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Inferring and Testing Hypotheses of Cladistic Character Dependence
by Using Character Compatibility
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New York 11568-8000, USA; E-mail: rokeefe@iris.nyit.edu

“Department of Geology, Field Museum of Natural History, Roosevelt Road at Lake Shore Drive, Chicago, Illinois 60605,

USA; E-mail: pwagner@fmnh.org

Abstract.—The notion that two characters evolve independently is of interest for two reasons. First,
theories of biological integration often predict that change in one character requires complemen-
tary change in another. Second, character independence is a basic assumption of most phylogenetic
inference methods, and dependent characters might confound attempts at phylogenetic inference.
Previously proposed tests of correlated character evolution require a model phylogeny and therefore
assume that nonphylogenetic correlation has a negligible effect on initial tree construction. This paper
develops “tree-free” methods for testing the independence of cladistic characters. These methods can
test the character independence model as a hypothesis before phylogeny reconstruction, or can be
used simply to test for correlated evolution. We first develop an approach for visualizing suites of
correlated characters by using character compatibility. Two characters are compatible if they can be
used to construct a tree without homoplasy. The approach is based on the examination of mutual
compatibilities between characters. The number of times two characters i and j share compatibility
with a third character is calculated, and a pairwise shared compatibility matrix is constructed. From
this matrix, an association matrix analogous to a dissimilarity matrix is derived. Eigenvector analyses
of this association matrix reveal suites of characters with similar compatibility patterns. A priori char-
acter subsets can be tested for significant correlation on these axes. Monte Carlo tests are performed
to determine the expected distribution of mutual compatibilities, given various criteria from the orig-
inal data set. These simulated distributions are then used to test whether the observed amounts of
nonphylogenetic correlation in character suites can be attributed to chance alone. We have applied
these methods to published morphological data for caecilian amphibians. The analyses corroborate
instances of dependent evolution hypothesized by previous workers and also identify novel parti-
tions. Phylogenetic analysis is performed after reducing correlated suites to single characters. The
resulting cladogram has greater topological resolution and implies appreciably less change among
the remaining characters than does a tree derived from the raw data matrix. [Character independence;

character weighting; compatibility; correlated character evolution; similarity coefficient.]

A hypothesis of correlated character evo-
lution, that is, that change in one char-
acter depends on conditions of another
character, is of interest for both theoreti-
cal and methodological reasons. Theories
from developmental (Wake, 1989), func-
tional (Wainwright et al., 1975), architectural
(Raup, 1966), and molecular (Huelsenbeck
and Nielsen, 1999) biology all predict that
correlated change should be common. How-
ever, phylogenetic inference methods such
as parsimony (Edwards and Cavalli-Sforza,
1964; Kluge and Farris, 1969)and simple max-
imum likelihood (Felsenstein, 1973) assume
independent character change. Thus, work-
ers have long recognized that character cor-
relation (also termed lack of character in-
dependence or character oversplitting) is a
central issue in character selection (Sneath
and Sokal, 1973). If characters evolve in a
correlated manner, the characters in the cor-
related suite are effectively overweighted

(de Queiroz, 1993; Chippindale and Wiens,
1994). Simulations indicate that parsimony
tree topologies and tree lengths are less ac-
curate when character evolution is corre-
lated rather than independent (Wagner, 1998;
Huelsenbeck and Nielsen, 1999). Correlated
character evolution might also exaggerate
bootstrap and Bremer support values for
some nodes by inflating apparent numbers of
synapomorphies.

Sneath and Sokal (1973) give two reasons
why characters might be correlated: sim-
ple logical correlation arising from the def-
initions of the characters themselves, and
correlation arising from the biology of the
organisms under study. Judicious charac-
ter selection can eliminate logical correla-
tions among characters. Biological correla-
tions are more difficult to identify but have
been suggested for many groups of organ-
isms (see Emerson and Hastings [1998] for
a review and discussion). Examples include
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tooth characters in hyaenids (Werdelin and
Solounias, 1991; Wagner, 1998), eye char-
acters in caecilians (Wilkinson, 1997), re-
productive characters in wasps (Quicke
and Belshaw, 1999), diving characters in
aquatic birds (McCracken et al., 1999), and
gross body morphology among plesiosaurs
(O’Keefe, 2000). Turner (1974), Shaffer et al.
(1991), and McCracken et al. (1999) both
suggest that conflict between different data
partitions is evidence of correlated char-
acter change within one or more parti-
tions. Suter (1994) suggests that correlated
character evolution might explain multiple
tree “islands”—sets of very distinct topolo-
gies implying the same or similar amounts
of change (Maddison, 1991). The study of
correlated change is therefore important
for methodological as well as biological
reasons.

One approach to dealing with this prob-
lem is to partition characters into suspicious
subsets and find the parsimony trees sup-
ported by each character subset (Wray, 1996;
Wilkinson, 1997; Emerson and Hastings,
1998; McCracken et al., 1999; Quicke and
Belshaw, 1999). One then reconciles the
resulting trees in some way (e.g., taxo-
nomic congruence; Mickevich, 1978). Unfor-
tunately, such approaches are laborious and
again require prior hypotheses of charac-
ter correlation. Workers have proposed tree-
based tests for detecting correlated character
evolution (e.g., Felsenstein, 1985; Maddison,
1990; Pagel, 1994). However, tree-based tests
require a model phylogeny. Because most
phylogenetic methods assume character in-
dependence, then to avoid circularity, one
should infer the model phylogeny by using
some character set other than the one be-
ing tested. Ultimately, one must assume in-
dependence for some subset of characters.
If only one data set is available (e.g., only
morphologic characters for fossil taxa), then
one must make reliability assumptions about
particular characters (O’Leary and Geisler,
1999). A second problem is that if taxa are
extinct or otherwise poorly known, we of-
ten lack a firm basis for suspecting correlated
change.

This paper develops a method designed
to discover correlated character suites before
tree building without requiring prior biolog-
ical knowledge. Structure among characters
such as character compatibility (Camin and
Sokal, 1965; Le Quesne, 1969) should be in

large part the result of phylogenetic autocor-
relation among characters (Sneath and Sokal,
1973; Raup and Gould, 1974; Felsenstein,
1985). However, correlated change should
induce secondary signals among suites of
correlated characters. The primary focus
of this paper is to determine whether
these secondary signals exceed the expecta-
tions of phylogeny and independent char-
acter evolution. First, we focus on inferring
such suites, using multivariate analyses of
compatibility patterns among characters.
Second, we develop Monte Carlo methods to
determine whether observed secondary sig-
nals exceed those expected given indepen-
dent change over a phylogeny.

