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ABSTRACT 

In the past, interest in the application of human performance and testing values 

has been limited to exercise professionals and those who participate in physical activity at 

high levels.  One common method exercise physiologists employ to determine 

performance is the assessment of blood lactate concentration [La-] through sampling.  

Blood lactate has been studied extensively; however, selection of an optimal sample site 

for drawing blood lactate is still an ongoing concern for exercise physiologists.  

Site selection can impact the values of blood [La-] being reported, which can in 

turn impact the development of the training prescription.  Studies that compare a 

proximal and distal sample site were few until (Comeau, Lawson, Graves, Church, & 

Adams, 2011) performed a study using common sampling practices to visualize the 

passive sink phenomenon in non-exercising upper extremity muscles after a bout of 

exhaustive lower extremity exercise.  The purpose of this study is to determine if the 

passive sink phenomenon can be visualized in the lower extremity during upper extremity 

exercise. Seven college-aged males completed a 15∙W∙min-1 incremental exercise 

protocol at 60 rpm to volitional fatigue on an upper body ergometer. Blood [La-] was 

measured from the finger and toe at rest immediately post-exercise and every five 

minutes thereafter for 30 minutes after the exercise bout. A two-way 2 x 7 (site x sample 

time) within- subjects repeated-measures ANOVA determined no significant interaction 

effect.  A significant time main effect did exist with Wilks’ Lambda = .032 (F6, 7 = 

35.114, p=0.000).  Blood lactate levels should be assessed from samples taken from the 

limb proximal to the exercising extremity to negate the passive sink effect when 

establishing training protocols from blood [La-].
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Chapter 1 

INTRODUCTION 

 In the past, interest in the application of human performance and testing values 

has been limited to exercise professionals and those who participate in physical activity at 

high levels.  However, in a time when people are becoming more aware and educated to 

the ways physiological testing results can improve their athletic performance, everyone 

from the weekend warrior to the elite marathoner is interested in how to apply exercise 

testing to his or her training regimen.  One common method exercise physiologists 

employ to determine performance is the assessment of blood lactate concentration [La-] 

through sampling.  Blood lactate has been studied extensively; however, selection of an 

optimal sample site for drawing blood lactate is still an ongoing concern for exercise 

physiologists.  

Site selection can impact the values of blood [La-] being reported, which can in 

turn impact the development of the training prescription.  The mode of exercise, the 

duration and intensity of exercise can also impact reported blood [La-].  One factor that 

can contribute to discrepancies of reported blood [La-] is the role that inactive muscle 

plays on the metabolic fate of lactate uptake. 

 There have been numerous studies conducted in which the measurement of blood 

lactate concentration [La-] has been performed through blood sampling taken from sites 

proximal to the muscle group performing work, or taken from sites distal to the muscle 

group performing work (Ahlborg, Hagenfeldt, & Wahren, 1975; Forsyth & Farrally, 

2000; Garland & Atkinson, 2008; Karlsson, Bonde-Petersen, Henriksson, & Knuttgen, 

1975; Poortmans, Delescaille-Vanden Bossche, & Leclercq, 1978).  However, studies 
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that compare a proximal and distal sample site were few until (Comeau, et al., 2011) 

performed a study using common sampling practices to visualize the passive sink 

phenomenon in non-exercising upper extremity muscles after a bout of exhaustive lower 

extremity exercise.  When a sample of blood taken from a site closer to the non-

exercising muscle group has a higher [La-] than blood sampled from a site closer to the 

exercising muscle group, the phenomenon known as passive sink is visible (Comeau, et 

al., 2011).  The presence of this phenomenon seeks to explain the accuracy of the 

correlation between the sampling site selection and muscle group being utilized during 

exercise.  The passive sink phenomenon has never been visualized in the non-exercising 

lower extremity muscles when upper extremity muscles have performed a bout of 

exhaustive exercise.  

STATEMENT OF THE PROBLEM 

This study is designed to measure [La-] from a site close to and a site away from 

the exercising muscle utilizing common sampling methods in order to visualize the 

passive sink effect in the non-exercising lower extremity.  The problem is to apply the 

concepts used by (Comeau, et al., 2011) to obtain blood from exercising and non-

exercising limb, and analyze the lactate concentration, in order to determine the role that 

the sampling site plays in reported [La-] values.  

PURPOSE OF THE STUDY 

 Blood lactate sampling has been utilized as a method for evaluating athletic 

performance and developing training prescriptions for many years (Moran, Prichard, 

Ansley, & Howatson, 2012). However, as our understanding of blood [La-] increases, the 



3 
 

question of sample site selection gains in importance, in order for the results to reflect the 

most accurate representation of blood [La-].  

There have been many sites utilized as sample sites for drawing blood lactate.  

Other than the typical venous and arterial blood draws, ear lobe, finger and great toe 

sticks have been employed (Ahlborg, et al., 1975; Baker, Brown, Hill, Phillips, Williams, 

& Davies, 2002).  There has been significant variability between sample sites as well as 

variability related to the time at which the sample is taken after an exercise bout.  Given 

the importance of sample site selection and due to the key role the data play in 

determining a training prescription, it is crucial that we attain an accurate understanding 

of the role inactive muscle plays on [La-].  The passive sink phenomenon occurs when 

lactate pools in the inactive muscle, which can lead to higher lactate levels in sites closer 

to the non-active muscle than in sites closer to the active muscle (Poortmans, et al., 

1978).  The presence of a passive sink phenomenon in the upper extremity during lower 

extremity exercise has been visualized by Comeau and colleagues (2011) in a previous 

work; therefore, the purpose of this study is to determine if the passive sink phenomenon 

can be visualized in the lower extremity during upper extremity exercise.  

