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Radially Aligned, Electrospun Nanofibers
as Dural Substitutes for Wound Closure
and Tissue Regeneration Applications
Jingwei Xie,†,� Matthew R. MacEwan,†,� Wilson Z. Ray,‡ Wenying Liu,§ Daku Y. Siewe,† and Younan Xia†,*
†Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63130, ‡Department of Neurosurgery, Washington University, School of Medicine,
St. Louis, Missouri 63110, and §Department of Energy, Environmental & Chemical Engineering, Washington University, St. Louis, Missouri 63130. �These authors
contributed equally to this work.

D
ura mater is a membranous con-
nective tissue located at the outer-
most of the three layers of the

meninges surrounding the brain and spinal
cord, which covers and supports the dural
sinuses and carries blood from the brain to-
ward the heart.1 Dural substitutes are often
needed after a neurosurgical procedure to
expand or replace the resected dura mater.2

Although many efforts have been made,
the challenge to develop a suitable dural
substitute has been met with limited suc-
cess.3 Autografts (e.g., fascia lata, tempora-
lis fascia, and pericranium) are preferred be-
cause they do not provoke severe
inflammatory or immunologic reactions,
but they are limited by potential drawbacks
such as difficulty in achieving a watertight
closure, formation of scar tissue, insuffi-
ciently accessible graft materials to close
large dural defects, and additional incisions
for harvesting the graft.4,5 Allografts and
xenografts are often associated with ad-
verse effects such as graft dissolution, en-
capsulation, foreign body reaction, scarring,
and adhesion formation. Lyophilized hu-
man dura mater as a dural substitute has
also been clarified as a source of
Creutzfeldt-Jakob disease.6,7

In terms of materials, nonabsorbable
synthetic polymers, such as silicone and ex-
panded polytetrafluoroethylene (ePTFE), of-
ten cause serious complications. These
may include induction of granulation tis-
sue formation due to their chronic stimula-
tion of the surrounding tissues and long-
term foreign body reactions.8�10 Natural
absorbable polymers, including collagen,
fibrin, and cellulose, present the potential
risk of infection.11 As a result, synthetic poly-
mers such as poly(3-hydroxybutyrate-co-3-
hydroxyvalerate) (PHBV), poly(lactic acid)

(PLA), polyglycolic acid (PGA), PLA-PCL-
PGA ternary copolymers, and hydroxyethyl-
methacrylate hydrogels have recently at-
tracted attention as biodegradable implant
materials for dural repair.3,5,8�11 Because of
their bioabsorbability, they are expected to
cause only a small risk of infection with
some minor long-term adverse effects. In
order to facilitate successful regeneration/
repair of the dura mater following surgery,
the synthetic dural substitute or patch must
promote (i) adhesion of dural fibroblasts
(the primary cell type present in the dura)
and (ii) migration of dural fibroblasts from
the periphery of the substitute toward the
center. So far, synthetic dural substitutes
have only been tested in the form of foils,
films, meshes, glues, and hydrogels.12�14

Due to their isotropic surface properties,
such substitutes are not well-suited for cell
attachment and inward migration. This
problem can be potentially solved by pro-
cessing the polymers as nanoscale fibers
with a right alignment. One recent study
demonstrated that the speed of cell
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ABSTRACT This paper reports the fabrication of scaffolds consisting of radially aligned poly(�-caprolactone)

nanofibers by utilizing a collector composed of a central point electrode and a peripheral ring electrode. This novel

class of scaffolds was able to present nanoscale topographic cues to cultured cells, directing and enhancing their

migration from the periphery to the center. We also established that such scaffolds could induce faster cellular

migration and population than nonwoven mats consisting of random nanofibers. Dural fibroblast cells cultured

on these two types of scaffolds were found to express type I collagen, the main extracellular matrix component

in dural mater. The type I collagen exhibited a high degree of organization on the scaffolds of radially aligned

fibers and a haphazard distribution on the scaffolds of random fibers. Taken together, the scaffolds based on

radially aligned, electrospun nanofibers show great potential as artificial dural substitutes and may be particularly

useful as biomedical patches or grafts to induce wound closure and/or tissue regeneration.

