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ABSTRACT 

 
Large river studies for freshwater mussel populations and habitat in the Monongahela River within 

Pennsylvania have been almost non-existent over the past century.  Aquatic diversity and water quality 

have been impaired in the Monongahela River since the Industrial Revolution and early impoundments 

were constructed to control the river.  To date, there have been no thorough mussel population studies 

conducted on the Pennsylvanian Monongahela River proper since A.E. Ortmann in 1919.  The mussel 

population accounts for this large river system are invaluable accounts of the aquatic condition of the 

Monongahela River.  Mussel populations and habitat within the river have diminished drastically during 

the 20
th
 century.  Mussel populations and habitat were evaluated using SCUBA reconnaissance at 31 

survey sites over 91 river miles.  Survey methods included timed SCUBA searches for mussel 

populations and substrate consistency.  Substrate habitat at each site was evaluated using diver 

reconnaissance and a modified version of the Ohio River Valley Water Sanitation Commission 

(ORSANCO) Copper Pole Substrate Sampling Protocol.  Substrate sampling efficacy using the Copper 

Pole sampling technique was evaluated using benthic diagrams built using Inverse Distance Weighting 

with software ArcGIS 9.2.  Results of this survey indicated seven (7) mussel species persist within the 

river with limited abundance compared to the 28 species accounted for in 1919.  Habitat assessment 

techniques evaluated for use in large rivers illustrated an overestimation of substrate size.  Paired T-test 

and Wilcoxon Signed-Rank analysis of Copper Pole Sampling versus diver reconnaissance of substrate 

size classes expressed significant differences of substrate geometric means.  These data are presented to 

build on the ever growing research and evaluation of techniques used for large river ecosystem 

monitoring currently being developed in the field of river ecology. 

 
Keywords: Monongahela River, Unionidae, bivalve, habitat, ORSANCO, substrate, geometric 

mean, large river, Interpolation, biomonitoring 
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1. CHAPTER I: Freshwater Mussel Populations and Habitat of the Monongahela River, 

Pennsylvania 

 

1.1  INTRODUCTION 

 

 An evaluation of the mussel populations and substrate habitat of the Pennsylvanian 

Monongahela River was conducted in 2008 to enhance the knowledge of the rivers aquatic fauna 

and ecosystem.  The study was conducted by the Marshall University Aquatic Ecology 

Laboratory directed by Dr. Tom Jones in cooperation with the Marshall University College of 

Science Department of Integrated Science & Technology.  The objective of the study was to 

perform a thorough evaluation of the river’s freshwater mussel community as well as habitat 

condition across the 91 miles of the Monongahela River located within Pennsylvania.  The key 

purpose of this survey was to accurately identify the number of freshwater mussel species as well 

as the quality of habitat available in the Monongahela River within Pennsylvania.  Further 

purposes of this study were to evaluate the efficiency of a modified version of the Ohio River 

Valley Water Sanitation Commission (ORSANCO) substrate sampling protocol known as 

Copper Pole Sampling.  Data such as this are invaluable sources of information that are pertinent 

to regulatory agencies, environmental groups, and the concerned citizens of Pennsylvania for the 

continued conservation and monitoring of the river biota.  Thirty-one Survey sites, each 

approximately 500 meters in length, were randomly selected across 91 river miles to accurately 

assess the river ecosystem.  Survey sites were designated to either left descending bank (LDB) or 

right descending bank (RDB) to avoid interference with commercial navigation on the river.  

Survey sites at each river station were divided into channel, channel slope, and bank habitats to 

evaluate available habitat for mussel colonization. 
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1.2  BACKGROUND 

 

 Freshwater mussels are found worldwide and consist of the Family Margaritiferidae and 

Unionidae.  The greatest accumulation of species is located in North America and consists of 297 

recognized taxa including 281 species and 16 subspecies (Williams et al., 1993).  Of these 297 

species 35 have gone extinct since 1900 (Nedeau, Smith and Stone 2005).  In the last 30 years 

mussel populations have taken a dramatic decline in numbers.  The Nature Conservancy has 

registered 55% of North America’s mussels as extinct or imperiled (Williams et al., 1993).  The 

American Fisheries Society lists 21 taxa as endangered or possibly extinct and 77 taxa 

endangered, making freshwater mussels the most endangered freshwater faunal group in North 

America (Williams et al., 1993).  Mussel populations have been declining at an extinction rate of 

1.2% per decade since 1900.  Without effective conservation and immediate action it has been 

estimated that the extinction rate will increase to 6.4% per decade eradicating 127 imperiled 

mussel species.  (Ricciardi and Rasmussen, 1999).   

 Mussels are not the only groups endangered in North America as fish, crayfish, 

gastropods, amphibians and birds are also projected to have further increases in extinction rates 

(Ricciardi and Rasmussen, 1999).  These increasing extinction rates are a clear sign that the 

waterways of North America are imperiled.  The alarming faunal decline recognized in the last 

30 years has been linked primarily to habitat degradation as a result of anthropogenic activities 

(Williams et al., 1993).  These disturbances include but are not limited to, dam construction, 

stream channelization, pollution, siltation, or altered stream flow patterns.  As suitable habitat is 

destroyed and populations decline a very real threat of extinction becomes apparent.   

 As the integrity of rivers in North America gradually declines greater emphasis must be 

placed upon the conservation and study of our remaining mussel populations.  The life cycle and 
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sedimentary habitat of freshwater mussels makes them an ideal ecological monitor for river 

health (Dennis 1971).  In many streams across North America mussels are extremely prevalent 

with quantities reaching 10 to 100 mussels per square meter with biomasses ranging from 5 to 

100 grams dry matter.  These very prevalent lotic organisms play key roles in particle 

processing, nutrient cycling, and sediment mixing (Strayer et al., 2004).  Mussels are a 

significant part of the aquatic food chain by providing food directly to higher trophic levels while 

also providing nutrients to lower trophic levels with the processing and formation of pseudofeces 

(Hart 1995).  The high volume of water processed by mussels makes them an integral part of the 

chemical processes in the water column.  The water that is siphoned into and out of the mussel is 

filtered providing the mussel with food while also removing and temporarily retaining particular 

chemicals and heavy metals from the environment.  This filtering process gives mussels an 

important role in biological water purification (Hart 1995).  Mussels also are an important prey 

item for particular species of organisms such as the muskrat (Ondatra zibethica), the mink 

(Mustela vison), the otter (Lutra canadensis), as well as several species of fish (Hart 1995).     

 

1.2.1  History 

 

 Original interest in freshwater mussels was brought to light in the 1800s with the 

propagation of the pearl button industry.  In 1912, there were 196 manufacturing plants using 

freshwater mussel shells to produce pearly buttons (Dennis 1971).  By 1930, the mussel industry 

drastically declined with the invention of the plastic button.  Since this time, freshwater mussel 

shells have been utilized by the Japanese cultured pearl industry.  Certain species of shell, those 

only found in freshwater, provide the proper texture and hardness to produce manmade valuable 

pearls.  By artificially placing ground spheres of freshwater shell under the mantle of a clam or 
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oysters, the mantle produces a pearly nacre which eventually forms into a pearl.  The quality of 

shell needed to produce commercial quality pearls to date can only be found in the interior basin 

of the United States and certain rivers in China (Dennis 1971).   

 Early mussel harvesting took a moderate toll on mussel populations but the most serious 

reason behind mussel declines to date is habitat destruction by anthropogenic activities.  These 

effects caused mainly by civilization include agriculture, impoundments, dams, dredging, 

pollution, or sedimentation (Way et al., 1990), all of which permanently alter the habitat where 

freshwater mussels survive.     

 The modification of free flowing rivers by dam construction has dramatically altered the 

natural state of North American rivers.  These dams or impoundments, built for numerous 

reasons including navigation, flood control, reservoirs, recreation, etc., have permanently altered 

the habitat and environment available to freshwater mussels (Watters 2000).  River 

impoundments turn free-flowing rivers into lacustrine environments.  These lacustrine 

environments have increased sedimentation rates and depth while decreasing bottom 

temperatures (Watters 2000).  Mussel decline and elimination of species from numerous rivers 

have been directly attributed to increased sedimentation (Way et al.,. 1990);  (Stansberry 1970).  

The conditions created by dams within the physical environment often become unsuitable for 

juvenile mussel settlement (Fuller 1974).   
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1.2.2  Life Cycle 

 

 The many factors affecting the reproductive survival of freshwater mussels are poorly 

understood and have received heavy scientific interest (Moles and Layzer 2008).  The life cycle 

of a mussel begins as an egg in the ovaries of the female.  As spawning begins, the eggs are 

transferred to specialized chambers known as marsupial gills and these gills begin to inflate.  

Males release sperm into the water column known as broadcast spawning.  The siphoning 

females uptake the sperm and fertilize their eggs.  The embryos will develop into larvae known 

as glochidia within the female’s marsupial pouches.  The female mussels are referred to as 

“gravid” during this brooding period.  From mechanisms that are not fully understood, the 

female will spontaneously expel the glochidia into the water column.  In order to survive the 

glochidia must attach or encyst to the gills of a suitable fish host.  The glochidium feeds off of 

the fishes gills and once mature, the juvenile mussel expels itself from the gills onto the substrate 

for settling (Moles and Layzer 2008).  Any number of disruptions can occur to its life cycle at 

any stage resulting in recruitment failure.       

 The known vertebrate hosts in all but one species of mussels are fish and their 

corresponding gills.  The fish hosts are an essential stage of development for the mussel.  Each 

mussel species has particular species of fish which they utilize for survival.  The fish hosts are 

essential to the reproduction of particular mussel species and therein can be a limiting factor in 

the mussel distribution or existence (Watters 1996).  One of the major problems affecting fish 

host availability are the impoundments and dams restricting the natural flow of water and 

ultimately the ability of fish to travel through the river system.  The availability of proper fish 

hosts to mussel populations is as limiting to population abundance and distribution as glochidia 



6 

 

substrate settlement (Way et al.,1990). Freshwater mussels are then influenced by these 

waterway barriers in an equal factor as the corresponding fish hosts are (Watters 2000).    

 

1.2.3  Impoundments 

 

 A vast number  of freshwater mussels live in and prefer free flowing waterways.  Brown 

and Banks (2001) state that impoundments are the greatest threat imposed on unionid mussels 

today.  The rivers of North America have been heavily modified with over 550 large waterway 

dams.  In the United States there are nearly twice as many as there are in Canada, South and 

Central America combined (Pringle et al., 2000).  In the United States 17% of the 5.6 million 

kilometers of river were dammed during the twentieth century.  Major impoundment 

development peaked during the 1960’s with almost 30 dams constructed each year (Pringle et al., 

2000).  The effects of dams on fish populations and their upstream migrations are heavily 

documented.  Many native stocks of certain taxa such as salmonids, shads, herrings, sturgeons, 

freshwater shrimp, suckers, minnows, darters and even the American eel have been extirpated 

from their native headwater reaches and diminished in population by migration impediment from 

these impoundments (Pringle et al., 2000).   

 The reservoirs and tailwaters created from these impoundments have altered the native 

assemblages that were dependent on lotic environments.  The river environment upstream of the 

dam becomes inundated with water, diminishing habitat, while increasing siltation and anoxic 

conditions in the hypolimnion (Moles and Layzer 2008).  Directly downstream of the dam, 

releases of hypolimnetic water deplete dissolved O2 concentration.  These alterations along with 

altered thermal regimes can inhibit gametogenesis and invertebrate reproduction.  In 2001, 

Hardison and Layzer found that below three dams, mussel densities were negatively correlated to 
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the discharge shear stress and hypothesized that higher stresses found during spring floods 

inhibited settlement of juvenile mussels (Hardison and Layzer 2001).  During periods of high 

flow the ability of sperm to be transported to distant females is reduced by the high water 

volume, suggesting that many rivers with a large connectivity of dams may not have adequate 

recovery periods between dams, severely affecting macroinvertebrate populations (Moles and 

Layzer 2008).  However, though specific testing of this has been difficult based on the various 

factors associated with mussel reproduction.    

 Impoundment has led to an emergence of species flourishing, both native and non-native, 

which prefer the lentic water column settings created by these dams (Pringle et al., 2000).  At the 

turn of the twentieth century, rivers were being quickly converted from free-flowing to run-of-

river reservoirs, and caused almost full elimination of riffle inhabiting mussels from the genera 

Pleurobema, Plethobasus, and Epioblasma (Miller and Payne 1998).  This flow impedance has 

caused an overwhelming change in mussels species established in North America's rivers.  

Rivers that were once free flowing with many riffle series were impounded into reservoirs, with 

reduced water velocity and ever increasing sedimentation rates.  This has led to the emergence of 

many large rivers having an overwhelmingly dominant population of lentic tolerant species of 

Quadrula and Amblema plicata (Miller and Payne 1998).  Numerous studies have documented 

the decline in mussel species below impoundments.  The effects of these impoundments is easily 

seen in altered flow and temperature regimes, changed patterns of sedimentation and scour, and 

in the transport of particulate organic matter (Vaughn and Taylor 1999). 
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1.2.4  Sedimentation/Siltation 

 

 The rivers that were once a series of shallow shoals and runs were impounded to allow 

commercial vessels ease of transport.  The Monongahela River is maintained at a minimum 

depth of 9 feet to allow passage of these vessels.  As vessels proceed, they create pulses of 

turbulence and elevate suspended solids.  The effect of this turbulence is unconsolidated silt and 

sand, which is very poor substrate for invertebrates.  Substrate instability has been shown to be a 

limiting factor affecting mussel beds in the Ohio River drainage (Miller and Payne 1998).  

 In order to maintain commercial barge channels the rivers are dredged periodically.  The 

dredging not only removes the previous substrate, destroying any potential habitat, but also 

removes any invertebrates that may have been established.  The effect of sedimentation from 

increased dredging has been shown unsatisfactory attention.  The U.S. Environmental Protection 

Agency established that in order to maintain satisfactory biota in streams that turbidity should 

remain below 50 Nephelometic Turbidity Units and/or 50ppm (Meador and Layher 1998).        

 Increased sedimentation in a river can be extremely destructive to mussel fauna from 

scouring and smothering.  In 1970, James Gammon reported a 40% reduction in macro-

invertebrate population below a rock quarry discharging inorganic sediment (Gammon 1970).  

Scouring and suspended materials in water columns severely injure both the gills of fish and 

mussels, as well Unionid mantles and shells (Wolcott 1990).  Silt levels above 1,000 mg/l have 

been shown to inhibit food uptake of freshwater mussels by as much as 80% (Wolcott 1990).  