SIGNIFICANCE OF THE STUDY 

 As we investigate the relationship between sampling site and blood [La-] and 

attempt to relate it to the pattern of lactate appearance or disappearance, several factors 

come into play.  The site from which the blood is drawn is of vital importance when the 

resultant data are being utilized to prescribe an exercise training protocol (Comeau, et al., 

2011; Moran, et al., 2012).  This study is significant in that it further reveals information 

on the metabolic activity of a resting muscle group before, during and after exhaustive 
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exercise with other muscle groups.  There is a not a great deal of information about the 

metabolic processes of the inactive muscle during exercise (Ahlborg, et al., 1975; 

Poortmans, et al., 1978).  Whereas blood lactate was once thought of as a metabolic 

“dead end” responsible for fatigue, it is now evident that lactate plays a much more useful 

role in intermediary metabolism (Brooks, 1986; Brooks & Gaesser, 1980; Gladden, 2004; 

Poortmans, et al., 1978).  The fate of this metabolite is much debated, and tracer studies 

by Brooks were performed in order to determine the metabolic pathways of lactate 

transport after an exhaustive bout of exercise (Brooks & Gaesser, 1980).  This 

groundbreaking work revealed a new and never before seen pathway for lactate 

metabolism, showing that there are multiple pathways for lactate removal after exercise 

(Brooks & Gaesser, 1980).  The passive sink phenomenon is one such revolutionary 

pathway.  The importance of these pathways is still a point of debate among physiologists 

(Kelley, Hamann, Navarre, & Gladden, 2002).  The role of resting musculature as an 

endpoint for lactate metabolism is a novel concept that is gaining recognition.  

The focus of this study is to further confirm the presence of the passive sink 

phenomenon in the lower extremity, which was first visualized by Comeau (2011) in the 

upper extremity, by applying similar experimental procedures.  In so doing, this study 

will have two-fold benefits: first, the base of knowledge regarding lactate utilization in 

resting muscle will be broadened, which will benefit the field of physiology and spark 

more research into this interesting and unique phenomenon.  Second, this study will 

provide evidence for clinicians to correctly choose a sample site close to the exercising 

muscle, which should systematically eradicate misleading results and lead to more 
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accurate training prescriptions, resulting in improved athletic performance (Comeau, et 

al., 2011).  

DELIMITATIONS 

 This study will be delimited to: 

1. Seven healthy, male subjects who are currently participating in a non-specific 

mixture of both anaerobic and aerobic conditioning.  

2. Subjects who did not consume caffeine or any other stimulating substances 12 

hours prior to the testing bout. 

3. Subjects who were advised to refrain from exercise in the 24 hours prior to the 

testing bout.  

4. Each subject was briefed on experimental procedure and signed an informed 

consent document prior to testing.  

5. All testing was performed using the same SciFit (SCIFIT, Tulsa, OK) upper 

body ergometer at the Marshall University Recreation Center in a private 

laboratory setting. 

6. Anthropomorphic measurements were determined by height and weight 

measurements.  Height and weight were measured to the nearest inch and kg, 

respectively.  

7. Blood samples were drawn from the finger and toe, using spring loaded Fisher 

Brand Unistik2, extra single use capillary sampling devices (Fisher 

Healthcare, Houston, TX).  All blood samples were drawn into heparinized 

capillary tubes (Fisher Scientific, Pittsburgh, PA), and transferred into vials 

from the YSI 2315 Blood Lactate Preservative Kit (Yellow Springs, OH).  
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The blood lactate concentration was then analyzed using the YSI 2300 STAT 

plus-lactate analyzer (Yellow Springs Instruments, Yellow Springs, OH).  

LIMITATIONS 

 This study will be limited by the following: 

1. The examiners cannot thoroughly control the subjects’ compliance to the pre-

exercise restrictions set forth in the delimitations.  

2. The subjects’ compliance to the pre-exercise restriction on caffeine and other 

stimulants cannot be thoroughly controlled. 

3. The collection of a resting sample of blood lactate could cause the subjects 

discomfort, which could lead to apprehension of the following experimental 

procedure. This, in turn, could decrease their exercise performance.  

4. The reporting of pre-testing conditioning level and training volume is 

subjective and could therefore vary among participants in the study.  

5. Though the legs were the inactive muscle investigated during this study, there 

is the possibility that the non-exercising leg was not completely inactive 

(Ahlborg, et al., 1975). Every effort was made to ensure inactivity of the 

muscles through subject positioning, but bracing was not used (Smith, 

Doherty, Drake, & Price, 2004).  

ASSUMPTIONS 

 It is assumed that all subjects who are volunteering for this study completed the 

heath questionnaire accurately and were in compliance with all pre-testing requests 

prohibiting caffeine and exercise.  It is also assumed that all subjects did complete the 

testing protocol and gave their maximal effort. For the purposes of this study, it is 



7 
 

assumed that during arm cycle ergometry, the upper body is the active component of the 

body while the lower body is the inactive component.  Finally, it is assumed that all 

subjects were adequately acclimated to the testing procedures and that any outside 

stressors or apprehension did not negatively affect their performance during testing.  

HYPOTHESIS 

H0: There will not be a significant difference in the blood [La-] between the two 

sample sites after arm cycling to volitional exhaustion.  

H1: There will be a significant difference in the blood [La-] between the two 

sample sites after arm cycling to volitional exhaustion.  