KEYWORDS: electrospinning · aligned nanofibers · dural substitutes · wound
closure
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migration tended to decrease with increasing incuba-
tion time on a flat surface, whereas cells could migrate
over a relatively long distance with a constant velocity
and in a highly correlated fashion on a uniaxially
aligned, fibrous scaffold.15

Electrospinning is an enabling technique which can
produce nanoscale fibers from more than 100 different
polymers.16 The electrospun nanofibers are typically
collected as nonwoven mats with random orientation.
Uniaxially aligned arrays of nanofibers can also be ob-
tained under certain conditions such as use of an air-
gap collector or a mandrel rotating at a high speed.17,18

However, uniaxially aligned nanofiber scaffolds can
only promote cell migration along one specific direc-
tion and are thus not useful as dural substitutes. In or-
der to promote cell migration from the surrounding tis-
sue to the center of a dural defect and shorten the
time for healing and regeneration of dura mater, a sur-
face patterned with a radially aligned, nanoscale fea-
tures would be highly desired for an artificial dural sub-
stitute. More specifically, scaffolds constructed with
radially aligned nanofibers could meet such a demand
by guiding and enhancing cell migration from the edge
of a dural defect to the center. As compared to other
techniques (e.g., photolithography, e-beam writing, and
jet printing) capable of generating nanoscale features,
electrospinning technique is advantageous in the fol-
lowing aspects: (i) electrospun nanofibers are more
physiologically relevant as they can mimic the 3D archi-
tecture of the extracellular matrix; (ii) electrospinning
is simpler, faster, and lower in cost for generating pat-
terned nanoscale features such as the radially aligned
array of nanofibers used in the present work; and (iii)
there is essentially no limitation to the materials that
can be used for electrospinning. In the present work, we
chose poly(�-caprolactone) (PCL), an FDA approved,
semicrystalline polyester that can degrade via hydroly-
sis of its ester linkages under physiological conditions
with nontoxic degradation products, as the electrospun
polymer for dura substitutes. This polymer has been
used in the human body as a material for fabrication
of drug delivery carriers, sutures, and adhesion
barriers.19,20 Electrospun PCL nanofibers have also been
investigated as scaffolds for a wide variety of applica-
tions in tissue engineering.21�24 Here we demonstrate,
for the first time, that electrospun PCL nanofibers can
be aligned radially to generate scaffolds potentially use-
ful as dural substitutes.

RESULTS AND DISCUSSION
Figure 1A shows a schematic of the electrospinning

setup which consists of a high-voltage generator, a
syringe pump, and a collector. It is essentially the same
as the conventional setup except for the collector,
which includes a metallic ring (the ring electrode) and
a metallic needle (the point electrode). Neglecting the
effect of charges on the fibers, the electrical potential

field can be calculated using the Poisson equation, �2V

� ��/�, where V is the electrical potential, � is the elec-

trical permittivity of air, and � is the density of space

charges. The electrical field, E, can then be calculated

by taking the negative gradient of the electrical poten-

tial field, E � ��V. Here, the electrical field was calcu-

lated using the software COMSOL3.3 to verify the align-

ment effect. Figure 1B shows a 2D cross-sectional view

of the electric field strength vectors between the spin-

neret and the grounded collector. Unlike the conven-

tional system, the electric field vectors (stream lines) in

the vicinity of the collector were split into two fractions,

pointing toward both the ring and point electrodes.

Figure 1C shows a photograph of a typical scaffold con-

sisting of radially aligned electrospun nanofibers that

were directly deposited on the collector. Figure 1D

shows an SEM image taken from the same scaffold, con-

firming that the nanofibers had been aligned in a ra-

dial fashion.