 The overall effects of siltation on mussel populations have been documented since the 

early 20
th

 century.  Robert Coker in 1914 noted the inherent demise of mussel species as 

impoundments increased siltation and favored species which preferred lentic conditions (Coker 

1914).  Extended periods of high siltation have shown to effect mussel metabolisms, switching 
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from siphoning proteins from the water column to depleting non-protein body stores for energy 

(Wolcott 1990).  The smothering effects of siltation in 1936 devastated mussel populations in the 

Tennessee, Ohio, and Mississippi Rivers (Dennis 1984).  As little as ¼ to 1 inch of siltation has 

been shown to cause mortality in freshwater mussels (Ellis 1936).      

 

1.2.5  Gravel Mining/Dredging 

 

 The most widespread and persistent threat to mussel populations is gravel mining (Brown 

and Banks 2001).   Sand and gravel are essential components used in construction.  The need for 

such materials has given rise to aggressive mining of America’s waterways for industrial 

purposes.  Proponents of this industry highly emphasize the need for materials as well the 

benefits of maintaining the shipping channels.  These activities inherently reduce the suitable 

habitat for macro-invertebrates (Brown et al., 1998).  As the larger particles of substrate are 

removed from the river, large quantities of sediments are released increasing the river’s turbidity 

and altering the normal flow of the water channel.  Further effects arise as the newly exposed 

sediment, without larger particle sizes shielding shear force, erode quickly and increase sediment 

load.  After dredging operations are complete, large populations of freshwater mussels are often 

found spoiled on the banks.  These mussels represent the largest part of the total biomass in the 

alluvial environment and are key components in the filtering of large volumes of water which 

play vital roles in modifying the phytoplankton community (Aldridge 2000).  Monahan and 

Caffrey (1996) estimated that as many as 1 million macroinverterbrates were removed for every 

one ton of sediment extracted (Monahan and Caffrey 1996).   

 Further impacts are seen as the mining and dredging activities increase channel 

degradation and erosion in an upstream direction known as headcutting.  Headcutting causes 
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dramatic stream bank erosion and incises the river ultimately narrowing and straightening the 

river further reducing the habitat and vegetation associated with the river bank.  This erosion 

adds increased risks for floods and reduces bank stability (Meador and Layher 1998) 

 

1.2.6  Substrate 

 

The biotic and abiotic habitat characteristics suitable for mussels are poorly understood 

(Brim Box et al., 2002).  A primary influence on mussel distribution is the type of substrate 

present in a system.  Substrate composition has been shown to be a heavy influence on mussel 

community locations.  It has also been shown that, in addition to substrate type, substrate 

stability has a major influence on mussel locations (Brown and Banks 2001).  Brown and Banks 

(2001) found that many mussel species that had been previously reported by Brim Box and 

Mossa (1999) as silt intolerant were in fact quite commonly found in silt, illustrating that 

sediment may not be as large of an influence as the adjusted flow.  However, it is 

overwhelmingly seen that mussel populations are much more commonly found in coarser 

sediments where dislodgement is less likely.  Mussels found in large particle-size substrates and 

gravel bars may then be considered taking advantage of the stable habitat while gaining shelter 

from turbidity and scouring (Brown and Banks 2001)(Brim Box et al., 2002). 

 Habitat preferences by mussels have been attributed to species preferences as well.  Shell 

shape, density, and morphology have been noted as strong factors governing species-to-habitat 

relations.  Species with thick shells consequently inhabit abrasive environments where scour and 

erosion are more common.  Thin shelled species lack these protections and are often found in 

softer environments such as silt or mud layers allowing for ease of movement and buoyancy in 

the soft alluvium.  Evidence to this is easily seen in historically reported mesohabitats such as 



11 

 

mud or sand where common species found could include representatives of the genera Villosa, 

Toxolasma, Pyganodon or Potamilus (Gagnon et al., 2006). 

 

1.2.7  Mining 

 

 Further impacts to the mussel fauna within the Monongahela River Drainage are the long 

term effects of coal mining.  Of the numerous anthropogenic sources of stress to freshwater 

mussels, coal mining is seen as one of the most severe (Diamond and Serveiss n.d.).  Besides the 

well documented effects such as sedimentation, acid mine drainage with heavy metals, and the 

associated water quality degradation, there exists further impacts to aquatic fauna from the 

production of coal from unprocessed coal known as coal fines. 

 Elevated levels of toxic contaminates within sediments and substrate have been 

associated with coal mining and affiliated coal ash.  These contaminated sediments have been 

shown to decrease growth and survival rates as contaminate levels increase (Kunz and Ingersoll 

2010).   

Levels of As, Se, Sr and Cu have been commonly shown to occur in biota associated with 

coal mining.  Accumulations of Cd, Se and Sr have been shown to bioaccumulate within the 

biota as sediment levels increased (Williams and Taylor 2006).  Mining activities and their 

runoff release sediments, salts, and other pollutants into waterways as well as increased water 

volumes.  Mussel community compositions in these areas have been shown to result in 

communities which favored more pollution tolerant species which were less habitat-specific 

(Watters 2000). 
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1.2.8  Study Area 

 

The study area for this survey was the Monongahela River within western Pennsylvania.  

Western Pennsylvania has a long industrial history which has come with severe consequences to 

the rivers and environment.  The Allegheny Divide splits the state of Pennsylvania into two 

basins, either draining ultimately into the Mississippi River or the Atlantic Ocean (Dennis 1971).  

The Monongahela River is one of the largest drainage basins within Pennsylvania, draining 

approximately 19,011km² into the Ohio River.   

 The Monongahela begins in Fairmont, West Virginia, by the confluence of the West Fork 

and Tygart Rivers and drains parts of West Virginia, Pennsylvania, and Maryland.  The river 

flows north from West Virginia into Pennsylvania terminating in the Ohio River.  The rivers total 

length is 127 miles, of which 91 miles are within Pennsylvania (Rowe 1997)(Sams and Beer 

2000).  Two major rivers that join the river are the Cheat and Youghiogheny rivers, joining at 

Point Marion and McKeesport, PA, respectively.  At the Pennsylvania border the average 

discharge from West Virginia is approximately 212,000 m³/second.  There are 9 lock and dams 

on the river, 6 of which are in Pennsylvania (Rowe 1997). 

 The eastern and southwestern portion of the drainage lays at an elevation between 975 to 

1375 feet above sea level.  It is composed of mountainous layers of lower Pennsylvanian, 

Devonian, and Mississippian (375mya) rock layers.  The rugged and tilted nature of the strata 

gives rise to series of parallel ridges producing high-gradient headwater streams in a trellis 

pattern.  The western area of the drainage is composed of primarily sandstone and shale in 

horizontal layers with intermittent seams of Pennsylvanian (345 mya) and Permian (280mya) 
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coal.  This portion has primarily low gradient streams with a tendency to form dendritic patterns 

(Rowe 1997).  
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1.3  METHODS OF INVESTIGATION 

 

Mussel surveys were conducted using timed linear transects via SCUBA divers.  A total 

of 31 sampling locations each approximately 500m in length were investigated over the 91 miles 

of Monongahela River located in Pennsylvania (FIGURE 1)(TABLE 1).  Each river sampling 

site was surveyed on either the left descending bank or right descending bank.  Each river site 

was surveyed with 12 randomly selected dives at timed intervals of five minutes each.  Transects 

were made in parallel with the shore and flow, oriented in the upstream direction to maximize 

visibility.  The 12 dives at each river site were split to include four random dives in less than ten 

feet of water and eight dives random across the survey sites channel slope and channel bottom 

habitats.  The bank habitats were defined as shallow areas between the depths of 1-10 feet.   

The large river system presented a well defined slope that was readily distinguishable 

dropping from the bank depths, often at a near 45 degree angle, into the leveled channel bottom 

(FIGURE 2).  Channel habitats were defined from the point where the slope angle became 

horizontal to the center of the river or mid-channel.  A boat mounted depth finder was used to 

assess channel depths in order to ascertain depths less than ten feet for shallow water dive 

transects.  The maintained barge channel provided a very even contour layout throughout the 

river system.  Only few areas presented differing contour depths and dives were adjusted to still 

maintain habitat delineations.  At areas where the diver encountered obstacles such as point or 

gravel bars, the transect was adjusted to stay within habitat depth requirements.  Obstacles that 

required divers to alter direction in this manner were seldom encountered during the survey.  

This provided equal habitat surveying to avoid missing shallow or deep water mussel 

communities.  Dives performed in parallel with the shore and river channel ensured minimal 

conflict with commercial and recreational traffic.  All dives were required to be greater than 100 
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meters from any intake structures or potential hazards such as mooring docks.  No dives were 

performed between the lock chamber mooring points and the lock and dam structure.   

Sample sites were located using a Garmin GPSMap 498 at coordinates provided from the 

Pennsylvanian Department of Environmental Protection (FIGURE 3).  Upon reaching the site, 

the transects were randomly placed throughout location between 250 meters up and downstream 

of the coordinates, totaling 500m at each river site location.  This ensured that the sample site 

would be adequately sampled over a variety of habitats, depths, and locations.  Transect 

locations were kept at a minimum of five meters apart in any direction.  At each dive site, a 

safety diver deployed an anchor which served as the beginning mark of the transect.  Divers 

recorded an upstream compass heading before entering the water and maintained this orientation 

using a dive compass.  Transect lengths were obtained from a 250 foot dive reel which was 

marked at 1 meter increments and attached to the anchor line.  Divers were in constant 

communication at all times by remote dive com communication gear built into the SCUBA dive 

helmet system.  The search area width of each transect was one meter wide total.  Divers 

searched visually and tactilely at the substrate surface only.  Large rocks encountered during the 

transect were turned over and searched beneath.  The substrate was not disturbed or searched, 

making the protocol a consistent surface search only for time efficiency.  At the end of five 

minutes, divers recorded on a wrist dive slate substrate composition percentages for fines, sand, 

gravel, cobble, boulder, and bedrock.  Zebra mussel occurrence was ranked on a 1-5 scale: 1 = 1 

individual; 2 = multiple individuals; 3 = small clumps of individuals; 4 = greater than 50% 

coverage and, 5 = complete coverage of substrate.  The substrate categories were defined as 

follows: Fines = .001-.062mm; Sand = .063-2.0mm; Gravel = 2.0-64mm; Cobble = 64.0-
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256.0mm; Boulder = 256.0-4096.0mm; and Bedrock = 4096.0- 8000.0+mm.  Average depth was 

recorded by the diver as well as by dive vessel.      
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FIGURE 1.  Location map of Monongahela River within Pennsylvania and West Virginia. 

 

 
  http://www.wvpubcast.org/ 

 

FIGURE 2.  River Habitats sampled by divers during Monongahela Mussel Survey 2008. 
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FIGURE 3.  Location map of sampling site locations along the Monongahela River, PA. 
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FIGURE 4.  Location map of Monongahela River with Pennsylvania and corresponding lock and 

dam systems. 

 

 
(U.S. Army Corps of Engineers, 2010) 
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FIGURE 5.  Map of lock and dam systems in place within the Monongahela River between 

Pennsylvania and West Virginia. 

 

 
(U.S. Army Corps of Engineers, 2010) 
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1.4  RESULTS 

 

The 2008 study collected 148 live mussels across the 31 survey sites (TABLE 3).  This 

represented seven species of mussels: Amblema plicata (threeridge); Lampsilis siliquoidia 

(fatmucket); Lasmigona costata (fluted shell); Leptodea fragilis (fragile papershell); Potamilus 

alatus (pink heelsplitter); Pyganodon grandis (giant floater); Quadrula quadrula (maple leaf).  

Of the 148 mussels found, Potamulis alatus represented 91.2% of the total abundance with 135 

individuals at 24 of the 31 sites.  The second most common mussel found was Lampsilis 

siliquoidia with seven individuals representing 4.7%  of the total abundance from 6 of the 31 

sites sampled. Two individuals of Quadrula quadrula were found at sites 4 & 9.  One individual 

was found of each of the following: Lasmigona costata, Leptodea fragilis, Pyganodon grandis, 

and Amblema plicata (FIGURE 4 & 5).  The 31 survey sites accounted for 373 separate dive 

transects with 31.1 underwater man-hours total.  The five minute transect dives surveyed 12,977 

square meters of river substrate and had a mean area of 34.7 m² with a standard deviation of 

11.2.  Survey dive transects had a mean depth of 12.5 feet with a standard deviation of 6.9.  The 

mean square meters per site surveyed was 418.6m
2
 with a standard deviation of 90.1 (TABLE 3).  

The 31 survey sites were located in six “pools” of the Monongahela River within Pennsylvania, 

with a “pool” being considered the corresponding river length between two lock and dams.  

Substrate survey results are discussed in the following chapter.  The following is a summary of 

the mussel survey results by pool. 
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1.4.1  Results by River Pool 

 

The Monongahela has ten pools corresponding with the ten lock and dams along the river 

system.  Pools are named by the downstream or retaining lock below.  In Pennsylvania there are 

six pools in 91 miles of the Monongahela’s total 128 miles of river (FIGURE 4).  The 

Monongahela’s first pool from downstream towards upstream is the Emsworth Pool.  This pool, 

named after the Emsworth Lock and Dam, is located at mile 6.2 of the Ohio River.  The 

confluence of the Allegheny and Monongahela Rivers at Mile 0 of the Monongahela, is the 

beginning of the Ohio River.  The Braddock Lock and Dam begins at mile 11.2.  At river mile 

23.8 at Elizabeth, Pennsylvania, Pool 3 begins and is correspondingly named “Pool 3” after the 

Lock & Dam 3.  At mile 41.5 at Charleroi Pennsylvania, Pool 4 begins and is also 

correspondingly named after Lock & Dam 4.  The Maxwell Pool starts at river mile 61.2 

approximately five miles downstream from Brownsville, PA.  At river mile 82.0, the Grays 

Landing Pool begins near the town of Grays Landing.  This pool is 8.8 miles long and ends at the 

Point Marion Lock & Dam at river mile 90.8 which is 0.2 miles from the West Virginia border.  

Due to the very small length of Point Marion Pool being located in Pennsylvania, there were no 

sites in this pool (FIGURE 5). 