DEFINITION OF TERMS 

Lactate Threshold - The exercise intensity at which blood [La-] begins to increase 

abruptly and progressively, or the exercise intensity where some fixed blood [La-] is 

achieved (Gladden, 2004) 

Adenosine triphosphate (ATP) - A molecule which is considered to be the energy 

currency of living organisms (McArdle, Katch, & Katch, 2010) 

Onset of blood lactate accumulation (OBLA) - An increase in blood lactate equal 

to 4.0 mmol (McArdle, et al., 2010) 
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Chapter 2 

REVIEW OF LITERATURE 

 Lactate, as it is commonly known, is actually lactic acid, which dissociates into a 

lactate anion (La-) and a hydrogen ion (H+) under normal physiological pH levels 

(Gladden, 2004).  This substrate is utilized during exercise, and has been studied 

extensively (Ahlborg, et al., 1975; Astrand, Hultman, Juhlin-Dannfelt, & Reynolds, 1986; 

Brooks, 1986; Brooks & Gaesser, 1980).  Aside from being the subject of much 

investigation, lactate is also a subject of much debate.  Over the years, lactate has been 

assumed to play many different roles during exercise. One great misconception about 

lactate is that it causes muscle fatigue and is a dead end metabolic waste product 

(Gladden, 2004).  Other past roles assigned to lactate include providing the energy 

necessary for muscles to contract, and the causative agent of oxygen debt (Gladden, 

2004).  Though these misconceptions have been invalidated by years of experimentation 

and study, most athletes and lay persons still believe that lactate causes their soreness and 

muscular pain.  These misconceptions will be further addressed in this review of 

literature, as well as the studies that disproved them.  

 Lactate production results from muscle glycolysis and has traditionally been 

associated with anaerobic conditions during exercise (Brooks, 1986).  However, lactate 

has also been shown to be produced under aerobic conditions (Brooks, 1986).  There is a 

correlation between exercise intensity (metabolic rate) and [La-] (Brooks, 1986).  Like 

most physiological processes, lactate appearance and disappearance usually occurs in a 

balanced fashion.  However, when exercise intensity increases to a certain point, the 

energy demand placed upon the body cannot be met by the available energy, which leads 
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to a large accumulation of lactate in the blood and musculature (Astrand, et al., 1986; 

Brooks, 1986) 

 Theories of Lactate Accumulation 

 There have been many theories proposed to explain the physiological 

accumulation of blood lactate levels.  The lactate threshold, the point in which blood 

lactate levels become elevated beyond lactate removal capabilities during incremental 

exercise is generally the point around which most of these hypotheses are centered 

(Gladden, 1996).  First, there is the “traditional” hypothesis, which is known as the 

anaerobic threshold or muscle hypoxia hypothesis (Wasserman, 1984, 1986; Wasserman, 

Whipp, Koyl, & Beaver, 1973).  This hypothesis essentially states that with an increase in 

exercise intensity, there is a concurrent increase in motor unit recruitment and oxygen 

demand is outpaced by oxygen supply (Gladden, 1996).  Adenosine triphosphate (ATP) 

must be produced more quickly therefore; the tissues switch from oxidation to anaerobic 

glycolysis in order to match supply and demand for oxygen (Gladden, 1996).  

 Other more recent theories have become more widely accepted in response to 

evidence that lactate accumulation isn’t caused singularly by oxygen limitation in the 

mitochondria.  One such theory is known as the “multiple factor” theory.  This theory 

hypothesizes that the activity of the sympathoadrenal system, biochemical regulatory 

processes, and added recruitment of type FR (fast, fatigue resistant) and FF (fast, 

fatigable) motor units all interact to stimulate the production and inhibit the removal of 

blood lactate (Gladden, 1996).  This theory maintains that the mitochondria can function 

optimally with muscle oxygen levels occurring during exercise, sufficient to increase  

[La-], which is in direct conflict with the traditional (hypoxic) theory (Gladden, 1996). 
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 Finally there is the “unifying” theory, known as near-equilibrium steady state, 

which proposes to reconcile the “traditional” and “multiple factor” theories, by 

considering oxidative phosphorylation and oxygen levels as rate limiting steps for ATP 

synthesis, although not excluding the factors mentioned in the multiple factor theory 

(Gladden, 1996).   

 Although there are conflicting theories regarding how it occurs, the accumulation 

and resultant clearance of lactate in blood and muscle during exercise is a physiological 

certainty. The rate at which these occur is directly proportional to exercise intensity.  

 Lactate Transportation 

 During exercise, blood [La-] increases progressively at the initial work load and as 

exercise intensity increases, the increase of blood [La-] occurs more rapidly (Gladden, 

2004).  When the production of lactate exceeds the clearance of lactate, there is an 

increase in the [La-] in both the muscle and blood (Gladden, 2004).  The real question is 

what is the metabolic fate of this lactate after accumulation during exercise?  The lactate 

shuttle hypothesis was proposed by Brooks (1986) to explain how lactate is formed and 

distributed.  Essentially this theory posits that the shuttle operates within the intermediary 

metabolic processes of various tissues, which can occur in all physiological conditions 

(Brooks, 1986; Gladden, 2004).  This hypothesis has dispelled the incorrect, but long 

held notion that lactate is nothing more than a dead end metabolic waste product that 

causes muscular fatigue under hypoxic conditions (Gladden, 2004).  By approaching 

lactate as an intermediary metabolite that is diffusible, and can be rapidly exchanged 

among tissue compartments, the role of skeletal muscle in lactate metabolism has taken 

center stage (Gladden, 2004).  Although skeletal muscle was previously thought to be 
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simply a producer of lactate, it is now seen as both a major component in the lactate 

shuttle, as well as a consumer, utilizing lactate (Gladden, 2004).  Poortmans et al., (1978) 

suggests that resting skeletal muscle plays an integral part in the removal of blood lactate 

during intense bouts of exercise, which, when combined with the previously suggested 

theories, gives credence to the role of skeletal muscle as a passive sink.  However, the 

lactate is also distributed to the liver, cardiac and active skeletal muscles for oxidation to 

provide substrates during the exercise bout (Brooks, 1986).  

