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ABSTRACT 

 
 

EFFECT OF DNA BASE MODIFICATION ON POLYMERASE CHAIN 
REACTION EFFICIENCY AND FIDELITY 

 
by Jan A. Sikorsky 

Polymerase stop assays, used to quantify DNA damage, assume single lesions are 
sufficient to block thermostable DNA polymerase progression.  To explore this 
assumption, 90 base oligonucleotides containing normal or modified DNA bases were 
amplified using real-time PCR.  Data implied that the PCR efficiency was influenced to 
differing degrees depending on which base lesion was present on the input 
oligonucleotide; specifically, while reactions with templates containing a single 8-oxo-
7,8-dihydro-2�-deoxyguanosine (8-oxodG) were not noticeably altered, the presence of a 
single 8-oxo-7,8-dihydro-2�-deoxyadenosine, an abasic site, or a cis-syn thymidine dimer 
(TT dimer) dramatically delayed amplification.  In addition, the presence of two tandem 
8-oxodGs substantially hindered amplification when compared with two 8-oxodGs 
separated by 13 bases which indicated that the position of lesions also influenced the 
PCR. To quantify variations in amplification, novel mathematical formulae were 
developed which report differences in exponential amplification as rates of damage 
bypass.  These treatments assume each template in the PCR is damaged to the same 
degree.  Quantification of damage to cellular DNA, which is a mixture of damaged and 
undamaged template, required further refinement of real-time PCR mathematics; 
differences in amplification were defined in terms of damage probability (lesion 
frequency) rather than lesion bypass rate.  The validity of these formulae was determined 
using DNA samples quantified previously using current polymerase stop methods.  In 
addition to impacting reaction efficiency, DNA base modifications decreased reaction 
fidelity.  In reactions with templates containing 8-oxodGs, both the normal Watson/Crick 
association with dCMP as well as the incorporation of dAMP occurred at the lesion site.  
Despite similar structural characteristics, the existence of 8-oxodA resulted in a 
pronounced n-1 deletion in addition to the normal association with dTMP.  Sequence data 
from abasic and TT dimer modifications were inconclusive but suggested the presence of 
multiple nucleotide incorporation events opposite the modifications.  The present work 
enabled the adaptation of real-time PCR for DNA damage quantification, identified DNA 
base lesions as potential PCR mutagens, and provides the basis for further refinement of 
polymerase stop assays as research and clinical tools to monitor DNA damage and repair. 
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CHAPTER I 
 

1.1. Introduction 
 

DNA in living cells can be damaged by chemical and physical processes. 

Biological defenses such as the superoxide dismutase, catalase, and peroxidase enzyme 

families protect against these hazardous insults (1).  DNA modifications alter base 

pairing properties between complementary sequences along the length of dsDNA and can 

lead to substitution mutations (2). Inherited defects, reducing the efficiency of DNA base 

lesion repair, confer susceptibility to certain cancers and developmental disorders (3). 

Together, these observations suggest that DNA damage is a preliminary step in 

carcinogenesis.  In addition, DNA base modifications may play a role in the aging 

process (4). Assays for DNA damage are therefore needed for experimental monitoring 

of DNA repair pathways and clinical diagnosis of DNA repair defects (5). 

 

1.2. Purpose of the Research 
The objective of this dissertation is to characterize the influences of specific DNA 

base modification on Thermus aquaticus (Taq) DNA polymerase progression and fidelity 

during the polymerase chain reaction (PCR) and to design methods to quantify damage to 

DNA.  Previous work demonstrates that aggregate amounts of DNA damage can be 

detected using radiolabeling and long extension PCR protocols (5-11).  The purpose of 

the work presented here is 1) to determine if fluorescent detection in real-time can be 

used to advance existing PCR based methods for detecting DNA damage; 2) to 

experimentally validate the current assumption that all lesions block thermostable DNA 

polymerase progression; 3) to characterize the mutational spectrum of defined DNA base 

lesion bypass by Taq DNA polymerase; and 4) to adapt real-time PCR mathematics to 

define observed changes in amplification between samples as differences in amounts of 

damage to DNA. 
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1.3. Significance of the Research 
Novel mathematical treatments and protocols were developed permitting the use 

of real-time PCR as a method to quantify damage to synthetic and cellular DNA 

templates.  The real-time PCR method presented here has the potential to act as a screen 

for DNA damage in a clinical setting and could be used to further diagnose late-onset 

diseases that cause or are caused by accumulated damage to DNA.   

In addition, as stated in Free Radicals in Biology and Medicine: �An important 

question, to which little attention has been given, is the effect of DNA base damage on 

the behavior of Taq DNA polymerase, especially as PCR is being increasingly used to 

amplify DNA isolated from preserved or fossilized organisms (ancient DNA) (12).�   

Since its advent in the mid 1980s, PCR has revolutionized clinical and basic science 

research, allowing large amounts of DNA to be copied from small inputs (13).  As the 

limits of the PCR are pushed in disciplines such as ancient DNA study and forensic 

science, where degraded and modified DNA is encountered, the need to ensure the 

accuracy of collected data becomes imperative.  Through the use of synthetic DNA as 

PCR template, a model is provided here with which the influences of specific base 

lesions on Taq polymerase fidelity can be tested.  Four common DNA damage products 

were found to impact nucleotide insertion and extension kinetics during the PCR.  

Because of this demonstration of base modification induced PCR mutagenesis, sequence 

data from damaged DNA samples should be interpreted with increased caution.  

 

1.4. Organization of the Dissertation 

Emphasis is placed on characterizing the rate of lesion bypass, the calculation of 

lesion frequencies in cellular DNA, and the impact of DNA base lesions on the fidelity of 

the PCR.  An overview of this work, including the purpose and significance to the 

scientific community, can be found in Chapter I.  Relevant literature on oxidative and 

ultraviolet stresses, types of DNA damage and their subsequent repair, real-time PCR 

including the mathematical basis for the calculation of template abundance, and the use 

of the quantitative polymerase chain reaction (QPCR) to estimate DNA damage, which 

allowed the formulation of hypotheses, experiments, and subsequent conclusions 
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presented within, is described in Chapter II.  Chapter III describes the development of 

real-time PCR assays for the quantification of lesion bypass rate (LBR) in synthetic DNA 

and the calculation of lesion frequency (LF) in cellular DNA, and a complete description 

of methods used in the characterization of lesion induced mutagenesis (LIM).  Chapter IV 

illustrates the LBRs of four common DNA base lesions, the LIM from each, and the 

validation of real-time polymerase stop assays for use in LF within ultraviolet irradiated 

DNA.  A summary of the work, including a discussion of the author�s conclusions drawn 

from the data and their potential significance to the scientific community are presented in 

chapter V.  The appendices contain a complete table of oligonucleotide primer sequences 

used throughout these experiments, a comparison of PCR product sizes and their impact 

on SYBR Green dye incorporation and threshold cycle values, a discussion of 

dissociation curve profiles of long amplicons and how different regions on a unique 

template can produce multiple peaks during melt curve analysis, the derivation of 

formulae to simultaneously calculate lesion frequency and lesion bypass rates, and the 

author�s curriculum vitae.  
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CHAPTER II 
 

REVIEW OF THE LITERATURE 
 
 

2.1. DNA Damage 

 

�DNA damage� is defined by the National Library of Medicine (NLM) as drug- or 

radiation-induced injuries in DNA that introduce deviations from its normal double-

helical conformation. These changes include structural distortions which interfere with 

replication and transcription, as well as point mutations which disrupt base pairs and 

exert damaging effects on future generations through changes in DNA sequence (14).  

DNA itself is very stable; without the introduction of outside influence, the DNA 

molecule undergoes minimal change (12).   

DNA bases are altered by exogenous and endogenous insults.  For example, 

reactive oxygen species (ROS) can interact with 2�-deoxyguanosine to form 8-oxo-7,8-

dihydro-2�-deoxyguanosine (8-oxodG) or with 2�-deoxyadenosine to form 8-oxo-7,8-

dihydro-2�-deoxyadenosine (8-oxodA) (2, 15-17).  Regardless of the reactive species, 

repair systems are in place to prevent assault on nucleic acid and eliminate altered DNA 

if damage occurs (1).  These defenses are not perfect; damage products are found in most 

biological systems.  For example low levels of ROS-induced damage products are present 

in DNA extracted from aerobic cells (12).  In vivo evidence for the removal, and 

therefore the presence, of oxidative DNA damage products exists in humans, as 8-oxodG 

is excreted in urine and can be used as a marker for monitoring oxidative stress and 

subsequent repair within cellular DNA (3).  8-oxodG and other modified bases have 

altered base pairing properties which can lead to substitution mutations (18).  Defects in 

DNA repair confer susceptibility to certain cancers and developmental disorders (3, 19-

20).  In addition, due to an accumulation of DNA damage products in aging populations, 

the build up of DNA damage has been implicated as a component in the aging process (4, 
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21-28).  In 1956, Denham Harman proposed the free-radical theory of aging which states 

that normal aging results from random deleterious damage to tissues by free radicals (29-

30).  Since Harman�s seminal work, a large body of knowledge has accumulated which 

implicates these damaging events as a unifying link between many of the theories of 

aging. 

The following sections provide a comprehensive review of literature pertaining to 

DNA damage with an emphasis placed on work influencing the experiments presented in 

subsequent chapters.    

 

2.1.1. Oxidative stress  

 Oxidative stress is defined as �a disturbance in the pro- and antioxidant balance in 

favor of the former, leading to potential cellular damage� (12, 31).  Given that definition, 

it is natural to assume that stress would be caused by either an increase in the production 

of oxidants or a reduction in antioxidants.  Increased oxidant production can result from 

elevated O2 levels (12), the prevalence of toxins, such as those in cigarette smoke that are 

metabolized to form reactive agents (free radicals) (12), or the elevated induction of 

natural defenses, such as phagocytes, whose function is to generate radicals to protect 

against pathogenic invasion but may ultimately lead to diseases such as rheumatoid 

arthritis (12).  Depletion of antioxidant defense enzymes such as copper-zinc superoxide 

dismutase (CuZnSOD), manganese superoxide dismutase (MnSOD), and peroxidases by 

genetic mutation or exogenous factors tip the balance in favor of oxidative stress (12).  In 

addition, depletion of dietary antioxidants may play a role in the increase of oxidative 

stress and damage (12).        

 

2.1.1.1. Biologically significant free radicals 

 In order to discuss oxidative stress, it is important to define the underlying cause 

of the damage associated with elevated stress levels: the free radical.  Halliwell et al. 

(1999) define the �free radical� in simple terms: �a free radical is any species capable of 

independent existence that contains one or more unpaired electrons (12).�  Although the 

majority of this discussion will concentrate on oxygen-derived radical species, free 
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radicals can be generated from a wide variety of sources.  Some examples of non-oxygen 

derived radical species are thiyl, sulphur-centered, chlorine, carbon-centered, and 

nitrogen radicals (12).  In addition, many transition-metals (12), such as iron, can qualify 

as free radicals under the broad definition provided above.   

Radicals generated with oxygen as their center (oxygen free radicals) include 

superoxide (O2
*-) and the hydroxyl radical (OH*).  The superoxide radical is formed when 

a single electron is added to ground-state oxygen (12).  The chemical formation of the 

hydroxyl radical is more complicated and can be a product of numerous reactions; Fenton 

chemistry, a reaction catalyzed by transition metals, and homolytic bond fission of H2O2 

or H2O induced by ultraviolet or gamma radiation respectively, are two examples (12). 

 

2.1.1.2. Endogenous production of superoxide radicals 

 Some biologically important reactions rely on the production of superoxide; 

others generate superoxide as an unfortunate byproduct.  During bacterial phagocytosis, 

NADPH is oxidized producing NADP+, H+, and two O2
*- molecules in an activated 

enzyme complex on the plasma membrane (32).  This process is triggered when a foreign 

body encounters a phagocyte, becomes wrapped up in the plasma membrane, and is 

engulfed into the phagocyte cytoplasm where it is in close proximity to superoxide 

production.  It is unlikely, given the low reactivity of O2
* in aqueous solution (12), that 

bacterial killing is a result of direct exposure to superoxide.  Given that intra-vacuolar pH 

rises in human neutrophils following bacterial phagocytosis (33), the dismutation of 

superoxide to H2O2 may occur which can readily cross cell membranes and may be 

converted to the highly reactive OH* (12).  Certain strains of bacteria are killed by 

exposure to hydrogen peroxide which may, in fact, be an underlying mechanism involved 

in phagocytosis (12). 

 The mitochondrial electron transport chain is a large producer of O2
*- in vivo.  It is 

estimated that, under normal conditions, as much as 3% of the total O2 reduced in the 

mitochondria forms O2
*- (34).  This superoxide production is directly related to oxygen 

concentration.  Mammalian cytochrome oxidase becomes O2 saturated at low O2 

tensions, presumably at which point the prior complexes in the electron transport chain 
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stall, allowing electron leakage to occur which can then associate directly with O2 

forming superoxide (34).  While the overall hypothesis that superoxide is produced as a 

byproduct of electron transport is generally accepted, the precise point at which this 

occurs in the transport chain is hotly debated.  Evidence implicates b- type cytochromes, 

parts of complex I and coenzyme Q, as producers of O2
*- (34).  Other reports implicate 

complex III (ubiquinol cytochrome c reductase) in addition to complex I (NADH 

dehydrogenase) as a major source of electron transport-derived reactive oxygen species 

(35).             

 

2.1.1.3. Antioxidant defenses  

 In order to adapt and survive in an oxygen rich environment, aerobes have 

evolved antioxidant defense mechanisms.  Antioxidant defenses can be broken down into 

categories such as defense enzymes (e.g. superoxide dismutases), low-molecular mass 

agents (e.g. ascorbic acid), and agents that sequester potentially harmful metal ions (e.g. 

iron metabolism); all having the common goal to protect against free radical formation 

(36-38).   

 

2.1.1.4. Biological consequences of free radical production 

 The presence of lipid peroxidation, carbonyl and amino acid modification, and 

oxidative base damage products in DNA isolated from aerobic cells suggests that 

antioxidant defense systems are not 100% efficient (2, 12, 15-17, 39-40).  The primary 

target of oxygen radical insult on a cell depends on the type of cell and the type and 

amount of radical assault.  For example, when H2O2 is administered to mammalian cells 

grown in culture, DNA strand breakage occurs prior to any detectable lipid peroxidation 

or protein modification (41-42).   This is in contrast to compounds like carbon 

tetrachloride whose primary cellular target is lipid peroxidation (43-45).  Regardless of 

the source or target, a cell enduring oxidative stress can adapt to or be killed by radical 

insult.   

Adaptation can involve the up-regulation of antioxidant defense mechanisms in an 

attempt to overcome the increased oxidative stress.  For example, E. coli can be 
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preconditioned to endure high levels of H2O2 (46).  If E. coli cells are gradually exposed 

to low levels of H2O2, they become resistant and can survive when exposed to levels that 

are lethal to normal cells.  Genetic adaptation can occur at the transcriptional level; 

decreased transcription of cytochrome p450 results from the exposure of isolated 

hepatocytes to elevated oxidative stress levels (47).   

The ultimate consequence if adaptation to stress does not happen is that ATP 

production in cells decreases below a critical threshold and the cells die either by 

apoptosis or necrosis (12, 48).  The mechanism by which a cell expires depends largely 

on the type and amount of radical inducer; millimolar levels of H2O2 exposure causes 

cells to swell and rupture (death by necrosis) whereas lower levels trigger the apoptotic 

cascade (49). 