 

1.4.2  Emsworth Pool 

 

The Emsworth Pool is 17.4 miles long containing the Allegheny, Monongahela, and Ohio 

Rivers (FIGURE 35).  There are 11.2 miles of the Monongahela River in this pool.  Sites 1-5 

were located within this pool.  A total of 1,465 square meters were surveyed with an average site 

search area of 293 m
2 

and an average dive length of 24.4 meters.  The average site depth was 
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13.4 feet deep.  The mean mussel density of this pool was 0.013 mussels per square meter from 

the five sites surveyed.  Nineteen live mussels were found representing six different species: 14 

pink heelsplitters (Potamils alatus); one fluted shell (Lasmigona costata) ; one fragile papershell 

(Leptodea fragilis); one giant floater (Pyganodon grandis); one mapleleaf (Quadrula quadrula) 

and, one fat mucket (Lampsilis siliquoidea).  Fourteen of the pink heelsplitter mussels (P. alatus) 

collected were within sites 2-5.  At site 1, one fragile papershell mussel (L. fragilis) was found, 

and represented the only mussel found at this site.  At Site 2, one fluted shell mussel (L. costata) 

was collected.  At site 3, seven pink heelsplitter mussels were found and represented the only 

species collected.  At site 4, one giant floater (P. grandis), and one maple leaf mussel (Q. 

quadrula) was found.   Three pink heelsplitters were also found at Site 4.  At site 5, one fat 

mucket mussel (L. siliquoidea) and one pink heelsplitter mussel (P. alatus) were found.  The 

mussel density in the Emsworth Pool from these five sites was found to be 0.013 mussels per m
2
, 

the second highest found during this survey.  Forty-three of the 60 dives made in the Emsworth 

Pool reported no zebra mussel (D. polymorpha) activity.  Ten dives reported seeing one zebra 

mussel within the Emsworth pool and seven dives reported seeing two or more individual zebra 

mussels (TABLE 2).  Zebra mussel means per site, based on the 1-5 ranking method, were as 

follows: Site 1-0.333; Site 2- 0.167; Site 3- 0.833; Site 4- 0.250; and Site 5- 0.384. 

 

1.4.3  Braddock Pool 

 

The Braddock Pool is 12.6 miles long and starts at river mile 11.2 near Braddock, PA 

(FIGURE 36).  Sites 6-11 were located within this pool.  A total of 2,245 square meters were 

surveyed with a mean site search area of 374.2 m
2 

and an average dive length of 31.2 meters.  

The average site depth was 14.5 feet.  A total of 72 live mussels were found in this pool 
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representing two separate species.  A total of 71 pink heelsplitters (P. alatus) were found from 

sites 6-11. The pink heelsplitter totals for the sites were the following: Site 6- three mussels; Site 

7- four mussels; Site 8- seven mussels; Site 9- 21 mussels; Site 10- 23 mussels; Site 11- 13 

mussels.  A single mapleleaf mussel was found at Site 9 and represented the only other species 

found besides pink heelsplitters in the Braddock Pool.  The mussel density in the Braddock Pool 

from these six sites was found to be 0.032 mussels per m
2
, the highest density found during this 

survey.  Of the 72 dives made in the Braddock Pool, 54 of them reported no zebra mussel 

presence.  Eight dives reported seeing one individual zebra mussel and ten dives reported two or 

more individual occurrences.  Zebra mussel means per site, based on the 1-5 ranking method, 

were as follows: Site 6-0.667, Site 7- 0.167, Site 8- 1.167, Site 9- 0.167, Site 10- 0.250, and Site 

11-0.0. 

 

1.4.4  Pool 3 

 

Pool 3 is 17.7 miles long and begins at river mile 23.8 near Elizabeth, PA (FIGURE 37).  

Sites 12-15 were located within this pool.  A total of 1,763 square meters was surveyed with an 

average site search area of 440.8 m
2 

and an average dive length of 36.7 meters.  The average site 

depth was 9.0 feet.  A total of 13 mussels were found in this pool representing two separate 

species.  12 pink heelsplitters (P. alatus) were found from sites 12, 14, and 15.  One fat mucket 

mussel (L. siliquoidea) was found at Site 14 representing the only other species found in this 

pool.  No mussels were found at Site 13, a total of 399 square meters were surveyed. The mussel 

density in Pool 3 from these four sites was found to be 0.008 mussels per m
2
.  Of the 48 dives 

made in Pool 3, 37 dives reported no zebra mussel presence.  Five dives reported seeing one 

individual and six dives reported seeing two or more individuals.  Zebra mussel means per site, 
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based on 1-5 ranking method, were as follows: Site 12-0.167, Site 13- 0.333, Site 14- 0.500, and 

Site 15- 0.417. 

 

1.4.5  Pool 4 

 

Pool 4 is 19.7 miles long and begins at river mile 41.5 near Charleroi, PA (FIGURE 38).  

Sites 16-22 are located within this pool.  A total of 3,195 square meters was surveyed in Pool 4 

with an average site search area of 456.4 m
2 

and an average dive length of 38.0 meters.  The 

average transect depth was 12.7 feet.  A total of 23 mussels was found in Pool 4 representing 

three separate species.  Eighteen of the mussels found were pink heelsplitters (P. alatus) and 

were found at sites 17-22.  A total of four fat mucket mussels (L. siliquoidea) was found at sites 

17, 18 and 21.  One threeridge mussel (A. plicata) was found at Site 18 and represents the only 

threeridge mussel found in the study.  Site 16 was the only site in Pool 4 to have no mussels 

found.  The mussel density in Pool 4 from these seven sites was found to be 0.007 mussels per 

m
2
.  Of the 84 dives made, 59 reported no evidence of zebra mussels.  Fifteen of the dives 

reported seeing two or more individual zebra mussels.  Nine dives reported seeing one individual 

zebra mussel and one dive reported seeing clumps of zebra mussels.  Site 19 represented the only 

sighting of zebra mussels clumping together in the study.  Zebra mussel means per site, based on 

the 1-5 ranking method were as follows: Site 16-0.667, Site 17- 0.00, Site 18- 0.250, Site 19- 

0.917, Site 20- 1.167, Site 21-0.250, and Site 22-0.250.  
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1.4.6  Maxwell Pool 

 

Maxwell Pool is 20.3 miles long and begins at river mile 61.2 approximately five miles 

south of Brownsville, PA (FIGURE 39).  Sites 23-27 are located within this pool.  A total of 

2,442 square meters were surveyed in the Maxwell Pool with an average site search area of 488.4 

m
2 

and an average dive length of 40.7 meters.  The average transect depth was 13.5 feet.  A total 

of 19 mussels were found in the Maxwell Pool and only accounted for one species.  Nineteen 

pink heelsplitter mussels (P. alatus) were found in the Maxwell Pool with the following 

numbers: Site 23 – seven mussels; Site 24 – nine mussels; Site 25 – one mussel; Site 26 – two 

mussels.  No mussels were found in Site 27.  The mussel density in the Maxwell Pool from these 

five sites was found to be 0.008 mussels per m
2
.  Of the 60 dives made in the Maxwell Pool, 54 

of them reported no zebra mussel occurrences.  Six occurrences of single zebra mussel 

individuals were found from Sites 23 and 24.  No zebra mussel activities were found in Sites 25, 

26, or 27.  Zebra mussel means per site, based on the 1-5 ranking method, were as follows: Site 

23-0.250, Site 24- 0.250, Site 25- 0.00, Site 26- 0.00, and Site 27- 0.000. 

 

1.4.7  Grays Landing Pool 

 

Grays Landing Pool is 8.2 miles long and begins at river mile 82.0 near the town of 

Grays Landing, PA (FIGURE40).  Sites 28-31 were located within this pool.  A total of 1,867 

square meters were surveyed in Grays Landing Pool with an average site search area of 466.8 m
2 

and a average dive length of 38.9 meters.  The average transect depth was 10.6 feet.  A total of 

two mussels were found in Grays Landing Pool representing two species.  The two species found 

were the pink heelsplitter (P. alatus) at Site 29 and a fat mucket Mussel (L. siliquoidea) also 
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found at Site 29.  The mussel density in Grays Landing Pool from these four sites was found to 

be 0.001 mussels per m
2
, the lowest found during this survey.  No mussels were found at sites 

28, 30, or 31.  In 48 dives, Sites 29-31, within Grays Landing Pool there was no evidence of any 

zebra mussel colonization.    
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TABLE 1.  Sampling site locations in the Monongahela River by pool. 

 

Pool 
Sampling 

Site 

River 

Mile 
UTME UTMN 

Emsworth 

1 0.28 583797.8 4476839.4 

2 3.42 588460.8 4475311.0 

3 4.00 588670.3 4474506.7 

4 5.42 589665.7 4472527.2 

5 7.49 591864.5 4474190.8 

Braddock 

6 12.17 598166.6 4470814.0 

7 12.50 598473.8 4470389.1 

8 15.74 595576.6 4467849.9 

9 18.03 593624.6 4464732.0 

10 20.27 595958.3 4462330.1 

11 21.66 595842.2 4460273.4 

Pool 3 

12 26 591140.7 4455431.3 

13 29.99 588892.7 4452073.8 

14 31.57 591212.7 4451170.5 

15 40.37 593404.8 4446248.6 

Pool 4 

16 45.46 598171.7 4440463.1 

17 46.86 598901.9 4438296.8 

18 50.97 593710.1 4436594.3 

19 51.34 594152.2 4436253.3 

20 56.53 594164.4 4430839.6 

21 57.04 593214.6 4430741.9 

22 59.92 590480 4427795.2 

Maxwell 

23 62.43 587419.9 4429702.0 

24 63.6 585671.3 4429131.2 

25 75.38 591752.4 4416931.7 

26 75.97 592162.2 4416055.5 

27 78.64 592026.7 4412715.2 

Grays 

Landing 

28 85.48 591776.4 4404560.2 

29 86.12 591234.2 4403850.1 

30 87.61 591548.9 4401627.5 

31 87.88 591805.8 4401253.5 
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TABLE 2.  Summary of sampling stations for mussel collection, species diversity, depth, and 

search areas in the Monongahela River, PA. 
 

Pool 
Sampling 

Station 

Ave 

Depth 

(ft) 

Total 

Area 

(m²) 

Mean 
Area/transect 

(m²) 

Mussels 

Total 

Species 

Diversity 

Mussels 
(Dead/ 
Halfs)* 

Zebra 
Score Ave 

Emsworth 

1 14.25 247 20.58 1 1 0 0.333 

2 13.75 286 23.83 4 2 2 0.167 

3 16.4 303 25.25 7 1 2 0.833 

4 8.33 364 30.33 5 3 0 0.250 

5 14.61 265 20.38 2 2 2 0.384 

Braddock 

6 18.75 305 25.42 3 1 0 0.667 

7 19.58 350 29.17 4 1 6 0.167 

8 14.23 390 30.58 7 1 8 1.167 

9 12.33 355 29.58 22 1 11 0.167 

10 10.58 366 30.50 23 1 7 0.250 

11 11.58 479 39.92 13 1 10 0.000 

Pool 3 

12 7.91 524 43.67 1 1 2 0.167 

13 8.42 399 33.25 0 0 14 0.333 

14 9.33 458 38.17 9 2 15 0.500 

15 10.5 382 31.83 4 1 13 0.417 

Pool 4 

16 11.91 503 41.92 0 0 5 0.667 

17 12.75 604 50.33 4 2 1 0.000 

18 13.66 350 29.17 5 3 9 0.250 

19 16.25 398 33.17 2 1 7 0.917 

20 9.16 394 32.83 5 1 14 1.167 

21 10.42 443 36.92 5 2 16 0.250 

22 14.67 503 41.92 1 1 8 0.250 

Maxwell 

23 17.5 507 42.25 7 1 1 0.250 

24 15.25 556 46.33 9 1 1 0.250 

25 12.33 432 36.00 1 1 0 0.000 

26 11.66 533 44.42 2 1 0 0.000 

27 11.0 414 34.50 0 0 1 0.000 

Grays 

Landing 

28 7.58 532 44.33 0 0 0 0.000 

29 10.91 419 34.92 2 2 0 0.000 

30 11.5 493 41.08 0 0 0 0.000 

31 12.42 423 35.23 0 0 0 0.000 

Total/Mean 
 

12.57 12977 
 

148 7 155 0.316 

*Column values are counted in half-valve dead shells collected during dive transects 
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TABLE 3.  Summary of transect length, search area, total area, mussels collected and zebra 

mussel scores collected by river pool within the Monongahela River, PA in 2008. 

 

                 

Pool 

Name 

Number 

of sites 

Transect 

Mean 

Length 

(m) 

Site Search 

Area Mean 

(m
2) 

Total 

Area 

(m
2) 

Mussels 

Per Site 

Mean 

Mussel 

Per 

(m
2) 

Total 

Live 

Mussels 

Mean 

zebra 

mussel 

score 

Emsworth 5 24.07 293.0 1465 3.8 0.013 19 0.393 

Braddock 6 30.86 374.2 2245 12 0.032 72 0.403 

Pool 3 4 36.73 440.8 1763 3.5 0.008 14 0.354 

Pool 4 7 38.04 456.4 3195 3.1 0.007 22 0.500 

Maxwell 5 40.07 488.4 2442 3.8 0.008 19 0.100 

Grays 

Landing 
4 38.89 466.8 1867 0.5 0.001 2 0.000 
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TABLE 4.  Summary of mussel species collected by river pool and site number within the 

Monongahela River, PA in 2008. 

                  

  

Location by Pool 

 

Species  Total  Emsworth Braddock 

Pool 

3 

Pool 

4 Maxwell 

Grays 

Landing Site Number 

Potamalis alatus 135 14 71 12 18 19 1 2-12,14,15,17-26,29 

Lasmigona costata 1 1 0 0 0 0 0 2 

Leptodea fragilis 1 1 0 0 0 0 0 1 

Pyganodon grandis 1 1 0 0 0 0 0 4 

Quadrula quadrula 2 1 1 0 0 0 0 4,9 

Lampsilis siliquoidia 7 1 0 1 4 0 1 5,14,17,18,21,29 

Amblema plicata 1 0 0 0 1 0 0 18 

Species Total: 7 6 2 2 3 1 2   

Totals: 148 19 72 13 23 19 2   
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TABLE 5.  Results of the Monongahela River Mussel and Substrate survey of 2008 by River Site. 

