found four cell layers in the NL of the Barbus meridionalis,  alternating 

between cell-poor and cell-rich layers:  (1) subependymal, (2) small cell, (3) fibrillar and (4) 

disperse layers. Cuadrado compared his data to other teleosts including carp and found the 
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lamina are basically the same. TS neurons of B. meridionalis are classified in three categories, 

small (7-12µm), medium (12-17µm), and large (17-25µm).  Cuadrado et al., (1992) found the 

layers of the TS to be consistent among the species studied.  Ito (1974) published photographs of 

the torus semicircularis in non-electroreceptive teleosts including trout, carp, loach, and eel.  Tori 

of these fish showed a clearly laminated NL and a poorly differentiated NC. 

 

In the next three sections, the regions of the brain that support the multimodal sensory input of 

the torus are reviewed.  Other known connections are also discussed. 

 

Auditory Connections to the Torus  

Echteler (1984) studied the connectivity of the TS to the medulla in carp by injecting HRP into 

the NC.  Retrograde labeling was observed in six nuclei of the medulla.  Cells in the octavus 

nucleus and descending octavus nucleus were labeled along with the ipsilateral superior olive, 

fibers of the lateral lemnisci and the medullary reticular formation (MRF) bilaterally.  Cells near 

the IVth ventricle and cells in medial octavolateralis nucleus (MON) were also found.  

Retrograde labeling of the contralateral TS and ipsilateral optic tectum was also seen.  Efferent 

projections were found in the ipsilateral superior olive, ipsilateral medullary reticular formation, 

the deep layers of the optic tectum and contralateral TS.  Fibers and terminals were observed in 

the anterior tuberal nucleus of the hypothalamus and central posterior thalamic nucleus.  Echteler 

separated auditory and lateral line regions of the TS using electrophysiological recordings and 

focused his anatomical study primarily on auditory connections.  
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Lateral Line Connections to the Torus 

Nieuwenhuys and Pouwels (1983) studied the octavolateralis system in fish. This system consists 

of auditory, vestibular and lateral line input.  In teleosts, they divided the octavolateral area into a 

dorsal lateral line zone and a ventral auditory-vestibular zone. The dorsal zone contains the 

MON that is the primary target for the anterior and posterior lateral line nerves. These nerves 

carry input from neuromasts of the lateral line canal and free neuromasts (Northcutt, 1983). The 

ventral auditory-vestibular zone contains several cell masses.  Different names have been used 

throughout the literature when describing these nuclei (McCormick, 1983).  

 

Nieuwenhuys and Pouwels (1983) demonstrated a large number of efferents leaving the 

octavolateral area as decussating fibers and running rostral toward the tegmentum of the 

midbrain in the lateral lemniscus where most terminate in the TS.  Efferents of the MON 

decussate in the medial medulla and pass rostrally in the lateral portion of the lateral lemniscus to 

terminate in the NL (Northcutt, 1983).  Nieuwenhuys and Pouwels (1983) also described a cell 

mass associated with the lateral lemniscus as analogous to the superior olivary nucleus of 

McCormick and Braford (1993). 

 

Tectal Connections to the Torus 

Luiten (1981) studied afferent and efferent connections of the optic tectum in carp. Injection of 

several regions of the tectum with HRP revealed afferent projections from the TS. A large 

number of fibers entered the TS after leaving the tectum.  The cell bodies of these afferents were 

found in the NL. Reciprocal connections were also noted from the tectum to the TS. Tectal 

efferents ran medially and projected to the central core of the TS.   A contralateral projection to 
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the TS consisted of many fine efferent fibers that decussated in the tectal commissure. Luiten 

concluded the tectum provides visual input to the TS.  Fiebig et al. (1983) studied the afferent 

connections of the optic tectum in piranha and noted afferents from the NC of the TS on the 

ipsilateral side and the NL bilaterally. 

 

While the fish used in the next two studies reviewed are not teleost, it is interesting to note the 

similarities between their brains and those of teleosts. Ariens Kappers et al. (1960) studied the 

TS of plagiostomes (sharks) and compared them to bony fishes.  The plagiostome TS sends 

efferent fibers to the nucleus isthmi and to the tectum. However, differences exist in the 

termination of the lateral lemniscus between sharks and bony fishes.  In teleosts, the lateral 

lemniscus terminates in the TS and the nucleus isthmi but not in the tectum.  

 

Reciprocal connections between the torus and the optic tectum were demonstrated in the 

longnose gar (Lerisosteus osseus) by Northcutt and Butler (1980) and Northcutt (1982). The long 

nose gar (L. osseus) is a bony fish, however it is not a teleost.  Anterograde transport of HRP 

from tectal injections demonstrated tectal efferents to the contralateral TS with commissural 

fibers and ipsilateral projections specifically to the NC of the TS.  

 

Other Neuronal Connections with the Torus Semcircularis 

 Striedter (1992) studied the connections of the lateral preglomerular nucleus (PG) in several 

teleosts including the common goldfish, Carassius auratus, red-belly pacu, Colossoma bidens, 

chocolate ghost knife fish, Apteronotus leptorhynchus, and channel catfish, Ictalurus punctatus. 

The PG receives primary input from the NC with minor input from the NL. It functions as a relay 
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nucleus to the thalamus. He applied DiI to the lateral preglomerular nucleus and to the TS.  

Labeled cells were found in NC and in a restricted portion of NL.  The TS of the pacu can be 

divided into the same general regions as in the goldfish.  After DiI application to the lateral 

preglomerular nucleus, which is larger in the pacu than in the goldfish, labeled cells were found 

in the NC and in the rostral portion of the NL.  In catfish labeled cells were seen in both the NC 

and NL.  In the chocolate ghost, the NL is larger, highly laminated and receives electrosensory 

input in addition to lateral line information.  DiI labeled cells were found in both the NC and NL. 