 

2.1.1.4.1. Oxidative DNA damage 

 Reactive oxygen species can damage DNA through direct and indirect 

mechanisms.  The direct mechanisms by which ROS damage DNA are a primary focus, 

but it is worth mentioning that ROS insults can influence DNA indirectly by such means 

as interrupting enzymes responsible for DNA replication or DNA repair (2).  Some 

examples of direct damage to DNA by ROS are strand breakage, hydroxyl addition, and 

the opening of the imidazole ring (2).  Superoxide by itself, at physiologically relevant 

levels, does not appear to directly react with either DNA bases or the deoxyribose sugars 

(50).  If, however, the hydroxyl radical is formed in close proximity to DNA, a multitude 

of products result (Figure 2.1; (2, 50)).  The most studied of these damage products, 8-

oxodG, is formed when a hydroxyl group is added to C-8 on the purine ring of guanine 

(forming the C-8 OH-adduct radical) and the intermediate compound is reduced (Figure 

2.2; (50)).  Hydroxyl additions are not limited to guanine.  If the OH* attacks adenine, it 

may add to the C-8 and undergo reductions to form 8-oxodA (2).  Pyrimidine bases are 

also attacked by the hydroxyl radical forming additional base modifications (2). 
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Figure 2.1 DNA base lesions.  Lesions occur on DNA resulting from A) direct exposure to increased 
oxidative stress (adapted from Wang et al. (1998) (15)), B) spontaneous base loss or base removal by DNA 
glycosylase (adapted from Takeshita et al. (1987) (51)), or C) direct expose to ultraviolet light (adapted 
from Taylor et al. (1990) (52)).  dR represents deoxyribose.  Arrows in panels A and B indicate addition of 
hydroxyls on the C-8 of each purine; in panel C, arrow points to the lack of DNA base; in panel C, arrow 
highlights crosslinking between adjacent thymidine bases. 
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Figure 2.2 Formation of 8-oxodG.  The exposure of deoxyguanine to hydroxyl radicals generates an 
intermediate radical (8-hydroxyguanine radical) which can either be oxidized to form 8-oxodG or reduced 
to create an open-ringed product (FAPyG; not shown; adapted from Breen et al. (1995) (50)).  dR 
represents deoxyribose; (*) represent free electrons.   
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.1.1.4.2. 8-oxo-7,8-dihydro-2’-deoxyguanosine 

odG; Figure 2.1A) is formed by 

 

2

 8-oxo-7,8-dihydro-2�deoxyguanine (8-ox

hydroxylating deoxyguanosine residues by direct oxidative stress (53-54), ionizing 

radiation (55), and through exposure to numerous agents that indirectly elevate ROS 

levels (56-57).  This DNA base lesion is found at levels ranging from 10-250 molecules 

per 106 guanines in some mammalian tissues (58) and is largely regarded as the most 

abundant product of oxidative DNA damage (54, 59-60).  In vitro studies suggest that 8-

oxodG is pre-mutagenic; the lesion does not absolutely block polymerase progression and 

increased the likelihood of mutation during lesion bypass (18).  8-oxodG primarily exists 

as a 6,8-diketo tautomer (15) which can assume either a syn or anti-orientation when 

found in duplex DNA; this orientation dictates its base pairing partner (Figure 2.3; (59-

62)).  When paired with 2�-deoxycytosine, 8-oxodG takes on the anti configuration 

creating a normal Watson-Crick base pair (61-62); in the syn form, Hoogsteen pairing is 

permitted and 2�-deoxyadenosine is inserted opposite the lesion creating a guanine to 

thymine transversion event during the next round of DNA replication (59-60).  The ratio 

of dAMP/dCMP insertion is dependent on which DNA polymerase is used; with 

replicative polymerases preferring dAMP while DNA repair polymerases favoring dCMP 

incorporation (17).  In studies testing the extension of both 8-oxodG:dA and 8-oxodG:dC 

base pairs by E. coli Pol I and Pol II (both exonuclease deficient (exo-)), 8-oxodG:dA was 

preferentially extended by both polymerases while 8-oxodG:dC extension was impaired 

(63).  The extension of this seemingly mismatched base pair is in part due to its 

geometric similarity in structure to the correct Watson-Crick A:T pair (60-62).  The 

situation becomes more complex in a mammalian system; the addition of proliferating 

cell nuclear antigen (PCNA), a functional accessory protein in the replication complex 

acting to hold the polymerase to the DNA transcript, increases the amount of extended 

product beyond 8-oxodG 2.5-fold when compared with studies involving mammalian pol 

δ alone (64-65).  
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dAdenosine (anti):8-oxodG (syn)  dCytosine (anti):8-oxodG (anti)  

igure 2.3 Base pairing of 8-oxodG.  dR represents deoxyribose sugar.  2�-deoxyadenosine or 2�-

.1.1.4.3. 8-oxo-7,8-dihydro-2’-adenosine 

-oxo-7,8-dihydro-2�-adenosine (8-oxodA), is 

rmed

 Taq DNA polymerase, rat DNA 

pol α a

 
 
F
deoxycytosine can pair with 8-oxodG.  This differential base pairing is dictated by the orientation of the 
modified base relative to its deoxyribose sugar (adapted from Wang et al. (1998) (14)). 
 

2

 The adenine analog of 8-oxodG, 8

fo  by the exposure of adenine moieties to ionizing radiation resulting in the 

hydroxylation of the C-8 position through direct insult by hydroxyl radicals (Figure 2.1A; 

66-67).  Shibutani et al. (1993) used oligonucleotides, modified site-specifically with 8-

oxodA, as templates in primer extension reactions to test the insertion and extension 

kinetics of DNA pol I (exo-), DNA pol α, and DNA pol β (68).  While the authors do find 

that singular dGMPs could bind to 8-oxodA providing the potential for mutagenesis, in 

the presence of all four dNTPs at equimolar concentrations, the polymerases tested 

exclusively incorporate dTMP across from the lesion (68).  Taq DNA polymerase also 

selectively incorporates dTMP opposite 8-oxodA (67).   

More recent studies involving E. coli pol I (exo-),

nd pol β conflict with the Shibutani findings.  While the two bacterial polymerases 

still exclusively incorporated dTMP opposite 8-oxodA, mammalian polymerase α 
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.1.1.4.4. Abasic sites 

consist of a 2�-deoxyribose moiety linked by 3� and 5� 

rest-neighbor influences where base stacking 

interact

.1.2. Ultraviolet radiation 

violet (UV) radiation on human health have been considered 

for more than 200 years.  The first documented report of �melanoma� occurred in Europe 

misinserted dGMP and pol β misinserted both dAMP and dGMP (69).  The reasons for 

these discrepancies in data are not known but the authors suggest that they may, in part, 

be due to differences in template sequences which have been shown to impact nucleotide 

insertion kinetics in studies involving other lesions (69, 70). 

 

2

 Abasic sites 

phosphodiester bonds to neighboring nucleotides (Figure 2.1B; (51)).  These sites are 

formed by hydrolyzing the glycosidic bond connecting either purine or pyrimidine bases 

to the deoxyribose sugar (71).  Abasic sites occur as a result of specific DNA glycosylase 

removal of damaged bases or the labilization of gycosidic bonds resulting from chemical 

modification of a DNA base (71).  In addition, abasic sites can form as a result of 

spontaneous DNA base loss (72).  Abasic sites severely hinder polymerase progression 

but do not completely block replication.  The progression of both E. coli pol I (exo-) and 

calf thymus DNA pol α polymerases is stalled at the position immediately 3� to the 

abasic site; dNMPs are subsequently incorporated with dAMP being the nucleotide 

predominantly extended (51, 72).  The mutational spectrum of abasic lesion bypass in 

eukaryotes is more complex.  During replication of plasmid vectors inserted into simian 

kidney cells which contained an abasic site, dAMP, dCMP, and dTMP incorporate 

opposite the lesion site with similar frequencies (74-77).  In studies concentrating on the 

mutational spectra of abasic lesion bypass by the recently identified Y family of DNA 

polymerases (reviewed below), n-1 deletions and n+1 insertions occur in addition to the 

base substitutions mentioned above (78). 

Randall et al. (1987) report nea

ions manipulate nucleotide insertion kinetics opposite an abasic site (71).  Despite 

this early report, little is mentioned of these types of influences in later studies.    

 

2

The impacts of ultra
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around

he 

wavele

 to ultraviolet radiation 

The majority of cellular responses to UV exposure stem from damage to DNA 

rocesses; most are 

ediate

The two major populations of DNA lesions resulting from direct UVB exposure 

imers and 6-4 photoproducts (85).  6-4 photoproducts 

 the year 1800.  The incidence of melanoma is on the rise; increasing 

approximately 3-7% yearly in Caucasian populations (79).  Howe et al. (2001) report 

that, in the United States of America, the risk of developing malignant melanoma is 1 in 

90 with a mortality rate of 1 in 400 (79).  Melanomas arise from abnormal transformation 

of melanocytes as a result of both environmental (80-82) and genetic factors (83-84).   

The most significant portion of sunlight contributing to an increase in the 

propensity for certain cancers is ultraviolet radiation (85).  UV light lies in t

ngth range of 200-400 nm and can be divided into UVA (320-400 nm), UVB 

(280-320 nm), and UVC (200-280 nm) regions (85).  UVC is blocked by the earth�s 

ozone layer and, therefore, is assumed not to influence cancer prevalence (85).  UVA is 

the largest component of ultraviolet radiation to which humans are exposed; the impact of 

UVA on skin cancer development is poorly documented and highly controversial (85).  

Exposure to UVB wavelengths, on the other hand, is largely associated with sunburn and 

an increased risk of skin cancer development.  Damage associated with UVB results from 

the absorption of light by nucleic acids and proteins; both of which peak in the UVB 

range at 260 and 280 nm respectively (85).   

 

2.1.2.1. Biological consequences of exposure

 

(reviewed below).  UV damage events trigger a wide array of cellular p

m d by p53 (85).  These include cell cycle arrest, DNA repair, and p53-dependent 

apoptotic pathways.  Due to increased levels of the pro-survival protein Bcl-2, cells may 

proliferate despite excessive damage to DNA (85).  If left unchecked, this aberrant 

proliferation can result in the formation of malignant melanoma.   

 

2.1.2.2. Ultraviolet DNA damage 

 

are cyclobutane (or pyrimidine) d

are formed between the 5� sixth position and 3� fourth position of two adjacent 

pyrimidines; pyrimidine dimers are formed when bonding occurs between the number 
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is (88-91).  Cytosine to adenine and guanine to 

thymin

ersal of damage by photolyase, the removal of lesions through 

nucleot

One of the major photoproducts produced when DNA is exposed to UV radiation, 

re 2.1C; TT dimer), results from the 

erase is responsible for replicating past the lesion.  For 

exampl

four and five carbon atoms on any two adjacent pyrimidines (85).  Dimers are considered 

to be more carcinogenic in part due to their abundance (86), an inefficiency of lesion 

removal mechanisms (86), and the observation that dimers permit translesion synthesis 

by certain replicative polymerases (87).  

Transitions from doublet cytosines (CC) to doublet thymine (TT) bases represent 

the hallmark of UVB induced mutagenes

e transversions, as well as DNA strand breaks, have also been documented 

resulting from UVB insult (88-91).  Like UVB, UVA wavelengths can mutate DNA but 

in an indirect fashion.  UVA radiation is absorbed by non-DNA molecules that generate 

ROS (56, 92).  The resulting radicals can then lead to oxidative stress induced mutation 

as described above.   

Cellular systems have adopted ways of combating UV induced DNA damage; 

these include the rev

ide excision repair (reviewed below), and the evolution of translesion polymerases 

such as eukaryotic DNA polymerase η (pol η) whose function appears to be the bypass 

of bulky lesions that stall high fidelity replicative polymerases (reviewed below; 93).   

 

2.1.2.1.1. cis-syn Thymine-Thymine dimers 

 

the cis-syn thymine-thymine dimer (Figu

cycloaddition of a 5,6-double bond between two adjacent thymine bases in DNA (52). 

Pyrimidine dimers alter DNA structure; bending DNA by 7-9o and unwinding it as much 

as 15o (94-96).  This bending and unwinding inhibits transcription factor binding and may 

perturb gene regulation (97).  

The mutagenicity of TT dimers, like other UV-induced photoproducts, is 

dependent upon which polym

e, Moloney murine leukemia virus reverse transcriptase (MMLV-RT) and Vent 

DNA polymerase (exo-) cannot bypass any UV DNA photoproducts, Taq DNA 

polymerase inefficiently passes cis-syn dimers, and Sequenase 2.0 (exo-; U.S. 
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 2.1.3. DNA repair mechanisms 

rganisms have evolved complex mechanisms to remove 

amage

1.3.1. Base excision repair and the removal of oxidative DNA damage 

 (BER), where 

egins as damaged bases are 

recogn

Biochemical Corp., Cleveland, OH) is not stopped completely by any UV induced lesion 

(87).    

 

 To combat mutagenesis, o

d d and mismatched bases.  Repair mechanisms can be divided into several general 

categories:  direct repair, excision repair, mismatch repair, tolerance systems, and 

retrieval systems (98).  Direct repair involves the reversal/removal of damage; the best 

example of this is photoreactivation of pyrimidine dimers (98).  Excision repair is more 

complex, involving the recognition of damaged bases, excision of the DNA sequence 

including the damage, and synthesis of the removed sequence effectively eliminating the 

altered base (98).  Mismatch repair is responsible for removing mispaired bases resulting 

from incorrect base incorporation during replication, the creation of hybrid DNA during 

recombination, and base conversion (98).  Tolerance repair occurs when replication is 

blocked at a damaged site and the system is forced to proceed by reducing polymerase 

fidelity (98).  Retrieval systems are a specialized version of tolerance repair which recruit 

DNA recombination machinery to obtain an undamaged copy of the nucleotide sequence 

from another source (98).      

  

2.

 Excision repair can be further sub-divided into base excision repair

the damaged bases are the only bases to be removed, and nucleotide excision repair 

(NER), where the damage is eliminated along with a number of flanking nucleotides.  

NER is primarily responsible for removing bulk adducts like those resulting from UV 

exposure ((1, 99); discussed below).  BER, on the other hand, plays an integral part in 

removing lesions resulting from oxidative stress (1, 100).   

Base excision repair of oxidative DNA damage b

ized and removed by DNA glycosylases.  In order to remove the damaged base, 

the N-glycoside bond between the base and sugar moiety is hydrolyzed.  Next, the 

apurinic/aprimidinic site is recognized and a lyase either clips the 3� phosphodiester 
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-oxodG is the most widely studied oxidative base lesion and therefore the most 

informa

2.1.3.2. Nucleotide excision repair and the removal of ultraviolet DNA damage  

 when 

linkage (β-elimination) or both the 3� and 5� phosphodiester bonds (β,δ-elimination).  

The resulting 3� phosphate is cleaved leaving an exposed hydroxyl residue.  Then the gap 

is filled by DNA polymerase action and the remaining nick sealed by a DNA ligase 

(100).   

8

tion is known about its removal by BER from DNA.  First studied in E. coli, the 

removal of 8-oxodG requires three integral enzymes: MutM, MutY, and MutT.  MutM 

functions as a glycosylase/lyase, removing the lesion from 8-oxodG/cytosine base pairs 

(101).  MutY is a glycosylase responsible for removing adenine from adenine/8-oxodG 

mispairs (102).  Base removal results in an abasic site and the cleavage of the 

phosphodiester bond (102-103).  Strand synthesis is performed by DNA pol I completing 

repair of the damaged base (104).  MutT is a triphosphotase enzyme that cleanses the 

nucleotide pool removing 8-oxodG as a substrate for DNA replication (105-107).  