Dura mater is a complex, fibrous membrane that

consists of numerous cells and cell types, extracellular

matrix proteins, and trophic factors, all of which play im-

portant roles in the colonization and duralization of ar-

tificial dural substitutes and thus successful implemen-

tation of such grafts in vivo. In order to evaluate the

capability of radially aligned nanofibers to interface

with natural dura, promote host cell adhesion to the

graft, and enhance host cell migration along the graft,

we developed an ex vivo model for the surgical repair of

a small dural defect. In a typical procedure, an artificial

dural defect was introduced into a piece of dura (1 cm

� 1 cm) by microsurgically cutting a small circular hole

7 mm in diameter in the center of the specimen. A

nanofiber-based scaffold was then utilized to repair

the artificial defect by overlaying the graft onto the du-

ral specimen. The graft covered the entire defect while

simultaneously contacting the dural tissue at the pe-

riphery of the specimen. Figure S1 (Supporting Informa-

tion) shows a schematic illustration of a dural tissue

seeded on the edge of a scaffold. As shown in Figure

2A, dural fibroblasts stained with fluorescein diacetate

(FDA) migrated from the surrounding tissue along the

radially aligned nanofibers and further to the center of

the circular scaffold after incubation for 4 days. We

found that the cells could cover the entire surface of

the scaffold in 4 days. In contrast, a void was observed

after the same period of incubation time for a scaffold

made of random fibers (Figure 2B), indicating a faster

migration rate for the cell on radially aligned nanofibers

than on their random counterparts. Figure 2C,D shows

magnified views of the central regions in Figure 2A,B,

respectively. It is clear that the scaffold made of radi-

ally aligned nanofibers was completely populated with

dural cells which had migrated from the borders of the

apposed dural tissue. On the contrary, we can clearly

see the acellular region at the center of the scaffold
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made of random nanofibers after the same incubation
time.

In order to further investigate the effect of fiber
alignment and surface coating on cell migration, pri-
mary dural fibroblasts isolated from dura tissue were
cultured on scaffolds of radially aligned and random
nanofibers without and with fibronectin coating. Fig-
ure S2 (Supporting Information) shows a schematic of
the custom-made culture system. Specifically, dural fi-
broblasts were selectively seeded around the periphery
of a circular scaffold of nanofibers, effectively forming
a 7 mm simulated dural defect in the center of the
sample. The silicone tube was used as a barrier to keep
the cells in the ring-shaped area during the first 4 h af-
ter cell seeding, and then it was removed. Figure 3
shows cell morphology and distribution on scaffolds of

radially aligned and random nanofibers without and
with fibronectin coating after incubation for 1 day. As
shown in Figure 3A, many cells could attach to the bare
scaffold of radially aligned nanofibers. In comparison,
fewer cells attached to the bare scaffold of random
nanofibers and cell aggregations were noticed (Figure
3B). The cells were distributed evenly over the entire
surface of the fibronectin-coated scaffold of radially
aligned nanofibers, and they exhibited an elongated
shape (Figure 3C). This result indicates that fibronectin
coating could enhance the influence of topographic
cues on cell morphology that were rendered by the
alignment of fibers. The cells could also adhere well to
the fibronectin-coated scaffold consisting of random
nanofibers, and cell distribution was more uniform than
the uncoated sample (Figure 3D).

Figure 1. (A) Electrospinning setup for generating scaffolds consisting of radially aligned nanofibers. (B) Electric field strength
vectors calculated for the region between the spinneret and the collector. (C) Photograph of a scaffold of radially aligned nanofi-
bers directly deposited on the ring collector. (D) SEM image showing the radial alignment for the nanofibers in the scaffold.
The circular features behind the nanofibers were dents on the conductive carbon tape.

A
RTIC

LE

www.acsnano.org VOL. 4 ▪ NO. 9 ▪ 5027–5036 ▪ 2010 5029



To characterize cell motility on the scaffold, cells
were stained with FDA and fluorescence images were
taken at different times. Figure 4A�C shows cell distri-
bution after seeding on fibronectin-coated scaffolds of
radially aligned nanofibers on days 1, 3, and 7 of culture.
The cells were radially aligned, replicating the align-
ment of fibers underneath (see Figure 4D for a blow-
up). The ability for dural fibroblasts to migrate into and
repopulate the simulated dural defect was measured
at various times throughout the experiment as an esti-
mate of the regenerative capacity of the substitute. Fig-
ure 4E illustrates an example for the calculation of the
area of simulated dural defect on the scaffold. The area
of void was quantified, as shown in Figure 4F. The area
of void decreased with increasing incubation time for all
the scaffolds we tested due to the inward migration of
cells. Obviously, radially aligned fibers could signifi-

cantly enhance cell migration when compared to ran-
dom fibers, and cells had the fastest migration rate on
the fibronectin-coated scaffold of radially aligned
nanofibers for the first 3 days of incubation. We no-
ticed that about 5 mm2 of bare surface still remained
for the bare scaffold of random scaffolds even after in-
cubation for 7 days. In contrast, cells almost covered the
entire area of the simulated defect within the same pe-
riod of incubation time for the other three types of scaf-
folds. The cell motility toward the center of a
fibronectin-coated scaffold of radially aligned nanofi-
bers with increasing incubation time was further con-
firmed by time lapse imaging shown in Figures S3 and
S4 (Supporting Information).