 A key component of this “intracellular” lactate shuttle is the ability to provide 

lactate as a “mobile fuel” during steady state exercise (Gladden, 2007).  This intracellular 

theory, as proposed by Brooks (1986), could revolutionize our understanding of the 

metabolic fate of lactate, and if it can be proven would cause our current biochemical 

understanding to be completely revised (Gladden, 2007).  Gladden (2007) concisely 

summarizes the idea behind this intracellular shuttle: 

 “The cytosolic activity of the enzyme lactate dehydrogenase (LDH) is so high that 

pyruvate to La- conversion is prevalent, making La- the primary end product of glycolysis 

even under aerobic conditions.  Lactate would then diffuse to mitochondria and into the 

mitochondrial matrix via facilitated diffusion across the inner membrane with the 

assistance of a monocarboxylate transporter (MCT).  In the matrix, lactate would be 

converted back to pyruvate in a reaction catalysed by intramitochondrial LDH” 

(Gladden, 2007).  This reaction, if it could be quantified, would in part explain and 

support the passive sink. 
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The Passive Sink  

 During exercise, the concentration of lactate is due to the balance of lactate 

manufacture and lactate disposal, which is a dynamically occurring process (Poortmans, 

et al., 1978).  As previously mentioned, cardiac muscle, active muscle and the liver are all 

sites within the body where lactate can be eliminated during and after intense bouts of 

exercise (Brooks, 1986; Brooks & Gaesser, 1980; Kelley, et al., 2002).  Non-exercising 

skeletal muscle’s role in lactate uptake has been suggested to be that of a “passive sink” 

by Kelley (Kelley, et al., 2002), who showed that resting skeletal muscle uptakes lactate 

in conditions of elevated arterial [La-], and stores it passively, without much lactate 

metabolism. 

 Skeletal muscle that is active is known to take up lactate from blood during 

exercise; however, it has been shown that lactate can also end up in association with 

blood flow to the inactive muscle, in which only a small percentage of the lactate is 

metabolized, while the rest is turned back into the circulation during exercise, and 

throughout the recovery process (Poortmans, et al., 1978).  

 The transport of lactate from the cytosol where it is produced, to the mitochondria 

where it is consumed, in the intracellular lactate shuttle means that the mitochondrial area 

is serving as a sink, into which there is a net lactate uptake from the blood into the resting 

musculature (Gladden, 1996).  Due to the large mass of skeletal muscle, as well as its 

metabolic capacity, it is clear that muscle is a large functional component of the lactate 

shuttle (Poortmans, et al., 1978).  Exercise training leads to an improved ability to utilize 

lactate, which could lead to faster or improved ability to transport it across the sarcolemal 

membrane and into blood, where it could be oxidized by muscle or transported to sites 
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distant to the active muscle (Gladden, 1996).  In their study on canine skeletal muscle, 

Kelley et al. (2002) defined the passive nature of the non-exercising muscle, stating that 

lactate is not oxidized in the non-exercising muscle, nor is it stored as fuel there. The 

non-exercising muscle does not serve as a sink for very long after the exercise bout, and 

the [La-] declines rapidly until about 15 minutes after exercise stoppage (Catcheside & 

Scroop, 1993; Poortmans, et al., 1978). 

 Comeau and colleagues (2011) were able to visualize this phenomenon using two 

sample sites and a cycling protocol to volitional fatigue. Their study was the first of its 

kind, utilizing two sampling sites (a finger and toe) associated with an exercising and 

non-exercising muscle group, and overlaying the values for comparison.  The findings of 

this unique study were significant, showing differences between the two sites at several 

time points (Comeau, et al., 2011).  However, the study by Comeau and colleagues 

(2011) did not perform the reverse of their experiment, and perform an upper extremity 

exercise bout with samples drawn from the non-exercising lower extremity, though they 

acknowledge that it is reasonable to conclude from their data that the passive sink 

phenomenon would be visualized with this reverse procedure.  It is the intriguing 

possibility of visualizing the passive sink in the non-exercising lower extremity during 

upper extremity exercise presented by Comeau’s initial study, as well as the evidence of 

its existence in other literature (Brooks, 1986; Comeau, et al., 2011; Poortmans, et al., 

1978) that shaped the central research question of this study.  The practical applications 

of using this phenomenon to more accurately choose sample sites for physiological 

lactate assessments, taking into consideration their proximity near or away from the 
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exercising muscle would result in more accurate training protocols, performance 

evaluations and improved athletic performance.  

 Lactate Testing 

 Blood lactate analysis has long been utilized as a method for assessment of an 

individual’s training status, as well as for the prescription of a training protocol to 

improve that individual’s athletic performance (el-Sayed, George, Wilkinson, Mullan, 

Fenoglio, & Flannigan, 1993; Garland & Atkinson, 2008; Moran, et al., 2012).  One of 

the many benefits of lactate testing is the ease with which the samples can be collected 

via capillary micro-punctures.  Capillary blood samples are the method of choice for 

blood lactate sampling because the lactate levels in capillary blood closely mirror values 

in arterial blood, and are less invasive to acquire (Feliu, Ventura, Segura, Rodas, Riera, 

Estruch, Zamora, & Capdevila, 1999).  Capillary samples have been found to be more 

easily tolerable for the subjects and more readily obtainable for the investigator during 

exercise conditions, and require less advanced technical skill to perform (el-Sayed, et al., 

1993; Feliu, et al., 1999; Garland & Atkinson, 2008).  