 

Site 

River 

Mile 

Mussel 

Abundance 

Species 

Diversity 

Average 

Depth (ft) 

Search 

Area (m²) 

Mussel 

Per (m²) 

Adjusted 

% Fines 

Adjusted 

% Sand 

Adjusted 

% Gravel 

Adjusted 

 % Cobble 

Adjusted 

 % Boulder 

Adjusted 

 % Bedrock 

1 0.28 1 1 14.3 247 0.004 71 10 10.6 0.7 7.7 0 

2 3.42 4 2 13.8 286 0.014 64.9 11.8 11.5 8.5 3.3 0 

3 4.00 7 1 16.4 303 0.023 89.2 4 3.4 1.7 1.7 0 

4 5.42 5 3 8.3 364 0.014 90.8 2.1 4.3 2.9 0 0 

5 7.49 2 2 14.6 265 0.008 31.7 6.3 10.4 16.3 5.9 29.5 

6 12.17 3 1 18.8 305 0.010 29.4 6.8 16 29.9 17.9 0 

7 12.50 4 1 19.6 350 0.011 41.8 3.1 14.4 23.2 16.6 0.9 

8 15.74 7 1 14.2 390 0.018 93.1 2.3 1.1 2.9 0.6 0 

9 18.03 22 1 12.3 355 0.062 89 2.9 3.8 3.3 1.1 0 

10 20.27 23 1 10.6 366 0.063 99.2 0 0 0.9 0 0 

11 21.66 13 1 11.6 479 0.027 68.8 17.9 5.5 4.4 1.4 2 

12 26.00 1 1 7.9 524 0.002 60.5 5.9 33.2 0.5 0 0 

13 29.99 0 0 8.4 399 0.000 98 0 1.6 0 0.5 0 

14 31.57 9 2 9.3 458 0.020 87.8 2.5 3.6 6.2 0 0 

15 40.37 4 1 10.5 382 0.010 60.3 6 14.1 14.9 3.6 1.2 

16 45.46 0 0 11.9 503 0.000 96.1 0.8 0 1.2 1.8 0 

17 46.86 4 2 12.8 604 0.007 100 0 0 0 0 0 

18 50.97 5 3 13.7 350 0.014 88.1 6.8 2.5 2.3 0.3 0 

19 51.34 2 1 16.3 398 0.005 84.7 0.4 0.4 2.1 11.5 0.9 

20 56.53 5 1 9.2 394 0.013 78.3 0 5.1 7.3 9.3 0 

21 57.04 5 2 10.4 443 0.011 88.2 8.2 1.1 2.5 0 0 

22 59.92 1 1 14.7 503 0.002 51.9 3.7 13.3 9.5 12.7 9.1 

23 62.43 7 1 17.5 507 0.014 85.7 0 3.4 5.7 5.2 0 

24 63.60 9 1 15.3 556 0.016 95.3 0 0.6 1.6 2.6 0 

25 75.38 1 1 12.3 432 0.002 94.9 0 2.3 0.7 2.1 0 

26 75.97 2 1 11.7 533 0.004 62.7 0.7 6.2 18.7 11.7 0 

27 78.64 0 0 11 414 0.000 71.1 0 10.2 10.1 8.6 0 

28 85.48 0 0 7.6 532 0.000 100 0 0 0 0 0 

29 86.12 2 2 10.9 419 0.005 63 2.6 4.1 15.9 14.5 0 

30 87.61 0 0 11.5 493 0.000 99.6 0.4 0 0 0 0 

31 87.88 0 0 12.4 423 0.000 93.1 1.2 2.5 2.2 1 0 

*Adjusted results are the combination of 12 transects per site combined. 
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FIGURE 6.  Pie chart of mussel population abundance break down within PA Monongahela 

River. 
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FIGURE 7.  Cumulative number of mussels found compared to cumulative number of  species in 

the Monongahela River, PA sampling sites 1-31. 
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FIGURE 8.  Cumulative number of mussel species found over time in relation to sampling hours 

searched on the Monongahela River, PA. 
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FIGURE 9.  Scatter plot of the average fines and cobbles by site plotted against the total area 

searched by site within the Monongahela River, PA. 
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FIGURE 10.  Scatter plot of dive depth versus mussel abundance collected by survey site within 

the Monongahela River, PA. 

 

 

 
 

 

FIGURE 11.  Scatter plot of dive depth versus mussel abundance collected by transect excluding 

transects where no mussels were found within the Monongahela River, PA. 
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1.5  DISCUSSION 

 

 Historical accounts of the aquatic diversity in the Monongahela River have shown 

severely devastated environments.  There has been extremely limited work done with freshwater 

mussels in the Monongahela River to date.  The first published accounts of freshwater mussels in 

the Monongahela was the “Monograph of Naiades of Pennsylvania” published in 1919 (Ortmann 

1919).  Ortmann described the Monongahela River as “utterly polluted, chiefly by mine water,” 

from the vast coal mining operations in the area (Ortmann 1919).  Even with the dozens of 

tributaries entering the Monongahela River, Ortmann could only name Dunkard Creek, Ten Mile 

Creek, and South Fork of Ten Mile Creek as in “good condition.”  Later years would show 

devastating mine drainage and oil spills to these creeks, depriving the Monongahela of any 

decent tributaries  (Dennis 1971).  Shapiro in 1967 reported that the river’s water quality was 

severely limited and “did not support any significant fisheries” (Hoskin et al., n.d.).  Fisheries in 

the late nineteenth and twentieth centuries were limited to upper headwater habitats where water 

quality remained suitable.  The water quality in the mid-twentieth century became so grossly 

devastated that certain pools became completely devoid of fish life (Hoskin et al. n.d.).   

 With the enactment of water quality standards in the 1970s fish began to reappear in the 

river.  Original recolonization of the river began from headwater species and slowly grew as 

distant downstream species began to arrive.  The lock and dam systems set in place hinder many 

of the species re-entering the river and delayed river rehabilitation (Holland 1984). 

 This trend can be seen across the few mussel surveys which took place over the twentieth 

century on the Monongahela.  Ortmann’s first account of the river, though still utterly polluted at 

that point, noted 28 species of mussels in the river (TABLE 6 & 7).  Of these 28 species 
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referenced, three species referenced were only known from archaeological shells found in 

middens at Point Marion, PA in 1909 and included Cyprogenia stegaria, Epioblasma torulosa 

rangiana, and Lampsilis spp.  None of these species have been found alive within the 

Monongahela River nor its tributaries.  The true account of the original mussel population before 

human alteration may never be known but Ortmann’s original account is the greatest diversity 

noted in the river to date.   

 In 1971, Sally Dennis surveyed three tributaries of the Monongahela River basin, 

Whiteley Creek (Maxwell Pool), Ten Mile Creek (Maxwell Pool) and South Fork Ten Mile 

Creek (Maxwell Pool) for mussels and found only 5 species (TABLE 7).  Her reporting from 45 

sampling sites on 10 tributaries of the Monongahela found that 37 sampling sites were devoid of 

mussels.  Dennis’s survey in the Monongahela drainage focused upon Ortmann’s three “good 

condition” tributaries, Whiteley, Ten Mile, and South Fork of Ten Mile Creeks (Dennis 1971).  

However, it must be noted that Dennis’s search focused primarily on tributaries and can’t 

actually account for the actual mussel populations that may have occurred in the Monongahela 

River at that time.  Her survey did note that of the species found, none of them had any 

significant population numbers.   

 In 1982, Michael Zeto of the West Virginia Department of Natural Resources 

investigated the upper headwaters of the Monongahela River in West Virginia within four 

tributaries.  These tributaries included the West Fork River, the mouth of Hackers Creek, Buffalo 

Creek, and Dunkard Creek.  Though headwater habitats and species can vary greatly, it is in 

decent regard to account for the possibility of other species in the drainage system.  Zeto found 

15 species of mussels to be present in the headwaters of the Monongahela River (TABLE 7).  He 

noted finding one species which was not noted in Ortmann’s 1919 survey.  This species was the 
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salamander mussel (Simpsonaias ambigua), a mussel species that may have existed in the 

Monongahela proper prior to human alteration and pollution (Zeto 1982). 

In 1987, W.A. Tanner reported that no live or dead freshwater mussels existed in the 

Monongahela River.  Tanner surveyed the lower 41.5 miles of the Monongahela River and found 

no existence or evidence of mussel populations which serves as a note on the mussel fauna 

within the river at that time (TABLE 7) (Tolin 1987) (Bogan 1993). 

In 1993, Arthur Bogan surveyed six sites on the Monongahela River proper and also 

found no evidence of mussels present.  According to Bogan, historical data indicates, primarily 

from Ortmann and archaeological literature, that 29 species have been noted as existing in the 

Monongahela River.  Four of these twenty-nine species were accounted for through 

archaeological evidence from shell middens which included the species Cyprogenia stegaria, 

Epioblasma torulosa rangiana, Hemistena lata, and Lampsilis ovata.  Bogan himself found no 

evidence of mussel populations in the six river site surveys on the Monongahela River that he 

conducted but did note numerous invasive Corbicula fluminea shells on the river banks as well 

as abundant trash (TABLE 6).  Bogan’s Monongahela River survey sites included three within 

Fayette County, PA within Pool 4 (at river mile 56.45), Maxwell Pool (at river mile 75.7), and 

Grays Landing Pool (at river mile 90.63).  Two site locations located in Washington County PA 

within Pool 3 at river mile 32.34 and Pool 4 at river mile 43.6.  The remaining site was located in 

Allegheny County, PA within the Braddock Pool at river mile 15.54.  Bogan noted that 

possibilities of tolerant species inhabiting the river do exist for species such as Lasmigona 

costata, Pyganodon grandis, Strophitus undulatus, and Utterbackia imbecillis likely through re-

invasion.   
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Bogan’s 1993 survey represents the most comprehensive survey of the Monongahela 

River Basin since Ortmann’s original.  Including the six Monongahela River proper survey sites, 

Bogan surveyed 133 locations across the basin which included the 8 major tributaries of historic 

and modern representation of mussel fauna.  In total, Bogan found 17 species to be represented 

in the Monongahela River basin (TABLE 7).  Of particular note regarding his findings were 

Simpsonaias ambigua, Utterbackia imbecillis, and Lasmigona compressa which had not been 

recorded by Ortmann to be present in the basin.  Bogan also accounted for three species 

introduced into the basin from Atlantic coast drainages which included Elliptio complanata, 

Lampsilis radiata, and Pyganodon cataracta (TABLE 7). 

 The 2008 Marshall University survey found seven species: A. plicata, L. siliquoidea, L. 

costata, L. fragilis, P. alatus, P. grandis, and Q. quadrula.  Two of these species were 

unaccounted for by Ortmann’s original survey, A. plicata, and Q. quadrula, within the 

Monongahela River proper.  Amblema plicata was found in the tributaries of the Monongahela 

by Ortmann, Bogan, and Zeto but not in the river itself.  This species may be a headwater re-

introduction and not an original Monongahela River proper species.  Quadrula quadrula has not 

been collected within the Monongahela River or tributaries before 2008 to the authors 

knowledge (TABLE 6).  This species is likely a reintroduction to the basin through upstream fish 

host migration from the Ohio River where it is common species.  Potamilus alatus was noted as 

an original species within the Monongahela River by Ortmann but was not noted as present 

within tributaries from Ortmann, Zeto and Bogan.  91.2% of the population abundance within the 

2008 survey was composed of P. alatus indicating a successful reintroduction into the 

Monongahela River main stem (TABLE 6).  The following is a species account for the 

Monongahela River mussel population found by the 2008 survey.  
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1.5.1  Species Ecology    

 

Listed below are the species accounts of mussels collected during the 2008 Monongahela 

River survey.  Mussel glochidia to fish host relationships are defined as listed by the two-letter 

code devised by Dr. Michael Hoggarth of Otterbien University as follows: NI- natural infestation 

of parasite found on wild fish but no metamorphosis observed; NT- natural infestation with 

metamorphosis observed; LI- laboratory infestation with no metamorphosis observed; LT- 

laboratory infestation with metamorphosis observed; NS- not stated in original source 

(Cummings et al., 2003).              

1.5.1.1  Potamilus alatus- Pink Heelsplitter Mussel 

 

  
                           (Little, n.d.) 
 

The most prevalent mussel found in the 2008 survey with 135 individuals.  This mussel 

was the only species found in each Monongahela River Pool within Pennsylvania during the 

2008 survey (TABLE 1 & 2). P. alatus was an original species found by Ortmann in 1919 for the 

Monongahela River and tributaries and was noted as absent by Zeto (1982) and Bogan (1993).  

P. alatus is a relatively fast moving species which prefers mud, silt or fines as habitat.  The 

mussel is common in medium-sized streams to large rivers (Cicerello et al., 2003). The primary 

host fish species for P. alatus is the freshwater drum Aplodinotus grunniens (NI, NS) 

(Cummings et al., 2003).    
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1.5.1.2   Lampsilis siliquoidea- Fat Mucket Mussel 

 

  
   (Warren, n.d.) 

 

This was the second most prevalent mussel found in the 2008 survey with a total 7 

individuals found from the Emsworth Pool, Pool 3, Pool 4, and Grays Landing Pool (TABLE 1 

& 2).  This species was originally found by Ortman (1919) in the Monongahela River.  Dennis 

(1971) and Zeto (1982) found the fat mucket to be one of the more common species in the 

tributaries of the Monongahela.  Not commonly found in large rivers, such as the Monongahela, 

the fat mucket prefers small to medium sized rivers in mud, sand, or gravel habitats.  This 

species prefers calm water such as found in pools or below riffles (Cicerello et al., 2003).  This 

species has a wide variety of fish host species: bluegill Lepomis macrochirus (LT, LI, NI),  green 

sunfish Lepomis cyanellus (LT), longear sunfish Lepomis megalotis (LT), smallmouth bass 

Micropteris dolomieu (LT), largemouth bass Micropteris salmoides (LT,NI), sand shiner 

Notropis ludibundus (LT), bluntnose minnow Pimephales notatus (LT), florida gar Lepisosteus 

platyrhincus (LT), rock bass Ambloplites rupestris (LI), white sucker Catostomus commersoni 

(NS), pumpkinseed Lepomis gibbosus (NI), warmouth Lepomis gulosus (NI), striped shiner 

Luxilus chrysocephalus (LT), common shiner Luxilus cornutus (NS), white bass Morone 

chrysops (LT), tadpole madtom Noturus gyrinus (NS), yellow perch Perca flavescens (LP, NS, 

NI, LT), white crappie Poxomis annularis (NI),  black crappie Pomoxis nigromaculatus (LT, 
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NI), sauger Sander Canadensis (LT), walleye Sander vitreus (NS, LT, NI). (Dennis 1971) 

(Cummings et al., 2003).   

 

 

1.5.1.3  Quadrula quadrula- Mapleleaf Mussel 

 

  
            (Warren, n.d.) 

 

This was the third most common species found in the 2008 survey with a total of 2 

individuals found from the Emsworth and Braddock Pools.  To the authors, knowledge this is the 

first account of this species within the Monongahela River.  This mussel was not found by 

Ortmann, Dennis, Veto, or Bogan in the Monongahela River or its tributaries.  This mussel is a 

common occurrence far downstream in the Ohio River and is likely to have migrated northward 

with fish host movement.  The Mapleleaf prefers small to large sized rivers in mud, sand, or 

gravel (Cicerello et al., 2003).  The primary host fish for the mapleleaf is the channel catfish 

Ictaluris punctatus (LT) and the flathead catfish Pylodicits olivaris (NI). (Cummings et al., 

2003). 
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1.5.1.4  Amblema plicata- Threeridge Mussel 

 

  
              (Warren, n.d.) 
 