 

Wullimann and Northcutt (1988) traced the connections between the TS and the cerebellum (CB) 

in the green sunfish and the common goldfish.  They found ascending efferent fibers running 

dorsorostrally from the cerebellum and terminating in the NC of the TS.  This was consistent in 

both species examined. 

 

Electrophysiological Studies 

Page and Sutterlin (1970) used electophysiological recordings to study the visual and auditory 

unit responses in the goldfish tegmentum.  Recordings were made in several areas of the brain 

including the TS and optic tectum.  Most mesencephalic units that responded to sound were 

located in the dorsal region of NC.  No auditory units were found in the tectum or valvula 

cerebelli although numerous penetrations were made through these areas in order to reach the 

TS.  The TS was found to respond only to sound and no response was elicited to visual 

stimulation. Lu and Fay (1993) made single unit recordings of cells in the NC of goldfish using 

auditory tuning curves.  Schellart (1983) studied both acousticolateral and visual processing in 

the TS of trout. The recordings from the cells in the NC demonstrated a strong response to 



 24 

auditory stimuli.  Two cells (Schellart, 1983) showed a response that could be classified in the 

range of the lateral line frequencies. He suggested that some cells have bimodal characteristics. 

Schellart found that only sudden changes in the visual field seemed to be of importance. 

 

Functional regions of the catfish TS were demonstrated in the electrophysiological studies of 

Knudsen (1977).  Recordings showed a distinct separation of stimulus processing in the TS. 

Auditory responses were found in NC while cells responding to lateral line stimuli were always 

located in NL. Knudsen noted that while it appeared that a response could be elicited by multiple 

stimuli in the same area, there was always a clear domination of the functional region by a single 

modality. 

 

In addition to HRP-tract-tracing, Echteler (1984) used electrophysiological recordings to study 

the connections to the TS. He found a distinct segregation of auditory responsive cells in the TS 

confined to the medial portion of the nucleus. A larger concentration of cells responding to 

auditory stimulation was located at more caudal levels of the TS with a decreasing number found 

at more rostral regions. Cells responding to lateral line stimuli were always located lateral to the 

auditory cells at all rostrocaudal levels. Echteler’s study seemed to support Knudsen’s earlier 

findings of distinct functional regions of the TS. 

 

In summary, the TS is the known processing center for mechanosensory processing of lateral line 

system information and therefore could possibly show progressive evolution in its gross 

connectivity of associated brain areas in cave A. fasciatus.  This fish is already known to have 

demonstrated minor progressive modifications in its lateral line sensory organs or neuromasts. In 
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addition, the literature reviewed of the torus semicircularis and related brain regions provided 

valuable information when identifying similar regions in the brains of cave A. fasciatus. These 

studies gave a solid background of information about the anatomical brain structures and 

connections associated with them and therefore a basis to compare the brains of cave A. 

fasciatus.    
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MATERIALS AND METHODS 

Subjects 

Experiments were performed on 62 Pachon cave A. fasciatus. Subjects ranged between 5.5 to 9.6 

centimeters long and 1.8 to 13.6 grams in weight.  

 

Preparation for Surgery 

Each animal was prepared for surgery by immersion in an anesthetic solution of 0.1% tricane 

methanesulfonate (MS-222, Finquel, Ayerst).  An appropriate level of anesthesia was obtained 

by observing respiratory gill movement.  Once gill motion ceased, the animals were immediately 

placed in a special head holder that clamps to the top of the head with a tube placed in the mouth 

through which a solution of 0.05% MS-222 was passed to perfuse the gills. This special head 

holder was mounted in a Kopf stereotaxic frame. The body of the fish was kept moist by 

covering it with absorbent tissue (Kimwipes) saturated with fish Ringer’s solution.  An animal 

could be successfully maintained in this state for procedures lasting in excess of four hours. 

 

Surgical Procedures 

The skin covering the cranium was incised at the midline with a scalpel and a flap was carefully 

laid back.  A small section of the skull plate covering the right half of the optic tectum was 

removed using a dental drill and forceps. The piece of bone was stored in sterile fish Ringer’s 

and used to close the opening after the injection. Fatty deposits were gently removed by flushing 

the cranial cavity with a stream of fish Ringers solution delivered by a pipet tipped Nalgene 

squeeze bottle. 
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Stereotaxic procedures 

A stereotaxic atlas was prepared from microscope slides of cave A. fasciatus brains on sections 

that contained the TS. In a surgically exposed brain the visible region overlying the TS is the 

optic tectum. Therefore, landmarks used for measurement on the atlas sections were anterior and 

posterior poles of the tectum for anterior-posterior position, and midline and lateral tectum for 

medial-lateral measurements. Dorsal-ventral measurements were from the tectal surface at a 

specific anterior-posterior/medial-lateral position. During an experiment, the visible landmarks 

and measurement from the atlas slides, applied to the three dimensional coordinate system of the 

stereotaxic apparatus, were used to position an HRP injection pipette tip in the TS. Care was 

taken to try to keep the body length and weight of fish reasonably similar in order to minimize 

the differences in brain size, but the unavoidable variability, and the small size of the brain, 

resulted in a large amount of inaccuracy of injections sites. Measurements were modified with 

each subsequent experiment to improve accuracy and insure that all regions of the TS and 

adjacent brain areas were injected with tracer. 

