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ABSTRACT 

Calbindin-D28k (CaBP28K) is a vitamin D-dependent calcium-binding protein 

that may alter intracellular calcium ion levels, [Ca2+]i. This dissertation describes 

experiments done to gain an understanding of the potential role of CaBP28k in 

pancreatic B-cells in control of insulin secretion. The localization of CaBP28k and 

insulin in chicken pancreas are shown in Chapter 1. CaBP28k expression was 

found to be highest in ventral and dorsal lobes and lowest in splenic lobe. Insulin 

concentrations were distributed similarly among these lobes. Confocal 

microscopic studies demonstrated colocalization of insulin and CaBP28k in B-

cells. These findings suggest a possible role for CaBP28k in chicken B-cells that 

could contribute to type 2 diabetes-like characteristics of chickens. 

 

Experiments done in Chapter 2 tested the effects of changing levels of 

glucose in pancreatic islets in vitro from transgenically derived CaBP28k-knockout 

(KO) and wildtype (WT) mice. CaBP28k-KO islets were exposed to increasing 

glucose concentrations from 2.8 mM to 30 mM, levels that mimic transition from 

fasting to hyperglycemic states. KO islets showed significantly greater elevations 

in [Ca2+]i as compared to WT. These experiments provide evidence that levels of 

CaBP28k could play a role in controlling Ca2+-mediated, glucose-induced insulin 

secretion in B-cells. 

 

In chapter 3 the effects of reduction of CaBP28k levels on genomic and 

nongenomic factors using CaBP28k-antisense oligonucleotides (AS-ON) 
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transfection in a cultured pancreatic B-cell line (RIN1046-38 cells) are described. 

Complete inhibition of CaBP28k expression in transfection assays was achieved 

using 200 nM phosphorothioate-AS-ON (PS-AS-ON) as well as 20 nM propyne-

AS-ON (PY-AS-ON). In addition, cDNA microarray analysis showed up-

regulation of both vitamin D receptor (VDR) and calbindin-D9k mRNAs in PS-AS-

ON-transfected RIN cells as compared to controls. Western blotting indicated 

VDR overexpression and calbindin-D9k expression in AS-ON-transfected cells. 

This study is the first demonstration of compensatory expression of calbindin-D9k 

in response to inhibition of CaBP28k in cultured B-cells. Insulin secretory 

responses of PS-AS-ON-transfected cells were greater than in controls. These 

findings suggest that B-cells synthesize an alternative protein, calbindin-D9k, to 

preserve calcium regulation when expression of CaBP28k is abolished. Additional 

studies are required to help in understanding possible interactions of calbindin-

D9k, [Ca2+]i, and VDR in the AS-ON-transfected B-cells. 
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Diabetes mellitus is one of the major global public health problems. It is a 

metabolic disorder for which the actual etiology remains to be identified. The 

number of people with diabetes worldwide was 150 million in 2002 and is 

expected to rise to 220 million in 2010 (Buse et al., 2003). The main pathologic 

findings in pancreatic islets of Langerhans in diabetes mellitus include B-cell (β-

cell) destruction in type 1 diabetes, and somewhat reduced or normal β-cell 

numbers in type 2 diabetes (Buse et al., 2003; Eisenbarth et al., 2003). Type 2 

diabetes accounts for 90% of diabetic cases worldwide (Buse et al., 2003). 

Genetic and environmental factors interact in the pathogenesis of type 2 diabetes 

(Buse et al., 2003). The disease results when glucose transport channels on the 

cell membrane (glucose transporters) are insensitive to the effects of insulin (or 

when there are too few transporters) or when the quantity of insulin produced by 

the β-cells of the pancreas is inadequate to activate the number of glucose 

transporters necessary to maintain normal cellular metabolism (Buse et al., 

2003). Insulin insensitivity is a receptor and/or post-receptor event. Three 

cardinal abnormalities occur in type 2 diabetes: 1) defective insulin secretion in 

response to glucose from the pancreatic β-cells, 2) resistance to the action of 

insulin in peripheral tissues (e.g. muscle and fat cells), and 3) increased glucose 

production by the liver (Buse et al., 2003). It is well known that calcium ions, 

Ca2+, play an important role in the glucose-induced insulin secretion from β-cells 

(Gilon et al., 1993; Jones and Persaud, 1998; Easom, 1999; Lang, 1999; 

Lingappa and Farey, 2000; Barg et al., 2002; Henquin et al., 2002). Recently, 

some clinical intervention trials have demonstrated that supplementation with 
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vitamin D or its metabolites leads to reduction of the high blood glucose levels in 

type 2 diabetic patients and to increased serum insulin concentrations in uremic 

patients (Zittermann, 2003; Holick, 2004). Vitamin D is known to mediate its 

effects through interactions with the vitamin D receptor. One group of proteins 

that are regulated by the VDR is calcium-binding proteins (Christakos et al., 

1991; DeLuca and Zierold, 1998; Christakos et al., 2003b). The vitamin D-

dependent calcium-binding proteins form a link between vitamin D, which alters 

intracellular calcium levels, and the generation of cellular responses. Our ultimate 

theme in this research project is to investigate a possible approach to increasing 

the insulin secretory response to glucose from cultured β-cells. We aim to 

substantiate the role of the vitamin D-dependent calcium-binding protein, 

calbindin-D28k (CaBP28k), in the β-cells as a possible challenge for improving the 

defective insulin secretion, e.g., as seen in type 2 diabetes. Herein, an overview 

of vitamin D and vitamin D-dependent factors, implicated for playing a possible 

role in glucose-induced insulin release from the pancreatic β-cells, is presented. 

 

Vitamin D 

The hormonally active metabolite of vitamin D, 1,25-dihydroxyvitamin D3 

(1,25-(OH)2D3), is a secosteroid whose genomic mechanism of action is known 

to be similar to that of other steroid hormones (Christakos et al., 1991; DeLuca 

and Zierold, 1998; Brown et al., 1999). 1, 25-(OH)2D3 is well known for its 

importance in controlling calcium and phosphorus homeostasis, and roles in 

bone mineralization (Christakos et al., 1991; DeLuca and Zierold, 1998; Brown et 
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al., 1999; Christakos et al., 2003b). 1,25-(OH)2D3 maintains Ca2+ and 

phosphorus homeostasis through direct stimulation of intestinal transport, 

enhancement of Ca2+ and phosphate reabsorption in the kidney and mobilization 

of mineral from bone (Christakos et al., 1991; Brown et al., 1999). Vitamin D 

deficiency leads to a variety of abnormalities including rickets and osteomalacia, 

osteoporosis, disturbed muscle functions. Moreover, it is associated with many 

disorders including tuberculosis, rheumatoid arthritis, multiple sclerosis, 

psoriasis, systemic lupus erythematosus, insulin-dependent diabetes mellitus 

(type 1, IDDM), inflammatory bowel diseases, hypertension, and specific types of 

cancer (Boland, 1986; Billaudel et al., 1998; Brown et al., 1999; Zella et al., 2003; 

Zittermann, 2003; Holick, 2004). Experimental findings have illustrated that 

certain autoimmune diseases such as multiple sclerosis, psoriasis, and 

rheumatoid arthritis can be treated with vitamin D and its analogs (Morimoto and 

Kumahara, 1985; Brown, 1998; DeLuca and Zierold, 1998; Brown et al., 1999; 

Zittermann, 2003). Due to the antiproliferative differentiation-promoting properties 

of 1,25-(OH)2D3 it also has been used in treating some types of leukemia and 

prostate cancer (Abe et al., 1981; Liu et al., 1996; Zittermann, 2003; Holick, 

2004).  

 

Vitamin D deficiency is reported to result in impaired glucose-mediated 

insulin secretion that can be reversed by vitamin D repletion (Chertow et al., 

1983; Labriji-Mestaghanmi et al., 1988; Kumar et al., 1994; Bourlon et al., 1999; 

Zella et al., 2003). In addition, some clinical intervention trials have demonstrated 
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that supplementation with 1,25-(OH)2D3 or its metabolites is able to reduce blood 

pressure in hypertensive patients, improve blood glucose levels in type 2 

diabetics, and to increase serum insulin concentrations in uremic patients 

(Quesada et al., 1990; Zittermann, 2003; Holick, 2004). It has been postulated 

that 1,25-(OH)2D3, through the vitamin D receptor (VDR)-mediated modulation of 

expression of Ca2+-binding proteins, controls the concentration of intracellular 

free calcium ions, [Ca2+]i (Christakos et al., 1979; Christakos and Norman, 1980; 

Mayer et al., 1981). Moreover, the immunosuppressive properties of 1,25-

(OH)2D3 have extended its therapeutic application to reducing the incidence of 

insulinitis and type 1 diabetes in both animal models and humans (Mathieu et al., 

1992, 1994b; Stene et al., 2000; Hypponen et al., 2001; Zella et al., 2003; Holick, 

2004) and to preventing the recurrence of autoimmune diabetes after islet 

transplantation (Mathieu et al., 1994a, 1995; Lemire, 1997). In addition, other 

experiments reported the importance of the use of 1,25-(OH)2D3 and its analogs 

in suppressing transplant rejection (Lemire, 1997; DeLuca and Zierold, 1998). 

Furthermore, a role for 1,25-(OH)2D3 in reproduction was suggested by the 

demonstration of reduced female fertility in vitamin D-deficient rats (Halloran and 

DeLuca, 1980) that could be corrected only by 1,25-(OH)2D3, but not by simply 

raising the serum Ca2+ (Kwiecinksi et al., 1989). The biological actions of vitamin 

D are mediated by the stereospecific interaction of 1,25-(OH)2D3 with VDR 

(Christakos et al., 1991; DeLuca and Zierold, 1998; Christakos et al., 2003b). 
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VDR 

 VDR is one of the members of the nuclear steroid receptor superfamily 

that act as ligand-activated transcription factors (Ross et al., 1992; Sone et al., 

1991; Schräder et al., 1995; Brown et al., 1999). Upon ligand binding, the 

activated cytoplasmic VDR rapidly translocates to the nucleus along microtubules 

(Brown et al., 1999). A critical role for VDR translocation on 1,25-(OH)2D3 

transcriptional regulation was proposed by earlier studies in normal human 

monocytes in which the disruption of microtubular integrity prevented 1,25-

(OH)2D3 induction of 24-hydroxylase mRNA, a mitochondrial cytochrome P-450 

enzyme which is the major catabolic enzyme of 1,25-(OH)2D3 (Kamimura et al., 

1995). The 24-hydroxylase enzyme is highly inducible by 1,25-(OH)2D3, providing 

a mechanism for attenuating the response to the vitamin D hormone and 

reducing 1,25-(OH)2D3 levels when they are abnormally high (Brown et al., 

1999). In fact, mice lacking a functional 24-hydroxylase gene have high serum 

1,25-(OH)2D3 levels due to the decreased capacity to degrade it (St.-Arnaud et 

al., 1996; Brown et al., 1999). Moreover, vitamin D-resistant rickets was reported 

to occur due to a defective cytoplasmic to nuclear translocation of an otherwise 

normal VDR (Hewison et al., 1993). VDR mediates the signal of 1,25-(OH)2D3 

through binding to specific DNA motifs (vitamin D response elements, VDREs) in 

the promoter of target genes. It acts primarily as a heterodimer composed of one 

VDR subunit and one retinoid X receptor (RXR) subunit, or as a homodimer, 

thereby interacting with many nuclear factors including the coactivators, and the 

general transcription factor TFIIB, a component of the basal transcription 
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complex which plays a critical role in ligand-dependent transcription (Christakos 

et al., 1991; Blanco et al., 1995; MacDonald et al., 1995; Nishikawa et al., 1995; 

Schräder et al., 1995; Masuyama et al., 1997; DeLuca and Zierold, 1998; Brown 

et al., 1999; Christakos et al., 2003b). Both 1,25-(OH)2D3 and Ca2+ were 

previously reported to regulate the expression of VDR (Brown et al., 1995; Zineb 

et al., 1998; Healy et al., 2003). Nongenomic functions of VDR have been 

reported previously (Nemere et al., 1994; Sergeev and Rhoten, 1995; Norman et 

al., 1999, 2001, 2002a, b). A plasma membrane VDR was identified to mediate 

rapid opening of the voltage-gated Ca2+ channels located in the plasma 

membrane and to stimulate Ca2+ transport in the intestine, Ca2+ mobilization in 

osteoblasts, and release of insulin by rat pancreatic beta-cells and RIN1046-38 

cells (Nemere et al., 1994; Sergeev and Rhoten, 1995; Norman et al., 1999, 

2001, 2002a, b). Moreover, earlier studies indicated that mice lacking the VDR 

had impaired bone formation, vitamin D-dependent rickets, hypocalcemia, 

alopecia, uterine hypoplasia, infertility, and growth retardation after weaning 

(Yoshizawa et al., 1997).  

 

It has been reported that the VDREs were detected in both the murine 

calbindin-D9k and calbindin-D28k (CaBP28k) genes (Darwish and DeLuca, 1992; 

Gill and Christakos, 1993). Developmental studies reported that inductions of 

VDR mRNA in the rat kidney and duodenum were significantly correlated with the 

induction of mRNAs for two vitamin-D-dependent calcium-binding proteins, 

CaBP28k in the kidney and calbindin-D9k in the duodenum, at the same 
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developmental stage. These findings suggest that the induction of VDR has an 

important role in regulating the gene expression of both CaBP28k and calbindin-

D9k (Huang et al., 1989; Christakos et al., 1991). Moreover, in the vitamin D-

deficient adult rat, repletion of vitamin D led to the up-regulation of VDR and 

CaBP28k in the kidney, and calbindin-D9k in the intestine (Christakos et al., 1991). 

Furthermore, VDR induces CaBP28k gene transcription in the chicken intestine 

(Spencer et al., 1976; Christakos and Norman, 1980; Siebert et al., 1982), but in 

the chicken kidney the levels of CaBP28k were less stringently regulated by VDR 

(Hunziker, 1986). 

 

Calbindins 

The vitamin D-dependent Ca2+-binding proteins (calbindins) are 

intracellular proteins. They have high affinity Ca2+-binding activity, and play an 

important role in the regulation of [Ca2+]i (Christakos et al., 1989; Nelson et al., 

2002), and are sometimes referred to as Ca2+-receptor proteins (Zimmer et al., 

1997). The calbindin family includes calmodulin, parvalbumin, troponin C, S100 

proteins, calbindin-D9k, and calbindin-D28k (Rhoten et al., 1985; Christakos et al., 

1989; Heinzmann and Hunziker, 1991; Zimmer et al., 1997). Calmodulin, a 

ubiquitous Ca2+-binding protein present in all eukaryotic cells, has four Ca2+-

binding sites that bind both Ca2+ and magnesium ions competitively and is 

involved in the triggering of several cellular processes (Rhoten et al., 1982; 

Kilhoffer et al., 1983; Hammes et al., 1994). Calmodulin acts as a Ca2+-signaling 

protein since it regulates the activity of many endogenous target enzymes in a 

 8



 

Ca2+-dependent manner including the cyclic nucleotide phosphodiesterase, 

calmodulin-dependent protein kinases, and calcium adenosine triphosphatase 

(Ca2+-ATPase) (Cheung et al., 1978). The Ca2+/calmodulin-dependent kinases 

play a role in linking changes in [Ca2+]i to the distal events in exocytosis and 

insulin release from the pancreatic islet β-cells (Rhoten et al., 1982; Hammes et 

al., 1994; Easom, 1999; Tabuchi et al., 2000; Yamamoto et al., 2003). 

Parvalbumin is expressed in many tissues including the central nervous system, 

such as hippocampus and amygdala, where it contributes to intracellular Ca2+ 

buffering in neurons (Grateron et al., 2003; Felmy and Schneggenburger, 2004; 

Hajszan et al., 2004). Parvalbumin in fast-twitch skeletal muscle binds Ca2+ and 

magnesium with high affinity and seems to be involved in muscle relaxation 

(Kilhoffer et al., 1983; Coutu et al., 2004; Michele et al., 2004). On the other 

hand, troponin C acts as a Ca2+-sensing switch in muscle tissue conferring Ca2+-

sensitivity to the acto-myosin interaction, and exhibits both triggering and relaxing 

structural sites (Kilhoffer et al., 1983; Landesberg et al., 2004; Matsumoto et al., 

2004; Tikunova and Davis, 2004). S-100 protein was first described as being 

unique to the nervous system, but it has been identified subsequently in a variety 

of cell types of neuroectodermal (i.e., melanocytes, glial and Schwann cells) and 

non-neuroectodermal origin (i.e., adipocytes, pancreatic islets of Langerhans, 

parathyroid and anterior pituitary glands) (Zabel et al., 1986; Laszik et al., 1989; 

Watanabe and Hashimoto, 1993; Atanassova, 2001; Park and Min, 2003; 

Sandelin et al., 2004). Moreover, S-100 protein was detected in the core of all 
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types of β-cell insulin secretory granules in the chicken pancreas and it was 

thought to be involved in their maturation (Takayanagi and Watanabe, 1996). 

 

Calbindin-D9k 

Calbindin-D9k was detected in the rat duodenum, kidneys, placenta, 

pancreas, and mineralized tissues (bone, cartilage, and teeth) (Marche et al., 

1980; Rhoten et al., 1982; Schreiner et al., 1983; Thomasset et al., 1982; 

Balmain et al., 1986; Warembourg et al., 1986a, b; Balmain, 1991; Bourlon et al., 

1996). The calbindin-D9k gene expression is characteristic of mammals only 

(Thomasset, 1997). It is expressed in both mouse and rat kidneys (Thomasset et 

al., 1982; Delorme et al., 1983; Rhoten et al., 1985); however, it is less active in 

the rat kidney where CaBP28k is highly expressed and predominates in Ca2+ 

regulation (Schreiner et al., 1983; Bindels et al., 1991; Thomasset, 1997). 

Calbindin-D9k binds two Ca2+ ions (Juffer and Vogel, 2000). Several physiological 

functions are postulated for calbindin-D9k that range from a Ca2+-dependent 

regulatory function analogous to that of calmodulin, to a role as a Ca2+-shuttle 

(carrier protein) that facilitates transcellular Ca2+ diffusion in the Ca2+-transporting 

cells (Bronner et al., 1986; Bronner, 1987, 1988; Wasserman and Fullmer, 1995; 

Bronner, 2003a, b). 

   

CaBP28k 

 CaBP28K is predominantly a cytosolic protein that was initially detected in 

the chicken duodenum (Wasserman and Taylor, 1966). It is also found in many 
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other tissues, including kidneys, brain, bones, parathyroid glands, and pancreatic 

islets (Buffa et al., 1989; Christakos et al., 1989; Pochet et al., 1989; Rhoten and 

Christakos, 1990; Bouhtiauy et al., 1994), and is evolutionarily highly conserved 

in various vertebrates (Rhoten et al., 1985, 1986; Parmentier et al., 1987). 

CaBP28k is known to have at least four high affinity Ca2+-binding sites (Hunziker, 

1986). It was previously reported to act as a Ca2+-buffering protein in different 

cell types (Gross and Kumar, 1990). It prevents [Ca2+]i from reaching toxic levels 

in the brain (Mattson et al., 1991, 1995; Guo et al., 1998) and protects against 

cytokine-induced apoptosis in cultured β-cell lines (Rabinovitch et al., 2001; 

Riachy et al., 2002; Christakos et al., 2003a). Cytokines are produced by the 

immune system cells that infiltrate pancreatic islets and mediate islet β-cell 

destruction in autoimmune (type 1) diabetes mellitus (Rabinovitch et al., 2001). 

Moreover, Dowd et al. (1992) showed that stable overexpression of CaBP28k in 

lymphocytes decreased apoptosis, and this reduction was correlated directly with 

the increased relative amounts of CaBP28k in these cells. Also, overexpression of 

CaBP28k in lymphocytes increased cell survival in the presence of a calcium 

ionophore that resulted in a greatly increased cytoplasmic influx of Ca2+ (Dowd et 

al., 1992). The kinetics of Ca2+-binding by CaBP28k may be important in its effect 

on Ca2+-mediated apoptosis. Chard et al. (1993) determined that the Ca2+-

binding kinetics of CaBP28k were fast enough (seconds to minutes) to reduce the 

global increase in [Ca2+]i mediating the potentiation of neurotransmitter release. 

CaBP28K also functions as a Ca2+-carrier that regulates cellular Ca2+ transport in 
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the intestine and kidneys (Bredderman and Wasserman, 1974; Feher, 1983; 

Borke et al., 1989; Bronner, 1989; Christakos et al., 1989). 

 

1,25-(OH)2D3 is known to regulate the levels of chicken intestinal CaBP28k 

from undetectable in vitamin D-deficient chickens up to 1 - 3% of the cytoplasmic 

protein in the intestinal cell in vitamin D-replete chickens (Christakos et al., 

1979). The interaction of 1,25-(OH)2D3 with VDR and the association of VDR with 

the VDRE that is located in the CaBP28k gene results in expression of CaBP28k 

(Christakos et al., 1991; Gill and Christakos, 1993). Kadowaki and Norman 

(1984) and Hall and Norman (1991) have achieved reductions in chicken 

pancreatic CaBP28k content using a diet that has normal calcium and phosphorus 

content, but is vitamin D-deficient. Moreover, the use of pharmacological doses 

of 1,25-(OH)2D3 was reported to induce an increase in the rat renal CaBP28k 

concentrations (Hemmingsen et al., 1998). Also, a direct influence of [Ca2+]i in 

increasing the cytosolic concentrations of CaBP28k have been shown (Norman et 

al., 1981; Hall and Norman, 1990). Hemmingsen et al. (2002) found that the 

concentration of rat renal CaBP28k was significantly increased upon increase of 

the plasma level of 1,25-(OH)2D3. In contrast, there was no reduction in renal 

CaBP28k after a 50% decrease in plasma 1,25-(OH)2D3. 

 

Furthermore, recent studies with mammalian pancreatic islets suggested 

that CaBP28K may modulate insulin secretion from the β-cell. Sooy et al. (1999) 

reported that β-cells from CaBP28k-null-mutant (KO, knockout) mice, with 
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complete ablation of CaBP28k, had a significant increase (3.5 fold) in their insulin 

release compared to controls (WT, wildtype) when depolarized with 45 mM KCl. 

In contrast, in murine β-cell lines stably transfected and overexpressing CaBP28k 

(βHC-13 CaBP40 and βTC-3) there was a marked attenuation of insulin secretion 

when depolarized with 45 mM KCl compared to control β-cells. In addition, RIN 

(rat insulinoma) cells with elevated levels of CaBP28k have increased cytoplasmic 

Ca2+-buffering capacity (Rhoten and Sergeev, 1994; Reddy et al., 1997). 

 

[Ca2+]i 

It is well known that the [Ca2+]i regulates many cellular functions, such as 

gene expression, cell signal transduction, cell proliferation, and differentiation 

(Allbritton et al., 1992; Sergeev and Rhoten, 1995; Airaksinen et al., 1997; 

Sergeev and Rhoten, 1998; Putney, 1999; Sooy et al., 1999). The [Ca2+]i of 

unstimulated cells is maintained between less than 100 nM and 200 nM (Hodgkin 

and Keynes, 1957; Schanne et al., 1979; Carafoli, 1987; Nicotera and Orrenius, 

1992). There is a concentration difference of about four orders of magnitude 

between the extracellular Ca2+ level (approximately 1.3 mM) and the cytosolic 

Ca2+ concentration [which is < 100 – 200 nM] (Frankenhaeuser and Hodgkin, 

1957; Hodgkin and Keynes, 1957; Rasmussen, 1970; Schanne et al., 1979; 

Nicotera and Orrenius, 1992). This electrochemical driving force is balanced 

primarily by active Ca2+ extrusion through the plasma membrane (Ca2+-ATPase 

pumps), by the Na+/Ca2+ exchanger, by the coordinated activity of Ca2+-

sequestering systems located in the mitochondrial, endoplasmic reticular and 
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nuclear membranes, and by the buffering action of calbindins (Borle, 1967; 

Rasmussen, 1970; Schanne et al., 1979; Carafoli, 1987; Carafoli and Longoni, 

1987; Nicotera and Orrenius, 1992; Chard et al., 1993; Carafoli, 1994). 