One threeridge mussel was found in Pool 4.  To the authors knowledge this is the first 

account of this species within the Monongahela River main stem.  It was accounted for by Zeto 

(1982) and Bogan (1993) in the headwaters of the Monongahela River tributaries.  It is possible 

that this mussel may have colonized the lower Monongahela River after suitable habitat and 

water quality returned.  A. plicata prefers small streams to large rivers in mud, sand, or gravel 

with slow to still moving water such as found in reservoirs or pools (Cicerello et al., 2003).  The 

primary fish host species for this mussel are rock bass Ambloplites rupestris (LT), freshwater 

drum Aplodinutus grunniens (NI), spotfin shiner Cyprinella spiloptera (NI), steelcolor shiner 

Cyprinella whipplei (NI), streamline chub Erimystax dissimilis (NI), northern pike Esox lucius 

(NI), mooneye Hiodon tergisus (NI), northern hogsucker Hypentelium nigricans (NI), channel 

catfish Ictalurus punctatus (NI), shortnose gar Lepisosteus platostomus (LT, LI), green sunfish 

Lepomis cyanellus (LT), pumpkinseed Lepomis gibbosus (LT, NI), warmouth Lepomis gulosus 

(NI), bluegill Lepomis macrochirus (LT, NI), largemouth bass Micopterus salmoides (LT, NI), 

white bass Morone chrysops (NI), black redhorse Moxostoma duquesnei (NI), golden redhorse 

Moxostoma erythrurum (NI), emerald shiner Notropis atherinoides (NI), yellow perch Perca 

flavescens (LT, NI), logperch Percina caprodes (NI), white crappie Pomoxis annularis (NI, LT), 
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black crappie Pomoxis nigromaculatus (NI, LT), flathead catfish Pylodictis olivaris (NS), sauger 

Sander Canadensis (NI) (Cummings et al., 2003). 

 

1.5.1.5  Pyganodon grandis- Giant Floater 

 

 
   (Warren, n.d.) 
 

 

One Giant Floater mussel was found during the 2008 survey in the Lower Monongahela 

Emsworth Pool near Pittsburgh, PA.  This mussel in an original inhabitant of the Monongahela 

River and was found by Ortmann, Dennis, Zeto and Bogan (TABLE 6).  P. grandis prefers small 

to large rivers with clay, silt, or mud.  This mussel prefers calm waters such as found in lakes, 

wetlands, ponds, and reservoirs.  The mussel shell is thin and fragile leaving the mussel 

vulnerable to excessive current or abrasive substrate.  The primary host fish species for this 

mussel are the skipjack herring Alosa chrysochloris (NI), rock bass Ambloplites rupestris (NI, 

LT), yellow bullhead Ameriurus natalis (NI), freshwater drum Aplodinotus grunniens (NI), 

central stoneroller Campostoma anomalum (NI, LT), river carpsucker Carpiodes carpio (NS), 

goldfish Carrasius auratus (LT), white sucker Catostomus commersoni (NS), Rio Grande cichlid 

Cichlasoma cyanoguttatum (LT), brook stickleback Culaea inconstans (NS, LT), common carp 

Cyprinus carpio (NS, NI), gizzard shad Dorosoma cepedianum (NI), rainbow darter Etheostoma 

caeruleum (NI, LT), Iowa darter Etheostoma exile (NS, NI, LT), johnny darter Etheostoma 



47 

 

nigrum (NI, NS, LT), golden topminnow Fundulus chrysotus (LT), banded killifish Fundulus 

diaphanous (LT), brook silverside Labidesthes sicculus (NI, LT), longnose gar Lepisosteus 

osseus (LT), green sunfish Lepomis cyanellus (NI, LT), pumpkinseed Lepomis gibbosus (LT), 

orangespotted sunfish Lepomis humulis (LT), bluegill Lepomis macrochirus (NI, LT, NS), 

longear sunfish Lepomis megalotis (LT), striped shiner Luxilus chrysocephalus (NI, LT), 

common shiner Luxilus cornutus (NI, LT, NS), redfin shiner Lythrurus umbratilis (LT), pearl 

dace Margariscus margarita (NI), largemouth bass Micropterus salmoides (NI, LT, NS), white 

bass Morone chrysops (NI), round goby Neogobius melanostomous (LT), golden shiner 

Notemigonus crysoleucas (LT), blackchin shiner Notropis heterodon (NI, LT), blacknose shiner 

Notropis heterolepis (NI, LT), yellow perch Perca flavescens (NI, LT), bluntnose minnow 

Pimephales notatus (NI, LT), guppy Poecilia reticulate (LT), white crappie Pomoxis annularis 

(NI, NS, LT), black crappie Poxomis nigromaculatus (NI, LT), blacknose dace Rhinichthys 

atratulus (LT), roach Rutilus rutilus (NS), and creek chub Semotilus atromaculatus (LT). 

(Cicerello et al., 2003) (Cummings et al., 2003).      
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1.5.1.6  Leptodea fragilis- Fragile Papershell Mussel 

 

 
   (Little, n.d.) 
 

 

One Fragile Papershell Mussel was found in the Monongahela River within the 

Emsworth Pool. This mussel was not found by Bogan, Dennis, or Zeto in previous Monongahela 

River surveys but was noted as originally present by Ortmann (1919) (TABLE 6).  This species 

ia a commonly found mussel in the Ohio River downstream.  L. fragilis prefers small streams to 

large rivers with calm areas of mud, sand, or gravel.  The thin shell is prone to cracking and is 

not conducive to high current or rock environments.  L. fragilis is often found in reservoirs or 

pools where unconsolidated mud or fines provide stable habitat (Cicerello et al., 2003).  The 

primary fish host species for L. fragilis is the freshwater drum Aplodinotus grunniens (NI). 

(Cummings et al., 2003) 
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1.5.1.7  Lasmigona costata- Flutedshell Mussel 

 

  
   (Little, n.d.) 
 

One Flutedshell Mussel was found in the Monongahela River within the Emsworth Pool 

near Pittsburgh, PA.  L. Costata is an original species for the Monongahela River and was found 

by Ortmann, Dennis, Veto, and Bogan in previous surveys (TABLE 6).  The mussel is generally 

distributed across the Mississippi drainage and prefers mud, sand, gravel, or rocky interstitial 

habitats.  The mussel has a wide range of habitats from small to large rivers and fast or slow 

moving current (Cicerello et al., 2003).  The primary host fish species for this mussel is the 

banded darter Etheostoma zonale (LT), northern hogsucker Hypentelium nigricans (LT), 

pumpkinseed Lepomis gibbosus (LT), largemouth Bass Micropteris salmoides (LT), longnose 

dace Rhinichthys cataractae (LT), rock bass Ambloplites rupestris (LT), brown bullhead 

Ameiurus nebulosus (LT), bowfin Amia calva (LT), central stoneroller Campostoma anomalum 

(LT), goldfish Carrasius auratus (LT), banded sculpin Cottus carolinae (LT), common carp 

Cyprinus carpio (LT), gizzard shad Dorosoma cepedianem (NI), northern pike Esox lucius (LT), 

rainbow darter Etheostoma caeruleum (LT), fantail darter Etheostoma flabellare (LT), striped 

darter Etheostoma virgatum (LT), northern studfish Fundulus catenatus (LT), green sunfish 

Lepomis cyanellus (LT), bluegill Lepomis macrochirus (LT), longear sunfish Lepomis megalotis 

(LT), river redhorse Moxostoma carinatum (NI), yellow perch Perca flavescens (LT), walleye 

Sander vitreus (LT), and creek chub Semotilus atromaculatus (LT) (Cummings et al., 2003). 
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1.5.2  Sampling Design Discussion 

 

 Numerous difficulties are presented to malacologists when attempting to survey large 

rivers for mussels.  Large river sampling often must include either scuba equipment or surface air 

hookah systems.  This limits the surveyor’s ability to effectively sample the river as compared to 

smaller rivers and streams where snorkeling and waist deep water are common.  Finding 

effective sampling methods to adequately sample a river’s mussel population is a common 

constraint to researchers.  Time and budget often limit researchers from conducting quantitative 

sampling such as quadrants or excavation for species densities in large rivers, while species 

diversity and assemblages sampled using qualitative methods such as transects may be limited in 

providing diversity and accurate density values (Vaughn et al., n.d.).  Other difficulties in large 

river sampling include the inability to decipher suitable habitats and locations of particular 

“mussel beds.”  Often quantitative or qualitative surveys in small streams or rivers are 

congregated around riffles or runs where mussels congregate for added nutrients in the water.  In 

large rivers such as the Ohio, Mississippi, or Monongahela Rivers, no such riffles or runs exist; 

they are merely extensive reservoirs of slowly moving water between lock and dams.  This 

leaves randomized sampling completely blind in attempts to locate any mussel congregations.   

 Numerous studies have researched the efficacy of timed searches compared to other 

sampling techniques.  A particular common method of large river sampling is the 100-meter 

transect method.  This method is often utilized by researchers, such as the W.V. Department of 

Natural Resources, and the U.S. Fish and Wildlife Service.  This method randomizes the 

transect’s originating location but maintains a perpendicular direction to water flow.  The 

transect is conducted in ten meter increments for a total length of 100 meters across the river.  

This effectively samples the river’s separate shore, slope, and channel habitats but does not 
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include any leeway in habitats upstream or downstream.  This method has been met with some 

concerns because an ill-placed transect origin may effectively miss numerous species in the river 

which may be congregated along bank or slope habitats.  Timed searches have been shown to be 

more likely to account for more of the mussel species at a site in a river when compared to 

qualitative (quadrat) techniques (Vaughn et al., n.d.), although timed searches are biased towards 

surface-dwelling species, larger species, and those with distinctive shell sculptures.  Smaller 

species and those which may bury deeply tend to be missed by timed searches (Vaughn et al., 

n.d.).  Primary differences between quantitative (timed) sampling and qualitative (quadrat) 

sampling are mostly seen in species richness and composition.  Little differences can be found in 

species diversity between the two methods (Hornbach and Deneka 1996).  Though quadrat 

searches provide precise density estimates, timed searches also provide reliable relative 

abundances when focusing on large surface species (Vaughn et al., n.d.).   

 Vaughn elaborates further that if survey objectives are to locate mussel beds or rare 

species rather than qualitative project goals, timed searches are very applicable.  If objectives are 

to determine abundance, density, or complete demographics then quantitative quadrants with 

sub-surface excavation are recommended.  In large river mussel surveying, where air and time is 

limited by SCUBA, adequate quadrant sampling is nearly impossible (Vaughn et al, n.d.).   

 Our study focused upon determining what species were present in the Monongahela 

River and not density.  Hornbach and Deneka (1996) and Vaughn et al., (n.d.) suggest that 

relative abundances from these accounts are reliable but also note that in particular A. plicata 

was often over counted likely due to A. plicata’s irregular shape and tendency to protrude above 

substrate surfaces (Vaughn et al., n.d.); (Hornbach and Deneka 1996).  Hand collecting via 
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SCUBA is ultimately effective but fails to adequately sample juvenile mussels as well (Hornbach 

and Deneka 1996). 

The number of individuals found in the Monongahela River was excessively low.  This 

may be due to the river’s long history of pollution or habitat alterations that have occurred over 

the past century.  The ability to reasonably assess these effects and the complete mussel 

assemblage in the Monongahela is difficult.  Miller and Payne (1993) for instance, indicated that 

approximately 700 individuals in a study are needed to significantly characterize a mussel 

assemblage.  Hornbach and Deneka (1996) found at certain sites 700 individuals accounted for 

the majority but not necessarily the entirety of the assemblage.  Though, this number of 

individuals is entirely sample location dependent as other sites needed approximately 200 to 

adequately approximate assemblage (Hornbach and Deneka 1996).  Hornbach and Deneka 

(1996) also mentioned that L. fragilis, and L. siliquoidea were prone to be underestimated by 

timed searches.   

Quantative methods of mussel sampling such as tactile and visual searches have been 

shown to give taxa richness values greater than or equal to those conducted using qualitative 

quadrant excavation searches primarily based on the increased mussels obtained (Hornbach and 

Deneka 1996).  Obermeyer (1998) noted that timed searches versus quadrant searches did not 

significantly alter relative abundances or species diversity but noted that quadrant sampling 

increased species richness with more species (Obermeyer 1998).  Vaughn has stated that more 

species are collected using timed searches in less man hours than quadrant, as the increased 

number of individuals collected during timed searches increases diversity at a more efficient rate 

(Vaughn et al., n.d.).   
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The primary goal of our survey was to document the diversity and richness in the 

Monongahela River over a vast area and the timed searches provided a degree of efficiency 

needed to sample across 91 river miles.  The river size in combination with water depth, 

commercial barge traffic and a sparse mussel presence made quadrat or quantitative sampling 

nearly impossible.  A total of 12,977 square meters of surface area were tactilely searched for 

mussel populations.  A primary goal of this tactile search method was time efficiency due to both 

the large number of sites and area as well as the length of time air would last in a SCUBA tank.  

The timed searches inherently reduced the total search areas at each site by the ability of the 

diver to adequately search the substrate surface.  In FIGURE 9, the mean percent of fines and 

cobble recorded by each transect were averaged to result in adjusted fines and cobble per site and 

graphed against total search area per site.  This figure illustrates that as the percent of fines 

increased the divers search area was able to be increased.  The opposite was seen as the diver 

encountered cobbled substrate areas.  The difficulty in searching rocky substrate conditions, with 

its many crevices, limited divers search areas.  This trend, common in timed SCUBA mussel 

sampling, has the inherent ability to trend mussel compositions to species preferring silt or 

muddy conditions which tend to be easier to search.    

A relatively independent method of determining sampling efficacy is to relate the number 

of individual mussels collected in comparison to the number of species collected (Kovalak et al., 

1996).  This method is used to relatively determine the efficiency of sampling and to account for 

the number of species possible.  In FIGURE 7, the cumulative number of mussels found during 

the 2008 survey is compared to the cumulative number of species found over time.  It can be 

seen that the horizontal asymptote of the curves trend line is peaking near 8 mussel species 

(FIGURE 7).   
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A comparison of the efficacy of time spent searching for mussel species in the 

Monongahela can be compared against Hornbach’s 1996 study.  Hornbach surveyed 4 separate 

sites and compared quadrant sampling to timed searches for total assemblage efficiency.  Of the 

4 searches, two sites returned equal numbers of species (19 and 16 species respectively), while 

the other two timed searched surveys returned 25 of 27 (92.5%) and 22 of 28 (78.5%) species.  