 

Pressure Injections of HRP 

The injection technique for placing nl range HRP pressure injections in the brain is described in 

detail in Fish and Rhoades (1981). Briefly, 20 µl Drummond Microtrol Glass micropipettes, 

which come with a fitted plunger, were converted into micro syringes. The pipettes were heated 

and pulled to a closed point with a Kopf vertical pipette puller, and then the tips were broken 

back to a tip diameter of 10-25 microns.  The micropipette was clamped in a modified carrier on 

a Kopf stereotaxic apparatus and the plunger was attached to the slave cylinder of a hydraulic 

microdrive. Retracting the microdrive with the tip in a 10% solution of HRP (Sigma) in 0.1 M 
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Tris buffer (pH 7.4) filled the pipette. Advancing the microdrive by 5 µm steps ejected 1 µl of 

the HRP solution. 

 

Iontophoretic Injections of HRP 

Radnoti Starbore glass capillary tubing (1.2mm) were prepared, as above for the micropipette 

glass, and filled with the HRP solution by capillary action. A tungsten wire inserted in the HRP 

solution and connected to a Midgard Constant Current Source was placed in the pipettes.  

Pipettes were mounted in a Kopf microelectrode carrier and tracer was delivered by passing a 

+2µA current (1 to 3 minutes, 2 seconds on 2 seconds off, 50% duty cycle). During insertion and 

removal from the brain, a negative backing current was applied to the electrode to minimize 

leakage of HRP in the electrode track. 

 

Animal Recovery 

When the deposition of HRP was complete, the pipette was withdrawn and the surface of the 

brain was rinsed with fish Ringer’s solution and a small pledget of Gelfoam, soaked in fish 

Ringer’s, was inserted into the cranial cavity.  The piece of skull that was removed was then 

repositioned and the skin was laid back into place. The surgical site was sealed with Vetbond 

Tissue Adhesive.  The gill perfusion anesthetic solution was then replaced with fresh water and 

the gills were perfused until evidence of respiration (gill and muscle movement) was observed, 

typically within 5 to 15 minutes.  The animal was then moved to a recovery tank and allowed to 

survive for 6 to 8 days in order for axonal transport of HRP to occur. 

 

 



 29 

Fixation Perfusion Technique 

After the survival period, the fish were reanesthetized using the previous method.  They were 

placed in the surgical apparatus with the ventral side of the animal exposed.  The cardiac cavity 

was surgically exposed by gentle dissection and the fish were transcardially perfused through the 

conus arteriosus with cold 0.1 M phosphate buffer (pH 7.4).  In order to flush the circulatory 

system, the atrium was incised and the gills were observed until a change in color was detected.  

Once the gills were pale pink and no blood was observed exiting the atrial incision, indicating a 

flushed vascular system, the phosphate buffer was replaced with a solution of 1% 

paraformaldehyde and 2% gluteraldehyde.  Fixation was allowed to continue for 45 minutes after 

which the brain was carefully dissected from the animal’s cranium and placed in a rinse of fish 

Ringer’s for 20 minutes.  The brain was rinsed in distilled water and blocked from the caudal 

telencephalon to the caudal brainstem.  The brain was then positioned for sectioning in the 

coronal plane before being embedded in an agar block. 

 

Tissue Processing 

The brain was sectioned on an Electron Microscopy Sciences vibratome in 100 micron sections.  

The sections were processed using diaminobenzidine (DAB, Sigma) (technique of Adams, 1977; 

refer to Mesulam, 1982) as a substrate for the identification of the HRP enzyme, and sections 

were serially mounted on gelatin-coated slides and allowed to air-dry overnight.  Sections were 

counterstained with thionin and cover slipped.  The tissue was analyzed using light microscopy 

to determine the location of the reaction product in nerve fibers, cells, and terminals. 
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Identification of Brain Anatomy in Cave A. fasciatus 

The findings of previous researchers were critical when identifying pertinent brain nuclei and 

regions in the brain of cave A. fasciatus. Several regions were analyzed including brain areas 

associated with auditory input (Knudsen, 1977; Popper and Fay, 1980; McCormick, 1983; 

Nieuwenhuys and Pouwels, 1983; Meredith et. al, 1983; Schellart, 1983; Murakami et al., 1986; 

Striedter and Northcutt, 1989; Striedter, 1990a, 1990b; Bleckmann et al., 1991; Striedter, 1991; 

McCormick and Braford, 1993; Northcutt and Butler, 1993a, 1993b; Bass et al., 2001), lateral 

line and general sensory inputs (Luiten, 1975; Luiten and Van der Pers, 1977; Northcutt and 

Braford, 1984; Fernald and Shelton, 1985; Gomez-Segade and Anadon, 1988; Wullimann and 

Northcutt, 1988; Diaz and Anadon, 1989; Webb, 1989; Diaz-Regueira and Anadon, 1990; 

Schlussman et al., 1990; Teyke, 1990; Bensouilah et al., 1991; Bleckmann et al., 1991; Butler et 

al., 1991; Cuadrado et al., 1992; Pinuela et al., 1992; Northcutt and Butler, 1993a, 1993b; New et 

al., 1996; Pombal et al., 1997; Saidel and Butler, 1997a, 1997b; New et al., 1998; Rupp and 

Northcutt, 1998; Kiyohara et al., 1999; Northcutt et al., 2000; Boudriot and Reutter, 2001) 

 

Maintenance of the Breeding Colony 

The establishment and maintenance of a breeding colony of cave A. fasciatus has been an 

important component of this research.  Two colonies of cave A. fasciatus are maintained in our 

laboratory, one originating from the Pachon cave stock and another of Chica cave origin. The 

original colony of 9 (Pachon) cave A. fasciatus was obtained through the courtesy of Dr. Horst 