 

Transient elevations in the [Ca2+]i in β-cells are necessary for β-cell 

functions and insulin secretion, but prolonged increases in [Ca2+]i lead to 

deleterious conditions and even β-cell death (Farber, 1990; Pralong et al., 1990, 

Gilon et al., 1993; Bertuzzi et al., 1999). The sustained increase in [Ca2+]i  due to 

excessive entry of extracellular Ca2+ and/or mobilization of Ca2+ from intracellular 

stores constitute a major signal transduction pathway of apoptosis (Farber, 1990; 

Dowd, 1995; Thompson, 1995; McConkey and Orrenius, 1996, 1997). Sustained 

increases in the [Ca2+]i result in activation of Ca2+-dependent proteases, such as 

the calpains which belong to the superfamily of cysteine proteases that affect 

apoptosis (Thompson, 1995; Peter et al., 1997). The buffering of [Ca2+]i by 

CaBP28k has been shown with the direct introduction of CaBP28k into cultured 

dorsal root ganglion cells (Chard et al., 1993). In these cells, CaBP28k caused a 

marked decrease in the rate of rise in [Ca2+]i and a significant reduction in the 

maximum levels of [Ca2+]i in response to depolarization. As a result of 

transfection of the CaBP28k gene into a pituitary cell line (GH3), a faster 

inactivation of voltage-dependent L- and T-type Ca2+ currents was observed 

(Lledo et al., 1992). 
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Several research studies have indicated an important role of Ca2+ in the 

regulation of gene expression in different cells (Drummond et al., 1987; Bading et 

al., 1993; Berridge, 1997a, b; Dolmetsch et al., 1997; Hardingham et al., 1997; 

Kuo et al., 1997; Perez-Terzic et al., 1997), and that the depletion of the 

intracellular Ca2+ stores results in inhibition of protein synthesis (Takuma et al., 

1984; Brostrom et al., 1986; Greber and Gerace, 1995). In addition, it has been 

reported that the presence and activity of some common eukaryotic nuclear 

transcriptional factors (such as c-Jun N-terminal kinase, JNK; nuclear factor of 

activated T cells, NF-AT; and nuclear factor kappa B, NF-kB) were dependent on 

the intracellular Ca2+ regulation in immune and neural cells (Ho et al., 1994; 

Herdegen et al., 1997; Lezoualc’h and Behl, 1998). These nuclear transcription 

factors are involved in the regulation of gene expression that is critical for a large 

number of cellular processes including immune and inflammatory responses, 

cellular growth, development, and apoptosis (Barish, 1998). Gick and Bancroft 

(1985) reported that the addition of ethylene glycol-bis-(β-amino ethyl ether) N, 

N’-tetra-acetic acid (EGTA), a Ca2+-chelator, to the culture media of primary 

cultures of rat pituitary cells inhibited the basal and hormonally stimulated 

synthesis of both prolactin and growth hormone. Also, it was demonstrated that 

subculture of the rat pituitary tumor cell line GH3 in a serum-free Ca2+-free media 

caused the relative synthesis of prolactin to decline below 0.1% of the total 

protein synthesis of these cells (Gautvik and Tashjian, 1973; White et al., 1981), 

while the addition of CaCl2 to this culture medium produced a dose-dependent 

increase in prolactin synthesis (White et al., 1981, 1989; Delidow et al., 1992). 
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Nonetheless, White (1985) observed that calmodulin mediates the effects of Ca2+ 

on prolactin gene expression. Moreover, Preston et al. (1990) and Delidow et al. 

(1992) postulated that there is transcriptional and posttranscriptional regulation of 

the rat prolactin gene by Ca2+. It was also demonstrated that 1,25-(OH)2D3, 

through its interaction with VDR, affects the production of prolactin hormone in 

GH3 cells in a Ca2+-dependent manner (Haug and Gautvik, 1985; Mortensen et 

al., 1993; Haug et al., 1987).  

 

Ca2+ was also reported to link cellular electrical activity to the transcription, 

translation and the insertion of different channels and receptors in the plasma 

membrane (Rosen et al., 1995; Berridge, 1997a, b; Barish, 1998). It is also of 

interest that dietary Ca2+ was shown to control expression of the rat intestinal 

calbindin-D9k gene at both the transcriptional and posttranscriptional levels 

(Freund and Bronner, 1975; Bronner et al., 1986). The effect of Ca2+ on 

calbindin-D9k gene expression has been confirmed by in vitro studies that 

showed increasing the Ca2+ concentration in the medium of fetal rat intestinal 

organ cultures causes an increase in the production of calbindin-D9k mRNA in the 

presence and absence of 1,25-(OH)2D3 (Bréhier and Thomasset, 1990). 

Furthermore, the expression of CaBP28k in the chicken intestine and kidneys was 

reported to be regulated by dietary Ca2+ (Norman et al., 1981; Bar et al., 1990; 

Hall and Norman, 1990). 
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It is well established that Ca2+ plays an important role in the glucose-

induced secretion of insulin (Gilon et al., 1993; Jones and Persaud, 1998; 

Easom, 1999; Lang, 1999; Lingappa and Farey, 2000; Barg et al., 2002; Henquin 

et al., 2002). In the β-cell, glucose is the principal factor that evokes the rise in 

[Ca2+]i  and oscillations of [Ca2+]i that initiate (Gilon and Henquin, 1992; Leech et 

al., 1994) and entrain synchronous pulses in insulin secretion (Gilon et al., 1993). 

In addition, the multifunctional Ca2+/calmodulin-dependent protein kinase II 

(CaMKII) was reported to play an important role in glucose-induced insulin 

secretion (Schulman and Lou, 1989; Easom et al., 1997; Easom, 1999; Tabuchi 

et al., 2000; Yamamoto et al., 2003) and Ca2+-evoked neural exocytosis (Matteoli 

et al., 1992; Maletic-Savatic et al., 1995, 1996). It was also reported that Ca2+ 

omission (Grodsky and Bennett, 1966; Milner and Hales, 1967) or the addition of 

blockers of the L-type voltage-dependent Ca2+-channels abolishes glucose-

stimulated insulin secretion (Devis et al., 1975).  

 

The relationships between diabetes and [Ca2+]i 

Characteristics of human diabetics and animal models of diabetes indicate 

that both types 1 and 2 diabetes mellitus may have altered [Ca2+]i regulation as 

an underlying cause (Draznin, 1988; Levy et al., 1994; Pick et al., 1998). Ca2+-

mediated apoptosis could lead to the development of type 1 diabetes mellitus 

(insulin-dependent diabetes) (Ankarcrona et al., 1994; Kaneto et al., 1995; 

Hoorens et al., 1996; Loweth et al., 1996; Kurrer et al., 1997; O’Brien et al., 1997; 

Rabinovitch et al., 2001). There is experimental evidence that an elevated [Ca2+]i 
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and apoptosis are important elements in the process of immune system-

mediated β-cell death in type 1 diabetes. Juntti-Berggren et al. (1993) found that 

serum from patients with type 1 diabetes led to increased Ca2+ influx through L-

type Ca2+ channels and that the resulting increase in [Ca2+]i-initiated apoptosis in 

the cultured β-cell line RINm5F. It has been suggested that an abnormally 

elevated level of [Ca2+]i  might be part of the signaling cascade of events 

occurring in the immune system-mediated β-cell death in type 1 diabetes 

(Casteels et al., 1997; Kurrer et al., 1997), including the nonobese diabetic 

(NOD) mouse (O'Brien et al., 1997). In support of these findings, Caraher and 

Newsholme (1996) reported that an L-type Ca2+ channel antagonist, nifedipine, 

markedly reduced immune system-mediated death of β-cell line G1-CRI cells. 

 

In the streptozotocin-induced (STZ) diabetic rat and diabetic rat 

pregnancy, the circulating 1,25-(OH)2D3 level was significantly lowered. This was 

associated with low placental Ca2+ and calbindin-D9k content (Schneider et al., 

1977; Husain et al., 1994; Verhaeghe et al., 1999; Hamilton et al., 2000), and 

maternal hypercalciuria and hyperphosphaturia, but normocalcemia (Nyomba et 

al., 1985; Anwana and Garland, 1990; Birdsey et al., 1995; Ward et al., 2001), 

compared to normal control rats. In addition, these diabetic rats showed low fetal 

tibial Ca2+ content (Uriu-Hare et al., 1985; Mimouni et al., 1988; Verhaeghe et al., 

1990, 1999; Ward et al., 2001) and reduced serum osteocalcin (a biochemical 

marker of osteoblast function and bone formation) (Verhaeghe et al., 1990; Ward 

et al., 2001), whereas the levels of urinary deoxypyridinoline cross links (the 
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biochemical marker for bone resorption) were not significantly altered (Ward et 

al., 2001). It is of interest that the diabetic maternal duodenal calbindin-D9k 

content was significantly lowered which, in turn, led to reduced duodenal Ca2+ 

absorption (Verhaeghe et al., 1990; Stone et al., 1990, 1991; Verhaeghe et al., 

1999; Ohara, 2000; Ward et al., 2001). The duodenal VDR was up-regulated, 

compared to normal control rats. The diabetic rats had markedly increased food 

and Ca2+ intake, so that their net Ca2+ balance remained positive despite a 13-

fold increase in urinary Ca2+ excretion and a decrease in active duodenal Ca2+ 

absorption (Nyomba et al., 1989; Ohara, 2000). It was suggested that the low 

circulating level of 1,25-(OH)2D3 prevented the amplification of 1,25-(OH)2D3’s 

action, as evidenced by the reduction in the calbindin-D9k level, despite the up-

regulation of duodenal VDR as compared to that of controls (Stone et al., 1990, 

1991). All of the above mentioned parameters were normalized in the diabetic 

rats when they were treated early with either exogenous insulin or given 

subcutaneous injections of 1,25-(OH)2D3 (Nyomba et al., 1985; Stone et al., 

1990; Husain et al., 1994; Orihuela et al., 1999; Verhaeghe et al., 1999; Ohara, 

2000). Placental calbindin-D9k expression was the exception, because it is 

distinctly regulated by estrogen and progesterone during pregnancy and not by 

1,25-(OH)2D3 in that specific tissue (Glazier et al., 1995; Verhaeghe et al., 1999; 

An et al., 2004). Delayed insulin treatment of type 1 diabetes mellitus only partly 

rectifies the hypercalciuria indicating that some irreversible changes occurred in 

the kidney due to the prolonged insulin insufficiency that leads to a defect in the 

renal ability to conserve Ca2+ (Hoskins and Scott, 1984). However, the VDR 
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levels in the kidneys were not changed and renal CaBP28k was normal in these 

diabetic rats (Stone et al., 1990, 1991; Ward et al., 2001). Moreover, in humans 

hypercalciuria (Raskin et al., 1978; Malone et al., 1986; Hough, 1987; Malone et 

al., 1987; Harangi et al., 1989; Kodama et al., 1992; Gunczler et al., 1996), 

hyperphosphaturia (Malone et al., 1986), normocalcemia, hypomagnesemia, and 

osteopenia (reduced bone mass) were often found accompanying type 1 

diabetes mellitus (Selby, 1988; Hough, 1987; Al-Qadreh et al., 1996). The altered 

regulation of [Ca2+]i has also been linked to the occurrence of other diabetic 

complications, such as micro- and macro-vascular disease (Levy et al., 1994). It 

has been suggested that the glomerular hyperfiltration associated with diabetes 

delivers an increased load of Ca2+ to renal tubules, which may itself cause an 

increased rate of excretion of Ca2+. Also the fractional Ca2+ reabsorption is 

significantly lower in diabetic than in control rats, indicating that an actual tubular 

defect may be present in the diabetic rats (Ward et al., 2001). Serum levels of 

1,25-(OH)2D3 but not 25-(OH)D3 were significantly reduced during STZ diabetes, 

indicating that the fall in 1,25-(OH)2D3 was not due to a lack of substrate (Ward et 

al., 2001). Together, these data indicate that the reduced bone formation and 

mineralization could account for the hypercalciuria with normocalcemia and 

explain, at least in part, the progressive osteopenia seen in diabetic patients 

(Ward et al., 2001). In addition or alternatively, osmotic diuresis and increased 

dietary calcium and carbohydrate intake secondary to hyperphagia (Anwana and 

Garland, 1990) can account for the hypercalciuria (Ward et al., 2001). However, 

control of osmotic diuresis with insulin therapy, and hyperphagia with paired 
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feeding only partly corrects the hypercalciuria (Guruprakash et al., 1988), which 

indicates that changes in 1,25-(OH)2D3 are specific to the diabetic condition 

(Ward et al., 2001). 

 

On the other hand, another group of researchers reported that the serum 

Ca2+ levels were markedly reduced in untreated streptozotocin-induced diabetic 

fetuses and pregnant rats (Verhaeghe et al., 1986; Ohara, 2000). Infants born to 

those mothers had an increased incidence of hypocalcemia (Tsang et al., 1972; 

Mimouni et al., 1986; Verhaeghe et al., 1986; Mimouni et al., 1990), in addition to 

a decreased bone mineral content that was associated with retarded skeletal 

development as compared with normal infants (Verhaeghe et al., 1988; Lapillone 

et al., 1997). Further studies using a Ca2+-deprived diet will help in understanding 

the contribution of the gastrointestinal tract towards diabetic hypercalciuria. 

 

The selection of an experimental animal model for studying the 

physiological factors that might be associated with non-insulin-dependent 

diabetes mellitus (NIDDM, type 2 diabetes) could be appropriately done by using 

the chicken. The low β/α cell ratio in the chicken mimics that seen in type 2 

diabetes (Rahier et al., 1983), and the chicken exhibits higher basal blood 

glucose levels, lower insulin output in response to glucose stimulation (King and 

Hazelwood, 1976; Rideau et al., 1986; Rideau and Simon, 1989, 1992; Ruffier et 

al., 1996), and shows a marked resistance to exogenous insulin injections 

compared to mammals (Naber and Hazelwood, 1977; Hazelwood, 1984). 
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However, the mechanisms underlying the type 2 diabetes-like 

characteristics of the chicken are not clear. The expression of CaBP28k has been 

detected before in the whole chicken pancreas and was reported to be higher 

than that found in the rodent pancreas. But the pattern of CaBP28k expression in 

the individual pancreatic lobes and whether there is any spatial relationships with 

insulin in the β-cells have not been studied before. Earlier research studies on 

the CaBP28k-KO, as compared to that of the WT mice islets, were done using KCl 

as a secretagogue. But until our recent publication (Parkash et al., 2002) there 

was no previous research work reported using glucose, the major physiological 

stimulant of β-cell insulin secretion, as a secretagogue to investigate the 

postulated role of CaBP28k in the pancreatic β-cells. Moreover, we have not found 

any published studies on the effects of in vitro CaBP28k-ablation on the insulin 

secretory responses of cultured β-cell lines. In addition, the study of the genomic 

effects of in vitro CaBP28k-ablation in the cultured β-cell lines was not done 

before. Thus, our studies on RIN1046-38 cells using CaBP28k-antisense 

oligonucleotides transfection were the first. 

 

This dissertation has three main goals. The first is to gain an 

understanding of the expression pattern of CaBP28k in the chicken pancreas and 

to explore its spatial relationships in the β-cell. The second goal is to identify the 

influence of CaBP28k-ablation on the dynamics of [Ca2+]i in the β-cells of mice. 

The third goal is an attempt to elucidate the genomic and non-genomic effects of 

in vitro CaBP28k-ablation in a cultured β-cell line. The work here will be presented 
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as three separate chapters. Experiments will first be described using the chicken 

as an avian model to investigate the expression of CaBP28k and insulin in the 

pancreas. In chapter two, our studies will examine the change in [Ca2+]i 

responses of the CaBP28k-KO mice pancreatic islets to glucose stimulation, as 

compared to the wildtype islets, that we have published (Parkash et al., 2002). 

Finally, the third chapter will highlight the effects on the gene expression profile 

and insulin secretory responses from a cultured rat insulinoma cell line 

(RIN1046-38 cells) of using antisense oligonucleotides transfection to induce 

CaBP28k-ablation in vitro. 
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CHAPTER 1 

 

STUDIES ON THE EXPRESSION OF CALBINDIN-D28K AND 

INSULIN IN PANCREATIC β-CELLS USING AN AVIAN MODEL 
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SUMMARY 

 

In chickens, the pancreatic β/α cell ratio is lower and the glucose level in 

the blood is higher than in mammals. In addition, resistance to insulin is present. 

Thus, in a number of ways the chicken simulates type 2 (non-insulin-dependent) 

diabetes mellitus (NIDDM) and can serve as a useful model for study. Calbindin-

D28k (CaBP28K) is a member of a family of high affinity calcium-binding proteins 

that regulate free intracellular calcium ion concentration and may play a 

regulatory role in pancreatic β-cells. We examined the occurrence of CaBP28K 

and insulin in chicken pancreatic lobes by Western blotting, 

immunohistochemistry, and confocal microscopy. Insulin concentration of 

chicken pancreatic lobes was measured by enzyme-linked immunosorbent assay 

(ELISA). Western blot analysis revealed the highest levels of expression of 

CaBP28K in ventral and dorsal lobes, while the lowest expression was in the 

splenic lobe. Similarly, the ELISA assays showed the highest insulin 

concentration to be in dorsal and ventral lobes, while the lowest concentration 

was in the splenic lobe. Immunohistochemistry detected a greater intensity of 

reaction product for localization of CaBP28K than insulin in pancreatic islets. 

Confocal microscopy studies demonstrated localization of CaBP28K to β-cells of 

chicken pancreas with a significant positive correlation with insulin localization (r 

= 0.87; p < 0.001). The strong colocalization of CaBP28K with insulin in chicken β-

cells suggests that CaBP28K plays a physiological role in these cells and may 

contribute to the NIDDM-like characteristics of the chicken. 
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INTRODUCTION 

 

Chickens normally have a relatively high insulin-release threshold and low 

insulin output in response to glucose stimulation (King and Hazelwood, 1976; 

Rideau et al., 1986; Rideau and Simon, 1989, 1992; Ruffier et al., 1996). Several 

previous studies have found that relative to mammals, the chicken exhibits higher 

basal blood glucose levels and shows a marked resistance to exogenous insulin 

(Naber and Hazelwood, 1977; Hazelwood, 1984). In birds, glucagon plays a 

dominant role, as compared with insulin, in maintaining glucose homeostasis 

(Epple and Brinn, 1987; Hazelwood, 1973, 1984). Therefore, birds have higher 

levels of plasma glucagon and glucose than are found in mammals (Epple and 

Brinn, 1987). Moreover, the chicken pancreas concentration of somatostatin is 

approximately 20-fold higher than in the rat pancreas (Weir et al., 1976). 

Somatostatin can potently inhibit both insulin and glucagon release (Guilleman 

and Gerich, 1976; Koerker et al., 1974). In the chicken the β/α cell ratio is 

decreased, compared to mammals, suggesting that these birds are in a catabolic 

mode (Hazelwood, 1984; Epple and Brinn, 1987; Rawdon, 1998).  

 

The low β/α cell ratio in the chicken mimics that seen in non-insulin-

dependent diabetes mellitus (NIDDM, type 2) (Rahier et al., 1983). On the other 

hand, chickens are more resistant to the diabetogenic action of β-cytotoxic 

agents such as streptozotocin, to naturally occurring insulin-dependent diabetes 

mellitus (IDDM, type 1) and to the induction of diabetes in vivo (Langslow et al., 
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1970; Meglasson and Hazelwood, 1982). A recent study hypothesized that the 

hyperglycemia and insulin resistance observed in chickens are associated with a 

possible deficiency of the insulin-responsive glucose transporter, GLUT4 (Seki et 

al., 2003). Thus, the hyperglycemia and insulin resistance found in the chickens 

could be due to all of the factors mentioned above interacting together. Since the 

β/α cell ratio is low in the chicken pancreas, it is important to identify and 

characterize the different areas of the pancreas in order to elaborate their 

structure/function relationships. If there are areas having a greater abundance of 

β-cells, then this may make them a good model for transplantation studies. 

 

The chicken pancreas is composed of four principal lobes: dorsal, ventral, 

third, and splenic (Mikami and Ono, 1962; Mikami et al., 1986). At the cellular 

level, the chicken pancreas has at least four types of endocrine cells: alpha (α), 

beta (β), delta (δ), and PP-cells (Rawdon and Andrew, 1979; Roth et al., 1982). 

The hormones produced and secreted by these cells are: α or A, glucagon; β or 

B, insulin; δ or D, somatostatin; and F or PP, pancreatic polypeptide (Larsson et 

al., 1974; Alumets et al., 1978; Rawdon and Andrew, 1979; Andrew and Rawdon, 

1980; Tomita et al., 1985). Chicken pancreatic islets are of three classes: β-cell-

rich, β-cell-poor, and mixed-type islets, based on their cellular composition 

(Kobayashi and Fujita, 1969; Watanabe et al., 1975; Mikami et al., 1986). The β-

cell-rich islets contain predominantly β-cells (β-islets), in addition to δ-cells and 

PP-cells. The β-cell-poor islets contain predominantly α-cells (α-islets), in 
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addition to δ-cells and a small number of β-cells (Mikami and Ono, 1962; Weir et 

al., 1976; Ruffier et al., 1998). 

 

Human diabetics and animal models of diabetes indicate that both type 1 

and 2 diabetes mellitus may have altered regulation of the concentration of 

intracellular free calcium ions, [Ca2+]i, as an underlying cause or contributing 

factor (Draznin, 1988; Levy et al., 1994; Pick et al., 1998). Previous studies 

indicate that calcium-mediated apoptosis could lead to the development of 

insulin-dependent diabetes mellitus (IDDM, type 1) (Ankarcrona et al., 1994; 

Kaneto et al., 1995; Hoorens et al., 1996; Loweth et al., 1996; Kurrer et al., 1997; 

O’Brien et al., 1997). CaBP28K is a calcium-binding protein with a relative 

molecular mass of 28,000 Daltons and is vitamin D-dependent in some cells and 

organs, e.g., kidney (Sergeev et al., 1998). It belongs to a family of high affinity 

calcium-binding proteins that play important regulatory roles in cells, including the 

regulation of [Ca2+]i. Other members of this diverse family include calmodulin, 

calbindin-D9k, parvalbumin, and S-100 proteins (Christakos et al., 1989; 

Heizmann and Hunziker, 1991). CaBP28K is predominantly a cytosolic protein that 

was initially detected in the chick duodenum (Wasserman and Taylor, 1966). It is 

also found in many other tissues, including kidneys, brain, bones, parathyroid 

glands, and pancreatic islets (Buffa et al., 1989; Christakos et al., 1989; Pochet 

et al., 1989; Rhoten and Christakos, 1990), and is evolutionarily highly conserved 

in various vertebrates (Rhoten et al., 1985, 1986; Parmentier et al., 1987). 

CaBP28K has been shown to have a variety of roles in different organs. It acts as 
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a Ca2+ carrier in the intestine and kidneys (Bredderman and Wasserman, 1974; 

Feher, 1983; Bronner, 1989; Christakos et al., 1989), while it has a protective 

function against Ca2+ toxicity in the brain (Mattson et al., 1991, 1995; Guo et al., 

1998). Recent studies with mammalian pancreatic islets suggest that CaBP28K 

modulates insulin secretion (Sooy et al., 1999), and protects β-cells against 

cytokine-induced apoptosis (Rabinovitch et al., 2001; Riachy et al., 2002; 

Christakos et al., 2003a). Other studies done on β-cell lines demonstrated a large 

increase in cytoplasmic Ca2+ buffering capacity in β-cells with elevated levels of 

CaBP28K (Rhoten and Sergeev, 1994; Reddy et al., 1997). Islets of rodents have 

a very low CaBP28K content compared to chicken islets, and are less resistant to 

injury and to the diabetogenic action of β-cytotoxins (Buffa et al., 1989; Pochet et 

al., 1989; Malaisse et al., 1990). In addition to the quantity of CaBP28K in the 

pancreatic islets, the intracellular localization of CaBP28K in the β-cells may be 

important, as it is in the absorptive cells of the intestine. In the intestinal 

absorptive cell cytoplasm, CaBP28K was localized inside small vesicles and 

lysosome-like structures, and some CaBP28K was also associated with 

filamentous elements (microtubules and tubulin) (Nemere et al., 1991). CaBP28K 

localization is important for its function as a Ca2+ carrier across the intestinal 

epithelial cell from the luminal brush border to the basolateral membrane. Both 

CaBP28K and tubulin were found to undergo dramatic changes in their cellular 

localization as a consequence of intestinal calcium transport (Nemere et al., 

1991). The cellular localization of CaBP28K in the chicken pancreatic β-cells has 

not been determined. It is also not known if CaBP28K and insulin are spatially 
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related in the cytosol or if there is a greater predominance of CaBP28K expression 

in specific chicken pancreatic lobes. 

 

This study using an avian model explores the expression of CaBP28K and 

insulin in different pancreatic lobes and investigates the spatial relationships of 

insulin and CaBP28K in the β-cell. 
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MATERIALS AND METHODS 

 

Animals 

Thirty-nine White Leghorn cockerels were obtained on the day of hatching 

and raised on normal avian diet. Animals of 2 – 3 weeks of age were included in 

this study. The animal body weights were 104 – 230 grams. Individual lobes of 

the chicken pancreas were studied by Western blotting to determine CaBP28k 

expression or by ELISA to measure insulin levels. Histological sections were 

dually labeled to study the expression of both proteins. We conducted the 

experiments in accordance with the accepted standards of humane animal care 

as defined by the Institutional Animal Care and Use Committee of the Joan C. 

Edwards School of Medicine at Marshall University, WV, USA. 