Homologs for each protein exist in humans and are designated hOGG1/hMMH (108-

109), hMYH (110), and MTH1 (111).  

      

 A wide variety of bulky, DNA distorting lesions, such as those generated

DNA is exposed to UV radiation, are repaired through NER processes.  Distortions in the 

double helix, brought about by the presence of these lesions, are recognized by a protein 

complex (XPC-hHR23B in humans (100); UVrABC in E. coli (112)) marking the 

initiation of NER.  A series of proteins are recruited and an open complex formation is 

adopted (100).  The DNA is unwound by inherent helicase activity and the damaged site 

verified in this open formation.  Endonucleases cut 3� and 5� of the damaged site and the 

damaged section of DNA is excised.  A DNA polymerase synthesizes the missing genetic 

information using the opposite DNA strand as a template; a DNA ligase then seals the 

nick completing the �patch repair� (100).  
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.1.4. Summary 

ence and removal of DNA base lesions in cellular DNA is well 

tablis

2

   The pres

es hed.  The accumulation of these DNA damage products increases in aging 

populations; this build up of damage has been implicated as a causative component in 

many cancerous phenotypes.  Further rationale for these hypotheses is presented in the 

following sections as modified DNA impacts replication kinetics.  
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2.2. DNA Polymerases and Translesion Synthesis 

 
Replicative DNA polymerases (replicases) are thought to maintain a high degree of 

fidelity due to strict intolerance toward distortions in DNA shape (113-114).  Originally 

attributed solely to hydrogen bonding stringencies, observations that difluorotoluene, an 

analog of thymine incapable of forming hydrogen bonds, correctly incorporates opposite 

adenine during strand synthesis suggests other factors must impact nucleotide insertion 

(113, 115).  Differences in the melting temperatures of copolymers (ATAT), in comparison 

with their respective homopolymer (AAAA or TTTT), implicates sequence specific base 

stacking interactions as one such factor (113). 

The Klenow fragment of E. coli DNA polymerase I was the first polymerase 

structure to be determined (116).  Analogous to a right hand, the polymerase has finger, 

palm, and thumb sub-domains (116).   

 

2.2.1. Polymerase processivity 

 Replicases are capable of polymerizing thousands of nucleotides without 

dissociating from DNA (117).  Two mechanisms by which different polymerase families 

ensure high processivity both require the aid of additional proteins to form complexes.  

Eukaryotic cellular replicases involve a sliding clamp complex (including PCNA) that 

encircles DNA and tethers it to the catalytic subunit of the polymerase (118).  

Bacteriophage T7 replicases have adopted a simpler method of maintaining close 

association to DNA.  To become processive, T7 polymerase recruits host-encoded 

thioredoxin which increases the affinity of the polymerase for the primer terminus by 80-

fold (117).  Data suggest that thioredoxin forms a cap over the DNA groove locking the 

DNA strand inside the polymerase active site and increases the processivity of the enzyme 

(119). 

 Taq DNA polymerase and other members of the pol I family of polymerases 

usually work without auxiliary processivity factors.  The X-ray structures of these 

polymerases, when complexed with DNA, show that the active site of the polymerase 

contains the 3� terminus of the primer.  The polymerase thumb domain folds over and acts 

as a clamp, holding the DNA template strand in place.  The clamping of the duplex can be 
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enhanced by the tip of the thumb; a mechanism thought to control the processivity of these 

enzymes (120).    

 
2.2.2. Polymerase fidelity 

 Fidelity can be defined as a polymerase�s ability to insert the correct nucleotide 

during DNA synthesis.  As alluded to above, in addition to interstrand hydrogen bonding,   

the fidelity of a polymerase is influenced by intrastrand base-stacking and interstrand cross-

stacking interactions (Figure 2.4; (113)).  To incorporate these as factors, Goodman and 

colleagues propose the �geometric selection� mechanism which contends that both 

geometric and electrostatic properties of the polymerase active site have profound impacts 

on nucleotide insertion specificity.  The authors identify three possible checkpoints for 

proper geometric alignment during base insertion:  initial nucleotide binding, post-binding 

selection by the correct geometric shape of proper base pairing (induced-fit mechanism), 

and the chemical step of phosphodiester bond formation (113, 121).  Polymerases differ in 

the extent at which they use each checkpoint.  Sequential application of each check point 

provides a high power of discrimination against the geometric abnormalities associated 

with mis-matched bases (121). 

 For the pol I family of polymerases, the junction between the palm and finger sub-

domains plays a crucial role in polymerase fidelity.  It is in this junction that the terminal 

base pair of the primer-template association is held in a tightly constrained binding pocket.  

The geometric constraint of this pocket is unsuited for mis-matched base pairs which are 

detected by differences in hydrogen bonding, van der Waals� and base-stacking interactions 

(122).   
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Figure 2.4 Multiple factors influence polymerase fidelity.  Interstrand hydrogen bonding (    ), 
intrastrand base-stacking interactions (            ), and interstrand cross-stacking interactions (          ) all 
influence polymerase fidelity.   
 

2.2.2.1. Nucleotide incorporation 

Copying the genetic code requires the correct incorporation of the proper nucleotide 

into the growing DNA strand.  DNA polymerases recruit incoming dNTPs and mediate the 

transfer of the phosphoryl group on these dNTPs to the exposed 3� hydroxyl on the 

synthesized DNA (114).  The reaction is catalyzed by a two metal ion mechanism 

(normally Mg2+) where one metal ion activates the 3� hydroxyl group on the primer, 

readying it for interaction with the incoming dNTP and the other stabilizes the interaction 

by negating the buildup of negative charges resulting from the departure of an oxygen 

molecule (Figure 2.5; (114, 123)).   

Nucleotide incorporation can be broken down into six steps: polymerase binding to 

DNA, nucleotide binding, conformational change of the polymerase to a catalytically active 

state, phosphodiester bond formation, pyrophosphate release, and either translocation of the 

polymerase to the next residue or polymerase dissociation from DNA (93, 124-125).  Using 

a low fidelity polymerase (yeast polymerase η (Pol η)), Washington et al. (2001) 

demonstrated that the nucleotide incorporation proceeds 150-fold faster when correct 

nucleotide incorporation occurred and this insertion is dependent on an induced-fit 

conformational change (126).  The authors contend that the low fidelity of this polymerase 

likely results by an indiscriminant induced-fit mechanism (126). 
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Figure 2.5 Mechanism of nucleotide insertion.  Most DNA polymerases require the presence of two 
metal ions (designated Me2+) to aid in polymerization.  The ions are required for both A) stabilization of 
negative charges and B) the activation of 3�-OH groups, readying them to interact with incoming dNTPs 
(123). 
 

 

2.2.2.2. Translesion DNA synthesis 

Translesion synthesis by DNA polymerases can result in the misincorporation of 

nucleotides and the establishment of mutation.  During normal replication, polymerization 

is stalled after the incorporation of mismatched bases.  This occurs due to a mis-orientation 

of the 3�-hydroxyl group of the primer terminus onto which the next nucleotide is added 

(123).  Various DNA lesions influence DNA structure and allow stable association between 

mismatched bases (18, 51, 68, 73, 94-96).  To prevent mutagenesis resulting from 

polymerase replication of damaged DNA, highly specialized polymerases have evolved 

that function to synthesize DNA across replication-blocking lesions (127). 

Found in prokaryotes, archaea, and eukaryotes, the Y family of DNA polymerases 

mediates translesion DNA synthesis (TLS).  Due to a spacious active site that can 

accommodate various DNA lesions, these polymerases function to replicate damaged 

DNA.  However, this loose active site decreases the fidelity of Y polymerases on 

undamaged template and prevents them from being useful as replicases (127).  The Y 

family of translesion polymerases includes eukaryotic polymerases η, ι, κ, and Rev1, as 

well as prokaryotic polymerases IV and V (127). 
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.2.2.2.1. Oxidative DNA damage mutagenesis 

unch replication road blocks.  Bypass of 

these le

.2.2.2.2. cis-syn Thymine-Thymine dimer bypass 

 need for TLS is the bypass of TT 

ers 

rther emphasized in xeroderma pigmentosum-variant (XP-V) 

.2.3. Summary 

pacts of DNA base modifications have been studied in both 

in vitro and in vivo models using both prokaryotic and eukaryotic replication 

2

Most oxidative DNA adducts are not sta

sions by replicases occurs resulting in base substitutions, deletions, insertions, and 

frameshifting (15).  The majority of oxidative damage derived mutations are 

substitutions; following a similar pattern with spontaneously generated mutation: 

GC!AT transitions followed by GC!TA transversions (15).   

 

2

  A representative example demonstrating the

dim by Pol η.  Pol η exhibits low fidelity DNA synthesis (misincorporation frequency of 

10-2 to 10-3) on undamaged template (128-129).  Using pre-kinetic steady state 

experiments, Washington el al. (2003) determined that the rate limiting step for bypass of 

TT dimers by Pol η, like that of undamaged template, occurs at the nucleotide 

incorporation steps.  The maximum rate constants for nucleotide incorporation opposite TT 

dimers are nearly equivalent to those observed in experiments using undamaged template 

(93).  This similarity in rate constant suggests that the geometric distortions in DNA 

brought on by the presence of dimers has no affect on the rate limiting step of nucleotide 

incorporation and furthers the author�s contentions that  Pol η bypasses thymine dimers by 

retaining the entire lesion in the active site and directly incorporating adenines opposite 

both thymine bases (93).       

 The need for TLS is fu

individuals.  XP is a genetic disorder which presents a high sensitivity to UV light resulting 

from deficiencies in UV lesion repair or bypass (130).  XP-V is the only XP mutation not 

affecting DNA repair; individuals with mutations in XP-V lack functional Pol η activity 

(131).  To overcome the deficiency in Pol η synthesis, Pol ζ is recruited to bypass TT 

dimers leading to an increase in mutation frequency and the resulting XP phenotype (131). 

 

2

The premutagenic im
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components.  Many DNA polymerases are not absolutely blocked by DNA lesions and, 

during the replication bypass of these lesions, the frequency of mutations is increased.  

Given that DNA damage increases mutagenesis during replication, the need for assays to 

monitor damage accumulation and repair should be clear. 
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2.3. Monitoring DNA Damage and Repair 
 

Modifications to DNA bases alter base pairing kinetics which can lead to 

mutation.  Genetic defects in DNA repair pathways confer susceptibility to certain 

cancers and developmental disorders.  Taken together, these observations suggest that 

DNA damage is a preliminary step in carcinogenesis (3, 19-20).  Assays for DNA 

damage are therefore needed for experimental monitoring of DNA repair pathways and 

clinical diagnosis of DNA repair abnormalities (5).  

 

2.3.1. E-beam irradiation of DNA influences quality 

DNA extracted from licked envelopes exposed to electron beam irradiation differ 

in both the quantity and quality of the DNA recovered when compared with non-

irradiated controls (134).  When typing DNA using the PCR for forensic purposes, 

differential amplification between short and long amplicons may be observed and is seen 

as an indicator of template quality (135-136).  In complete agreement with previous 

reports, DNA quality is compromised in irradiated samples; loci fail to amplify in the 

order of increasing PCR target size as the extent of degradation increases (Figure 2.6; 

(134)).  Non-irradiated samples exhibit balance between loci indicating less DNA 

degradation (134). 

In these reactions, input template amounts are standardized; the observed 

decreases in amplification may be a result of damage to the target DNA in each reaction.  

The observation that amplification of larger loci in irradiated samples decreases in 

comparison to smaller targets from the same sample suggests that DNA damage by E-

beam irradiation is random; the probability of encountering damage increases in reactions 

with larger sized PCR targets.  These observations also suggest that the PCR can be used 

to determine DNA quality. 
 



 

Amelogenin 

         *
      D18S51 

        * 

Figure 2.6. Forensic fragment analysis of DNA from electron beam irradiated envelopes.  DNA from 
irradiated envelopes was isolated and then amplified using Perkin Elmer AmpFℓSTR Profiler Plus® kit.  
Analyzed data shows an apparent difference in the quality of DNA obtained from electron beam irradiated 
envelopes; a five-fold difference in peak heights exists between the smallest (Amelogenin; G1 and G2) and 
the largest (D18S51; G9 and G10) locus (adapted from 134).  Numbers on the Y-axis and peak height 
values represent relative fluorescent units; size of loci is given in base pairs. 
 

2.3.2. Southern blotting 

Detection by Southern analysis involves treatment of damaged DNA with lesion-

specific endonucleases followed by hybridization of filter-bound restriction fragments to 

a gene-specific probe (132-133).  Lesion-specific digestion reduces the signal intensity of 

the target gene; the frequency of lesions is proportional to the decrease in probe 

hybridization (132-133).  Using this method, the first observations suggesting differences 

in rates of repair between transcribed and non-transcribed sequences were made (132) 

 

2.3.3. Quantitative polymerase chain reaction 

The requirement for relatively large amounts of DNA in the Southern 

hybridization method led to the development of quantitative polymerase chain reaction 

(QPCR) assays (5-11).  These methods, referred to as polymerase stop assays, are based 

on the blocking of thermostable DNA polymerase progression by lesions in DNA 

template which result in a decrease in the overall rate of PCR product formation (5, 8-

11).  Under the assumption that a single lesion is sufficient to block polymerase 

progression, the QPCR method effectively measures the fraction of undamaged 

templates.  DNA damage results in a reduction in template amplification and can be 

expressed as lesions per kilobase (10).  Using this method, differences in the rates of 
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DNA repair between mitochondrial (mtDNA) and nuclear DNA have been documented 

(8). 

 

2.3.4. Summary 

 The advent of QPCR to detect and monitor DNA damage and repair dramatically 

reduced the amount of sample material needed for study and increased assay sensitivity 

compared with hybridization-based damage quantification methods.  These assays are 

built on the assumption that thermostable DNA polymerases are blocked completely by 

DNA base lesions.  Experimental validation of this assumption is not readily available in 

the current literature and seems improbable given the lesion bypass characteristics of 

most other DNA polymerase systems.  The need to explore this fundamental assumption 

of QPCR resulted in the experiments presented in the following chapters.   

 



2.4. Modeling the Polymerase Chain Reaction in Real-Time  
 

The polymerase chain reaction measured in real-time is becoming the standard 

method for quantifying DNA and RNA (137).  These assays utilize a variety of 

fluorescence based detection methods allowing high throughput, high sensitivity, and 

reliable specificity (137-139).   

 

2.4.1. Real-time PCR mathematics 

Several mathematical methods are available for determining input template copy 

number from real-time PCR data.  Threshold cycle ( ) methods determine input 

template amounts by comparing the 
TC

TC  value from an unknown template to TC  values 

from templates of known copy number (Figure 2.7; (140-141)).  In the standard curve 

method,  is plotted against the logarithm of copy number for a series of known input 

templates and the copy number of the unknown template is determined by linear 

regression (Figures 2.7B,C; (140)).  When using a standard curve method, either relative 

or absolute quantification can be achieved (140).  The comparative threshold method 

expresses relative changes in gene expression with normalization to a reference 

(housekeeping) gene using the 2

TC

-∆∆ TC formula (141).  The method rests on the 

assumptions that the amplification efficiencies of the target and reference genes are 

approximately equal and that the amplification efficiencies of both genes in exponential 

phase are close to one (141).  