Wilkens while the Chica stock was acquired commercially. In order to have sufficient numbers 

of fish to conduct this research, it was necessary to breed the original colony. Many techniques 

were attempted to increase their spawning activity.  These included increasing the food supply, 
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altering the water temperature, changing the ambient lighting, and use of human gonadotropin 

hormone (Zeitlin, 1973).   Best results were obtained by dropping the water temperature by 7º to 

10º F by adjusting the aquarium heater and decreasing the food supply for approximately two 

weeks, replicating the conditions these fish might experience during the winter season (Sadoglu, 

1979).  After this period, the fish were provided a variety of foods including frozen brine shrimp 

and krill until the females were heavy with eggs. Frequent water changes of approximately 20% 

3x per week were required to maintain the appropriate water chemistry (6.0-7.0 pH with low 

ammonium and nitrate levels) (Andrews, 1986).  This was necessary due to the increased food 

supply and resulting waste excreted into the water.  The water temperature was then increased to 

80º to 82ºF to duplicate spring-like temperatures.  Disruption of the gravel at the bottom of the 

aquarium seemed to cause increased breeding activity and promote spawning.  This could have 

been due to increased supply of food from debris in the gravel or to some chemical change that 

would require further investigation. Spawning usually occurred within 12 to 18 hours after 

completion of these manipulations. 

 

Newly laid eggs were caught in a double-layered screen placed in the bottom of the aquarium to 

prevent the adult fish from eating them.    After they were trapped in the screen, the screen was 

very carefully removed from the aquarium and gently washed in the water of a nearby five-

gallon glass hatch tank. The fertile eggs were extremely fragile and sticky and hatched within 24 

hours when maintained at 85º to 88º F.  New hatchlings remained stuck to the sides and bottom 

of the aquarium by a sticky patch on their dorsal side.  They lived on nutrients in an abdominal 

egg sack for approximately five days after which the fry became free swimming. Most hatchlings 
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were lost during this time due to parasitic (gill worms of the Dactilogyridea  family, diagnosed in 

our laboratory)  and fungal infections (Untergasser, 1989) in the hatching aquarium.   

 

To combat the parasitic and fungal infections that destroyed several hatches, several remedies 

were experimented with including commercially available products intended to protect eggs and 

hatchlings.  The most effective treatment was the use of methylene blue (Fisher), a common 

histological stain, and a commercially available product, fish Egg Guard (Jungle Laboratories).  

These two chemicals were used along with gentle infusion of air from an airstone. The powdered 

methylene blue was mixed in a stock solution of 1 gram to 1 liter of water.  For treatment, 1 ml 

of stock solution was added for each liter of water in the hatch tank. Egg Guard was applied 

according to the manufacturers instructions.  Care was taken to remove all charcoal filtration 

during the treatment period. 

 

Once the fry were free swimming, the fish egg guard treatment was replaced with a treatment of 

Small Fish Saver (Jungle Laboratories).  Again, the manufacturers directions were followed.  

Approximately one cup of water was removed from the hatch tank daily and replaced with fresh 

water.  Treatment chemicals were monitored and replaced weekly. 

 

Feeding of the free swimming fry began once the egg sack was depleted.  Their diet consisted of 

newly hatched brine shrimp and micro-food (Ocean Star International, Inc) fed 3x daily.  Care 

was taken to adjust the amount of food to insure no debris remained in the tank between 

feedings.  Fry were maintained on this diet until they were large enough (about 2 cm long) to eat 

frozen brine.  
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Adult fish were maintained on a diet of commercially produced food supplemented periodically 

with fresh and frozen brine shrimp.  Constant monitoring of the water chemistry was necessary 

in order to keep the animals in good health.  Currently, there are several generations of these fish 

maintained in the laboratory including individuals from the original stocks. 
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RESULTS 

The neural connections examined in this study were the afferents to two regions of the TS in 

cave A. fasciatus. The first region discussed is the NC, known to receive auditory input from the 

ocatavolateralis region of the medulla. The second region that will be discussed is the NL, 

known to receive physiological input derived from the anterior and posterior lateral line nerves.  

The NL serves as a mechanosensory processing-center in fish.  

 

These two nuclei were injected with HRP and the connections to both traced independently.  The 

results are separated into medial and lateral injections to the TS and the details of the results are 

given. Of the 62 experiments performed, 21 cases yielded data with 5 being NC injections and 7 

NL injections. The remaining 9 cases were mixed injections involving both the NC and NL or 

other regions of the brain.  In all figures, regions where cell bodies were found are indicated by 

solid circles. 

 

Medial Injections 

The major input to the NC of the TS was from the octavolateralis region of the medulla.  When 

the NC was injected unilaterally with HRP (Figures 2A and 2B), labeled cells were found in two 

octaval nuclei of the medulla, the DON and the AON (Figures 3A and 3B).  Large distinct cells 

were located in the DON while the cells in the AON were considerably smaller. Cells were 

found bilaterally (Figures 4A and 4B) in the DON, however the AON was labeled primarily on 

the ipsilateral side (Figures 5A and 5B).  On the ipsilateral side, large fibers from the AON could 

be seen extending to the region of the DON (Figure 6). Fibers from these two nuclei pass 
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together to ascend in the dorsomedial portion of the LL (Figure 8). Labeled fibers were found 

bilaterally in the LL. 

 

Small isolated cells and fine fibers were also seen in the reticular formation (RF) (Figure 7A and 

7B).  In more rostral sections, fibers were seen in the RF and in the DON.  There were no 

apparent terminals in the AON, however an area of probable terminals could be found in a region 

adjacent to the ventricle on the ipsilateral side (Figure 9A-9C).  Further analysis would have to 

be done to confirm this information. 