INFERRING SUITES OF CORRELATED
CHARACTERS

Character Compatibility: A Review

Two cladistic characters are compatible if
a tree exists upon which they can be mapped
without homoplasy (Camin and Sokal, 1965;
Le Quesne, 1969, 1982) (Fig. 1). Estabrook
et al. (1976) proved two theorems relating
to character compatibility. First, two binary
characters are compatible if and only if they
do not possess all four possible character
state distributions (Fig. 1), or, if all four re-
lations exist, they form a circuit and the char-
acters are not compatible. Second, two sets
of binary characters are compatible only if
they are pairwise compatible. Because one
can extend both theorems to ordered mul-
tistate characters (McMorris, 1975), one can

Ch?rac;er D14
O 0
% A 0 BO1 c10
g8 1
c 0
D 1 A00
(@) (b)
A jo A B D A c D
i | ! I
[ [
(© (d) ()
FIGURE 1. Definition of noncompatible characters.

(a) Example matrix with 4 taxa and 2 characters. All four
possible conditions of the two characters are observed,
forming a circuit (<>) (b). Although any three taxa can
be placed on a tree without invoking homoplasy, ad-
dition of the fourth always requires a parallelism or a
reversal (c—e). Modified from Estabrook et al. (1976).
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R C
Characters Characters
Taxon A B C D E F [¢] H I J Char. A B C D E F G H I J
I 0 0 0 0 0 0 o 0 0 0 A . 1 1 1 1 1 1 0 1 1
Ir ¢ 0 Q 0 o] 0 0 1 0 0 B 1 . 1 1 1 1 1 0 1 1
IIT 1 Q 0 0 0 o] [} 0 0 0 c 1 1 . 1 1 1 1 0 0 1
v 1 1 0 0 Q 0 0 1 1 0 D 1 1 1 . 1 1 1 0 0 1
v 1 1 1 0 0 [} 0 Q 0 0»15 1 1 1 1 . 1 1 [0 [0 0
vi 1 1 1 1 0 [} 4] 1 1 1 F 1 1 1 1 1 . 1 Q 0 0
VII 1 1 1 1 1 0 0 0 0 0 ¢ 1 1 1 1 1 1 . 0 0 0
VIII 1 1 1 1 1 1 0 1 1 1 H 0 0 0 0 o] 0 0 . 1 1
IX 1 1 1 1 1 1 1 [} 0 0 I 1 1 0 Q Q 0 0 1 . 1
X 1 1 1 1 1 1 1 1 1 1 J 1 1 1 1 0 0 4] 1 1 .
M k D
Characters Characters

Char. A B (o} D E F G H 1 J Char. A B C D E F G H I J
A . 7 6 [ 5 S 5 2 2 4 a ¢« 0.13 0.25 0.25 0.38 0.38 0.38 0.750.7% 0.50
B 7 . 6 6 5 S 5 2 2 4 B 0.13 =+ 0.25 0.250.38 0.38 0.38 0.750.75 0.50
C 6 6 . [ 5 5 5 1 3 3 C 0.250.25 . 0.25 0.38 0.38 0.38 0.880.63 0.63
D 6 6 6 . 5 5 5 1 3 3 D 0.250.25 0.25 . 0.38 0.38 0.38 0.880.63 0.63
E 5 5 5 5 . 5 5 0 2 4—)E 0.380.38 0.38 0.38 =« 0.38 0.38 1.000.75 0.50
F 5 S 5 S 5 . S [} 2 4 F 0.380.38 0.38 0.38 0.38 =« 0.38 1.000.75 0.50
G 5 5 5 S 5 5 . 0 2 4 G 0.380.38 0.38 0.38 0.38 0.38 1.000.75 0.50
H 2 2 1 1 0 0 0 . 1 1 H 0.750.75 0.88 0.88 1.00 1.00 1.00 - 0.88 0.88
T 2 2 3 3 2 2 2 1 . 3 ¥ 0.750.75 0.63 0.63 0.75 0.75 0.75 0.88 » 0.63
J 4 4 3 3 4 4 4 1 3 . J 0.500.50 0.63 0.63 0.50 0.50 0.50 0.880.63 .

FIGURE2. Derivation of a dissimilarity matrix based on compatibility. The analysis begins with an initial taxon-
by-character matrix (R) such as used in phylogenetic studies. A character-by-character matrix of pairwise compati-
bility then is constructed (C), where 1 indicates that characters i and j are compatible, and 0 indicates that i and j are
incompatible. This is converted to a matrix of mutual compatibilities (M), in which each value m;.; gives the number
of characters with which both i and j are compatible in matrix C. (This equals CC", which is simply C? for a square
matrix). A dissimilarity matrix, D, is then constructed, d;.; =1 — 2L where n is the number of characters (here, 10).

n—27

D then is Gower-transformed (Gower, 1966) to matrix T, which is subjected to principal coordinates analysis.

determine character compatibility from char-
acter state distributions without reference to
phylogeny.

These two theorems justify the construc-
tion of the pairwise compatibility matrix C (=
G of Sneath et al., 1975) for use in clique anal-
ysis (e.g., Meacham, 1980). Given a cladistic
data set R of p taxa and n characters, the pair-
wise compatibility matrix C is defined as an
n x n matrix in which

Ci.j = lifi<|>j
=0ifi<>j

where <> represents a circuit and hence in-
compatible, and <|> representsno circuit and
hence compatible. Figure 2 gives an example
of C generated from artificial data.

The C matrix is the starting point for clique
analysis (Le Quesne, 1969; Meacham, 1980).
It also expresses global character compatibil-
ity (i.e., compatibility among all characters),
which is the basis for tests evaluating hierar-
chical signal among characters (Le Quesne,
1969, 1982; Meacham, 1984, 1994; Sharkey,
1989, 1994) or within whole matrices (Alroy,
1994). Here it will be the starting point for
both inferring and testing correlated charac-
tersuites (Fig. 3).

In general, we expect characters that
change frequently to have lower compatibil-
ities than do characters that change rarely.

Suite PCO

Inference T
R— C—o »D—H T
S

XRS—) XCS—) ng

v
A""—) XAS

Significance
Test

FIGURE 3. Summary flow chart of the matrices and
analyses described in this paper. R is an empirical char-
acter matrix, Cis the pairwise compatibility matrix, M is
the mutual compatibility matrix, D is the dissimilarity
matrix, and T is the Gower-transformed dissimilarity
matrix. Principal coordinates analysis (PCO) of T pro-
vides a basis for inferring suites of correlated charac-
ters. For derivation of each matrix, see text and Figure 2.
Monte Carlo simulations first produce simulated char-
acter matrices (Rs) for the same number of taxa and char-
acters. If global compatibility within Rs matches that of
R, then Cs and M are calculated (see Fig. 2). This is re-
peated several thousand times. The significance of each
observed m;.; is determined by the frequencies of sim-
ulated m that equal or exceed the observed m;.; when
the simulated characters have the same compatibilities
as the real characters. To account for multiple pairwise
comparisons, the matrix of P-values (A) then is com-
pared with a matirx of P-values from a second set of
simulations.
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1 2 3 4 5 6 7

Steps

Compatibilities

A Suite of 10 Correlated Characters
® Suite of 8 Correlated Characters
& Independently Evolving Characters

FIGURE 4. Properties of compatibility as shown by
simulated character evolution with 75 binary charac-
ters among 25 taxa. (a) When all characters evolve inde-
pendently, compatibility is strongly correlated with the
number of steps. (b) When two suites of correlated char-
acters exist, two patterns emerge. In one, correlated char-
acters show greater compatibility than do other charac-
ters with the same number of changes. In the second,
global compatibility decreases because of conflictamong
correlated suites and independent characters.