The quantities of mussel species were of expected differences as stated earlier by Vaughn et al. 

(n.d.) and Miller and Payne (1993).  Comparing Hornbach’s search intervals for sufficient 

mussel sampling to the 2008 search intervals indicates sufficient sampling time did take place 

within the study.  Hornbach’s timed search intervals for sufficient mussel assemblage were as 

follows: 16 Species-100% accounted (300 minutes searched), 19 Species-100% accounted (120 

minutes searched), 27 Species- 92.5% accounted (254 minutes searched), 28 Species- 78.5% 

accounted (120 minutes searched).  Though, these numbers are based on populations with 

diversities and densities greater than the Monongahela River.  The total number of searched 

minutes by divers in the Monongahela River in 2008 was 1,860 minutes.  By generalization, the 

7 species found in the Monongahela River in 31 hours search time is sufficient sample time for 

complete species assemblage but scientific validation on large rivers is limited at this time. 

 Figure 7 illustrates the cumulative number of mussels species found compared to the total 

number of individuals collected.  This graph in time series shows that gradually over time the 

asymptote of the number of species found gradually levels off indicating that the likely of 

finding more species is low.  This graph illustrates that it is possible that one or two more species 

may be residing within the Monongahela River proper within Pennsylvania.  Figure 8 also 

illustrates that one or two species may be possible with the addition of 10 to 20 more man hours 

of search time above the 31 hours conducted during this survey.    
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TABLE 6.  Mussel species collected on the Monongahela River proper by various surveyors 

from the complete list of mussels collected from the Monongahela River basin to date. 

Surveyor Ortmann (1919) Tolin (1987) Bogan (1993) 
Marshall 

University (2008) 

Location 
Monongahela 

River 
A
   

(PA & WV) 

Monongahela 

River 
1
  

 (PA) 

Monongahela 

River 
2 

  

(PA) 

Monongahela 

River 
3
  

(PA) 

Actinonaias ligamentina x 
   

Alasmidonta marginata 
    

Amblema plicata 
   

x 

Cyclonaias tuberculata* 
    

Ellipsaria lineolata* x 
   

Elliptio complanata4 
    

Elliptio crassidens* x 
   

Elliptio dilatata x 
   

Epioblasma triquetra 
    

Fusconaia flava x 
   

Fusconaia subrotunda x 
   

Lampsilis abrupta* x 
   

Lampsilis cardium x 
   

Lampsilis fasciola 
    

Lampsilis radiata4 
    

Lampsilis siliquoidea x 
  

x 

Lasmigona compressa 
    

Lasmigona costata x 
  

x 

Leptodea fragilis x 
  

x 

Ligumia recta x 
   

Obliquaria reflexa* x 
   

Obovaria subrotunda* x 
   

Plethobasus cyphyus x 
   

Pleurobema clava 
    

Pleurobema cordatum* x 
   

Pleurobema rubrum* x 
   

Pleurobema sintoxia 
    

Potamilus alatus  x 
  

x 

Ptycobranchus fasciolaris x 
   

Pyganodon cataracta4 
    

Pyganodon grandis x 
  

x 

Quadrula cylindrica x 
   

Quadrula metanevra* x 
   

Quadrula pustulosa* x 
   

Quadrula quadrula 
   

x 

Simpsonaias ambigua 
    

Strophitus undulatus x 
   

Tritogonia verrucosa x 
   

Utterbackia imbecillus 
    

Villosa iris         

Total taxa 25 0 0 7 

*  Presumed extirpated from Pennsylvania  (Bogan 1993) 
1   Survey conducted only in the lower 41.5 miles of the Monongahela River 
2
   Survey conducted at 6 sites on Monongahela River 

3
   Survey conducted at 31 sites over 91 miles on Monongahela River 

4
   Noted from Bogan (1993) as introduced species from Atlantic slope drainage 

A
  Does not include archaeological taxa collected from shell middens (Ortmann 1909) 
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TABLE 7.  Mussel species collected from tributaries of the Monongahela River within 

Pennsylvania and West Virgina by various surveyors from the complete list mussels 

collected in the Monongahela River basin to date. 

 

Surveyor Ortman (1919) Dennis (1971) Zeto (1982) Bogan (1993) 

Location 

Monongahela 

Tributaries                 

(WV & PA) 

Monongahela 

Tributaries       

(PA) 

Monongahela 

Tributaries 

(WV) 

Monongahela 

Tiributaries  

(WV & PA) 

Actinonaias ligamentina x 
   

Alasmidonta marginata x 
   

Amblema plicata x 
 

x x 

Cyclonaias tuberculata* x 
   

Ellipsaria lineolata* 
    

Elliptio complanata1 

   
x 

Elliptio crassidens* 
    

Elliptio dilatata x 
 

x x 

Epioblasma triquetra x 
 

x x 

Fusconaia flava x 
 

x x 

Fusconaia subrotunda x x 
  

Lampsilis abrupta* 
    

Lampsilis cardium x 
 

x x 

Lampsilis fasciola x 
  

x 

Lampsilis radiata1 

  
x x 

Lampsilis siliquoidea x x 
 

x 

Lasmigona compressa 
   

x 

Lasmigona costata x x x x 

Leptodea fragilis 
    

Ligumia recta x 
   

Obliquaria reflexa* 
    

Obovaria subrotunda* 
  

x 
 

Plethobasus cyphyus 
    

Pleurobema clava x 
 

x 
 

Pleurobema cordatum* 
    

Pleurobema rubrum* 
    

Pleurobema sintoxia x 
 

x x 

Potamilus alatus x 
   

Ptycobranchus fasciolaris x 
 

x x 

Pyganodon cataracta1 

   
x 

Pyganodon grandis x x x x 

Quadrula cylindrica 
    

Quadrula metanevra* 
    

Quadrula pustulosa* x 
   

Quadrula quadrula 
    

Simpsonaias ambigua 
  

x x 

Strophitus undulatus x x x x 

Tritogonia verrucosa x 
 

x x 

Utterbackia imbecillus 
   

x 

Villosa iris x 
  

x 

Total taxa 22 5 16 20 

* Presumed extirpated from Pennsylvania (Bogan 1993) 
1 Noted from Bogan (1993) as introduced species from Atlantic slope drainage 
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2.  CHAPTER II:   Evaluation of the ORSANCO Copper Pole Substrate Sampling     Technique 

Using G.I.S. Interpolation techniques 

 

2.1  INTRODUCTION 

 

 As humans continue to inhabit areas in close proximity to water, their inherent 

anthropogenic activities routinely degrade waterways, estuaries and aquatic systems.  These 

aquatic ecosystems are extremely vulnerable to habitat modification, pollution, and exploitation.  

Appropriate policies and strategies for maintaining waterway health becomes the framework for 

improvement.  These improvements must be based upon reliable and accurate data from the field 

placed unto scientific record (Diaz et al., 2004).  

 A key component of ecological integrity is habitat.  Habitat can be defined as the 

complete physical and chemical environment of an aquatic ecosystem and its associated living 

organisms.  Standard Rapid Bioassessment Protocols from various administrative organizations 

such as the EPA, consider habitat to be the physical setting in which any organism resides 

(Shaver et al., 2007).  Naturally, a primary component of any aquatic ecosystem is substrate 

consistency and composition.  Key components for numerous aquatic organisms, such as 

mussels, insects, and fish, is substrate composition and bedload consistency.  Substrate also is 

considered the variety of natural underwater structures in the aquatic environment such as woody 

debris, undercut banks, boulders, cobble, sediment or any other natural area.  These 

environments are key locations for spawning and nursery functions required for macrofauna 

integrity (Shaver et al., 2007). 

 Substrate characterization examines the type, condition, and relationship of benthic 

environments.  These relationships often revolve around characterizing the particular sediment 

composition in terms of bedrock, boulder, cobble, gravel, sand, and fines.  Benthic substrates 
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have received limited research when compared to agriculture and surface soils, which have had 

much work done on sediment characterization in relation to toxicity to classify, quantify, and 

identify their characteristics.  Lack of in-depth benthic substrate research is inherently due to 

difficulties associated with conducting research on areas underneath the water surface.   

 Severe declines in benthic organisms and composition has ignited recent research efforts 

to thoroughly examine the effects which anthropogenic activities are having in the waterways 

worldwide.  Habitat monitoring and evaluation has become a standard in aquatic research.  

Biological integrity cannot be directly determined through habitat or substrate monitoring alone 

but can be used as a means to understand impacts associated with harm or degradation in aquatic 

ecosystems (Shaver et al., 2007).   

 Various techniques can be utilized to monitor benthic substrate and habitats which range 

from extremely intensive to near simplistic.  Depending upon the objectives sought, researchers 

must determine the best means of evaluation.  Factors that attribute to different sampling 

techniques include time, money, man power, and purpose.  A researcher evaluating the impacts 

of agriculture runoff may look for accumulation of fines or sand.  Whereas, a biologist looking 

for suitable habitat for a rare mussel may concentrate on substrate compositions 25 centimeters 

below substrate surface.  Benthic mapping is a common technique used for commercial 

applications in pipeline or cable laying within the fields of environmental engineering and 

hydrology.  Planners have turned to technology to visually analyze benthic environments by 

utilizing computer assisted mapping technologies.  These advances in technology have allowed 

scientists to map benthic environments in similar manner as geologists have with topography or 

land use. 
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 Benthic mapping has become common in the last decade through advances in technology.  

Geospatial analysis using Geographic Information Systems has become an interdisciplinary 

endeavor allowing scientists to integrate physical, biological and chemical properties onto a 

computer generated map.  These advances in technology have allowed integrated analysis 

techniques to examine complex relationships in benthic habitats (Andrews 2003).   

 Benthic mapping requires collecting reliable data at specific points and connecting that 

with accurate location data.  Various techniques can be used to attain benthic data and largely 

depends upon research objectives.  Some common forms of attaining benthic data include aerial 

remote sensing and sonar remote sensing.  Aerial data acquisition involves using satellite, plane, 

or helicopter composite data in often broad spectrum electro-optical datum.  Aerial photography 

is limited based upon water clarity, fragmentation and scale (Waddington and Hart 2003).  

Sonar-based data acquisition involves water based sensing platforms.  Sonar sensing platforms 

are largely dependent upon acoustic relay signal acquisition to estimate seabed composition.  In 

all cases of sonar benthic data acquisition, data must be coupled with extensive ground level data 

for accuracy.  This ground level data involves actual grab samples, video, or core samples to 

interpret and validate acoustic signaling.  Acoustic benthic profiling instruments also require 

signal amplifiers, a PC, and specialized software for interpretation.  This specialized 

interpretation mandates that special training and equipment must be acquired at often excessive 

monetary cost (Andrews 2003); (Waddington 2003). 

 A solution to this expensive and time consuming data ordeal was implemented by the 

Ohio River Valley Water Sanitation Commission (ORSANCO).  ORSANCO’s time and cost 

effective solution for benthic data acquisition is copper pole substrate sampling.  The protocol 

for this techniques is outlined in the ORSANCO Standard Operating Procedures for Physical 
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Habitat as described in Development of a Probability-Based Monitoring and Assessment Strategy 

for Select large Rivers within US EPA Region 5 (Emery et al. 2003).  Assessment for collection 

of bottom sediments is as the following.  A 10 ft ¾ inch copper pole is used to probe substrate 

composition from a vessel.  Two ten foot poles can be used with a male/female adapter to extend 

substrate sampling to 20 foot depths.  The probing researcher records each probe of substrate 

composition, of what the first substrate felt is, followed by second substrate, then third and so on 

until all substrate compositions are accounted for.  Depth is also recorded for each substrate 

probe.  The substrate categories include bedrock, boulders, cobbles, gravel, sand, and fines.  This 

technique is used in a 6 by 11 rectangular grid where a 100 foot transect is made perpendicular to 

the shore.  Each transect is spaced 100 meters apart.  A total of 66 data points are taken to 

characterize the benthic substrate.  This technique was implemented for use on the Ohio River 

and has been adapted by other agencies such as the Pennsylvania Department of Environmental 

Protection as well as the Ohio Environmental Protection Agency.  This method is extremely cost 

efficient as well as time saving.  Little specialized training is needed to sample and no software, 

amplifiers, PC’s or sonar instrumentation is needed.  This makes copper poling a very attractive 

alternative to heavily involved benthic mapping techniques.   

 To date, to the authors knowledge, no research has been published on the accuracy or 

efficacy of the ORSANCO Copper Pole Substrate Sampling Technique.  The purpose of this 

study is to investigate the accuracy of the ORSANCO copper pole technique using scuba diver 

correspondence and geographical information systems.  
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2.2 METHODS OF INVESTIGATION 

 

 31 river sites on the Monongahela River within Pennsylvania were sampled in the 

Summer of 2008 for substrate composition using a modified version of the ORSANCO Copper 

pole method.  In addition to Copper pole sampling each sampling location (Site) was sampled 12 

times at random by SCUBA.  Dives were made at random with the directive of  4 dives along the 

shore (6 feet of water or less), 4 along the river slope, and 4 within the river channel.  Each dive 

was conducted in parallel with the barge channel to avoid complications with ongoing 

commercial river traffic.  Each dive was timed for 5 minute transect surveys.  Divers recorded 

transect length and substrate composition upon return to dive vessel by use of an incremented 

dive reel and underwater data tablet.  Substrate composition was categorized in 5% increments of 

bedrock, boulder, cobble, gravel, sand and fines.  Substrate sizes were defined as follows 

Bedrock (8000-4000mm), boulder (4000-250mm), cobble (250-64mm), gravel (64-2mm), sand 

(2-.06mm), and fines (.06-.001)(USEPA, 1998).  Upon return to the dive vessel, the dive 

recorder would document reported substrate compositions. 

 The 31 sites from the 2008 survey were sampled using ORSANCO’s Copper pole 

technique at random intervals to evaluate against the non-associated random dive locations.  

Copper Pole points were randomized across the entire site as possible with limitations of depth 

and commercial barge traffic.  The Copper Pole technician reported in sequence the first, second, 

third, and so on types of substrate felt.  Substrate compositions felt by sampling technician were 

recorded in 5% increments in similar manner as dive substrate protocol.  GPS location data was 

recorded for each dive transect and Copper pole sampling point. 

 Of the 31 sites, six river sites were randomly selected to represent one site per pool for 

further substrate evaluation.  In order to create a common ground between varying substrate 
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compositions and substrate size classes, the median geometric mean of each substrate class was 

calculated for comparison.  Because each site had a varying degree of different sized geometric 

substrates, the log of the geometric mean was used to characterize the likelihood of the average 

substrate size based upon three dimensional averaging.  Median substrate size characterizes 

bedload transport as well as habitat (Smith, 2005).  The geometric mean average formula is as 

follows. 

