
Michigan Law Review Michigan Law Review

Volume 91 Issue 3

1992

Defining Computer Program Parts Under Learned Hand's Defining Computer Program Parts Under Learned Hand's

Abstractions Test in Software Copyright Infringement Cases Abstractions Test in Software Copyright Infringement Cases

John W.L. Ogilive
University of Michigan Law School

Follow this and additional works at: https://repository.law.umich.edu/mlr

 Part of the Computer Law Commons, Intellectual Property Law Commons, and the Judges Commons

Recommended Citation Recommended Citation
John W. Ogilive, Defining Computer Program Parts Under Learned Hand's Abstractions Test in Software
Copyright Infringement Cases, 91 MICH. L. REV. 526 (1992).
Available at: https://repository.law.umich.edu/mlr/vol91/iss3/5

This Note is brought to you for free and open access by the Michigan Law Review at University of Michigan Law
School Scholarship Repository. It has been accepted for inclusion in Michigan Law Review by an authorized editor
of University of Michigan Law School Scholarship Repository. For more information, please contact
mlaw.repository@umich.edu.

https://repository.law.umich.edu/mlr
https://repository.law.umich.edu/mlr/vol91
https://repository.law.umich.edu/mlr/vol91/iss3
https://repository.law.umich.edu/mlr?utm_source=repository.law.umich.edu%2Fmlr%2Fvol91%2Fiss3%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/837?utm_source=repository.law.umich.edu%2Fmlr%2Fvol91%2Fiss3%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/896?utm_source=repository.law.umich.edu%2Fmlr%2Fvol91%2Fiss3%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/849?utm_source=repository.law.umich.edu%2Fmlr%2Fvol91%2Fiss3%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.law.umich.edu/mlr/vol91/iss3/5?utm_source=repository.law.umich.edu%2Fmlr%2Fvol91%2Fiss3%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mlaw.repository@umich.edu

NOTE

Defining Computer Program Parts Under Learned Hand's
Abstractions Test in Software Copyright Infringement
Cases

John W.L. Ogilvie

INTRODUCTION

Although computer programs enjoy copyright protection as pro
tectable "literary works" under the federal copyright statute, 1 the case
law governing software infringement is confused, inconsistent, and
even unintelligible to those who must interpret it.2 A computer pro
gram is often viewed as a collection of different parts, just as a book or
play is seen as an amalgamation of plot, characters, and other familiar
parts. However, different courts recognize vastly different computer
program parts for copyright infringement purposes. 3 Much of the dis
array in software copyright law stems from mutually incompatible and
conclusory program part definitions that bear no relation to how a
computer program is actually designed and created. These differing
part definitions frustrate courts' efforts to compare or reconcile claims
of substantial similarity, an issue that constitutes the cornerstone of
many copyright infringement cases.4

Substantial similarity between the allegedly infringing program
and the copyrighted program is not the only element of a software
copyright infringement case. Infringement plaintiffs must also prove
ownership of a valid copyright, and must establish access by the de
fendant to the copyrighted and allegedly infringed program.5 How
ever, because ownership may be shown by a certificate of copyright
registration, and access to the allegedly infringed work is often either

1. Copyright Act of 1976, 17 U.S.C. §§ 101, 102(a), 117 (1988); see also H.R. REP. No. 1476,
94th Cong., 2d Sess. 54 (1976), reprinted in 1976 U.S.C.C.A.N. 5659, 5667 (stating that com
puter programs are "literary works").

2. See, e.g., Pamela Samuelson, Reflections on the State of American Software Copyright Law
and the Perils of Teaching It, 13 COLUM.-VLA J.L. & ARTS 61, 66 (1988) (listing unsettled legal
issues in software copyright law).

3. See infra note 198.
4. See, e.g., Soft Computer Consultants, Inc. v. Lalehzarzadeh, 1989 Copyright L. Dec.

(CCH) 1] 26,403, at 22,538 (E.D.N.Y. 1988) (stating that the "general standard for establishing
copying is the substantial similarity test").

5. Frybarger v. International Business Machs. Corp., 812 F.2d 525, 529 (9th Cir. 1987);
Whelan Assocs. Inc. v. Jaslow Dental Lab., Inc., 797 F.2d 1222, 1231-32 (3d Cir. 1986), cert.
denied, 479 U.S. 1031 (1987).

526

December 1992] Note - Computer Program Parts 527

conceded or easily proven, 6 substantial similarity is often dispositive.
Judicial use of multiple discordant tests for substantial similarity
therefore creates chaos at the very heart of software copyright in
fringement law.

Confusion is inevitable because the various substantial similarity
tests employed in software copyright cases define a bewildering variety
of program parts. For example, some courts seem to treat algorithms
as distinct parts, 7 while others simply bundle them into a program's
"structure, sequence and organization" (SSO). 8 Some recognize sev
eral distinct parts9 while others concentrate on a program's "total con
cept and feel." 10 Some parts are defined inconsistently,11 or not
defined at all. 12

Unstable definitions of software parts undermine meaningful dis
tinctions between the ideas underlying a program and the expression
of those ideas. This idea-expression dichotomy is crucial, for although
copyright law may protect "expression," it never protects an "idea."13

Unfortunately, some courts classify certain program parts as ideas
while others classify the same parts as expression, never explicitly ac
knowledging that parts are being treated inconsistently. One court
may treat everything except a program's main purpose as potentially
protectable expression, 14 while another protects only literal program
code and translations thereof. 15

Substantial adverse consequences arise from the resulting discord.
Conflicting and incoherent rules of decision produce contrary out
comes on fundamentally identical facts. Activities clearly permitted
under one infringement test may lead to liability under a conflicting
test, and no principled basis exists for choosing between existing
tests. 16 Conflicting approaches also hinder the reasoned evolution of
software copyright law by obscuring the stable foundations of software
technology. Copyright law should balance software protection against
progress in the programming art and development of new technolo-

6. See infra note 78.

7. See, e.g., infra text accompanying note 99.

8. See infra text accompanying Figure 3.

9. See, e.g., infra notes 99-106 and accompanying text.

10. See infra text accompanying notes 151-62.

11. See infra notes 105-08, 159 and accompanying text.

12. See infra text accompanying notes 126-34; infra notes 143-46 and accompanying text.

13. 17 U.S.C. § 102(b) (1988); Mazer v. Stein, 347 U.S. 201, 217-18 (1954); see also MEL
VILLE NIMMER & DAVID NIMMER, NIMMER ON COPYRIGHT§ 13.03[B][2][a] (1992) [hereinaf
ter NIMMER] (discussing the idea-expression dichotomy as it pertains to substantial similarity
analysis).

14. See infra text accompanying note 136.

15. See infra text accompanying notes 123-25.

16. See infra text accompanying Figure 3.

528 Michigan Law Review [Vol. 91:526

gies, but it can only succeed if it is informed by fundamental program
ming concepts and accepted legal principles.

Legal commentators have only touched on issues relating to the
proper definition of computer program parts. Most scholarly com
mentaries on software copyright law simply ignore the problem of cor
rectly defining computer program parts, focusing instead on the
proper scope of protection.17 However, the need to import fundamen
tal programming concepts into software copyright law has been
noted. 18 Several commentaries19 also recognize the congruence be
tween programming, which creates functional expression from ab
stract ideas, and Learned Hand's abstractions test,20 which proposes a
hierarchy of levels of abstraction in any copyrighted work, ranging
from potentially protectable expression to unprotectable ideas. But
even these commentaries do not provide specific, coherent part defini
tions that are grounded in widely recognized programming concepts.21

Learned Hand's famous abstractions test initially appears to offer
little assistance in bringing sense and consistency to software copy
right infringement law. The abstractions test views literary works as a

17. Debate over the proper scope of protection examines the kinds of copying that constitute
infringement of computer programs under copyright law and addresses various policy questions
such as the appropriate balance between legitimate competition and infringement. See, e.g.,
Anthony L. Clapes et al., Silicon Epics and Binary Bards: Determining the Proper Scope of Copy
right Protection for Computer Programs, 34 UCLA L. REv. 1493, 1502 (1987). Little has been
done to define a small yet comprehensive set of program part definitions that is both legally
relevant and technically sound. Prior part definitions are often merely technical recitations that
are not integrated into the central discussion, which in turn focuses not on part definitions but
rather on the policies underlying various forms and degrees of monopolistic protection. See, e.g.,
id. at 1510-35; Susan A. Dunn, Note, Defining the Scope of Copyright Protection for Computer
Software, 38 STAN. L. REV. 497, 500.03 (1986); Steven R. Englund, Note, Idea, Process, or Pro·
tected Expression? Determining the Scope of Copyright Protection of the Structure of Computer
Programs, 88 MICH. L. REV.

0

866, 867-73 (1990).
18. See, e.g., Richard A. Beutel, Software Engineering Practices and the Idea/Expression Di·

chotomy: Can Structured Design Methodologies Define the Scope of Software Copyright?, 32
JURIMETRICS J. l, 3 (1991) (attempting "to review and analyze existing legal theories in light of
emerging software engineering methodologies").

19. See, e.g., id. at 17; NIMMER, supra note 13, § 13.03[F]; Dunn, supra note 17, at 526.
20. See infra text accompanying notes 22-25.
21. Beutel suggests that "functional" program items be separated from "descriptive" items,

but omits the details needed to perform this separation in practice. Beutel, supra note 18, at 29·
31. Beutel lists a large number of program items, but provides no guidance in analyzing any
program that was not created in accordance with the DoD-Std-2167 software development meth
odology. Even items in programs so created are apparently identified "by the contracting
agency" rather than by their inherent technical properties. Id. at 8-16.

Beutel discusses another approach to defining parts by level of abstraction, which is proposed
in Gary L. Reback & David L. Hayes, The Plains Truth: Program Structure, Input Formats and
Other Functional Works, 4 COMPUTER LAW. 1 (March 1987). Reback and Hayes suggest n
"rule of reason" under Learned Hand's abstractions test, in order to balance programmer crea
tivity with the scope of copyright protection. Id. at 4-8. Their approach, however, also fails to
provide specific part definitions. Although several program parts are named in passing, the arti
cle focuses on policy considerations related to the copyright monopoly; it provides no detailed
part descriptions that are both self-consistent and rooted in software's generally recognized tech
nical characteristics. See id. at 5-6.

December 1992] Note - Computer Program Parts 529

spectrum of patterns, ranging from concrete protectable expression up
to abstract unprotectable ideas. In Nichols v. Universal Pictures
Corp., 22 Hand wrote:

Upon any work, and especially upon a play, a great number of patterns
of increasing generality will fit equally well, as more and more of the
incident is left out. The last may perhaps be no more than the most
general statement of what the play is about, and at times might consist
only of its title; but there is a point in this series of abstractions where
they are no longer protected, since otherwise the playwright could pre
vent the use of his "ideas," to which, apart from their expression, his
property is never extended.23

The abstractions test was formulated before the need arose to frame
proper computer program part definitions, and even in the works that
spurred its formulation the test provides only general guidance in lo
cating the line between idea and expression. In the particular realm of
computer software, "the abstractions test is not easy to apply."24

Proper application of the abstractions test is difficult, however, be
cause it requires an understanding of fundamental programming con
cepts, not because the test is inherently unsuitable. This Note argues
that the abstractions test's valuable approach25 can be adapted to the
software realm by recognizing legally several fundamental program
parts at different levels of abstraction. Although Learned Hand's test
is not a panacea for all the current ills of software copyright law, it
provides a framework for coherent program part definitions that
should increase that law's consistency.

This Note proposes a set of computer program part definitions that
develop Learned Hand's abstractions test to make it more useful in
software infringement cases. The Note takes no position on the proper
scope of protection for software under copyright law, but argues that
no consensus is possible on which program parts deserve copyright
protection until courts recognize that computer programs are com
posed of components whose definition lies beyond judicial control.
Program parts defined in conclusory legal terms will never provide a
stable basis for reasoned debate over the conclusions presumed in the
definitions. 26

This Note advocates the orderly development of copyright law
through harmonious software part definitions. Part I provides the
technical and legal background necessary to examine the proposed

22. 45 F.2d 119 (2d Cir. 1930), cert. denied, 282 U.S. 902 (1931).
23. Nichols, 45 F.2d at 121.
24. NIMMER, supra note 13, § 13.03[F], at 13-78.33.
25. Learned Hand's test "is helpful in that it vividly describes the nature of the quest for 'the

expression of an idea.' " NIMMER, supra note 13, § 13.03[A], at 13-27 (paraphrasing Learned
Hand's opinion in Peter Pan Fabrics, Inc. v. Martin Weiner Corp., 274 F.2d 482, 489 (2d Cir.
1960)).

26. See, e.g., infra text accompanying note 157.

530 Michigan Law Review [Vol. 91:526

program parts by presenting some basic software terminology, discuss
ing computer program abstraction parts currently recognized by pro
grammers, and examining abstraction parts defined by courts during
their attempts to analyze substantial similarity in software infringe
ment cases. Part II argues for judicial adoption of the computer pro
gram abstraction part definitions presented in Part I. This second
portion of the Note first develops requirements that any set of abstrac
tion part definitions should satisfy and argues that the proposed defini
tions meet these requirements. Part II then discusses the costs and
benefits of change, arguing that judicial agreement on a coherent set of
abstraction part definitions must precede any consensus on the proper
scope of protection for software under copyright law. The Note con
cludes that refining Learned Hand's abstractions test to recognize the
proposed program parts will reduce the chaos presently hindering
software copyright infringement law.

I. EXISTING TECHNICAL AND LEGAL PART DEFINITIONS

Software begins as an abstract idea and progresses through increas
ingly specific stages until a literal program emerges.27 These stages are
excellent candidates for refinements of the abstractions test, not
merely because they arise through step by step refinement of an ab
straction, but also because they rest on fundamental programming
concepts. A firm understanding of both programming and existing
copyright law, however, is necessary before defining these stages as
program parts under the abstractions test. Section I.A therefore in
troduces some basic software concepts. Section I.B defines and illus
trates the abstraction parts programmers use while designing, writing,
and enhancing software; this Note proposes judicial recognition of
these parts. Section I.C discusses abstraction parts courts have previ
ously defined, often implicitly, in applying various tests for substantial
similarity to computer programs.

A. Software Basics28

A program29 or piece of software30 is an organized set of instruc
tions that guides a computer. Software, which "runs on" a computer,

27. ALFRED V. AHO ET AL., DATA STRUCTURES AND ALGORITHMS 1 (1983).

28. Many introductory works on computers and software are available. See, e.g., MICHAEL
CoVINGTON & DOUGLAS DOWNING, BARRON'S DICTIONARY OF COMPUTER TERMS (3d ed.
1992) [hereinafter BARRON'S]; ADAM OSBORNE, AN INTRODUCTION TO MICROCOMPUTERS (2d
ed. 1980).

29. "A 'computer program' is a set of statements or instructions to be used directly or indi
rectly in a computer in order to bring about a certain result." 17 U.S.C. § 101 (1988).

30. This Note uses program and software interchangeably to represent every aspect, from the
most specific to the most general, of an organized set of instructions that guide a computer.
Code, by contrast, is used in a much narrower sense. See infra notes 32-35 and accompanying
text; infra Figures 2, 3; infra notes 67-72 and accompanying text.

December 1992] Note - Computer Program Parts 531

is distinguished from the physical computer itself, which is hardware.
Familiar examples of programs include word processors, spreadsheets,
and database management software.31 Programs also perform a wide
variety of other tasks, from rendering graphic images to modeling
weather patterns and controlling industrial robots.

The literal text comprising a program's instructions, known as
source code, is written in one or more programming languages. These
languages resemble human languages such as English, but have much
less room for ambiguity.32 Each programming language has a unique
grammar and set of meanings. 33 Two programs may perform the
same functions despite differences in their source code. Conversely,
two programs with nearly identical source code may perform very dif
ferently. Before source code can be used by the computer it must be
translated into a form recognizable to the computer hardware. A
compiler translates the source code into object code, 34 a string of ones
and zeros35 that controls the hardware. Because different computer
hardware requires different object codes, one must translate a piece of
source code once per hardware type to produce the object codes
needed to run the "same" program on different types of computer.

The fundamental distinction between source code and object code
illustrates software's multifaceted nature. Programs, like novels or
legal opinions, can be usefully viewed from a variety of perspectives.
When the object code runs, the computer hardware interacts with as-

31. As this Note will occasionally use database examples, the following definition may be
helpful. A database is a collection, typically quite large, of discrete pieces of information (data)
of a certain type, organized to facilitate adding, removing, modifying, reading, grouping, and
summarizing individual pieces of information. See, e.g., KAMRAN PARSAYE ET AL., INTELLI
GENT DATABASES 17 (1989). For instance, a database of student records might contain each
student's name, ID number, address, year in school, and current class schedule, as well as addi
tional information. Among other operations, the database management software might permit
one to read an individual student's record given the student's name or ID number, change the
student's address, find out how many students are in their third year, and print the names of
every student enrolled this semester in Copyright Law.

32. Spelling errors illustrate one obvious difference between English and computer program
ming languages. Replacing "receipt" by "reciept" in an English sentence normally will not
change the sentence's meaning, as readers will merely treat "reciept" as an incorrect spelling of
"receipt." In a computer program, however, "reciept" and "receipt" will typically be treated as
two distinct entities, and substituting one for the other may easily prevent the program from
working properly.