 

Materials 

Monoclonal mouse anti-CaBP28K, goat anti-guinea pig IgG-FITC 

conjugate, goat anti-rabbit IgG-peroxidase conjugate, goat anti-mouse biotin 

conjugate, goat anti-guinea pig biotin conjugate, normal goat serum, bovine 

serum albumin, protease inhibitor cocktail, Tween 20®, 3,3’-diaminobenzidine 

tetrahydrochloride (DAB), and acrylamide were purchased from Sigma Chemical 

Company (St. Louis, MO). Goat anti-mouse IgG-Texas Red conjugate was 

obtained from Jackson ImmunoResearch Laboratories, Inc. (West Grove, PA). 

SlowFade™ Antifade kit was ordered from Molecular Probes, Inc. (Eugene, OR). 

Guinea pig anti-porcine insulin IgG, and rabbit anti-CaBP28K were obtained from 
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Chemicon International, Inc. (Temecula, CA). Recombinant rat CaBP28K purified 

protein was purchased from Swant® Swiss Antibodies Company (Bellinzona, 

Switzerland). Streptavidin-horseradish peroxidase (HRP) was from Amersham 

International PLC. (Buckinghamshire, UK). Bradford protein reagent and low-

range prestained SDS-PAGE standards were from Bio-Rad Laboratories, Inc. 

(Hercules, CA). NitroBind™ 0.45 µm unsupported pure nitrocellulose transfer 

membranes were purchased from GE Osmonics (Minnetonka, MN). 

SuperSignal® West Pico Chemiluminescent substrate for detection of HRP was 

from Pierce Biotechnology Inc. (Rockford, IL). Medical X-ray film (Super RX) was 

from Fujifilm Medical Systems, Inc. (Stamford, CT). All chemicals and reagents 

were of analytical grade. 

 

Western blotting 

Chickens were sacrificed and their pancreata were dissected according to 

their morphological lobation (dorsal, ventral, third, and splenic), frozen quickly on 

dry ice, and stored at -80°C until used. Each lobe was individually homogenized 

in protein lysis buffer [1% Nonidet P-40 (NP-40), 1% sodium deoxycholate, 0.1% 

sodium dodecyl sulfate (SDS), 0.15 M NaCl, 0.01 M sodium phosphate, pH 7.2, 2 

mM ethylenediamine tetra-acetic acid (EDTA), and 1% protease inhibitor 

cocktail]. Then, burst sonication was done (< 10 seconds), and samples were 

centrifuged at 14,000 × g for 20 min. at 4°C. The supernatant solution was 

obtained and total protein estimated using the Bradford method (Bradford, 1976). 

Equal amounts of total protein from each pancreatic lobe were loaded per lane in 
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12% SDS polyacrylamide gels. CaBP28K protein (Swant®) was used as a 

standard. Low-range prestained SDS-PAGE standards (Bio-Rad) were also 

used. SDS polyacrylamide gel electrophoresis (PAGE) was performed. After 

protein transfer, nitrocellulose sheets were incubated in Tris-buffered saline with 

Tween 20® and 5% non-fat dry milk to block non-specific binding sites (Spinola 

and Cannon, 1985). The nitrocellulose sheets were incubated with specific 

primary antibodies against CaBP28K, and then subsequently washed several 

times in Tris-buffered saline with Tween 20®. Peroxidase-conjugated secondary 

antibodies were then applied (Towbin et al., 1979). Protein bands were visualized 

using a Pierce chemiluminescent kit. X-ray autoradiograms were scanned and 

their images were saved. The bands representing different pancreatic lobes were 

quantitated for their relative densities using the gel analysis densitometry tool of 

NIH image analysis software – Image J, version 1.31c [a public domain image 

processing and analysis program using optical density standards developed by 

Wayne Rasband at the Research Services Branch (RSB) of the National 

Institutes of Health (NIH) http://rsb.info.nih.gov/ij/ (Humphries et al., 1997; 

Melrose et al., 2001; Sage and Unser, 2001)]. 

 

Enzyme-linked immunosorbent assays 

Chicken pancreatic lobes were extirpated and individually cut into small 

pieces and insulin was extracted by incubation overnight in acidic ethanol (pH 

1.7) at -20°C. The extracts were centrifuged, the supernatants collected, and the 

minces extracted again in acidic ethanol (pH 1.7) at -20°C overnight. Extracts 
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were centrifuged and the supernatants collected, then added to the previous 

ones as described by Kimmel et al. (1968) and Rhoten (1983). Chicken insulin 

standards (Eli Lilly & Company, Indianapolis, IN) were used to build a standard 

curve (0 – 200 pg), and the insulin concentration of pancreatic extracts was 

measured using a competitive enzyme-linked immunosorbent assay (ELISA) 

protocol modified in our laboratory from that of Kekow et al. (1988), and Webster 

et al. (1990). 

 

Falcon 35-3915 pro-bind™ 96-well polystyrene microtiter assay plates 

(Becton Dickinson and Company, Franklin Lakes, NJ) were coated overnight at 

4°C with rabbit anti-guinea pig IgG (Sigma Chemical Company, St. Louis, MO) in 

carbonate-bicarbonate coating buffer. After washes in phosphate incubation 

buffer, guinea pig anti-insulin (607/22) [a gift from the late Dr. Peter Wright, 

Indianapolis, IN] prepared in phosphate incubation buffer was added to the wells 

and incubation continued for three hours at 37°C. The plates were then washed, 

and the standards, quality controls, and samples were added to appropriate wells 

in triplicate and incubated overnight at 4°C. Peroxidase-labeled insulin (Sigma 

Chemical Company, St. Louis, MO) was then added to the wells, and the plates 

were incubated for 4 hours at 4°C. After washes, substrate solution containing O-

phenylenediamine dichloride (Sigma Chemical Company, St. Louis, MO) as a 

chromagen was added to the wells. The plates were incubated at room 

temperature for one hour. Then, stop solution containing 1M H2SO4 was added to 

the wells and after one hour at room temperature, the absorbance at 490 nm of 
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the wells was read using µQuant™ microplate spectrophotometer (Bio-Tek 

Instruments, Inc., Winooski, VT) and the data were interpreted using KCjunior™ 

data analysis software, version 1.41.4 (Bio-Tek Instruments, Inc., Winooski, VT). 

 

Immunohistochemistry and light microscopy 

Chicken pancreata were fixed in freshly prepared 4% paraformaldehyde in 

Dulbecco’s phosphate-buffered saline (PBS) [pH 7.2]. Six-micron sections of 

paraffin-embedded lobes were prepared for both light microscopic 

immunohistochemistry and confocal microscopy immunofluorescence studies. 

Sections for immunohistochemistry were treated with 3% hydrogen peroxide in 

PBS to suppress pancreatic endogenous peroxidase activity, then, incubated in 

3% normal goat serum – 2% bovine serum albumin in Tris-buffered saline to 

block non-specific binding sites. Immunolabeling was done using specific primary 

antibodies against insulin and CaBP28K. After several washes in 3% normal goat 

serum – 2% bovine serum albumin in Tris-buffered saline, biotinylated secondary 

antibodies were applied. A streptavidin-biotin horseradish peroxidase protocol 

was used, and immunoreactions were visualized using DAB substrate medium 

as a chromagen. Quantitative immunohistochemical image analysis was done 

using the densitometry tool of the NIH analysis software – Image J, version 1.31c 

(Mize, 1994; Acarin et al., 1997; Wu et al., 1997; Bisland et al., 1999). 
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Laser scanning confocal microscopy 

Six-micron chicken pancreatic sections were blocked with 3% normal goat 

serum – 2% bovine serum albumin in Tris-buffered saline, then labeled with 

specific primary antibodies against insulin and CaBP28K. The pancreatic sections 

were subsequently washed several times with 3% normal goat serum – 2% 

bovine serum albumin in Tris-buffered saline. Fluorescence-labeled secondary 

antibodies tagged with fluorescein isothiocyanate (FITC) (for insulin) and Texas 

Red (for CaBP28K) were then added. After several washes in 3% normal goat 

serum – 2% bovine serum albumin in Tris-buffered saline, the sections were then 

treated with SlowFade™ Antifade kit. Confocal images were acquired using a Bio-

Rad MRC 1024 Laser Scanning Confocal Microscope (Bio-Rad, Microscopy 

Division, Hemel Hempstead Herts, England). Confocal image acquisitions were 

carried out using the built-in Bio-Rad Laser Sharp 3.2 software. Optical sections 

were taken every 0.3 micron. Confocal image processing was done using 

Confocal Assistant software, version 4.02 (Build 101) [Todd Clark Brelje], and the 

insulin and CaBP28K pixel intensities in the images were evaluated using the 

image correlation analysis tool of the NIH software – Image J software, version 

1.31c (Brown et al., 1998; Amin et al., 2000; Sims et al., 2003). 

 

Statistical analysis 

Data are presented as the mean ± standard error of the mean (SEM), 

percentages, correlation coefficient (r). The data were analyzed for significance 

with the unpaired Student’s t test (one-tailed) with a significance level of 0.05, 

 36



 

using the statistical software Sigma Stat, version 2.03 from SPSS Inc. (Chicago, 

IL). 
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RESULTS 

 

Morphology of the chicken pancreas 

The avian pancreas is a compound organ nestled between the limbs of 

the U-shaped loop of the duodenum (Figure 1). It is composed of four lobes of 

unequal sizes: dorsal, ventral, third, and splenic (Mikami and Ono, 1962; Weir et 

al., 1976; Tomita et al., 1985; Mikami et al., 1986). A graphical representation of 

the difference in the wet mass of the pancreatic lobes is shown in Figure 2. We 

found some variation in the mass of the pancreatic lobes. The range of wet 

masses was as follows: dorsal 403.04 – 510.90 mg, ventral 203.62 – 287.62 mg, 

third 114.49 – 143.77 mg, and splenic 80.99 – 123.92 mg. Mean wet masses in 

mg (± SEM) were 438.02 ± 74.24 for the dorsal lobe, 347.55 ± 36.00 for the 

ventral lobe, 124.12 ± 15.79 for the third lobe, and 107.95 ± 6.85 for the splenic 

lobe. We also found that the third lobe has the largest number of pancreatic 

ducts (data not shown).   

 

Western blot analysis 

Immunoblotting revealed consistent variations in the content of CaBP28K in 

different lobes of the chicken pancreas. A single immunoreactive band of about 

28,000 Daltons was visualized in the different pancreatic lobe homogenates 

(Figure 3). Densitometry analysis of the Western blots showed that both the 

ventral and dorsal lobes had a relative higher CaBP28K expression than that of 

the splenic lobe of chicken pancreas (Figure 4). Taken together, the dorsal and 
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ventral lobes had 78% of the total CaBP28K expressed in the chicken pancreas 

(Figure 5). 

 

Insulin ELISA 

We measured the insulin concentration in the extracts taken from the 

different lobes of the chicken pancreas by using ELISA. The different pancreatic 

lobes had varying levels of insulin. The insulin concentrations of the dorsal and 

ventral lobes were significantly higher than the third and splenic lobes of chicken 

pancreas (Table 1 and Figure 6). The insulin concentration in the whole chicken 

pancreas ranged from 10.59 to 15.41 ng/mg wet mass (n = 5) [Tables 2A and 

2B]. We estimated the mean insulin concentration of the whole chicken pancreas 

to be 12.37 ± 0.96 ng/mg wet mass (n = 5). 

 

The range of relative percentages of insulin content in the different 

pancreatic lobes was as follows: dorsal (45.9 – 72.4%), ventral (19.4 – 43.7%), 

third (4.0 – 9.4%), and splenic (0.2 – 6.2%) as shown in Tables 2A and 2B. The 

variations in insulin content among the different lobes of chicken pancreas are 

shown in Figure 7. 

 

Light microscopy immunohistochemistry 

We localized CaBP28K immunoreactive material in the chicken pancreas 

using a specific monoclonal antiserum against CaBP28K (Figure 8b). Cells 

immunopositive for CaBP28K (as indicated by the presence of the reaction 
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product for peroxidase) were observed in all four lobes, but with varying intensity 

of reaction product in the different lobes. CaBP28K staining was most intense in 

the ventral and dorsal lobes, while other pancreatic lobes showed less 

immunoreactivity. Our immunohistochemical data showed reaction products 

positive for the presence of CaBP28K in the islets of Langerhans, while the acinar 

tissue of the chicken pancreas did not show any immunoreactivity (Figure 8b). 

Controls for antibody specificity consisted of absorption of the CaBP28K mouse 

monoclonal antibody with an excess of recombinant rat CaBP28K purified protein 

and were negative (Figure 8a). 

 

We also examined the localization and distribution of insulin 

immunoreactivity in the chicken pancreas. We found that the most intense 

labeling for insulin was in the ventral and dorsal lobes (Figure 8c), while other 

pancreatic lobes showed less immunoreactivity. Moreover, our quantitative 

immunohistochemical analysis showed that the intensity of labeling for CaBP28K 

in the ventral lobe pancreatic islets was higher than that for insulin, but the 

difference was not statistically significant (Figure 9). 

 

Confocal microscopy immunofluorescence 

To determine a more exact localization of CaBP28K in chicken pancreatic 

islets, laser scanning confocal microscopy was used. Fluorescence-labeled 

immunopositive cells for both CaBP28K and insulin were observed in all four 

lobes, but with varying intensity of fluorescence. The fluorescent intensity for both 
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CaBP28K and insulin was highest in the ventral and dorsal lobes, while other 

pancreatic lobes showed less immunofluorescence. In Figure 10, CaBP28K 

immunoreactivity is displayed in red (secondary antibodies conjugated with 

Texas Red), a; while insulin immunoreactivity is displayed in green (secondary 

antibodies conjugated with FITC), b; in an islet of the ventral lobe of chicken 

pancreas. The merged image (Figure 10c) indicates substantial areas of 

colocalization (green + red = yellow). We further examined the islets from the 

ventral lobe of the chicken pancreas for a relationship between insulin and 

CaBP28K. Insulin and CaBP28K pixel intensities in the images were studied by 

using the image correlation analysis tool of Image J software, and the resulting 

data were statistically analyzed and found to be positively correlated (r = 0.87) 

(Figure 11). This positive correlation between insulin and CaBP28K pixel 

intensities was found in most of the ventral lobe pancreatic islets and was 

determined to be highly significant (p < 0.001) as seen in the correlation plot 

(Figure 11). 
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Figure 1. Schematic dorsal view showing the morphology of the chicken 

pancreas (modified from Mikami and Ono, 1962). The chicken pancreas is 

formed of four different lobes: dorsal, ventral, third, and splenic. The dorsal lobe 

is the largest in size followed by the ventral, then the third, while the splenic lobe 

is the smallest. 
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Figure 2. Differences in the wet mass (mg) of the lobes of the chicken pancreas. 

The bars reflect the mean ± SEM values for the lobes of chickens that are 

included in ELISA assays in Figure 6.  
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igure 3. Western blot analysis showing CaBP28K expression in the different 

CaBP28k 
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lobes of chicken pancreas (left panel). Proteins in 600 µg of cytoplasmic extracts 

from different lobes of chicken pancreas were separated by SDS-polyacrylamide 

gel electrophoresis and transferred to nitrocellulose sheets. The sheets were 

probed with a polyclonal rabbit anti-CaBP28K antibody. 1.5 µg of recombinant 

CaBP28K pure protein (Swant®) was used as a standard (right panel). CaBP28K 

protein was visualized as an approximately 28 kDa single immunoreactive band 

using the chemiluminescent peroxidase method. [a representative experiment is 

shown]. 
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Figure 4. Differential expression of CaBP28K in the chicken pancreas. Graphical 

representation of densitometry analysis of the Western blots data showed that 

each of the ventral and dorsal lobes had a relative higher CaBP28K expression 

than that of the splenic lobe of chicken pancreas [representative experiment]. 
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Figure 5. Relative percentage of CaBP28K expression in the different lobes of 

chicken pancreas. Graphical representation of the relative percentage of 

CaBP28K expression was done based on Western blot densitometry data 

[representative experiment]. Together, the dorsal and ventral lobes represent 

78% of the CaBP28K expression in the chicken pancreas. 
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Table 1. Insulin concentration in the different lobes of the chicken pancreas. 

Lobes Wet mass 

(mg) 

[mean ± SEM] 

Insulin concentration 

(ng/mg wet mass) 

[mean ± SEM] 

Number of 

samples 

Dorsal 438.02 ± 74.24 14.45 ± 2.59 a,b,c 8 

Ventral 347.55 ± 36.00 8.49 ± 2.40 a,d,e 14 

Third 124.12 ± 15.79 5.99 ± 0.96 b,d,f 8 

Splenic 107.95 ± 6.85 4.58 ± 1.43 c,e,f 6 

 

Comparisons between insulin concentrations of different pancreatic lobes were 

carried out by unpaired Student’s t test (one-tailed): 

a Dorsal ν Ventral, p = 0.06 

b Dorsal ν Third, p < 0.05 

c Dorsal ν Splenic, p < 0.005 

d Ventral ν Third, p = 0.09 

e Ventral ν Splenic, p < 0.05 

f Third ν Splenic, p = 0.21 
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Figure 6. Insulin concentration in the different lobes of chicken pancreas. 

Graphical representation of the insulin concentration as measured by ELISA 

(mean values ± SEM). The highest insulin concentration is in the dorsal lobe and 

the lowest insulin concentration is in the splenic lobe of chicken pancreas. 
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Table 2A. Insulin content in the lobes of individual chicken pancreases. 

Chicken 

I.D. 

Lobes Lobe weight 

(mg) 

Insulin conc. 

(ng/mg wet mass) 

Total insulin content 

(µg) 

1 Dorsal 500.23 18.56 9.28 (57.8%) 

 Ventral 287.62 17.20 4.95 (30.9%) 

 Third 130.05 6.31 0.82 (5.1%) 

 Splenic 123.92 8.05 1.00 (6.2%) 

 Whole 

pancreas 

1041.82 15.41 16.05 

2 Dorsal 403.04 11.94 4.81 (45.9%) 

 Ventral 286.63 15.99 4.58 (43.7%) 

 Third 143.77 6.86 0.99 (9.4%) 

 Splenic 98.32 1.00 0.10 (1.0%) 

 Whole 

pancreas 

931.76 11.25 10.48 

3 Dorsal 420.00 14.98 6.29 (66.1%) 

 Ventral 238.30 9.15 2.18 (22.9%) 

 Third 117.68 4.87 0.57 (6.0%) 

 Splenic 108.27 4.38 0.47 (5.0%) 

 Whole 

pancreas 

884.25 10.77 9.52 
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Table 2B. Insulin content in the lobes of individual chicken pancreases. 

Chicken 

I.D. 

Lobes Lobe weight 

(mg) 

Insulin conc. 

(ng/mg wet mass)

Total insulin content 

(µg) 

4 Dorsal 419.89 14.89 6.25 (71.4%) 

 Ventral 203.62 8.59 1.75 (20.0%) 

 Third 122.99 6.01 0.74 (8.4%) 

 Splenic 80.99 0.22 0.02 (0.2%) 

 Whole 

pancreas 

827.49 10.59 8.76 

5 Dorsal 510.90 19.27 9.85 (72.4%) 

 Ventral 246.64 10.66 2.63 (19.4%) 

 Third 114.49 4.78 0.55 (4.0%) 

 Splenic 110.09 5.19 0.57 (4.2%) 

 Whole 

pancreas 

982.12 13.84 13.60 
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Figure 7. Variability of the insulin content in the different lobes of chicken 

pancreas. This graphical representation reflects the insulin ELISA results for five 

chickens that had a complete data set. The actual insulin content values are 

presented in micrograms (µg) for each lobe of the chicken pancreas. The dorsal 

lobes show the highest insulin content, while the splenic lobes show the lowest.  
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Figure 8. Photomicrographs of islets from the ventral lobe of chicken pancreas 

show immunohistochemical localization of CaBP28K and insulin [× 400]. Six 

micron paraffin sections of the ventral lobe of chicken pancreas were stained 

immunohistochemically with anti-CaBP28K serum (b), and anti-insulin serum (c). 

Controls for antibody specificity consisted of absorption of the CaBP28K mouse 

monoclonal antibody with an excess of recombinant rat CaBP28K purified protein 

and were negative (a). The pancreatic islets show immunopositive reactions 

(brown color) to anti-CaBP28K serum (b) and anti-insulin serum (c), while no 

staining for either protein was found in the surrounding exocrine pancreatic 

tissue. The intensity of reaction product in the islets of the ventral lobes was 

higher for CaBP28K (b) than for insulin (c) (see Figure 9). 
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Figure 9. Quantitative immunohistochemical analysis of the relative CaBP28K and 

insulin expressions in the ventral lobe islets. Based on image densitometry 

analysis of immunohistochemistry images of the islets from ventral lobes of the 

chicken pancreas, levels of CaBP28K expression were higher than for insulin. 

These quantitative immunohistochemical differences between CaBP28K and 

insulin relative density units were statistically insignificant in the analyzed 

pancreatic sections (p = 0.25, n = 6). 
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Figure 10. Confocal microscopy pseudo-color images of an islet from the ventral 

lobe of chicken pancreas double-labeled for CaBP28K and insulin [× 600]. 

Sections of pancreas were labeled with antibodies against CaBP28K [Texas Red 

conjugated] and insulin [FITC conjugated]. Immunopositive staining is seen for 

CaBP28K (red color) (a), and insulin (green color) (b). Sites of colocalization 

exhibit a yellow color (red + green = yellow) in the merged image (c). The 

positive reaction for both proteins was present only in the islets of Langerhans, 

with no immunoreactivity in the surrounding acinar tissue. The nuclei and 

unlabeled areas appear black. 
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Figure 11. Correlation plot of localizations of CaBP28K and insulin in islets from 

the ventral lobe of chicken pancreas. Based on confocal microscopy image data, 

the pixel intensities of CaBP28K and insulin immunopositive areas were 

statistically evaluated in the islets from all analyzed sections (n = 9) of the ventral 

lobes of chicken pancreas. The correlation coefficient, r = 0.87, indicates a 

strongly positive correlation between the expression of CaBP28K and insulin in 

these β-cell-rich islets. This relationship is highly significant (p < 0.001, using two 

factor ANOVA) in the islets from the ventral lobe. 
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DISCUSSION 

 

Since its initial discovery in the avian intestine by Wasserman and Taylor 

(1966), CaBP28K has been reported to occur in a variety of species and tissues 

(see below). Although CaBP28K has been described as occurring in the chicken 

pancreas (Roth et al., 1982), we found no studies reporting its prevalence in the 

four lobes and its potential colocalization with insulin in the chicken pancreas. 

CaBP28K does bind free intracellular calcium ions, which are an important 

component of insulin secretion, and Ca2+ as a second messenger encodes 

information about the magnitude, frequency, and spatial organization of 

concentration changes. The functional role of CaBP28K in the β-cells of the 

chicken pancreas has not been determined. In the present study, we determined 

the levels of expression of CaBP28K and insulin in the different lobes of the 

pancreas. We also show the spatial relationship between insulin and CaBP28K in 

the chicken pancreas. 

 

Our ELISA data demonstrated that both the dorsal and ventral lobes of the 

chicken pancreas have higher insulin concentrations than the splenic lobe. Our 

results are in accordance with previous findings that reported the ventral and 

dorsal lobes contain most of the insulin in the chicken pancreas due to their high 

content of β-cell-rich islets (Mikami and Ono, 1962; Weir et al., 1976; Hazelwood, 

1984). The splenic lobe of the chicken pancreas is considered a minor source of 

insulin, but a major source of glucagon (α-islets), while the third lobe contains 
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both β-islets and α-islets (Mikami and Ono, 1962; Weir et al., 1976; Roth et al., 

1982). The yield of insulin from the chicken pancreas is reported to be about one-

tenth that from mammalian pancreas (Kimmel et al., 1968; Langslow et al., 1973; 

Weir et al., 1976). We report here the insulin concentration of the whole chicken 

pancreas to be about 12.37 ± 0.96 ng/mg wet mass, which is close to the 

findings of Kimmel et al. (1968): using acidic ethanol extraction, gel filtration, ion 

exchange paper chromatography, desalting of insulin fraction then crystallization 

to isolate chicken insulin, they recorded the insulin concentration of the whole 

chicken pancreas as 10 – 20 ng/mg wet mass. Our results showed that the mean 

insulin concentration of the lobes of the chicken pancreas ranged from a low of 

about 4.5 ng/mg wet mass in the splenic lobe to a high of more than 14 ng/mg 

wet mass in the dorsal lobe. Previous studies estimated the insulin concentration 

in the adult human pancreas to be 140 ng/mg wet mass (Sutherland et al., 1976), 

in the normal male mouse pancreas 147.9 ± 12.9 ng/mg wet mass (Tasaka et al., 

1985), and in the bovine pancreas 100 – 150 ng/mg wet mass (Kimmel et al., 

1968). Thus, our results confirm that the chicken pancreas has a concentration of 

insulin about 1/10th that of mammals, including humans. Furthermore, we found a 

wide range of variability of insulin content of the different lobes of the chicken 

pancreas as shown in Tables 2A and 2B. For example, the relative insulin 

content of the dorsal lobe presented a range from 45.9% to 72.4% of the total 

insulin content of the pancreas, while that of the ventral lobe was from 19.4% to 

43.7% (Tables 2A and 2B). 
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Using Western blot assays, we found that both the ventral and dorsal 

lobes of chicken pancreas showed a higher expression of CaBP28K than both the 

third and the splenic lobes. This pattern of CaBP28K expression is in accordance 

with our ELISA data for insulin concentrations in those lobes, suggesting an 

underlying mechanism affecting expression of both proteins. 