Simulations corroborate this. The example
illustrated in Figure 4a uses the compati-
bilities of 75 independently evolving binary
characters with 150 steps among 25 terminal
taxa. (Simulations with multistate characters
yield almost identical conclusions.)

We also expect characters in correlated
suites to have greater compatibilities than
do independently evolving characters that
change the same numbers of times, because

correlated characters will tend to be compat-
ible with each other. Simulations also corrob-
orate this expectation. The example shown in
Figure 4b has the same number of taxa, char-
acters, and steps as the previous example.
However, the second example has two cor-
related character suites—one with 10 charac-
ters, the other with eight. Correlated change
here is probabilistic, with the probabil-
ity of change for the “dependent” charac-
ters greatly increased on branches once the
first character in the suite changes. Even
if the dependent characters fail to change
on that branch, the probability of change
remains greater on descendant branches.
Because of this, correlated characters did not
always have identical distributions. Note
how characters from each correlated suite
changing three times all have greater com-
patibility than do independently evolving
characters changing three times. Simulations
show that this is a general pattern.

Finally, simulations reveal that correlated
character evolution lowers global compati-
bility (Fig. 4). This also makes sense, because
we now have conflicting patterns among
multiple characters suites instead of only a
phylogenetic pattern plus random noise.

Shared Compatibility and a Coefficient
of Association

Characters i and j have corresponding sets,
i and j¢, consisting of the characters with
which each is compatible. Thus, mutual com-
patibility is simply the intersection of i and
j° (see below). If mutual compatibilities are
largerelative toi® and j°, then charactersiand
j might have some affinity in terms of a com-
patible clique and would indicate support of
a similar tree topology. If mutual compatibil-
ity is small relative to i° and j¢, then char-
acters i and j would not be members of the
same clique and might have stronger affini-
ties to other characters.

The largest clique of pairwise compati-
ble characters in the compatibility matrix C
should reflect phylogeny, whereas smaller
cliques of pairwise compatible characters
might represent subsidiary signals (Sneath
et al., 1975). We propose to identify these
cliques by using shared, or mutual, compat-
ibility (Figs. 2, 3). The mutual compatibility
between characters i and j (m;.;) is defined as
the sum of all characters that are compatible
with both i and j. If characters i and j are
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correlated, then we expect m;.; to be large
relative to the total compatibilities for char-
acters i and j (¢’ and ¢/, respectively). Ac-
cordingly we create a mutual compatibility
matrix, M, in which cell values range from
0 to n — 2 (the maximum number of possible
mutual compatibilities). One can calculate M
either by summing mutual compatibilities or
by using the cross-product matrix of C (i.e.,
C?) (Sneath et al., 1975).

Dissimilarity Matrices and Ordination:
Inferring Correlated Suites

The question of interest actually concerns
the multivariate structure of cladistic charac-
ter data. Eigenvector analyses express multi-
ple patterns of association among analyzed
objects, and thus are appropriate here. How-
ever, M must be converted into a dissimilar-
ity matrix (D) for eigenvector analysis. Each
cellin D is

n;
n—2

dij=1- (1)

(see Fig. 2). As mutual compatibilities be-
tween characters i and j increase, d;. j con-
verges on 0.

The dissimilarity matrix D is Gower-
transformed (Gower, 1966) before eigenvec-
tor decomposition (Fig. 3). Each cell in the
new matrix T first subtracts the mean dissim-
ilarities of both characters i and j from each
di.; and then adds twice the global average
in dissimilarity to each d;.;. Gower transfor-
mation offers some standardization for the
number of overall compatibilities: The trans-
formation inflates the relative importance of
high mutual compatibilities among charac-
ters with few overall compatibilities and de-
flates the relative importance of high mu-
tual compatibilities among characters with
numerous overall compatibilities. Principal
coordinates analysis (PCO) is then used to
extract eigenvalues and eigenvectors from T.

PCO may begin with other coefficients of
similarity, such as the Jaccard (Cheetham and
Hazel, 1969), Simpson (Simpson, 1960), and
Ochiai (Ochiai, 1957) coefficients. These met-
rics would compare m;.; with the total possi-
ble m;. j for each two characters, rather than
with the theoretical limit n — 2, and would
thus emphasize high mutual compatibility
among generally incompatible characters.

However, this also means that the denomi-
nator will vary from one dissimilarity mea-
sure to the next. Variable denominators in a
similarity coefficient yield matrices with tri-
angle inequalities (i.e., one in which variables
cannot be plotted in a Euclidean space given
the measured distances; Strang, 1980), which
in turn generate negative eigenvalues. For
example, given an Euclidean space and dis-
tances of 5 from A to B and 6 from A to C, the
distance from B to C can be no greater than
11 and no less than 1. Such matrices of Eu-
clidean distances are semidefinite (Reyment
and Joreskog, 1996:141). Any space in which
the distance from B to C is 0 would be
non-Euclidean and not positive semidefinite.
Large negative eigenvalues indicate vec-
tors in imaginary space and complex warp-
ing of the remaining real vectors (Gower,
1966, 1971). Major triangle inequalities can
“warp” distributions along eigenvectors
with positive eigenvalues. Because we wish
to use these distributions to infer correlated
character suites, that result is undesirable.

Sneath et al. (1975:330) predicted that the
first eigenvector (PO 1) of matrix T should
reflect the overall compatibility of charac-
ters. We therefore expect highly compatible
characters will “load” on one extreme of this
axis, and the least compatible characters will
“load” on the other extreme. In other words,
PO 1 should be analogous to an axis of gen-
eral size in a principal components analyses
of morphometric data (see, e.g., Bookstein
et al., 1985). This result is found in simula-
tion matrices (Fig. 5a) and empirically (see
below).