We also compared the scaffolds consisting of radi-
ally aligned nanofibers with DuraMatrix-Onlay collagen
dura substitute membranes (the clinical gold standard)

Figure 2. (A,B) Fluorescence micrographs comparing the migration of cells when dura tissues were cultured on scaffolds of
radially aligned and random nanofibers, respectively, for 4 days. The dashed circle line indicates the border of dura cells after
seeding at day 0. (C,D) Magnified views of the center portion shown in (A) and (B), respectively. The arrow marks the cen-
ter of the scaffold. In (A), the non-uniformity in cell distribution was probably caused by the slight difference in nanofiber
density.
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by assessing the attachment and migration of dural fi-

broblasts. In order to achieve this goal, we seeded dura

fibroblasts in the surrounding areas of these two types

of scaffolds for 7 days and then stained with FDA. Fig-

ure 5A shows cell distribution on a scaffold of radially

aligned nanofibers, showing that many cells migrated

from the peripheral region to the center of the scaffold

and populated throughout the scaffold. Figure 5B

shows a high magnification image, indicating that the

cells were elongated and aligned along the long axes of

fibers. In contrast, we only saw sparse cells on the col-

lagen dura substitute membrane (Figure 5C). The back-

ground fluorescence was due to the strong absorption

of FDA by the collagen dura substitute membrane. In

addition, we noticed that some of the cells appeared

round in shape, indicating that the cells seemed to at-

tach and spread poorly on the collagen dura substitute

(Figure 5D and Figure S5a in Supporting Information).

As shown by the SEM image in Figure S5b, the collagen

dura substitute membranes were made of random col-

lagen nanofibers.

Dural tissue is primarily composed of type I

collagen.13,25,26 We also examined the production of

type I collagen from dural fibroblasts. Figure 6 shows

immunostaining of type I collagen produced by dural

fibroblasts which were seeded on various types of

nanofiber-based scaffolds. We observed that compa-

rable levels of type I collagen were produced by cells

on the scaffolds of radially aligned fibers as compared

to those on the scaffolds of random fibers, although

one previous study showed that more elongated cells

expressed higher collagen type I than less stretched

cells.27 Additionally, fibronectin coating had no signifi-

cant influence on the production of type I collagen. The

type I collagen was oriented haphazardly for the ran-

dom scaffolds and showed a high degree of organiza-

tion for the radially aligned scaffolds.

Recent advances in cell�biomaterials interaction

have shown that both chemical and topographical

properties of the materials’ surface can regulate and

control cell shape and function.28 Cell orientation, mo-

tility, adhesion, and shape can be modulated by a spe-

cific surface micro- and nanotopography. It is well-

known that cells can align along microgrooves or

similar topographical features on a surface. It was dem-

onstrated that fibroblasts were the most sensitive cell

type compared to endothelial cells and smooth muscle

cells and often responded with a strong alignment,

elongation, and migration along the grooves.29 Simulta-

neously, electrospinning has been widely used for pro-

Figure 3. Fluorescence micrographs showing the migration of dura fibroblasts seeded on four different types of nanofiber-
based scaffolds for 1 day: (A) radially aligned and bare; (B) random and bare; (C) radially aligned with fibronectin coating; and
(D) random with fibronectin coating.

A
RTIC

LE

www.acsnano.org VOL. 4 ▪ NO. 9 ▪ 5027–5036 ▪ 2010 5031



ducing nanofibers for a rich variety of applications in tis-

sue engineering including skin grafts, artificial blood

vessels, nerve conduits, along with others.30�32 Yet, pre-

vious studies were limited to the use of scaffolds made

of random and uniaxially aligned nanofibers. Although

it was demonstrated that cells migrated faster on uniax-

ially aligned nanofibers than random fibers,33 scaffolds

composed of uniaxially aligned nanofibers were not re-

alistic for wound healing applications due to the irregu-

lar shape of the wound. In the present work, we dem-

onstrated for the first time the fabrication of a new type

of scaffolds consisting of radially aligned nanofibers.