 

 Labeled cells and fibers were observed in the contralateral TS (Figure 10A-10B).  Commissural 

fibers were seen crossing to the contralateral torus through the commissura ansulata (Figure 

10A-10B) at more rostral levels of the midbrain caudal to the optic chiasm. Cells in the 

contralateral TS are labeled when either the NC or NL are injected with HRP.  The two areas 

appear to be topographically related.  A few labeled fibers were also seen in the deep layers of 

the OT.   

 

Lateral Injections 

Injections of HRP were placed in the NL of the TS.  These were rather large injections that 

covered the majority of the nucleus (Figures 11A and 11B) resulting in labeling of cells and 

fibers in the contralateral descendens nucleus of V (Figure 12A) that consists of a column of cell 

bodies in the dorsolateral medulla along most of its rostral-caudal extent.  Cells were found in a 

diffuse group with intermingled fibers (Figure 12B).  These cells and fibers were isolated to the 

dorsolateral side throughout the length of the medulla contralateral to the injection site (Figure 
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12C).  Fibers leave this nucleus and run ventral splitting into two fascicles before decussating 

across the midline between the MLF to ascend in the ipsilateral tectobulbar tract (TBT) and LL 

(Figure 12D-12F).  Together, these two pathways are referred to as the bulbar lemniscal system 

in the literature (Nieuwenhuys and Pouwels, 1983). 

 

The MON of the medulla is heavily labeled after injections to the NL. Large Purkinje cell-like 

neurons of the MON have large horizontally directed dendrites that curve dorsally into the 

overlying cerebellar crest (Figure 13A and 13B). Neurons in the MON were also labeled on the 

side contralateral to the injection with a distinct fiber pathway traveling medially toward the 

ventricle, where it decussates across the midline to ascend in the contralateral LL (Figure 14) to 

the NL.   

 

The fibers of the LL are topographically arranged.  Fibers ascending from the MON to the NL 

pass in the ventral lateral portion of the LL (Figure 16) and fibers ascending from the AON and 

DON to the NC pass in the dorsomedial portion of the LL.   

 

Several fine fibers were traced to the ipsilateral OT, however only a few cells were located 

within the deep layers.  A cluster of labeled cells was located in the nucleus reticularis (NR) 

(Figure 15A and 15B).  In caudal regions of the midbrain, several scattered cells were seen in the 

tegmentum dorsolateral to the LL (Figure16).  
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Cells of the ipsilateral ventromedial nucleus of the thalamus (Vm) were labeled (Figure 17A and 

17B) with fibers running caudally then dorsolaterally to enter the TS.  Labeled cells were also 

found in the ventral anterior tuberal nucleus of the hypothalamus (AT) (Figure 17A and 17B).  

These cells were greater in number on the ipsilateral side, however no fibers were present.  

 

In cases where the injection site was mixed and included portions of both the NC and the NL, a 

combination of the results were found.  These cases were used to classify pure injections to each 

region of the TS and will not be discussed further. 
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Figure 1. This line drawing shows a lateral view of the brain of cave A. fasciatus.  In the top 
illustration the vertical lines indicate planes of section designated with capital letters. These 
sections are used in subsequent figures to map data. The lower illustration shows the 
approximate locations of principal regions discussed and their relationship to each other. 
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NC NL 

OT 

PG 

Figure 2A.  Drawing of injection site of HRP to the NC. A large portion of the NC 
is covered indicated by the gray oval. The entire TS includes both the NC and the 
nucleus lateralis (NL). In all atlas drawings, such as Figure 2A, normal brain 
sections stained for cell bodies are presented on the left with a comparable line 
drawing on the right.  These are for reference and orientation purposes for the 
reader. 

CB 

Atlas Section B 
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Figure 2B.  Photos shown above are examples of HRP injection sites 
to the NC of the TS 

HRP 
Injection 
Site 

HRP 
Injection 
Site 
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AON 

DON 

Figure 3A. Two octavolateralis nuclei are labeled with medial injections of the 
TS. The anterior octavolateralis nucleus (AON) and the descending octavolateralis 
nucleus (DON) relay information to the NC from CN VIII. The area indicated by 
the box can be seen in more detail in Figure 3B.  
 
 
 
 

Atlas Section D 
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A B 

 Figure 3B.  In injections of the NC, two octavolateral nuclei are 
labeled.  The AON is shown in inset “A” while the DON is seen in 
inset “B”. Some overlap of cell processes seem to occur between 
these two nuclei (top photo). 
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DON 

RF 

Figure 4A.  The descending octaval nuclei are located bilaterally in the 
medulla and are labeled when the NC is injected with HRP.   The DON 
receives input from CN VIII and relays this information to the NC. The area 
outline by the box can be seen in Figure 4B.  

Atlas Section E 
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Figure 4B.  With unilateral injections to the NC, spindle shaped cells of the 
descending octaval nuclei are labeled bilaterally. More labeling of the DON 
occurs on the ipsilateral side.  

Cell bodies in the 
DON bilaterally 
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AON 

DON 

RF 

CB 

Figure 5A.  The AON is labeled when the NC is injected with HRP.  However, 
the labeling is more predominant on the ipsilateral side of the injection site.  The 
box indicates the area shown in Figure 5B. 

Atlas Section E 
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Figure 5B.  The AON is labeled primarily on the ipsilateral side with  
HRP injections to the NC. 

AON 
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A  B  

C 

Figure 6.  The above series of photographs of the medulla were taken from a 
brain with an HRP injection to the NC. While all photos show both the AON 
and the DON, the mixing of fibers from both is apparent. Photo (A) is caudal 
to (B). In a more rostral section (C), the two nuclei are distinguishable once 
again.  
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of the two 
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difficult 

AON 

DON 
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RF 

Figure 7A. Scattered fibers were found throughout the extent of the 
reticular formation (RF) from medulla to midbrain. The box indicates the 
area shown in Figure 7B. 