Sneath et al. (1975) also predicted that the
effects of correlated evolution should be ap-
parent on PO axes below the first. This is
corroborated by analyzing the simulated ma-
trix used in Figure 5b. Here, the first axis
reflects overall compatibility and thus sep-
arates the most compatible characters from
the least compatible. Axis two separates the
first correlated suite (including 10 characters)
from the least compatible characters. Axis
three separates the second correlated (includ-
ing 8 characters) from both the least compat-
ible characters and the first suite. Thus, all
three axes separate characters showing a pat-
tern from those showing either no pattern or
a conflicting pattern. The eigenvalues from
this and other matrices simulated under the
same parameters show two inflection points,
one between the first and second axes and
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FIGURES. Multivariate properties of mutual compat-
ibility, as revealed by PCO of mutual compatibility. This
example uses the simulated matrix used for Figure 4b.
(a) The primary signal reflects the relative compatibil-
ity of each character. (b) Axes 2 and 3 separate the two
suites of correlated characters.

one between the third and fourth axes. In
contrast, eigenvalues derived from matrices
simulated under independent evolution
(such as illustrated in Fig. 4a) show only one
inflection (between axes one and two). For
importance of this finding see below.
Eigenvector analyses always return a num-
ber of principal axes equal to the rank of D,
regardless of whether these axes are mean-
ingful. Jackson (1993) summarized several
methods testing the null hypothesis that
secondary axes form a multidimensional
“sphere” and thus do not deviate from a
random expectation. However, none of these

tests was entirely satisfactory because the
null hypothesis here is not random asso-
ciation, but rather that phylogenetic auto-
correlation and chance alone produce the
observed nonrandom association. Therefore,
we use Monte Carlo simulations to generate
sample data sets in which the total taxa, char-
acters, and global compatibility match those
of the original data set. The range of eigen-
values derived from such matrices provides
anull distribution for evaluating the null hy-
pothesis of independent character change.
These simulations evolve independent
characters across phylogenies of the same
diversity as the real clade. The simulations
are based on bifurcating speciation and ex-
tinction, with the extinction rate being three-
quarters of the speciation rate. If an extant
clade is analyzed, then the simulations end
when the number of coexisting “taxa” equals
that of the real matrix. If a clade that includes
fossils is analyzed, then sampling is done
over time until the sampled number of “taxa”
equals that of the real matrix. The number
of changes per character is preset and usu-
ally is derived from the parsimony tree. This
ensures that some heterogeneity exists both
in rates and compatibilities among charac-
ters. The simulations use the same number
of states as observed in the corresponding
character in the real data. Because missing
data affect compatibility, the number of taxa
with unknown states for each character is
also maintained. Character change occurs by
randomly drawing one of the branches. If
that branch is nodal, then the state change is
distributed to all descendant branches. The
probability of drawing a branch is deter-
mined by the number of unsampled ances-
tors along that branch, which makes change
more probable along long branches. Long
branches increase the probability of charac-
ters changing on the same branch, which
mimics the effect of nonindependence and
increases mutual compatibilities among in-
dependent characters (Wagner, 2000). This in
turn increases the eigenvalues of the high
secondary axes. The actual effect is very
slight, but it has a conservative effect on our
analyses. If global compatibility in a given
simulated data setis within 1% of the number
of real compatibilities, the character matrix
is then converted into a T matrix by us-
ing the steps outlined above. Thus, differ-
ence in global compatibility should not af-
fect the probabilities of mutual compatibility.
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Eigenanalyses of T matrices derived from
those simulations provide the range of eigen-
values expected, given a null hypothesis that
phylogeny and rates of homoplasy are the
sole determinants of compatibility. Thus, the
distribution tests whether the secondary axes
for the real data set deviate significantly
from the expectation of independent charac-
ter evolution.

Monte Carlo Simulations: Testing
Hypotheses of Correlation

Numerous methods exist for testing
whether previously defined sets of charac-
ters show random distributions along PCO
axes (e.g., the Mann—-Whitney test [Sokal and
Rohlf, 1995:432] for two-character partitions
or the Kruskal-Wallis test [Sokal and Rohlf,
1981:429] for three or more character par-
titions). However, if one uses the loadings
of characters on PCO axes to infer sets of
correlated characters a posteriori, it is logi-
cally circular to then examine the distribu-
tions of those loadings. Having developed
an exploratory analysis of the compatibil-
ity structure, we now would like to recast
the inference as a hypothesis and test a null
hypothesis of independent character evolu-
tion. A procedure to do this is developed
here, based again on Monte Carlo simulation
(Fig. 2).

The dissimilarity information in D (and
hence the compatibility structure in the
initial character matrix, R) arises from the
combination of at least three sources: (1) phy-
logenetic autocorrelation; (2) rates of homo-
plasy; and (3) correlated character change.
Because we are concerned with only the
third parameter here, we need an esti-
mate of the expected distribution of mu-
tual compatibilities for two characters i and
j, given parameters i, j, the total number
of characters and states, and a phylogeny.
Superficially, this appears to be testable by
combinatorics. However, the probabilities
derived from combinatorics would assume
completely random distributions of mu-
tual compatibilities and would not account
for nonrandom compatibility attributable to
phylogeny alone. The phylogeny parame-
ter causes the same problem here as in
the generation of expected eigenvalue dis-
tributions described above; again, the ap-
propriate null hypothesis is not random
compatibility but nonrandom compatibility

generated by independent character evo-
lution. Phylogeny must therefore be mod-
eled in some way so that it can be factored
out.

In the absence of an analytic solution,
we generated expected distributions of mu-
tual compatibilities by using Monte Carlo
simulations in which characters are evolved
independently across simulated trees. The
simulated distributions were calculated as
follows:

1. n characters are evolved independently
across a phylogeny of p taxa, where 7 and
p are derived from the original matrix.
These simulations are identical to those
used in the test of eigenvalues (see above).

2. The compatibility of each simulated char-
acter is tallied (i.e., i).

3. If global compatibility (i.e., total number
of compatible pairs) is within 1% of the
observed compatibility, then each possible
i and j pairwise comparison is examined.
Two distributions are recorded:

3a. The shared compatibilities between
two compatible simulated characters
i and j withi® and j°.

3b. The shared compatibilities between
two incompatible simulated charac-
tersi and j withi¢ and j°.

Separate distributions are tallied for com-
patible and incompatible character pairs.
Suppose that character i has 60 compatibil-
ities and character j has 45 compatibilities. If
the characters are compatible, then they can
share 44 compatibilities among the remain-
ing n —2 characters. However, if they are
incompatible, they can have 45 mutual com-
patibilities among the remaining n — 2 char-
acters. Moreover, the pairwise comparisons
are notindependent. Ifi and j are compatible
and i and k are compatible, then the probabil-
ity that j and k are compatible is greater than
j¢ and k alone would predict. Similarly, if i
and j are incompatible whereas i and k are
compatible, then the probability that j and
k are compatible is less than j¢ and k¢ alone
would predict. Thus, the distribution of ex-
pected mutual compatibilities differs slightly
between compatible and incompatible pairs
and should be examined.

The resulting distributions are the expec-
tations for a null hypothesis in which phy-
logeny and random homoplasy determine
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all mutual compatibilities. If mutual com-
patibilities exceed expectations derived from
the simulations, then we reject the null hy-
pothesis of independent character evolu-
tion in favor of correlated evolution. Two
scenarios predict characters to have fewer
mutual compatibilities than expected given
independent evolution. One is negatively
correlated evolution, in which the presence
of a state in character i prohibits the evolu-
tion of a state in character j. A second is two
characters belonging to different correlated
suites, suites that, in turn, share few compat-
ibilities. This situation will artificially inflate
compatibility for both characters (because
of compatibility within their suites) but will
discourage mutual compatibilities. The ac-
tual mutual compatibilities of the two char-
acters with characters outside the two suites
should fit the expectations of two inde-
pendent characters with far fewer overall
compatibilities than are observed in either
character. Thus, a significantly low value for
m;.; rejects the independent null hypothesis
in favor of the hypothesis that the characters
belong to conflicting character sets.