 

2.2.1  Geometric mean calculation: 

 Geometric Mean =  ((X1)(X2)(X3)........(XN))
1/N 

  

 Where  X= Median Substrate Size for Class, i.e. Cobble, Gravel, Sand..etc. 

  N= 20, based upon 5% increments or 20 parts per substrate sample 

 

TABLE 8.  Substrate size class distribution by millimeter, geometric mean of substrate size class 

and the log transformed value. 

 

Substrate Class Size (mm) Geometric mean Log10 of Geom. mean 

Bedrock 8000-4000 5656.85 3.7527 

Boulder 4000-250 1000.00 3.000 

Cobble 250-64 126.49 2.1020 

Gravel 64-2 11.31 1.0536 

Sand 2-0.06 0.35 -0.4604 

Fines 0.06-0.001 0.00775 -2.1109 

        Source:(USEPA, 1998)(Smith, 2005) 
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The median of each substrates category, i.e. Bedrock, boulder, cobble..etc., was used for 

evaluation.  Analysis was based upon 5% increments or 20 parts per sample.  This allowed 

varying substrate compositions to be compared.  The median geometric mean for each site was 

normalized using the log of 10 known as the LD50 (Smith 2005). 

 These normalized data were then used to create a raster diagram with ArcGIS 9.3 

interpolation.  Using Inverse Distance Weighting (IDW) interpolation, a benthic map was created 

of the log of geometric means from the randomized copper pole data from each site.  IDW 

technique was then used to estimate unknown points by spatial coordination with the nearest 

points to statistically estimate the substrate values at the diver assessment locations. These 

derived points were calculated across a given quadrant area to produce a raster diagram map of 

benthic substrate based on Copper Pole substrate sampling. The created benthic grid represented 

a bathymetric mapping model of the river floor which could be referenced against diver 

reconnaissance.  These maps were then cut using ArcGIS 9.3 Arc Edit masking to scientifically 

compare diver substrate reports to Copper pole sampling. 

 Interpolated values of the created raster diagram were extracted at each of the 12 dive 

sites for statistical comparison. Statistical software SPSS version 17.0 was utilized to compare 

GIS interpolated values to actual diver reported substrate samples. The large number of copper 

pole sampling points created a layered grid in which the ArcGIS spatial analyst could derive the 

inferred points between sampling points.  Compared to the number of copper pole sampling 

points the dive substrate locations were too sparsely located, at 12 dives per site, to adequately 

represent benthic substrate across the entire sampling site.  For this reason, the derived copper 

pole benthic map was used as a base layer to extract derived copper pole values at the same 

locations divers visually assessed substrate values.  At the sampling locations 12 dives were 
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made at each station except for Site 5, where 13 dives were incidentally conducted.  The 13
th

 

dive was calculated into the sampling sets, the same as the dive data from the other stations. 

 

2.2.2.  STATISTICAL TESTING 

 

2.2.2.1  Paired Samples Test 

 

A dependent T-test was utilized in statistical comparison for analysis based on matched 

pairs of the sampling techniques.  The extracted geometric mean substrate value derived from the 

ArcGIS extrapolated substrate field and the visually reported geometric substrate mean value 

were tested against each other to compare similarities between sampling techniques using 

statistical software SPSS version 17.  Of the six randomly selected river sampling sites, there 

were 73 sampling locations.  Each diver sampling location was dependently tested against the 

ArcGIS substrate derived from Inverse Distance Weighted Copper Pole Substrate values.  This 

novel approach allowed the Copper Pole Sampling technique to be statistically compared to 

visually assessed substrate values to identify the validity of the Copper Pole technique to 

accurately depict substrate.    

 

2.2.2.2  Wilcoxon Test 

 

Each sampling point of the 6 selected river sites, n=73, was analyzed as a random 

sampling point independent of other points.  This non-parametric technique allowed the data to 

be analyzed as matched pair samples in a repeated-measures design, making each sampling 

techniques measured value dependent to each sample point.  Testing the magnitude of difference 

between the pairs of substrate values attained during sampling event.  Testing the null hypothesis 
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that if there was no difference between sampling methods then the expected rank sums for 

positive and negative ranks would be the same.  The Wilcoxon signed ranks test avoids the 

assumption that the data has a normal distribution because it is based on rank order of differences 

rather than actual value of the differences.  For this test, assumption that the distribution of 

differences is symmetric is still necessary  (Crichton 1998). 

The derived LD50 of each sampling point was back calculated to substrate size categories 

as listed in FIGURE 1.  These substrate size categories were assigned ordinal values based upon 

their substrate categories as follows: Fines=1, Sand=2, Gravel=3, Cobble=4, Boulder=5 and 

Bedrock=6.  These ordinal values were then tested using statistical software SPSS using the 

Wilcoxon Signed Ranks Test.   
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2.3 RESULTS 

 

Visual inspection of sampling points depicted in line graph FIGURES 12-14 show 

variation among diver assessed substrate and the Copper pole sampling points (FIGURE 

15&16).  From visual analysis it can be seen that the log transformed data points in Figure 3 

mimic the actual substrate values depicted in millimeters indicating that log transformation of 

points was a valid transformation for analysis (FIGURE 12 & 13).  Extracted substrate data, 

plotted as ordinal substrate values indicates similar trends of geometric substrate values as well 

as log transformed data (FIGURE 14).  From the plotting of ordinal substrate values it can be 

seen that the two samples techniques had varied calculated substrate mean values (FIGURE 3).  

 

2.3.1 Paired Samples T-test Results 

 

73 points were run for statistical comparison using a Paired Samples T-Test.  Diver 

sample and Copper pole samples transformed using log10 had mean value of -0.37930 and 

0.71027 respectively.  The standard deviation for diver sample was 1.295327 with a standard 

mean error of 0.151607.  The standard deviation for Copper pole Sample was 1.016073 with a 

standard deviation of 0.118922.  The paired samples conducted compared the reported results of 

substrate at 73 locations based upon the sampling methods of Divers visual assessment and 

Copper pole technique.  The paired samples had a correlation of 0.304 with a significance of 

0.009 and a N value of 73 with a 95% confidence interval.  The paired differences for the Diver 

Sample- Copper pole comparison had a lower difference of -1.412012 and an upper difference of 

-0.767112 at the 95% confidence interval.  T-value for this test was -6.736 with 72 degrees of 

freedom and a 2-tailed significance of 0.000 (TABLE 9).   
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2.3.2 Wilcoxon Signed Ranks Results 

 

73 ordinal ranks were run for statistical comparison using Wilcoxon Signed Ranks test.  

The Diver samples were ranked based upon their geometric mean and defined a substrate 

category based on values shown in TABLE 1.  The extracted GIS substrate values were ranked 

based on their geometric means on the substrate values defined in TABLE 8 at the diver sampled 

area.  This ranking style enabled a degree of separation between exact geometric mean substrate 

values and the category of which those values fell to further analyze the efficiency of Copper 

Pole substrate sampling.  Of the 73 locations tested, a total of 19 locations showed equal 

substrate category values, Copper Pole Ordinal Ranking = Diver Assessed Ordinal Ranking.  

Copper pole sampling ranked 6 substrate values less than Diver assessed substrate values, 

Copper Pole Ordinal Ranking < Diver Assessed Ordinal Ranking.  48 locations of the ordinal 

ranking values indicated Copper Pole Sampling was greater than Diver assessed substrate values, 

Copper Pole Ordinal Ranking > Diver Assessed Ordinal Ranking (TABLE 10).  The Sum of 

Ranks for Negative Ranks was 194.00 with a Mean Rank of 32.33.  The Sum of Ranks for 

Positive Ranks was 1291.00 with a Mean Rank of 26.90 (TABLE 10). 

Test statistics for Copper Pole Substrate testing compared to Diver Assessed Substrate 

ranking  indicated a Z value of -4.925 based on negative ranks.  Significance values for the 

Wilcoxon Signed Ranks test for Asymmetrical 2-tailed, Exact Sig. 2-tailed, and Exact Sig. 1-

Tailed were all <0.000 with a point probability of 0.000. 
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2.4 DISCUSSION 

 

2.4.1 Paired Samples T-test 

 

The null hypothesis in this test suggested that the Copper pole substrate classification 

would equal the diver’s visual assessment within the geometric mean class of that substrate.  

Critical value of the paired t-test for df=72 at 95% confidence interval is 2.00.   

To reject null hypothesis then T≤ -2.00 or T ≥2.00 would reject null hypothesis.  Reported t-

value of -6.736 rejects the null hypothesis with a 2-tailed significance [(p-value=0.000) ≤ (0.05 = 

α)] at df=72.   

The significance reported of P<0.001 indicates that the chance of difference due to 

sampling error was 0.000 at a 95% confidence interval.  This indicates that the 73 variables 

tested against one another were significantly different.  This takes into account a certain number 

of givens for the test to be considered viable.  One that the use of extraction of Copper pole 

points from a raster grid plot of derived interpolation points delivers accurate results.  The 

second that differences among sampling investigators was negligible within the sampling event.  

The wide threshold of substrate classes as seen within TABLE 8, illustrates a wide variance in 

substrate class which would increase accuracy of the data reported.  As in, with a wide variance 

in substrate classes it is much more likely that two samplers would report a cobble or gravel as 

the same with six substrate options versus classes based on millimeters or inches and more 

categories to choose from.   
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2.4.2 Wilcoxon Signed Ranks 

 

The Wilcoxon signed ranks tests the null hypothesis that the categorical substrate values 

between two paired sampling technique, Copper Pole sampling and diver assessed substrate 

values, were the same.  Statistical results show that of the 73 pairs, 19 pairs tied with equal 

substrate categorization.  6 Pairs were found that Copper Pole Sampling were less than diver 

assessed sampling.  48 pairs were found that Copper Pole to be greater than the diver assessed 

sampling.  With a Z value of -4.925 it was found that the two sampling techniques were 

statistically different (TABLE 10).  

This suggests that the copper pole sampling technique is consistently under ranking the 

substrate values found in the river.  In our study 65.7% of samples were underestimated 

compared to that of diver assessed substrate using Wilcoxon Signed Ranks (TABLE 10).  The 

two largest categories to be ranked incorrectly were the smallest substrates fines and sand.  

Comparison between overall substrate consistencies between the two methods shows that fines 

were reported to be 3% using copper pole sampling versus 37% using diver assessed methods.  

While sand was underestimated by 14% using the copper pole sampling technique.  The 

consistent underestimating of smaller substrates may be linked to the inherent inability of small 

substrate sizes to be felt using the copper pole.  This suggests that rivers with large amounts of 

sand or layers of silt may need increased sampling efforts with diver reconnaissance or side-scan 

sonar to fully evaluate the benthic substrate conditions for scientific research endeavors. 
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TABLE 9.  Paired T test statistical output using Computer Software SPSS v.17 for the 73 sample 

locations of 6 river sites on the Monongahela River, PA.  Substrate sizes of diver reported 

sampling and copper pole sampling were compared after log transformation. 

Paired Samples Statistics 

  

Mean N Std. Deviation Std. Error Mean 

Pair 1 Diver Sample -.37930 73 1.295327 .151607 

Copper Pole Sample .71027 73 1.016073 .118922 

 

 

Paired Samples Test 

  

Paired Differences 

   

  

Mean Std. Deviation Std. Error Mean 

Pair 1 Diver Sample - Copper Pole 

Sample 

-1.089562 1.382025 .161754 

 

Paired Samples Test 

  

Paired Differences 

  

95% Confidence Interval of the Difference 

  

Lower Upper 

Pair 1 Diver Sample - Copper Pole Sample -1.412012 -.767112 

 

Paired Samples Test 

   

   

  

t df Sig. (2-tailed) 

Pair 1 Diver Sample - Copper Pole Sample -6.736 72 .000 

  

Paired Samples Correlations 

  

N Correlation Sig. 

Pair 1 Diver Sample & Copper Pole Sample 73 .304 .009 



71 

 

TABLE 10.  Wilcoxon Signed Ranks Test statistical output using Computer Software SPSS v.17 

for the 73 sample locations of 5 river sites on the Monongahela River, PA.  Substrate 

sizes of diver reported sampling and copper pole sampling were compared after log 

transformation. 

 

Ranks 

 

N Mean Rank Sum of Ranks 

Copper pole Ordinal Ranking - 

Diver Ordinal Ranking 

Negative Ranks 6
a
 32.33 194.00 

Positive Ranks 48
b
 26.90 1291.00 

Ties 19
c
 

  

Total 73 
  

a. Copper pole Ordinal Ranking < Diver Ordinal Ranking 

b. Copper pole Ordinal Ranking > Diver Ordinal Ranking 

c. Copper pole Ordinal Ranking = Diver Ordinal Ranking 

 

Test Statistics
b
 

 Copper pole Ordinal Ranking - 

Diver Ordinal Ranking 

Z -4.925
a
 

Asymp. Sig. (2-tailed) .000 

Exact Sig. (2-tailed) .000 

Exact Sig. (1-tailed) .000 

Point Probability .000 

a. Based on negative ranks. 

b. Wilcoxon Signed Ranks Test 

 

Descriptive Statistics 

 

N Mean Std. Deviation Minimum Maximum 

Diver Ordinal Ranking 73 2.01 1.061 1 5 

Copper pole Ordinal Ranking 73 2.81 .739 1 5 
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FIGURE 12.  Line graph comparison of copper pole sample versus diver assessed sample 

reported in millimeters of geometric mean. 
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FIGURE 13.  Line graph comparison of copper pole sample versus diver assessed sample 

transformed by log10 of geometric mean. 
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FIGURE 14.  Derived Geometric mean data of substrate samples plotted as ordinal values 

against one another per sampling location.  
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FIGURE 15.  Pie chart depicting the substrate geometric mean categories for the 73 points 

sampled using the copper pole substrate sampling technique. 
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FIGURE 16.  Pie chart depicting the substrate geometric mean categories for the 73 points 

sampled using the diver visual assessment. 
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FIGURE 17.  Inverse distance weighting interpolation of copper pole data with extracted dive 

location points 
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TABLE 11.  Site 5 comparison of diver reported substrate composition to copper pole reported 

substrate composition. 

 

Sample 

Number 

Diver Sample 

Log 

Transformed 

Substrate 

Size in mm. 

(Divers) 

Diver 

Substrate 

Category 

Extracted 

CopperPole 

Sample 

Extracted 

Substrate Size 

in mm.  