 The reason we test blood lactate is that it is an indirect measure of the energy 

production within the muscles, which allows us to make performance assumptions based 

on lactate analysis results.  Energy within the human body can be generated through 

metabolic pathways that operate with oxygen (aerobic) or without oxygen (anaerobic).  

There is a point, known as the onset of blood lactate accumulation (or OBLA) at which 

the level of lactate in the blood has increased to 4 mmolL-1 which indicates that lactate 

production and clearance are not at equilibrium (el-Sayed, et al., 1993).  During exercise 

at heavy intensity, [La-] can rise to 20-30 mmolkg-1 of wet muscle weight marking a shift 
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from oxidative energy systems to anaerobic pathways (Karlsson, et al., 1975).  Because 

the level of lactate in blood and muscle will increase with acidosis due to the dissociation 

of a hydrogen ion, use of the OBLA as an indicator for performance is an accepted 

practice (el-Sayed, et al., 1993; Karlsson, et al., 1975).  In the field of exercise 

physiology, a common method for using blood lactate results to manipulate training is to 

train the athlete at or above the OBLA point (Spurway, 1992).  

 As previously mentioned, both aerobic and anaerobic systems can be tested and 

trained using blood lactate values.  Lactate is the product that results from a breakdown 

of glucose, and and glycogen, two sugars that exist in the human body, and this reaction 

occurs anaerobically within the first 2-3 minutes of exercise (Brooks, Fahey, White & 

Baldwin, 2000).  Anaerobic conditions result in higher levels of lactate accumultaion in 

the blood, as this system is rapidly recruited for energy (Gladden, 2004).  However, 

quanitfying an individual’s anaerobic capacity can be difficult.  

 Aerobic (endurance) type exercise is very well measured by blood lactate levels.  

The aerobic system becomes the predominant energy system during exercise bouts 

lasting longer than 2-3 minutes, and requiring effort of low to moderate exercise 

intensity.  Therefore, the determination of a protocol to accurately assess the fitness of the 

aerobic system has been investigated.  Comparison of incremental and steady state 

exercises has shown that incremental stages of increasing intensity lead to a blood [La-] 

sufficient to assess the development of the aerobic energy system (Garland & Atkinson, 

2008; Smith, et al., 2004).  Also, it is important to keep in mind that protocol is not the 

only variable that influences blood [La-], but also exercise duration and work rate play a 

role (Garland & Atkinson, 2008). 
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 The use of a Borg Rating of Perceived Exertion (RPE) scale has been widely used 

to measure exercise intensity, and there is a correlation between the absolute RPE values 

reported, the lactate threshold, and blood [La-] (Boutcher, Seip, Hetzler, Pierce, Snead, & 

Weltman, 1989; Chen, Fan, & Moe, 2002).  Therefore, this scale will be used to monitor 

and estimate lactate threshold and blood [La-] during the course of this study.  

 The muscle group that is undergoing the exercise is another factor that influences 

the physiological responses attained from incremental testing.  The muscle mass of the 

arm has been shown to have higher levels of blood lactate when exercising to volitional 

exhaustion, which may be due to the fact that the muscle mass of the arm is smaller than 

that of the leg, and requires a gripping component that is not present in leg cycle 

ergometry (Smith, et al., 2004), implying that the mass of the active tissue,  can increase 

the blood [La-], resulting in increased muscular [La-] (Baker, et al., 2002).  This 

metabolic response of the working muscle is of interest to physiologists, however, the 

interest of this study is in the difference in blood [La-] in the metabolic response between 

active and inactive muscle.  Arm exercise has been found to cause a decrease in the 

vascular resistance and an increase in blood flow, thus there is increased oxygen uptake 

in the non-exercising leg during upper extremity exercise (Ahlborg, et al., 1975).  There 

is considerable net uptake of lactate and other bloodborne substrates via diffusion into the 

non-exercising muscles, which has implications for the metabolism of lactate (Ahlborg, 

et al., 1975). 

 An understanding of the metabolic and physiological processes associated with 

arm cycle ergometry is important because there is a wide range of clinically relevant 

applications for this information.  Arm cycle ergometry is an exercise modality that is 
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specifically beneficial to those individuals who participate in arm dominant sports such as 

rowing, kyaking, “grinding”, as well as wheel chair sports and activities of daily living 

for those who are paraplegic and do not have the use of their legs. (Price, Bottoms, Smith, 

& Nicholettos, 2011).  Arm cycle ergometry is also a valuable clinical tool for use with 

individuals who suffer from coronary heart disease, or other physiological or orthopedic 

limitations to lower extremity exercise such as peripheral vascular complications, 

ischemia or intermittent claudication (Forsyth & Farrally, 2000; Garland & Atkinson, 

2008; Smith, et al., 2004; Wecht, Marsico, Weir, Spungen, Bauman, & De Meersman, 

2006). 

 In order to visualize differences in blood [La-], the importance of sample site 

selection cannot be overemphasized.  It has been previously stated that there are multiple 

widely utilized sites for common sampling procedures.  Differences between lactate 

values from various sampling sites have implications on training and athletic 

performance by influencing OBLA and exercise intensity (Forsyth & Farrally, 2000).  In 

the most recent work to compare blood lactate from two sample sites, Moran and 

colleagues (2012) found no significant difference between blood [La-] taken from the 

finger and ear, but rather a strong positive relationship leading them to the conclusion 

that the finger and ear can be used interchangeably as sites for lactate measurement in the 

upper extremity.  These results directly conflict with the outcome of Feliu’s 

experimentation, which found a significant difference between blood [La-] levels found in 

the fingertip and ear (Feliu, et al., 1999).  The ear has been found to have lower levels of 

blood [La-] than the finger by several investigators (Dassonville, Beillot, Lessard, Jan, 

Andre, Le Pourcelet, Rochcongar, & Carre, 1998; Feliu, et al., 1999).  Due to the 
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inequalities of [La-] values between the finger and ear sites, the earlobe is excluded as a 

sample site for this study.  Garland (2008) has also proved that the toe is a well tolerated 

sample site and is fairly readily accessible for data collection, especially in activities such 

as rowing, or in this case arm cycle ergometry.  