This novel type of scaffold can guide dural fibroblasts

spreading along the direction of fiber alignment and di-

rect cell motility toward the center of the scaffold, re-

sulting in faster cell migration compared to scaffolds

composed of random nanofibers. In addition, uniaxi-

ally aligned nanofiber scaffolds cannot match such a ca-

pability in that they can only guide cell migration along

one specific direction. It was reported that controlling

cellular orientation or morphology by topography or

so-called “contact guidance” could allow for the organi-

zation of the extracellular matrix.34�36 For most inju-

ries, natural healing results in once functional tissue be-

coming a scar which is usually made of a patch of cells

(e.g., fibroblasts) and disorganized extracellular matrix

Figure 4. Fluorescence micrographs showing the migration of dura fibroblasts seeded on fibronectin-coated scaffolds of ra-
dially aligned nanofibers for (A) 1 day, (B) 3 days, and (C) 7 days. (D) Higher magnification view of the sample in (C). (E) Illus-
tration showing how to calculate the area of void space. (F) Area of void space as a function of incubation time; � and # in-
dicate p � 0.05 for samples compared with random samples and random F samples in the same period of incubation time.
Random: scaffold of random fibers. Random F: fibronectin-coated scaffold of random fibers. Aligned: scaffold of radially
aligned fiber. Aligned F: fibronectin-coated scaffold of radially aligned fibers.
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Figure 5. Fluorescence micrographs showing dura fibroblasts migrated from peripheral region toward the center for 7 days
on (A,B) fibronectin-coated scaffolds of radially aligned nanofibers and (C,D) DuraMatrix-Onlay collagen dura substitute
membrane. In (A), the non-uniformity in cell distribution was probably caused by the slight difference in nanofiber density.

Figure 6. Fluorescence micrographs obtained by immunostaining with monoclonal antibodies for type I collagen in green
and DAPI for cell nuclei in blue for the scaffolds consisting of (A,C) radially aligned and (B,D) random fibers, respectively. The
scaffolds in (A,B) were not coated with fibronectin while those in (C,D) were.
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(e.g., collagen fibers).37 Highly organized cells and an ex-
tracellular matrix are probably required for tissue regen-
eration, which is normally not thought to be related to
tissue repair with scarring. We have demonstrated in
the present work that extracellular matrix type I col-
lagen on scaffolds of radially aligned nanofibers
showed a high degree of organization, which may re-
duce the possibility of scar tissue formation.

The ideal dura substitute should be safe, effica-
cious, easy to handle, watertight and integrated into
the surrounding tissue to form a new tissue similar to
the native one.2 Also, it should avoid harmful foreign
body reactions, be free of any potential risk of infec-
tions, have mechanical properties similar to those of
natural dura mater, in particular with respect to flexibil-
ity and strength, be storable and readily available when
needed.3,12,13 In the present work, the biodegradable
polymer PCL was chosen as a material for dural substi-
tute because PCL has some advantages compared with
other bioabsorbable polyesters. Heterogeneous degra-
dation of PGA and poly(L-lactic acid) (PLLA) could lead
to a sudden increase of degradation products, resulting
in acidic conditions and toxic reactions in the surround-
ing tissue.3 The degradation of PCL is slower, produces
less acidic degradation products, and has been studied
as a wound dressing material since the 1970s.38 In order
to obtain watertight property, the radially aligned
nanofiber scaffold can be combined with a nonwoven
mat to form two-layered or even multilayered substi-
tutes. Simultaneously, antibiotics can be readily encap-
sulated inside nanofibers to further reduce inflamma-
tory response, improve wound healing, and prevent
postsurgery adhesion.39,40 Alternatively, PCL can blend
with other polymers to further improve its biocompati-
bility, as well as mechanical, physical, and chemical

properties.38 Moreover, extracellular proteins and/or

growth factors can be immobilized on the surface of

the nanofibers using various surface modification ap-

proaches to enhance cell adhesion. The current work

presented the effect of fibronectin coating on the PCL

nanofibers through electrostatic interaction on dural fi-

broblast adhesion and motility. One previous study re-

ported that basic fibroblast growth factor (bFGF) immo-

bilized on electrospun PLA nanofibers had less effect

on skin cell migration.33 Our results demonstrated that

fibronectin coating enhanced adhesion of dural fibro-

blasts and improved cell migration on randomly ori-

ented nanofiber scaffolds, but the coating had mar-

ginal contribution to cell motility on radially aligned

nanofiber scaffolds compared to the bare scaffolds, in-

dicating the predominant role played by nanofiber

alignment.