 

Our light microscopic immunohistochemical observations were carried out 

to compare the localization of CaBP28K with insulin in the different lobes of 

chicken pancreas. We detected the immunoreactive material for both CaBP28K 

and insulin exclusively localized in the islets. Both proteins showed more intense 

immunoreactions in the islets of dorsal and ventral lobes than other lobes. 

Previous observations reported that β-cell-rich islets were more numerous in the 

ventral and dorsal lobes than in other lobes of the chicken pancreas (Kobayashi 

and Fujita, 1969; Watanabe et al., 1975; Mikami et al., 1986). Our 

immunohistochemical data confirms and extends previous observations that the 

distribution of CaBP28K immunoreactive material is similar to the insulin 

immunoreactivity in the β-cells of chicken pancreatic islets (Roth et al., 1982; 

Buffa et al., 1989). Our densitometric analysis of immunohistochemical images 

indicates even a higher expression of CaBP28K than insulin in the β-cell-rich 

islets. Previous investigations also found higher levels of CaBP28K than insulin in 

the chicken pancreas. 
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Christakos et al. (1979) reported by radioimmunoassay (RIA) the 

concentration of CaBP28K in the whole chicken pancreas to be 1.5 µg/mg protein. 

By ELISA we have found CaBP28K concentration in the whole chicken pancreas 

of 1.06 ± 0.2 µg/mg protein (Sergeev and Rhoten, unpublished data). Contrast 

these values for CaBP28K with the estimated insulin concentration in the whole 

chicken pancreas of 12.37 ± 0.96 ng/mg wet mass in the present study or 10 – 

20 ng/mg wet mass of Kimmel et al. (1968). Thus, there is strong evidence of a 

higher level of CaBP28K than insulin in the chicken pancreas. This differs from the 

situation in mammals where levels of CaBP28K are very low and the protein is not 

localized to β-cells (Pochet et al., 1987).  

 

We examined the cellular distribution of CaBP28K and insulin 

immunoreactivity in the chicken pancreas by confocal microscopy. We found that 

the acinar tissue of the chicken pancreas did not show any immunoreactivity for 

either CaBP28K or insulin. We also found that both CaBP28K and insulin were 

localized in the β-cells with no marked nuclear immunoreactivity for either protein 

in the pancreatic islet cells. We report here, for the first time, colocalization and a 

strong positive correlation between insulin and CaBP28K pixel intensities in the 

islets from the ventral lobe of the chicken pancreas. These findings highlight a 

possible role for CaBP28K affecting the physiology of insulin inside the β-cells of 

chicken pancreas. 
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CaBP28K is known for its role in regulating [Ca2+]i in many cells, including 

pancreatic β-cells (Rhoten and Sergeev, 1994; Reddy et al., 1997), and it may 

alter insulin release from mammalian pancreatic β-cells (Sooy et al., 1999; 

Parkash et al., 2002). The concentration of free intracellular calcium ions is 

known to play an important role in glucose-induced insulin release from 

pancreatic β-cells (Devis et al., 1975; Herchuelz and Malaisse, 1980; Malaisse et 

al., 1980; Wollheim and Sharp, 1981; Hellman and Gylfe, 1984; Hoenig and 

Sharp, 1986; Misler et al., 1992; Gerber and Sudhof, 2002; Donelan et al., 2002; 

Barg, 2003; Patel, 2003). However, when CaBP28K was investigated in mammals 

by immunohistochemistry and Western blotting it was found in a higher 

concentration in the non-β-cells than in β-cells of the pancreatic islets (Pochet et 

al., 1987). Nonetheless, the experimental findings by Sooy et al. (1999) and our 

research data (Parkash et al., 2002) suggested a regulatory role for CaBP28K in 

the control of insulin release in mammals. Isolated pancreatic islets from CaBP28K 

knockout (null mutant) mice and β-cell lines overexpressing CaBP28K were used 

in those studies. Their results showed a significant increase in [Ca2+]i and insulin 

release from the KO mice compared to controls when β-cells were either 

depolarized with a high concentration of K+ (Sooy et al., 1999) or exposed to a 

high concentration of glucose (Parkash et al., 2002). In contrast, there was a 

marked attenuation in [Ca2+]i and insulin secretion from the CaBP28K 

overexpressing cell lines when depolarized with K+ or exposed to high glucose. 

Therefore, all of these findings are consistent with CaBP28k having an indirect 
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role at the least, and perhaps a direct role, in regulating hormone release from 

islet cells. 

 

Human β-cells, like chicken β-cells, contain CaBP28K (Pochet et al., 1989; 

Johnson et al., 1994) and are more resistant to the diabetogenic action of 

streptozotocin, a β-cytotoxin, than rat or mouse β-cells (Langslow et al., 1970; 

Meglasson and Hazelwood, 1982; Eizirik et al., 1993, 1994). Our findings of a 

strong colocalization and significant positive correlation of insulin and CaBP28K 

indicate their close spatial relationship in chicken β-cells. A previous study 

showed that S-100 protein, a family member related to CaBP28K, was colocalized 

to the core of insulin secretory granules of chicken β-cells (Takayanagi and 

Watanabe, 1996). Both our previous observations (Rhoten and Sergeev, 1994; 

Sooy et al., 1999; Parkash et al., 2002) and our current findings support the 

hypothesis that CaBP28K acts as a modulator of insulin release via the regulation 

of intracellular calcium ion concentration. Moreover, the strong colocalization of 

insulin and CaBP28K suggests an important physiological role for CaBP28K in 

chicken β-cells that may contribute to the relatively high insulin-release threshold 

and low insulin output in response to insulin secretagogues (NIDDM-like 

characteristics) of the chicken. 
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CHAPTER 2 

 

GLUCOSE-INDUCED CHANGES IN INTRACELLULAR CALCIUM 

ION OF CALBINDIN-D28K KNOCKOUT COMPARED TO WILDTYPE 

MICE PANCREATIC ISLETS: IN VITRO STUDIES 
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SUMMARY 

 

In vitro studies on glucose-stimulated changes in intracellular free Ca2+ 

([Ca2+]i) were done on pancreatic islets of Langerhans from calbindin-D28k 

knockout (CaBP28k-KO) and wild-type (WT) mice (C57BL6). The dynamics of 

[Ca2+]i were determined in pancreatic islets in a microincubation chamber on a 

Nikon Diaphot inverted fluorescence microscope equipped for fluorescent digital 

ratiometric imaging. Upon increasing the glucose concentration from 2.8 mM to 

30 mM in the incubation medium, levels that mimic the transition from fasting to 

hyperglycemic states, the pancreatic islets of CaBP28k-KO mice exhibited a 

significantly greater increase in [Ca2+]i (mean increase in [Ca2+]i, i.e., ∆ [Ca2+]i, 

was 296 nM) compared with WT mice (∆[Ca2+]i = 97 nM, p < 0.001). Qualitative 

differences in the kinetics of the [Ca2+]i were also noted between CaBP28k-KO 

and WT islets. The data demonstrate that the levels of calbindin-D28k (CaBP28k) in 

β-cells affected the changes in [Ca2+]i in response to glucose. It is well known 

that the [Ca2+]i in pancreatic β-cells controls the exocytosis of insulin granules. 

Therefore, these results indicate a significant effect of CaBP28k in regulating 

[Ca2+]i in mammalian islets and suggest an important role for CaBP28k in 

controlling glucose-induced insulin secretion from the pancreatic β-cell. 
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INTRODUCTION 

 

 Several previous studies showed that the regulation of [Ca2+]i is very 

crucial for controlling various cellular functions, such as gene expression, cell 

proliferation, and cell differentiation (Sergeev and Rhoten, 1995; Airaksinen et 

al., 1997; Sergeev and Rhoten, 1998; Putney, 1999; Sooy et al., 1999). CaBP28k 

belongs to a family of high affinity Ca2+-binding regulatory proteins that have 

been shown to play important roles in modulating [Ca2+]i  in various cell types and 

thus affecting several biochemical events within the cell including depolarization-

induced insulin secretion by β-cells (Sooy et al., 1999). Other high affinity Ca2+-

binding proteins include calmodulin, troponin C, calbindin-D9k, parvalbumin, and 

S100 proteins (Rhoten et al., 1985; Christakos et al., 1989; Heinzmann and 

Hunziker, 1991; Zimmer et al., 1997). CaBP28k is comprised of 261 amino acid 

residues with a molecular weight of 28 kDa and mainly appears to be a 

cytoplasmic protein (Rhoten et al., 1985; Christakos et al., 1989; Heinzmann and 

Hunziker, 1991). CaBP28k has at least four high affinity calcium ion binding sites 

(Hunziker, 1986). The genomic structure of CaBP28k, which is well conserved 

phylogenetically, consists of 11 exons and 10 introns. In humans, the CaBP28k 

gene is located on chromosome 8 (Minghetti et al., 1988; Wilson et al., 1988; 

Varghese et al., 1989). It was suggested that CaBP28k protected against cellular 

degradation. Rabinovitch et al. (2001) showed that CaBP28k can protect β-cells 

from cytokine-mediated destruction by inhibiting free radical formation. Yenari et 

al. (2001) found that overexpression of CaBP28k in Sprague-Dawley rats led to 
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neuroprotection against focal stroke. Bellido et al. (2000) reported that the 

transient expression of rat CaBP28k cDNA in MC3T3-E1 osteoblastic cells 

inhibited tumor necrosis factor alpha (TNFα)-induced apoptosis and caspase-3 

activity. In addition, it caused increased calcium buffering, thus showing the anti-

apoptotic properties of CaBP28k. In HEK 293 cells stably transfected with human 

recombinant CaBP28k, Rintoul et al. (2001) showed that the presence of CaBP28k 

significantly reduced the ionophore 4-Br-A23187-induced rise in [Ca2+]i. Rat 

insulinoma cells (RIN1046-38 cells) with elevated levels of CaBP28k have 

increased cytoplasmic Ca2+ buffering capacity (Rhoten and Sergeev, 1994; 

Reddy et al., 1997). In summary, several investigators have reported important 

functional roles for CaBP28k in the regulation of [Ca2+]i in many tissues and 

organs including pancreatic islet β-cells. 

 

The β-cells are unique in their responses to physiological changes in 

glucose concentrations, converting metabolic energy into electrical activity 

(Ishihara et al., 1993). Glucose metabolism via the cytosolic glycolysis pathway 

and the mitochondrial oxidation of the glycolytic products in β-cells increases the 

ATP to ADP ratio resulting in the closure of ATP-sensitive K+ (K+
ATP) channels 

(Prentki and Matschinsky, 1987; Theler et al., 1992; Leech et al., 1994; Aguilar-

Bryan et al., 1998; Seino, 1999; Antunes et al., 2000; Schofl et al., 2000; Schuit 

et al., 2001). This closure of K+
ATP channels leads to membrane depolarization 

that causes activation of L-type voltage-dependent Ca2+-channels and an influx 

of Ca2+ into the cytoplasm down the electrochemical gradient of Ca2+ across the 
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plasma membrane (Roe et al., 1996 and Figure 12). The increase in [Ca2+]i of β-

cells triggers exocytosis of insulin granules by promoting the fusion of the 

secretory vesicles with the cell membrane (Jones and Persaud, 1998; Easom, 

1999; Lang, 1999 and Figure 12). Zaitsev et al. (1997) have suggested that the 

defective metabolism of glucose in islets from non-obese diabetic rats results in a 

delayed response to an increase in [Ca2+]i. 

 

 In an earlier study, Sooy et al. (1999) found that, following K+-

depolarization (45 mM KCl), [Ca2+]i  was significantly greater in isolated 

pancreatic islets of CaBP28k null-mutant (knockout, KO) mice compared with 

wildtype islets. Conversely, βTC-3 and βHC-13 cells overexpressing rat CaBP28k 

showed markedly reduced [Ca2+]i responses to K+. It was also shown that 

CaBP28k played a regulatory role in depolarization-induced insulin secretion via 

control of [Ca2+]i. However, the exact mechanism(s) of action of CaBP28k in the 

regulation of [Ca2+]i and thereby signal transduction events is not yet clear.  

 

The study presented here is an attempt to understand the interaction(s) of 

CaBP28k in the insulin-secreting β-cells. In this study we explored the effect of 

glucose, the major nutrient regulator of insulin secretion, on intracellular Ca2+ 

dynamics in CaBP28k-KO and WT pancreatic islets. 
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Figure 12. Schematic diagram of the role of [Ca2+]i in glucose-induced insulin 

secretion from the pancreatic β-cells (modified from Lingappa and Farey, 2000). 

(A) In the resting condition, potassium ion (K+) efflux from the β-cell, through the 

ATP-sensitive K+-leak channels, leads to polarization of the cell membrane that 

prevents Ca2+ entry by closing the voltage-gated calcium channels. (B) When 

glucose is taken up by the β-cell, its metabolism raises the cytosolic 

concentration of ATP that in turn closes ATP-sensitive K+-leak channels. The 

prevention of K+ efflux leads to its accumulation in the β-cell that causes 

depolarization of the cell membrane and opening of the voltage-gated calcium 

channels allowing entry of Ca+ into the β-cell. The increased [Ca+]i stimulates 

movement of insulin vesicles over the microtubules, insulin vesicle fusion with the 

cell membrane, and release of insulin from the β-cell [exocytosis]. 
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MATERIALS AND METHODS 

 

Animals 

The mice used in this study (WT and CaBP28k-KO mice) were kindly 

provided by Dr. Sylvia Christakos, Department of Biochemistry and Molecular 

Biology, University of Medicine and Dentistry of New Jersey, Newark, NJ. The 

experiments, utilizing WT mice (C57BL6) and CaBP28k-KO mice, were conducted 

in accord with the accepted standards of humane animal care as defined by the 

Institutional Animal Care and Use Committee of the Joan C. Edwards School of 

Medicine at Marshall University, WV, USA. 

 

Materials 

 Collagenase type V, ethylene glycol-bis-(β-amino ethyl ether) N, N’-tetra-

acetic acid (EGTA), N-2-hydroxyethylpiperazine-N’-2-ethanesulfonic acid 

(HEPES), bovine serum albumin (BSA), ionomycin, dimethyl sulfoxide (DMSO), 

the primary antibody against CaBP28K (monoclonal mouse anti-CaBP28K), the 

secondary antibody goat anti-mouse IgG alkaline phosphatase conjugate, Sigma 

Fast™ 5-bromo-4-chloro-3’-indolylphosphate p-toluidine/nitro-blue tetrazolium 

chloride (BCIP/NBT) buffered substrate tablets, Tween 20®, and MnCl2 were 

obtained from Sigma Chemical Company (St. Louis, MO). Protran® pure 

nitrocellulose transfer membranes were ordered from Schleicher & Schuell 

Bioscience (Keene, NH). Cell-Tak was purchased from Becton-Dickinson 

Labware (Bedford, MA). Hank’s balanced salt solution (HBSS) was purchased 
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from Gibco BRL® Life Technologies (Grand Island, NY). Fura-2 acetoxy methyl 

ester dye (Fura-2), and Pluronic F-127 were obtained from Molecular Probes Inc. 

(Eugene, OR). All other chemicals and reagents were of analytical grade.  

 

Isolation and preparation of murine pancreatic islets 

A protocol of multiple injections of HBSS into the pancreas in situ was 

applied and modified to achieve a maximal yield of viable pancreatic islets of 

Langerhans. The mice were fasted overnight. After using anesthesia (ketamine 

100 µg/g body mass, and xylazine 25 µg/g body mass), HBSS was injected into 

the pancreas to inflate the tissue. The islets were dispersed from the surrounding 

pancreas. The distended pancreas was transferred to a petri dish and under a 

dissecting microscope fat, lymph nodes and extraneous fibrous tissues were 

removed. The pancreas was then chopped into small pieces. This mince was 

transferred to a tissue culture tube and allowed to sediment. The amount of type 

V collagenase (w/v) required to digest the pancreas was calculated and added to 

the tissue culture tube. The tube with the minced pancreas was placed in a 

reciprocating wrist action shaker Model 75 (Burrell Corporation, Pittsburgh, PA) 

in a water bath (Fisher Scientific Company, Pittsburgh, PA) at 37°C for 9 – 11 

min. The digestion end point was the appearance of white sandy spots on the 

tube wall. The reaction was stopped by adding excess cold HBSS and vortex 

mixing. Then a series of centrifugations were carried out, discarding the 

supernatant, and resuspending the pellets in cold HBSS and vortex mixing again 

[repeated five times at centrifugation speeds of 1000, 500, 250, 187.5, 125 and 

 70



 

62.5 × g]. After the last centrifugation, the sediment was resuspended in HBSS 

and poured into a petri dish for handpicking of islets using a thin, glass looped-

rod under a dissecting microscope as previously described (Clements and 

Rhoten, 1976). 

 

Fura-2 dye loading  

Isolated islets of WT and CaBP28k-KO mice were loaded in vitro with 5 µM 

Fura-2 in a modified Krebs-Ringer solution with 0.5% DMSO and 0.05% (w/v) 

Pluronic F-127 (a surfactant that aids in dispersing the Fura-2 dye in the aqueous 

loading medium) for 45 min. at 37°C. After three washes with HBSS, the islets 

were further incubated in HBSS for 15 min. at 37°C. The modified Krebs-Ringer 

medium was composed of: 118 mM NaCl, 4.8 mM KCl, 1.5 mM CaCl2, 1.2 mM 

MgCl2, 1.2 mM KH2PO4, 10 mM HEPES, 5 mM NaHCO3, 5.5 mM glucose, and 

0.1% w/v BSA, pH 7.40. The pancreatic islets were then suspended in 100 µl of 

HBSS and placed on a Cell-Tak coated, 25 mm. circular microscope cover glass 

(Fisherbrand®) [Fisher Scientific Company, Pittsburgh, PA]. The islets were 

allowed to settle and adhere to the surface of the cover glass for 15 min. at room 

temperature (Figure 13). Then, 1 ml of the modified Krebs-Ringer medium was 

added and the glucose concentration adjusted so that the final concentration of 

glucose in the basal incubation medium was 2.8 mM. 

 

 71



 

 

 

Figure 13. Phase contrast light microscopy live image of murine islets of 

Langerhans. The islets, prepared from a wildtype (WT) mouse, are seen as 

aggregates in culture incubation medium (modified Krebs-Ringer medium 

containing 2.8 mM glucose). These aggregates of WT mouse pancreatic islets 

were used in the experiments shown in Figures 14 and 15. The phase contrast 

live image acquisition was facilitated using MetaMorph Imaging System software 

version 4.6r5 (Universal Imaging Corporation, Westchester, PA).  
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[Ca2+]i  measurements and digital video fluorescence imaging 

The Fura-2 loaded pancreatic islets, attached to the cover glass, were 

transferred into a Narishige microincubation chamber that was placed on the 

stage of a Nikon Diaphot TMD inverted fluorescent microscope (Nikon 

Corporation, Tokyo, Japan). The ratio fluorescence microscopy experiments 

were carried out with the incubation medium temperature controlled at 37°C. The 

pancreatic islets were then successively excited at 340 nm & 380 nm, and the 

fluorescence emitted at 510 nm was intensified by a DAGE-MTI GenIISys image 

intensifier and captured by a DAGE-MTI CCD72 video camera (DAGE-MTI, Inc., 

Michigan City, IN). Metafluor Imaging System software version 4.1.7 (Universal 

Imaging Corporation, Westchester, PA) was used for image acquisition and 

analysis. All images were corrected for the background emission. The [Ca2+]i was 

calculated according to the equation used by Grynkiewicz et al. (1985): 

 

[Ca2+]i  =  KD β (R – Rmin) / (Rmax – R) 

Where:  

KD is the dissociation constant for Fura-2 binding to Ca2+ and is = 224 nM. 

β is the ratio of fluorescence of Ca2+-free Fura-2 to the fluorescence of Ca2+-

saturated Fura-2 at 380 nm excitation. 

R is the ratio of Fura-2 fluorescent intensity with 340 nm excitation to the          

Fura-2 fluorescent intensity with 380 nm excitation. 

Rmin is the fluorescent ratio when Fura-2 is Ca2+-free. 

Rmax is the fluorescent ratio when Fura-2 is Ca2+-saturated.  
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Western blotting 

 CaBP28k-KO and WT mice were sacrificed and their kidneys were used for 

Western blotting. We selected the kidneys for Western blotting because kidneys 

of WT mice contain much higher levels of CaBP28k than do pancreata. After 

homogenization in protein lysis buffer, the samples were centrifuged at 14,000 × 

g for 20 min. at 4°C. The supernatant was obtained and total protein estimated 

using the Bradford method (Bradford, 1976). Equal amounts of total protein from 

CaBP28k-KO and WT kidneys were loaded per lane in 12% SDS polyacrylamide 

gels. The standard molecular weight markers used were of 193, 86.8, 47.8, 33.3, 

28.6, and 20.7 kDa. SDS polyacrylamide gel electrophoresis (PAGE) was 

performed. After protein transfer, nitrocellulose membranes were blocked in Tris-

buffered saline with 3% BSA and then incubated with the primary antibody 

against CaBP28k (monoclonal mouse anti-CaBP28K). After washes, alkaline 

phosphatase-conjugated secondary antibody was applied. The specific protein 

bands were visualized using Sigma Fast™ BCIP/NBT as a precipitating substrate 

for the detection of alkaline phosphatase activity (Blake et al., 1984). 

 

Statistical analysis 

Results are presented as the mean ± standard error of the mean (SEM). 

The differences in the [Ca2+]i between the WT and KO mice islets were analyzed 

for statistical significance using the unpaired Student’s t test (one-tailed) with a 

significance level of 0.05 (SigmaStat software, version 2.03 from SPSS Inc., 

Chicago, IL). 
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RESULTS 

 

Glucose-induced changes in [Ca2+]i in WT pancreatic islets 

An immediate increase in [Ca2+]i occurred in pancreatic islets prepared 

from WT mice upon increasing glucose concentration of the incubation medium 

to 30 mM (Figure 14). The peak in [Ca2+]i was observed 1 - 2 min. after glucose 

addition (Figure 15). This peak in [Ca2+]i was followed by a decline and then a 

slow rise in [Ca2+]i to a plateau seen 20 - 25 min. after the addition of 30 mM 

glucose (Figure 15). The maximum increase in [Ca2+]i in WT islets in response to 

high glucose ranged between 68 nM to 120 nM (mean increase in [Ca2+]i, ∆ 

[Ca2+]i, was = 96.7 ± 8.4 nM, n = 3) [Table 3]. The initial rate of increase in [Ca2+]i, 

the rate of decline in [Ca2+]i after attaining the peak, and the rate of slow rise to a 

plateau value, as well as the magnitude of changes in [Ca2+]i varied from islet to 

islet (Figure 15). The basal values of [Ca2+]i in islets obtained in the presence of 

2.8 mM glucose remained constant (0 - 5 min., Figure 15), thus showing that the 

observed increase in [Ca2+]i upon addition of 30 mM glucose is due to the 

physiological substrate. 

 

Glucose-induced changes in [Ca2+]i in CaBP28k-KO pancreatic islets 

When glucose concentration was increased in the incubation medium to 

30 mM, pancreatic islets prepared from CaBP28k-KO mice showed a much 

greater increase in [Ca2+]i (approximately 3 times) as compared to that in WT 

mice islets (Figures 15, 17 and 19). The time course of this increase in [Ca2+]i 
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was similar to that in WT islets (compare Figures 15 and 17, note differences in 

scales for [Ca2+]i). The glucose-induced increase in [Ca2+]i was observed about 1 

min. after high glucose addition (Figures 16 and 17). The increase in [Ca2+]i upon 

the addition of high glucose to the CaBP28k-KO islets ranged from 200 to 366 nM 

during the 20 - 25 min. recording period (∆ [Ca2+]i = 296.3 ± 21.2 nM, n = 3) 

[Table 3 and Figure 19] and was significantly greater (p < 0.001) when compared 

to that in WT islets (Table 3 and Figure 19). The digital video images showing the 

effects of adding high glucose to the incubation medium on a single pancreatic 

islet taken from a CaBP28k-KO mouse are presented in Figure 18. 