33. Programming language grammar rules are far stricter than those of English. "An inter
preter of programming-language texts, a computer, is immune to the seductive influence of mere
eloquence." JOSEPH WEIZENBAUM, COMPUTER POWER AND HUMAN REASON 108 (1976). For
an example of source code, see infra note 74.

34. Computer programs that translate source code into object code are known as compilers
or interpreters. BARRON'S, supra note 28, at 76-77.

35. Computers are machines that can only "Understand" and process information in the
form of ones and zeros, because their basic electronic components, transistors, operate only on
one or the other of two possible voltage levels. BARRON'S, supra note 28, at 329-30. Object code
could just as easily use X and Y or some other pair of symbols to represent these meaningful
voltage levels; it is irrelevant what labels are used. RICHARD B. KIEBURTZ, STRUCTURED PRO
GRAMMING AND PROBLEM-SOLVING WITH PASCAL 332 (1978).

532 Michigan Law Review [Vol. 91:526

pects of the program that are largely ignored by programmers. A
programmer's point of view, in tum, often differs from that of the pro
gram's ultimate user.36 One might note other differences in perspec
tive,37 but two are particularly relevant. First, this Note focuses on
algorithms and other internal aspects of software that are familiar to
programmers but largely invisible to program users. Accordingly, in
fringement tests developed for use in comparing program user inter
faces38 are relevant here mainly as limits on the applicability of the
present discussion. Second, this Note describes program parts from a
perspective that is more legal than technical, centering its discussion
on the relationship between existing doctrines and the proposed part
definitions. Sufficient material from computer science is included in
the next section to define clearly and completely the proposed parts,
but many points programmers would consider important are dealt
with only in the footnotes, or omitted entirely.

B. Abstraction Parts Used by Programmers

Programs embody different levels of abstraction because software
is best created through a method known as top-down programming, a
process that starts with a concept and culminates in a particular com
puter program. 39 A program begins as a purpose or desired function,
which programmers expand into a preliminary design. Programmers
make this design increasingly specific by splitting large tasks into
smaller ones and defining the interaction of these tasks. Some parts of
the design may organize the program's information in convenient for
mats, while other parts may manipulate or transform the information.
Programmers then implement the detailed design by writing source
code that describes it. Finally, programmers and others test the pro
gram, document it, and release it to users. Although programming
does not always proceed neatly from one stage to the next in prac-

36. See JOHN W.L. OGILVIE, ADVANCED c STRUCT PROGRAMMING: DATA STRUCTURE
DESIGN AND IMPLEMENTATION IN c 10-13 (1990) (describing programming from the perspec
tives of a customer, a nonprogramming contributor to a program, and a programmer).

37. Whereas legal analysis in copyright infringement cases typically compares "snapshots" of
two programs taken at single point in time, the "software life cycle" perspective traces a pro
gram's development over time. TOMLINSON G. RAUSCHER & LINDA M. OTT, SOFTWARE DE·
VELOPMENT AND MANAGEMENT FOR MICROPROCESSOR-BASED SYSTEMS 4-9 (1987).

38. A program's user interface is the way it communicates with the person who is using it.
In some programs, screen menus provide an interface permitting users to select an item by typing
a numeric digit or alphabetic character; in other programs, users interface with the program by
selecting icons (pictures) with a mouse. BARRON'S, supra note 28, at 343. See also infra note 73.

39. See generally GRADY BOOCH, SOFTWARE ENGINEERING WITH ADA (1983) (discussing
the top-down programming process).

December 1992] Note - Computer Program Parts 533

tice,40 the idealization suffices for this Note.41

Most programmers42 recognize certain program parts and levels of
abstraction.43 Partly because of their programming utility, these levels
of abstraction are well-suited for use as refinements of Learned Hand's
abstractions test. Because these parts arise naturally from the inherent
structure of software,44 they also present a coherent abstractions
framework that will facilitate substantial similarity analysis in
software copyright cases. These levels of abstraction include: (1) the
program's main purpose; (2) its system architecture; (3) various ab
stract data types; (4) various algorithms and data structures; (5) the
source code; and (6) the object code.

The following description of these program parts introduces sev
eral concepts that are unfamiliar to nonprogrammers. Readers whose
training is primarily in law rather than computer science will gain an
increased understanding of software technology. Software copyright
law should reflect the engineering realities of programming, just as the
Uniform Commercial Code reflects actual mercantile practice45 and

40. In theory as well as in practice, some top-down programming steps proceed simultane
ously rather than sequentially. Testing and documentation, for example, should begin when a
program is designed and continue throughout the program's life. See, e.g., OGILVIE, supra note
36, at 14 (proposing a programming process in which the goals of people with whom the pro
gram interacts are compared to each other and to the program's abilities, appropriate adjust
ments are made, and the entire cycle repeats); Englund, supra note 17, at 871 n.25 (1990) ("It is
often necessary to return to an 'earlier' stage of the design process, and frequently, a number of
these steps are performed simultaneously.") (citations omitted).

41. Other commentators have made similar simplifying assumptions. See, e.g., NIMMER,
supra note 13, § 13.03[F], at 13-78.32 n.291 (omitting discussion of debugging, program docu
mentation, and maintenance when examining top-down programming).

42. Academic writers disagree somewhat when naming the various levels of abstraction that
comprise the essence of top-down programming. Compare AHO ET AL., supra note 27, at 1
(listing problem formulation and specification, design, implementation, testing, and documenta
tion as programming steps) with John M. Conley & David W. Peterson, The Role of Experts in
Software Infringement Cases, 22 GA. L. REv. 425, 442-49 (1988) (listing conception, architec
ture design, user language design, modular structure, subroutine structure, algorithms, coding,
and formatting as the stages in programming).

43. Although commonly used by programmers, flowcharts and pseudo-code are omitted from
this Note's proposed parts because each mixes several levels of abstraction. Flowcharts are dia
grams that may simultaneously represent multiple levels of abstraction, e.g., algorithms, source
code, and system architecture. See BARRON'S, supra note 28, at 136, 137 (providing a definition
and sample flowchart). Pseudo-code, which is source code interspersed with English, is likewise
unsuitable as a refinement of the abstractions test because it mixes source code and abstract data
types (ADTs). (For a discussion of ADTs see infra section I.B.3). See AHO ET AL., supra note
27, at 2, 7 (providing a definition of pseudo-language and several demonstrations of how pseudo
language must be refined into pure code); see also supra text accompanying notes 32-35 (discuss
ing source code); infra text accompanying notes 49-52 (discussing ADTs).

44. See, e.g., AHO ET AL., supra note 27, at 2, 11, 12-13 (defining algorithm, ADT, and data
structure); OGILVIE, supra note 36, at 26, 329-39, 356-87 (describing a "Functional Module Dia
gram" that corresponds to system architecture, defining ADTs, providing data structure design
guidelines, and discussing source code "porting" to hardware that requires different object code).

45. See, e.g., U.C.C. § 1-102(2) (1987) ("Underlying purposes and policies of this Act are ...
to permit the continued expansion of commercial practices through custom, usage and agreement
of the parties . . . • ").

534 Michigan Law Review [Vol. 91:526

real property law reflects pragmatic aspects of land ownership.46

Moreover, readers familiar with programming should be able to corre
late their own training and experience with the technical terms used in
this Note. Although the concepts presented below are widely recog
nized in the programming community, individual programmers may
have encountered some of these ideas under different names.

1. Level One: Main Purpose

A program's main purpose or function is what the program is in
tended to do. For instance, a database manager's purpose is to manip
ulate data. However, definitions of a program's purpose may be made
increasingly specific: the purpose of a database manager is also to fa
cilitate adding, removing, modifying, reading, grouping, and summa
rizing individual pieces of information in a large collection of data.
These purposes, or those of any other program, could in tum be de
scribed in ever greater detail. But in this Note a program's main pur
pose is whatever the program does, described as specifically as possible
without reference to technical aspects of the program - that is, with
out reference to the other levels of generality described below.

2. Level Two: System Architecture

While main purpose describes what a program does, a system ar
chitecture begins to describe how the program operates. The system
architecture describes the program in terms of various modules41 and
their interconnections. Programmers organize software into modules
to facilitate program creation, correction, and enhancement. Each
module performs a significant portion of the program's main purpose
and is eventually implemented as a distinct section of the source code.
In a hypothetical database manager, three main modules might handle
the user interface, data editing functions, and file management, respec
tively. The user interface module might in tum contain a module to
handle screen display, one to read commands, and one to print re
ports. The system architecture is often irrelevant to the user. For ex
ample, a user would neither know nor care whether the print module
lies within the user interface module or resides outside as a fourth
main module.

46. For instance, the purpose of prescriptive easements and adverse possession is to make
"paper" rights conform to actual practice by amending those rights. See generally OLIN L.
BROWDER ET AL., BASIC PROPERTY LAW 557-68 (5th ed. 1989).

47. As used in this Note, module is not synonymous with subroutine. Subroutines are part of
the source code and hence are less abstract than modules, which are part of the system architec
ture. More simply, modules typically contain many subroutines. See OGILVIE, supra note 36, at
329-30 (explaining that modules may communicate by calling each other's subroutines); infra
note 74 (listing source code of a subroutine). But see Whelan Assocs., Inc. v. Jaslow Dental Lab.,
Inc., 797 F.2d 1222, 1230 n.15 (3d Cir. 1986) (treating modules and subroutines both as "discrete
parts of programs with readily identifiable tasks," a description that applies equally well to virtu
ally every program part), cert. denied, 479 U.S. 1031 (1987).

December 1992) Note - Computer Program Parts 535

A program's system architecture specifies three kinds of connec
tion between modules: nesting, control :flow, and data :flow.48 Module
nesting is one way that programmers break large jobs into smaller
ones; module B is nested inside module A when B performs part of A's
task. In the hypothetical database manager above, the screen display
module is nested inside the user interface module. Control :flow de
scribes the order in which the modules run. In the database manager,
control flows from the command module, which reads commands
from a keyboard or other input device, to the other modules that per
form the tasks specified by the user, such as printing a report or total
ing a column of numbers. Data :flow describes the movement of
information between modules. In order to open a file, the database
manager's user interface module must pass data in the form of the
desired file's name to the file management module. Although these
connections might seem useful in mapping different levels of abstrac
tion, this Note argues against such use; connections may help delineate
modules, but all modules lie within the system architecture level of
abstraction.

3. Level Three: Abstract Data Types

The modules that comprise the system architecture contain ab
stract data types (ADTs). Every ADT is jointly defined by two com
ponents. First, ADTs contain operations, which define the set of
actions one may perform using the ADT. Familiar operations on a
database include adding a new piece of data and printing a summary
of the current data. Second, ADTs also contain data types, 49 which
define the kind of item the ADT's operations act upon. In a database
of law students, so student records might be one data type, and class
enrollment records could be another.

An ADT modeling a checking account provides another example.
The data type might be a dollar figure representing the current bal
ance, while the permitted operations might include depositing funds,
withdrawing funds, computing interest, and reading the current bal
ance. Alternatively, a more elaborate ADT, which keeps track of
where the money goes, might be preferred. Such an expanded ADT
might include four operations - depositing funds, writing a check,

48. Examples of modules that are familiar to programmers include packages in the program
ming language Ada, BooCH, supra note 39, at 29; modules in Modula-2, JOHN W.L. OGILVIE,
MODULA-2 PROGRAMMING 73-97 (1985); and classes in C++, BJARNE STROUSTRUP, THE
C++ PROGRAMMING LANGUAGE 143-80 (2d ed. 1991).

49. This term is confusing because it requires one to distinguish between an abstract data
type and an abstract data type's data type. Its use, however, is well established. See, e.g., AHO
ET AL., supra note 27, at 11; PARSAYE ET AL., supra note 31, at 105. To minimize confusion, this
Note denotes abstract data type by ADT, so one need only distinguish between an ADT and an
ADT's data type.

SO. See supra note 31.

536 Michigan Law Review [Vol. 91:526

computing interest, and reading the balance - on two types of data:
individual check amounts and the current balance.

ADTs in commercial computer programs are generally more com
plex than the ADTs just described, si and often have a stronger mathe
matical flavor. s2 But the motivation behind every ADT is to associate
a given data type with the operations that are useful in manipulating
that type. The resulting distinction between actions - ADT opera
tions - and things acted upon - ADT data types - reappears in the
next level of abstraction, as a distinction between algorithms and data
structures.

4. Level Four: Algorithms and Data Structures

Under this Note's analysis, algorithms and data structures jointly
occupy the level of abstraction below ADTs. Algorithms and data
structures are more specific versions of ADT operations and data
types, respectively. ADT operations are brought closer to realization
as functional source code by specifying algorithms that accomplish the
desired operations. Similarly, ADT data types are more precisely
specified through descriptions employing data structures.

An algorithm is a series of steps that accomplishes a particular
ADT operation. s3 While an ADT operation merely identifies a de
sired result, an algorithm specifies every step necessary to accomplish
that result. s4 Algorithms must contain sufficient detail to permit their
implementation in source code once a programming language and
computer hardware are chosen. ss The operation "determine whether
a number is divisible by nine" may be performed by the following al-

51. See, e.g., OGILVIE, supra note 36, at 249-91 (describing a working version of a pattem
matching ADT).

52. ADTs may be described mathematically, but are most easily understood through exam
ples like the following. A character queue ADT has two operators, enqueue() and dequeue(),
that operate on A, B, C, and other characters. If an empty queue looks like this I) , the same
queue becomes I A) after enqueue(A). If this operation is followed by enqueue(B) and en
queue(C) in that order, the queue becomes I CBA). If a dequeue() operation follows, A is de
queued, and the queue becomes I CB). In short, the enqueue() operator places data into the
queue at one end, and the dequeue() operator retrieves the data from the other end of the queue
in the same order.

53. Cf. AHO ET AL., supra note 27, at 2 ("[A]n algorithm •.. is a finite sequence of instruc
tions, each of which has a clear meaning and can be performed with a finite amount of effort In a
finite length of time."); OGILVIE, supra note 48, at 263 ("An algorithm is a sequence of steps
which, if followed, will produce a solution to a given problem.").

54. Although actual use of an algorithm may depend on the availability of certain program
ming language features, any valid algorithm can be completely specified using English and other
representations that are independent of any programming language. See, e.g., OGILVIE, supra
note 36, at 250-52 (describing an algorithm in pseudo-code).

55. The complexity of algorithm specifications varies. An algorithm for updating a checking
account balance may be trivial, but many ADT operations involve more complex algorithms. An
algorithm must provide sufficient detail to permit its complete and correct implementation in
source code. The algorithm must not require infinite time, not require infinite space, accomplish
the desired result, and cause no unwanted side-effects. BARRON'S, supra note 28, at 6-7. Algo
rithms may also be subject to additional constraints that promote efficient use of computer hard-

December 1992] Note - Computer Program Parts 537

gorithm: "Add the number's digits, then add the digits of the result,
then add the digits of that result, and so on, until a single digit re
mains. The original number is a multiple of 9 if and only if the final
single digit is 9."56 Different algorithms may solve the same problem,
as this second algorithm,57 which also tests divisibility by nine, illus
trates: "Keep subtracting 9 from the number until the result is either
zero or negative. The original number is divisible by nine if and only if
the final result is zero."

Just as algorithms describe specific steps that perform ADT opera
tions, data structures provide specific representations of ADT data
types. Together with algorithms, data structures are among the most
widely recognized and studied of the computer program parts dis
cussed in this Note.58 Several concepts introduced in the upcoming
description of data structures will be unfamiliar to non programmers, 59

but part definitions that lack sufficient engineering detail quickly de
generate into vague notions that vary widely from case to case. 60

Proper understanding and identification of data structures therefore
requires discussion of the following six data structure components:
basic data type, value, variable, array, record, and pointer.

A basic data type describes a set of values. Zero, 1, and -1 are
integer 61 values. Other basic data types include character and.floating
point. "A," "B," and "C" are character values. The numbers 0.0625

ware and programmer time. See, e.g., AHO ET AL., supra note 27, at 264, 270; OGILVIE, supra
note 36, at 11.

56. To see whether 657 is a multiple of 9, first add 6 + 5 + 7 to get 18. Eighteen has more
than one digit, so add its digits 1 + 8 = 9. The final single digit is 9, so the original value, 657, is
a multiple of 9. (In fact, 657 equals 9 times 73.)

57. Although these particular algorithms determine divisibility and so make sense only for
numbers, many algorithms work on a wide variety of data types. See, e.g., BRIAN W.
KERNIGHAN & DENNIS M. RITCHIE, THE C PROGRAMMING LANGUAGE 114-17 (1st ed. 1978)
(describing a routine that sorts either character strings or numbers as implemented and could be
generalized even further).

58. Data structures and algorithms are so central to software that Niklaus Wirth's well
known work on computer programming is entitled ALGORITHMS + DATA STRUCTURES =
PROGRAMS (1976). Other widely used works that discuss data structures and algorithms include
AHO ET AL., supra note 27, and DONALD E. KNUTH, THE ART OF COMPUTER PROGRAMMING
(2d ed. 1973).