 The role of the non-exercising muscle on lactate metabolism is once again the 

confounding factor to the establishment of standard protocols for sample site selection.  

In a study that compared treadmill and arm crank ergometry with lactate levels being 

collected from the toe and finger, higher lactate levels were reported in the toe samples 

during the arm crank ergometry exercise.  This study provides compelling evidence of 

both the passive sink phenomenon as well as confirms that lactate values are variable not 

only among sample sites, but,  depending on the mode of exercise, (ergo, the active 

muscle group) (Dassonville, et al., 1998). 

 Finally, the relationship between exercise intensity and blood [La-] is evident in 

the study by el-Sayed (1993), which shows that with increasing exercise intensity, the 

difference in blood [La-] increases between sample sites.  Thus, the exhaustive protocol 

utilized in this study should be of sufficient intensity to elicit a highly visible difference 

in blood [La-] between sample sites, allowing us to clearly visualize the passive sink 

phenomenon.  

Summary 

 The previous research was presented in order to highlight the evolution of our 

understanding of blood lactate. The resources used to compile this literature review were 

chosen to provide multiple perspectives on the scientific, historical, experimental and 

practical aspects related to blood lactate testing and analysis. This comprehensive 
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approach was intended to address aspects relevant to this study.  
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Chapter 3 

METHODS 

SUBJECT RECRUITMENT 

 Subjects for this study were 7 healthy, non-specifically trained college aged 

males, who participated on a voluntary basis.  Each subject had exercise history and used 

a combination of aerobic conditioning and anaerobic training on a regular basis (2-3 

bouts/week).  All subjects were pre-screened and risk stratified according to the standards 

of the American College of Sports Medicine (ACSM).  Subjects were only accepted for 

this study if they meet the ACSM low risk criteria.  Subjects were excluded from the 

study if they presented with known peripheral neuropathy or peripheral vascular disease 

of the lower extremity, due to an increased risk of complications during this study.  All 

subjects were oriented to the procedures and risks of this study prior to any exercise 

testing.  This study received IRB approval (Appendix A).  

INFORMED CONSENT 

 All subjects completed an informed consent (Appendix B). This document gave 

detailed information on the testing procedures, time requirements, potential risks and 

benefits of participation in this study, confidentiality precautions and the right to 

withdraw from testing at any time.  All subjects must understand and sign the informed 

consent prior to undergoing any exercise testing.  The informed consent states that there 

will be no compensation for any injury sustained over the course of this study.  

INSTRUMENTATION 

 Blood samples were drawn from the finger and toe using spring loaded Fisher 

Brand Unistik2, extra single use capillary sampling devices (Fisher Healthcare, Houston, 
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TX).  All blood samples were drawn into Fisher Brand heparinized capillary tubes (Fisher 

Scientific, Pittsburgh, PA), and transferred into vials from the YSI 2315 Blood Lactate 

Preservative Kit (Yellow Springs, OH).  The blood lactate levels were then analyzed 

using the YSI 2300 STAT plus-lactate analyzer (Yellow Springs Instruments, Yellow 

Springs, OH).  Testing was performed using a SciFit Pro 1000 arm cycle ergometer 

(SCIFIT, Tulsa, OK).  Ratings of Perceived Exertion (RPE) were obtained using a 

standard Borg scale, which ranges from 6 to 20. Anthropometric measurements were 

taken using electronic scales (Seca Alpha, Model 770). These measurements will be 

taken for purely demographical purposes.  

PROCEDURE 

 Subjects were instructed to refrain from eating at least 2 hours prior to exercise, 

from consuming any caffeine products for 12 hours prior to exercise and to abstain from 

exercise for 24 hours prior to participating in the study. Subjects reported to the Marshall 

University Recreational Center’s laboratory, where they were oriented to the testing 

equipment and procedure.  Prior to testing, the subject’s anthropometric measurements 

will be taken, to the nearest 0.1 cm and 0.1 kg, using a measuring tape and an electronic 

scale.  The subjects were then instructed to rest in a supine position on a padded table for 

30 minutes.  After the resting period, baseline blood samples were drawn from the distal 

portion of the subject’s third or fourth phalanx of the non-dominant hand and from the 

great toe on the ipsilateral side.  After bleeding at the sample sites was stopped with 

gauze pads, the subject was be allowed to be seated in front of the Sci Fit Pro 1000 cycle 

ergometer.  
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 Subject positioning followed procedures utilized by Smith et al, seating the 

subject so that the crank shaft of the ergometer was level with the subject’s shoulder 

joint.  Subject was also instructed to sit back firmly in the seat to maintain proper 

biomechanics throughout the testing, ensuring that the subjects’ elbows would be slightly 

bent when the arm is at the endpoint of the cranking motion.  The legs were not strapped 

down, but subjects were instructed to keep their feet flat on the foot rests, and placed in 

front of them throughout the test in order to ensure resting of the extremity (Smith, et al., 

2004).  Subjects then began testing with a 1 minute warm up period to familiarize 

themselves with the functions of the ergometer.  This warm up was performed against 10 

W of resistance, at a self-selected cadence.  Arm ergometry testing then commenced 

following a 15∙W∙min-1 incremental exercise protocol at 60 rpm to volitional fatigue or 

failure to maintain the 60 rpm for 10 seconds (Wecht, et al., 2006).  A Borg Scale for 

rating perceived exertion was also utilized to monitor the subjects throughout the test, due 

to the fact that RPE values have an association with lactate threshold and have been 

shown to be effective means for regulating exercise intensity (Boutcher, et al., 1989; 

Chen, et al., 2002).   