 

Western blotting 

 CaBP28k-KO and WT mice kidney homogenates were analyzed to confirm 

the absence of CaBP28k in KO mice as shown in Figure 20. 
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Figure 14. Fura-2 ratio fluorescence images show aggregates of WT mouse 

pancreatic islets of Langerhans incubated in a modified Krebs-Ringer medium 

containing 2.8 mM glucose (A); then after 1 min. (B), and after 20 min. (C) of 

addition of 30 mM glucose. Note the change in color intensity from green (A) to 

yellow (B and C) that indicates increase in [Ca2+]i 

 

 

 

 77



 

 

50

100

150

200

250

0 5 10 15 20 25 30
Time (min)

[C
a2+

] i,
 n

M

Islet 1
Islet 2
Islet 3

 Glucose

 

Figure 15. Kinetics of the glucose-induced increase in [Ca2+]i in WT islets. The 

WT islets incubated in a modified Krebs-Ringer medium containing 2.8 mM 

glucose were exposed to 30 mM glucose (at the time shown by arrow) and the 

time course of changes in [Ca2+]i was measured using Fura-2 ratio fluorescent 

microscopy. 
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Figure 16. Fura-2 ratio fluorescence images show aggregates of CaBP28k-KO 

mouse pancreatic islets of Langerhans incubated in a modified Krebs-Ringer 

medium containing 2.8 mM glucose (A); then after 1 min. (B), and after 20 min. 

(C) of addition of 30 mM glucose. Note the change in color intensity from green 

(A) to yellow-red (B and C) that indicates an increase in [Ca2+]i 
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Figure 17. Kinetics of the glucose-induced increase in [Ca2+]i in CaBP28k-KO 

islets. The CaBP28k-KO islets were incubated in a modified Krebs-Ringer medium 

containing 2.8 mM glucose and were exposed to 30 mM glucose (at time shown 

by arrow). The time course of changes in [Ca2+]i was measured using Fura-2 

ratio fluorescent microscopy.  
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Figure 18. Ratio fluorescent images illustrating the effects of adding high glucose 

to the incubation medium on a single pancreatic islet taken from a CaBP28k-KO 

mouse. The pancreatic islet was loaded with Fura-2 dye and incubated in a 

modified Krebs-Ringer medium containing 2.8 mM glucose (A, left panel), and 20 

min. after the addition of 30 mM glucose (B, right panel). The pancreatic islet of 

Langerhans was dually excited at 340 nm & 380 nm, and the fluorescence 

emission was measured at 510 nm. The digital video images were acquired 

using MetaFluor Imaging System software version 4.1.7 (Universal Imaging 

Corporation, Westchester, PA). The change in color intensity from green (A, left 

panel) to yellow-red 20 min. after addition of 30 mM glucose (B, right panel) 

indicates a very marked increase in [Ca2+]i. 
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Table 3. Comparison of ∆[Ca2+]i for CaBP28k-KO versus WT mice pancreatic 

islets in response to glucose stimulation. 

Pancreatic islets [Ca2+]i, nM 

2.8 mM glucose 

[Ca2+]i, nM 

30 mM glucose 

∆[Ca2+]i, nM a 

A. WT mice 

Islet 1 

Islet 2 

Islet 3 

B. CaBP28k-KO mice 

Islet 1 (Region 1) 

Islet 2 (Region 1) 

Islet 2 (Region 2) 

 

117 

149 

129 

 

78 

197 

183 

 

236 

217 

244 

 

384 

553 

469 

 

119 

68 

115 

 

306 

356 

286 

 

a indicates nanomolar increase in the [Ca2+]i upon increasing glucose 

concentration in the incubation medium from 2.8 mM to 30 mM (p < 0.001) 
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Figure 19. Bar graph showing the relative glucose responsiveness in WT and 

KO mice islets presented as the mean increase in [Ca2+]i ± SEM during the 25 

min. of 30 mM glucose incubation (from experiments presented in Figures 15 and 

17 and Table 3). The mean increase in [Ca2+]i in KO islets was about three times 

more than that in WT islets (p < 0.001). 
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Figure 20. CaBP28k-KO mice do not express CaBP28k. Western blot of kidney 

homogenates from WT (2nd and 4th lanes from the left) and KO mice (1st and 3rd 

lanes from the left) carried out using monoclonal mouse anti-CaBP28k antibody 

shows the absence of CaBP28k in KO mice. The standard molecular weight 

markers are shown in the rightmost lane with molecular mass (from top to 

bottom) of 139, 86.8, 47.8, 33.3, 28.6, and 20.7 kDa.  
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DISCUSSION 

 

 In order to study the role of CaBP28k in glucose-induced changes in 

intracellular Ca2+ in β-cells, we used a transgenic knockout (CaBP28k-KO, null 

mutant) mouse model devoid of the CaBP28k gene (Airaksinen et al., 1997). Our 

results show that the [Ca2+]i responses to glucose in CaBP28k-KO pancreatic 

islets were at least 3 times greater (p < 0.001) than that of WT pancreatic islets 

(in the presence of normal levels of CaBP28k protein). A previous study showed 

that membrane depolarization induced by addition of 45 mM KCl to the islets 

caused an approximately 3.5 times greater increase in the [Ca2+]i in CaBP28k-KO 

pancreatic islets compared to pancreatic islets prepared from WT mice (Sooy et 

al., 1999). Therefore, our data using glucose as a physiological secretagogue 

support the previous observation of a several fold greater increase in [Ca2+]i in 

CaBP28k-KO islets. The increase in [Ca2+]i upon addition of glucose in the present 

study or KCl (Sooy et al., 1999) was transient in nature thereby emphasizing 

depolarization-induced influx of Ca2+ across the cell membrane. 

  

As is evident in our results, the presence of 30 mM glucose caused a 

plateau in [Ca2+]i in WT mouse islets, and a second peak in [Ca2+]i  in CaBP28k-

KO mice islets after about 20 - 25 min. The presence or absence of a plateau in 

[Ca2+]i has been reported in several studies involving islets derived from mouse 

and rat (Martin et al., 1995; Bertuzzi et al., 1999; Antunes et al., 2000), and could 

be correlated in the present study to the maintenance of the membrane 
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depolarization of β-cells by the action of the glucose, in addition to closure of 

K+
ATP channels. The maintenance of membrane depolarization in β-cells is also 

dependent upon other mechanisms including a Na+/Ca2+ exchanger and 

activation of Ca2+-dependent K+ channels, with the outward K+ current 

contributing to rhythmic firing of action potentials in pancreatic β-cells (Van Eylen 

et al., 1998; Gopel et al., 1999). In studies involving Purkinje neurons from 

CaBP28k-KO mice, Airaksinen et al. (1997) have shown much larger amplitude of 

synaptically evoked calcium ion transients as compared to WT mice. Their result 

correlates well with the larger magnitude of the glucose-induced rise in [Ca2+]i in 

CaBP28k-KO islets compared to WT islets described above. These observations 

based on the removal of CaBP28k from such diverse cell-types as neurons on one 

hand and pancreatic islet β-cells on the other hand from CaBP28k-KO mice, 

support a role for CaBP28k in the regulation of cellular calcium and Ca2+-

dependent processes (Airaksinen et al., 1997; Sooy et al., 1999). 

 

In our earlier study on βHC-13 CaBP40 cells, we showed that the 

overexpression of CaBP28K caused an almost complete absence of the typical 

glucose-induced rise in [Ca2+]i compared to control βHC-13 cells that had a very 

substantial increase in [Ca2+]i of 550 ± 19 nM (Parkash et al., 2002). The 

absence of a glucose-induced rise in [Ca2+]i responses by βHC-13 CaBP40 cells 

supports further a role for CaBP28K in modulating Ca2+-dependent processes. 

One mechanism of action of CaBP28K in βHC-13 CaBP40 cells may be 

intracellular calcium buffering. An earlier study with RIN cells demonstrated a 
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large increase in cytoplasmic Ca2+ buffering capacity in RIN cells with levels of 

CaBP28K about 3-fold higher than in control cells (Rhoten and Sergeev, 1994). In 

cells with elevated CaBP28K the [Ca2+]i responses to glucose, K+-depolarization, a 

calcium ionophore (ionomycin), and the Ca2+ channel agonist Bay K 8644 were 

altered, but basal [Ca2+]i was unchanged (Parkash et al., 2002). [Ca2+]i peak 

values were reduced and the increase in [Ca2+]i in response to mobilization of 

Ca2+ from intracellular stores was also attenuated. A high concentration of 

ionomycin (5 µM) overcame the buffering effect of CaBP28K and produced a 

dramatic rise in [Ca2+]i (Parkash et al., 2002). The finding of buffering of Ca2+ by 

moderately elevated levels of CaBP28K in RIN cells was confirmed in RIN cells 

transfected with rat CaBP28K and markedly overexpressing (6 - 35 fold increase) 

this protein (Reddy et al., 1997). Evidence of CaBP28k as a mediator of other 

rapid Ca2+ responses include translocation of Ca2+ in intestine (Nemere et al., 

1986, 1991), activation of Ca2+, Mg2+-ATPase (Morgan et al., 1986), Ca2+-

ATPase and phosphodiesterase (Reisner et al., 1992), and altered Ca2+ fluxes in 

luminal vesicles of distal convoluted tubules (Bouhtiauy et al., 1994). Yet, further 

experiments are certainly warranted to improve our understanding of the roles of 

CaBP28k in the pancreatic islet β-cells. 
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CHAPTER 3 

 

EFFECTS OF INHIBITION OF CALBINDIN-D28K GENE 

EXPRESSION BY ANTISENSE OLIGONUCLEOTIDE 

TRANSFECTION IN CULTURED RAT INSULINOMA CELLS 
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SUMMARY 

 

The effects of antisense oligonucleotides (AS-ON) to calbindin-D28K 

(CaBP28k) on gene and protein expression were examined in vitro in cultured 

pancreatic β-cells. Rat insulinoma cells (RIN1046-38), a pancreatic β-cell line, 

were seeded at ~ 1 – 3 × 106 cells/25 cm2 in tissue culture flasks and cultivated 

in RPMI1640 medium. Results of the application of AS-ON targeted against 

CaBP28k were compared with control nonsense oligonucleotides (NS-ON). ON 

were delivered using Lipofectamine 2000 reagent and uptake was confirmed by 

fluorescence microscopy imaging of fluorescein-labeled AS-ON. Western blots 

showed that 200 nM phosphorothioate AS-ON (PS-AS-ON) produced complete 

inhibition of CaBP28k protein. This result was further confirmed using the more 

potent propyne AS-ON (PY-AS-ON) at 20 nM. mRNA levels in cells treated with 

NS-ON and AS-ON were assessed by cDNA microarray analysis in 200 nM PS-

AS-ON transfected cells. Expression of the vitamin D receptor (VDR) and 

calbindin-D9k mRNAs were up-regulated. Western blotting further demonstrated 

that the VDR protein was up-regulated and calbindin-D9k protein was expressed 

in the 200 mM PS-AS-ON transfected cells. These results are notable as the first 

demonstration of a compensatory calbindin-D9k expression by AS-ON to 

calbindin-D28k. Finally, ELISA showed a significantly greater increase in insulin 

release in response to secretagogues from cells transfected with PS-AS-ON 

compared to PS-NS-ON. Additional studies are required to understand calbindin-

D9k, VDR and calcium ions in AS-ON transfected β-cells. 
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INTRODUCTION 

 

The vitamin D-dependent Ca2+-binding proteins (calbindins) belong to a 

family of intracellular proteins having high affinity Ca2+-binding activity (Kawasaki 

and Kretsinger, 1994; Nelson et al., 2002). This family includes calmodulin, 

troponin C, calbindin-D9k, parvalbumin, and S100 proteins (Rhoten et al., 1985; 

Christakos et al., 1989; Heinzmann and Hunziker, 1991; Zimmer et al., 1997). 

Calmodulin, the ubiquitous Ca2+-binding protein present in all eukaryotic cells, 

has four Ca2+-binding sites which bind both Ca2+ and magnesium ions 

competitively and is involved in the triggering of cellular processes (Rhoten et al., 

1982; Kilhoffer et al., 1983; Hammes et al., 1994). Calmodulin acts as a Ca2+-

signaling protein since it regulates the activity of many endogenous target 

enzymes in a Ca2+-dependent manner including the cyclic nucleotide 

phosphodiesterase, calmodulin-dependent protein kinases, and calcium 

adenosine triphosphatase (Ca2+-ATPase) (Cheung et al., 1978). The 

Ca2+/Calmodulin-dependent kinases play a role in linking changes in the 

concentration of intracellular free calcium ions, [Ca2+]i, to the distal events in 

exocytosis and insulin release (Rhoten et al., 1982; Hammes et al., 1994; 

Easom, 1999; Tabuchi et al., 2000; Yamamoto et al., 2003). 

 

The hormonally active metabolite of vitamin D, 1,25-dihydroxyvitamin D3 

(1,25-(OH)2D3), is a secosteroid whose genomic mechanism of action is similar 

to that of other steroid hormones and is mediated by stereospecific interaction of 
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1,25-(OH)2D3 with a specific cellular receptor, the vitamin D receptor (VDR) 

(Schräder et al., 1995; Brown et al., 1999; Christakos et al., 2003b). VDR is a 

member of the nuclear steroid hormone receptors superfamily which functions as 

a ligand-activated transcription factor (Sone et al., 1991; Ross et al., 1992; 

Schräder et al., 1995; Brown et al., 1999). Upon ligand binding, the activated 

cytoplasmic VDR rapidly translocates to the nucleus along the microtubules 

(Brown et al., 1999). The VDR heterodimerizes with another nuclear receptor, the 

retinoid X receptor (RXR), and the heterodimer binds to specific DNA motifs 

(vitamin D response elements, VDREs) (Schräder et al., 1995; Brown et al., 

1999; Christakos et al., 2003b). After interaction with the vitamin D response 

element (VDRE) in the promoter of target genes, transcription proceeds through 

the interaction of VDR with coactivators and with the transcription machinery 

(Schräder et al., 1995; Christakos et al., 2003b). VDR interacts with many 

nuclear transcription factors and coactivators including the general transcription 

factor TFIIB, a component of the basal transcription complex, which plays a 

critical role in ligand-dependent transcription (Blanco et al., 1995; MacDonald et 

al., 1995; Masuyama et al., 1997). Both 1,25-(OH)2D3 and Ca2+ were previously 

reported to regulate the expression of VDR (Brown et al., 1995; Zineb et al., 

1998; Healy et al., 2003). 

 

Nongenomic functions of VDR also have been previously described (see 

Sergeev and Rhoten, 1995; Norman et al., 1999, 2001, 2002a, b). A plasma 

membrane VDR was shown to mediate the rapid opening of the voltage-gated 
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Ca2+ channels located in the plasma membrane and stimulates Ca2+ transport in 

the intestine, Ca2+ mobilization in the osteoblasts, and the release of insulin by 

rat pancreatic beta-cells and RIN1046-38 cells (Nemere et al., 1994; Sergeev 

and Rhoten, 1995; Norman et al., 1999, 2001, 2002a, b). 

 

VDREs have been found in both the murine calbindin-D9k and CaBP28k 

genes (Darwish and DeLuca, 1992; Gill and Christakos, 1993). Developmental 

studies showed that the induction of VDR mRNA in the rat intestine is associated 

with the induction of calbindin-D9k mRNA in the third postnatal week, coinciding 

with the period of increased active duodenal transport of Ca2+ (Christakos et al., 

1991). It has been shown that during the development of the rat kidney, the 

induction of VDR mRNA in this tissue is correlated with the induction of CaBP28k 

mRNA between birth and one week of age, the period of rapid nephron 

differentiation (Christakos et al., 1991). Also, 1,25-(OH)2D3 has been shown to 

regulate the concentrations of the chicken intestinal CaBP28k from undetectable 

levels in vitamin D-deficient chickens to up to 1 - 3% of the cytoplasmic protein in 

the intestinal cell in vitamin D-replete chickens (Christakos et al., 1979). 

Pharmacological doses of 1,25-(OH)2D3 have been shown to increase rat renal 

CaBP28k concentrations (Hemmingsen et al., 1998). 

 

CaBP28k was first discovered in the chicken intestine (Wasserman and 

Taylor, 1966). This molecule has at least four high affinity Ca2+-binding sites 

(Hunziker, 1986). CaBP28K has been shown to have a variety of roles in different 
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organs. It acts as a Ca2+ carrier in the intestine and kidneys (Bredderman and 

Wasserman, 1974; Feher, 1983; Bronner, 1989; Christakos et al., 1989). 

CaBP28k can also serve as a Ca2+-sensor protein: extracellular Ca2+ 

concentrations directly influence the cytosolic CaBP28k concentrations and 

CaBP28k undergoes Ca2+-induced structural conformational changes resulting in 

the exposure of a hydrophobic surface upon the Ca2+ activation of the cell 

(Norman et al., 1981; Hall and Norman, 1990; Enomoto et al., 1992; Berggard et 

al., 2002). In the brain, CaBP28k acts as a Ca2+-buffer that prevents [Ca2+]i from 

reaching toxic levels (Gross and Kumar, 1990; Mattson et al., 1991, 1995; Guo et 

al., 1998; Blatow et al., 2003; Jackson and Redman, 2003; Venters et al., 2003). 

Recent studies with mammalian pancreatic islets suggest that CaBP28K 

modulates the secretion of insulin (Sooy et al., 1999; Parkash et al., 2002), and 

protects the β-cells against the cytokine-induced apoptosis (Rabinovitch et al., 

2001; Riachy et al., 2002; Christakos et al., 2003a). RIN1046-38 cells are known 

to normally express CaBP28k in relatively high concentrations (0.8 ± 0.2 µg/mg 

protein) (Lee et al., 1994). Furthermore, RIN1046-38 cells overexpressing 

CaBP28k have demonstrated a much larger increase in their cytoplasmic Ca2+ 

buffering capacity than control RIN cells (Rhoten and Sergeev, 1994; Reddy et 

al., 1997). 

 

Calbindin-D9k was first reported by Wasserman’s group to be a Ca2+-

binding protein in the rat intestinal mucosa that is induced by vitamin D (Kallfelz 

et al., 1967). It binds two Ca2+ ions (Juffer and Vogel, 2000). Calbindin-D9k is not 
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closely related to CaBP28k, and there is no evidence indicating that calbindin-D9k 

arose evolutionarily from CaBP28k (Perret et al., 1988a, b; Kretsinger and 

Nakayama, 1993). Antisera to calbindin-D9k are not known to cross-react with 

CaBP28k (Thomasset et al., 1982; Baudier et al., 1985). Calbindin-D9k gene 

expression is only found in mammalian species (including human, cow, pig, rat, 

and mouse) (Thomasset, 1997). Calbindin-D9k gene activity is controlled by 1,25-

(OH)2D3 at both the transcriptional and posttranscriptional levels (Thomasset et 

al., 1982; Perret et al., 1985; Dupret at al., 1987; Thomasset, 1997). Dietary Ca2+ 

levels also modulate the gene expression of intestinal calbindin-D9k in the rat 

(Freund and Bronner, 1975; Bronner et al., 1986). Several physiological functions 

are postulated for calbindin-D9k, including a Ca2+-dependent regulatory function 

analogous to that of calmodulin and a role as a Ca2+-shuttle (carrier protein) that 

facilitates transcellular calcium diffusion between the two cell membranes in the 

Ca2+-transporting cells (Bronner et al., 1986; Bronner, 1987, 1988; Wasserman 

and Fullmer, 1995; Bronner, 2003a, b). The calbindin-D9k gene is expressed in 

both mouse and rat kidneys (Thomasset et al., 1982; Delorme et al., 1983; 

Schreiner et al., 1983; Rhoten et al., 1985; Bindels et al., 1991); however, it is 

less active in the rat kidney where CaBP28k is highly expressed and shares in 

Ca2+ handling (Schreiner et al., 1983; Bindels et al., 1991; Thomasset, 1997). 

 

In order to evaluate the role of CaBP28k in RIN1046-38 cells, we used 

antisense oligonucleotides (AS-ON) complementary to the CaBP28k messenger 

RNA (sense mRNA) to inhibit the translation of that specific mRNA. Antisense 
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agents are valuable tools to inhibit the expression of a target gene in a 

sequence-specific manner and may be used for functional genomics, target 

validation and therapeutic purposes (Kurreck, 2003). AS-ON are synthesized as 

short sequences of single-stranded nucleotides that pair with their 

complementary mRNA, thus preventing the translation machinery from 

synthesizing the target proteins (Kurreck, 2003) (Figure 21). AS-ON combine 

many desired properties such as broad applicability, direct utilization of sequence 

information, rapid development at low costs, high probability of success, and high 

specificity compared to alternative technologies for gene functionalization and 

target validation (Bennett and Cowsert, 1999). However, all AS-ON are large 

polar molecules, which can not effectively cross the cell membrane (Akhtar et al., 

1991). Previous research showed improvement in the cellular uptake and the 

transfection efficiency of AS-ON by using Lipofectamine™ 2000 reagent (a 

cationic lipid carrier) when compared to other reagents (Ciccarone et al., 1999; 

Ohki et al., 2001; Dalby et al., 2004). The AS-ON (uncomplexed with cationic 

lipids) that were added to the cell culture media usually enter the cells via 

endocytosis, then they are degraded, remain sequestered in lysosomes, or 

exocytosed back to the culture medium (Neckers, 1993; Wagner et al., 1993). In 

contrast, the AS-ON complexed with cationic lipids enter the cultured cells, are 

released into the cytoplasm (and may enter the nucleus) and affect the cytosolic 

translation machinery to result in gene-specific inhibition (Wagner et al., 1993). 
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In Chapter 2, we studied role of CaBP28k in buffering glucose-induced ∆ 

[Ca2+]i in the β-cells of CaBP28k-KO mice pancreatic islets. However, the genomic 

effects of a lack of CaBP28k were not studied before. The aim of this study is to 

explore the effect of CaBP28k depletion on gene expression profiles of cultured β-

cells using the AS-ON technology. We also examine the effects of this inhibition 

on the expression of other calcium-binding proteins and the vitamin D receptor, 

and characterize the changes that occur in the induced release of insulin. 
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Figure 21. Schematic diagram illustrating the concept of applying AS-ON 

transfection. The AS-ON are short sequences of single-stranded nucleotides that 

are specifically made to be complementary to certain target sequences of the 

mRNA. The presence of the mRNA/AS-ON complex will prevent the ribosome 

from reading the segment having that complex. This will block the translation 

process and inhibit the expression of the specific protein. 
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MATERIALS AND METHODS 

 

β-cells 

We selected RIN1046-38 cells for this study because they are β-cells with 

a relatively high expression level of CaBP28k (0.8 ± 0.2 µg/mg protein, Lee et al., 

1994 using radioimmunoassay). RIN1046-38 cells are a rat tumoral β-cell line 

generated from a transplantable x-ray irradiation-induced rat insulinoma in an 

inbred NEDH (New England Deaconess Hospital) rat (Gazdar et al., 1980; 

Philippe et al., 1987). Those rat β-cell tumors were originally maintained by serial 

transplantations in NEDH rats. Cells derived from them were established as 

continuous cell line cultures (Gazdar et al., 1980; Philippe et al., 1987). RIN1046-

38 cells were obtained as a generous gift from Dr. Bruce Chertow (Department of 

Internal Medicine, Joan C. Edwards School of Medicine at Marshall University, 

Huntington, WV).   

 

Cell culture 

RIN1046-38 cells (passages 14 - 17) were included in this study. The cells 

were seeded at ~ 1 – 3 × 106 cells/25 cm2 in tissue culture flasks. RIN1046-38 

cells were cultivated in RPMI1640 medium supplemented with 10% FBS, 

penicillin 100 units/ml, and streptomycin 100 µg/ml at 37°C in humidified 

atmosphere of 5% CO2 - 95% air. 
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Materials 

Goat anti-rabbit IgG-peroxidase conjugate antibody, goat anti-rat biotin 

conjugate antibody, goat anti-mouse IgG-peroxidase conjugate antibody, mouse 

anti-calmodulin antibody, mouse anti-β-actin antibody, rabbit anti-guinea pig IgG, 

peroxidase-labeled insulin, TRI REAGENT™, O-phenylenediamine dichloride, 

bovine serum albumin (BSA), carbamylcholine chloride (carbachol), protease 

inhibitor cocktail, Tween 20®, N-2-hydroxyethylpiperazine-N’-2-ethanesulfonic 

acid (HEPES), dimethyl sulfoxide (DMSO), and acrylamide were purchased from 

Sigma Chemical Company (St. Louis, MO). D-glucose (dextrose) was obtained 

from National Bureau of Standards [NBS] (Gaithersburg, MD). Lipofectamine™ 

2000 Transfection Reagent was ordered from Invitrogen™ Life Technologies 

(Carlsbad, CA). Guinea pig anti-insulin (607/22) was a gift from the late Dr. Peter 

Wright (Indianapolis, IN). Rat insulin standards were from Eli Lilly and Company 

(Indianapolis, IN). Rabbit anti-CaBP28K antibody was obtained from Chemicon 

International, Inc. (Temecula, CA). Rabbit anti-calbindin-D9K antibody was 

purchased from Swant® Swiss Antibodies Company (Bellinzona, Switzerland). 

Rat anti-VDR antibody was ordered from Affinity BioReagents, Inc. (Golden, CO). 

Streptavidin-horseradish peroxidase (HRP) was from Amersham International 

PLC. (Buckinghamshire, UK). Bradford protein reagent and low range prestained 

SDS-PAGE standards were from Bio-Rad Laboratories, Inc. (Hercules, CA). 