59. Algorithms and data structures may be equally complex in practice, but algorithms are
more familiar and hence require less description here. Instructions for anything from map read
ing to bicycle assembly may be described in terms that are quite similar to software algorithms.
The closest nontechnical analogy to a data structure, however, is a "fill-in-the-blank" form; such
forms only hint at the true flexibility and diversity of computer program data structures.

60. As discussed in sections l.C and II.A, infra, a major failing of present software substan
tial similarity tests is their vagueness regarding data structures and other fundamental program
ming concepts.

61. The complete (infinite) set of mathematical integers is not actually available on any com
puter. See, e.g., KERNIGHAN & RITCHIE, supra note 57, at 182 (listing the range of integer
values available on different types of computer hardware). However, the differences between
mathematical integers and computer integer data types are not discussed here, as they are not
critical to an understanding of data structures. Differences between character and floating point
data types and their idealized counterparts are likewise ignored.

538 Michigan Law Review [Vol. 91:526

and 1/J are floating point values. Different programming languages
support different basic data types, but integer, floating point, and char
acter types are widely available.

A variable is a named storage location that holds values of some
particular data type. One might speak of an integer variable named
"Total" that presently holds the integer value 33. 62

An array is a row of some predetermined number of variables of a
given data type. The entire array has one name. Each individual vari
able in the array, or array element, is referred to by the array's name
and the variable's relative position (its index) within the array. Sup
pose the array of ten characters shown in Figure 1 is named Key_
Word; the current value of Key_Word[O] is "J," the value of Key_
Word[l] is "U," the value of Key_Word[2] is "S," and so on. Vari
ous mechanisms permit software to ignore array elements not cur
rently needed, such as Key_Word[7], Key_Word[S], and Key_
Word[9]. The value of Key-Word as a whole is "JUSTICE." The
variables that constitute an array may also themselves be arrays63 or
one of the other data types described in this section, as long as every
element of the array is of the same type.

FIGURE 1
An Array of Character Variables.

0 1 2 3 4 5 6 7 8 9

A record, unlike an array, may group together variables of different
basic data types. One might join two integers named Year and Day

62. Basic data types, variables, and values are concepts independent of any given program
ming language. In practice, however, programmers often use fragments of source code as specific
illustrations of these general concepts. For instance, the first line of source code in the program
ming language C below sets aside a place for storing integer values by creating a variable named
Total; the second line gives Total the value 33:

int Total;
Total= 33;

The corresponding source code in the Pascal programming language is
var Total integer;
Total= 33;

Corresponding source code could also be provided in many other languages because the concept
"an integer variable named Total that has the value 33" is independent of any programming
language.

63. One might construct an array of television listings by using two indexes, where the first
index indicates the broadcast time, the second index is the television channel, and the array
values are the names of television shows and movies. In such an array, one might find that the
current value of Television_Listings[130, 3) is "Ben Hur." The array can be deconstituted
further into variables of the basic data type character, in which case the current value of Televi
sion_Listings[130, 3, OJ is "B," Television_Listings[130, 3, 1) is "e," Television_List
ings[130, 3, 2) is "n," and so forth.

December 1992] Note - Computer Program Parts 539

with an array of characters named Month to create a record named
CurrenLDate; CurrenLDate is then said to have three fields. The
fields of a record are referred to by record name and field name. If an
arrow (+-) denotes assignment, one could assign a date value to the
record variable CurrenLDate by assigning values to CurrenLDate's
fields as follows:

Current_Date.Year +- 1992
Current_Date.Month -<-- "August"
Current_Date.Day +- 13

A pointer is a connection between two discrete records. Pointers
are helpful when a program must manipulate a different number of
records each time it runs. Suppose a database program must input
widely varying numbers of student records and sort them alphabeti
cally. Any array of record variables will usually be either too large or
too small because the number of records being read changes but the
number of array elements does not. 64 By using pointers and setting
aside space to hold each record's values just before it is read instead of
allocating a fixed amount of space ahead of time in an array, the pro
gram acquires only as much storage space as it actually needs.

This understanding of the six data structure components permits
the formulation of a useful definition of data structures. A data struc
ture consists of one or more variables of the basic data types, which
are organized in some specified combination of arrays, records, and
pointers. A single variable, such as an integer variable Tota]__])ue, is
thus the simplest data structure. CurrenLDate is a data structure
consisting of one record with two integer fields named Year and Day
and one character array field named Month. Data values are irrele
vant to data structures in the sense that the values stored in a data
structure may change without altering the rules that govern the struc
ture's organization. Tota]__])ue is the same data structure no matter
which integer value it contains, and CurrenLDate is the same data
structure no matter what values are stored in its fields.

Relatively simple data structures, illustrated by Tota]__])ue and
CurrenLDate, are correspondingly easy to identify in a given pro
gram, and to compare in two programs. Assessing the alleged equiva
lence of more complex data structures may be much harder.
Complicated data structures are built by combining simpler data
structures, which in turn are built from basic data type variables.65

64. Suppose the program runs three times, first sorting 20 student records alphabetically,
then sorting 4000 records, and finally sorting 300 records. If the records are stored in an array
having only 20 elements, or even 300 elements, the program will not succeed when faced with
4000 records. But if the array is large enough to hold 4000 records, much of the space dedicated
to the array is wasted when only 300 or 20 records are sorted. Arrays are therefore not suitable
when storage space is scarce and the number of elements actually needed varies widely.

65. See, e.g .. AHO ET AL., supra note 27, at 13-14; KERNIGHAN & RITCHIE, supra note 57, at
119-34.

540 Michigan Law Review [Vol. 91:526

One may create an array of records, or a record whose fields are ar
rays, or considerably more complex structures. The collection of all
functionally equivalent data structures in any actual situation may be
quite large and diverse. Accordingly, an ADT data type may often be
represented by more than one data structure, 66 just as various algo
rithms may be available to perform an ADT operation.

In summary, recall that ADTs consist of operations and data
types; operations denote actions, and data types denote the type of
item acted upon. An algorithm is a sequence of steps, not necessarily
unique, that performs an ADT operation; a data structure is one possi
ble representation of an ADT data type. Each data structure is a col
lection of basic data type variables combined using arrays, records,
and pointers. Although data structures and algorithms are more spe
cific than ADTs and may even depend on certain programming lan
guage features for use, they are independent of any specific
programming language or piece of literal source code.

5. Levels Five and Six: Source Code and Object Code

Source code67 is the literal text of a program's instructions, written
in one or more programming languages. Source code can be read by
programmers, but to run a program on a computer the program's
source code must be translated into object code. 68 Object code is a
string of ones and zeroes tailored to turn on and off the various elec
tronic switches in a particular kind of computer, thereby manipulating
the meanings associated by programmers with different switch
settings.

Consideration of source code and object code as levels of abstrac
tion for copyright purposes raises two definitional issues. First, it may
or may not be appropriate to distinguish source code from object code.
Second, it may or may not be appropriate to distinguish either type of
code from the program as a whole. Source code and object code both
belong in the set of abstraction part definitions only if source code and
object code are distinct from each other and distinct as well from the
levels of abstraction already described.

In response to the first issue, object code clearly lies at a lower level
of abstraction than source code, because object code must contain sig
nificant detail not found in the corresponding source code in order to
control a given computer. 69 Resolution of the second issue, however,

66. See, e.g., OGILVIE, supra note 36, at 360-65 (explaining that linked lists and arrays are
somewhat interchangeable representations of an ADT list data type).

67. See supra notes 32-33 and accompanying text.
68. See supra notes 34-35 and accompanying text.
69. Translators which create object code from source code add specificity most obviously by

taking hardware differences into account, but they may also "fill in the blanks" left by source
code in many other ways. Translators may decide when to retain a value in one of a few very
rapidly accessible locations (CPU registers) instead of storing it in one of the more numerous but

December 1992] Note - Computer Program Parts 541

requires reconsideration of the abstraction parts already described.
Main purpose, system architecture, ADTs, algorithms, and data struc
tures are discussed above as if they were tangible, and to professional
programmers, they are indeed no more ethereal than a character is to
a novelist. In the courtroom, however, these program parts exist only
as expert opinions mined from the source code and object code. 70 A
program's entire range of abstraction is embedded in its code in
roughly the same way a novel's characters and plot are embedded in
its text. 71 Therefore, care must be taken to avoid confusing code as
the embodiment of parts at every level of abstraction with code as a
level of abstraction in its own right.72 This Note denotes code-as-em
bodiment by program or software, and code-as-a-level by code. A pro
gram consists of a main purpose, a system architecture, ADTs,
algorithms, data structures, and code; code may therefore be defined
as "the portion of a program that does not overlap the program's main
purpose, system architecture, ADTs, algorithms, or data structures."
Every level of abstraction but code is clearly bounded under the defini
tions provided above, and these other levels taken together do not ex
haust the contents of a program. Code may therefore be effectively
defined as a discrete program part through a process of elimination.

Programmers, then, see programs as consisting of parts lying at six

less rapidly accessible locations (RAM). They may also determine what value (if any) to give
uninitialized variables; whether to check array bounds at run-time; the order in which to evaluate
function and procedure actual parameters; and the order in which to evaluate operands and
subexpressions. See generally ALFRED v. AHO ET AL., COMPILERS: PRINCIPLES, TECHNIQUES
AND TOOLS (1986).

70. See, e.g., Q-Co Indus., Inc. v. Hoffman, 625 F. Supp. 608, 610 (S.D.N.Y. 1985) ("The
challenge to counsel to make comprehensible for the court the esoterica of bytes and modules is
daunting."); Conley & Peterson, supra note 42, at 438, 442 (arguing that experts play a critical
role by educating the court about the phases of top-down programming); see also infra notes 128-
29, 177, 207.

71. The analogy between abstraction parts embedded in a program's code and various novel
parts embedded in a novel's text is not exact because abstraction parts are often shaped by utilita
rian concerns for compatibility and efficiency, whereas novels are guided more often by purely
aesthetic concerns. See generally NIMMER, supra note 13, §§ 13.03[F][2], 13.03[F][3].

72. The dual nature of code as an embodiment of all program parts, which is nonetheless a
part in its own right, recalls the final lines of a Yeats poem:

0 chestnut-tree, great-rooted blossomer,
Are you the leaf, the blossom or the bole?
0 body swayed to music, 0 brightening glance,
How can we know the dancer from the dance?

WILLIAM BUTLER YEATS, Among School Children, in THE COLLECTED POEMS OF W.B. YEATS
212, 214 (definitive ed. 1956).

Just as the code for an entire program embodies every level of abstraction, code for a particu
lar subroutine within any program generally embodies at least code, algorithm, and data struc
ture abstraction parts, and may embody more abstract parts as well. Cf. Computer Assocs. Intl.,
Inc. v. Altai, Inc., 23 U.S.P.Q.2d (BNA) 1241, 1252 (2d Cir. 1992) (noting that "each subroutine
is itself a program"). One court may refer to a subroutine to exemplify some very specific aspect
of a program, see infra text accompanying note 107, while another court uses the same term to
refer to much more general program components, see supra note 47 (noting that Whelan treats
module and subroutine as synonyms). Subroutine is therefore too broad to serve as a useful
program abstraction part. But cf. infra note 139.

542 Michigan Law Review [Vol. 91:526

levels of abstraction: (1) main purpose; (2) system architecture; (3)
ADTs; (4) algorithms and data structures; (5) source code; and (6)
object code. 73 These levels arise naturally from the inherent structure
of software. 74 As the next section reveals, however, legal definitions of

73. Application of the abstractions test to copyright questions involving a program's user
interface, see supra note 38, requires analysis beyond this Note's scope, but a brief discussion may
help clarify the limits of the present proposal. A program's user interface is often a program in
its own right, not merely in terms of the effort expended or the resulting complexity, but also in
terms of the range of abstraction spanned. A user interface has a main purpose, a system archi·
tecture, and every other level of abstraction proposed in this Note. However, additional part
definitions are needed to tailor the abstractions test for use in comparing user interfaces. A
scheme somewhat like the following might be found appropriate if studied at greater length: (I)
main purpose; (2) choice of interface hardware, e.g., mouse versus light pen, color monitor versus
monochrome; (3) software system architecture; (4) ADTs; (5) algorithms and data structures; (6)
rules promoting uniformity across multipl~ programs, e.g., placing certain menu options in every
program, or assigning the same task to the same key sequence in every program; (7) order and
presentation, e.g., menu contents and their order, default sizes and colors for windows, font
choices, and function key assignments; (8) source code; and (9) object code. There is no manage·
able and complete set of stable, nonoverlapping user interface abstraction parts that defers appro·
priately to existing law and accepted programming concepts. See, e.g., Computer Assocs. Intl.,
Inc. v. Altai, Inc., 775 F. Supp. 544, 560 (E.D.N.Y. 1991) (listing object code, source code,
parameter lists, services required, and general outline as abstraction parts of an interface between
two programs), affd., 23 U.S.P.Q.2d (BNA) 1241 (2d Cir. 1992); Lotus Dev. Corp. v. Paperback
Software Intl., 740 F. Supp. 37, 63-68 (D. Mass. 1990) (examining user interface elements pro
posed by plaintiff, including menus, menu structure and organization, "long prompts," screens
on which long prompts appear, function key assignments, and the macro commands and Jan·
guage); Manufacturer's Technologies, Inc. v. Cams, Inc., 706 F. Supp. 984, 994-95 (D. Conn.
1989) (discussing copyrightability of "external flow and sequencing" of display screens, screen
formatting style, "internal method of navigation" within a screen, and method of identifying the
operation or department being utilized); Telemarketing Resources v. Symantec Corp., 1990
Copyright L. Dec. (CCH) 11 26,514 (N.D. Cal. Sept. 6, 1989) (discussing similarity of menu
screen options, use of pull down windows and menu bar, presence of an editing screen, and
default color selections), modified sub nom. Brown Bag Software v. Symantec Corp., 960 F.2d
1465 (9th Cir. 1992), cert. denied, 61 U.S.L.W. 3261 (U.S. Oct. 5, 1992); Pearl Sys., Inc. v.
Competition Elecs., Inc., 8 U.S.P.Q.2d (BNA) 1520, 1523 (S.D. Fla. 1988) (discussing software
differences dictated by user interface hardware); Digital Communications Assocs., Inc. v. Soft·
klone Distrib. Corp., 659 F. Supp. 449, 456 (N.D. Ga. 1987) (holding that screen displays are
distinct from "the program's source code, object code, sequence, organization or structure" for
infringement analysis purposes); Broderbund Software, Inc. v. Unison World, Inc., 648 F. Supp.
1127, 1134, 1137 (N.D. Cal. 1986) (holding that "structure, sequence, and layout" of program's
audiovisual displays "were dictated primarily by artistic and aesthetic considerations," and that
the screens, sequence of screens, choices presented, screen layout, and method of feedback in the
two programs were all substantially similar).

74. As a concrete illustration ohop-down programming and the relationship between ADTs,
data structures, algorithms, and source code, consider the following transformation of the queue
ADT described in note 52, supra, into working source code. A programmer first chooses data
structures to represent queues and queue elements. The elements in this particular queue are
characters. Many programming languages provide a character data type, so the main question is
what data structure should represent a queue. Arrays are less flexible than linked lists (a data
structure familiar to programmers) but are also simpler, so this time the programmer decides to
keep the queue in an array. The programmer must also choose appropriate enqueueing and
dequeueing algorithms. The algorithms for subroutines enqueue() and dequeue() follow fairly
quickly from the choice of an array as the queue data structure. The gist of each algorithm is to
keep track of the queue's first and last elements, which are stored at different places in the array
as the queue grows and shrinks. Next, the programmer must write source code describing the
queue data structure and the algorithms in some programming language. In the programming
language C the data structure source code might look like this:

December 1992] Note - Computer Program Parts 543

program abstraction parts differ substantially from programmers'
definitions.

C. Software Abstraction Parts and the Judiciary

Analysis of the abstraction part definitions employed by judges in
software copyright infringement cases begins with the definitions'
somewhat muddled legal context. Because abstraction part definitions
spring from substantial similarity tests, section I.C.l first summarizes
in broad terms the importance of substantial similarity to copyright
infringement in general, and to computer program part definitions in
particular. The section also briefly examines several overlapping and
interacting copyright concepts and doctrines as they relate to substan
tial similarity in software infringement cases: (1) the idea-expression
dichotomy; (2) Learned Hand's abstractions test; (3) judicial defini
tions of computer program parts by abstraction or otherwise; and (4)
various traditional copyright doctrines. Section I.C.2 dissects each of
the prevailing software substantial similarity tests to reveal their ab
straction part definitions, both implicit and explicit, and summarizes
the merits of those definitions. This section concludes that the major
existing substantial similarity tests fail to provide a coherent frame
work of computer program part definitions, but do shed light on what
such a framework should contain.

#define QUEUE_SIZE 50
char queue[QUEUE-8IZE];
int queue_first = -1, /* array indexes locating first and last elements *I

queue_last = -1;
The programmer must still make choices about error handling, array initialization, the

number of different queue arrays in existence, and other issues to write a source code description
of the enqueue() algorithm. In C, the enqueue() source code might look like this:

#define QUEUE_STATUS_OK 0
#define QUEUE_ALREADY_FULL 1
int enqueue(new)

char new;

int queue_next;
if (queue_ first = = -1) { /* adding first element to empty queue *I

queue[O] = new;

I

queue_first = queue_last = O;
retum(QUEUE_STATUS_OK);

queue_next = (queue_last + 1) % QUEUE_SIZE;
if (queue_ first = = queue_ next) {

return (QUEUE_ALREADY_FULL);
I
queue[queue_next] = new;
queue_last = queue_next;
retum(QUEUE_STATUS_OK);

J /* enqueue *I
This queue source code could now be incorporated in source code for a complete program,

and the program could in tum be translated into object code tailored to the desired computer
hardware. Only then could a programmer run the program to see whether the queue actually
behaves as desired.