In an alternative method developed by Liu and Saint (2002), amplification 

efficiencies derived from kinetic curves are used to determine relative transcript 

abundance (Figure 2.7; (142)).  This method does not require equivalent amplification 

efficiencies and obviates the need for standard curve construction.  More recently, these 

workers observed that amplification efficiencies change dynamically during simulated 

PCRs and validated a mathematical method in which input template amounts are 

determined from amplification curve parameters (143). 
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Figure 2.7 Exponential modeling of real-time PCR.  A) Polymerase chain reaction curves can be 
separated into three distinct phases; geometric, linear, and plateau.  Geometric phase is modeled 
mathematically using a formula for exponential growth (144); the efficiency of the reaction during this 
stage is constant due to all reagents being in excess quantities and the lack of reaction derived inhibitors 
(144).  B) Using a series of diluted standards, threshold cycle values ( ) are collected and C) plotted 
versus the log of the input DNA concentrations; copy number of unknown templates can then be 
determined using linear regression (140).  

TC

 
 

2.4.2. Real-time PCR calculations influenced by template secondary structure 

Recent work by Nogva and Rudi (2004) call into question the assumption that 

amplification efficiency is equal for all cycles of real-time PCR (145).  Two separate 

targets on the Listeria monocytogenes (LM) genome were amplified and result in an 

observed copy number ratio of approximately 2:1 (145).  The true ratio of target copy 

numbers, previously identified through sequencing of the LM genome, is known to be 6 

(145).  Additional data imply that secondary structure in regions flanking PCR targets 

influenced the first few cycles of amplification.  This impact was undetectable at the 

point in the reaction where fluorescent readings were measured (Figure 2.8; (145)).  

Work such as this emphasizes the need to account for inherent template influences on the 

PCR which may mask differences in subsequent mathematical comparisons.     
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Figure 2.8 Early reaction cycles influence template quantification.  Three types of DNA template exist 
in PCRs after the third cycle; (I) input DNA, (II) PCR derived large fragments with no defined ends, and 
(III) PCR derived amplicons with ends defined by the 5� termini of both primers.  Inherent differences in 
template sequences, both in the target region and in the regions flanking the primer sites, alter the potential 
secondary structures of the duplexed DNA and result in a rightward shift in amplification curves.  This 
rightward shift translates into an artificial decrease in reported copy number (adapted from Nogva and Rudi 
(2004) (145)). 
 

2.4.3. Thermus aquaticus DNA polymerase 

Taq DNA polymerase, a member of the pol I family of polymerases, is widely 

used as a replicative thermostable polymerase in PCRs.  Under optimal conditions and 

with no apparent requirement for additional auxiliary factors, Taq polymerase exhibits 

moderate processivity (polymerization rate as high as 2800 nucleotides per min (146)) 

and fidelity (generating misincorporation events every 104 bases per cycle (147)).   

Studies of Taq translesion synthesis during the PCR are limited.  In the presence 

of all four dNTPs, Taq is not hindered when 8-oxodA is encountered nor is mis-pairing 

evident opposite the base lesion (67, 69).  Slow bypass of TT dimers by Taq also occurs 

(87); greater than 53% of the polymerization reactions terminated opposite the 3�-T and 

between 7-15% terminated opposite the 5�-T (87). 
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2.4.4. Summary 

Some QPCR assays require the use of radioisotope labeled dNTPs to detect PCR 

products as they are formed.  By adapting real-time PCR protocols to estimate damage to 

DNA, the need for hazardous isotopes would be eliminated in polymerase stop assays for 

DNA damage detection.  In addition, little attention has been given to the impact of 

lesion bypass on the mutational spectrum of Taq DNA polymerase.  Work presented here 

describes the observed influences of specific DNA modifications on PCR mutagenesis. 



2.5. Summary 
 

Cellular DNA is damaged as a result of exogenous and endogenous stimuli (12).  

Repair systems are in place to prevent assault on nucleic acid (36-38) or eliminate altered 

DNA if damage occurs (1, 99-100).  If damage to DNA is not repaired, the extent with 

which this damage influences replication of DNA is both lesion and polymerase 

dependent.  Bulky adducts on DNA, such as cis-syn Thymine-Thymine dimers, greatly 

hinder replicative DNA polymerases.  Translesion synthesis proceeds in these cases due 

to the recruitment of the highly specialized Y family of DNA polymerases whose 

function, to date, is lesion bypass (127).  Other lesions, such as 8-oxodG, are considered 

pre-mutagenic as they don�t substantially block replicative DNA polymerase progression 

and, during translesion synthesis, decrease the fidelity of template replication (2).  The 

buildup of DNA damage increases in aging populations (21) and has been implicated as a 

causative component in many late-onset diseases and cancerous phenotypes (3, 148-150).  

These observations emphasize the need for assays to screen for damage in clinical 

settings.   

Currently, real-time PCR is becoming the standard method for measuring DNA 

and RNA in a wide variety of disciplines (137).  Differences in TC  values translate into 

differences in template abundance (141).  The objective of the following body of research 

is to develop a real-time PCR method to screen for DNA damage based on the 

assumptions of the polymerase stop assays.  The purpose of the following research is 1) 

to determine if different DNA base lesions influence the rate of the PCR to different 

degrees (LBR), 2) if lesion bypass occurs, characterize the influence of specific DNA 

base lesions on Taq polymerase fidelity (LIM), and 3) to redefine changes in TC  values 

as differences in amounts of DNA damage (both LBR and LF)  By providing the 

experimental and mathematical basis for using real-time PCR as a screen for DNA 

damage, work toward the usage of polymerase stop assays in a clinical environment may 

become possible.  
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CHAPTER III 
 

MATERIALS AND METHODS 
 
 

3.1. Thermostable DNA Polymerase Lesion Bypass Rate 
 
3.1.1. Synthesis of synthetic DNA templates 
 
 To study the lesion bypass rate (LBR) of DNA base modification by Taq DNA 

polymerase, the type and amount of base lesions must be controlled.  In this study, 

ninety-base oligonucleotides were synthesized on an Applied Biosystems (ABI, Foster 

City, CA) Model 394 DNA Synthesizer in the Marshall University DNA Core Facility 

using low volume 200 nmole cycles with 30 s coupling time and standard 

phosphoramidite chemistry (152-153). The sequence of the unmodified 90 base 

oligonucleotide was equivalent to a portion of the human mitochondrial Hypervariable 

Region One (Anderson sequence #15989-16078 (154)).  7,8-dihydro-8-oxo-

2�deoxyguanosine, 7,8-dihydro-8-oxo-2�deoxyadenosine, abasic site (tetrahydrofuran 

analogue), and cis-syn thymidine dimer were introduced at specific positions as indicated 

in Table 3.1 using DNA damage base cyanoethyl phosphoramidites (Glen Research, 

Sterling, VA). Oligonucleotides were synthesized in the trityl-on mode and cleaved from 

the polystyrene resin with ammonium hydroxide; 8-oxodG containing templates were 

cleaved with ammonium hydroxide containing 0.25 M β-mercaptoethanol (18, 155).  

Oligonucleotides were purified using ABI OPC cartridges (156).  The OPC products 

were resolved using polyacrylamide gel electrophoresis (PAGE) (Figure 4.1), and with 

the RNA 6000 Nanochip assay and Agilent Bioanalyzer (Agilent Technologies, Palo 

Alto, CA) to ensure the removal of synthesis failure sequences during OPC purification 

(Figures 3.1, 3.2; protocol below).  Oligonucleotide templates were quantified by 

measuring optical density at 260 nm, evaporated to dryness, and then stored at -80o C. A 

representative subset of 90-mers (Oxo CONTROL, 8-oxodG1, and Abasic) were 

analyzed by Matrix Assisted Laser Desorption Ionization coupled with a Time-Of-Flight 

(Maldi-TOF) mass spectrometry (HT Laboratories, San Diego, CA) to further confirm 
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oligonucleotide purity (Figure 3.3).  Resulting profiles produced similar baselines and 

unique peaks approximately equal to the expected molecular weights of each 90-mer 

tested (Figure 3.3).   

Oligonucleotide extinction coefficients were obtained using Oligo Primer 

Analysis Software v5.0 (Molecular Biology Insights, Cascade, CO). One hundred µM 

stock solutions of each 90-mer were prepared in low TE buffer (10 mM Tris pH 8.0; 0.1 

mM EDTA) and maintained at -20o C with thawing only for analysis.  
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Table 3.1. 90-mer oligonucleotides used as templates for the PCR. 

 

a 

a- The position of modification relative to the 5� terminus of the oligonucleotide is indicated in parenthesis. 
b- OxodG9 contains a base modification in the internal control region (at site 35) and was therefore only used to demonstrate decreased dye binding as it related 
to increased numbers of 8-oxodG modification (Figure 4.2). 
 
X, Y, Z, and DD represent the insertion sites of 8-oxodG, 8-oxodA, abasic, and cis-syn TT dimer modifications, respectively, into the oligonucleotide.  The 
dotted arrow, the solid arrow, and the dashed arrow indicate the binding sites of the forward, full-length amplicon reverse, and internal control region reverse 
primers respectively (adapted from Sikorsky et al. (2004) (159)). 
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Figure 3.1 Purified 90-mer oligonucleotides.  OPC purification of raw 90 base oligonucleotides removed 
failed coupling reactions that occurred during synthesis; lanes 1 and 12 are RNA mass ladders (suggested 
for ssDNA samples; Ambion, Inc., Austin, TX).  As the number of 8-oxodG modifications increased, 
differences in the migration patterns of the single stranded oligonucleotides were observed (OxodG3T); 
these observations were also seen with PAGE (Figure 4.1) and high percentage agarose separations (data 
not shown) and can be explained by an increased perturbation of backbone structure (157). 
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Figure 3.2 Failure products from 90-mer oligonucleotide synthesis.  Crude material, obtained during 
purification of 90 base oligonucleotides, showed presence of truncated failure sequences; lanes 1 and 9 are 
RNA mass ladders (suggested for ssDNA samples; Ambion, Inc., Austin, TX).  All samples contained a 25 
bp size standard to normalize for interrun variation. 
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Mw: 27584.0 Da Mw: 27579.8 Da Mw: 27483.8 Da

 
Figure 3.3 Maldi-TOF analyses of 90-mers.  Purity of the A) Oxo CONTROL, B) OxodG1, and C) 
Abasic oligonucleotides were determined by mass spectrometry; expected molecular weights were 27579.0 
Da, 27595.0 Da, and 27445.9 Da respectively.  No secondary peaks were observed above baseline 
suggesting the presence of unique purification products; instrument resolution is approximately 1% (or 
equating to 270 Da). 
 
 

3.1.1.1. Resolving oligonucleotide purity using a polyacrylamide gel electrophoresis 

assay 

To confirm removal of synthesis failure sequences by OPC purification, the 90 

base synthetic oligonucleotide templates were heat denatured at 95o C for 5 min followed 

by a rapid cool to 4o C and then resolved by electrophoresis in 1x TBE on 5% denaturing 

polyacrylamide at 60 watts for 1 hr.  Post separation, gels were stained by immersion in 

GelStar (Cambrex, East Rutherford, NJ) for 30 min and viewed on an UV 

transilluminator (see Figure 4.2). 

 

3.1.1.2. Resolving oligonucleotide purity using the Agilant 2100 Bioanalyzer and RNA 

6000 Nanochip assay 

To corroborate observations made from the PAGE analysis, the purified synthetic 

90-mers and crude synthesis failure sequences were resolved using microchip separation 

technologies.  The RNA 6000 Nanochip and Agilent 2100 Bioanalyzer were prepared 

according to manufacture recommended protocols.  1 µl of 100 µM crude and OPC 

purified sample material was added to respective sample wells on the nanochip and 
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separated using the Total Eukaryote RNA run module (suggested for ssDNA).  Data was 

collected by the instrument and exported as .tiff picture files (see Figures 3.1, 3.2).      

 
3.1.1.3. Amplification of 90 base oligonucleotides by Taq DNA polymerase using real-

 primers were designed to amplify either the full-length 90-mer 

oligonu

com

.1.1.4. Amplification of 90-base oligonucleotides by Restorase damage polymerase 

ative PCR components impacted experimental observations, the 

full-len

time PCR   

PCR

cleotide or a 45 base region with no base modifications [the internal control 

region (ICR); Table 3.1; Figure 4.1; (159)] with ABI Primer Express Software v2.0. Our 

standard 25 µl PCR contained 12.5 µl of ABI 2x SYBR® Green PCR Master Mix, 9.5 µl 

of sterile deionized H2O, 1 µl of oligonucleotide template, 1 µl of 10 µM forward PCR 

primer (5�- CCC AAA GCT AAG ATT �3�) and either 1 µl of 10 µM reverse PCR 

primer (5�- TTG ATG GGT GAG TCA �3�) for full template amplification or 1 µl of 10 

µM internal control primer (5�- CAT GAA AGA ACA GAG �3�) for ICR amplification. 

A master mix without template was prepared based on the total number of reactions. 

Oligonucleotide templates ranging from 1 amole to 100 fmoles were then added to 

complete the reaction. Amplifications were performed in 96 well plates and capped with 

optical grade ABI PCR strip caps. Templates were amplified under the following 

conditions: 50o C for 2 min, 95o C for 10 min, then 40 cycles of 95o C for 20 s, 54o C for 

30 s and 60o C for 1 min. PCR amplification and detection was carried out in an ABI 

Model 7000 Sequence Detection System (SDS) according to guidelines provided (140). 

TC , dissociation curve data, and delta Rn values were exported from SDS data files in 

ma delimited (.csv) format. 

 

3

using real-time PCR   

To test if altern

gth 90-mer oligonucleotide or the ICR region were amplified using Restorase 

DNA polymerase (Sigma-Aldrich, St. Louis, MO).  Big band modifications to the PCR 

primers were necessary to prevent degradation by Restorase�s inherent exonuclease 

activity (Big Band Primers; Sigma-Genosys, Woodlands, TX).  Modifications to the 

Restorase amplification protocol were made to allow data collection in real-time.  
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Reactions contained 1 µl of a 1:1000 dilution of SYBR Green Dye (Molecular Probes 

Inc., Eugene, OR), 0.5 µl of Rox internal standard dye (Epicenter Technologies, 

Madison, WI), 0.5 µl dNTP mix (Sigma-Aldrich), 2.5 µl of 10x Restorase reaction buffer 

(Sigma-Aldrich), 1 µl forward primer, and either 1 µl of ICR or full-length reverse 

primers; QS to 24 µl with dH2O and add 1 µl of oligonucleotide template.  Complete 

reactions were prepared on ice, transferred to 96 well plates, and capped with optical 

grade ABI PCR strip caps.  Sample plates were incubated at 4o C for 5 min to limit 

exonuclease and repair activities.  Plates were then transferred to an ABI 7000 sequence 

detection system and amplified according to guidelines provided (140).  Templates were 

amplified under the following conditions: 95o C for 5 s, then 40 cycles of 95o C for 20 s, 

54o C for 30 s and 60o C for 1 min and data exported as described above. 

 

3.1.1.5. Calculation of lesion bypass rates from real-time PCR data from 90-mer 

lesion bypass rate, Relative Threshold Cycle and Mean Modified 

Efficien

synthetic templates  

Measures of 

cy, were performed using Microsoft Excel software.  Complete descriptions of 

each method are found in sections 3.4.1. and 3.4.2 respectively.  Inherent Template 

Efficiency calculations required the fit of raw PCR data to sigmoid grow curves (section 

3.4.3.); this was accomplished using SigmaPlot 2001 for Windows v7.0 (Systat Software 

Inc., Point Richmond, CA).  Subsequent calculations were performed using Microsoft 

Excel. 
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3.2. Calculation of Lesion Abundance in Cellular DNA 
 In order to estimate cellular DNA damage by the calculation of lesion frequency 

(LF) from real-time PCR data, amplification of long targets is necessary to increase assay 

sensitivity to biologically appropriate damage levels (5).  To transition into long template 

amplification for damage study, it was first necessary to test damage assays with long 

templates containing controlled modifications. 