Atlas Section E 
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Figure 7B. Small isolated cells were found in the RF bilaterally with 
injections to the NC throughout the medulla and midbrain 

Reticular 
formation 
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Figure 8.  With injections of HRP to the NC, labeled fibers are 
found in the dorsomedial lateral lemniscus (LL). Small arrows 
indicate individual fibers in the LL. The tectobulbar tract (TBT) can 
be seen to the right of the LL. 

LL 
TBT 



 51 

Figure 9A.  Labeled cells and fibers were seen in close proximity to the ventricle 
in the medulla.  The identity of these cells is unknown.  The area indicated by the 
box is shown in Figure 9B. 

Atlas Section E 
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Figure 9B.  Periventricular cells were found after  injections to the 
NC.  The identity of these areas remains unknown at this time.  The 
labeled boxes are shown in more detail in Figure 9C. 

A 
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Figure 9C.  Labeled cells and fibers could be seen in close proximity to the 
ventricle.  Neurons (indicated by small arrows in A) with laterally extending 
processes and possible terminals (indicated by small arrows in B)  

B 

A 
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A B 

 
Figure 10A. A HRP injection to the NC indicated by the large gray circle “A”, 
results in labeled cells in the contralateral TS indicated by “B”. Commissural 
fibers passing from the ipsilateral to the contralateral TS are indicated by “C”. 
The letters marked in the boxes and injection site correspond to the lettered 
photos in Figure 10B. 

NC 
NL 

LL 

OT C 
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Figure 10B. When the TS is injected with HRP (A), cells in the contralateral torus (B) 
are also labeled. Commissural fibers (C) connecting the two tori can be identified. 
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Figure 11A.  The gray area indicates a HRP injection site in the nucleus 
lateralis (NL) in the TS. 
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Figure 11B.  Lateral injection site in the NL indicated by the broken 
line.  Note the labeling of the nucleus reticularis in the lower center of 
the photo. 

Nucleus 
reticularis 
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Figure 12A. Labeled cells, indicated by solid circles, are found in the 
descendens nucleus of V (DNV) when HRP injections are placed in the 
NL.  The DNV is located in the dorsolateral medulla (see Figure 1). These 
cells show extensive branching processes as shown in Figure 12B in the 
area indicated by the box.  

DNV 

Atlas Section F 
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Figure 12B.  Labeled cells, indicated with small arrows, and fibers, 
indicated by arrowheads, are found at caudal levels of the medulla 
contralateral to the injection site in the DNV when HRP is injected to the 
NL.   
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Figure 12C. Labeling in the DNV in the rostral medulla.  Labeled cell 
bodies are indicated by small arrows while labeled fibers are indicated by 
arrowheads. 
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DNV 

 
2 fiber 
paths 

Figure 12D. Fibers split into 2 separate bundles as they leave the DNV.  
The fibers ascend in the TBT and the LL. 
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DNV 

MLF 

Figure 12E.  The  photograph shows the DNV with labeled fibers, indicated 
by arrowheads,  leaving the nucleus in a ventral direction to decussate across 
the midline at the medial longitudinal fasciculus (MLF). 
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Figure 12F.  The decussation of fibers across the midline through the 
MLF is shown in photograph A.  These fibers cross the midline, 
indicated by the broken line in photograph A, to the ventral lateral side 
of the medulla to pass in the TBT as shown in photograph B. 
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B 
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Figure 13A.  Purkinje-like cells are labeled in the medial octavolateralis 
nucleus with lateral injections of the TS.  These cells send dendritic 
branches into the overlying cerebellum indicated by the dotted lines. The 
area in the box is shown in Figure 13B and 13C. 
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Figure 13B.  Cells and processes of the MON labeled from an injection in the 
NL. Note the dorsal projection of dendrites into the crest of the cerebellum. 
The cerebellum is indicated by the region labeled CB and the medullary 
region is labeled M. Labeled cell bodies are indicated by the small arrows and 
labeled dendrites are marked with arrowheads. 
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Figure 14. Labeled fibers (indicated by arrowheads) from cells located in the MON 
decussate across the midline, indicated by the broken line, to pass in  the lateral 
lemniscus (LL) to the NL. Labeled cell bodies in the MON are indicated by small 
arrows. 
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Figure 15A.  Labeled cells are found in the nucleus reticularis (NR) with  
injections of HRP to the NL. These cells are indicated by the solid black circles 
and can be seen in Figure 15B.   
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Figure 15B.  Labeling in the nucleus reticularis consisted of a tight 
cluster of cell bodies and fibers. Labeled cell bodies are indicated by 
small arrows while labeled fibers are marked with arrowheads. 



 69 

A 

B C 

Figure 16. The above photographs are of the caudal midbrain of a fish 
with a lateral injection to the NL.  Several scattered cells were seen in the 
tegmentum dorsolateral to the lateral lemniscus as seen in A.  Fibers 
passing in the LL are topographically arranged with injections to the NL 
labeling fibers in the ventral lateral portion of the tract (see photo C).  
These fibers orginate in the octavolateralis region of the medulla with the 
majority of fibers ascending from the MON. 