CONCLUSIONS
In summary, we have demonstrated the fabrication

of a new type of electrospun nanofiber scaffold com-

posed of radially aligned fibers and its potential appli-

cation as dural substitutes. We showed that dural fibro-

blasts cultured on scaffolds of radially aligned

nanofibers were elongated and their migration toward

the center of the scaffold was greatly accelerated along

with the development of a regular arrangement of ex-

tracellular matrix like type I collagen, potentially allow-

ing for fast regeneration and formation of neodura.

Taken together, our results suggest that radially aligned

nanofibers as an artificial dural substitute may offer an

alternative in the repair of dural defects and further-

more occupy a unique, desirable niche within the neu-

rosurgical community.

EXPERIMENTAL METHODS
Fabrication of Electrospun Nanofiber Scaffolds. In a typical proce-

dure for electrospinning PCL (Mw � 65 kDa, Sigma-Aldrich)
nanofibers, we used a solution of 20% (w/v) PCL in a mixture of
dichloromethane (DCM) and N,N-dimethylformamide (DMF)
(Fisher Chemical) with a volume ratio of 4:1. The fibers were
spun at 10�17 kV with a feeding rate of 0.5 mL/h, together with
a 23 gauge needle as the spinneret. A piece of aluminum foil
was used as a collector to obtain random nanofiber scaffolds. Ra-
dially aligned nanofiber scaffolds were fabricated utilizing a col-
lector consisting of a ring electrode (e.g., metal ring) and a point
electrode (e.g., a sharp needle). Electrospun PCL nanofibers were
coated with fibronectin (Millipore, Temecular, CA) as follows.
The electrospun fiber scaffolds were sterilized by soaking in 70%
ethanol overnight and washed three times with phosphate buff-
ered saline (PBS). Then, the scaffolds were immersed in a 0.1%
poly-L-lysine (PLL) (Sigma-Aldrich) solution for 1 h at room tem-
perature, followed by washing with PBS (Invitrogen) three times.
Subsequently, the samples were immersed in a fibronectin solu-
tion (26 �L of 50 �g/mL fibronectin solution diluted with 5 mL
of PBS buffer) at 4 °C overnight. Prior to cell seeding, the fi-
bronectin solution was removed and the nanofiber scaffolds
were rinsed with PBS. The DuraMatrix-Onlay collagen dura sub-
stitute membrane was kindly provided as a gift from Stryker
Craniomaxillofacial (Kalamazoo, MI).

Characterization of Nanofiber Scaffolds. The PCL nanofiber scaf-
folds were sputter-coated with gold before imaging with a scan-
ning electron microscope (Nova 200 NanoLab, FEI, Oregon, USA)
at an accelerating voltage of 15 kV. Samples prepared for use in
cell culture were inserted into a 24-well TCPS culture plate and
sterilized by soaking scaffolds in 70% ethanol.

Dural Fibroblast Isolation and Culture. Fibroblasts were isolated
from sections of dura explanted from 4.5 kg New Zealand rab-
bits (Myrtle’s Rabbitry, Thompsons Station, TN). Dura was ob-
tained from recently euthanized animals through a complete
craniotomy performed under sterile conditions. Specifically, a
5.0 cm midline incision was made in the scalp to expose the un-
derlying calvarium. Following periosteal elevation, a 2.5 cm �
3.0 cm section of bone was removed from the calvarium to ex-
pose the underlying dura. A 2.0 cm � 1.5 cm section of dura was
then removed through sharp dissection and washed three times
with cold PBS. Dural fibroblasts were then isolated by digesting
minced dura three times in 4 mL of warm Hank’s balanced salt
solution (HBSS) containing 0.05% Trypsin and 0.04% EDTA
(Sigma-Aldrich, St. Louis, MO). Following digestion, collected su-
pernatant was centrifuged and the pellet of dural cells was iso-
lated and resuspended in Dulbecco’s modified Eagle’s medium
(DMEM) supplemented with 10% calf serum and 1% penicillin
and streptomycin. Dural cells obtained in this manner were then
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plated in 75 cm2 flasks and expanded (subpassaged no more
than five times).