Protran ® pure nitrocellulose transfer and immobilization membranes (0.45 µm) 

were purchased from Schleicher and Schuell BioScience (Keene, NH). 

SuperSignal® West Pico Chemiluminescent substrate for detection of HRP was 
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from Pierce Biotechnology Inc. (Rockford, IL). Medical X-ray film (Super RX) was 

from Fujifilm Medical Systems, Inc. (Stamford, CT). Trypan blue stain (0.4%), 

RPMI1640 tissue culture medium, heat inactivated fetal bovine serum (FBS), 

OPTI-MEM® I reduced serum medium, Hank’s balanced salts solution (HBSS), 

and penicillin G sodium-streptomycin sulfate antibiotics were purchased from 

Gibco BRL® Life Technologies (Grand Island, NY). 25 cm2 polystyrene tissue 

culture flasks were from Corning Inc. (Corning, NY). Falcon 35-3915 pro-bind™ 

96-well polystyrene microtiter assay plates were from Becton Dickinson and 

Company (Franklin Lakes, NJ). All chemicals and reagents were of analytical 

grade. 

 

In vitro transfection assays 

Transfection assays with Lipofectamine™ 2000 were conducted according 

to the manufacturer's instructions (Invitrogen™ Life Technologies, Carlsbad, CA). 

RIN1046-38 cells were grown until they were 90 - 95% confluent on the day of 

transfection. Both the ON and Lipofectamine™ 2000 transfection reagent 

(vehicle) were individually diluted in Opti-MEM® I reduced serum medium in 

separate microcentrifuge tubes. The ON and Lipofectamine™ 2000 were then 

combined, mixed and incubated for 20 min. at room temperature. Then, the 

ON/Lipofectamine™ 2000 liposome mixtures were added to the cells in the Opti-

MEM® I reduced serum medium and incubated at 37°C in a CO2 incubator for six 

hours as previously described (Lewis et al., 1996; Cheng et al., 2004). Neither 

serum nor antibiotics were added to the cells during the transfection period. After 
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the first six hours of incubation, complete growth medium containing antibiotics 

and serum was added to the incubation medium (without removing the 

ON/Lipofectamine™ 2000 mixtures), and the cells were further incubated for a 

total of 48 hours from the start of the transfection assay (Ciccarone et al., 1999; 

Hamada et al., 2003; Cheng et al., 2004; Dalby et al., 2004). The cells were then 

washed thrice in HBSS and studied for the effects of the transient transfection on 

cellular gene expression and insulin secretion. 

 

The AS-ON were prepared as a 20-mer oligonucleotide complementary in 

sequence to a target segment of the rat CaBP28k mRNA to inhibit the translation 

process, which are selected for the transfection assays using the previously 

established criteria (Yamakuni et al., 1987; Hunziker and Schrickel, 1988; 

Nordquist et al., 1988; Wagner, 1994) (Figures 21 and 22). Scrambled 

oligonucleotides (Nonsense, NS-ON) were used as a control. NS-ON with the 

same base composition were synthesized as a sequence of nucleotides 

containing 17 mismatches out of 20 bases (Figure 22). Previous research 

showed that NS-ON with at least 4-mer mismatches are inactive and do not 

inhibit the process of translation (Wagner et al., 1993). We applied 6′-fluorescein-

labeled-AS-ON to the RIN1046-38 cells to evaluate uptake of AS-ON by RIN 

cells. Cellular uptake was monitored by fluorescence microscopy (Busuttil et al., 

1996; Coats et al., 1996; Lewis et al., 1996) (Figure 23). Two different types of 

ON were included in our study; phosphorothioate- (PS-ON) and propyne-

oligonucleotides (PY-ON). All the linkages used in the synthesis of the ON (in 
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both PS-ON and PY-ON) were sulfur. In the PS-ON, the phosphorothioate 

linkages are created in place of phosphodiester bonds. These linkages increase 

the resistance of the ON to endogenous nucleases and have great efficacy in 

gene inhibition (Hoke et al., 1991; Beltinger et al., 1995). In the PY-ON the 

pyrimidine residues (C and T) normally created in PS-ON are replaced with C-5 

propynyl-substituted pyrimidines (pdC and pdU). Specifically, C-5-(1-propynyl) 

uracil replaces thymine and C-5-(1-propynyl) cytosine replaces cytosine. The C-5 

propynyl substitution is thought to increase the potency of AS-ON by enhancing 

base stacking interactions and mRNA/AS-ON binding affinity. It also increases 

the nuclease stability of AS-ON, and may stimulate the RNase H cleavage of the 

sense mRNA (Wagner et al., 1993; Raviprakash et al., 1995). All the ON were 

synthesized on an ABI Model 394 DNA Synthesizer in the Marshall University 

DNA Core Facility. 

 

A range of PS-AS-ON concentrations from 50 to 200 nM was used to 

determine the most effective inhibitory concentration for CaBP28k expression. 

Cellular toxicity was evaluated by morphological appearance and trypan blue 

exclusion. Cells that stained with trypan blue were considered nonviable while 

those which do not stain were considered viable. Once an effective concentration 

of the AS-ON was determined, the control cultures were treated identically with 

the NS-ON. 

 

 

 102



 

 

-----3′ AGG ACC UAG UUC AAG ACG UC 5′-----           CaBP28K mRNA 

 

      5′ TCC TGG  ATC AAG TTC  TGC AG 3′                 AS-ON 

 

      5′ CGT TGT  TCA AGT CCC  TAG GA 3′                  NS-ON 

 

Figure 22. Diagram showing the structure of the ON sequences that were used 

in the transfection assays and their corresponding target segment of the CaBP28K 

mRNA. The AS-ON sequence was synthesized to inhibit the translation process. 

The NS-ON, containing 17 mismatches out of 20-mer, was synthesized as a 

scrambled sequence of nucleotides that does not inhibit the translation process. 

The NS-ON was found to have no complementary hybridization sequence to any 

of the genes found in a search of the rat (Rattus norvegicus) GenBank® database 

(www.ncbi.nlm.nih.gov/Genbank/index.html). All the linkages used were sulfur. 

The bases used are: A = Adenine, C = Cytosine, G = Guanine, T = Thymine, and 

U = Uracil. ON were synthesized in two formats: phosphorothioate (PS) (as 

above), and propyne (PY). The PY-ON sequence has pdC and pdU (propynyl) 

instead of C and T. Labeling the PS-AS-ON was done by adding 6′-fluorescein 

acetoxy methyl ester (6′-FAM) to the 5′ terminus, to help monitoring their cellular 

uptake using fluorescence microscopy. 
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Figure 23. In vitro follow-up of RIN1046-38 cells during their cellular uptake of 

fluorescein-labeled PS-AS-ON. Images of RIN1046-38 cells were captured from 

tissue culture flasks on a Nikon Diaphot inverted fluorescence microscope [× 

200]. The image acquisition was facilitated using MetaMorph Imaging System 

software version 4.6r5 (Universal Imaging Corporation, Westchester, PA). (a) 

Phase-contrast image of RIN1046-38 cells before incubation with fluorescein-

labeled PS-AS-ON. (b) Fluorescence image of RIN1046-38 cells after six hours 

of incubation with 50 nM fluorescein-labeled PS-AS-ON showing the uptake of 

AS-ON [same cells as in panel a, washed and viewed live]. 
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Western blot analysis 

Protein expression in RIN1046-38 cells was studied 48 hours post-

transfection (as recommended by the Lipofectamine™ 2000 transfection protocol; 

Ciccarone et al., 1999; Hamada et al., 2003; Cheng et al., 2004; Dalby et al., 

2004). RIN cells were washed thrice in HBSS, harvested from the tissue culture 

flasks, centrifuged, and the pellets were frozen quickly on dry ice, and stored at -

80°C until used. The pellets were then placed into lysis buffer [1% Nonidet P-40 

(NP-40), 1% sodium deoxycholate, 0.1% sodium dodecyl sulfate (SDS), 0.15 M 

NaCl, 0.01 M sodium phosphate, pH 7.2, 2 mM EDTA, and 1% protease inhibitor 

cocktail]. After homogenization in protein lysis buffer, cells were disrupted by 

burst sonication (< 10 seconds) while cooling on ice, and samples were 

centrifuged at 14,000 × g for 20 min. at 4°C. The supernatant solution was 

obtained and total protein estimated using the Bradford method (Bradford, 1976). 

Equal amounts of total protein from each sample were loaded per lane in 12% 

SDS polyacrylamide gels. Low range prestained SDS-PAGE standards (Bio-Rad) 

were also used. The standard molecular weight marker proteins used were of 

113, 93, 50.3, 35.5, 28.8, and 21.4 kDa. After protein transfer (Towbin et al., 

1979), nitrocellulose sheets were incubated in Tris-buffered saline with Tween 

20® and 5% non-fat dry milk to block non-specific binding sites (Spinola and 

Cannon, 1985). After applying the specific primary and peroxidase-conjugated 

secondary antibodies, the specific protein bands were visualized using 

SuperSignal® West Pico Chemiluminescent Substrate kit. 
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cDNA Microarray data analysis 

RIN1046-38 cells transfected with 200nM PS-AS-ON, and those 

transfected with 200nM PS-NS-ON as controls, were included in this study. The 

cells were studied 48 hours post-transfection (as above). RIN cells were washed 

thrice in HBSS, harvested from the tissue culture flasks, centrifuged, and the 

pellets were placed into TRI REAGENT™. The pellets were homogenized 

immediately on ice using an Ultra-Turrax® type T25 basic S1 homogenizer (Ika® 

Works, Inc., Wilmington, NC). Total RNA was isolated according to the TRI 

REAGENT™ manufacturer’s instructions (Sigma, St. Louis, MO). The method we 

used for total RNA isolation was single-step simultaneous isolation of RNA, DNA 

and proteins from the cells using extraction with an acidic guanidinium 

thiocyanate-phenol-chloroform mixture to get undegraded total RNA in a high 

yield as described before (Chomczynski and Sacchi, 1987; Chomczynski, 1993).  

 

The PancChip is an endocrine pancreas specific microarray slide 

(Corning® ULTRA Gaps glass slide of 22 × 75mm, Corning Inc. Life Sciences, 

Acton, MA) having 48 grids (12 × 4). Each grid consists of 306 spots (18 × 17) 

(Kaestner et al., 2003). The Mouse PancChip5.0 represents a collection of 

mouse complementary DNAs (cDNAs) chosen for their expression in various 

stages of pancreatic development (Scearce et al., 2002). The PancChip5.0 

contains 14,688 spots of cDNAs which include clones of genes, 3,139 of them 

are non-redundant genes, representing every assembly found to be expressed in 

the endocrine pancreas and insulinomas. The clones of genes were selected by 
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both sequence analysis of Consortium Libraries [endocrine pancreas consortium 

clones, EPCon Clones (Beta Cell Biology Consortium, Nashville, TN), and 

integrated molecular analysis of genomes and their expression consortium, 

IMAGE Clones (National Institute of Diabetes and Digestive and Kidney 

Diseases, NIDDK 3.4K set)], which were found to be expressed in the pancreas 

using a combination of expression analysis and database mining. On the 

PancChip5.0 microarray slide there are positive and negative cDNA controls that 

were provided in the SpotReport™ - 10 cDNA Array Validation System from 

Stratagene (La Jolla, CA). β-actin cDNA was included in the positive controls; 

while salmon sperm cDNA, and several hundred blank spots were included in the 

negative controls. The principle of microarray technology is based on the 

isolation of the cellular mRNA, labeling mRNA with a fluorescent dye, and 

hybridizing the labeled mRNA to cDNAs attached to microarray slide. After 

several washes, the fluorescence intensity of each spot on the microarray slide is 

measured using a special scanner, then image analysis is performed (Fellenberg 

et al., 2001; Kaestner et al., 2003). 

 

Insulin secretion and content of RIN1046-38 cells 

The RIN1046-38 cells were grown in 25 cm2 tissue culture flasks. 48 hours 

post-transfection the cells were washed thrice with HBSS and further incubated 

in the basal medium for 25 min. at 37°C. The basal incubation medium was a 

modified Krebs-Ringer medium composed of: 118 mM NaCl, 4.8 mM KCl, 1.5 

mM CaCl2, 1.2 mM MgCl2, 1.2 mM KH2PO4, 10 mM HEPES, 5 mM NaHCO3, 2.8 
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mM glucose, and 0.1% w/v BSA, pH 7.40 (as previously described in chapter 2; 

Sooy et al., 1999; Parkash et al., 2002). The stimulation medium was composed 

of the basal incubation medium and either 0.5 mM carbamylcholine chloride 

(carbachol) alone, or 0.5 mM carbachol plus a final glucose concentration of 17 

mM. 

 

Carbachol is a cholinergic muscarinic agonist (acetylcholine derivative) 

known to activate phospholipase C (PLC), leading to the generation of inositol 

1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). This leads to Ca2+-

mobilization from intracellular stores, a rise in [Ca2+]i, signal transduction, and 

insulin secretion from the β-cells (Wollheim and Biden, 1986; Biden et al., 1987; 

Nilsson et al., 1987; Prentki and Matschinsky, 1987; Peter-Riesch et al., 1988; 

Wolf et al., 1989; Theler et al., 1992; Yada et al., 1992; Jones and Persaud, 

1998). DAG is the endogenous activator of protein kinase C, a Ca2+- and 

phospholipid-dependent enzyme (Nishizuka, 1986, 1988; Wollheim et al., 1988). 

Carbachol is known to significantly increase membrane-associated protein 

kinase C (PKC) activity while simultaneously decreasing its activity in the cytosol 

(Nishizuka, 1986, 1988; Wollheim et al., 1988; Persaud et al., 1989). These 

events are associated with an increase in insulin secretion from RIN cells and rat 

islets of Langerhans (Wollheim and Biden, 1986; Yamatani et al., 1988; Persaud 

et al., 1989).  
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After incubating the RIN cells in the basal medium for 25 min., the medium 

was collected and the cells were incubated in the stimulation medium. The 

stimulation medium was then replaced at 25 min. intervals with a new stimulation 

medium to assess the time course (75 min.) of insulin secretion in response to 

secretagogues. Then, the cells were further incubated in the basal medium for 

the final 25 min. The samples of insulin secretion were stored at -80°C until 

analyzed. The insulin content of the RIN1046-38 cells was extracted by 

incubation overnight in acidic ethanol (pH 1.7) at -20°C as previously described 

(Rhoten, 1983). 

 

In order to measure both the insulin secretion and insulin content of the 

RIN1046-38 cells, we have applied a competitive enzyme-linked immunosorbent 

assay (ELISA) protocol modified in our laboratory from that of Kekow et al. 

(1988), and Webster et al. (1990). Rat insulin was used to build a standard curve 

(0 – 100 pg). The absorbance of the samples loaded in the 96-well assay plates 

were read at 490 nm using µQuant™ microplate spectrophotometer (Bio-Tek 

Instruments, Inc., Winooski, VT) and the data were interpreted using KCjunior™ 

data analysis software, version 1.41.4 (Bio-Tek Instruments, Inc., Winooski, VT). 

 

Statistical Analysis 

Results are presented as the mean ± standard error of the mean (SEM), 

and percentages, using Sigma Stat, version 2.03 from SPSS Inc. (Chicago, IL). 
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The data were analyzed for significance with the unpaired Student’s t test (one-

tailed) with a significance level of 0.05. 
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RESULTS 

 

To evaluate the effects of CaBP28k depletion on the gene expression of 

RIN1046-38 cells, the cells were studied 48 hours after transfection with AS-ON. 

This time point was chosen because previous reports showed that the effects of 

ON transfection on the knock-down of gene expression were detectable in this 

time frame (according to the Lipofectamine™ 2000 manufacturer's instructions, 

Invitrogen™ Life Technologies, Carlsbad, CA; Ciccarone et al., 1999; Hamada et 

al., 2003; Cheng et al., 2004; Dalby et al., 2004). The gene expression profiles of 

RIN1046-38 cells were examined in the CaBP28k-ablated cells (AS-ON 

transfected) and control cells (NS-ON transfected). 

 

In vitro transfection assays 

We detected the cellular uptake of 50 nM fluorescein-labeled AS-ON after 

six hours of incubation with the RIN1046-38 cells (Figure 23). Using the inverted 

fluorescence microscope, we monitored the cellular uptake of the ON. 

Considerable amounts of the fluorescein-labeled AS-ON were delivered into the 

RIN cells (Figure 23). The ON-transfected RIN cells remained viable as 

determined by trypan blue exclusion (images not shown). 

 

Inhibition of CaBP28k expression by AS-ON 

Western blots were conducted 48 hours after transfection to evaluate the 

efficiency of the ON transfection assays. Our Western blots demonstrate efficient 
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inhibition of CaBP28k expression in RIN1046-38 cells using 200 nM PS-AS-ON as 

shown in Figure 24. The control untreated RIN1046-38 cells showed the same 

levels of expression of CaBP28k as the 50 nM PS-AS-ON transfected cells (Figure 

24). In addition, we found greater reductions of the levels of CaBP28k expression 

with increasing concentrations of PS-AS-ON. The signal of CaBP28k expression 

was not detectable (below the sensitivity level of the chemiluminescence’s 

detection) using 200 nM PS-AS-ON (Figure 24).  

 

The effect of ON transfection on the expression of other calcium-binding 

proteins in RIN1046-38 cells is shown in Figure 25. We studied calmodulin (17 

kDa), a nontargeted protein that is used as an internal control, to validate the 

specificity of the effects of PS-AS-ON transfection assays. β-actin (43 kDa) was 

used as a protein gel-loading control. The PS-NS-ON-transfected cells were 

included as a control to evaluate the sequence-specific and gene-specific effects 

of AS-ON transfection assays (Figure 25). Gene expression in the control RIN 

cells exposed to the 100 – 200 nM PS-NS-ON were similar to that of the 

untreated cells (Figure 25). It is noteworthy that calbindin-D9k expression was 

present in the 200 nM PS-AS-ON-transfected RIN1046-38 cells (Figure 25). 

 

Previous studies reported that the PY-AS-ON were more potent and 

specific in their effects than the PS-AS-ON (Wagner et al., 1993; Raviprakash et 

al., 1995). Thus, it is of interest to compare the effects of the PY-AS-ON in 

RIN1046-38 cells to those of the PS-AS-ON. We applied a range of PY-AS-ON 
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concentrations from 2.5 to 20 nM in order to determine the most effective 

inhibitory concentration for CaBP28k expression in RIN cells (Figure 26). The 

immunoblottings showed gradual reductions in the CaBP28k expression levels in 

the RIN cells with increasing concentrations of PY-AS-ON until a complete 

inhibition is achieved using 20 nM (Figure 26). Thus, inhibition was achieved 

using PY-AS-ON at considerably lower concentration levels than PS-AS-ON. 

Furthermore, at 20 nM PY-AS-ON a positive expression of calbindin-D9k was 

observed as shown in Figure 26. 

 

Taken together, Western blot analysis of the AS-ON transfection assays 

(of both PS- and PY-) revealed that when the CaBP28k expression is completely 

inhibited (below the sensitivity level of the chemiluminescence’s detection) a 

strong increase in calbindin-D9k expression is detected (Figures 24, 25, and 26). 

 

We further extended our study to include VDR (52 – 57 kDa) as shown in 

Figure 27. We found that VDR expression in the RIN cells transfected with AS-

ON was much higher than that of the NS-ON transfections (Figure 27). However, 

when comparing the effects of using 200 nM PS-AS-ON to those of using 20 nM 

PY-AS-ON we found a much stronger immunodense reaction of VDR expression 

in the RIN cells transfected with the 200 nM PS-AS-ON (Figure 27). 
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Microarray data analysis 

RIN 1046-38 cells transfected with 200 nM PS-AS-ON and control 200 nM 

PS-NS-ON-transfected cells were included in our microarray analysis (Table 4). 

Interestingly, the cDNA microarray analysis revealed up-regulation of the vitamin 

D receptor mRNA [↑ 3-fold] and the calbindin-D9k mRNA [↑ 4-fold] while no 

change occurred in the calmodulin or insulin mRNAs (Table 4). β-actin mRNA 

was used as a positive control and did not show any change in its level. Our 

microarray data further extend and confirm our Western blot findings and 

demonstrate that the increases in the VDR and calbindin-D9k expressions 

reported in the 200 nM PS-AS-ON-transfected RIN cells occurred at both the 

mRNAs and proteins levels (Table 4, and Figures 25 and 27).   

 

Insulin content of the RIN cells 

The total insulin contents (in ng/106 cells) of transfected RIN1046-38 cells 

were estimated to be as follows (mean ± SEM): Lipofectamine™ 2000 (vehicle) 

treated, 46.32 ± 3.90; 200 nM PS-NS-ON transfected, 47.20 ± 5.97; 200 nM PS-

AS-ON transfected, 45.43 ± 6.69 (n = 5) (Figure 28). There was no statistically 

significant difference in the insulin contents of the three groups included in our 

study (Figure 28). 

 

Insulin secretion studies 

In vitro studies for the insulin secretory responses of RIN1046-38 cells 

were done on 200 nM PS-AS-ON transfected cells and controls [vehicle-treated 

 114



 

cells, and 200 nM PS-NS-ON-transfected cells]. Our insulin ELISA results 

showed a statistically significant increase in insulin release from the 200 nM PS-

AS-ON-transfected cells (8.94 ± 0.39 ng/106 cells) as compared to that of the 

vehicle-treated cells (5.78 ± 0.12 ng/106 cells), and the 200 nM PS-NS-ON-

transfected (5.68 ± 0.16 ng/106 cells) in response to 0.5 mM carbachol 

stimulation (n = 5) (Table 6 and Figure 29). 

 

We estimated the fractional insulin secretion of RIN cells as the 

percentage of the insulin secretion/the total cellular insulin content. As presented 

in Table 7 and Figure 30, the 200 nM PS-AS-ON-transfected RIN cells had a 

significantly higher fractional insulin secretory responses in the 60 min. 

stimulation period with 0.5 carbachol (20.94 ± 2.42%) as compared to controls 

[vehicle-treated, 12.70 ± 1.33%; and 200 nM PS-NS-ON-transfected, 12.62 ± 

1.57%; n = 5, p < 0.05]. 

 

Upon increasing the glucose concentration from 2.8 mM to 17 mM plus 

0.5 mM carbachol in the incubation medium, the 200 nM PS-AS-ON transfected 

RIN cells exhibited a significantly greater increase in insulin release as compared 

to that of the 200 nM PS-NS-ON-transfected cells over the 75 min. stimulation 

period (Table 8 and Figure 31).  

 

We further compared the insulin secretory influence of 0.5 mM carbachol 

to that of the combined 0.5 mM carbachol plus 17 mM glucose in the RIN1046-38 
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cells. Our data indicated that the CaBP28k-ablated cells (200 nM PS-AS-ON-

transfected) have significantly higher insulin secretory responses under basal 

conditions, and in response to 0.5 mM carbachol and the combination of 0.5 mM 

carbachol plus 17 mM glucose than the control 200 nM PS-NS-ON-transfected 

cells (p < 0.001) (Table 9 and Figure 32). 
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β-actin 

CaBP28k 
                    

 

Untreated     50 nM        100 nM      150 nM      200 nM 
                      AS-ON       AS-ON      AS-ON      AS-ON   

Figure 24. Western blots showing the effects of using different concentrations of 

PS-AS-ON transfection in RIN1046-38 cells. 12% SDS-polyacrylamide gels were 

loaded with 200 µg total protein per well of samples of RIN1046-38 cells [control 

untreated cells, and 50, 100, 150, 200 nM PS-AS-ON treated cells]. The 

nitrocellulose sheets were probed with the rabbit anti-CaBP28K antibody (bottom 

blot) and the mouse anti-β-actin antibody (upper blot). CaBP28K protein was 

visualized as a single immunoreactive band at 28 kDa seen by the 

chemiluminescent peroxidase method. Greater reductions of the levels of 

CaBP28k expression are seen with increasing concentrations of PS-AS-ON until 

complete inhibition of CaBP28k expression is achieved using 200 nM PS-AS-ON 

(bottom blot). β-actin expression was used as a protein gel-loading control (upper 

blot). (n = 3) [a representative experiment is shown]. 
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  Untreated   100 nM    100 nM    200 nM      200 nM 
                       NS-ON    AS-ON    NS-ON      AS-ON 

Figure 25. Effect of PS-ON transfection on calmodulin and calbindin-D9k 

expression in RIN1046-38 cells. 12% SDS-polyacrylamide gels were loaded with 

200 µg total protein per well of samples of RIN cells. The nitrocellulose sheets 

were sequentially probed with both rabbit anti-calbindin-D9k antibody and mouse 

anti-calmodulin (bottom blot), and mouse anti-β-actin antibody (upper blot). The 

immunoreactions were visualized by the chemiluminescent peroxidase method. 