Multiple Pairwise Comparisons

Numerous unplanned comparisons pres-
ent problems for significance tests (see
discussion in Sokal and Rohlf, 1995:230).
A pairwise compatibility matrix derived
from n characters will contain n?/n —2
pairwise comparisons; a matrix of 78 char-
acters will therefore contain 2,964 separate
comparisons between characters, of which
5% (148) can be expected to be significant at
P =0.05 due to chance alone. The validity
of individual tests of significance (i.e., indi-
vidual comparisons between an observed
m;.; and the simulated distribution for that
comparison, ms;.;,, is therefore impossible
to establish. Furthermore, we expect some
suites of three or more characters will have
“significantly” high mutual compatibility
simply by chance. Bonferonni corrections
of various types are often used (e.g., Rice,
1989) to lower the P-values at which the
null hypothesis can be rejected. However,
Sokal and Rohlf (1995) note that Bonferonni
corrections are overly conservative and thus
promote Type II errors. Moreover, levels
of significance derived from the Monte
Carlo tests are limited by the number of

characters and taxa. When there are few
characters (e.g., n < 20), P-values rarely are
<0.1, even when there are maximum mutual
compatibilities. The statistical power of the
tests described here is proportional to n and
to the magnitudes of i¢ and j°.

Our solution is to repeat the Monte Carlo
simulations. However, instead of recording
distributions of mutual compatibilities, the
second simulation uses the results of the
first Monte Carlo test to determine P-values
of each pairwise mutual compatibility for
each simulated character. After determining
the sets of characters in which all pairwise
comparisons have P-values less than a set
value (e.g., 0.05), the total number of charac-
ters belonging to such sets, the sizes of those
sets, and the total number of steps per ma-
trix are recorded. These distributions of sets
and set sizes represent the expected number
and size of “significantly” correlated subsets
given independent character evolution. This
expectation can then be compared with the
actual profile of correlated set number and
size, and the null hypothesis of independent
change can be accepted or rejected.

Comparisons with Previous
Compatibility Tests

Our Monte Carlo tests differ in important
ways from permutation tests that use com-
patibility. Permutation analyses test whether
compatibility deviates from an expectation
generated from a null hypothesis of random
data, either for particular characters (e.g.,
Meacham, 1984, 1994; Sharkey, 1989, 1994)
or for groups of characters (e.g., Alroy, 1994;
Wilkinson, 1998). The Monte Carlo analyses
test whether the expectations of independent
change across phylogeny are adequately
met. Because phylogeny underlies the null
distribution, characters and character com-
patibilities are not distributed randomly with
respect to each other. When combined with
the multivariate analyses described above,
the analyses presented here differ from com-
parisons of matrices using compatibility
(e.g., Wilkinson, 1998) by not requiring a pri-
ori definitions of character sets. The multi-
variate analyses can provide inferences of
correlated characters, which then are recast
as hypotheses and tested by the Monte Carlo
methods.
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A TEST CASE: CAECILIANS
Data

To demonstrate the above methods, we
analyzed phylogenetic data from caecil-
ian amphibians found in Wilkinson (1997).
The caecilian data matrix contains 25 taxa
scored for 78 morphological characters, 52
of which are “traditional” morphological
characters supporting the accepted caecilian
phylogeny derived from both morpholog-
ical and molecular evidence. The remain-
ing 26 “neuroanatomical” characters concern
the presence and innervation of sensory
structures in the head. A subset of these
neuroanatomical characters involving the
eye supports a different tree topology from
that supported by the balance of charac-
ters. Wilkinson (1997) exhaustively analyzed
this data set by using compatibility tests of
data structure and parsimony analyses of dif-
ferent character partitions, and found a set
of characters relating to the eye that exhib-
ited correlated change. Tests such as the per-
mutation tail probability (Faith, 1991) and
compatibility tests (Alroy, 1994; Meacham,
1994) indicate that the neuroanatomical sub-
set has less hierarchical structure than the
traditional subset, although its signal still
deviates significantly from random. These
results led Wilkinson (1997) to conclude
that the neuroanatomical subset records the
convergent loss of eye structures as different
caecilian groups evolved rudimentary eyes
in response to a fossorial lifestyle. We reana-
lyzed these data to explore whether the meth-
ods proposed herein could identify sets of
correlated characters similar to those hypoth-
esized by Wilkinson.

Multivariate Analysis

We constructed the pairwise compatibility
matrix C by tabulating pairwise compat-
ibilities among all 78 characters (matrix
available on Society of Systematic Biologists
website: www.utexas.edu/ftp/depts/syst-
biol/). Compatibilities were assessed by as-
suming unordered evolution for multistate
characters, which maximizes the compat-
ibility of multistate characters (McMorris,
1975) and is conservative. The pairwise
compatibility matrix was then used to
construct matrices M (matrix available on
SSB website), D, and T (see Fig. 2a), and
T was analyzed by PCO. The matrix was
positive semidefinite, with the scree plot

(plot of the magnitude of eigenvalues by
number) indicating inflections after the first
axis and again after the fourth axis (Fig. 6a).
This pattern of two inflections is observed
in several other data sets we have analyzed
(O’Keefe and Wagner, unpubl. analyses).
The eigenvalue distribution of caecilian
compatibility deviates in several ways from
the predictions of independent character
evolution (Table 1). One difference is that
the first eigenvalue (A;) summarizes more
total “association” than expected, given the
hypothesis of independent change. The same
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FIGURE 6. (a) Scree plot showing the distribution
of eigenvalues for the first 10 eigenvectors. Dots mark
the expected eigenvalue for a matrix with 2,327 + 11
compatibilities, the gray area indicating the 95% confi-
dence envelopes. X-eigenvalues for caecilian data. Only
eigenvalue 1 exceeds this appreciably. Eigenvalues 2, 3,
and 4 all exceed the expectation, but not significantly.
(b) Describing eigenvalues as proportions of the re-
maining sum of eigenvalues tells a different story. For
eigenvalue 2, this is the sum of eigenvalues 2 through
78; for eigenvalue three, this is the sum of eigenval-
ues 3 through 78; and so forth. Eigenvalues 2-4 all are
larger than expected, given the remaining eigenvalues,
and eigenvalues 2 and 3 are significantly larger than
expected.
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TABLE 1. The multivariate structure of mutual compatibilities. Observed eigenvalues (1), standardized by the
sum of all eigenvalues (3"i=/ ;), are from real data. Expected eigenvalues, again standardized by the sum of
all eigenvalues, reflect the averages from 100 simulations in which 78 independently evolving characters yielded

matrices of compatibility similar to that of the caecilian matrix (i.e., 2,327 £+ 11 compatible pairs). The P-value

gives the proportion of such runs in which simulated standardized A; exceeded real standardized ;. Significance