  

3.2.1. Synthesis of 593-base templates with controlled modifications 

Using primers designed to flank the mammalian mtDNA sequence analogous to 

the Oxo CONTROL 90-mer (Anderson #15912-93 (154); Appendix A), 751 bp PCR 

products were generated from total cellular DNA.  PCR master mixes were created as 

described in section 3.1.1.3. and amplified using the following conditions:   50o C for 2 

min, 95o C for 10 min, then 40 cycles of 95o C for 30 s, 55o C for 20 s and 72o C for 1 

min. These products were purified using QiaQuick PCR purification columns (Qiagen 

Inc., Valencia, CA).  A nested PCR was performed under the sample amplification 

conditions using these purified 751 bp PCR products as templates and using the 90-mers 

described above (Table 3.1) as the reverse primer and a 5� biotin labeled primer 

(FWD#12; 5�-AAG CCT GTG ATC CAT CGT GAT-3�; Sigma-Genosys, Woodlands, 

TX) as the forward primer.  Crude products from eight replicate reactions were 

combined, cleaned with the QiaQuick system, and concentrated in 50 µl of DNA elution 

buffer.  40 µl of purified PCR product was added to 13 µl of 20X SSC and 460 µl of 

dH2O to enhance the formation of dsDNA.  To remove the biotin labeled anti-sense 

strand, the PolyATract® mRNA Isolation System (Promega, Madison, WI) was used.  

Para-magnetic particles coated with Streptavidin (SA-PMPs) were washed with 0.5X 

SSC buffer and then the contents of the sample/SSC/dH2O mixture were added and 

incubated at room temperature for 10 min to allow maximum streptavidin-biotin 

association.  The beads were then washed 4 times in 0.1X SSC; after each addition the 

SA-PMPs were collected at the side of the sample tube using a specialized magnet 

(Promega).  One hundred µls of dH2O were added and the samples incubated at 75o C to 

denature the dsPCR product and elute the anti-sense strand containing the PCR ligated 

synthetic 90-mer. 
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3.2.1.1. Separation of PCR products to determine homogeneity using agarose and gel 

electrophoresis 

To estimate specificity of amplification, crude PCR products were separated using 

agarose gel electrophoresis.  Unless otherwise noted, PCR products were separated in 1X 

TAE buffer through 2% SeaKem ME agarose (FMC Bioproducts, Rockland MA) 

containing 0.5 µg/ml of ethidium bromide at 50 to 100 V for 0.5 to 3 hrs to confirm 

product size.   These parameters were sufficient to resolve products ranging from 50 bp to 

3 kb in length.  A 123 base pair nucleic acid mass ladder was included to confirm product 

size.  Gels were viewed on an UV transilluminator and digital pictures taken using a Gel 

Doc 2000 (BioRad Inc., Hercules, CA). 

 

3.2.1.2. Amplification of 593 base templates for damage study 

PCR master mixes were created as described in section 3.1.1.3. and amplified 

using the following conditions:   50o C for 2 min, 95o C for 10 min, then 40 cycles of 95o 

C for 30 s, 55o C for 20 s and 72o C for 1 min.  The FWD#12 primer was used in 

combination with either FWD#16138 and REV#16090 to create full-length and oligo-

ligation internal control region (OL-ICR) amplicons (Appendix A). 

 

3.2.1.3. Data analysis  

Measures of lesion bypass rate were performed as described in section 3.1.1.5.   

 

3.2.2. Ultraviolet irradiation of total cellular DNA 

To determine if real-time PCR and changes in CT values could be used to estimate 

damage in cellular DNA, the creation of samples with controlled amounts of damage to 

cellular DNA was necessary.  Total cellular DNA was extracted from whole blood as 

described in section 3.2.2.1.  Working DNA concentrations were 5 ng per µl (as 

determined by absorbance at 260 nm).  One hundred µls of DNA stock solutions were 

spotted on parafilm and irradiated at short range UV (254 nm) for various times using a 

UVS-11 Mineralight lamp (Ultraviolet Products Inc., San Gabriel CA) fixed at a height 
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of 20 mm in a sterile hood.  The amount of evaporation was determined and samples QS 

to 100 µl with dH2O and stored at -20o C until analysis. 

 

3.2.3. Validation of real-time PCR for detection of biologically relevant levels of UV 

damage 

To validate real-time PCR as an assay for determining lesion frequency in total 

cellular DNA, UV damaged DNA was acquired from Drs. Bennett Van Houten and Joel 

Meyer at the National Institute of Environmental Health Sciences, Research Triangle, 

NC.  DNA for QPCR and real-time PCR lesion frequency calculations was prepared as 

follows: MGH-U1 (bladder cancer) cells were grown as monolayers in 75 cm2 tissue 

culture flasks in RPMI medium supplemented with 10% heat-inactivated fetal calf serum, 

1% penicillin/streptomycin and 2 mM L-glutamine in a humidified atmosphere of 5% 

CO2 in air. For the experiments, 106 cells were seeded in 10 ml medium into 10 cm 

dishes and cultivated overnight at 37o C. After 24 h, the medium was aspirated, cells were 

washed with PBS, and then irradiated in 3 mL PBS with 0, 10 or 20 J/m2 UV radiation, 

using a germicidal Spectroline X-Series lamp (Spectroline, Westbury, NY). Cells were 

harvested in 10 ml RPMI medium, centrifuged for 10 min at 1000 rpm, washed with 10 

ml PBS and centrifuged again for 10 min at 1000 rpm. Cells were frozen immediately 

after the exposure and stored at -80 o C to prevent DNA damage repair.  

Frozen cell pellets were later thawed and immediately transferred to 2 ml lysis 

buffer (Genomic-tips kit; Qiagen Inc., Valencia, CA) supplemented with 4 µl RNase A 

(100 mg/ml; Qiagen) and 100 µl proteinase K (>600 mAU/ml; Qiagen). Samples were 

vortexed for 5 s and incubated at 50º C for 2 h. Samples were then vortexed again for 10 

s and loaded immediately onto pre-equilibrated Genomic-tip 20/G (Qiagen) columns. 

Subsequent purification of genomic DNA was according to the Genomic-tips (Qiagen) 

protocol. The integrity of the extracted DNA was assessed by electrophoresis through 1% 

agarose gel at 30 V for 16 h. 

Genomic DNA was quantitated using PicoGreen dye (Molecular Probes Inc., 

Eugene, OR) as described by Santos et al. (2002), and 15 ng of each sample was used as 

template for PCR reactions (11). PCR amplifications were performed as described by 

Santos et al. (2002), using primers 2372 (5�-CAT GTC ACC ACT GGA CTC TGC AC-
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3�) and 3927 (5�-CCT GGA GTA GGA ACA AAA ATT GCT G-3�) for the polymerase 

beta gene, and primers 48510 (5�-CGA GTA AGA GAC CAT TGT GGC AG-3�) and 

62007 (5�-GCA CTG GCT TAG GAG TTG GAC T-3�) to amplify a non-coding region 

5� of the beta globin gene (11). PCR reaction mixtures and cycling conditions were as 

described in Santos et al. (2002) except that 25 cycles of amplification were used for both 

reactions (11). PCR products were quantified with PicoGreen dye and a fluorescence 

plate reader, and lesion frequency was calculated by application of the Poisson 

distribution (10). 

 

3.2.2.1. Genomic DNA extraction   

Total cellular DNA was extracted from whole blood using the Wizard Genomic 

DNA Purification kit (Promega, Madison, WI) and protocols for extracting DNA from 

blood (134).  To lyse white cells, Cell Lysis Solution (Promega) was added to whole 

blood; nuclear membranes were disrupted by Nuclei Lysis Solution (Promega).  RNAase 

was added to destroy any RNA present in the sample and Protein Precipitation Solution 

(Promega) added to precipitate out any protein material.  The samples were centrifuged 

and the supernatant containing DNA transferred to a clean tube containing isopropanol.  

White strands, indicating the presence of DNA, were visible which were then pelleted by 

centrifugation.  The DNA pellet was washed with 70% ethanol, the ethanol removed, and 

the pellet air dried.  DNA was resuspended in DNA Rehydration Solution (Promega) and 

the concentrations determined by absorbance at 260 nm.  Samples were aliquoted and 

stored at �20o C and thawed immediately prior to experimentation. 

 

3.2.2.2. Long extension real-time PCR   

A primer walking strategy was adopted to amplify various sized fragments from 

human mtDNA (Figure 3.4).  Primers were adapted from Levin et al. (1999) (158), from 

Ayala-Torres et al. (2000) (10), or created using ABI Primer Express Software v2.0 to 

amplify sections of mtDNA; each amplicon contained the same reverse primer 

(REV#14841; 5�-TTT CAT CAT GCG GAG ATG TTG GAT GG-3�).  Forward primers 

were designed to systematically increase amplicon size (Figure 3.4; Appendix A). A 

standard 25 µl long extension PCR contained 12.5 µl of ABI 2X SYBR® Green PCR 
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Master Mix, 9.5 µl of sterile deionized H2O, 1 µl of template, 1 µl of 10 µM forward 

PCR primer, and 1 µl of 10 µM reverse PCR primer.  Templates were amplified under 

the following conditions: 50o C for 2 min, 95o C for 10 min, then 40 cycles of 94o C for 30 

s and 65o C for 4 min.  

Template amounts were held constant in these reactions by prior amplification of 

an internal control region (LX-ICR; Figure 3.4; Appendix A) and application of a dilution 

factor determined by direct cycle threshold based comparison mathematics (141). Master 

mixes for the LX-ICR PCRs were constructed as described above, but reactions were 

performed under the following conditions: 50o C for 2 min, 95o C for 10 min, then 30 

cycles of 94o C for 15 s and 60o C for 1 min. Data was exported and calculations 

performed using Microsoft Excel software. 
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Figure 3.4. Amplification of mitochondrial DNA by primer walking. The schematic represents 
mammalian mtDNA; reverse primer (REV #14841) was held constant and forward primers moved to 
create amplicons ranging between 221 bp and 3082 bp.  Actual fragment size is given in parenthesis.  The 
LX-ICR (         ) is located within Amplicon 1 (from mtDNA #14642-#14693). 

 

3.2.2.3. Data analysis  

Measures of lesion bypass rate were performed as described in section 3.1.1.6.  

Lesion frequencies were calculated from real-time PCR data using Microsoft Excel 

software and equation 13 in section 3.4.4. 
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3.3. Characterization of Lesion Induced Mutagenesis 
 
3.3.1. Synthesis and amplification of modified 90-mer oligonucleotides 

 To determine nucleotide incorporation opposite DNA base modification during 

the PCR (LIM), the amount and types of base lesions must be strictly controlled.  The 

generation of modified oligonucleotides (section 3.1.1.) and their respective amplification 

(section 3.1.1.3.) are described above. 

 
3.3.2. Purification of PCR product 

Prior to sequencing, PCR products were electrophoresed through agarose to 

confirm the presence of the correct sized amplicon (section 3.2.1.1).  PCR products were 

purified using the Qiagen® QiaQuick PCR amplification kit protocol (134).  This protocol 

is designed to purify single or double stranded DNA from PCR and other enzymatic 

reactions; fragments ranging from approximately 100 bp to 10 kb are purified from 

primers, nucleotides, polymerases and salts.  To prevent degradation post purification, 

PCR products were eluted in Buffer EB (Qiagen Inc.; 10mM Tris-Cl, pH 8.5) and stored 

at -20o C until needed for further analysis.     

 

3.3.3. Dye terminator DNA sequencing 

Purified DNA products were subjected to cycle sequencing using ABI Big Dye 

Terminator ready reaction kit with Taq FS polymerase (134).  2 µl of the purified PCR 

product were added to 8 µl of a master-mix; master mix contained 2 µl of the ready 

reaction mix (including Taq, ddNTPs, dNTPs, MgCl and buffer), 0.5 µl of a 10 µM 

unidirectional sequencing primer (either forward or reverse primer from PCR reaction) 

and 6.5 µl dH2O.  Note: for amplicons less than 100 bp, 1 µl of the purified PCR product 

was added to 9 µl of a master-mix containing 1 µl of the ready reaction mix, 0.5 µl of a 

10 µM primer, and 7.5 ml dH2O. The reaction mixes were cycle sequenced using 

optimized sequencing parameters (30 cycles:  95o C for 30 s, 50o C for 20 s, 60o C for 4 

min; and then a terminal hold at 4o C). 
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3.3.3.1. Purification of cycle sequencing product 

The cycle sequencing reaction products were cleaned using a Centri-sep 100 spin 

column (Princeton Separations, Princeton, NJ; (134)).  Prior to use, spin columns were 

hydrated with dH2O (either for 2 hrs at room temperature or overnight at 4o C) and spun 

at 750 x g twice, each for 2 min (discarding the flow through between spins).  Note: if 

columns were soaked overnight, 30 min incubation at room temperature was necessary 

before proceeding further.  The entire 10 µl cycle sequencing reaction mixture was then 

added to the center of the column and spun at 750 x g for 2 min.  The flow through was 

collected and added to 25 µl of a template suppression reagent (ABI).  The samples were 

denatured at 95O C for 4 min and loaded onto an Applied Biosystems 310 Genetic 

Analyzer for sequence analysis. 

 

3.3.3.2. DNA sequence analysis 

Samples were processed using standard analysis parameters provided in the Seq 

POP6 Rapid (1 ml) E module (Sequence Analysis software v3.3 (ABI)) and analyzed 

using the CE-1 base-calling algorithm.  Computer analyzed base calls were manually 

edited for accuracy.  Sequence comparisons were made ABI Sequence Navigator v1.0.1 

software or the SeqLab Analysis platform (Accelrys, San Diego, CA). 
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3.4. Mathematical Modeling of the Polymerase Chain Reaction Involving 

Amplification of Multiple Templates with Differing Efficiencies1. 

 
To explain amplification of templates with different inherent efficiencies, four 

novel mathematical treatments were developed.  Two of the mathematical methods, the 

relative threshold cycle and mean modified efficiency, are rate-based measures of DNA 

damage (measuring LBR) based on comparing data taken from the exponential phase of 

amplification in reactions containing a homogenous population of DNA template; e.g. 

types and amounts of damage do not vary intrasample.   The inherent template efficiency 

model also uses homogenous input DNA and reports results in terms of modified 

template reaction efficiency (a measure of LBR) but fits raw PCR data to sigmoid growth 

curves and creates comparisons based on whole PCR curve kinetics.  Damage 

quantification from cellular DNA involves samples with non-homologous damage and 

requires modeling proportions of damaged and undamaged template (CoLA); lesion 

frequency calculations take this into consideration.  The rationale for and derivation of 

each is presented in the following sections.   

 

3.4.1. Lesion bypass rate: the Relative Threshold Cycle method  

   The relative threshold cycle method was developed to estimate amplification 

efficiency of synthetic templates containing DNA base modifications thought to impede 

polymerase progression.  Comparisons between data from full-length and internal control 

region (ICR) reactions were based on observed threshold cycle ( ) values; the ICR 

contained no modifications and, therefore, provides a measure of intact template amount.  