LL 
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Vm 

 

HYP 

Figure 17A.  In more rostral sections of the brain, labeled cells and fibers can 
be found in the ventralmedial nucleus of the thalamus (Vm) and scattered cells 
are seen in the anterior tuberal nucleus of the hypothalamus (HYP). Areas 
outlined by boxes A and B are shown in Figure 17B. 
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Figure 17B. Labeled cells (indicated by small arrows) with laterally directed 
processes (indicated by arrowheads) were located in the ventromedial nucleus of the 
thalamus (A).  These cells are found only at rostral levels with HRP injections to the 
NL. Scattered cells (indicated by small arrows) can be seen in the hypothalamus 
(B).  The enzymatic reaction that occurs at times when using HRP in the endothelial 
cells of blood vessels (indicated by broken arrows) results in the artifact seen in the 
field of view in B.  

A 
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DISCUSSION 

The main finding of this study of torus semicircularis afferents in cave A. fasciatus are consistent 

with previous research on sighted fish. The NC receives a substantial input from the AON and 

DON of the medulla (Echteler 1984; Murakami et al., 1986) while the NL receives primary 

afferents from the MON, a source of lateral line information (Schellart, 1983; Murakami et al., 

1986). 

NC Afferents  

The majority of NC afferents arise from the medulla and Echteler (1984) focused his research on 

these connections.  The results found in cave A. fasciatus paralleled Echteler’s results for the 

AON and DON to the TS in Cyprinus carpio. Likewise, Murakami et al. (1986) found similar 

connections with HRP injections to the NC in S. marmoratus. The AON and DON, both receive 

input from CN VIII projections (Echteler 1984; Northcutt 1980).  Consistent with this finding, 

Echteler documented electrophysiological recordings from these two nuclei in carp indicating 

auditory responses.  Since labeled neurons were seen in both of these nuclei in cave A. fasciatus, 

like C. carpio and S. marmoratus, cave A. fasciatus has a dual input auditory pathway to the NC 

of the TS.  

Echteler identified a medial and lateral olivary nucleus, however these two nuclei were not 

identified by HRP labeling in cave A. fasciatus.  In addition, previous investigators have not seen 

evidence of the superior olivary nucleus in fishes, however Echteler reported cells in the 

medullary region of C. carpio that he described as comparable to the superior olivary nucleus. 

Data in this study suggest this same cluster of cells, however with the close proximity of the cells 
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of the DON it remains unclear if true boundaries exist between these two nuclei and therefore the 

existence of the superior olivary nucleus in cave A. fasciatus is inconclusive.  

Echteler concluded auditory information is relayed to higher brain areas, including the TS, 

within the lateral lemniscus. This pathway for ascending auditory information in the lateral 

lemniscus was also found in the brain of cave A. fasciatus.  Fibers from the AON and DON of 

the medulla passed to the NC in the dorsomedial region of the LL, while the fibers from the 

MON passed in the ventrolateral portion of the LL to the NL.   

Cell labeling between the telencephalon and the TS was not evident in this study. Echteler (1984) 

reported minor projections between these two brain regions.  However, Murakami et al. (1986) 

did not find telencephalic projections to the TS.  A possible explanation for the lack of evidence 

of this connection in cave A. fasciatus might be the area of the TS injected. Possibly only 

extreme rostral injections may show the telencephalic connection based on the topography of the 

TS. While injections used in this research were large enough to cover the majority of the TS, 

invariably some regions may have been missed. Further studies would have to be made to 

ascertain any connections the telencephalon may have with the TS in cave A. fasciatus. 

Labeled cells were also found in the contralateral TS and deep layers of the ipsilateral OT with 

HRP injections to the NC.  In addition, labeled commissural fibers passed along the lower border 

of the deep layers of the optic tectum to the labeled cell bodies in the contralateral NC. Both of 

these ipsilateral OT and contralateral NC afferent connections have been reported by previous 

investigators (Knudsen, 1977; Grover and Sharma, 1981).   

Murakami et al. (1986) reported labeled neurons in caudal regions of the contralateral cerebellum 

of S. marmoratus with injections to the NC, however these cells were not found in cave A. 
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fasciatus. Cave A. fasciatus may differ from S. marmoratus in this projection, or this discrepancy 

may be explained by the position of the injection site. A neural projection from the CB to the TL 

has been previously been reported (Ito, 1978; Northmore, 1984). The torus longitudinalis (TL ) is 

dorsomedial to the TS and in close proximity. HRP from a large or extremely dorsomedial 

injection in the NC could spread to terminals of CB neurons in the TL, thus labeling cells in the 

CB.  

Sparse bilateral fibers and cells were found in the medial reticular formation (MRF) by Echteler 

(1984), Northcutt (1980) and McCormick (1981) with injections in the NC. Northcutt and 

McCormick identified these same cells and fibers in the MRF of the longnose gar and carp 

respectively. While several fibers were found in the MRF with injections to the NC, cells within 

the MRF were not found in cave A. fasciatus.  None of these authors offered an explanation for 

the function of this projection.   

NL Afferents 

When the NL was injected with HRP (it is a rather difficult target to hit due to it’s diagonal 

positioning in the midbrain), the majority of labeled cells were found in the contralateral MON. 

These consisted of large Purkinje-like cells with dorsally directed dendrites that invaded the 

overlying cerebellar crest.  The MON consumes a large portion of the lateral region of the 

brainstem and is a primary, if not an exclusive target of the lateral line nerves (Schellart, 1983). 

This nucleus extends from the spinomedullary junction to the molecular layer of the cerebellum 

(McCormick, 1983). These findings are consistent with previous observations (Schellart, 1983; 

Murakami et al., 1986; New et al., 1996) and demonstrates that lateral line information is a 

primary input to the NL.  
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A minor afferent projection of the anterior tuberal nucleus (AT) of the hypothalamus was 

reported by Striedter using DiI. Labeled cells from these injections were observed bilaterally in 

the NL.  The same afferent neurons were found in cave A. fasciatus with injections of HRP to the 

NL.  