=77

is assessed by the amount of remaining “association” summarized (i.e., );_po Ai for Apo).
PO Obs. —;‘%L EXP~_,~2?'7L. P Obs.—ii%% Exp.—i-;%% P
Y8 YiZPo M 2iZpoti XiZpo i

1 0.170 0.125 >0.99 0.170 0.125 >0.99
2 0.063 0.052 0.96 0.071 0.059 0.96
3 0.045 0.042 0.84 0.059 0.051 0.96
4 0.035 0.036 041 0.049 0.046 0.75
5 0.029 0.031 0.15 0.042 0.042 0.54
6 0.028 0.028 0.60 0.043 0.039 0.98
7 0.025 0.026 0.22 0.040 0.038 0.89
8 0.024 0.024 0.65 0.040 0.037 0.98
9 0.023 0.023 0.73 0.040 0.036 0.99

10 0.022 0.022 0.81 0.039 0.035 0.98

PO, Principal coordinate.

is true for A, but not A3. Considering the
proportion of remaining “association” (i.e.,
association not summarized by higher
eigenvectors), one finds that A, A2, and A3
summarize significantly more than expected,
and that A4, summarizes more association
than expected, but the difference is not
significant (Fig. 6b). Another important dif-
ference between the observed and expected
eigenvalue distributions is the two major
inflections in the scree plot: One separates 11
from eigenvalue X, and another separates
the trend Ar,—A4 from As—A77;. Monte Carlo
simulations indicate that phylogeny alone
predicts a single inflection between 1 from
A2. As already stated, only axes 1-3 are sta-
tistically significant. However, we include
information and plots of axis 4 because the
high value of A4 and its position before the
second inflection in the scree plot indicate it
has some meaning.

PO 1: The Compatibility Axis

As predicted by Sneath et al. (1975), a
strong relationship exists between number
of compatibilities and character position on
PO 1 (Fig. 7a). Autapomorphies plot in the
lower right because they are compatible with
all characters, whereas characters with few
compatibilities plot in the upper left. This
is not surprising in light of the discussion
on similarity coefficients above. Characters
scoring as derived for relatively few taxa
have a greater probability of being compat-
ible with another character simply because
of fewer opportunities for a circuit to form

(Meacham, 1981). Autapomorphies are the
limit of this tendency and are compatible
with all other characters. A character i scor-
ing as derived for few taxa will have a large
seti® and a correspondingly low d;.; as long
as j° is also relatively large. PO 1 has the
desirable property of recording the compati-
bility structure related to a character’s over-
all compatibility, and hence is indirectly re-
lated to the differences in the number of taxa
with the derived state per character. More im-
portantly, dropping this axis corrects for the
variation in the sizes of i° and j° in the calcu-
lation of d;.; without sacrificing the semidef-
inite nature of the matrix. PO 1 also re-
veals differences in compatibility among
Wilkinson's subsets (Fig. 7a).

PO 2—-4: Patterns on Secondary Axes

Lower axes (e.g., PO 2) show no associ-
ation with individual character compatibil-
ity (Fig. 7b). In concordance with Wilkinson
(1997), the subset of eye characters clusters
on PO 2 (Fig. 8; Table 2) and has a signif-
icantly different distribution on PO 2 than
do the balance of characters (Mann-Whitney
test, P < 10~%). This result is expected for
a set of correlated characters, and demon-
strates how the axes can be used to test a
priori hypotheses of character correlation.
The ordination can also be used to explore
the structure of data set compatibility, es-
pecially in concert with the simulation re-
sults outlined below. Based on the simu-
lation analyses, three traditional characters
also cluster within the eye character subset
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(Table 2). One, the partial covering of the or-
bit by bone (T28), is also an eye character of
sorts, but the other two, larval versus direct
development (T43) and bicuspid or mono-
cuspid anterior dentary teeth (T57), are not
obviously connected to eyes. The axes also
illustrate a more complicated pattern than
postulated byWilkinson (1997). First, the eye
character subset actually shows two separate
suites that are weakly separated on PO 3 and
PO 4. Second, a large suite of primarily cra-
nial characters (e.g., T4: fusion of the pre-
maxillae and nasals; T5: presence/absence of
the septomaxillae; T6: presence/absence of
the prefrontals; T16: Basipterygoid process

FIGURE 8. Separation of characters by PCO. Two
other small partitions suggested by Monte Carlo tests
(see Fig. 9) also are illustrated. PO 2 separates eye
character suites from a cranial character suite. PO 3 and
PO 4 show weak separation of two eye character suites.

strength) is opposed to the two suites of eye
characters. The primary signal of PO 2 is to
separate this cranial suite from the eye suites
(Table 2). In contrast, PO 3 and PO 4 appear to
separate the character suites from characters
with low compatibility.

Minor Axes

The PO axes below the fourth (i.e., those
associated with As5—177) tend to separate out
individual characters and seem to have little



668

SYSTEMATIC BIOLOGY

VOL. 50

TABLE 2. Characters clustering on the second, third, and fourth principal coordinate (PO) axes. Note the strong
separation of eye characters from cranial characters on PO 2 and the weaker separation of different eye characters
on PO 3 and PO 4. Character numbers after Wilkinson (1997).

No. Character PO 2 PO3 PO 4

E1.2 Rectus internus: present/absent —0.232 —0.022 —0.021
T28 Orbit covered by bone —0.231 —0.048 0.003
E10 Lens: present/rudimentary /lost —0.218 —0.066 0.072
E14 Rectus oblique: present/absent —-0.218 —0.014 —0.030
E13 Rectus superior: present/absent -0.213 —0.026 —0.067
E1l.6 Inferior oblique: present/absent —0.207 —0.009 —0.089
E1.1 Rectus externus: present/absent —0.207 —0.009 —0.089
E15 Superior oblique: present/absent —0.196 0.054 —0.121
T40 Premaxillary : maxillary teeth size —0.167 —-0.079 0.110
T54 Terminal keel: absent/present —0.158 —0.046 0.211
E6 Retinal cells: >5000/ <5000 —-0.152 —-0.078 0.018
T57 Anterior dentaries: bi/monocuspid —0.144 0.066 —0.126
E3 Well-developed optic nerve —-0.133 0.089 —0.186
T43 Larva versus direct development -0.122 0.123 —-0.152
T56 M. interhyoideous posterior length 0.163 —0.156 -0.117
T16 Basipterygoid process strength 0.212 —0.109 -0.174
T4 Premaxillae: nasals unfused /fused 0.212 —0.109 —0.174
T5 Septomaxillae: present/absent 0.212 —0.109 -0.174
T31 Vent longitudinal / circular 0.212 —0.109 —0.174
T6 Prefrontals: present/absent 0.235 —0.013 —0.243
T20b Ceratobranchials: fused /unfused 0.240 —0.011 —0.069

utility. However, the observed axes deviate
from the expectations of independent evolu-
tion in two noteworthy ways. First, the real
data have only 76 eigenvalues >0, whereas
all simulated sets have 77 positive eigen-
values. A single eigenvalue of 0 is expected
(i.e., A7), because the coefficient d;.; is cal-
culated with 77 comparisons rather than 78.
However, the additional eigenvalue of 0 in-
dicates that that some redundancy exists in
the matrix, as would be expected if correlated
change occurred.