Blood was collected using the previously mentioned method and locations 

immediately post exercise and at 5 minute intervals for 30 minutes post exercise.  Blood 

samples were drawn at approximately the same time, in order for the lactate accumulation 

data to be as accurate as possible for that time point.  

BLOOD SAMPLING AND ANALYSIS 

 All blood sampling was conducted on the phalanges of the non-dominant hand 

and from the great toe of the ipsilateral foot.  All sample sites were cleaned using 
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antiseptic 70% ispropyl alcohol prep swabs prior to puncture.  Pressure was then applied 

proximally to the sample site to pool the blood, and the site was pierced with a spring 

loaded lancet.  The initial blood was wiped away with a 70% isopropyl alcohol swab to 

avoid contaminating the sample.  The site then yielded two full 50 µL heparinized 

capillary tubes.  Blood samples were collected as quickly as possible to eliminate 

unwanted lactate accumulation within the sample.  The blood was then transferred to time 

labeled tubes containing blood lactate preservatives and an anti-coagulant (YSI 2315 

Blood Lactate Preservative Kit, YSI, Yellow Springs, OH).  The blood was then analyzed 

for total blood lactate concentration using the YSI 2300 STAT plus- lactate analyzer 

(Yellow Springs, OH).  

STATISTICAL ANALYSIS 

 The data were compiled using Microsoft Excel (2010) and analyzed using SPSS 

(version 19.0).  A two-way, 2 X 7 (site X sample time) within-subjects repeated-measures 

ANOVA was used to determine significance differences between the [La-] obtained from 

the two sample sites in five minute intervals during the cool-down ride.  Post hoc 

pairwise differences, calculated by subtracting the fingertip blood lactate value from the 

great toe lactate value for each site, were determined for each time variable.  Paired 

samples t-tests using the calculated pairwise differences for each time variable were 

conducted for every possible time combination to determine where the differences 

occurred.  Significance was established at an alpha level of p ≤ 0.05. 
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Chapter 4 

RESULTS 

 A total of 7 subjects were tested throughout the course of this study.  The subjects 

were all college aged males whose demographics (mean + SD) are included in Table 1.  

A two-way 2 x 7 (site x sample time) within- subjects repeated-measures ANOVA 

determined no significant interaction effect.  A significant time main effect did exist with 

Wilks’ Lambda = .032 (F6, 7 = 35.114, p=0.000).  There was a cross over effect during the 

post-exercise period which began with elevated blood [La-] in the finger immediately 

post exercise, with toe blood lactate [La-] surpassing the finger at the 15 minute time 

point.  This overall cross over effect is visible in Figure 1.  Trend lines were calculated 

for each data set in an attempt to extrapolate small changes in [La-]. The trend line for the 

toe mean was y= -0.206x + 6.1695. The trend line for the finger mean was y= -0.6425x + 

8.0826. These trend line values are also visible on Figure 1.  These small changes 

represent what is believed to be a hidden passive sink for lactate due to the large muscle 

mass involved in the inactive muscle versus the smaller muscle mass in the active 

muscle. 
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Figure 1.  Finger and toe [La-] during recovery post-exercise (mean  SD). 
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Table 1. Descriptive statistics of subject (mean  SD).  

Age (y) 20.85 + 1.57 

Height (cm) 178.88 + 7.599 

Weight (kg) 82.72 + 12.24 
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Chapter 5 

DISCUSSION 

 The role of inactive skeletal muscle serving as a “passive sink” for blood lactate 

released by an exercising muscle group has been proposed by several authors (Ahlborg, 

et al., 1975; Brooks, 1986; Buckley, Scroop, & Catcheside, 1993; Catcheside & Scroop, 

1993; Comeau, et al., 2011; Dassonville, et al., 1998; Poortmans, et al., 1978).  The 

findings of Comeau et al. (2011) further enforced the presence of this phenomenon, 

exhibiting higher [La-] values in the finger samples obtained after a bout of lower 

extremity exercise than [La-] values taken from the toe at the same time.  

 This study was designed to mimic the previously published work by Comeau et 

al. (2011), in an attempt to confirm the occurrence of the passive sink in reverse, utilizing 

upper extremity exercise with the lower extremity as the resting component.  The 

findings of this study revealed no significant differences between sites at any time point.  

There are several factors that could have contributed to this outcome. 

 Of interest is the size of the working muscle mass.  Skeletal muscle is known to 

have a large role in lactate production and utilization due to its large mass and capacity to 

metabolize carbohydrate substrates, particularly lactate (Gladden, 2004).  Therefore, it 

would be reasonable to assume that the size of the muscle mass being utilized for 

exercise would play a role in the extent of lactate change in the resting musculature 

(Karlsson, et al., 1975).  As the upper extremity calls upon a markedly smaller active 

muscle mass than that of the lower extremity, the biochemical changes evidenced in the 

non-working muscle would be of a smaller magnitude than the changes seen in 

previously published data (Comeau, et al., 2011; Karlsson, et al., 1975; Smith, et al., 

2004).  The slope of the finger mean line seen in our study (see Figure 1) is very closely 
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related to the slope of the finger mean line seen in previously published data (Comeau, et 

al., 2011).  This is interesting because in our study the arm was the active muscle group 

and in the previously published study, it was serving as a “passive sink”.  We would not 

expect the slope of our arm value to be this steep, due to the active nature of the arm 

musculature.  Also, in Figure 1, the relationship of the immediate post toe value is greatly 

elevated when compared with previously published data, which is evidence of a shift of 

lactate toward the non-exercising lower extremity (Comeau, et al., 2011).  We assume 

that this shift is due to pooling of the blood [La-].  This leads us to believe that the 

“passive sink” does occur in the lower extremity during upper extremity exercise, though 

it is not as pronounced as the sink evidenced in the upper extremity by Comeau et al. 