544 Michigan Law Review [Vol. 91:526

1. Substantial Similarity and Related Analyses

To prevail, a copyright infringement plaintiff must prove both
copyright ownership and copying by the defendant. 75 As eyewitness
testimony of copying is rare, 76 plaintiffs often demonstrate copying
through "circumstantial evidence of access to the copyrighted work
and substantial similarity between the copyrighted work . . . and the
allegedly infringing work 77 However, access is often conceded or
easily proven, 78 so "[i]n most cases the 'substantial similarity' inquiry
presents the heart of a copyright infringement case "79

Copyright law's fundamental distinction between idea and expres
sion helps shape tests for substantial similarity. Because ideas80 are
not protected by copyright, 8 I similarity between ideas is irrelevant to
proof of infringement. 82 In theory, substantial similarity tests com
pare only the expression in two software programs. 83 However, the

75. Whelan Assocs., Inc. v. Jaslow Dental Lab., Inc., 797 F.2d 1222, 1231 (3d Cir. 1986),
cert. denied, 479 U.S. 1031 (1987).

76. Whelan, 797 F.2d at 1231.

77. Telemarketing Resources v. Symantec Corp., 1990 Copyright L. Dec. (CCH) ~ 26,514, at
23,086 (N.D. Cal. Sept. 6, 1989), modified sub nom. Brown Bag Software v. Symantec Corp., 960
F.2d 1465 (9th Cir. 1992), cert. denied, 61 U.S.L.W. 3261 (U.S. Oct. 5, 1992); see also Roth
Greeting Cards v. United Card Co., 429 F.2d 1106, 1110 (9th Cir. 1970); NIMMER, supra note
13, § 13.0l[B].

78. See, e.g., Whelan, 797 F.2d at 1232 (noting defendant's access was uncontested, as the
program was used in his lab, and as he had acted as a sales representative for plaintifl); Soft
Computer Consultants, Inc. v. Lalehzarzadeh, 1989 Copyright L. Dec. (CCH) ~ 26,403, at
22,538-39 (E.D.N.Y. Aug. 25, 1988) (noting that defendants were former employees ofplaintifl);
Broderbund Software, Inc. v. Unison World, Inc., 648 F. Supp. 1127, 1136 (N.D. Cal. 1986)
(noting that plaintiff gave defendant "several commercially-available copies" of the program);
E.F. Johnson Co. v. Uniden Corp. of Am., 623 F. Supp. 1485, 1492 (D. Minn. 1985) (noting that
defendant's engineers admitted analyzing code they "dumped" from plaintiffs ROM); SAS Inst.,
Inc. v. S & H Computer Sys., Inc., 605 F. Supp. 816, 821 (M.D. Tenn. 1985) (noting that defend
ant received the complete object code and roughly half of the source code under a license agree
ment); NIMMER, supra note 13, § 13.02.

79. Computer Assocs. Intl., Inc. v. Altai, Inc., 775 F. Supp. 544, 558 (E.D.N.Y. 1991), affd.,
23 U.S.P.Q.2d (BNA) 1241 (2d Cir. 1992).

80. There is vigorous debate over what constitutes an idea in software, but copyright cases
uniformly treat a program's purpose or function as an unprotectable idea. See, e.g., Johnson
Controls, Inc. v. Phoenix Control Sys., Inc., 886 F.2d 1173, 1175 (9th Cir. 1989); Telemarketing
Resources, 1990 Copyright L. Dec. (CCH) ~ 26,514, at 23,087; Pearl Sys., Inc. v. Competition
Elecs., Inc., 8 U.S.P.Q.2d (BNA) 1520, 1524-25 (S.D. Fla. 1988); Broderbund, 648 F. Supp. at
1134-37.

81. 17 U.S.C. § 102(b) (1988); Mazer v. Stein, 347 U.S. 201, 217-18 (1954).
82. A software infringement defendant often argues that while two programs' ideas may be

similar, their expression of those ideas is not. See, e.g., Data East USA, Inc., v. Epyx, Inc., 862
F.2d 204, 207-208 (9th Cir. 1988); Lotus Dev. Corp. v. Paperback Software Intl., 740 F. Supp.
37, 65-67 (D. Mass. 1990); Digital Communications Assocs., Inc. v. Softklone Distrib. Corp., 659
F. Supp. 449, 458-59 (N.D. Ga. 1987).

83. See Q-Co Indus., Inc. v. Hoffman, 625 F. Supp. 608, 615 (S.D.N.Y. 1985). But see Apple
Computer, Inc. v. Microsoft Corp., 779 F. Supp. 133, 136 (N.D. Cal. 1991) (concluding that
proper protection of innovative selections or arrangements under the look and feel test, see infra
note 156, requires consideration of unprotectable parts during substantial similarity analysis).
See generally NIMMER, supra note 13, § 13.03[B][2] (discussing similarity of unprotected
matters).

December 1992] Note - Computer Program Parts 545

Copyright Act does not define idea or expression, 84 and discordant
substantial similarity tests reflect judicial disagreement over where the
line between idea and expression should be drawn. 85

Although Learned Hand's abstractions test86 does not specify
where the idea-expression line lies, 87 refinements of the test that define
appropriate levels of abstraction may help courts properly draw the
line during a substantial similarity analysis. Three of the four prevail
ing substantial similarity tests do not incorporate the abstractions
test. 88 Two of these tests, however, have been sharply criticized as
vague or overly broad, 89 and thus could benefit from the graduated
distinctions made possible by the Learned Hand test. 9° Furthermore,
the recently adopted successive filtering test, which is the most com
prehensive of the four tests, does incorporate the abstractions test. 91

This Note argues that established substantial similarity tests fail to dis
tinguish between levels of abstraction merely because Learned Hand's

84. See 17 U.S.C. § 101; John S. Wiley Jr., Copyright at the School of Patent, 58 U. CHI. L.
REV. 119, 119 (1991).

85. See, e.g., infra notes 200-04 and accompanying text.

86. See supra notes 22-25 and accompanying text.

87. Learned Hand wrote of the line between expression and idea that "[n]obody has ever
been able to fix that boundary, and nobody ever can." Nichols v. Universal Pictures Corp., 45
F.2d 119, 121 (2d Cir. 1930), cert. denied, 282 U.S. 902 (1931). Judge Hand echoed this view in
a later opinion: "Obviously, no principle can be stated as to when an imitator has gone beyond
copying the 'idea,' and has borrowed its 'expression.' Decisions must therefore inevitably be ad
hoc." Peter Pan Fabrics, Inc. v. Martin Weiner Corp., 274 F.2d 487, 489 (2d Cir. 1960). If
Judge Hand meant that agreement on proper placement of the line between idea and expression
is unachievable, the current chaotic state of software copyright law suggests he was correct. See
Samuelson, supra note 2, at 62-66 (discussing policy arguments for "minimalist" and "maximal
ist" views on software copyright protection). However, even if complete agreement is ultimately
impossible to achieve, Judge Hand's abstractions test may still be tailored to at least narrow the
range of disagreement in the software copyright realm.

88. See Whelan Assocs., Inc. v. Jaslow Dental Lab., Inc., 797 F.2d 1222, 1236 (3d Cir. 1986)
(applying SSO test, see infra text accompanying notes 135-50), cert. denied, 479 U.S. 1031 (1987);
Broderbund Software, Inc. v. Unison World, Inc., 648 F. Supp. 1127, 1134, 1137 (N.D. Cal.
1986) (applying total concept and feel test, see infra text accompanying notes 151-62); E.F. John
son Co. v. Uniden Corp. of Am., 623 F. Supp. 1485, 1493 (D. Minn. 1985) (applying iterative
test, see infra text accompanying notes 119-34). There is no indication that courts employing the
SSO, total concept and feel, or iterative substantial similarity tests deliberately rejected the ab
stractions test as inherently unusable. Rather, the abstractions test may have been deemed too
general in its current form to be of use in software cases. See David Nimmer et al., A Structured
Approach to Analyzing the Substantial Similarity of Computer Software in Copyright Infringement
Cases, 20 ARIZ. ST. L.J. 625, 656 (1988).

89. The tests and the criticisms they have prompted are discussed at length below. See infra
notes 135-50 and accompanying text (SSO test); infra notes 151-62 and accompanying text (total
concept and feel test).

90. "The pitfalls of abandoning the abstractions test emerge in sharp focus from the Third
Circuit's opinion in Whelan Associates v. Jaslow Dental Laboratory." NIMMER, supra note 13,
§ 13.03[F], at 13-78.33 (footnote omitted); see also infra text accompanying notes 135-42 (dis
cussing Whelan).

91. See infra notes 163-73 and accompanying text. At least one court has also incorporated
the abstractions test into its analysis of copyrightability. See Lotus Dev. Corp. v. Paperback
Software Intl., 740 F. Supp. 37, 60 (D. Mass. 1990).

546 Michigan Law Review [Vol. 91:526

test has never been appropriately tailored to software, not because
there is any benefit in ignoring abstraction parts.

Although this Note focuses on abstraction parts, other parts also
arise during substantial similarity analysis. Certain program elements
serve doctrinal or evidentiary roles in assessing misappropriation. A
brief discussion of these elements places abstraction parts in context
and illustrates the limited nature of this Note's proposed changes. Re
fining abstraction part definitions will not fundamentally alter the use
of doctrinal or evidentiary elements in substantial similarity tests.

Doctrinal program elements are implicitly defined by many tradi
tional copyright doctrines that distinguish between protectable and
unprotectable material.92 For instance, the copyright statute only pro
tects "original" works.93 This statutory originality requirement di
vides programs into an unprotectable portion that does not owe its
origin to the author, and a potentially protectable portion that does. 94
A single doctrinally defined portion of a program may cut across sev
eral levels of abstraction. Suppose a database program incorporates
public domain code for sorting names alphabetically. This doctrinally
delimited section of the program includes several abstraction parts,
namely code that implements an algorithm for performing a sorting
operation on values of a certain ADT data type. Recognizing abstrac
tion parts under this Note's proposal will not hinder the application of
public domain and other traditional doctrines; only the idea-expres
sion doctrine will be directly affected, and even there the intended re
sult is to clarify rather than to change substantively the
characterization of program parts under the doctrine.

Evidentiary elements are defined when courts treat particular
pieces of source code as evidence of verbatim or nearly verbatim copy
ing. 95 Programmers develop various distinctive stylistic preferences

92. The scenes a faire doctrine, for instance, sets aside as unprotectable any part of a program
that is "as a practical matter indispensable, or at least standard, in the treatment of a given
topic." Atari, Inc. v. North Am. Philips Consumer Elecs. Corp., 672 F.2d 607, 616 (7th Cir.)
(quoting Alexander v. Haley, 460 F. Supp. 40, 45 (S.D.N.Y. 1978)), cert. denied, 459 U.S. 880
(1982). Courts applying the scenes a faire doctrine in software infringement cases refuse protec·
tion to program parts they define as "indispensable" or "inherent." See, e.g., Telemarketing
Resources v. Symantec Corp., 1990 Copyright L. Dec. (CCH) 1] 26,514, at 23,086, 23,087 (N.D.
Cal. Sept. 6, 1989), modified sub nom. Brown Bag Software v. Symantec Corp., 960 F.2d 1465
(9th Cir. 1992), cert. denied, 61 U.S.L.W. 3261 (U.S. Oct. 5, 1992); Q-Co Indus., Inc. v. Hoff·
man, 625 F. Supp. 608, 616 (S.D.N.Y. 1985). Other copyright doctrines that set aside unprotect·
able material include independent creation, public domain, originality, and, of course, the idea
expression dichotomy. See generally NIMMER, supra note 13, § 13.03[F] (discussing doctrinally
defined computer program elements). Doctrinally based program elements are discussed further
in connection with the successive filtering test. See infra notes 163-70 and accompanying text.

93. 17 U.S.C. § 102(a) (1988).
94. Lotus, 740 F. Supp. at 47-48.
95. See, e.g., E.F. Johnson Co. v. Uniden Corp. of Am., 623 F. Supp. 1485, 1496-97 (D.

Minn. 1985) (noting that both programs contained the same superfluous instructions and identi
cal coding errors). See generally Conley & Peterson, supra note 42, at 436, 453-67 (listing and
discussing evidentiary elements useful in establishing copying).

December 1992] Note - Computer Program Parts 547

that are loosely constrained by a program's data structures, algo
rithms, and other more abstract parts.96 Similarity in such stylistic
choices may therefore serve as evidence of verbatim copying.97 Under
this Note's approach, such stylistic choices often all lie within the
source code level of abstraction. 98 Therefore, the proposed framework
is independent of evidentiary elements, just as a framework describing
novels in terms of plot and character is distinct from font size or type
face choices. Accordingly, adoption of this Note's proposed frame
work will not change the type of evidence used in software copyright
infringement cases.

Evidentiary and doctrinal elements, as well as abstraction parts,
play distinct but interrelated roles in software substantial similarity
analysis. Evidentiary elements provide proof of copying, while doctri
nal elements represent policy decisions about the types of copying that
should be prohibited. Abstraction parts - when properly defined -
illuminate the relationship between evidentiary elements and the idea
expression doctrine by clarifying which portions of a program are be
ing categorized as idea and which are being treated as expression.
This Note addresses abstraction parts rather than doctrinal or eviden
tiary elements because unclear and contradictory abstraction part defi
nitions lie at the heart of the confusion over software substantial
similarity analysis.

Despite the often dispositive role of substantial similarity, most ju
dicial attempts to formulate a test applicable beyond the case at hand
have failed. One court listed several "stages of development of a pro
gram," including "a definition, in eye-legible form, of the program's
task or function; a description; a listing of the program's steps and/or
their expression in flow charts;" source code; and object code.99 The
first stage, "task or function," corresponds to section I.B's main pur
pose. The meaning of the second stage, "description," is unclear. The
final three stages correspond respectively to section I.B's algorithms,
source code, and object code parts. Large sections of software are
overlooked; these five stages apparently omit data structures, ADTs,
and system architecture. Likewise, in Computer Associates Interna
tional, Inc. v. Altai, Inc., 100 the court created an unclear and incom-

96. Cf. OGILVIE, supra note 36, at 48-50 (describing one set of stylistic preferences).

97. See generally Conley & Peterson, supra note 42.

98. See, e.g., SAS Inst., Inc. v. S & H Computer Sys., Inc., 605 F. Supp. 816, 822-23 (M.D.
Tenn. 1985) (finding copying on the basis of similarities in source code without discussing more
abstract parts in detail). Although evidence of verbatim copying typically lies at the source code
level of abstraction, nothing inherent in algorithms or other abstraction parts prevents their use
as program "signatures" if they are precisely copied.

99. Williams Elecs., Inc. v. Artie Intl., Inc., 685 F.2d 870, 876 n.7 (3d Cir. 1982) (quoting
NATIONAL CoMMN. ON NEW TECHNOLOGICAL USES OF COPYRIGHTED WORKS, FINAL RE
PORT 28 (1978)).

100. 775 F. Supp. 544 (E.D.N.Y. 1991), ajfd. 23 U.S.P.Q.2d (BNA) 1241 (2d Cir. 1992).

548 Michigan Law Review [Vol. 91:526

plete set of abstraction parts. In Altai, the court quoted Judge Hand's
description of the abstractions test before asserting that when "applied
to computer software programs, this abstractions test would progress
in order of 'increasing generality' from object code, to source code, to
parameter lists, to services required, to general outline."101 The Altai
court's object code and source code levels of generality correspond to
this Note's parts of the same name.102 "Parameter lists" are part of
the program's interface with other programs, and hence lie outside this
Note's scope. "Services required" may also be dictated by the inter
face, but this part could affect system architecture or ADTs as well.
"General outline" seems to mean some combination of section I.B's
system architecture and main purpose. But nothing in the Altai
court's list seems to correspond to data structures or algorithms.
Other judicial attempts to formulate a framework of abstraction parts
also contain serious flaws.103

A third example shows the difficulty in evaluating abstraction
parts due to unsettled terminology that complicates the extraction of
part definitions from cases. In Pearl Systems, Inc. v. Competition Elec
tronics, Inc., 104 the court referred several times to "the system level
design."105 As defined by the copyright holder's expert, "system level
design" corresponds roughly to this Note's notion of system architec
ture.106 The court, however, treated "system level design" as
equivalent to user interface rather than to system architecture. The
court observed that the copyright holder "was able to change the sub
routines so that a different sequence of buttons would be used to enter
the par time and to engage the shot review function. This resulted
from a change in the systems level design of the software."107 The
court continued by saying:

101. Altai, 115 F. Supp. at 560.
102. See supra text accompanying notes 67-72.
103. In Pearl Sys., Inc. v. Competition Elecs., Inc., 8 U.S.P.Q.2d (BNA) 1520 (S.D. Fla.