Second, A¢—Ais all are slightly greater
than expected, especially given the reduced
amount of “association” remaining to be
summarized. Conversely, eigenvalues Ay—
Asp all are less than expected. The corre-

sponding eigenvectors all separate single
characters from the remaining characters for
the real data, which is a pattern not seen on
comparable axes when evolution is simu-
lated. Thus, the patterns probably are not ger-
mane to the question of independent char-
acter evolution. However, they do suggest
that actual evolution was more complicated
among caecilians than in the Monte Carlo
simulations.

Monte Carlo Tests of Character Independence

The first set of Monte Carlo tests re-
veals five suites of three or more characters
with improbably high mutual compatibili-
ties. The largest of these (the first eye suite)
includes seven characters (Table 3), whereas

TABLE 3. Largest partition of characters with improbably high mutual compatibilities. Character labels and
numbers after Wilkinson (1997). P-values based on the proportion of Monte Carlo simulations where characters
had m;.; or more mutual compatibilities, given that they had i and j° compatibilities and were either compatible
or incompatible (see compatibility matrices on SSB web site: www.utexas.edu/ftp/depts/systbiol/).

P

No. Character i° E11 E13 E15 El.6 E3 T43 157
El.1 Rectus externus: present/absent 51 0.004 0.018 0.046 0.031 0.047 0.022
E13  Rectus superior: present/absent 45 0.004 0.036  0.004 0.041 0.049 0.047
E15  Superior oblique: present/absent 54 0.018 0.036 0.018 0.015 0.023  0.004
E1.6  Inferior oblique: present/absent 51 0.046 0.004 0.018 0.031  0.047  0.022
E3 Well-developed optic nerve 57 0.031 0041 0015 0.031 0.018  0.022
T43 Larva vs. direct development 61 0047 0049 0023 0.047 0.018 0.017
T57 Anterior dentaries: bi/monocuspid 49 0.022 0.047 0.004 0.022 0.022 0.017



http://www.utexas.edu/ftp/depts/systbiol/%29.

2001

O’KEEFE AND WAGNER—INFERRING AND TESTING CHARACTER DEPENDENCE

669

TABLE 4. Second largest partition of characters with improbably high mutual compatibilities. See Table 3 for

details. Character labels after Wilkinson (1997).

P

No. Character i T4 T5 T6 T16 T31 T56
T4 Premaxillae: nasals unfused/fused 50 0.018 0.013 0.018 0.018 0.017
T5 Septomaxillae: present/absent 50 0.018 0.013 0.018 0.018 0.017
T6 Prefrontals: present/absent 45 0.013 0.013 0.013 0.013 0.050
T16 Basipterygoid process strength 50 0.018 0.018 0.013 0.018 0.017
T31 Vent longitudinal/circular 50 0.018 0.018 0.013 0.018 0.017
T56 M. interhyoideous posterior length 48 0.017 0.017 0.050 0.017 0.017

the cranial suite includes six characters
(Table 4), and the second eye suite includes
five (Table 5). The remaining partitions in-
clude three characters each.

The second set of Monte Carlo simula-
tions indicates that five partitions are not an
unusually high number, given independent
character evolution (P = 0.31). However, the
total number of characters in these partitions
(23) is unusually high (P = 0.023; Fig. 9a) as
is a single suite of 7+ characters (P = 0.015;
Fig. 9b). Partitions of 6+ characters are fairly
probable (P =0.11), but not given a partition
of 7+ characters (P < 0.001, Fig. 9c). Finally,
a third partition of 54 characters is also im-
probable, given two partitions of 64 charac-
ters (P < 0.01; Fig. 9d). However, a fourth or
fifth partition of 3+ characters is not improb-
able (P = 0.57 and 0.39, respectively).

DISCUSSION

Implications for Caecilian Phylogeny:
Weighting and Character Choice

Suites of characters that evolve depen-
dently violate the assumption of character
independence underlying phylogenetic re-
construction. The presence of dependent
characters will exaggerate the apparent sup-
port for some nodes, whether those nodes
are correct or incorrect. The possibility that
parsimony will link taxa incorrectly also in-

creases with character correlation, because
correlated parallelisms will mimic phyloge-
netic autocorrelation. The obvious solution
is to deweight the characters in the suite to
remove the bias introduced by the correla-
tion (Chippindale and Wiens, 1994); this ap-
proach has been taken by molecular workers
(e.g., Wheeler and Honeycutt, 1988; Dixon
and Hillis, 1993) to account for nonindepen-
dence in ribosomal DNA sequence data.
Any method that can identify dependent
characters before tree building can provide
a basis for objective character weighting
(Sneath et al., 1975). However, one cannot
easily do this while coding correlated char-
acters separately. Parsimony approximates
a likelihood solution in which the probabil-
ity of change for each character is the same
oneach branch (Edwards and Cavalli-Sforza,
1964; Felsenstein, 1981). However, if charac-
ters are correlated, then the probability of
change is partially determined by the states
or state changes (or both) of other charac-
ters and therefore will vary over the tree.
An alternative is to code correlated suites as
a single compound character, with different
combinations of states from each character
representing a state in the compound charac-
ter. The step-matrix of the compound char-
acter (Sankoff and Rousseau, 1975) would
weight transitions such as {00} — {01} and
{00} — {11} as little more than a single step.

TABLE 5. Third largest partition of characters with improbably high mutual Compatibilities. See Table 3 for

details. Character labels after Wilkinson (1997).

P
No. Character i° E1.2 E14 E6 T28 T40
E1.2 Rectus internus: present/absent 51 0.008 0.009 0.009 0.038
El1.4 Rectus oblique: present/absent 52 0.008 0.014 0.010 0.045
E6 Retinal cells: >5000/ <5000 46 0.009 0.014 0.005 0.021
T28 Orbit covered by bone 49 0.009 0.010 0.005 0.010
T40 Premaxillary: maxillary teeth size 54 0.038 0.045 0.021 0.010
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However, transitions such as {01} — {11} or
{10} — {11} would cost much less than one
step, which would greatly decrease the ef-
fects of correlated homoplasy. Methods for
objectively assigning weights within such a
step matrix have yet to be developed.
Another alternative is the reduction of
each correlated character set to a single ex-
emplar character (see, e.g.,, Werdelin and
Solounias, 1991). In the case of caecilians, this
approach reduces three sets to three charac-
ters. In all three cases, the character that could
diagnose the most taxa as a synapomorphy
was chosen. Reducing the correlated suites
decreases the apparent homoplasy slightly
but results in a topology somewhat differ-
ent from that of the original parsimony tree

(compare Figs. 10a and 10b). The reduced
homoplasy does not, however, increase reso-
lution: Resolution actually decreases, result-
ing in 1,616 most-parsimonious trees (MPTs),
whereas the untreated matrix results in only
35 MPTs. This difference, however, is not
surprising; as noted above, an expected ef-
fect of correlated characters is stronger sup-
port for erroneous nodes. Improved sup-
port also should reduce the chance that
alternative nodes will be equally parsimo-
nious. Hillis and Huelsenbeck (1992) demon-
strated that the addition of even random
characters will increase resolution, so reduc-
ing the number of characters should decrease
resolution, regardless of the value of those
characters.
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all 78 characters on each tree. CI; gives the consistency index for 62 characters—that is, those not in one of the

three partitions plus one character from each partition. Cly gives the consistency index for 50 characters not
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50 characters, with correlated suites reduced to one character each, and all characters for which the hypothesis of

random distribution is not rejected (from Wilkinson, 1997) are excluded.