Another source of toral afferents to the NL were from a distinct cell group corresponding to the 

nucleus decendens of V (DNV) (Nieuwenhuys and Pouwels, 1983; Murakami et al., 1986).  

According to Woodburne (1936) and Nieuwenhuys and Pouwels (1983) the DNV is composed 

of small cells with interspersed fibers present throughout the length of the nucleus.  This nucleus 

extends from the caudal pole of the trigeminal nucleus caudally to the dorsal horn of the spinal 

cord. Labeled afferent neurons were found throughout the entire rostrocaudal extent of the 

contralateral DNV in cave A. fasciatus.  Ariens Kappers (1936) thought the ascending fibers 

from this group carry general tactile and pain information and Woodburne (1936) suggested the 

fibers from this nucleus decussated to form a trigeminomesencephalic and tectal tract, a sensory 

component of the tectobulbar tract.  The finding of a contralateral projection from DNV in cave 

A. fasciatus is consistent with Woodburne’s proposal.  

Labeled cells were found in the Vm in cave A. fasciatus with HRP injections to the NL. When 

Murakami et al. (1986) injected HRP in the Vm of the teleost, Sebastiscus marmoratus, they 

found descending fibers running caudally and then turning dorsolaterally to terminate in the TS. 

Murakami et al. (1986) also noted fibers crossing from the Vm through the posterior commissure 

to descend to the contralateral TS.  Striedter (1991) showed similar results in the channel catfish, 

Ictalurus punctatus with DiI injections to the NL. These injections revealed labeled cells 

ipsilaterally in the caudal Vm paralleling the same results in cave A. fasciatus.  
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The TS of cave A. fasciatus could be considered multimodal as it receives input from the AON 

and DON, both auditory nuclei, and lateral line input from the MON.  In addition to auditory and 

mechanosensory information, the TS also receives somatosensory (tactile and pain) from the 

DNV and the Vm (first suggested for fish by Arien Kappers, 1936). Both the DNV and the Vm 

carry somatosensory information from head regions to the NL. The significance of this input to 

the NL and its impact on lateral line processing remains an interesting question. 
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CONCLUSIONS 

Horseradish peroxidase is a classic neuroanatomical tract tracing technique.  This research 

utilized this neural tracer to demonstrate the primary afferents of the torus semicircularis in cave 

A. fasciatus.  The results of this study suggest the connections of the TS in cave A. fasciatus are 

very similar, if not identical, to the connections of the TS in sighted teleosts studied previously 

with HRP and DiI.  

 

The original hypothesis of this research was that the brain of naturally blind cave A. fasciatus 

would exhibit differences in the afferent connections of the TS, relative to sighted teleosts, due to 

evolutionary enhancement of the lateral line sense to compensate for the loss of vision.  

However, the hypothesized differences in connectivity were not found.  For the most part, the 

major identifiable connections of the TS with the nuclei of the medulla are the same as those 

found in other teleosts with functional visual systems.   

 

There are several possible explanations for the lack of change in connectivity: 

(1) Lack of evolutionary time.  Due to the relatively short time (50,000-100,000 years) 

these fish have evolved from the sighted form (Wilkens, 1985, 1988), it is possible 

the neural connections have not had enough time to show the changes that might 

occur and are, therefore still in the process of change. In many other species of cave 

fish the lateral line organs have undergone extensive hypertrophy (Poulson and 

White, 1969). Cave A. fasciatus does show minor modifications in structures of the 

lateral line. Therefore, the changes in the sensitivity of the lateral line system in cave 

A. fasciatus may be in progress. 
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(2) Environmental conditions. Due to the fact that typical cave environments are 

characterized as energy poor with low influx of food (Poulson and White, 1969), cave 

inhabitants usually must adapt to survive. Most species of cavefish have greatly 

hypertrophied lateral line systems for efficient localization of food (Poulson and 

White, 1969). However, the limestone caves of Mexico have a considerable seasonal 

influx of food and are not considered as energy poor as other cave environments 

(Breder, 1942; Mitchell et al., 1977). Therefore, further changes in brain connectivity 

of cave A. fasciatus may not be required to compensate for extreme energy 

deprivation like that experienced by inhabitants of other caves.  Further, the minor 

changes that have occurred in the neuromast of cave A. fasciatus (Wilkens, 1985, 

1988) that have provided a slightly more sensitive mechanosensory input to the TS 

may be all that is required for survival in their environment. 

(3) Interneuron connectivity. This study uses HRP to examine gross connections that 

carry sensory information from one brain region to another. Perhaps no change or 

additional gross lateral line input connections are required for good TS function. 

However, possible increases in their ability to find food and improve navigation may 

be due to improved processing of lateral line information by the TS by changes in 

interneuron connectivity. This would not be detectable with HRP tract tracing  

techniques. 

(4)  Changes in other brain areas. Perhaps changes in the connections of the TS are not 

required at all to improve the functioning of the lateral line system. There may be 

increased sensitivity of the lateral line sense due to evolutionary modifications in 

areas of the brain not studied. For example, mechanosensory responses have been 



 79 

recorded in the OT in cave A. fasciatus (Fish and Voneida, 1983; Voneida and Fish, 

1984), but not in the sighted form of A. fasciatus (Fish, unpublished) or reported in 

the literature for any teleost species.  Since the OT (superior colliculus in mammals) 

subserves behaviors for orienting to environmental cues in all vertebrates studied 

(Kandel et al., 1991) it is possible that the OT in cave A. fasciatus is evolutionarily 

modified for improved lateral line orienting behavior.  These speculations would 

require additional research. 
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