1988), the court apparently relied on testimony from an expert hired by the ultimately successful
copyright holder. According to the expert,

[T]here were essentially five steps to develop computer software: 1. Functional definition of
the product - how it will be used in the marketplace; 2. Systems level design - defining the
types of functions for the software to perform and how it will perform those functions; 3.
Module design - defining individual portions of the system; 4. Coding - implementing the
modules; and 5. Selecting appropriate hardware.

8 U.S.P.Q.2d (BNA) at 1522 n.3. The Pearl court's functional definition corresponds to section
I.B's main purpose. Systems level design might correspond to section I.B's system architecture,
but the court interprets the term to mean user interface. 8 U.S.P.Q.2d (BNA) at 1523-25. Mod·
ule design might therefore correspond to system architecture, or perhaps to some combination of
system architecture and ADTs. Coding comprises algorithms, data structures, and source code,
while hardware selection corresponds roughly to section I.B's object code level of abstraction. In
short, some Pearl abstraction parts are not defined clearly, and others seem excessively broad.

104. 8 U.S.P.Q.2d (BNA) 1520 (S.D. Fla. 1988).
105. Pearl, 8 U.S.P.Q.2d (BNA) at 1522 & n.3, 1523, 1525.
106. 8 U.S.P.Q.2d (BNA) at 1522 n.3.
107. 8 U.S.P.Q.2d (BNA) at 1523.

December 1992) Note - Computer Program Parts 549

Moreover, the subroutines in both [plaintiffs and defendant's devices]
were triggered by the same sequence of buttons. As there was ample
testimony that alternative system level designs could have been used to
avoid this similarity, we conclude that the idea did not have only one
necessary form of expression, but many.1os

Even when terminology is clear, however, the software substantial
similarity tests conflict with each other, 109 and their definitions corre
spond poorly with the abstraction parts employed by programmers.110

Forum shopping, 111 expensive "clean room" program development, 112

and other undesirable consequences113 follow from deficient part defi
nitions. Furthermore, the difficulty of formulating legally useful and
technically accurate program part definitions has apparently led to de
spair as well as disarray. One group of courts has seemingly aban
doned even nominal pursuit of comprehensive program part
definitions, essentially ignoring all but evidentiary elements.114 An
other group simply refuses to dissect programs at all. 115 The following
subsection explores judicial efforts to analyze substantial similarity

108. 8 U.S.P.Q.2d (BNA) at 1524-25.
109. See, e.g., infra note 200 and accompanying text.
110. Compare supra section l.B (discussing parts recognized by programmers) with Whelan

Assocs., Inc. v. Jaslow Dental Lab., Inc., 797 F.2d 1222, 1239 (3d Cir. 1986) (discussing "se
quence," "order," and "structure" as program parts), cert. denied, 479 U.S. 1031 (1987).

111. Copyright infringement plaintiffs naturally prefer to bring suit in a circuit that enforces
the broadest protection available. The Third Circuit, home of the Whelan decision, see infra
notes 135-42 and accompanying text, is therefore particularly attractive to such plaintiffs, while
defendants should prefer the Second Circuit or the Fifth Circuit, which have directly repudiated
the broad rule of Whelan. See Computer Assocs. Intl., Inc. v. Altai, Inc., 23 U.S.P.Q.2d (BNA)
1241, 1252 (2d Cir. 1992); Plains Cotton Coop. Assocs. v. Goodpasture Computer Serv., Inc.,
807 F.2d 1256, 1262 (5th Cir. 1987), cert. denied, 484 U.S. 821 (1987).

112. Under a clean room procedure, people work in two groups to avoid infringement of
program X when creating program Y. One set of people, with access to X describes X in terms
abstract enough to be deemed ideas rather than expression for copyright purposes. These de
scriptions are then provided to the second group of people, programmers who create a working
program Y that meets the desired description. The programmers have no access to X's expres
sion while creating Y. so any similarities of expression between X and Y are noninfringing. See,
e.g., NEC Corp. v. Intel Corp., 1989 Copyright L. Dec. (CCH) ~ 26,379, at 26,390 (N.D. Cal.
Feb. 6, 1989) (discussing clean room set up to demonstrate that hired party, even without access,
reproduced expression in copyrighted software); cf. Computer Assocs. Intl., Inc. v. Altai, Inc.,
775 F. Supp. 544, 554 (E.D.N.Y. 1991) (discussing rewrite of allegedly infringing program), ajfd.
23 U.S.P.Q.2d (BNA) 1241 (2d Cir. 1992).

113. Professor Samuelson has stated: "Teaching software copyright law in the United States
is at present a perilous endeavor When a whole field of law is a welter of confusion and
contradiction, it is no small challenge to teach the law as it truly is and keep students' attention
and respect." Samuelson, supra note 2, at 61, 71.

114. As applied in E.F. Johnson Co. v. Uniden Corp. of Am., 623 F. Supp. 1485 (D. Minn.
1985), the iterative test for substantial similarity only prohibits literal copying or translation of
computer program code. See infra notes 124-25 and accompanying text. Therefore, comparison
of ADTs or any of the other more abstract software parts is ignored and there is no reason to
define any abstraction part other than code. See also SAS Inst., Inc. v. S & H Computer Sys.
Inc., 605 F. Supp. 816, 822, 829 (M.D. Tenn. 1985) (finding infringement on the basis of similari
ties in source code without extensively discussing any levels of abstraction other than idea and
expression).

115. See infra notes 151-62 and accompanying text.

550 Michigan Law Review [Vol. 91:526

and compares the computer program parts these efforts explicitly or
implicitly recognize with the parts recognized by programmers.

2. Current Substantial Similarity Tests

Software copyright cases utilize four major substantial similarity
tests: (1) the iterative test; (2) the structure, sequence, and organiza
tion (SSO) test; (3) the "look and feel" or "total concept and feel" test;
and (4) the successive filtering test. Each substantial similarity test
defines program abstraction parts differently; these definitions are
often implicit116 or unclear. 117 At best, the definitions blur the levels
of abstraction proposed in section I.B; at worst, the levels are ignored
altogether. 118

a. The iterative test. Originally derived from a student law re
view Note, 119 the iterative test for substantial similarity was first for
mally adopted by a court in E.F. Johnson Co. v. Uniden Corp. of
America. 120 The test has two prongs, but only the second prong is
relevant to abstraction part definitions. The first prong merely asks
whether "the defendant 'used' the copyrighted work in preparing the
alleged copy, which may be established by proof of access and similar
ity sufficient to reasonably infer use of the copyrighted work " 121

This prong "amounts to little more than a variation of the traditional
substantial similarity analysis" and so adds nothing to the search for
proper program part definitions. 122 The iterative test's second prong,
however, asks whether "the defendant's work is an iterative reproduc
tion, that is, one produced by iterative or exact duplication of substan
tial portions of the copyrighted work."123 The Uniden court
interpreted this prong of the iterative test as a prohibition against liter
ally copying124 or literally translating125 code.

The iterative test thus divides programs into protected literal code,

116. See, e.g., infra notes 128-29.
117. See supra text accompanying notes 104-08; see also infra notes 126-34, 162 and accom·

panying text.
118. The total concept and feel test, infra notes 151-62 and accompanying text, apparently

bundles every level of abstraction into the program's "total concept and feel," and the SSO test,
infra notes 135-50 and accompanying text, bundles together system architecture, ADTs, algo
rithms and data structures.

119. Howard Root, Note, Copyright Infringement of Computer Programs: A Modification of
the Substantial Similarity Test, 68 MINN. L. REV. 1264, 1294-1302 (1984).

120. 623 F. Supp. 1485 (D. Minn. 1985). The Uniden court asserted that "the iterative ap-
proach [has been] adopted in form if not name by several courts " 623 F. Supp. at 1493.

121. Uniden, 623 F. Supp. at 1493.
122. Nimmer et al., supra note 88, at 634.
123. 623 F. Supp. at 1493.'
124. The court found liability for "iterative or verbatim reproduction of substantial sections

of [plaintifrs] code, le., the data tables and 38 of 44 subroutines." 623 F. Supp. at 1497 n.JO.
125. 623 F. Supp. at 1497-98; see also Nimmer et al., supra note 88, at 634.

December 1992] Note - Computer Program Parts 551

protected literal translations of code, and the unprotected remainder
of the program. Uniden 's literal object code and squrce code parts
clearly correspond to source code and object code as defined above.
The correspondence between literal translations and this Note's defini
tions is less clear, but it seems limited to the three possibilities shown
in Figure 2. The translations Uniden speaks of are not translations
from source code into object code, but rather translations of a pro
gram from one programming language into another. 126 Generally
speaking, a translation of a program from one language to another
may require changes in data structures, algorithms, or even more ab
stract program parts. 127 The first possibility shown in Figure 2
matches literal translations to algorithms and data structures because
protection of literal translations seems to require protection of algo
rithms and data structures that differ from those of the original pro
gram only in ways required by translation. Furthermore, even though
the Uniden court did not speak in terms of algorithms and data struc
tures, the court's protection of a "Barker code" algorithm 128 and an
"H-matrix" data structure129 suggest that algorithms and data struc-

126. 623 F. Supp. at 1497 (discussing "literal translation of plaintiff's Intel instructions into
Hitachi language").

127. The C programming language supports pointers, while the FORTRAN language does
not, so any program containing data structures built with pointers cannot be translated from C
into FORTRAN without changing those data structures. Similarly, C permits subroutines to
call themselves "recursively" while FORTRAN does not, so recursive algorithms cannot be im
plemented directly if one translates from C into FORTRAN. See generally OGILVIE, supra note
48, at 16-19 (comparing FORTRAN, C, and several other programming languages). Similar
problems arise during translation between other programming languages. Extreme hardware
changes may also require corresponding changes at very abstract software levels. See generally
OGILVIE, supra note 36, at 332-39 (cataloging problems that may arise in "porting" a program
from one system to another).

128. "A 'Barker code' is a pattern of ones and zeroes alternated in a prepatterned sequence.
Both the sending and receiving units must identify the Barker code in order for communication
to be established." 623 F. Supp. at 1494. Although Uniden does not speak in terms of ADTs,
programmers would recognize in a Barker code an ADT in which the data type is a pattern of
ones and zeroes, where the most prominent operations are obtaining another pattern an!! com
paring the second pattern with the ADT pattern to see if they match. Although the defendant in
Uniden had to copy this ADT to achieve compatibility, the court found no infringement in such
copying. 623 F. Supp. at 1494. But the defendant did infringe by copying the particular sam
pling algorithm used in the copyrighted program to obtain patterns for comparison; notably, a •
different algorithm would have been more efficient on the defendant's hardware. 623 F. Supp. at
1494-95.

129. An H-Matrix is a series of ones and zeroes arranged in rows and columns in a matrix
format. An H-Matrix is used ... to detect errors ... once communication has been estab
lished by matching of Barker codes. To make its radios compatible ... [defendant] was
required to and did employ some form of H-matrix in its software program

623 F. Supp. at 1495. Although Uniden does not speak in terms of ADTs, programmers would
recognize an H-matrix as an ADT wherein the data type is a pattern of ones and zeroes that
meets certain technical constraints; notably, any one of 32 different patterns satisfies these con
straints. 623 F. Supp. at 1495. The copyrighted program's H-matrix ADT was implemented by
two data structures. One was a particular matrix of ones and zeroes, and the other data structure
was this matrix's inverse. 623 F. Supp. at 1495. The defendant's program infringed by precisely
copying both data structures when the inverse matrix was superfluous and any other of the ma
trix's 32 configurations would have worked. 623 F. Supp. at 1495.

552 Michigan Law Review [Vol. 91:526

FIGURE 2
Possible Correspondence Between Uniden and Proposed Abstraction Parts.

Purpose

Architecture

AD Ts

Data
structures,
Algorithms

Source code

Object code

Proposal

Idea

Literal
translations

Literal code

Uniden (1)

Idea

Literal
translations

Literal code

Uniden (2)

Idea

Literal
translations

Literal code

Uniden (3)

tures lie within a protected level of abstraction; algorithms and data
structures are clearly more abstract than code, so they must lie in the
level occupied by literal translations.

Figure 2 also shows a second possibility, in which literal transla
tions cover only part of the range of abstraction covered by algorithms
and data structures. Literal translation is not rigorously defined in
Uniden, but much of the opinion's language speaks of verbatim copy
ing.130 Algorithms and data structures embedded in a piece of source
code can often be copied without duplicating or even approximating
the source code's style; avoiding similarity in source code wording
while actually copying functionality is often easy.131 Uniden's empha
sis on protecting "literal" program parts might therefore be inter
preted to prohibit use of data structures or algorithms that
substantially replicate the original author's efforts, both in terms of

130. See, e.g., 623 F. Supp. at 1497 (holding that verbatim copying is inferential evidence of
pirating; both programs contained identical sample error tables and superfluous instructions, and
38 out of 44 subroutines were identical).

131. Extreme examples of programs that behave identically but look very different may be
found in the annals of the recreational International Obfuscated C Coding Contest. The goal of
this contest is to write a clever working program whose purpose is impossible to discern from its
source code. Programmers begin with understandable source code but obfuscate it step-by-step
until they are satisfied no one else can decipher it. The original program and the final obfuscated
version run identically, but their respective source codes typically look very different indeed.
THE NEW HACKER'S DICTIONARY 265-66 (Eric s. Raymond ed., 1991).

December 1992] Note - Computer Program Parts 553

substance and in terms of programming style.132 This narrower defini
tion of literal translation protects more than the literal source code,
but covers less than the entire range of abstraction covered by data
structures and algorithms.

The third possibility shown in Figure 2 is that literal translations
encompass data structures, algorithms, and more abstract parts as
well. Uniden 's discussion of literal translation is shaped by Whelan
Associates v. Jaslow Dental Laboratory, Inc., 133 a case that treats every
thing except a program's purpose as protectable expression.134 With
out more guidance, however, it is unclear whether any of these three
interpretations is correct.

The iterative test is unsuitable, therefore, because it does not
clearly define any abstraction parts other than literal code. Further
more, even if the definition of literal translations could be clarified, the
iterative test would still destabilize software copyright law by recog
nizing too few levels of abstraction. The literal code component bun
dles together source code and object code, even though they are
clearly discrete abstraction parts. Similarly, literal translations and
idea attempt to span four levels of abstraction with only two compo
nents. As the history of the SSO test discussed next illustrates, such
overly broad definitions too often lead subsequent courts to define ad
ditional abstraction parts in conflicting ways.

b. The structure, sequence and organization test. The structure,
sequence, and organization (SSO) test was formulated and first applied
in Whelan Associates, Inc. v. Jaslow Dental Laboratory, Inc. 135 Whe
lan stated that "the purpose or function of a utilitarian work would be
the work's idea, and everything that is not necessary to that purpose or
function would be part of the expression of the idea."136 In other
words, protection may be available for every part of a program except
its single overriding purpose.131

The SSO test thus defines programs as having a purpose part and
an SSO part. As illustrated in Figure 3, Whelan's purpose part corre
sponds to section I.B's main purpose.138 SSO corresponds to system

132. See generally Conley & Peterson, supra note 42, at 453-67 (discussing stylistic clues to
copying or derivation).

133. 797 F.2d 1222 (3d Cir. 1986), cerL denied, 479 U.S. 1031 (1987). The Uniden court
looked to Whelan for guidance because in its words "similar considerations control." 623 F.
Supp. at 1497.

134. See infra notes 135-37 and accompanying text.
135. 797 F.2d 1222 (3d Cir. 1986), cert denied, 479 U.S. 1031 (1987).
136. Whelan, 797 F.2d at 1236 (original emphasis removed).
137. See 797 F.2d at 1238 (holding that the purpose of plaintiff's program, "to aid in the

business operations of a dental laboratory," is an idea and hence unprotected).
138. Whelan suggests in dicta that in other cases a program's purpose "may be to accomplish

a certain function in a certain way," but does not pursue this alternate definition of purpose. 797
F.2d at 1238 n.34.

554 Michigan Law Review [Vol. 91:526

architecture, ADTs, algorithms, and data structures, 139 because Whe
lan also discusses source code and object code. Like Uniden, Whelan
does not purport to apply Learned Hand's test, so the correspondences
with abstraction parts shown here were deduced mainly from the case
as a whole rather than any explicit definitions.

FIGURE 3
Correspondence Between Proposed Abstraction Parts and Parts Defined in

Whelan and Healthcare. 140

Purpose Purpose Purpose

Architecture
Methodologies

AD Ts sso

Data structures,
Algorithms

sso

Source code Source code Source code

Object code Object code Object code

Proposal Whelan Healthcare

Whelan's part definitions are poorly adapted to the abstractions
test because they fail to distinguish different levels of abstraction
within a program's SSO. Uniden and other cases draw the idea-ex
pression line inside the SSO, suggesting that the range of abstraction
encompassed by SSO is too broad.141 "The crucial flaw in [Whelan's]
reasoning is that it assumes that only one 'idea,' in copyright law
terms, underlies any computer program, and that once a separable
idea can be identified, everything else must be expression."142

139. 797 F.2d at 1224-25, 1230-31. The Whelan court also considered several program parts
that either lie within SSO or lie outside this Note's scope. The court expressly compared several
program subroutines, pieces of code that accept data from another part of the program, perform
some relatively small piece of the program's work, and pass data back out to the main program.
Like an entire program, a subroutine may be viewed either as its literal source code text or as the
embodiment of several levels of abstraction, so recognizing subroutines as another level of ab
straction would be redundant. Cf. supra note 72. The Whelan court also considered similarity of
file structures and screen outputs, 797 F.2d at 1242-48, but these and all other parts of a pro
gram's user interface lie outside this Note's scope. Cf. supra note 73 (discussing user interface
abstraction parts).