671



672

SYSTEMATIC BIOLOGY

VOL. 50

Le Quesne permutation tests by Wilkinson
(1997) revealed that 18 caecilian characters
had compatibilities so low that the hypothe-
sis in which they were distributed at random
with respect to the other characters could not
be rejected. Because characters bearing phy-
logenetic signal should not be distributed
randomly within a matrix, Wilkinson’s final
analyses simply eliminated those characters.
We eliminated those characters from this
analysis after reducing the correlated suites
to single characters, and then reran the
parsimony analysis. This analysis yielded
far fewer trees (8) and showed several
additional topology changes (Fig. 10c). The
combined results suggest that highly homo-
plastic characters obfuscated phylogenetic
inference (as suggested by the large numbers
of trees), whereas homoplasy among corre-
lated suites presented strongly misleading
signal (as suggested by the small number of
different trees in the initial analysis). This
conclusion is supported by the existence
of a subclade supported by “suspicious”
eye characters (Gymnopis, Gegeneophis,
Boulengerula, and Scolecomorphus; Wilkinson,
1997, pers. comm.). That clade is present in
the firstand second analyses but is broken up
in the third (preferred) analysis. This result
demonstrates how partitions identified by
the methods developed here can be used to
improve a phylogenetic hypothesis through
character weighting.

Implications for Total Evidence

Kluge and Wolf (1993:112) acknowledge
correlated character evolution might mis-
lead parsimony analyses, but they deny that
one can recognize such patterns even with
known phylogenies. Kluge and Wolf’s claim
leads to the fundamental assumption of the
“total evidence” paradigm; that is, there
are no natural partitions among characters.
However, the analyses presented here show
that one can both recognize suites of po-
tentially correlated characters and test alter-
native hypotheses of independent character
evolution. These analyses recast a basic as-
sumption of parsimony analyses as a testable
hypothesis. If all character divisions are truly
arbitrary, then data sets such as the caecil-
ian example should not exist. The fact that
they do falsifies Kluge and Wolf’s premise.
Some workers might worry that eliminating

characters will eliminate phylogenetic signal
(e.g., O’Leary and Geisler, 1999). However,
if the hypothesis of independent character
evolution is refuted, then retaining depen-
dent characters increases the risk that charac-
ter congruence will reflect homoplasy rather
than homology. Simulation studies indicate
that this risk is substantial even if charac-
ter changeisindependent. Correlated change
can only exacerbate this problem.

Limitations of Multivariate and Monte
Carlo Analyses

One limitation of the methods we propose
is that they apply only to matrices possessing
a substantial amount of compatibility. With
luck, this will not be a concern for most phy-
logenetic data sets. However, examples do
exist of matrices with insufficient compati-
bility for these tests to be applicable. Wagner
(2000) documented trilobite clades in which
fewer than 10% of the character pairs were
compatible. In some of these clades, most of
the characters were incompatible with every
other character. Even if correlated evolution
occurred among these characters, it could not
be detected by these tests. A possible solution
to this problem is to describe compatibility
not as a Boolean character, but instead as a
fraction, that is, the largest subset of taxa in
which the characters remain compatible di-
vided by the total number of taxa. Difficulties
arising with similarity matrix calculation re-
main unresolved for this approach. “Fuzzy
compatibility” is an area for further research.

Several cautions about the use of these tests
arise for technical reasons. The first concerns
the statistical power of the Monte Carlo tests,
which is determined by the magnitude of
n. If a data set contains fewer than about
20 characters, then the tests lack the power
to reject the null hypothesis of character in-
dependence. The number of taxa in a data
set is also important; at least four taxa are
required for assessment of compatibility, and
more are advisable—although the sensitiv-
ity of the analyses to taxon number has not
yet been investigated. A simulation study in-
vestigating the performance of the methods
developed here over a range of evolutionary
parameters would be useful and is an area
of further study. Lastly, preliminary analy-
sis of a large data set (34 taxa, 166 charac-
ters) of plesiosaurs (O’Keefe, 2000) has in-
dicated that autapomorphic and invariant
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characters slightly affect ordinations. Such
characters, therefore, should probably be re-
moved before analysis to ensure maximum
clarity in the ordination. Autapomorphies do
not affect Monte Carlo tests.

CONCLUSIONS

The methods developed in this paper can
test a priori hypotheses of character correla-
tion without reference to a cladogram. They
also allow one to infer correlated character
suites and test them without reference to a
specific tree topology. Multivariate ordina-
tion of caecilian characters based on mu-
tual compatibility reproduces Wilkinson’s
(1997) hypothesis that caecilian eye char-
acters did not evolve independently. Sub-
sequent Monte Carlo tests reject the hy-
pothesis of character independence. Our
methods suggest that two suites include eye
characters as well as a few “traditional” char-
acters, and an additional suite includes cra-
nial characters. Monte Carlo tests also reject
hypotheses of independent character evolu-
tion within these sets. Reanalysis of the cae-
cilian data indicates that the correlated suites
affect parsimony inferences about caecilian
relationships. Reduction of correlated sub-
sets and of homoplastic characters results in
better phylogenetic resolution in the result-
ing cladogram and breaks up a subclade sup-
ported by correlated homoplastic characters.

In the case of the caecilians, there was
prior reason to suspect correlated character
evolution. However, the methods we used
here require neither prior suspicion to hy-
pothesize correlated character suites nor a
cladogram topology to test those hypotheses.
This ability is very important for both the-
oretical and methodological reasons. Meth-
ods that can identify interesting suites of
characters could be useful for testing a va-
riety of macroevolutionary hypotheses con-
cerning the importance of development and
function. This will be especially true when
studying taxa for which very little informa-
tion is available about developmental and
functional biology (e.g., extinct or rare taxa).
For systematists, the tests proposed herein
can identify and reject hypotheses pertain-
ing to particular sets of characters in com-
parison with an expectation of independent
character evolution. Deweighting correlated
characters suites offers a means of improv-
ing phylogenetic inferences. For biologists

in general, objective means of identifying
and testing correlated character suites will be
useful for testing a range of developmental,
functional, and architectural hypotheses.
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