β-actin was used as a protein gel-loading control (upper blot). Calmodulin was 

used as a positive control, and did not show a marked change in its expression 

(bottom blot). Interestingly, only 200 nM PS-AS-ON transfected cells showed an 

expression of calbindin-D9k (bottom blot) [a representative experiment is shown]. 
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β-actin 

CaBP28k 

Calbindin-D9k

  20 nM      10 nM         5 nM   100 ng   2.5 nM   2.5 nM 
 AS-ON    AS-ON      AS-ON  β-actin  AS-ON   NS-ON 

 

Figure 26. Western blots showing the effects of using different concentrations of 

PY-AS-ON in RIN1046-38 cells. 12% SDS-polyacrylamide gels were loaded with 

200 µg total protein per well of samples of RIN cells; one well was loaded with 

100 ng β-actin as a standard. The nitrocellulose sheets were probed with rabbit 

anti-calbindin-D9k antibody (bottom blot), rabbit anti-CaBP28k antibody (middle 

blot), and mouse anti-β-actin antibody (upper blot). The immunoreactions were 

visualized by the chemiluminescent peroxidase method. β-actin was used as a 

protein gel-loading control (upper blot). CaBP28k expression showed marked 

reductions with increasing concentrations of PY-AS-ON until complete inhibition 

is seen at 20 nM PY-AS-ON (middle blot). Only 20 nM PY-AS-ON transfected 

cells showed expression of calbindin-D9k (bottom blot) [a representative 

experiment is shown]. 
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Figure 27. Western blots showing the effect of ON transfection on the expression 

of VDR in RIN1046-38 cells. 12% SDS-polyacrylamide gels were loaded with 200 

µg total protein per well of samples of RIN cells. The cells were transfected with 

either PS-ON (200 nM AS vs. 200 nM NS), left panel, or PY-ON (20 nM AS vs. 

20 nM NS), right panel. These concentrations of AS-ON were selected because 

they caused complete inhibition of CaBP28k expression (Figures 24 and 26). Blots 

were probed with rat anti-VDR (upper blots, a and c) and mouse anti-β-actin 

antibodies (bottom blots, b and d). The immunoreaction product was visualized 

by the chemiluminescent peroxidase method. β-actin was used as a protein gel-

loading control (b, d). VDR expression showed a much higher expression in RIN 

cells transfected with 200 nM PS-AS-ON as compared to that of control 200 nM 

PS-NS-ON transfections (a). 20 nM PY-AS-ON caused a small increase in the 

expression of VDR as compared to that of control 20 nM PY-NS-ON 

transfections (c). In comparison to the effects of 200 nM PS-AS-ON, the 

application of 20 nM PY-AS-ON caused a much smaller increase in the 

expression of VDR. [The experiments were repeated twice, representative 

experiments are shown]. 
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Table 4. A comparison of the gene expression profiles of the 200 nM PS-AS-ON- 

and the 200 nM PS-NS-ON-transfected RIN1046-38 cells by microarray analysis. 

mRNA Description 

 

Microarray Results 

[200 nM PS-AS-/200 nM PS-NS-ON]

Calbindin-D9k mRNA Up-regulated [↑ 4-fold] 

Vitamin D receptor (VDR) mRNA Up-regulated [↑ 3-fold] 

Calmodulin mRNA No change 

Calcium/calmodulin-dependent serine- 

protein kinase II (CaM kinase II) mRNA 

 

No change 

Insulin mRNA No change 

S100 calcium-binding protein mRNA No change 

Secretogranin II mRNA No change 

Chromogranin A & B mRNAs No change 

β-actin mRNA No change 

 

 The microarray analysis was done in the MU DNA Core Facility using six 

PancChip5.0 slides (assays were repeated three times) 

 The PancChip is an endocrine pancreas specific microarray slide that has 

14,688 genes (3,139 of them are non-redundant genes) 

 β-actin mRNA was used as a positive control and showed no change in its 

expression level 
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Table 5. Additional microarray data analysis of 200 nM PS-AS-ON-/200 nM PS-
NS-ON-treated RIN cells. 
 
Gene I.D. 
 

Name 
 

Regular ratio 
treated/control 
 

16476 Mus musculus Jun oncogene mRNA 71.42 
4161889 Mus musculus insulin-like growth factor binding protein 

1 mRNA 
46.10 

20537 Mus musculus solute carrier family 5 (sodium/glucose 
cotransporter), member 1 mRNA 

34.49 

4242076 Unnamed protein product [Mus musculus] mRNA 26.51 
3967219 Mus musculus prolyl endopeptidase mRNA 23.24 
4217694 Phosphoenolpyruvate carboxykinase 1, cytosolic [Mus 

musculus] mRNA 
19.29 

4240796 Apolipoprotein A-IV mRNA 17.98 
4192268 Mus musculus transthyretin mRNA 15.37 
2644984 Mus musculus mRNA for integrin beta 1 subunit 14.24 
2582271 Glucose-6-phosphate isomerase (GPI) 

(Phosphoglucose isomerase) (PGI) (Phosphohexose 
isomerase) (PHI) (Neuroleukin) (NLK) mRNA 

14.15 

3663150 Mus musculus transforming growth factor, beta 3 
mRNA 

12.76 

23894 General transcription factor IIH, polypeptide 2 (44 kDa 
subunit); basal transcription factor 2, p44 subunit [Mus 
musculus] (NM_022011) mRNA 

11.65 

4210558 Heparin-binding growth factor 1 precursor (HBGF-1) 
(acidic fibroblast growth factor) (AFGF) mRNA 

9.44 

4195958 Apolipoprotein A-II precursor, C57BL/6–mouse mRNA 9.09 
4008490 Paired box transcription factor Pax-6 – mouse mRNA 7.89 
3500885 Mus musculus hypoxanthine guanine phosphoribosyl 

transferase mRNA 
7.26 

2631167 Mus musculus glucose-6-phosphatase, transport 
protein 1 mRNA 

7.22 

25058 Hexokinase 1 (EC 2.7.1.1) [Rattus norvegicus] mRNA 6.71 
3497611 Mus musculus solute carrier family 5 (sodium/glucose 

cotransporter), member 1 mRNA 
6.37 

596564 Mus musculus promyelocytic leukemia mRNA, 
(BC020990) 

6.00 

576391 Mus musculus ubiquitin-conjugating enzyme E2I, 
mRNA 

5.57 

4218355 Mus musculus unknown protein for MGC:19143 mRNA 5.57 
4238940 Mus musculus frizzled homolog 4 (Drosophila) mRNA 5.48 
4191539 Peroxisome proliferator activated receptor gamma 

(PPAR-gamma) mRNA 
4.54 

4237050 Vitamin D-dependent calcium-binding protein, intestinal 
(Calbindin-D9K) mRNA 

4.42 

4225392 Mucin glycoprotein MUC3 [Mus musculus] mRNA 4.34 
30024406 Mus musculus cadherin 1 (Cdh1), mRNA 4.14 
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4237115 Unnamed protein product [Mus musculus] mRNA 3.88 
3710866 Vitamin D receptor [Mus musculus] mRNA 3.32 
3707718 Paired box protein Pax-9 mRNA 3.30 
596464 Mus musculus RIKEN cDNA 1700009P03 gene mRNA 3.28 
3587973 Mus musculus annexin A1 mRNA 3.24 
4194027 Mus musculus unknown protein for MGC:29137 mRNA 3.20 
4194295 Unnamed protein product [Mus musculus] mRNA 2.91 
30013295 
 

Insulin-like growth factor II precursor (multiplication 
stimulating polypeptide) (IGF-II) mRNA 

2.83 

56370 Neuronal protein NP25, transgelin 3 mRNA 2.57 
4159971 Fatty acid-binding protein, liver (L-FABP) (14 kDa 

selenium-binding protein) mRNA 
2.50 

5066237 Mus musculus MAD homolog 2 (Drosophila) mRNA 2.46 
3593200 Similar to myeloid ecotropic viral integration site-related 

gene 2 [Mus musculus] (BC003762) mRNA 
2.33 

4238555 Mus musculus alcohol dehydrogenase 1 (class I) 
mRNA 

2.32 

4192239 Hepatocyte growth factor receptor precursor (Met proto-
oncogene tyrosine kinase) (c-met) (HGF receptor) 
(HGF-SF receptor) mRNA 

2.20 

6430786 Mus musculus unknown protein for MGC:46985 mRNA 0.50 
6434212 (XM_128428) hypothetical protein XP_128428 [Mus 

musculus] mRNA 
0.50 

5669278 Unnamed protein product [Mus musculus] mRNA 0.49 
6435574 Unnamed protein product [Mus musculus] mRNA 0.49 
6433215 60S ribosomal protein L15 mRNA 0.49 
5656666 (XM_157865) hypothetical protein XP_157865 [Mus 

musculus] mRNA 
0.48 

5660251 Baculoviral IAP repeat-containing protein 5 (apoptosis 
inhibitor survivin) (apoptosis inhibitor 4) (TIAP) mRNA 

0.46 

6436242 RAS-related protein RAB-26 [Mus musculus] mRNA 0.46 
862806 Delta-like protein 4 precursor (Drosophila delta homolog 

4) mRNA 
0.43 

6431732 Mus musculus Max dimerization protein mRNA 0.42 
6436628 Betaine-homocysteine methyltransferase [Rattus 

norvegicus] [Mus musculus] mRNA 
0.40 

5682232 Hypothetical protein FLJ11230 [Mus musculus] mRNA 0.23 
 
 Ratio value of 2.0 or above is considered as significant up-regulation, while 

0.5 or below is considered as significant down-regulation 

 A number of genes involved in glucose metabolism were up-regulated. This 

could be due to the increased turning-on of the transcription machinery of 

several genes that may need the additional energy originated from glucose 

metabolism in these AS-ON-transfected RIN cells 
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Figure 28. Insulin content of PS-ON transfected RIN1046-38 cells. This graphical 

representation reflects the results of the ELISA assays for insulin content of 

RIN1046-38 cells shown as mean ± SEM. No statistically significant difference 

was found in the insulin content of RIN cells treated with vehicle, transfected with 

PS-AS-ON or with PS-NS-ON (vehicle ν PS-NS-ON, p = 0.45; vehicle ν PS-AS-

ON, p = 0.45; PS-NS-ON ν PS-AS-ON, p = 0.42; n = 5). 
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Table 6. Insulin secretion from RIN1046-38 cells (in ng/106 cells) in response to 

0.5 mM carbachol. 

 Basal insulin 

secretion 

(60 min.) 

[mean ± SEM] 

0.5 mM carbachol 

stimulation 

(60 min.) 

[mean ± SEM] 

Number 

of 

samples

Vehicle-treated RIN 

cells  

3.03 ± 0.23 a,b 5.78 ± 0.12 d,e 5 

200 nM PS-NS-ON 

transfected RIN cells 

2.81 ± 0.09 a,c 5.68 ± 0.16 d,f 5 

200 nM PS-AS-ON 

transfected RIN cells 

3.61 ± 0.09 b,c 8.94 ± 0.39 e,f 5 

 

a Basal: vehicle ν PS-NS-ON, p = 0.21 

b Basal: vehicle ν PS-AS-ON, p < 0.05 

c Basal: PS-NS-ON ν PS-AS-ON, p < 0.001 

d 0.5 mM carbachol stimulation: vehicle ν PS-NS-ON, p = 0.31 

e 0.5 mM carbachol stimulation: vehicle ν PS-AS-ON, p < 0.001 

f 0.5 mM carbachol stimulation: PS-NS-ON ν PS-AS-ON, p < 0.001 
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Figure 29. The effect of CaBP28k depletion on insulin secretion from the 

RIN1046-38 cells. The graphical representation reflects the results of the ELISA 

assays for insulin secretion into the basal incubation and stimulation media of 

RIN1046-38 cells shown as mean ± SEM. RIN cells were incubated in the basal 

medium (modified Krebs-Ringer medium containing 2.8 mM glucose) for 60 min., 

then incubated in the stimulation medium (basal medium + 0.5 mM carbachol) for 

another 60 min. The RIN cells transfected with 200 nM PS-AS-ON showed a 

statistically significant higher insulin secretion level in response to 0.5 mM 

carbachol as compared to that of both the vehicle-treated and the 200 nM PS-

NS-ON-transfected cells (p < 0.001) [n = 5]. 
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Table 7. Fractional insulin secretion of RIN1046-38 cells (%insulin secretion/total 

cellular insulin content) in response to 0.5 mM carbachol. 

 Fractional basal 

insulin secretion 

(60 min.) 

[mean ± SEM] 

Fractional stimulation 

insulin secretion 

(60 min.) 

[mean ± SEM] 

Number 

of 

samples

Vehicle-treated RIN 

cells  

6.69 ± 0.99 a,b 12.70 ± 1.33 d,e 5 

200 nM PS-NS-ON 

transfected RIN cells 

6.22 ± 0.74 a,c 12.62 ± 1.57 d,f 5 

200 nM PS-AS-ON 

transfected RIN cells 

8.54 ± 1.04 b,c 20.94 ± 2.42 e,f 5 

 

a Fractional basal: vehicle ν PS-NS-ON, p = 0.36 

b Fractional basal: vehicle ν PS-AS-ON, p = 0.12 

c Fractional basal: PS-NS-ON ν PS-AS-ON, p = 0.06 

d Fractional stimulation (0.5 mM carbachol): vehicle ν PS-NS-ON, p = 0.48 

e Fractional stimulation (0.5 mM carbachol): vehicle ν PS-AS-ON, p < 0.05 

f Fractional stimulation (0.5 mM carbachol): PS-NS-ON ν PS-AS-ON, p < 0.05 
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Figure 30. Graphical representation of the fractional insulin secretion from the 

transfected RIN1046-38 cells based on the insulin ELISA assay results. The 

values shown as mean ± SEM in this chart reflect the percentage of insulin 

secretion/total cellular insulin content. RIN cells transfected with 200 nM PS-AS-

ON show a statistically significant (p < 0.05) higher percentage of fractional 

insulin secretion in response to 0.5 mM carbachol as compared to that of both 

the vehicle-treated and the 200 nM PS-NS-ON-transfected cells [n = 5]. 
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Table 8. Insulin secretion of RIN1046-38 cells (mean ± SEM in ng/106 cells) in 

response to 0.5 mM carbachol + 17 mM glucose. 

 200 nM PS-NS-ON 

transfected RIN 

cells 

200 nM PS-AS-ON 

transfected RIN 

cells 

Number 

of 

samples 

1st 25 min. basal 2.69 ± 0.22 a 3.62 ± 0.18 a 6 

1st 25 min. stimulation 11.85 ± 0.50 b 17.62 ± 1.30 b 6 

2nd 25 min. stimulation 5.48 ± 0.24 c 12.22 ± 0.50 c 6 

3rd 25 min. stimulation 4.07 ± 0.44 d 5.98 ± 0.92 d 6 

Last 25 min. basal 3.00 ± 0.18 e 4.42 ± 0.66 e 6 

 

a 1st 25 min. basal: PS-NS-ON ν PS-AS-ON, p < 0.001 

b 1st 25 min. stimulation: PS-NS-ON ν PS-AS-ON, p < 0.001 

c 2nd 25 min. stimulation: PS-NS-ON ν PS-AS-ON, p < 0.001 

d 3rd 25 min. stimulation: PS-NS-ON ν PS-AS-ON, p < 0.005 

e Last 25 min. basal: PS-NS-ON ν PS-AS-ON, p < 0.005 
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Figure 31. Insulin secretion from the PS-ON transfected RIN1046-38 cells in 

response to 17 mM glucose and 0.5 mM carbachol. This chart reflects the results 

of the ELISA assays for insulin secretory responses from RIN cells shown as 

mean ± SEM. The 200 nM PS-AS-ON transfected cells showed significantly 

greater amounts of insulin release compared to that of control 200 nM PS-NS-

ON transfected cells. (∗∗ indicates p < 0.005; ∗∗∗ indicates p < 0.001) [n = 6]. 
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Table 9. A summary of the insulin secretion results (mean ± SEM) from the ON 

transfected RIN1046-38 cells (in ng/106 cells). 

 200 nM PS-NS-ON 

transfected RIN 

cells 

200 nM PS-AS-ON 

transfected RIN 

cells 

Number 

of 

samples 

Basal insulin secretion 

(pooled data of the 60 

min. and 1st 25 min.) 

2.73 ± 0.07 a 3.62 ± 0.06 a 11 

0.5 mM carbachol 

stimulation (60 min.) 

5.68 ± 0.16 b 8.94 ± 0.39 b 5 

0.5 mM carbachol + 

17 mM glucose 

stimulation (pooled 

data of the 75 min.) 

7.13 ± 0.83 c 11.94 ± 1.18 c 6 

 

a Basal: PS-NS-ON ν PS-AS-ON, p < 0.001 

b 0.5 mM carbachol stimulation: PS-NS-ON ν PS-AS-ON, p < 0.001 

c 0.5 mM carbachol + 17 mM glucose stimulation: PS-NS-ON ν PS-AS-ON, p < 

0.001 
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Figure 32. The effects of the PS-ON transfection assays on the insulin secretion 

from RIN1046-38 cells are combined in this chart. This graphical representation 

reflects the results of the ELISA assays for insulin secretion after basal 

incubation and after stimulation from RIN1046-38 cells; the results are shown as 

mean ± SEM. RIN cells were incubated in basal medium containing 2.8 mM 

glucose, and then in either the stimulation medium of basal medium + 0.5 mM 

carbachol, or the stimulation medium of 17 mM glucose + 0.5 mM carbachol. RIN 

cells transfected with 200 nM PS-AS-ON show statistically significant greater 

insulin secretion in the basal, 0.5 mM carbachol, and 17 mM glucose + 0.5 mM 

carbachol stimulation conditions, as compared to those of the 200 nM PS-NS-ON 

transfections (p < 0.001) [n = 11 basal samples, n = 5 samples of 0.5 mM 

carbachol stimulation, n = 6 samples of 0.5 mM carbachol + 17 mM glucose 

stimulation]. 
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DISCUSSION 

 

Our previous studies that were done on the CaBP28k-KO mice as an in 

vivo model of CaBP28k-ablation (Chapter 2) indicated an important role for 

CaBP28k in suppressing the glucose-induced ∆ [Ca2+]i in the pancreatic β-cells. In 

the islet β-cells lacking CaBP28k, we found greater rises in the [Ca2+]i in response 

to glucose stimulation as compared to controls (Chapter 2). However, the 

genomic effects of the lack of CaBP28k were not studied. In chapter 3, the model 

we have adopted, an in vitro model of CaBP28k-ablation, allows us a more precise 

evaluation of the effects of the absence of CaBP28k in β-cells. Our application of 

the antisense technology was done in order to assess the function of CaBP28k in 

the cultured RIN1046-38 cells. 

 

We produced complete inhibition of CaBP28k using AS-ON in the RIN1046-

38 cells and believe that this is the first report of this finding. The complete 

inhibition of CaBP28k expression was achieved using 200 nM PS-AS-ON and 20 

nM PY-AS-ON (see Figures 24 and 26). PY-AS-ON transfections have previously 

been applied to inhibit the expression of different genes both in vitro and in vivo 

(Busuttil et al., 1996). Complete inhibition of the SV40 large T antigen (TAg) 

expression in African green monkey kidney cells, CV-1 cells, was achieved using 

50 nM PY-AS-ON (Wagner et al., 1993), while 67% inhibition of p27Kip1 

expression in CV-1 cells was achieved using 30 nM PY-AS-ON (Coats et al., 

1996; Flanagan et al., 1999). Another group of researchers described graded 
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inhibition in the expression of luciferase in HeLa X1/5 cells using PY-AS-ON: no 

inhibition occurred at 3 nM PY-AS-ON, while 50% inhibition was produced using 

9 nM and complete inhibition using 27 nM (Flanagan et al., 1996; Lewis et al., 

1996). The concentration of the PY-AS-ON we have applied in our RIN1046-38 

cells transfection assays that completely inhibited the CaBP28k expression was 

20 nM, which is close to the effective inhibitory concentration of 27 nM PY-AS-

ON previously used in transfection assays (Flanagan et al., 1996; Lewis et al., 

1996). However, Busuttil et al. (1996) applied higher concentrations of the PY-

AS-ON (100 – 400 nM), with efficient inhibition of protein kinase C-α and -δ in 

cultured rat aortic vascular smooth muscle cells produced at 400 nM. The 

application of higher concentrations of the PY-AS-ON (≥ 20 µM) lead to the 

nonspecific inhibition of a nontargeted gene (β-gal), in addition to the target gene 

(TAg) in the CV-1 cells (Wagner et al., 1993). 

  

Based upon our experience with RIN cells (Rhoten and Sergeev, 1994), a 

50% change in the level of CaBP28k was associated with a change in the [Ca2+]i 

responses to scretagogues. Our findings in Chapter 2 showed that the CaBP28k-

KO (CaBP28k-ablated) mice islets had much greater rises in the [Ca2+]i responses 

to glucose than those of the WT mice islets. In Chapter 3, we have knocked 

down (ablated) CaBP28k expression of the RIN1046-38 cells. Taken together, it 

would be likely to find associated changes in the [Ca2+]i responses in our 

CaBP28k-ablated RIN1046-38 cells. We report that expression of calbindin-D9k 

(protein and mRNA) in transfected RIN1046-38 cells was increased when the 
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expression of CaBP28k was completely abolished (Figures 24, 25, and 26; and 

Table 4). Calbindin-D9k is a major cytosolic protein that acts as a shuttle for Ca2+ 

transfer from the luminal to the basolateral poles of the intestinal epithelial cell 

(Kumar, 1995). Calbindin-D9k also increases ATP-dependent Ca2+ transport in 

the duodenal basolateral membrane (Walters, 1989; Walters et al., 1990) and 

can bind to the regulatory calmodulin-binding domain of the plasma membrane 

Ca2+ pump (Christakos et al., 1989; Gross and Kumar, 1990; Bouhtiauy et al., 

1994). Calbindin-D9k was also found to play an important role in the transport of 

Ca2+ in the distal tubule of the kidney where it enhances the ATP-dependent Ca2+ 

transport through the basolateral membrane (Bouhtiauy et al., 1994). Calbindin-

D9k levels were determined in the rat pancreas by radioimmunoassay to be 9.8 ± 

2.7 ng/mg protein (Thomasset et al., 1982). Calbindin-D9k can act as an 

intracellular Ca2+ buffer to protect the cells from the toxic effects of increased 

cytoplasmic calcium concentrations and stabilize [Ca2+]i (Thomasset, 1997). 

Armbrecht et al. (2003) illustrated that the increase in the expression of calbindin-

D9k protein in the rat duodenum was strongly correlated with both increased Ca2+ 

transport and Ca2+ uptake. 

 

Additionally, dietary Ca2+ levels were found to modulate the gene 

expression of intestinal calbindin-D9k in the rat (Freund and Bronner, 1975; 

Bronner et al., 1986). The effect of Ca2+ on calbindin-D9k gene expression has 

been confirmed by in vitro studies that showed an increase in the production of 

calbindin-D9k mRNA upon increasing the Ca2+ concentration in the medium of 
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fetal rat intestinal organ cultures, in the presence or absence of 1,25-(OH)2D3 

(Bréhier and Thomasset, 1990). Ca2+ as a second messenger encodes 

information about the magnitude (amplitude), frequency, and spatial organization 

of concentration changes (Lechleiter et al., 1991). In addition, Li et al. (1997) 

reported that a reduction of calbindin-D9k expression in the intestine and kidney 

was observed in normocalcemic VDR-ablated mice, suggesting that it is a 

consequence of VDR deficiency rather than hypocalcemia. However, a diet high 

in Ca2+ leads to normalization of intestinal calbindin-D9k expression in the VDR-

ablated mice, suggesting the involvement of Ca2+ in the regulation of calbindin-

D9k gene expression (Li et al., 1998). 

 

cDNA microarray analysis done on 200 nM PS-AS-ON-transfected RIN 

cells revealed that the VDR and calbindin-D9k mRNAs were up-regulated when 

compared to that of control 200 nM PS-NS-ON transfections (Table 4). We also 

detected the enhanced expression of VDR protein in the CaBP28k-ablated 

RIN1046-38 cells using Western blotting analysis (Figure 27). Our data also 

illustrates a strong correlation between the calbindin-D9k mRNA levels with its 

protein expression in the RIN1046-38 cells. This correlation is similar to that 

previously found by Armbrecht et al. (2003), who reported that in the rat 

duodenum the changes in calbindin-D9k protein expression levels were highly 

correlated with its mRNA expression levels. We also found a strong correlation 

between the VDR mRNA levels with its protein expression in the RIN1046-38 

cells. The expression of both the VDR protein and mRNA in normal untreated 
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RIN1046-38 cells has been previously reported (Christakos et al., 1991; Lee et 

al., 1994). Both 1,25-(OH)2D3 and Ca2+ were previously reported to regulate the 

expression of VDR (Brown et al., 1995; Zineb et al., 1998; Healy et al., 2003). 