Dural Fibroblast Migration. Large, continuous pieces of dura
mater were placed in cold PBS and microsurgically trimmed
into 1 cm � 1 cm sections. An artificial defect was then intro-
duced into each section of dura by microsurgically cutting a
small circular hole, 7 mm in diameter, in the middle of the sec-
tion. Sections of dura were then introduced into individual wells
of 6-well culture plates containing 4 mL of DMEM supplemented
with 10% calf serum and 1% penicillin and streptomycin. Ran-
dom and radially aligned nanofiber scaffolds 1 cm in diameter
were then utilized to repair the artificial defects by overlaying the
graft onto the dural specimen. Nanofiber scaffolds were placed
on the dura such that the graft covered the entire defect while si-
multaneously contacting the dural tissue at the periphery of
the specimen. Nanofiber scaffolds were held in this position
throughout the experiment by placing a sterilized metal ring
over both the scaffold and the dura. After 4 days of culture, the
cells were stained with FDA in green color and imaged with fluo-
rescence microscope. Fluorescent images were taken using a QI-
CAM Fast Cooled Mono 12-bit camera (Q Imaging, Burnaby, BC,
Canada) attached to an Olympus microscope with OCapture
2.90.1 (Olympus, Tokyo, Japan). Similarly, around 1 � 105 dural fi-
broblast cells were seeded onto the periphery of nanofiber scaf-
folds using our homemade culture system shown in Figure S2
(Supporting Information). After different periods of time, the
cells were stained with FDA in green color and imaged with a
fluorescence microscope. The total surface area of nanofiber
scaffold devoid of migrating cells was then quantified using Im-
age J software (National Institutes of Health).

Time Lapse Imaging of Dural Fibroblast Migration. Living cells were
labeled with membrane dye using Vybrant DiO cell-labeling so-
lution (Invitrogen) according to the manufacturer’s instructions
and then imaged at day 1, 3, 7, and 10. Dural fibroblasts were
seeded on nanofibers and placed on the stage of an optical
microscope. The whole setup was placed in the incubator. Cell
migration on nanofiber films was imaged every 5 min using Pa-
nasonic WV-BP130 attached to a Nikon microscope with Flash-
Bus FBG (Nikon).

Scanning Electron Microscopy Imaging. The dural fibroblast-seeded
collagen dura substitute membrane was fixed in 3.7% formalde-
hyde for 30 min. Subsequently, it was dehydrated in ethanol
with a series of concentrations (30, 50, 70, 90, 95, and 100%) and
dried in vacuum. Finally, the sample was coated with gold us-
ing a sputter prior to imaging by SEM. The accelerating voltage
was 15 kV for imaging.

Immunohistochemistry. Production of collagen type I by the du-
ral fibroblasts on the fiber scaffolds was assessed using immuno-
histochemistry. On day 7, the cells were rinsed with PBS and
fixed with 3.7% formalin for 1 h (N � 4). Cells were permeabi-
lized using 0.1% Triton X-100 (Invitrogen) in PBS for 20 min, fol-
lowed by blocking in PBS containing 5% normal goat serum
(NGS) for 30 min. The monoclonal antibody for type I collagen
(1:20 dilution) was obtained from EMD Chemicals (Calbiochem,
San Diego, CA). Cells were washed three times with PBS contain-
ing 2% FBS. The secondary antibody Gt � Rb IgG Fluor (Chemi-
con, Temecula, CA) (1:200 dilution) was applied for 1 h at room
temperature. Fluorescent images were taken using a QICAM Fast
Cooled Mono 12-bit camera (Q Imaging, Burnaby, BC, Canada)
attached to an Olympus microscope with OCapture 2.90.1
(Olympus, Tokyo, Japan).

Statistical Analysis. Mean values and standard deviation were
reported. Comparative analyses were performed using the Tukey
post hoc test by analysis of variance at a 95% confidence level.
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