Since the input template amounts in these two PCRs are equal, any increase in  must 

result from a decrease in amplification efficiency.  For unmodified templates (e.g. the 

ICR), if amplification is 100% efficient, the exponential formation of PCR product is 

TC

TC

  

02 xx n
n =                  1  

                                                 
1 Novel mathematical formulae were developed in collaboration with Dr. James Denvir, Department of Microbiology, 

Immunology, and Molecular Genetics, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV. 
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where ( ) is the total fluorescence at cycle number ( ) and ( ) is the input template 

fluorescence at  = 0 (140, 144).  During amplification of the full-length modified 

oligonucleotide, unmodified products were formed which then served as templates in 

subsequent cycles.  During the exponential phase of these reactions, the amount of 

unmodified product ( ) at cycle number 

nx n 0x

n

ny n  is  

 

EMyy nn += − )1(2                2  

 

where ( E ) is the amplification efficiency of modified templates and ( M ) is the 

fluorescence of modified templates.  Prior to any amplification, in reactions with 

modified input template, there was no unmodified template present.  With 00 =y  

equation 2 becomes   

 

EMy n
n )12( −=               3 

 

and the total PCR product ( ) at cycle  is given by nz n

 

MEz n
n )1)12(( +−= .             4 

 

 

In order to determine threshold cycle for the ICR and full-length PCRs, a threshold 

fluorescence (T ), fixed for all reactions was chosen, which was sufficiently larger than 

the background fluorescence but small enough that the reaction was still in the 

exponential phase.  The cycles at which the ICR and full-length PCRs reach the threshold 

level are designated TUC   and  respectively.  By substitution into equations 1 and 4, 

equations that relate threshold fluorescence to cycle number for the ICR were derived; 
TMC

 

o
C xT TU2=                    5 
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and for the full-length PCR 

 

MET TMC )1)12(( +−= .              6  

 

If 0xM =  for a given template, equating equations 5 and 6 and solving for E  produces: 

 

)12/()12( −−= TMTU CCE .                      7  

 

This equation can be approximated to produce the simpler equation  

 

TMTU CCE −≅ 2                     8 

 

which represents the Relative Threshold Cycle (RTC) amplification efficiency.  If 

TUTM CC ≥  and  the error of this last approximation is less than 0.1%. 11>TMC

 

3.4.2. Lesion bypass rate: the Mean Modified Efficiency method 

The RTC calculations require two assumptions: 1) the efficiency of the PCRs of 

small DNA templates must be equal and close to 100% and 2) the input template amounts 

must be held constant between reactions.  To eliminate these assumptions and provide a 

more precise means to quantify differences in PCRs containing damaged DNA template, 

the mean modified efficiency (MME) method was created.   

In general, exponential amplification of DNA template is given by  

 

,)1( 1−+= nn xEx  or ,0)1( xEx n
n +=                  9 

 

where ( ) is the total fluorescence at cycle ( ), and (nx n E ) is the amplification efficiency.  

Modified templates generate unmodified template at one efficiency and these PCR 

derived unmodified templates then amplify at a different efficiency (usually higher).  In 

reactions containing templates with differing amplification efficiencies,  
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MExEx mnun ++= −1)1(                                   10    

 

where is the fluorescence  of unmodified templates at cycle n, ( ) is the efficiency of 

unmodified templates, ( ) is the efficiency of modified templates, and (

nx uE

mE M ) is the 

constant fluorescence due to the modified templates.  is solved for separately using 

equation 17 as shown in the Numerical Bootstrapping section of Materials and Methods.  

There is no unmodified template at the beginning of the PCR. When , equation 10 

has the following solution: 

uE

00 =x

 

( )[ ]11 −+= n
u

u

m
n E

E
ME

x                   11 

 

Since represents only the fluorescence due to unmodified templates, the total 

fluorescence, , is given by  

nx

nt

 

( )[ ] ME
E

ME
t n

u
u

m
n +−+= 11 .               12 

 

Equation 12 represents a model explaining the PCR containing competing templates with 

differing amplification efficiencies. In many treatments of similar analysis (for example, 

(138-139, 141)), the values of  are normalized to a control gene in order to determine 

relative fold increases in PCR product. Since the aim of this method is to arrive at an 

absolute measure of efficiency, 

nx

M  , , and  here refer to background subtracted, raw 

fluorescence values. For this reason, a value for

nx nt

M , the initial fluorescence of modified 

template, must be derived (described in the Numerical bootstrapping section).  

For any given set of data, the threshold cycle number  and a given threshold 

fluorescence 

TC

T  , equation 12 becomes  
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Equation 13 can then be solved for the efficiency ( ) of the modified templates mE

 

]1)1[(
)(
−+

−
=

TC
u

u
m EM

MTE
E                          14  

 

3.4.2.1. Mean Modified Efficiency: numerical bootstrapping   

In order to solve for modified efficiencies with equation 14, it was necessary to 

generate values for the , TC T , M , and .  The value of  is directly related to an 

arbitrary threshold value 

UE TC

T  and therefore determined experimentally.  In order to derive 

the initial fluorescence of modified template M , internal control primers were used to 

amplify the unmodified ICR of the oligonucleotide templates.  Using template 

concentrations that ranged over five orders of magnitude,  values (N=5) were 

collected, plotted against the base log

TC

10 of the template concentration, and the slope (m) 

of the best fit line determined. The efficiency was then computed using a standard 

method for amplification efficiency calculation  

 

E = .  110 )/1( −− m
                                        15 

 

The initial fluorescence value  for each input template could be defined using the 45 

base pair reaction data and the equation 

0x

 

( ) TCE
Tx

+
=

10  .                          16  

 

Since the same template stocks are used for both the 45-mer and 90-mer experiments, it 

was appropriate to use the input fluorescent values  from ICR data as input measures 

for 90-mer fluorescent values 

0x

M . 

51 



The efficiency of the PCR derived unmodified templates  was computed in the same 

manner as the internal control reaction efficiencies using equation 15.

uE
2  The efficiency of 

the modified templates  could then be determined using equation 14.  mE

 

3.4.3. Lesion bypass rate: the Inherent Template Efficiency method 

Despite eliminating assumptions necessary for the RTC estimation, the MME is 

limited to the portion of the PCR curve where amplification is exponential and also 

requires the amplification of a template at multiple input amounts.  PCR kinetic data, 

derived from whole curve analysis, has been used to determine input template amounts 

and reaction efficiencies (141).  In addition to looking at all the data points of a PCR 

curve, this method can determine these variables from a single PCR.   

Sigmoid growth curves can be explained by  

 

)1(
)(

)/()(
max

2/1 knnn e
R

R −−+
=                                    17 

 

where ( ) is the quantity of template at cycle ( ), ( ) is the maximum (plateau) 

value, ( ) is the cycle at which  reaches ½ , and ( ) is related to the efficiency 

of the reaction by  

nR n maxR

2/1n nR maxR k

 

1/1 −= keE .                          18 

 

Equation 18 satisfies the relationship  

 

∆ ,  ))(/))(/(1( maxmax nnn RRkRRR −=                      19 

 

so that (∆ ) is proportional both to the amount of template already present, and to the 

amount of potential template left for the reaction to create. 

nR

                                                 
2 In theory, for the equation for our modified templates this data should no longer exactly fit a straight line. However the 

deviation from a straight line is of the order of 
K
M , which is negligible. 
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 To derive a formula to incorporate the variable of having modified template 

present at the onset of the reaction, an analogy to ∆  above can be made, noting that the 

modified and unmodified templates will create new templates but with different 

efficiencies.  To this end, let  represent the amount of unmodified template in the 

reaction after  cycles and  represent the amount of modified template present (a 

constant).  The rate of change of  is assumed proportional to

nR

nuR

n oX

nR )/()/( bRax no + , and the 

amount of template the reaction is still able to create equates to )( max nRR − .  That gives 

 

∆ )))(/()/))((/(1( maxmax nnon RRbRaxRR −+=                  20 

 

where ( ) and ( ) are interpreted by  a b

 

1/1 −= a
m eE                    21 

 

and 

 

1/1 −= beEu ;                   22 

 

mE  is the efficiency of the modified template and  is the efficiency of the unmodified 

template.  Equation 20 has the solution:  
uE

 

)/()((
max

))/()1((
max

max

max

))/()(1(
)1(

abRbxan
o

abRbxn
o

on o

o

ebxaR
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+−

+
−+

=+              23 

 

representing the Inherent Template Efficiency (ITE) where ( on xR + ) is the total template 

in the reaction. 
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3.4.4. Calculation of lesion abundance: determination of Lesion Frequency using TC   

values 
 Equations 8, 14, and 23 (RTC, MME, and ITE respectively) represent measures of 

reaction rate for modified DNA template.  These formulae assume that no unmodified 

templates are present at the beginning of each PCR.  Therefore, strictly speaking, they do 

not represent meaningful measures of damage in cellular DNA due to the likelihood that 

cellular DNA would be a mixture of modified and unmodified template.  For the 

successful adaptation of real-time PCR as a polymerase stop based assay for biologically 

significant DNA damage quantification, changes in  values must be redefined as 

lesion frequency, rather than reaction rate.   

TC

 For polymerase chain reaction with efficiency (E), the number of target DNA 

molecules (xn) after (n) cycles of the reaction is given by 

 

0)1( xEx n
n += ,   (144)                24 

 

where x0 denotes the number of input DNA molecules. 

In this assay, undamaged (control) DNA are amplified and compared to the amplification 

of damaged DNA. The aim is to estimate the proportion (p) of damaged bases in the 

DNA from the treated sample material. Previous work suggests the major DNA lesion 

created by UV radiation effectively blocks the PCR (151); the assumption that cellular 

DNA containing one or more damaged bases in the target region does not contribute to 

the reaction can therefore be made.  Denoting the length of the target DNA molecule by 

N, the probability that an input molecule is undamaged over the whole length of the target 

is (1-p)N. Thus the number of input molecules contributing to the reaction is (1-p)N x0. 

Thus, for damaged DNA with lesion frequency (p) the reaction is modeled by the 

equation 

 

0)1()1( xpEx Nn
n −+= .                25 

 

A threshold value (T) common to both the reaction for damaged and undamaged 
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templates was chosen, and input templates held constant as described above. The 

fractional cycle number at which the reaction reached the threshold was measured. For 

the reaction with undamaged DNA this threshold cycle is denoted as CU; for damaged 

DNA this threshold cycle is CD. Applying equations (1) and (2) with xn=T, produced 

 

0)1( xET UC+= , and  

 

0)1()1( xpET NCD −+= . 

 

Equating these two expressions for T gives 

00 )1()1()1( xpExE NCC DU −+=+ , and so 

NCC pE DU )1()1( −=+ − . 

 

Denoting CU – CD = ∆CT, produced 

pE NCT −=+ ∆ 1)1( / , or 

 
NCTEp /)1(1 ∆+−= .                            26 

 

 

 It is important to note: theoretically, these two methods, the rate of lesion bypass 

(RTC, MME, and ITE) and the proportion of damaged bases at the beginning of the PCR 

(lesion frequency) can be used in combination to produce a more accurate measure of 

DNA damage.  In addition, by amplifying two target lengths, both LBR and LF can be 

determined using more advanced formulae (Appendix E).  Currently, limitations in 

instrument precision prevent this from being possible.    
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CHAPTER IV 
 

Results 
 
 

4.1. Quantification of DNA Damage 
 

4.1.1. Modified oligonucleotides as templates for the PCR 

To characterize the influence of defined lesions, both in terms of LBR and LIM, 

on the PCR, a series of 90-base oligonucleotides containing 8-oxodG, 8-oxodA, abasic 

site, or TT Dimer modifications were synthesized for amplification by the PCR (Table. 

3.1, Figure 4.1A).  These modifications were selected because they are prevalent products 

of damage induced by oxidation and irradiation (15).  To ensure oligonucleotide 

homogeneity, synthesis products were analyzed by nanochip electrophoresis (Figure 3.2), 

Maldi-TOF (Figure 3.3), PAGE (Figure 4.2), and high percentage agarose gel 

electrophoresis (data not shown) separation techniques.  In all gel based separation 

methods, an apparent decrease in oligonucleotide fluorescence correlated with increased 

numbers of inserted 8-oxodG bases (Figures 3.2, 4.2).   

 

 

A 

REVERSE PRIMER

B FORWARD PRIMER 

INTERNAL CONTROL PRIMER

Figure 4.1. Model of oligonucleotide amplification.  A) Amplification of the full-length oligonucleotides 
differing only in the type and number of modified bases.  Any difference observed during amplification can 
be attributed to the incorporated modified bases and their influence on the PCR.  B) Amplification of the 
internal control region (ICR); this ICR contains no modification and therefore amplifies with the same 
efficiency in each template providing the ability to quantify input template amounts and normalize 
concentrations in subsequent calculations.  * represents sites of modified DNA bases. 
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Oxo               OxodG2T    OxodG4T    OxodG6     OxodG9               
CONTROL 

 
Figure 4.2. Polyacrylamide gel electrophoresis of 90-mer oligonucleotides.  Oligonucleotides which 
contained increasing amounts of 8-oxodG modifications presented decreased staining intensities; each lane 
contained 20 pmol of oligonucleotide; each oligonucleotide was run in duplicate.  Complete sequences of 
oligonucleotides are found in Table 3.1. 
 

The decrease in dye binding as the number of tandem 8-oxodGs increases can be partially 

explained by a decrease in stable secondary structure.  During cycle sequencing reactions 

containing no sequencing primer, Oxo CONTROL and OxodG2T oligonucleotides folded 

back upon themselves and auto-sequenced (Figures 4.3B and 4.3C respectively).  This 

suggested that stable structures could form in the 90-mers at cycle sequencing extension 

temperatures.  Auto-sequencing was perturbed as the number of tandem 8-oxodGs 

increased (OxodG4T and OxodG6; Figures 4.3D and 4.3E, respectively).  This disruption 

of secondary structure would in turn result in decreased dye intercalation.   
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A 

C

D E

 
Figure 4.3.  Auto-sequencing of 90-mer oligonucleotides.  Black, green, red, and blue represent guanine, 
adenine, thymine, and cytosine bases respectively.  A) The schematic represents a potential hairpin at the 3� 
end of the oligonucleotides.  The potential sites of 8-oxodG modification are boxed in red; the underscored 
area represents total readable sequence in auto-sequencing reactions.  90-mer oligonucleotides, B) Oxo 
CONTROL, C) OxodG2T, D) OxodG4T, and E) OxodG6, were subjected to cycle sequencing as described 
in the materials and methods but without a sequencing primer.  During these reactions, auto-sequencing 
occurred originating at the 3� end of the 90-mers (B,C) which was eliminated by the addition of multiple 
tandem 8-oxodG modifications (D,E). 
 

Since oligonucleotides are synthesized in the 3� to 5� direction; an internal primer was 

developed to amplify a 45 base control region (ICR) on the 5� end of the oligonucleotides 

and confirm the synthesis of full-length template (Figure 4.1B).  Positive amplification of 

this region indicated the presence of intact oligonucleotide. The benefits of this 

oligonucleotide model include the ability to control the amount, positioning, and 

specificity of DNA base modification during synthesis, as well as the elimination of any 

PCR inhibitors possibly present in cellular DNA.  Oligonucleotide templates were 

amplified and PCR products compared after separation by agarose gel electrophoresis 

(Figure 4.4).  After 40-cycles in the PCR, all oligonucleotides produced both full-length 

and ICR products; approximately 90 and 45 bps, respectively.  This implied that the 
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templates were full-length and that the DNA modifications did not completely block 

polymerase progression as suggested previously (5). 