140. Healthcare Affiliated Services, Inc. v. Lippany, 701 F. Supp. 1142 (W.D. Pa. 1988).
141. See, e.g., infra note 144 and accompanying text.
142. Computer Assocs. Intl., Inc. v. Altai, Inc., 775 F. Supp. 544, 559 (E.D.N.Y. 1991)

December 1992] Note - Computer Program Parts 555

Parts, such as SSO, that cover too much of the abstraction spec
trum compel courts to define additional parts in subsequent cases. In
Healthcare Affiliated Services, Inc. v. Lippany, 143 the court nominally
followed Whelan but actually narrowed the breadth of SSO by defin
ing a new abstraction part, methodologies. The Healthcare court
treated methodologies as idea rather than expression 144 by denying
them copyright protection. Unfortunately, Healthcare did not ex
pressly define methodology, so the part may be difficult to recognize in
subsequent cases. The examples145 provided in the Healthcare opinion
and the court's reasoning146 seem to equate methodologies with sys
tem architecture and ADTs, as shown in Figure 3, but other correla
tions are not ruled out. Courts also nominally recognized SSO in both
Johnson Controls, Inc. v. Phoenix Control Systems, Inc., 147 and
Telemarketing Resources v. Symantec Corp., 14s but actually focused on
more specific program parts and declined to apply the SSO test. 149

In short, the SSO test is unsuitable because overly broad parts such
as SSO require subsequent courts to define additional parts: such nar
rowing definitions are, unfortunately, typically concerned with the
characteristics of a particular program rather than with the widely
recognized components of programs in general. These additions to the
growing collection of judicially recognized program parts therefore
make poor candidates for a generally applicable abstractions frame-

(quoting NIMMER, supra note 13, § 13.03[F], at 13-78.34), ajfd., 23 U.S.P.Q.2d 1241 (2d Cir.
1992).

143. 701 F. Supp. 1142 (W.D. Pa. 1988).
144. Healthcare, 701 F. Supp. at 1152.
145. 701 F. Supp. at 1152 (noting that methodologies may be "engineered standards-based"

or "hospital comparison-based," may use "multivariable" or other sets, and may determine costs
by procedure, "by department, by patient or by product-line").

146. Methodologies are not merely aspects of a program's purpose because there is a serious
question "whether these methodologies constitute 'expression' " 701 F. Supp. at 1151. On
the other hand, the Healthcare court considered methodologies more abstract than source code
because the court noted that "[n]o evidence .•. was presented to indicate how the choices among
these alternatives, le., the methodologies, would translate into 'a set of statements or instruc
tions' which could be used in a computer •... " 701 F. Supp. at 1152.

147. 886 F.2d 1173 (9th Cir. 1989).
148. 1990 Copyright L. Dec. (CCH) 11 26,514 (N.D. Cal. Sept. 6, 1989), modified sub nom.

Brown Bag Software v. Symantec Corp., 960 F.2d 1465 (9th Cir. 1992), cert. denied, 61 U.S.L.W.
3261 (U.S. Oct. 5, 1992).

149. The Johnson Controls court held that a program contains "several different components,
including the source and object code, the structure, sequence and/or organization of the pro
gram, the user interface, and the function, or purpose of the program." 886 F.2d at 1175 (foot
notes omitted). The court found infringement of the copyrighted work's total concept and feel
on the basis of various similarities, both in idea and expression, set forth in detail in a special
master's report but not clearly described in the reported opinion. 886 F.2d at 1176. Citing
Whelan, the Telemarketing Resources court held that copyright protection applied "to the user
interface, or overall structure and organization of a computer program, including its audiovisual
displays, or screen 'look and feel.'" 1990 Copyright L. Dec. (CCH) at 23,085. The program
parts addressed during the court's substantial similarity analysis under the look and feel test
included menu screen options, pull down windows, a menu bar, an editing screen, and default
color selections. 1990 Copyright L. Dec. (CCH) at 23,086-89.

556 Michigan Law Review [Vol. 91:526

work. 150 Rather than defining additional parts, however, some courts
have chosen to define no parts at all, as the next test illustrates.

c. The "total concept and feel" test and the "look and feel" test.
Unlike the iterative and SSO tests for substantial similarity, the "total
concept and feel" test did not arise in a software infringement case, but
emerged rather from a case concerning greeting cards.1s1 Subsequent
cases involving juvenile books1s2 and a children's television pro
gram 153 further developed the test, which finally came to software
cases by way of video game infringement suits.154 This history sug
gests that the total concept and feel test might be poorly suited to the
analysis of software infringement, and such is indeed the case.

The total concept and feel test apparently defines no program parts
at all. Instead, the test finds substantial similarity if the allegedly in
fringing ·work captures the copyrighted work's total concept and
feel. 155 A closely related test compares two works' "look and feel." 156

The feel tests are so situation-dependent that any general statement of
how they work is necessarily inaccurate. Feel, as one court put it, "is
a conclusion Thus, in trying to understand the relevance of 'con
cept and feel' precedents, we need to look to details of those cases that
appear to have been relied upon in reaching the conclusion, rather
than merely embracing the conclusion without regard for underlying
reasons."157

Examination of particular feel cases is unnecessary, however, be
cause both feel tests suffer from fundamental flaws that render them

150. To rephrase the problem bluntly, all programs contain SSO, but protecting SSO protects
too much and therefore the SSO must be split. Breaking methodologies out of SSO only helps in
the relatively few programs that are built around methodologies. Recognizing system architec·
ture, ADTs, and so forth, on the other hand, helps considerably because all programs contain
those parts.

151. Roth Greeting Cards v. United Card Co., 429 F.2d 1106 (9th Cir. 1970). See generally
NIMMER, supra note 13, § 13.03[A][l][c] (discussing the history of the total concept and feel
test).

152. Reyher v. Children's Television Workshop, 533 F.2d 87 (2d Cir.), cert. denied, 429 U.S.
980 (1976).

153. Sid & Marty Krofft Television Prods., Inc. v. McDonald's Corp., 562 F.2d 1157 (9th
Cir. 1977).

154. See, e.g., Atari, Inc. v. North Am. Philips Consumer Elecs. Corp., 672 F.2d 607, 619-20
(7th Cir.), cert. denied, 459 U.S. 880 (1982); Atari, Inc. v. Amusement World, Inc., 547 F. Supp.
222, 228-30 (D. Md. 1981).

155. See, e.g., Broderbund Software, Inc. v. Unison World, Inc., 648 F. Supp. 1127, 1134,
1137 (N.D. Cal. 1986).

156. See, e.g., Apple Computer, Inc. v. Microsoft Corp., 779 F. Supp. 133 (N.D. Cal. 1991);
Telemarketing Resources v. Symantec Corp., 1990 Copyright L. Dec. (CCH) ~ 26,514 (N.D.
Cal. Sept. 6, 1989), modified sub nom. Brown Bag Software v. Symantec Corp., 960 F.2d 1465
(9th Cir. 1992), cert. denied, 61 U.S.L.W. 3261 (U.S. Oct. 5, 1992); see also Lotus Dev. Corp. v.
Paperback Software Intl., 740 F. Supp. 37, 62-63 (D. Mass. 1990) (discussing history and appli·
cations oflook and feel test and total concept and feel test in Roth Greeting Cards and elsewhere).

157. Lotus, 740 F. Supp. at 63.

December 1992] Note - Computer Program Parts 557

practically useless in an abstractions test. Software cases have devel
oped the feel tests primarily in disputes over the similarity of user in
terfaces; 158 because user interfaces are by definition meant to be used
and understood by nonprogrammers, this legal context provides little
guidance in analyzing internal program components such as ADTs,
algorithms, and data structures which are normally seen only by pro
grammers. Both feel tests have also been appropriately criticized as
vague and overly broad. 159 Moreover, the copyright statute expressly
forbids protection of concepts.16° Courts sometimes adapt the tests by
focusing on specific program parts, but different courts discuss differ
ent parts, 161 and some of the parts introduced in an attempt to avoid
vagueness are themselves poorly defined. 162 In sum, although the feel
tests may be appropriate for assessing the similarity of greeting cards,
they are wholly unsuitable for determining levels of abstraction in
software infringement cases.

d. The successive filtering test The perceived shortcomings of
the iterative, SSO, and total concept and feel tests for substantial simi
larity spurred the adoption of a successive filtering test. 163 The test

158. See, e.g., Atari, Inc. v. North Am. Philips Consumer Elecs. Corp., 672 F.2d 607 (7th
Cir. 1982) (finding video games substantially similar under total concept and feel test); Apple, 779
F. Supp. 133 (discussing look and feel test in dispute over graphic user interfaces); Telemarketing
Resources, 1990 Copyright L. Dec. (CCH) 11 26,514 (applying look and feel test to screen dis
plays); Broderbund Software, 648 F. Supp. at 1137 (applying total concept and feel test to pro
grams' audiovisual displays). But see Johnson Controls, Inc. v. Phoenix Control Sys., Inc., 886
F.2d 1173, 1175 n.3, 1176 (9th Cir. 1989) (applying total concept and feel test without enumerat
ing pertinent program parts).

159. See, e.g., Lotus, 740 F. Supp. at 60 (asserting that look and feel concept, standing alone,
is not significantly helpful in analyzing copyrightability). Commentators have also criticized the
feel tests. "[T]he addition of 'feel' to the judicial inquiry, being a wholly amorphous referent,
merely invites an abdication of analysis." NIMMER, supra note 13, § 13.03[A] at 13-37. "It may,
conceivably, make sense to refer to the 'total concept and feel' of a greeting card or game or
anthropomorphic fantasy world; the words lose their meaning, however, as applied to source or
object code." Nimmer et al., supra note 88, at 633 (footnote omitted). " 'Look' does seem a safer
word [because the copyright statute specifically states that 'concepts' are not protectable], though
it has the same virtue for plaintiffs as the 'total concept and feel' test: a vagueness about what
might be within its scope." Samuelson, supra note 2, at 69.

160. 17 u.s.c. § 102(b) (1988).
161. Compare Telemarketing Resources, 1990 Copyright L. Dec. (CCH) 1126,514 at 23,088-

89 (discussing menu screen options, pull down windows, menu bar, editing screen, and default
color selections) with Broderbund Software, 648 F. Supp. at 1137 (discussing sequence of screens
and choices presented, screen layout, and method of feedback).

162. In Accolade, Inc. v. Distinctive Software, Inc., 1990 Copyright L. Dec. (CCH) 1126,612,
at 23,627-28 (N.D. Cal. June 17, 1990), the program parts discussed by the court include "con
cept design." This enigmatic term apparently arose from language in the parties' licensing agree
ment that defined the "licensed product" as "the concepts to be designed and implemented by the
developer." 1990 Copyright L. Dec. (CCH) at 23,627. The range of abstraction spanned by
concept design is unclear. Concept design cannot overlap main purpose, because the court
treated "the concept and design of the video game" as copyrightable, 1990 Copyright L. Dec.
(CCH) at 23,627, and ideas are clearly not copyrightable. 17 U.S.C. § 102(b). Nor is concept
design another term for user interface because the court explicitly contrasts "concept" with
"look and feel." 1990 Copyright L. Dec. (CCH) at 23,627.

163. Computer Assocs. Intl., Inc. v. Altai, Inc., 23 U.S.P.Q.2d (BNA) 1241, 1253 (2d Cir.

558 Michigan Law Review [Vol. 91:526

was originally suggested by Professor Nimmer and his colleagues:
To [evaluate substantial similarity] an allegedly infringed program
should be analyzed on several different levels. A different copyright doc
trine is applied at each level, and material which is unprotectable under
that doctrine is excluded from further consideration in analyzing sub
stantial similarity. By successively filtering out unprotectable material, a
core of protected material remains against which the court can compare
the allegedly infringing program.164

Successive filtering therefore recognizes that complex software is best
analyzed for similarity by partitioning it appropriately. However, sep
arating programs into doctrinal levels is not equivalent to adopting an
abstraction parts analysis.

Many traditional copyright doctrines have little bearing on the
idea-expression distinction. For example, scenes a faire 165 analysis
under successive filtering denies copyright protection to those portions
of a program that "follow naturally from the work's theme rather than
from the author's creativity."166 Suppose a program must accept in
formation stored on noncopyrightable paper forms and add the infor
mation to a computer database. The data structure A into which
values are initially read may well be substantially dictated by the paper
forms, but the final destination of the values, data structure B in the
database, is largely independent of the various values stored. Under
scenes a faire, A is therefore denied protection while B is not. 167 By
distinguishing between data structures, which all lie in a single level of
abstraction, scenes a faire analysis creates a distinction based on con
cerns other than level of abstraction. Parts defined by the scenes a
faire doctrine therefore do not belong in any refinement of Learned
Hand's abstractions test. Other doctrines applied during successive
filtering, including lack of originality, independent creation, and fair
use, similarly ignore program part definitions that are based on level of

1992); Autoslcill Inc. v. National Educ. Support Sys., Inc., 793 F. Supp. 1557, 1568-71 (D.N.M.
1992). Other courts have also endorsed approaches resembling successive filtering. See Brown
Bag Software v. Symantec" Corp., 960 F.2d 1465, 1475 (9th Cir.) (endorsing "analytic dissection"
of computer programs to isolate protectable expression), cert. denied, 61 U.S.L.W. 3261 (U.S.
Oct. 5, 1992); Apple Computer, Inc. v. Microsoft Corp., 779 F. Supp. 133, 135 (N.D. Cat. 1991)
("Some dissection of elements and the application of merger, functionality, scenes a faire, and
unoriginality theories are necessary to determine which elements can be used freely by the public
in creating new works, so long as those works do not incorporate the same selection or arrange
ment as that of the plaintiff's work.").

164. Nimmer et al., supra note 88, at 635 (footnotes omitted); see also NIMMER, supra note
13, § 13.03[F].

165. See supra note 92.

166. NIMMER, supra note 13, § 13.03[F][3].

167. Under other analyses, of course, results may differ. Suppose many different choices
exist for the internal representation B in theory, but efficiency concerns render all but one or two
possibilities impractical. Idea and expression may then be said to have merged, and B will be
denied copyright protection under the merger doctrine. See generally NIMMER, supra note 13,
§§ 13.03[B][3], 13.03[F][2].

December 1992] Note - Computer Program Parts 559

abstraction. 168

Successive filtering in its present form is too broad and undevel
oped to provide adequate abstraction part definitions. Although ab
straction is central to the idea-expression dichotomy, 169 the other
traditional doctrines successive filtering invokes11o are based on poli
cies that find no clear reflection in levels of abstraction. While succes
sive filtering may certainly build on a prior abstraction analysis, 171 it
may not replace that narrower analysis. Unfortunately, the abstrac
tion analysis performed under the recently adopted successive filtering
test utilizes definitions that either are tailored too closely to a specific
type of program 172 or drawn too vaguely to identify distinct levels of
abstraction. 173

Vague and incongruous program part definitions in existing sub
stantial similarity tests cripple current judicial efforts to adapt Learned
Hand's abstractions test to software copyright infringement cases. A
stable set of part definitions could narrow the range of disagreement
over where to draw the idea-expression line, as well as discourage the
present practice of defining new, inconsistent parts on a case-by-case
basis. The following Part proposes a standard for evaluating the sug
gested definitions.

168. See generally NIMMER, supra note 13, § 13.03[F].
169. From its inception, the abstractions test has been a method for separating idea from

expression. Nichols v. Universal Pictures Corp., 45 F.2d 119, 121 (2d Cir. 1930), cert. denied,
282 U.S. 902 (1931).

170. Under successive filtering, traditional copyright doctrines are somewhat modified to
conform with software concerns. "[T]he merger doctrine should be applied to deny protection to
those elements of a program dictated purely by efficiency concerns." NIMMER, supra note 13,
§ 13.03[F][2], at 13-78.36. Professor Nimmer also suggests modifying the traditional doctrines
of scenes a faire and lack of originality to consider hardware and software standards. Id.
§ 13.03[F][3]. Such modifications properly recognize that programming realities should shape
software copyright law.

171. See, e.g., Computer Assocs. Intl., Inc. v. Altai, Inc., 23 U.S.P.Q.2d (BNA) 1241, 1252
(2d Cir. 1992) (arguing that "district courts would be well-advised to undertake a three-step
procedure" consisting of an abstractions test adapted to computer programs, successive filtering,
and comparison).

172. The district court in Altai recognized levels of abstraction such as "parameter lists" and
"services required" that were closely tailored to the program at issue. Computer Assocs. Intl.,
Inc. v. Altai, Inc., 775 F. Supp. 544, 560 (E.D.N.Y. 1991). On appeal, the Second Circuit recog
nized that even though the levels of abstraction employed by the district court were "workable,"
different levels might be required in other cases. 23 U.S.P.Q.2d (BNA) at 1259; see also Autos
kill, Inc. v. National Educ. Support Sys., Inc., 793 F. Supp. 1557, 1566 (D.N.M. 1992) (appar
ently recognizing "skill levels" in educational software as a level of abstraction).