(CopperPole) 

Extracted 

Copper pole 

Category 

1 3.517 3286.590 Boulder 2.343 220.466 Cobble 

2 3.416 2604.200 Boulder 0.111 1.292 Sand 

3 3.325 2112.110 Boulder 1.057 11.410 Gravel 

4 3.013 1030.480 Boulder 2.220 165.828 Cobble 

5 2.619 415.590 Boulder 1.674 47.254 Gravel 

6 0.631 4.280 Gravel 0.730 5.364 Gravel 

7 0.902 7.980 Gravel 0.354 2.262 Gravel 

8 0.906 8.045 Gravel 0.538 3.454 Gravel 

9 0.291 1.956 Sand 0.043 1.105 Sand 

10 0.294 1.967 Sand -0.513 0.307 Sand 

11 0.783 6.069 Gravel 1.587 38.675 Gravel 

12 -1.031 0.093 Sand 0.945 8.818 Gravel 

13 -0.230 0.589 Sand 1.128 13.431 Gravel 

 *Green represents diver sample equal to copper pole sample 

 *Orange represents diver sample unequal to copper pole sample 
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FIGURE 18. Pie chart depicting diver reported substrate composition of Site 5 Monongahela 

River, PA. 
 

 

 

 

 

FIGURE 19. Pie chart depicting copper pole reported substrate composition of Site 5 

Monongahela River, PA. 
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FIGURE 20. Inverse distance weighting interpolation of copper pole data with extracted dive 

location points for Site 9 Monongahela River, PA. 
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TABLE 12.  Site 9 comparison of diver reported substrate composition to copper pole reported 

substrate composition. 

 

Sample 

Number 

Diver Sample 

Log 

Transformed 

Substrate 

Size in 

millimeters 

(Divers) 

Diver 

Substrate 

Category 

Copper Pole 

Sample Log 

Transformed 

Substrate Size 

mm. 

(CopperPole) 

Extracted 

Copper 

Pole 

Category 

1 -0.355 0.442 Sand 1.227 16.879 Gravel 

2 -0.840 0.144 Sand 1.058 11.418 Gravel 

3 -0.658 0.220 Sand 1.852 71.198 Cobble 

4 -1.212 0.061 Sand 1.390 24.526 Gravel 

5 -0.840 0.144 Sand -0.708 0.196 Sand 

6 -1.212 0.061 Sand 1.311 20.463 Gravel 

7 -1.516 0.031 Fines 1.919 83.015 Cobble 

8 -1.516 0.031 Fines 1.052 11.260 Gravel 

9 -1.516 0.031 Fines 0.631 4.274 Gravel 

10 -1.516 0.031 Fines 1.842 69.430 Cobble 

11 -1.057 0.088 Sand 1.389 24.502 Gravel 

12 -1.144 0.072 Sand 1.493 31.084 Gravel 
 *Green represents diver sample equal to copper pole sample 

 *Orange represents diver sample unequal to copper pole sample 
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FIGURE 21. Pie chart depicting diver reported substrate composition of Site 9 Monongahela 

River, PA. 

 

 

 

FIGURE 22. Pie chart depicting copper pole reported substrate composition of Site 9 

Monongahela River, PA. 

 

 

  

Fines 
33% 

Sand 
67% 

Site 9 - Diver  
Reported Substrate 

Fines 

Sand 

Sand 
8% 

Gravel 
67% 

Cobble 
25% 

Site 9 - Copper Pole 
Reported Substrate 

Sand 

Gravel 

Cobble 



83 

 

FIGURE 23. Inverse distance weighting interpolation of copper pole data with extracted dive 

location points for Site 11 Monongahela River, PA. 
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TABLE 13.  Site 11 comparison of diver reported substrate composition to copper pole reported 

substrate composition. 

 

Sample 
Number 

Diver Sample 
Log 

Transformed 

Substrate Size 
in millimeters 

(Divers) 

Diver 
Substrate 
Category 

Copper Pole 
Sample Log 

Transformed 

Substrate 
Size mm. 

(CopperPole) 

Extracted 
Copper 

Pole 
Category 

1 0.076 1.190 Sand 0.696 4.967 Gravel 

2 0.228 1.689 Sand 0.208 1.613 Sand 

3 0.864 7.304 Gravel 0.674 4.725 Gravel 

4 0.038 1.091 Sand 0.756 5.696 Gravel 

5 -0.687 0.205 Sand 0.123 1.327 Sand 

6 -0.751 0.177 Sand 0.396 2.488 Gravel 

7 -0.353 0.444 Sand 0.370 2.343 Gravel 

8 -1.516 0.031 Fines 0.836 6.860 Gravel 

9 -1.516 0.031 Fines 0.756 5.707 Gravel 

10 -1.253 0.056 Fines 0.453 2.841 Gravel 

11 -1.516 0.031 Fines -0.601 0.251 Sand 

12 -1.516 0.031 Fines 0.558 3.611 Gravel 

 *Green represents diver sample equal to copper pole sample 

 *Orange represents diver sample unequal to copper pole sample 
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FIGURE 24. Pie chart depicting diver reported substrate composition of Site 11 Monongahela 

River, PA. 

 

 

FIGURE 25. Pie chart depicting copper pole reported substrate composition of Site 11 

Monongahela River, PA. 
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FIGURE 26. Inverse distance weighting interpolation of copper pole data with extracted dive 

location points for Site 20 Monongahela River, PA. 
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TABLE 14.  Site 20 comparison of diver reported substrate composition to copper pole reported 

substrate composition. 

 

Sample 

Number 

Diver 

Sample Log 

Transformed 

Substrate 

Size in 

millimeters 

(Divers) 

Diver 

Substrate 

Category 

Copper Pole 

Sample Log 

Transformed 

Substrate 

Size mm. 

(CopperPole) 

Extracted 

Copper Pole 

Category 

1 -1.516 0.031 Fines -0.970 0.107 Sand 

2 -1.516 0.031 Fines -1.025 0.094 Sand 

3 -1.516 0.031 Fines -1.110 0.078 Sand 

4 1.386 24.33 Gravel 0.580 3.804 Gravel 

5 -0.545 0.285 Sand 0.379 2.393 Gravel 

6 -0.658 0.220 Sand 0.462 2.896 Gravel 

7 -0.355 0.442 Sand 1.678 47.61 Gravel 

8 -0.658 0.220 Sand 1.122 13.23 Gravel 

9 -0.355 0.442 Sand 1.270 18.64 Gravel 

10 -0.355 0.442 Sand 1.428 26.79 Gravel 

11 -0.658 0.220 Sand 1.402 25.25 Gravel 

12 -0.355 0.442 Sand 0.412 2.584 Gravel 

 *Green represents diver sample equal to copper pole sample 

 *Orange represents diver sample unequal to copper pole sample 
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FIGURE 27. Pie chart depicting diver reported substrate composition of Site 20 Monongahela 

River, PA. 

 

 

 

FIGURE 28. Pie chart depicting copper pole reported substrate composition of Site 20 

Monongahela River, PA. 
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FIGURE 29. Inverse distance weighting interpolation of copper pole data with extracted dive 

location points for Site 28 Monongahela River, PA. 
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TABLE 15.  Site 28 comparison of diver reported substrate composition to copper pole reported 

substrate composition. 

 

Sample 

Number 

Diver Sample 

Log 

Transformed 

Substrate 

Size in 

millimeters 

(Divers) 

Diver 

Substrate 

Category 

Copper Pole 

Sample Log 

Transformed 

Substrate Size 

mm. 

(CopperPole) 

Extracted 

Copper Pole 

Category 

1 -1.516 0.031 Fines 0.000 1.000 Sand 

2 -1.516 0.031 Fines -1.468 0.034 Fines 

3 -1.516 0.031 Fines -0.786 0.164 Sand 

4 -1.516 0.031 Fines -1.475 0.034 Fines 

5 -1.516 0.031 Fines -1.056 0.088 Sand 

6 -1.516 0.031 Fines -0.631 0.234 Sand 

7 -1.516 0.031 Fines -0.935 0.116 Sand 

8 -1.516 0.031 Fines 0.055 1.135 Sand 

9 -1.516 0.031 Fines 0.055 1.134 Sand 

10 -1.516 0.031 Fines 2.043 110.495 Cobble 

11 -1.516 0.031 Fines 1.221 16.618 Gravel 

12 -1.516 0.031 Fines 2.917 826.013 Boulder 
 *Green represents diver sample equal to copper pole sample 

 *Orange represents diver sample unequal to copper pole sample 
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FIGURE 30. Pie chart depicting diver reported substrate composition of Site 28 Monongahela 

River, PA. 

 

 

 

 

FIGURE 31. Pie chart depicting copper pole reported substrate composition of Site 28 

Monongahela River, PA. 
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FIGURE 32. Inverse distance weighting interpolation of copper pole data with extracted dive 

location points for Site 29 Monongahela River, PA. 
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TABLE 16.  Site 29 comparison of diver reported substrate composition to copper pole reported 

substrate composition. 

 

Sample 

Number 

Diver 

Sample Log 

Transformed 

Substrate 

Size in 

millimeters 

(Divers) 

Diver 

Substrate 

Category 

Copper Pole 

Sample Log 

Transformed 

Substrate 

Size mm. 

(CopperPole) 

Extracted 

Copper Pole 

Category 

1 0.626 4.229 Gravel 1.647 44.35 Gravel 

2 1.087 12.21 Gravel 1.399 25.09 Gravel 

3 0.943 8.768 Gravel 1.460 28.86 Gravel 

4 0.199 1.581 Sand 2.727 533.3 Gravel 

5 1.170 14.78 Gravel 1.521 33.21 Gravel 

6 0.555 3.592 Gravel 0.000 1.000 Sand 

7 0.199 1.581 Sand 0.459 2.875 Gravel 

8 -0.658 0.220 Sand 2.937 864.8 Boulder 

9 -0.991 0.102 Sand -0.035 0.922 Sand 

10 -0.658 0.220 Sand -0.184 0.654 Sand 

11 -0.505 0.312 Sand 1.568 37.01 Gravel 

12 -1.516 0.031 Fines 0.882 7.627 Gravel 
 *Green represents diver sample equal to copper pole sample 

 *Orange represents diver sample unequal to copper pole sample 
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FIGURE 33. Pie chart depicting diver reported substrate composition of Site 29 Monongahela 

River, PA. 

 

 

FIGURE 34. Pie chart depicting copper pole reported substrate composition of Site 29 

Monongahela River, PA. 
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FIGURE 35.  Location map of river sampling sites 1-5 in the Braddock Pool of the Monongahela 

River, PA. 
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FIGURE 36.  Location map of river sampling sites 6-11 in the Braddock Pool of the 

Monongahela River, PA. 
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FIGURE 37.  Location map of river sampling sites 12-15 in the Pool 3 of the Monongahela 

River, PA. 
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FIGURE 38.  Location map of river sampling sites 16-22 in the Pool 4 of the Monongahela 

River, PA. 
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FIGURE 39.  Location map of river sampling sites 23-27 in the Maxwell Pool of the 

Monongahela River, PA. 
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FIGURE 40.  Location map of river sampling sites 28-31 in the Grays Landing Pool of the 

Monongahela River, PA. 
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FIGURE 41. Locations of mussel surveys conducted by divers and substrate sampling on the 

Monongahela River, PA.. 
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FIGURE 42. Locations of mussel surveys conducted by divers and substrate sampling on the 

Monongahela River, PA.. 
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FIGURE 43. Locations of mussel surveys conducted by divers and substrate sampling on the 

Monongahela River, PA.. 
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FIGURE 44. Locations of mussel surveys conducted by divers and substrate sampling on the 

Monongahela River, PA.. 
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FIGURE 45. Locations of mussel surveys conducted by divers and substrate sampling on the 

Monongahela River, PA.. 
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FIGURE 46. Locations of mussel surveys conducted by divers and substrate sampling on the 

Monongahela River, PA.. 
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FIGURE 47. Locations of mussel surveys conducted by divers and substrate sampling on the 

Monongahela River, PA.. 
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FIGURE 48. Locations of mussel surveys conducted by divers and substrate sampling on the 

Monongahela River, PA.. 
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FIGURE 49. Locations of mussel surveys conducted by divers and substrate sampling on the 

Monongahela River, PA.. 
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FIGURE 50. Locations of mussel surveys conducted by divers and substrate sampling on the 

Monongahela River, PA.. 
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FIGURE 51. Locations of mussel surveys conducted by divers and substrate sampling on the 

Monongahela River, PA.. 
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FIGURE 52. Locations of mussel surveys conducted by divers and substrate sampling on the 

Monongahela River, PA.. 
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FIGURE 53. Locations of mussel surveys conducted by divers and substrate sampling on the 

Monongahela River, PA.. 
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FIGURE 54. Locations of mussel surveys conducted by divers and substrate sampling on the 

Monongahela River, PA.. 
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FIGURE 55. Locations of mussel surveys conducted by divers and substrate sampling on the 

Monongahela River, PA.. 
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FIGURE 56. Locations of mussel surveys conducted by divers and substrate sampling on the 

Monongahela River, PA.. 
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FIGURE 57. Locations of mussel surveys conducted by divers and substrate sampling on the 

Monongahela River, PA.. 
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FIGURE 58. Locations of mussel surveys conducted by divers and substrate sampling on the 

Monongahela River, PA.. 
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FIGURE 59. Locations of mussel surveys conducted by divers and substrate sampling on the 

Monongahela River, PA.. 
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FIGURE 60. Locations of mussel surveys conducted by divers and substrate sampling on the 

Monongahela River, PA.. 
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FIGURE 61. Locations of mussel surveys conducted by divers and substrate sampling on the 

Monongahela River, PA.. 
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FIGURE 62. Locations of mussel surveys conducted by divers and substrate sampling on the 

Monongahela River, PA.. 
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FIGURE 63. Locations of mussel surveys conducted by divers and substrate sampling on the 

Monongahela River, PA.. 
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FIGURE 64. Locations of mussel surveys conducted by divers and substrate sampling on the 

Monongahela River, PA.. 
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FIGURE 65. Locations of mussel surveys conducted by divers and substrate sampling on the 

Monongahela River, PA.. 
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FIGURE 66. Locations of mussel surveys conducted by divers and substrate sampling on the 

Monongahela River, PA.. 
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FIGURE 67. Locations of mussel surveys conducted by divers and substrate sampling on the 

Monongahela River, PA.. 
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FIGURE 68. Locations of mussel surveys conducted by divers and substrate sampling on the 

Monongahela River, PA.. 
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FIGURE 69. Locations of mussel surveys conducted by divers and substrate sampling on the 

Monongahela River, PA.. 
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FIGURE 70. Locations of mussel surveys conducted by divers and substrate sampling on the 

Monongahela River, PA.. 
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FIGURE 71. Locations of mussel surveys conducted by divers and substrate sampling on the 

Monongahela River, PA.. 
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