 

 

9 1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 17

123 bp 

Oxo 
CONTROL 

OxodG1 OxodG2A OxodG2T 

 

1 2 3 4 5 9 6 7 8 10 11 12 13 14 15 16 17

123 bp 

OxodG6 OxodG3A OxodG3T OxodG4T 

 

9 1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 17

123 bp 

OxodA1 Abasic Dimer 
CONTROL 

TT Dimer1 

 
Figure 4.4. Product gels from PCRs with 90-mer oligonucleotides templates.  Products obtained from 
full-length (           ) and ICR (           ) reactions were electrophoresed through agarose in duplicate; sizes 
were approximately 90 and 45 base pairs respectively.  Lane 1 is a 123 base DNA mass ladder; lanes 2-3, 
6-7, 10-11, and 14-15 are full-length amplicons; lanes 4-5, 8-9, 12-13, and 16-17 are ICR amplicons.   
 

4.1.1.1. Increasing the number of tandem 8-oxodG alters product formation.    

To determine if tandem 8-oxodG modifications changed the amplification rate in 

the PCRs, a subset of oligonucleotides were amplified for 25 cycles (Figure 4.5).  While 

the band intensities from the full-length Oxo CONTROL reactions mimicked those of the 

Oxo CONTROL ICR PCRs, bands from the full-length reaction products of OxodG2T 

decreased and those from the OxodG4T and OxodG6 were not detected.  The presence of 

ICR PCR products from OxodG2T, OxodG4T, and OxodG6 indicated the apparent 
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decrease in full-length products was not due to lack of available oligonucleotide template.  

The observed differences in full-length product formation at cycle 25 versus cycle 40 

from PCRs containing templates with tandem 8-oxodG modifications (e.g. OxodG4T; 

Figures 4.4, 4.5) signified that the plateau phase of the reaction was delayed as a result of 

tandem 8-oxodG base modifications.   

 

 

9 1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 

Oxo 
CONTROL 

OxodG2T OxodG4T OxodG6 

 
Figure 4.5.  Product formation is delayed in PCRs with tandem 8-oxodGs.  PCRs were stopped after 25 
cycles; products were obtained from full-length (             ) and ICR (          ) reactions and electrophoresed 
through agarose in duplicate.  Sizes were approximately 90 and 45 base pairs respectively.  Lane 1 is a 123 
base DNA mass ladder; lanes 2, 5-6, 9-10, and 13-14 are full-length products; Lanes 3-4, 7-8, 11-12, and 
15-16 are ICR products.  PCR products from full-length Oxo CONTROL reactions were unaffected by 
shortened cycling numbers, where as products from OxodG2T reactions decreased; full-length products 
from OxodG4 and OxodG6 were not detected.  ICR reactions produced products from each template that 
mimicked 40 cycle results (Figure 4.4).     

 

4.1.1.2. Base modifications perturb amplification efficiency to different degrees   

To further investigate band differences between 25 and 40 cycle PCR data, the 

ABI 7000 Sequence Detection System was used to amplify both the full-length and ICRs 

from the 90-mer oligonucleotides (Figures 4.6-4.8).   ICR amplification curves from 

reactions containing the Oxo and Dimer CONTROLs were equivalent to amplification 

curves from their respective full-length reactions (Figures 4.6, 4.8).  This indicated that, 

devoid of any base modification, both amplification targets react similarly during the 

PCR.  ICR curves from each template, when compared with one another, were 

superimposable demonstrating that template amounts were equal and that the ICR 

amplified with the same efficiency in each template (data not shown). While the full-

length amplification curves from the controls mimicked the ICR curves, there were 

substantial right-shifts in the OxodA1, OxodG3A, OxodG2T, OxodG3T, OxodG4T, 

OxodG6, and Abasic amplification curves (Figure 4.7).  A right-shift was also observed 

in the amplification of the full-length TT dimer template (Figure 4.8).   
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Figure 4.6. Amplification of unmodified Oxo CONTROL oligonucleotide in real-time.  Oxo CONTROL 
templates containing no base modification were amplified (1fmole; N=5) using primers targeted for the 45 bp 
(           ) ICR and the (           ) full-length oligonucleotide (85 bp PCR product).  Delta Rn is the baseline 
subtracted PCR product fluorescence normalized to an internal dye (ROX).  
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Figure 4.7. Amplification of oligonucleotides containing modified bases.  Nine oligonucleotides containing 
varying types and amounts of base modification were amplified (1fmole; N=5) using primers targeted for the  
(                ) ICR and the (              ) full-length oligonucleotide (85 bp PCR product).  Delta Rn is the baseline 
subtracted PCR product fluorescence normalized to an internal dye (ROX).  A rightward shift in amplification 
profiles increased as the amount of modification to the oligonucleotide increased.  In addition, shifts in 
amplification profiles varied depending on the specificity of base modification on the input template.  Once 
Taq DNA polymerase bypassed the site of modification, a full-length PCR derived unmodified amplicon was 
created and resulted in curve shapes that mimicked the unmodified Oxo CONTROL (Figure 4.6).  All data 
sets span cycles 1 through 40. 

62 



 

 
 Cycle Number 

D
el

ta
 R

n 

Figure 4.8. Amplification of oligonucleotides containing a cis-syn thymidine dimer modification.  
Oligonucleotides containing a cis-syn thymidine dimer were amplified (1fmole; N=5) using primers targeted 
for the (              ) ICR and the (            ) full-length oligonucleotide (85 bp PCR product).  Delta Rn is the 
baseline subtracted PCR product fluorescence normalized to an internal dye (ROX).  A rightward shift in 
amplification profiles occurred in reactions with modified template that was not observed in the Dimer 
CONTROL.      

 

Amplification of the ICRs (Figures 4.6-4.8) provides a measure of oligonucleotide 

quantity and quality.  Relative input template amounts were calculated using an 

adaptation of the 2−∆∆CT based method described by Livak et al. (2001) (2−∆CT; Tables 

4.1, 4.2; (141)).  
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Table 4.1. Relative input template amounts from ICR amplification data. 

 

Sample Mean CT
a S. D. CT

b 2-∆CT
Relative 
Changec

Oxo CONTROL 10.1 0.22 1.00 0.0% 
OxodG1  9.57 0.31 1.47 46.6% 

OxodG2A 9.47 0.37 1.57 56.9% 
OxodG2T 10.0 0.11 1.05 4.5% 
OxodG3A 9.91 0.17 1.15 15.4% 
OxodG3T  13.0 0.34 0.14 -86.5% 
OxodG4T 10.1 0.05 1.05 4.9% 
OxodG6 10.2 0.06 0.94 -6.4% 
OxodA1 10.5 0.06 0.76 -23.6% 
Abasic 10.0 0.03 1.06 6.0% 

Dimer CONTROL 10.3 0.35 0.88 -12.4% 
TT Dimer1 10.1 0.09 1.04 4.4% 

 
a- Mean T  C values were calculated by averaging five amplifications of the ICR target, each containing 1 
fmole of input DNA, at a threshold (T) of 1.0. 
b- S. D. T
c- Relative change determined by comparison to Oxo CONTROL data.   

C  is the standard deviation of the threshold hold cycle values used to compute Mean TC .

 

In data taken from ICR reactions, relative changes in input template amounts ranged from 

an 86% decrease (OxodG3T) to a relative increase of 57% (OxodG2A), with the majority 

of input template amounts differing by less than 25%; when compared with Oxo 

CONTROL amplification results (Table 4.1).  This indicated that most oligonucleotide 

concentrations were equivalent to that of the Oxo CONTROL.  Data from full-length 

reactions provided a much wider range of variation; from a 99.9% decrease (OxodG6) to 

an 86% increase (Dimer CONTROL) in copy number with the majority of input template 

amounts differing by greater than 80% when compared with the Oxo CONTROL (Table 

4.2).     
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Table 4.2. Relative input template amounts from 90-mer amplification dataa. 

 

Sample Mean CT S. D. CT 2-∆CT
Relative 
Change 

Oxo CONTROL 11.0 0.26 1.00 0.0% 
OxodG1  11.1 0.35 0.937 -6.3% 

OxodG2A 11.1 0.05 0.916 -8.4% 
OxodG2T 17.1 0.09 0.014 -98.6% 
OxodG3A 15.8 0.09 0.036 -96.4% 
OxodG3T  21.4 0.25 0.001 -99.9% 
OxodG4T 18.4 0.04 0.006 -99.4% 
OxodG6 21.5 0.08 0.001 -99.9% 
OxodA1 13.6 0.07 0.162 -83.8% 
Abasic 17.1 0.04 0.014 -98.6% 

Dimer CONTROL 10.1 0.21 1.86 86.3% 
TT Dimer1 17.3 0.12 0.013 -98.7% 

a- Calculated as described in Table 4.1.  
 

The formula used to calculate input template amounts in these tables assumes 

constant and equivalent reaction efficiency during exponential phase (141).  Therefore, 

when using 2−∆CT based mathematics, any difference in  values is reported as a 

difference in input template amount (141).  Given the large discrepancies in apparent 

input template amount between the two sets of data (Tables 4.1, 4.2) and that reactions 

differed only by the presence of DNA base modification on the full-length target 

template, a conclusion that DNA modifications influenced the number of cycles needed 

to reach threshold fluorescence could be drawn.   

TC

Since the ICR in each oligonucleotide contains no DNA modification, template 

amounts calculated from ICR data are a correct representation of input template quantity.  

Therefore, the observed right-shifting of the amplification curves (Figures 4.6-4.8) in the 

full-length reactions (OxodA1, Abasic, TT Dimer1, and various templates with tandem 

OxodGs) must result from substantially reduced amplification efficiencies.  

 

4.1.1.3. Lesion bypass rate: estimation of RTC efficiency for unmodified and modified 

templates    

The relative threshold cycle (RTC) method was developed to quantify differences 

in the rates of amplification of modified templates (151).  The RTC method compares  TC
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data from the ICR ( ) and full-length ( ) reactions and reports results as changes 

in amplification efficiency.   and 

TUC TMC

TUC TMC  were determined at six template amounts (1 

amole to 100 fmole) for each oligonucleotide and the respective RTC efficiencies for 

each calculated using equation 8 (Tables 4.3-4.5).  In early real-time PCR cycles, 

replication of the full-length modified oligonucleotide gave rise to unmodified PCR 

products which were exponentially amplified in subsequent cycles.  Even though the 

amplification curves of unmodified and some modified templates had similar exponential 

phases, a rightward shift in the curves of templates with single 8-oxodA, abasic site, or 

TT dimer modifications and amplification curves of template with three non-adjacent or 

two-plus tandem 8-oxodGs were observed (Figures 4.6-4.8).  These shifts stemmed from 

prolonged lag phases that could be described as a difference in  values and which then 

translated into RTC efficiencies.  

TC

The average RTC efficiency of the Oxo CONTROL was 0.544. The observation 

that Oxo CONTROL template RTC efficiency was less than 1.0 suggests that the inherent 

efficiency of the ICR was higher than that of the full-length template reaction.  In order to 

prepare an appropriate control template for the TT dimer template, several thymidine 

substitutions in the Oxo CONTROL template were made (Table 3.1). It is interesting to 

note that the RTC efficiency from this Dimer CONTROL (1.03) was greater than that of 

Oxo CONTROL (0.544; Tables 4.3, 4.5). This difference could be explained by a 

reduction in the stability of secondary structure in the Dimer CONTROL template at PCR 

extension temperatures (Figures 4.9, 4.10), brought on by the aforementioned sequence 

change and resulted in improved Taq progression.  These observations emphasize a need 

for matched template controls in the RTC and other direct TC  comparison methods. 
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Figure 4.9. Predicted secondary structures of 90-mer Oxo CONTROL oligonucleotide sequence.  The 
Oxo CONTROL oligonucleotide sequence was found to form 13 stable secondary structures at the PCR 
extension temperature (60o C).  Structures are presented in order of decreasing stability; with the top-left being 
the most stable; energies ranged from -2.4 to -0.4 kcal/mole.  Secondary structure predictions were computed 
using m-fold software (SeqLab Accelrys, San Diego, CA). 

 

  

 
 

Figure 4.10. Predicted secondary structures of 90-mer Dimer CONTROL oligonucleotide sequence.  
The Dimer CONTROL oligonucleotide sequence was found to form 2 stable secondary structures at the PCR 
extension temperature (60o C).  Structures are presented in order of decreasing stability; with the top-left being 
the most stable; energies were -0.7 and -0.1 kcal/mole respectively.  Secondary structure predictions were 
computed using m-fold software (SeqLab Accelrys, San Diego, CA).      

    

 While the RTC efficiency of the Oxo CONTROL and OxodG1 templates showed 

no statistically significant difference (p = 0.05), the mean RTC efficiencies of the 

OxodA1 and Abasic were 0.114 and 0.009 which represented decreases of 81.2% and 

98.5% respectively when compared to the Oxo CONTROL template (significantly 
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different at p < 0.001 in both cases; Table 4.3).  The mean RTC efficiency from the TT 

Dimer1 template was 0.0079 which, when compared to the Dimer CONTROL template, 

represented a 99.2% decrease in RTC efficiency (significantly different at p < 0.001; 

Table 4.5).  These observations, taken together, implied that different lesions on input 

DNA template altered amplification to differing degrees. 

 The amount and position of 8-oxodG modifications relative to one another 

influenced the PCR (Tables 4.3, 4.4).  As the number of non-adjacent 8-oxodG 

modifications was increased (OxodG1, OxodG2A, and OxodG3A), the observed mean 

RTC efficiencies decreased (0.407, 0.313, and 0.018 respectively).  When compared with 

the Oxo CONTROL, OxodG3A RTCs were reduced by 97% (statistically significant at  

p < 0.001).  While the presence of two 8-oxodG modifications separated by 13 bases 

(OxodG2A) had no statistically significant impact on RTC efficiency, the mean RTC 

efficiency from reactions containing templates with two adjacent 8-oxodGs (OxodG2T) 

was 0.0214.  This represented a 96% decrease in comparison to the Oxo CONTROL 

(significantly different at p < 0.001). The further addition of adjacent 8-oxodG 

modifications continued to impact RTC efficiency; decreasing RTC to 0.0035 for 

OxodG3T reactions (a 99% reduction; Table 4.4).  Taken together, these data suggested 

that the progression of Taq polymerase was influenced by the number of and strongly 

impeded by the juxtaposition of 8-oxodG bases. 
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Table 4.3. RTC amplification efficiencies of templates with non-adjacent lesions. 