173. In Altai, the Second Circuit adopted a very general description of the levels of abstrac-
tion in computer programs:

At the lowest level of abstraction, a computer program may be thought of in its entirety as a
set of individual instructions organized into a hierarchy of modules. At a higher level of
abstraction, the instructions in the lowest-level modules may be replaced conceptually by
the functions of those modules. At progressively higher levels of abstraction, the functions
of higher-level modules conceptually replace the implementations of those modules in terms
of lower-level modules and instructions, until finally, one is left with nothing but the ulti
mate function of the program.

23 U.S.P.Q.2d (BNA) at 1253 (quoting Englund, supra note 17, at 897-98).

560 Michigan Law Review [Vol. 91:526

II. PROPERLY DEFINING PROGRAM ABSTRACTION PARTS

This Part argues for judicial adoption of the abstraction part defi
nitions presented in section l.B. Section II.A discusses requirements
any set of definitions should satisfy and establishes that the proposed
definitions meet these requirements. Section II.B discusses the merits
of change, arguing that consensus on the appropriate scope of copy
right protection for software is impossible without judicial agreement
on a coherent set of abstraction part definitions. The Part concludes
that courts should adopt this Note's abstraction part definitions or an
equivalent set of definitions, instead of masking policy decisions and
ignoring programming realities.

A. Criteria for Defining Abstraction Parts

This section presents requirements that any set of abstraction part
definitions used in software copyright infringement cases should sat
isfy. Briefly stated, the definitions should divide any program into a
manageable and complete set of stable, nonoverlapping abstraction
parts that defer appropriately to existing law and accepted program
ming concepts. Any attempt to provide a stable definitional founda
tion for software substantial similarity analysis should meet the
standard defined by these requirements. The section reconsiders the
part definitions proposed in section I.B and argues that they satisfy
these requirements, unlike many of the part defined by existing sub
stantial similarity tests.

The primary purpose of any set of part definitions is, of course, to
minimize ambiguity. When program part definitions partition a range
of abstraction into smaller parts, ambiguity may manifest itself as un
stable borders between parts. The importance of firmly established ab
straction part boundaries to legal consistency is evident from the
forgoing discussion. Hence expression, as defined by the substantial
similarity tests examined in section I.C, is unsuitable as a program
part because its boundaries shift widely from case to case. Other than
purpose and code, the other parts defined by existing substantial simi
larity tests have also proven unstable. 174

The abstraction parts proposed in section I.B, however, are defined
in terms of stable software engineering characteristics of the various
levels of abstraction. 175 These characteristics of software do not de-

174. The clearest evidence that the parts defined by a given substantial similarity test are
unstable is, of course, the adoption by later courts of a different test, either with or without
reference to the earlier test. See, e.g., Altai, 775 F. Supp. at 559 (refusing to adopt SSO test); see
also infra note 198 and accompanying text (listing abstraction parts defined by cases discussed in
this Note; several of these parts, including concept design, general outline, methodologies, pa
rameter lists, services required, and system level design appear in only one case).

175. For example, a characteristic of a program that is changed during translation into object
code must be source code, and a characteristic that describes data arrangements in terms of
arrays or pointers is a data structure. See supra section I.Band infra note 187.

December 1992] Note - Computer Program Parts 561

pend on legal policy concerns, and therefore persist unaltered through
out many different fact situations. Basing part definitions on
established programming concepts176 also has the advantage of nar
rowing the gap between copyright law and computer science; because
the abstraction level boundaries in any particular program are drawn
in practice through expert testimony,177 part definitions that make
sense to programmers are desirable.

Although stable part boundaries help eliminate ambiguity, they are
not sufficient because ambiguity may also o·ccur when boundaries
overlap. Levels of abstraction should be distinct from one another, 178

but conflicting approaches by different courts have created a set of
program parts that overlap each other in a multitude of confusing
ways. As a result, SSO overlaps literal code,179 and methodologies
apparently overlaps algorithms and literal translations. 180 User inter
face spans the entire range of abstraction, 181 as does total concept and
feel, 182 and therefore each of these overlaps every other program part.
Courts could attempt to eliminate overlapping part boundaries by se
lecting parts from among those already defined to obtain a set of dis
tinct parts. However, most such parts are defined in conclusory legal
terms, not according to independently grounded programming crite
ria, so they are subject to drift in future cases. Moreover, if parts are
selected from several substantial similarity tests, they might not fit to
gether neatly because they arose in, and are tailored to, different fac
tual contexts. A set of parts S consisting of Uniden 's literal code,

176. Use of established programming concepts in formulating definitions, although neces
sary, is not sufficient. While the "hierarchy of modules" recently recognized by the Second Cir
cuit is compatible with fundamental principles of software organization, see Computer Assocs.
Intl., Inc. v. Altai, Inc., 23 U.S.P.Q.2d (BNA) 1241, 1253 (2d Cir. 1992) (quoting Englund, supra
note 17, at 897-98), the module hierarchy description speaks merely in conclusory terms ("lower
level" and "higher-level" modules), omitting the working details that are necessary to make dif
ferent levels of abstraction identifiable and distinct. See supra section I.B.

177. See, e.g., SAS Inst., Inc. v. S & H Computer Sys., Inc., 605 F. Supp. 816, 821 (M.D.
Tenn. 1985) (utilizing court-appointed expert). See generally NIMMER, supra note 13,
§ 13.03[E][4] (noting the role of expert testimony on substantial similarity in software copyright
cases).

178. As an example of the problems overlapping part definitions may cause, suppose that one
court characterizes the construction X in a program as part of the user interface while a second
court characterizes a virtually identical X in another program as code. The first court might well
apply an "ordinary observer" standard during substantial similarity analysis, while the second
court might permit or require expert testimony. Compare Broderbund Software, Inc. v. Unison
World, Inc., 648 F. Supp. 1127, 1137 (N.D. Cal. 1986) (comparing user interfaces under "ordi
nary reasonable person" standard of substantial similarity) with Whelan Assocs., Inc. v. Jaslow
Dental Lab., Inc., 797 F.2d 1222, 1232-33 (3d Cir. 1986) (comparing source codes under an
integrated substantial similarity test that admits both lay and expert testimony), cert. denied, 419
U.S. 1031 (1987).

179. Compare supra Figure 3 with Figure 2.
180. See supra Figure 3.

181. See supra note 73.

182. The total concept and feel test was developed mainly through comparison of user inter
faces, supra note 38, that span the entire range of abstraction, supra note 73.

562 Michigan Law Review [Vol. 91:526

Healthcare's methodologies, and Whelan's purpose, for instance,
omits the range of abstraction covered by data structures and algo
rithms.183 In selecting among existing parts, eliminating overlap may
therefore require introducing gaps between parts.

Gaps between parts are undesirable because they may be closed
incompatibly. A gap may be closed by extending the range of the less
abstract part, by extending the range of the more abstract part, or by
"plugging" the gap with an additional part. In the example S, an in
consistency arises if one court extends literal code to encompass data
structures and algorithms while another court extends methodologies
to cover the same range; the situation deteriorates even further if a
third court plugs the gap by including data structures and algorithms
in the range of abstraction covered by modules184 or another addi
tional part. The proposed definitions prevent such problems by com
prehensively covering the entire range of abstraction from object code
up to main purpose. Existing definitions, by contrast, contain gaps.
The total concept and feel test apparently omits algorithms, data
structures, and ADTs. 185 Other sets of abstraction parts noted by
courts also leave gaps between levels of abstraction. 186 Courts could
eliminate overlap and avoid gaps more effectively by adopting a new
set of part definitions. The parts proposed in section I.B are distinct
from one another because each level of abstraction contains specific
software entities not found in the higher levels. 187 Moreover, the pro
posed definitions were designed from the start to complement each
other; this cannot be said of any aggregation of existing parts plucked
from different substantial similarity tests.

Of course, correct part definitions must do more than merely elimi
nate ambiguous overlaps and gaps; confusion may also arise if defini
tions address fundamentally different policy concerns. In particular,

183. See supra Figures 2 and 3.
184. Module might mean quite different things to different courts. Compare Whelan Assocs.,

Inc. v. Jaslow Dental Lab., Inc., 797 F.2d 1222, 1230 n.15 (3d Cir. 1986) (treating module and
subroutine as essentially equivalent), cert. denied, 479 U.S. 1031 (1987) with Q·Co Indus., Inc. v.
Hoffman, 625 F. Supp. 608, 614 (S.D.N.Y. 1985) (treating module as a collection of subroutines).

185. Algorithms, data structures, and ADTs are not part of a program's "feel" because
"feel" is an aspect of the user interface, supra note 38, and these parts are hidden from users.
Algorithms, data structures, and ADTs are also each less abstract than a "concept," total or
otherwise. Hence, these three parts must lie outside a program's total concept and feel.

186. See supra notes 99-103 and accompanying text.
187. In particular, main purpose contains no modules, but system architecture does; ADTs,

in turn, contain operations and data types, which are not found in any system architecture.
Algorithms specify how to accomplish a result, while ADT operations do not; data structures are
defined in terms of arrays, records, and pointers, whereas ADT data types are not. Source code
is distinct from data structures and algorithms because it must be written in a programming
language, while the latter parts are language-independent. Finally, object code is easily distin
guished from source code because it is produced by translating source code into material tailored
to specific hardware. Although data structures and algorithms lie within the same level of ab
straction, they are distinct from one another because actions (algorithms) are distinct from items
acted upon (data structures).

December 1992] Note - Computer Program Parts 563

doctrinal elements and evidentiary elements should be excluded from
the set of abstraction part definitions. Doctrinal elements implicate
different concerns about the scope of protection than do abstraction
parts, because scenes a faire and other doctrines rest on different policy
concerns than the idea-expression dichotomy.188 Evidentiary elements
are much more program-specific and programming-language-specific
than abstraction parts, so their inclusion hampers the goal of creating
a manageable and stable set of definitions. This Note's proposal recog
nizes that abstraction parts, doctrinal elements, and evidentiary ele
ments each play a different critical· role in software infringement
cases.189

In deciding what parts to include or exclude, the analysis should
defer to prior legal analysis where possible. The proposed definitions
accordingly defer to what little agreement exists among courts regard
ing levels of abstraction. All courts recognize a program's purpose as
an unprotectable idea that lies at the most abstract level of any ·pro
gram, and all courts treat literal code as the most concrete expression
in any program.190 The unsettled state of software copyright law
strongly suggests that this agreement is worth preserving. Levels of
abstraction that have already received judicial notice should also re
ceive some deference. However, complete consistency between new
and existing abstraction parts is not required, because most existing
sets of abstraction part definitions are mere lists of terms mentioned in
passing, rather than coherent definitions arrived at after careful legal
and technical analysis.191

On the other hand, prevailing legal judgments about the proper
location of the idea-expression line deserve deference, because courts
have carefully analyzed that issue. The line between idea and expres
sion marks a change from the abstract to the specific.192 The proposed

188. Under the scenes afaire doctrine, matter that is otherwise protectable as expression will
be denied protection if it is "indispensable." Frybarger v. International Business Machs. Corp.,
812 F.2d 525, 530 (9th Cir. 1987); see also NIMMER, supra note 13, § 13.03[B][4]; supra note 92.

189. See supra text accompanying notes 92-98.
190. See, e.g., Johnson Controls, Inc. v. Phoenix Control Sys., Inc., 886 F.2d 1173, 1175 (9th

Cir. 1989); Whelan Assocs., Inc. v. Jaslow Dental Lab., Inc., 797 F.2d 1222, 1233, 1236 (3d Cir.
1986), cert. denied, 479 U.S. 1031 (1987); Computer Assocs. Intl., Inc. v. Altai, Inc., 775 F.
Supp. 544, 560-61 (E.D.N.Y. 1991), ajfd. 23 U.S.P.Q.2d (BNA) 1241 (2d Cir. 1992); Telemarket
ing Resources v. Symantec Corp., 1990 Copyright L. Dec. (CCR) 1126,514, at 23,088 (N.D. Cal.
Sept. 6, 1989), modified sub nom. Brown Bag Software v. Symantec Corp., 960 F.2d 1465 (9th
Cir. 1992), cert. denied, 61 U.S.L.W. 3261 (U.S. Oct. 5, 1992); Healthcare Affiliated Servs., Inc.
v. Lippany, 701 F. Supp. 1142, 1150, (W.D. Pa. 1988); Pearl Sys., Inc. v. Competition Elecs.,
Inc., 8 U.S.P.Q.2d (BNA) 1520, 1524-25 (S.D. Fla. 1988); Soft Computer Consultants, Inc. v.
Lalehzarzadeh, 1989 Copyright L. Dec. (CCR) 1126,403, at 22,539 (E.D.N.Y. Aug. 25, 1988);
E.F. Johnson Co. v. Uniden Corp. of Am., 623 F. Supp. 1485, 1497, 1502 (D. Minn. 1985); SAS
Inst., Inc. v. S & H Computer Sys., Inc., 605 F. Supp. 816, 822-23, 826 (M.D. Tenn. 1985).

191. See, e.g., supra notes 103, 149, 162. But cf. supra note 172 (discussing a court's careful
efforts to apply abstraction analysis).

192. Cf. Apple Computer, Inc. v. Franklin Computer Corp., 714 F.2d 1240, 1252-53 (3d Cir.
1983) (holding that one or more particular expressions of an idea may each be protected by

564 Michigan Law Review [Vol. 91:526

levels are defined in a way that permits courts following precedent to
draw the line between two levels instead of within a level. Main pur
pose and source code are proposed as parts because the SSO test and
the iterative test, respectively, draw the idea-expression line along the
borders of these parts. The proposed definitions also avoid extremely
broad parts such as SSO and total concept and feel, because overly
broad abstraction parts defined by one court tend to fragment as other
courts draw the idea-expression line inside them. 193 Even with suffi
ciently small parts, courts may still draw idea-expression lines in sev
eral different places. But each line will lie on one of the borders
between recognized levels of abstraction, and the prevailing agreement
that purpose is an idea and that code is expression will also be
preserved.

Although the definitions should create enough levels of abstraction
to permit courts to draw the idea-expression line between levels, too
many levels of abstraction are just as undesirable as too few levels.
Creating too many parts will make any set of definitions intellectually
unmanageable. Decreasing the number of parts reduces the number of
software engineering definitions courts must master to apply the defi
nitions in practice. Keeping the number of parts small may also make

· expert testimony more useful. Defining fewer parts tends, of course, to
increase the range of abstraction covered by each part. These larger
parts may in turn promote agreement among experts asked to classify
a given piece of evidence according to its level of abstraction. Expert
testimony may thus be freed of fine distinctions that are important to
programmers but irrelevant to the legal issues at hand. 194

Any upper limit on the number of parts is arbitrary, but apparently
no court has recognized more than five abstraction parts or levels at
one time. 195 The proposed definitions require familiarity with numer-

copyright, but the single idea underlying such a plurality of expressions is unprotectable), cert.
denied, 464 U.S. 1033 (1984).

193. Accolade, Inc. v. Distinctive Software, Inc., 1990 Copyright L. Dec. (CCH) ~ 26,612 at
23,627-28 (N.D. Cal. June 17, 1990), introduced concept design within total concept and feel,
and Healthcare, 701 F. Supp. at 1152, introduced methodologies within SSO.

194. There is no shortage of technically important but legally irrelevant distinctions. For
reasons of efficiency, programmers may care intensely whether a linked list is "hashed" or not,
and if so, what hash function is used. See, e.g., AHO ET AL., supra note 27, at 122-34. Because
distinctions between hash functions lie within the data structures and algorithms level of abstrac
tion, a court treating data structures and algorithms as ideas has no need to hear expert testi
mony explaining or identifying hash functions. But cf supra note 83 (discussing consideration of
unprotectable parts).

195. See, e.g., Johnson Controls, Inc. v. Phoenix Control Sys., Inc., 886 F.2d 1173, 1175 &
n.3 (9th Cir. 1989) (listing four program parts); Williams Elecs., Inc. v. Artie Intl., Inc., 685 F.2d
870, 876 n.7 (3d Cir. 1982) (listing five "stages of development of a program") (quoting NA
TIONAL COMMN. ON NEW TECHNOLOGICAL USES OF COPYRIGHTED WORKS, FINAL REPORT
28 (1978)); Computer Assocs. Intl., Inc. v. Altai, Inc., 775 F. Supp. 544, 560 (E.D.N.Y. 1991)
(listing five levels of "generality"), affd. 23 U.S.P.Q.2d (BNA) 1241 (2d Cir. 1992); Pearl Sys.,
Inc. v. Competition Elecs., Inc., 8 U.S.P.Q.2d (BNA) 1520, 1522 n.3 (S.D. Fla. 1988) (listing
"five steps to develop computer software").

December 1992) Note - Computer Program Parts 565

ous technical concepts, and define more parts (seven) and levels of ab
straction (six) than any court has previously utilized. The definitions
proposed here, however, should not be dismissed as overly complex.
First, although some familiarity with programming concepts is re
quired, judges need not be experts to apply the proposed definitions.
A judge who cannot actually translate code from one programming
language to another is nonetheless capable of understanding expert
testimony about the effects of translation on the program's system ar
chitecture, data structures, and source code. Furthermore, courts ap
plying the proposed definitions in software infringement cases may
and should rely on competent counsel, as well as court-appointed ex
perts196 or special masters197 where appropriate. Finally, the proposed
definitions are less numerous and more coherent than the existing jum
bled confusion of parts. The cases discussed in this Note employ ex
plicitly or implicitly at least seventeen abstraction parts, 198 many of
which contradict each other.