(2011). 

 Another consideration as to why we did not see a pronounced interaction effect 

between sites could be related to the selection of protocol.  The cranking component of 

upper body ergometry has significant impact on physiological responses (Price, et al., 

2011).  Our chosen imposed cadence of 60 rpm is considered to be a slow crank rate, 

which has been found to be appropriate for exercise at low intensity (Price, et al., 2011).  

However, as the intensity of our ramp protocol increased, this slow crank rate could have 

contributed to local fatigue of the subjects’ upper extremity (Price, et al., 2011).  Also, 

keeping the crank rate constant at 60 rpm resulted in greater resistance per given power 

output towards the end of the exercise bout (Price, et al., 2011).  The 15∙W∙min-1 protocol 

utilized by this study was primarily dictated by the ability of the SCIFIT Pro 1000 to be 

controlled in 15 W increments.  This resistance resulted in our subjects reaching 

volitional fatigue in less than 10 minutes.  Because the biochemical response to exercise 
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is dependent upon both work rate and duration of work, the blood [La-] response seen in 

this study may not be reflective of the muscles true work in our chosen protocol (Garland 

& Atkinson, 2008).  The combination of chosen crank rate and work load could have led 

to exhaustion before compartmental fluid shifts were able to occur.  Therefore, it is 

possible that the lactate responses occurring in our study were sub-maximal in nature.  

 Though the results of this study were not significant, they were provocative, and 

show a definite trend towards significance.  The passive sink phenomenon may occur in a 

smaller magnitude in the lower extremity during upper extremity exercise due to the 

smaller muscle mass of the upper extremity.  The findings of this study demonstrate that 

there is still much to be understood about the metabolic fate of lactate during and after 

maximal exercise.  In addition to sample site considerations when utilizing blood [La-] 

for performance evaluation and prescription, this study shows that different modes of 

exercise should be taken into consideration when utilizing blood [La-] values.  Local 

fatigue of musculature due to selection of an overly vigorous protocol could result in  

[La-] values that are not truly representative of the muscle’s work (Comeau, et al., 2011; 

Garland & Atkinson, 2008; Price, et al., 2011; Smith, et al., 2004).  

PRACTICAL APPLICATION 

 When utilizing lactate as an indicator of athletic performance, samples should be 

taken from a site that is in closer proximity to the active musculature, which will allow 

for the most accurate assessment of blood [La-], leading to better training prescriptions 

and outcomes.  
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Site Rest Rest 

Immediate 
post-

exercise 

Immediate 
post-

exercise 
5 min. 
post-ex 

5 min. 
post-ex 

10 
min. 

post-ex 

10 
min. 

post-ex 
1 1.2 1.14 4.62 4.56 4.8 4.9 3.73 3.81 
1 1.27 1.27 5.2 5.58 5.03 5.07 3.99 4.13 
1 1.52 1.5 5.84 4.76 7.3 6.97 6.46 6.68 
1 1.15 1.15 5.62 5.69 8.34 8.04 6.2 6.55 
1 1.89 1.87 6.93 7.19 10.7 10.6 9.42 9.3 
1 1.46 1.5 7.27 6.88 9.98 10 9.29 9.75 
1 1.56 1.53 8.15 7.96 9.11 9.46 8.31 8.28 
2 1.31 1.33 3.4 3.4 4.54 4.57 3.76 3.71 
2 2.12 2.12 3.88 3.83 4.75 4.69 3.91 3.94 
2 3.12 3.03 4.94 5.12 6.78 6.62 6.22 6.22 
2 5.07 4.85 4.41 4.65 6.17 6.11 6.05 6.09 
2 2.98 2.92 5.42 5.23 7.89 7.83 9.49 9.97 
2 1.98 1.93 5.87 5.87 9.22 9.39 9.49 9.42 
2 3.02 3.01 2.95 2.94 7.91 7.87 7.22 7.24 

 

Site 
15 min. 
post-ex 

15 min. 
post-ex 

20 min. 
post-ex 

20 min. 
post-ex 

25 min. 
post-ex 

25 min. 
post-ex 

30 min 
post-ex 

30 min 
post-ex 

1 2.57 2.56 2.27 2.24 2.05 2.04 1.86 1.92 
1 2.3 2.26 1.81 1.83 1.14 1.15 1.07 1.04 
1 5.54 5.4 3.76 3.72 3.35 3.19 2.46 2.33 
1 5.27 5.14 3.97 3.95 3.1 3.05 2.37 2.33 
1 9.66 9.3 7.86 7.95 7.62 8 5.99 6 
1 8.79 8.03 7.43 7.66 5.89 5.67 4.41 4.12 
1 5.7 5.85 5.62 5.57 3.63 3.71 3.61 3.68 
2 3.24 3.11 2.5 2.25 2.22 2.23 2.13 2.04 
2 2.73 2.81 2.35 2.32 1.62 1.85 1.86 1.79 
2 5.26 5.17 4.2 4.2 4.1 4.18 3.32 3.37 
2 5.99 5.94 4.75 4.99 4.29 4.32 3.09 3.99 
2 9.3 9.14 8.42 8.27 7.74 7.45 6.74 6.68 
2 7.75 7.78 7.28 7 5.48 5.51 5.06 5 
2 5.93 6.02 5.27 5.41 4.25 4.07 3.55 3.5 

 

Site: 1 = finger, 2 = toe 
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