VDR mediates the signal of 1,25-(OH)2D3 by binding to the VDREs in the DNA as 

a homodimer or as a heterodimer composed of one VDR subunit and one RXR 

receptor subunit (Nishikawa et al., 1995; Christakos et al., 2003b). VDR interacts 

with many nuclear transcription factors and coactivators including the general 

transcription factor TFIIB, a component of the basal transcription complex, which 

plays a critical role in ligand-dependent transcription (Blanco et al., 1995; 

MacDonald et al., 1995; Masuyama et al., 1997). 

 

The association between the increased expression of VDR mRNA and 

protein with the expression of calbindin-D9k mRNA and protein in our CaBP28k-

ablated RIN cells marks the interrelationships between these factors. It has been 

postulated that VDR modulates the expression of calcium binding proteins which 

control the [Ca2+]i (Christakos et al., 1979; Christakos and Norman, 1980; Mayer 

et al., 1981). Moreover, earlier developmental studies have shown that the 

induction of the VDR mRNA in the rat kidney is correlated with the induction of 

CaBP28k mRNA, while the induction of the VDR mRNA in the rat intestine is 

associated with the induction of the calbindin-D9k mRNA (Christakos et al., 1991). 

The increase in the expression levels of the VDR, and both CaBP28k and 

calbindin-D9k at the same developmental stage suggests that the induction of the 

VDR has an important role in regulating the gene expression of both CaBP28k 
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and calbindin-D9k (Huang et al., 1989; Christakos et al., 1991). In addition, in the 

vitamin D-deficient adult rat, the repletion of vitamin D led to the up-regulation of 

VDR and CaBP28k in the kidney and calbindin-D9k in the intestine (Christakos et 

al., 1991). Li et al. (1998) reported that mice lacking the VDR have markedly 

reduced levels of calbindin-D9k mRNA in the duodenum, kidney, brain, and lungs, 

when compared to control wild-type mice. However, CaBP28k mRNA levels in the 

VDR-ablated mice were only moderately reduced in the kidney and not affected 

in the lungs and brain, compared to control wild-type mice. These data 

demonstrate that VDR regulates calbindin-D9k gene expression and that 

additional tissue-specific factors may modulate the effects of VDR on CaBP28k 

gene expression (Li et al., 1998). Furthermore, Hemmingsen et al. (2002) 

concluded that rat intestinal calbindin-D9k was increased significantly in response 

to high plasma 1,25-(OH)2D3 level and was significantly decreased in response to 

low plasma 1,25-(OH)2D3. Their study also showed that the effect of 1,25-

(OH)2D3 on the intestinal calbindin-D9k was modulated by the plasma Ca2+ 

concentrations (Hemmingsen et al., 2002). 

 

Notably, our study presents, for the first time, that cultured beta cells 

express calbindin-D9k. The synthesis of calbindin-D9k was previously reported to 

be under the control of the 1,25-(OH)2D3 in the rat intestine (Thomasset et al., 

1982; Perret et al., 1985; Bréhier and Thomasset, 1990). Previous investigations 

also found that the 1,25-(OH)2D3 controls the expression of the calbindin-D9k 

gene at the transcriptional and the posttranscriptional levels (Dupret at al., 1987). 
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A consensus binding site for the VDR-RXR heterodimer has been characterized 

in the calbindin-D9k gene (Nishikawa et al., 1994; Colnot et al., 1995). Lee et al. 

(1994) reported that 1,25-(OH)2D3 treatment of the RIN1046-38 cells led to 

inhibition of cell growth and up-regulation of VDR expression as compared to 

controls. 

 

Our findings suggest that the regulatory mechanisms of CaBP28k and 

calbindin-D9k levels in RIN cells may interact so that the absence of CaBP28k 

expression leads to increased calbindin-D9k expression. RIN cells may respond 

to the depletion of CaBP28k, which is required for binding free [Ca2+]i, by 

synthesizing an alternative Ca2+-binding protein, calbindin-D9k. This is compatible 

with the idea that CaBP28k or an alternative Ca2+-binding protein such as 

calbindin-D9k plays a critical role in β-cells. In the nervous system CaBP28k is 

known to bind and buffer [Ca2+]i, and protect neurons against Ca2+-induced 

cytotoxicity (Mattson et al., 1991). Although the endoplasmic reticulum (ER) in 

pancreatic beta-cells is of major importance in buffering Ca2+ for the continuous 

regulation of Ca2+ cycling (Nilsson et al., 1987), additional buffering of Ca2+ may 

be required. The high affinity Ca2+-binding functions of calbindin-D9k are well 

established (Delorme et al., 1983; Bruns et al., 1986; Juffer and Vogel, 2000; 

Armbrecht et al., 2003). Calbindin-D9k can act as an intracellular Ca2+ buffer to 

protect cells from the toxic effects of increased cytoplasmic calcium 

concentrations and stabilize [Ca2+]i (Thomasset, 1997). Calbindin-D9k can also 

bind to the regulatory calmodulin-binding domain of the plasma membrane Ca2+ 
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pump (Christakos et al., 1989; Gross and Kumar, 1990; Bouhtiauy et al., 1994). 

Thus, calbindin-D9k could compensate for the effects of CaBP28k ablation and 

modulate the rises in [Ca2+]i. The known functions of both CaBP28k and 

Calbindin-D9k are to regulate [Ca2+]i levels in the cell. Evidence of functional 

compensation between CaBP28k and calbindin-D9k could be seen in the 

mammalian kidney where the calbindin-D9k gene is expressed in both mouse and 

rat kidneys (Thomasset et al., 1982; Delorme et al., 1983; Schreiner et al., 1983; 

Rhoten et al., 1985; Bindels et al., 1991). However, calbindin-D9k is less active in 

the rat kidney, where CaBP28k gene is highly expressed and predominates in 

Ca2+ regulation (Schreiner et al., 1983; Bindels et al., 1991; Thomasset, 1997). In 

addition, in the rat intestine no CaBP28k mRNA is expressed and calbindin-D9k 

may fulfill the functions of CaBP28k (Hunziker, 1986). Calbindin-D9k is known to 

play an important role in buffering [Ca2+]i in the duodenal enterocytes (Schroder 

et al., 1996). Additional research will help in understanding the exact role of 

calbindin-D9k in the AS-ON transfected RIN1046-38 cells and lead to a better 

understanding of calbindin-D9k functions in other cells. A hypothesis of the 

mechanisms underlying the interplay between CaBP28k and calbindin-D9k in AS-

ON transfected RIN1046-38 cells is illustrated in Figure 33. These proposed 

mechanisms include potential roles of VDR and calbindin-D9k expression in the 

AS-ON transfected RIN1046-38 cells. This model is in accordance with recent 

studies indicating that several factors are involved in the control of the expression 

of calbindin-D9k, including the VDR and Ca2+ levels (Walters et al., 1999). 
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                                                                        AS-ON blocking CaBP28k translation 

Bind the [Ca2+]i (? buffer) 

 

Figure 33. A diagrammatic illustration of the hypothesis of the possible cascade 

of events occurring in AS-ON transfected RIN1046-38 cells. 
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Our data suggest that CaBP28k and calbindin-D9k may be able to 

functionally compensate for one another in AS-ON transfected RIN cells. 

Previous studies showed that CaBP28k and calbindin-D9k are products of two 

independent genes (Hunziker, 1986). The CaBP28k mRNA is 2.0 – 3.1 kilobases 

long and does not cross-hybridize with calbindin-D9k (≈ 0.7 kilobase) (Hunziker, 

1986). Both CaBP28k and calbindin-D9k bind Ca2+ with high affinity (1 – 10 × 10-7 

M) (Bredderman and Wasserman, 1974; Fullmer and Wasserman, 1980). The 

effects of AS-ON transfections in RIN cells suggests that the system may be able 

to restore some of the regulatory functions of these molecules by independently 

switching off/on the expression of CaBP28k/calbindin-D9k. 

 

We further extended our study to investigate the effects of ON 

transfections on the insulin content and the insulin secretory functions of the 

RIN1046-38 cells. We are the first to elucidate the effects of CaBP28k-AS-ON 

transfection on insulin content and release by RIN1046-38 cells. Using ELISA, 

we estimated the insulin content of our control vehicle-treated RIN cells to be 

46.32 ± 3.90 ng/106 cells, while that of the PS-NS-ON transfected cells to be 

47.20 ± 5.97 ng/106 cells, and that of the PS-AS-ON transfected cells was 45.43 

± 6.69 ng/106 cells. We did not find any significant difference between the three 

groups included in our study. However, our results are close to those of previous 

research that used a radioimmunoassay to measure the insulin content of control 

RIN1046-38 cells, which was reported to be 52 ± 3 ng/106 cells (Lee et al., 1994). 
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Our data showed significantly increased basal and stimulated insulin 

secretion in response to 0.5 mM carbachol from the PS-AS-ON transfected RIN 

cells compared to controls (vehicle-treated and PS-NS-ON transfections) [Table 

6 and Figure 29]. Using ELISA, we estimated the insulin secretion of the 

RIN1046-38 cells that were incubated for 60 min. in the basal buffer with 2.8 mM 

glucose to be (in ng/106 cells): 3.03 ± 0.23 for the vehicle-treated cells, 2.81 ± 

0.09 for the PS-NS-ON transfected cells, and 3.61 ± 0.09 for the PS-AS-ON 

transfected cells. These findings are close to those of previous studies using 

radioimmunoassay that measured the insulin secretion of control RIN1046-38 

cells incubated for 90 min. in the basal buffer with 1 mM glucose to be 2.89 ± 

0.36 ng/106 cells (Rodriguez-Pena et al., 1997). Both the glucose concentrations 

of 1 mM and 2.8 mM were considered as nonstimulatory for insulin secretion 

from β-cells (Hermans et al., 1987; Yada et al., 1992, 1995). Moreover, we 

measured by ELISA the insulin secretory responses of RIN cells that were 

incubated for 60 min. in the stimulation buffer with 2.8 mM glucose + 0.5 mM 

carbachol to be (in ng/106 cells): 5.78 ± 0.12 for the vehicle-treated cells, 5.68 ± 

0.16 for the PS-NS-ON transfected cells, and 8.94 ± 0.39 for the PS-AS-ON 

transfected cells. Our findings are in accord with studies using 

radioimmunoassay to measure insulin secretory responses of control RIN1046-

38 cells that were incubated for 90 min. in a buffer containing 0.1 mM carbachol 

to be 3.81 ± 0.52 ng/106 cells (Rodriguez-Pena et al., 1997). Since we have 

incubated our RIN cells in a buffer with a higher concentration of carbachol (0.5 

mM) as the stimulating reagent, it is expected to find our insulin secretion values 
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higher than those of Rodriguez-Pena et al., 1997. Our insulin ELISA results 

showed a much greater increase in insulin release from the PS-AS-ON- 

compared to the PS-NS-ON-transfected RIN cells in response to secretagogues. 

The microarray analysis (Table 4) indicated that no change occurred in the 

insulin mRNA. These results imply that the PS-AS-ON transfection did not affect 

insulin synthesis, but rather increased the insulin secretory responses of the 

cultured RIN1046-38 cells. 

 

We found significantly higher insulin secretory responses to stimulation 

with 0.5 mM carbachol plus 17 mM glucose in all the time periods of 

measurement of 200 nM PS-AS-ON transfected RIN cells compared to that of 

control 200 nM PS-NS-ON transfected cells (Table 8 and Figure 31). AS-ON 

transfected (CaBP28k-ablated) RIN cells showed a much higher insulin secretory 

response to the secretagogues as compared to that of the controls. This is 

consistent with previous observations that showed significant increases in insulin 

secretion from the CaBP28k-KO mice islets, as compared to controls, when 

depolarized with a high concentration of KCl [45 mM] (Sooy et al., 1999). 

Moreover, our previous research has shown a significant increase in the ∆ [Ca2+]i 

from the CaBP28k-KO mice islets, as compared to controls, when the β-cells were 

exposed to a high concentration of glucose (Chapter 2; Parkash et al., 2002). It 

has been established that Ca2+ plays an important role in the glucose-induced 

insulin secretion (Figure 12; Gilon et al., 1993; Jones and Persaud, 1998; 

Easom, 1999; Lang, 1999; Lingappa and Farey, 2000; Barg et al., 2002). In 
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addition, in β-cells the [Ca2+]i and insulin secretions were found to oscillate in 

synchrony during stimulation by glucose (Gilon et al., 1993; Henquin et al., 

2002). It was also reported that omission of Ca2+ from the incubation medium 

(Grodsky and Bennett, 1966; Milner and Hales, 1967) or addition of blockers of 

L-type voltage-dependent Ca2+-channels abolished glucose-stimulated insulin 

secretion (Devis et al., 1975). In our earlier study on βHC-13 CaBP40 cells, we 

showed that the overexpression of calbindin-D28k caused almost a complete 

absence of the typical glucose-induced rise in [Ca2+]i in these cells, while the 

control βHC-13 cells responded to the addition of high glucose with a very 

substantial increase in the ∆ [Ca2+]i (Parkash et al., 2002). The present study, two 

earlier studies (Rhoten and Sergeev, 1994; Reddy et al., 1997) and our more 

recent studies (Sooy et al., 1999; Parkash et al., 2002) indicate the importance of 

CaBP28k in stabilizing the [Ca2+]i, specifically in the β-cell. Taken together, all 

these studies indicate that CaBP28k plays a significant role in controlling glucose-

induced insulin secretion from pancreatic β-cells. 

 

However, RIN cells do not recognize glucose by itself as a potent 

secretagogue and have only a modest response to glucose stimulation (Halban 

et al., 1983; Praz et al., 1983; Sooy et al., 1999). In addition, the insulin content 

of RIN cells was only 0.1% of that of normal mice islets compared to the βTC-3 

cells (a β-tumor cell line-3, from an adenoma created in transgenic mice 

expressing the simian virus 40, SV40, large T-antigen oncogene under control of 

the rat insulin II promoter) that have insulin content 20% of that of normal mice 
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islets (Hanahan, 1985; Efrat et al., 1988; D’Ambra et al., 1990; Sooy et al., 1999). 

D’Ambra et al. (1990) estimated the insulin content of βTC-3 cells to be 3100 ± 

294 ng/100 µg protein which is, as expected, a much higher level than that of our 

control RIN1048-38 cells (vehicle-treated RIN cells, 240.67 ± 11.26 ng/100 µg 

protein; and 200 nM PS-NS-ON transfected RIN cells, 213.75 ± 22.99 ng/100 µg 

protein). RIN1046-38 cells express high levels of CaBP28k (0.8 ± 0.2 µg/mg 

protein, Lee et al., 1994, using radioimmunoassay). This is similar to the chicken 

pancreas (1.06 ± 0.2 µg/mg protein, Sergeev and Rhoten, unpublished data) that 

made them both appropriate models for investigating the functional role of 

CaBP28k in the β-cells. 

 

Our present results demonstrate that in the presence of a high glucose 

concentration (which stimulates insulin release, 17 mM) and 0.5 mM carbachol 

produced a greater insulin secretion from both the 200 nM PS-AS-ON- and the 

200 nM PS-NS-ON-treated RIN cells, than that evoked by 0.5 mM carbachol in 

the basal glucose concentration (non-stimulatory level, 2.8 mM) (Table 9 and 

Figure 32). This is in accordance with previous observations that carbachol 

increases insulin secretion mildly in the presence of basal glucose concentrations 

but is much more effective in the presence of glucose concentrations which are 

stimulatory for insulin secretion (Bergman and Miller, 1973; Hermans et al., 1987; 

Regazzi et al., 1990; Yada et al., 1995; Babb et al., 1996; Nesher et al., 2002). 

Elevated glucose and carbachol have been shown to stimulate rises in [Ca2+]i in 

rat pancreatic β-cells (Peter-Riesch et al., 1988; Theler et al., 1992; Wang et al., 
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1992; Yada et al., 1992; Babb et al., 1996; Nesher and Cerasi, 2002; Nesher et 

al., 2002), and in RIN cells in association with insulin release (Biden and 

Wollheim, 1986; Wollheim and Biden, 1986; Biden et al., 1987, 1988). Carbachol 

requires that the β-cell membrane be sufficiently depolarized, e.g., by elevated 

glucose, to reach the threshold potential at which Ca2+ channels are activated. 

Hence carbachol can be considered as a mild initiator as well as a strong 

potentiator of insulin secretion (Hermans et al., 1987; Gylfe, 1991; Yada et al., 

1995; Babb et al., 1996; Martin et al., 1997). It should be kept in mind, however, 

that the insulinotropic action of carbachol can also involve activation of PKC, 

which is likely to contribute to the potentiating effect of carbachol in insulin 

secretion (Prentki and Matschinsky, 1987; Peter-Riesch et al., 1988; Persaud et 

al., 1989).  

 

We need to expand our future study to include the CaBP28k-KO and WT 

mice we have previously deployed in Chapter 2. This future research will include 

the study of VDR and calbindin-D9k protein expression in the pancreas of these 

mice using Western blot analysis. We will also conduct immunocytochemical 

analysis of their expressions in the pancreatic β-cells. In addition, cDNA 

microarray analysis will be needed to compare the gene expression profile of the 

CaBP28k-KO mice pancreas to that of the WT mice pancreas. These future 

studies which will help to determine whether the changes we found in the 

expression of both VDR and calbindin-D9k in our in vitro model of CaBP28k-

ablation also occurs in the whole organism with in vivo CaBP28k-ablation. 
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Nonetheless, the quantitative measurements (using ELISA) of the levels of the 

VDR and calbindin-D9k proteins in both AS-ON- and NS-ON-transfected 

RIN1046-38 cells will be required to quantify the influence of ON transfection on 

the expression of these factors. Also, measurements of [Ca2+]i will help to 

evaluate the possible role of Ca2+ as a second messenger affecting the genetic 

profile of ON-transfected RIN cells. Quantitative measurement of both CaBP28k 

and calbindin-D9k proteins (using ELISA) in the RIN1046-38 cells before and after 

AS-ON transfection will be needed to estimate the degree of switching off/on of 

CaBP28k/calbindin-D9k expression in the RIN cells. It is well known that one 

molecule of calbindin-D9k binds 2 molecules of Ca2+, while one molecule of 

CaBP28k is known to bind 4 molecules of Ca2+. The proposed experiments would 

help to verify whether calbindin-D9k is synthesized as a complete or partial 

compensation for the variations in CaBP28k levels in transfected RIN1046-38 

cells. 
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It has been established that the interactions between [Ca2+]i and the 

cytoskeleton of pancreatic β-cells result in release of insulin granules through the 

process of exocytosis. Yet, the need to improve insulin secretory responsiveness 

to a glucose challenge is thought to be contributing to the treatment of type 2 

diabetes. This thesis describes studies done to evaluate the interplay among 

[Ca2+]i, insulin concentration and secretion, and CaBP28k expression levels to 

help clarify the potential role of CaBP28k in the pancreatic β-cells in the control of 

insulin secretion. The three chapters presented here describe various 

experimental models for exploring the possible roles of CaBP28k in the β-cells 

using: (1) an avian model {chicken}, (2) in vitro studies with a mammalian model 

{CaBP28k-KO and WT mice}, and (3) tissue culture of mammalian β-cells 

{RIN1046-38 cell line}. The results of this study indicate the important influence 

of CaBP28k in the β-cells. This summary will briefly review the results of the three 

studies, indicate the importance of these results in understanding the possible 

roles of CaBP28k in β-cells, and present ideas for future studies that could be 

performed to look at additional aspects of the functional roles of CaBP28k in β-

cells. 

 

(1) It is has been known that the chicken pancreas expresses 

comparatively higher levels of CaBP28k than mammals, and the insulin release 

threshold of the chicken β-cells is elevated with reduced insulin output in 

response to glucose stimulation. We investigated the distribution of CaBP28k and 

insulin in the different lobes of chicken pancreas, and the cytosolic 
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interrelationships between insulin and CaBP28k in pancreatic β-cells. Western blot 

analysis for CaBP28k expression revealed the highest levels of expression in 

ventral and dorsal lobes, while the lowest expression was in the splenic lobe, 

which is similar to the results of ELISA for insulin concentrations in chicken 

pancreatic lobes. Immunohistochemistry demonstrated a greater intensity of 

reaction product for localization of CaBP28k than insulin in pancreatic islets. 

Confocal microscopic studies detected colocalization and a strongly positive 

correlation between insulin and CaBP28k in the β-cells. Our findings of similarities 

in the way of distribution of both insulin and CaBP28k and their colocalization 

suggest a possible role for CaBP28k in β-cells that could be contributing to the 

type 2 diabetes-like characteristics of chickens. Future studies could be designed 

to describe the changes in [Ca2+]i and insulin secretory responses to glucose 

stimulation in the CaBP28k-ablated (CaBP28k-AS-ON transfected) chicken 

pancreatic islets as compared to controls. 

 

(2) In addition, in vitro studies were conducted to look at the glucose-

induced changes in [Ca2+]i of pancreatic islets from CaBP28k-KO compared to WT 

mice. The pancreatic islets of CaBP28k-KO mice exposed to increasing glucose 

concentrations in the incubation medium from 2.8 mM to 30 mM, levels that 

mimic the transition from fasting to hyperglycemic states, showed significantly 

greater rises in [Ca2+]i as compared to WT. Qualitative differences were also 

seen in the kinetics of [Ca2+]i between CaBP28k-KO and WT mice islets. It has 

been established that the [Ca2+]i of the pancreatic β-cells controls the exocytosis 
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of insulin granules in response to glucose stimulation. With previous studies 

showing coincidence of insulin secretion with the rises in [Ca2+]i  following 

secretagogue  stimulation of the β-cells (Pralong et al., 1990; Gilon et al., 1993; 

Jones and Persaud, 1998; Easom, 1999; Lang, 1999), it is reasonable to believe 

that the levels of CaBP28k in the pancreatic islet β-cells could be contributing to 

the control of glucose-stimulated insulin secretion from the β-cells. Future studies 

will be needed to look at the expression of VDR and calbindin-D9k in the 

pancreatic islets as well as other organs, e.g. kidneys, of CaBP28k-KO as 

compared to WT mice. Furthermore, cDNA microarray analysis will be needed to 

compare the gene expression profile of the CaBP28k-KO mouse pancreas to that 

of the WT mouse pancreas. 

 

(3) The third study characterized the effects of CaBP28k-AS-ON 

transfection on the genomic and nongenomic profiles of a cultured pancreatic β-

cell line (RIN1046-38 cells). Western blots demonstrated complete inhibition of 

CaBP28k expression using 200 nM PS-AS-ON as well as using 20 nM of the more 

potent PY-AS-ON transfections. cDNA microarray analysis was done on the 200 

nM PS-AS-ON- as compared to control 200 nM PS-NS-ON-transfected RIN1046-

38 cells. We found up-regulation of both vitamin D receptor (VDR) and calbindin-

D9k mRNAs in 200 nM PS-AS-ON-transfected RIN1046-38 cells. Western blotting 

showed overexpression of VDR and expression of calbindin-D9k in both 200 nM 

PS-AS-ON and 20 nM PY-AS-ON-transfected RIN1046-38 cells. It is noteworthy 

that this study presents for the first time that cultured β-cells express calbindin-
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D9k in response to complete inhibition of CaBP28k. ELISA detected much greater 

increases in the insulin secretory responsiveness to 0.5 mM carbachol alone or 

in combination with 17 mM glucose in the 200 nM PS-AS-ON- compared to 200 

nM PS-NS-ON-transfected RIN cells. Future studies should determine, using 

quantitative measurements, the levels of VDR and calbindin-D9k proteins in both 

AS-ON- and NS-ON-transfected RIN1046-38 cells. This will be required to 

quantify the influence of ON transfection on the expression of these factors. It is 

well known that one molecule of calbindin-D9k binds 2 molecules of Ca2+, while 

one molecule of CaBP28k is known to bind 4 molecules of Ca2+. The proposed 

experiments would help to verify whether calbindin-D9k is synthesized as a 

complete or partial compensation for the variations in CaBP28k levels in 

transfected RIN1046-38 cells. Moreover, measurements of [Ca2+]i will help in 

characterizing the possible role of Ca2+ as a second messenger affecting the 

genetic profile of ON-transfected RIN cells. The ideas presented here support 

previous work, which suggested that several factors including the VDR and Ca2+ 

levels are involved in the control of the expression of calbindin-D9k (Walters et al., 

1999). 

 

In toto, these studies suggest that CaBP28k plays an essential role in the β-

cells such that the cells synthesize an alternative calcium-binding protein, 

calbindin-D9k, when the expression of CaBP28k is abolished. This induction of 

calbindin-D9k may be mediated by VDR overexpression. Additional studies are 

required to help in understanding the possible interactions and roles of calbindin-
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D9k, [Ca2+]i, and VDR in the AS-ON-transfected β-cells, and to examine the 

mechanisms leading to the expression of calbindin-D9k and overexpression of 

VDR in the CaBP28k-ablated RIN1046-38 cells. Exploring the molecular basis of 

these changes in the CaBP28k-ablated cells may clarify several a priori 

assumptions on the role of CaBP28k in cultured β-cells which could foster the 

development of a new working model for studying β-cell functions. 
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