In summary, the proposed framework meets requirements that any
set of program abstraction part definitions should satisfy. The pro
posed definitions cleanly divide a computer program into an intellectu
ally manageable set of discrete abstraction parts, covering the entire
range from main purpose through object code, without gaps. The defi
nitions are stable and workable because they rest on widely recognized
aspects of top-down programming. Existing idea-expression distinc
tions receive deference and abstraction parts already recognized by
courts are given due consideration. Although the proposed abstrac
tion parts are therefore preferable to other definitions, the larger ques
tion of the need for any explicit definitions at all merits further
consideration.

196. See, e.g., SAS Inst., Inc. v. S & H Computer Sys., Inc., 605 F. Supp. 816, 818 (M.D.
Tenn. 1985).

197. See, e.g., Johnson Controls, 886 F.2d at 1176.
198. The following cases define or cite the indicated program abstraction parts in the course

of analyzing substantial similarity; parts that appear in several cases are listed only once. John
son Controls, 886 F.2d at 1175 (user interface); Whelan Assocs., Inc. v. Jaslow Dental Lab., Inc.,
797 F.2d 1222, 1224 n.1, 1236 (3d Cir. 1986) (purpose, SSO), cert. denied, 479 U.S. 1031 (1987);
Williams Elecs., 685 F.2d at 876 n.7 (flow charts); Altai, 175 F. Supp. at 560 (object code, source
code, parameter lists, services required, general outline); Accolade, Inc. v. Distinctive Software,
Inc., 1990 Copyright L. Dec. (CCH) ~ 26,612, at 23,628 (N.D. Cal. June 17, 1990) (concept
design); Telemarketing Resources, Inc. v. Symantec Corp., 1990 Copyright L. Dec. (CCH) ~
26,514, at 23,085 (N.D. Cal. Sept. 6, 1989) (look and feel), modified sub nom. Brown Bag
Software v. Symantec Corp., 960 F.2d 1465 (9th Cir.), cerL denied, 61 U.S.L.W. 3261 (U.S. Oct.
5, 1992); Soft Computer Consultants, Inc. v. Lalehzarzadeh, 1989 Copyright L. Dec. (CCH) ~
26,403, at 22,538 (E.D.N.Y. Aug. 25, 1988) (data structure); Healthcare Affiliated Servs., Inc. v.
Lippany, 701 F. Supp. 1142, 1151 (W.D. Pa. 1988) (methodologies); Pearl Sys., 8 U.S.P.Q.2d
(BNA) at 1523 (system level design); E.F. Johnson Co. v. Uniden Corp. of Am., 623 F. Supp.
1485, 1497 (D. Minn. 1985) (literal code, literal translation); Q-Co Indus., Inc. v. Hoffman, 625
F. Supp. 608, 614 (S.D.N.Y. 1985) (module).

566 Michigan Law Review [Vol. 91:526

B. Merits of Explicit Abstraction Part Definitions

This section argues that the program part definitions of section I.B
should be adopted judicially because they form a clear and consistent
framework that rests on well-established programming and copyright
concepts. The section first argues that an explicit framework of ab
straction parts will provide a useful yardstick for comparing existing
and proposed substantial similarity tests by separating objective defini
tional issues from more subjective policy debates. The section then
argues that an explicit framework may beneficially narrow the range
of disagreement over placement of the idea-expression line by clarify
ing what is being classified as idea or expression. The section also ar
gues that a desirable decrease in the case-by-case proliferation of new
program parts may follow from adoption of explicit, technically based
definitions. Finally, the section concludes that even though adopting a
framework of part definitions requires departure from existing case
law, the benefits of express definitions substantially outweigh the costs.

Adopting a single framework of abstraction parts facilitates com
parison of policy arguments about protection199 by providing a yard
stick for measuring different substantial similarity tests. One cannot
directly compare the SSO and iterative tests because of their different
terminology, but superimposing this Note's framework on the cases
reveals that the iterative test does not protect ADTs while the SSO test
does.200 Recognizing ADTs as one part in a framework of parts com
mon to both tests permits a focused policy discussion on the wisdom
of protecting ADTs201 where previously only a general discussion of
tradeoffs between prohibiting literal copying and protecting SSO was
possible. Superimposing any other coherent framework would, of
course, similarly facilitate comparison of different substantial similar
ity tests.

Lacking a settled abstractions framework, the existing cases mix
controversial policy-based arguments over the proper scope of protec
tion with definitional questions about program parts, and fail to reach
agreement on either front. Several observations suggest that previous
judicial attempts at part definitions are shaped to some extent by a

199. See, e.g., Clapes et al., supra note 17; Dunn, supra note 17; Dennis S. Karjala, Copyright,
Computer Software, and the New Protectionism, 28 JURIMETRICS J., Fall 1987, 33, 81-82.

200. Compare supra Figure 2 with supra Figure 3.
201. This Note takes no position on the proper scope of copyright protection for software,

but it may be useful to cite examples of the policy arguments one can fully address only after
ADTs are incorporated in a common framework of program part definitions. One may argue
that no ADT is protectable because every ADT is a "system [or] method of operation." 17
U.S.C. § 102(b) (1988). Alternatively, one may argue that most or all ADTs are protectable
because expression is characterized by choice, and even ADTs that play nearly identical roles can
differ in many details. See SAS Inst., Inc. v. S & H Computer Sys., Inc., 605 F. Supp. 816, 825
(M.D. Tenn. 1985) (noting that the programming process is "characterized by choice" and the
unsuccessful defendant failed to present evidence that the programming choices at issue were
limited); cf. OGILVIE, supra note 36, at 26-34 (discussing ADT variations).

December 1992] Note - Computer Program Parts 567

priori judgments about the proper scope of protection. First, new
parts are defined in cases that move the idea-expression line. For ex
ample, Healthcare's introduction of methodologies202 permitted that
court nominally to follow Whelan while actually providing narrower
protection. Second, several of the parts are judicial constructs rather
than embodiments of recognized programming concepts. 203 Third,
some cases do not precede discussion of the scope of protection with a
separate discussion defining a program's levels of abstraction; instead,
definitions of the scope of protection and of the inherent program
structure ate jumbled together.204 Establishing a stable framework of
abstraction parts allows judges to separate policy conclusions from
software engineering definitions more easily, as they must in order to
resolve policy issues permanently.

A harmonious framework of abstraction parts may also narrow the
range of disagreement over where the idea-expression line should be
drawn by clarifying precisely what is being treated as idea or as ex
pression. If this Note's framework were adopted, a consensus might
emerge that a program's main purpose and system architecture are
ideas, while source code and object code are expression; such a consen
sus would narrow the range of disagreement to ADTs, algorithms, and
data structures. Alternatively, courts might agree that algorithms and
data structures constitute expression. The significance of this Note's
framework lies not in predicting what consensus will emerge, but
rather in noting that the current lack of a common framework makes
any consensus extremely unlikely; without a framework, it is unclear
precisely what part of a program has been treated as idea or as expres
sion. Moreover, even if courts continue to disagree over protectability,
explicit levels of abstraction may at least encourage courts to draw the
idea-expression line between parts rather than within them. 205 If two
courts both recognize that ADTs are basic parts of any program and
agree that the ADT level of abstraction is indivisible for idea-expres
sion purposes, then progress has been made even if one court draws
the idea-expression line above ADTs while the other draws it below.

202. Healthcare, 701 F. Supp. at 1152.
203. Program parts created solely for legal purposes include SSO, concept design, and look

and feel. Whelan Assocs., Inc. v. Jaslow Dental Lab., Inc., 797 F.2d 1222, 1224 n.1, 1236 (3d
Cir. 1986) (SSO), cerL denied, 479 U.S. 1031 (1987); Accolade, Inc. v. Distinctive Software, Inc.,
1990 Copyright L. Dec. (CCR) 1126,612, at 23,628 (N.D. Cal. June 17, 1990) (concept design);
Telemarketing Resources v. Symantec Corp., 1990 Copyright L. Dec. (CCR) 1126,514, at 23,085
(N.D. Cal. Sept. 6, 1989) (look and feel), modified sub nom. Brown Bag Software v. Symantec
Corp., 960 F.2d 1465 (9th Cir.), cert. denied, 61 U.S.L.W. 3261 (U.S. Oct. 5, 1992).

204. See, e.g., Johnson Controls, Inc. v. Phoenix Control Sys., Inc., 886 F.2d 1173, 1175 (9th
Cir. 1989) (defining program components during discussion of "extent of copyright protection");
Plains Cotton Coop. Assocs. v. Goodpasture Computer Serv., Inc., 807 F.2d 1256, 1260-61 (5th
Cir.) (holding that similarity of "organizational structure" of software is not prohibited by copy
right), cert. denied, 484 U.S. 821 (1987). But see Whelan, 797 F.2d at 1230 n.15 (describing how
programs are written before discussing the scope of copyright protection).

205. See supra notes 192-93 and accompanying text.

568 Michigan Law Review [Vol. 91:526

At present, the various substantial similarity tests do not even employ
the same parts terminology.

Adopting this Note's proposal to define explicitly program parts by
their level of abstraction will also discourage further case-by-case part
definitions because the abstractions test fits the inherent top-down
structure of software.2°6 Courts rely on expert testimony to identify
parts,207 and programmers substantially agree on the levels of abstrac
tion presented in section I.B because these levels reflect the inherent
structure of top-down programming.208 Any framework of abstrac
tion part definitions that permits programmers to tender opinions us
ing familiar terms should be more stable than the current tangle of
conflicting and unfamiliar program parts.2o9

In contrast with the advantages just described, the cost of adopting
a common framework of program part definitions for use in substan
tial similarity analysis is small. Some departure from existing case law
is required because the various program parts presently recognized are
simply irreconcilable.210 However, the departure is limited in that
contested part definitions do not undermine the basic rationales for
traditional copyright doctrines and policies. The universally accepted
holding that every program has a purpose that is an unprotectable idea
will be unaffected by any framework that recognizes a program's main
purpose as a distinct level of abstraction. Another conflict with ex
isting case law arises from the ordinary observer standard some courts
apply in assessing substantial similarity;211 expert testimony will be
required under this Note's approach because ordinary observers are
unfamiliar with ADTs, algorithms, and other abstraction parts. How-

206. Computer Assocs. Intl., Inc. v. Altai, Inc., 775 F. Supp. 544, 560 (E.D.N.Y. 1991), ajfd.
23 U.S.P.Q.2d (BNA) 1241 (2d Cir. 1992); NtMMER, supra note 13, § 13.03[F), at 13-78.33.

207. See, e.g., Altai, 775 F. Supp. at 549 (utilizing court-appointed expert); Pearl Sys., Inc. v.
Competition Elecs., Inc., 8 U.S.P.Q.2d (BNA) 1520, 1522 (S.D. Fla. 1988); see also supra note
70.

208. Not every programmer will characterize a given piece of evidence the same way, and
some may suggest that different levels of abstraction should be recognized. Still, a large literature
on computer programming explains and builds on ADTs, data structures, and the other parts
proposed in section I.B. See, e.g., AHO ET AL., supra note 27; OGILVIE, supra note 36; PARSA YE
ET AL., supra note 31; WIRTH, supra note 58. Furthermore, programming languages often in
clude features that facilitate organization of programs according to these levels of abstraction.
See, e.g., BoocH, supra note 39, at 27-28, 80-82, 198-202; OGILVIE, supra note 48, at 81-97, 144,
180-87; STROUSTRUP, supra note 48, at 13-15.

209. Working programmers do not speak in terms of SSO, or expression, or concept design,
or similar legal labels. Another source of terminological confusion is the fact that many legal
terms of art have completely different meanings as terms of art in programming, including class,
code, expression, iterative, literal, procedure, and statement.

210. Those commentators who suggest various kinds of sui generis protection for software
apparently assume much existing precedent is not worth salvaging. See, e.g., Ronald Abramson,
Why Lotus-Paperback Uses the Wrong Test and What the New Software Protection Legislation
Should Look Like. COMPUTER LAW., Aug. 1990, at 6, 9-10; Richard H. Stem, The Bundle of
Rights Suited to New Technology, 47 U. P1rr. L. REv. 1229, 1239-41 (1986). But see Englund,
supra note 17, at 866, 867 n.9 (arguing that no sui generis protection is needed).

211. See generally NIMMER, supra note 13, § 13.03[E).

December 1992] Note - Computer Program Parts 569

ever, although some courts still limit the use of expert testimony,212

other courts, recognizing the need for expert guidance, have appointed
their own experts213 or moved away from lay standards of
comparison.214

The benefits of adopting the proposed framework of abstraction
part definitions substantially outweigh the costs. Although the frame
work impugns aspects of existing case law, it provides a useful yard
stick for comparing substantial similarity tests. The framework also
facilitates the separation of policy arguments over the proper scope of
protection from definitional questions about program parts. Policy
questions cannot be properly resolved without a stable definitional
foundation, because the question of precisely what is or is not pro
tected remains unclear in the absence of reliable definitions. The
framework may also narrow disagreement over where the idea-expres
sion line should be drawn. At the very least, adopting the proposed
framework will discourage further confusing case-by-case definitions
of new parts and so remove one of the most frustrating obstacles to a
coherent law of software copyright infringement.

CONCLUSION

The need for definitions that promote coherent evolution of
software copyright infringement law is evident in the inharmonious,
incomplete and inaccurate part definitions spawned by existing tests
for substantial similarity. The four major tests for substantial similar
ity each use different terminology; none adequately separates policy
questions from part definitions. Flawed definitions promote further
confusion and proliferation of poorly defined abstraction parts as
courts attempt - thus far unsuccessfully - to create part definitions
that are both coherent and correct. Indeed, it often seems that courts
and commentators blur the issue of defining program parts with the
separate policy questions of protecting certain parts.

Some of the resulting chaos is undoubtedly due to the relative
youth of software copyright law. Courts have confronted software

212. See, e.g., Broderbund Software, Inc. v. Unison World, Inc., 648 F. Supp. 1127, 1136
(N.D. Cal. 1986) (reluctantly limiting expert testimony to the question of "whether there exists a
substantial similarity in underlying ideas;" only the "ordinary reasonable person" may assess
similarity in the underlying expression).

213. See, e.g., Computer Assocs. Intl., Inc. v. Altai, Inc., 775 F. Supp. 544, 549 (E.D.N.Y.
1991), ajfd. 23 U.S.P.Q.2d (BNA) 1241 (2d Cir. 1992); SAS Institute, Inc. v. S & H Computer
Sys., Inc., 605 F. Supp. 816, 818 (M.D. Tenn. 1985).

214. See, e.g., Whelan Assocs., Inc. v. Jaslow Dental Lab., Inc., 797 F.2d 1222, 1232 (3d Cir.
1986) ("The ordinary observer test, which was developed in cases involving novels, plays, and
paintings, and which does not permit expert testimony, is of doubtful value in cases involving
computer programs on account of the programs' complexity and unfamiliarity to most members
of the public.") (citations omitted), cert denied, 479 U.S. 1031 (1987). See generally NIMMER,
supra note 13, § 13.03[E][4] (discussing judicial reaction to the ordinary observer test in software
copyright cases).

570 Michigan Law Review [Vol. 91:526

copyright infringement cases for only fifteen or twenty years; most
such cases arose in the 1980s. Compared to books, plays, or movies,
software is a newcomer to copyright law. Because software relies on
rapidly evolving technology and addresses unique problems, software
is also more complex in some ways than these other works. Finally,
software is much less familiar to jurists, particularly in its internal
manifestations such as data structures and ADTs.

This Note has attempted to pull back from the confusion sur
rounding substantial similarity to find some common ground upon
which courts may agree. Software substantial similarity analysis must
be founded on the inherent structures of computer programs. More
over, any set of abstraction part definitions should divide the entire
range of abstraction into a manageable set of stable, distinct parts that
recognizes the useful contributions of earlier case law. This Note has
proposed six levels of abstraction for computer programs: (1) main
purpose; (2) system architecture; (3) abstract data types; (4) algo
rithms and data structures; (5) source code; and (6) object code. The
proposed abstraction part definitions provide a yardstick for compar
ing the substantial similarity tests by cleanly and manageably dividing
a computer program into discrete abstraction parts. Adopting the def
initions should help reduce disagreement over placement of the line
between idea and expression, discourage further bewildering prolifera
tion of new part definitions, and promote the orderly development of
promising copyright doctrines such as the successive filtering test.
Other definitions may be preferable, but unless sui generis protection
for computer programs is forthcoming, some judicial agreement on
program parts must be reached. Without such agreement, courts will
never succeed in fashioning a coherent, correct, and broadly applicable
test for software substantial similarity, and the conflict will simply
grow worse.

	Defining Computer Program Parts Under Learned Hand's Abstractions Test in Software Copyright Infringement Cases
	Recommended Citation

	Defining Computer Program Parts under Learned Hand's Abstractions Test in Software Copyright Infringement Cases