 
Input 

Template 
Mean 
CTU

a
Mean 
CTM

a
∆CT 

(U-M) RTCb
Mean 
RTC S.D. C.V.c

Oxo CONTROL 100fmole 3.93 4.16 -0.233 0.851 0.544 0.175 0.32 
 10fmole 6.49 7.17 -0.679 0.625    
 1fmole 10.1 11.0 -0.874 0.546    
 100amole 13.4 14.5 -1.14 0.455    
 10amole 16.4 17.8 -1.34 0.396    
 1amole 19.9 21.2 -1.36 0.391    
              

OxodG1 100fmole 3.41 4.32 -0.910 0.532 0.407 0.123 0.30 
 10fmole 5.97 6.81 -0.843 0.557    
 1fmole 9.57 11.1 -1.52 0.349    
 100amole 12.9 15.0 -2.05 0.241    
 10amole 16.1 17.3 -1.20 0.434    
 1amole 19.5 21.1 -1.60 0.330    
              

OxodG2A 100fmole 3.46 4.83 -1.37 0.388 0.281 0.150 0.53 
 10fmole 6.22 7.26 -1.04 0.488    
 1fmole 9.47 11.1 -1.65 0.319    
 100amole 12.6 14.5 -1.90 0.267    
 10amole 15.9 19.2 -3.24 0.106    
 1amole 19.4 22.5 -3.08 0.119    
              

OxodG3A 100fmole 4.34 9.19 -4.86 0.0345 0.0185 0.00840 0.45 
 10fmole 6.74 12.4 -5.62 0.0204    
 1fmole 9.91 15.8 -5.86 0.0172    
 100amole 13.2 19.3 -6.14 0.0142    
 10amole 16.4 22.8 -6.43 0.0116    
 1amole 19.5 25.7 -6.24 0.0133    
              

OxodA1 100fmole 4.80 7.65 -2.85 0.139 0.114 0.0222 0.20 
 10fmole 7.30 10.2 -2.87 0.137    
 1fmole 10.5 13.6 -3.11 0.116    
 100amole 13.8 16.9 -3.11 0.116    
 10amole 17.2 20.7 -3.45 0.0914    
 1amole 20.4 24.0 -3.55 0.0852    
              

Abasic 100fmole 4.37 10.4 -6.06 0.015 0.0090 0.00310 0.35 

 10fmole 6.90 13.6 -6.71 0.0096    

 1fmole 10.0 17.1 -7.11 0.0073    

 100amole 13.5 20.6 -7.11 0.0072    

 10amole 16.8 23.9 -7.12 0.0072    

 1amole 20.2 27.2 -7.07 0.0075    

a- Mean TUC  and   values were calculated by averaging five amplifications of the ICR and full-
length targets at a threshold (T) of 1.0. 

TMC

b- RTC efficiencies were derived using equation 8 (151). 
c- C.V. is the coefficient of variation calculated by dividing the standard deviation of the RTC by the mean 
RTC. 
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Table 4.4. RTC amplification efficiencies of templates with adjacent lesionsa. 

 
Input 

Template 
Mean 
CTU

Mean 
CTM

∆CT      

(U-M) RTC 
Mean 
RTC S.D. C.V. 

Oxo CONTROLb 100fmole 3.93 4.16 -0.233 0.851 0.544 0.175 0.32 
 10fmole 6.49 7.17 -0.679 0.625    
 1fmole 10.1 11.0 -0.874 0.546    
 100amole 13.4 14.5 -1.14 0.455    
 10amole 16.4 17.8 -1.34 0.396    
 1amole 19.9 21.2 -1.36 0.391    
              

OxodG2T 100fmole 4.07 10.1 -6.01 0.0156 0.0096 0.0032 0.34 
 10fmole 6.83 13.6 -6.74 0.00940    
 1fmole 10.1 17.1 -7.08 0.00740    
 100amole 13.5 20.6 -6.95 0.00809    
 10amole 16.6 23.8 -7.21 0.00670    
 1amole 19.7 26.3 -6.62 0.0102    
              

OxodG3T 100fmole 6.50 14.4 -7.93 0.0041 0.0035 0.0009 0.26 
 10fmole 9.34 17.7 -8.32 0.0031    
 1fmole 13.0 21.4 -8.38 0.0030    
 100amole 16.1 24.7 -8.57 0.0026    
 10amole 19.4 27.6 -8.28 0.0032    
 1amole 22.5 30.1 -7.60 0.0052    
              

OxodG4T 100fmole 4.01 11.8 -7.78 0.0046 0.0038 0.0010 0.25 
 10fmole 7.08 15.2 -8.12 0.0036    
 1fmole 10.1 18.4 -8.37 0.0030    
 100amole 13.6 21.9 -8.26 0.0033    
 10amole 16.9 25.2 -8.33 0.0031    
 1amole 20.2 27.7 -7.53 0.0054    
              

OxodG6 100fmole 4.17 14.8 -10.7 0.0006 0.0005 0.0002 0.32 
 10fmole 7.19 18.1 -10.9 0.0005    
 1fmole 10.2 21.5 -11.3 0.0004    

 100amole 13.8 24.8 -11.1 0.0005    

 10amole 17.0 28.2 -11.3 0.0004    

 1amole 20.1 30.3 -10.2 0.0009    

a- TUC , ,TMC  RTC, and C.V. were calculated as described in Table 4.3. 
b- Data taken from Table 4.3. 
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Table 4.5. RTC amplification efficiencies of templates with cis-syn TT dimersa. 

 
Input 

Template 
Mean 
CTU

Mean 
CTM

∆CT 

(U-M) RTC 
Mean 
RTC S.D. C.V. 

Dimer CONTROL         

 100fmole 4.21 4.11 0.096 1.07 1.03 0.195 0.19 
 10fmole 6.94 6.62 0.319 1.25    
 1fmole 10.3 10.1 0.215 1.16    
 100amole 13.5 13.4 0.124 1.09    
 10amole 16.6 16.7 -0.071 0.952    
 1amole 19.6 20.1 -0.534 0.690    

TT Dimer1               
 100fmole 4.31 10.7 -6.42 0.0117 0.0079 0.0025 0.32 
 10fmole 7.03 13.7 -6.71 0.0096    
 1fmole 10.1 17.3 -7.20 0.0068    

 100amole 13.4 20.4 -6.95 0.0081    

 10amole 16.6 23.8 -7.24 0.0066    

 1amole 19.3 27.0 -7.77 0.0046    

a- , ,TUC TMC  RTC, and C.V. were calculated as described in Table 4.3.    

 

The RTC method normalized the observed  value for each full-length PCR to 

the ICR PCR  value in calculating amplification efficiency. In deriving the RTC 

formula, the assumption was made that the ICR amplification efficiency was 100% 

because this region contained no base modifications. RTC efficiencies were calculated 

for unmodified templates based on simulated ICR efficiencies in the 80 to 100% range; 

no significant effect on RTC efficiencies was observed (data not shown). More refined 

mathematical models (140, 142, 160-165) may be needed to detect subtle differences 

between the amplification efficiencies of undamaged templates and templates containing 

modifications that have subtle influences on Taq polymerase progression.  

TC

TC

 

4.1.1.4. Lesion bypass rate: calculation of MME for unmodified and modified 

templates 

 The mean modified efficiency method builds on the RTC method for quantifying 

aggregate damage to DNA template using real-time PCR.  These mathematical formulae 

were designed to help explain differences observed in PCR curves from synthetic 

templates that contained DNA base lesions while holding input template quantity 

constant.  It is evident, based on previous observations, that lesions perturb amplification 

to different degrees and that unmodified amplicons are created during cycling that 
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mimicked the reaction efficiencies of the control templates.  The RTC method assumes 

that the reaction efficiencies from the ICR and full-length amplifications are identical and 

that these are interchangeable between templates (151). RTC efficiency can characterize 

large differences resulting from lesion bypass (Tables 4.3-4.5).  When using this method 

to estimate DNA damage, no significant difference was measured between the Oxo 

CONTROL, OxodG1, and OxodG2A reactions.   In order to further characterize slight 

differences between PCRs of modified templates not distinguishable using RTC, the 

reaction efficiencies for the ICR and full-length amplifications, as well as the amount of 

fluorescence generated by each input template (corresponding to input template 

amounts), were determined and incorporated into the equation for MME (equation 14).    

 Calculated ICR reaction efficiencies ( ) from oligonucleotide templates 

ranged from 0.946 to 1.056 (Table 4.6).  The reaction efficiencies for the full-length 

amplicons ( ) ranged from 0.922 to 0.991 (Table 4.6).  In both cases, there was no 

correlation between amount or type of modification and trends in unmodified template 

PCR efficiency.  No statistically significant differences between PCR efficiencies were 

observed between synthetic templates.   

ICRE

uE

 

Table 4.6. PCR efficiencies from oligonucleotide templatesa. 

Sample 
Efficiency 

ICR 
Efficiency 
Full-length 

Oxo CONTROL 1.01 0.936 
OxodG1  0.990 0.943 

OxodG2A 1.01 0.922 
OxodG2T 1.04 0.954 
OxodG3A 1.06 0.963 
OxodG3T  1.02 0.991 
OxodG4T 1.01 0.986 
OxodG6 1.03 0.989 
OxodA1 0.946 0.968 
Abasic 0.997 0.946 

Dimer CONTROL 1.01 0.962 
TT Dimer1 0.996 0.975 

a- PCR efficiencies were calculated using equation 15. 
 

 To account for slight differences in input template amount, equation 16 was used 

to generate  values representing input template fluorescence (Table 4.7).  With the 0x
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exception of the OxodG3T template (decreased by 87%), all calculated fluorescence 

values for oligonucleotide templates differed less than 2-fold when compared to the Oxo 

CONTROL.  Most template  values were within 30% of one another.  These values are 

representative of input template fluorescence and accounted for any changes in  or 

input template amount between templates.  Given the equivalent efficiencies (close to 

1.0) for the ICR (Table 4.6), it is not surprising to see the same trends in calculated  as 

were seen with relative input template amounts (Table 4.1).  This observation implied 

that the calculated input fluorescence corresponded to input template amount. 

0x

ICRE

0x

 

Table 4.7. Input template fluorescence. 

Sample  
Mean    
CT

a

Efficiency 
Unmodified 

(EICR)b

Template 
Fluorescence 

(Xo)c
Relative 
Changed

Oxo CONTROL 10.1 1.01 8.64E-04 0.00% 
OxodG1  9.57 0.990 1.38E-03 60.15% 

OxodG2A 9.47 1.01 1.36E-03 57.32% 
OxodG2T 10.1 1.04 7.71E-04 -10.80% 
OxodG3A 9.91 1.06 7.91E-04 -8.52% 
OxodG3T  13.0 1.02 1.08E-04 -87.53% 
OxodG4T 10.1 1.01 9.12E-04 5.53% 
OxodG6 10.2 1.03 7.35E-04 -14.99% 
OxodA1 10.5 0.946 9.17E-04 6.08% 
Abasic 10.0 0.997 9.68E-04 12.04% 

Dimer CONTROL 10.3 1.01 7.64E-04 -11.56% 
TT Dimer1 10.1 0.996 9.58E-04 10.90% 

a- Mean TC  values were calculated by averaging five amplifications of the ICR targets at a threshold (T) 
of 1.0. 
b-  values were derived as described in Table 4.6. ICRE
c-  values were calculated using equation 16. 0x
d- Relative change determined by comparison to Oxo CONTROL data 
 

 Using the same data set from which the RTC efficiencies were derived (Tables 

4.3-4.5), MMEs were calculated using equation 14 (Tables 4.8-4.10).  The mean MME 

efficiencies of the Oxo CONTROL and Dimer CONTROL templates were 0.776 and 

1.28 respectively. These values represented 42.6% and 24.3% differences when 

compared to the previously reported RTC efficiency values.  It is important to note that 

the confidence intervals for these data sets were much smaller demonstrating a more 
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precise measurement (data not shown).  Theoretically, the MMEs of the unmodified 

controls should equal 1.0.  The observed differences in MME from this theoretical mark 

suggested that the inherent efficiencies of the ICR sequence differed from that of the full-

length template reaction and therefore an over- or underestimation of the MME occurred.  

The decrease in MME below 1.0 in the Oxo CONTROL can be attributed to the 

numerous stable secondary structures presented in Figure 4.9; the increase in MME 

above 1.0 in the Dimer CONTROL could be due to increased SYBR Green Dye 

incorporation as the target template in the full-length reactions is double that of the ICR 

(discussed in Appendix B).  Regardless of the reason, these differences point to the need 

for sequence matched controls for any real-time analysis.     

 The OxodG1 and OxodG2A templates showed no significant difference in RTC 

efficiency (Table 4.3).  Calculated MMEs for both templates were 0.509 and 0.414, 

equating to reductions of 34.4% and 46.6% respectively (Table 4.8; both significantly 

different at p < 0.05).  For all other templates, calculated MMEs followed similar patterns 

to those seen in with the RTC estimations.  Given this, plus the significant MME results 

from the OxodG1 and OxodG2A templates, the simplified RTC formula was appropriate 

to compare large differences in amplification rates, brought upon by DNA damage, where 

as the more complex MME formula provided increased precision, which allowed small 

damage influences on reaction rate to be detected.
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Table 4.8. Mean modified efficiencies of templates with non-adjacent lesions.  

 
Input 

Template 
Mean    
CTM Xo

a
Threshold 

(T) 

Efficiency 
Unmodified 

(Eu)b

Efficiency 
Modified    

(Em)c
Mean    
Em 

S.D.      
Em 

Oxo CONTROL 100fmole 4.16 6.48E-02 1 0.936 0.925 0.776 0.0792 
 10fmole 7.17 1.09E-02 1 0.936 0.760     
 1fmole 11.0 8.65E-04 1 0.936 0.760   
 100amole 14.5 9.10E-05 1 0.936 0.720     
 10amole 17.8 1.07E-05 1 0.936 0.704     
 1amole 21.2 9.68E-07 1 0.936 0.789     
                 

OxodG1 100fmole 4.32 9.57E-02 1 0.943 0.536 0.509 0.113 
 10fmole 6.81 1.65E-02 1 0.943 0.618     
 1fmole 11.1 1.38E-03 1 0.943 0.432   
 100amole 15.0 1.40E-04 1 0.943 0.328     
 10amole 17.3 1.60E-05 1 0.943 0.622     
 1amole 21.1 1.54E-06 1 0.943 0.518     
              

OxodG2A 100fmole 4.83 8.97E-02 1 0.922 0.418 0.414 0.140 
 10fmole 7.26 1.31E-02 1 0.922 0.613     
 1fmole 11.1 1.36E-03 1 0.922 0.475   
 100amole 14.5 1.49E-04 1 0.922 0.463     
 10amole 19.2 1.49E-05 1 0.922 0.223     
 1amole 22.5 1.31E-06 1 0.922 0.290     
              

OxodG3A 100fmole 9.19 4.40E-02 1 0.963 0.043 0.0319 0.00600 
 10fmole 12.4 7.80E-03 1 0.963 0.030     
 1fmole 15.8 7.91E-04 1 0.963 0.029   
 100amole 19.3 7.60E-05 1 0.963 0.028     
 10amole 22.8 7.58E-06 1 0.963 0.027     
 1amole 25.7 7.97E-07 1 0.963 0.035     
              

OxodA1 100fmole 7.65 4.10E-02 1 0.968 0.128 0.1009 0.0245 
 10fmole 10.2 7.75E-03 1 0.968 0.127     
 1fmole 13.6 9.18E-04 1 0.968 0.104   
 100amole 16.9 1.01E-04 1 0.968 0.101     
 10amole 20.7 1.07E-05 1 0.968 0.0768     
 1amole 24.0 1.27E-06 1 0.968 0.0692     
              

Abasic 100fmole 10.4 4.86E-02 1 0.946 0.0179 0.0134 0.00250 
 10fmole 13.6 8.49E-03 1 0.946 0.0129     
 1fmole 17.1 9.71E-04 1 0.946 0.0108   
 100amole 20.6 8.71E-05 1 0.946 0.0117     
 10amole 23.9 9.02E-06 1 0.946 0.0127     
 1amole 27.2 8.81E-07 1 0.946 0.0143     

a- oX  values were calculated as described in Table 4.7 

b- UE  values were derived as described in Table 4.6 
c- MMEs were derived using equation 14.   
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Table 4.9. Mean modified efficiencies of templates with adjacent lesions a.  

 
Input 

Template 
Mean   
CTM Xo

Threshold 
(k) 

Efficiency 
Unmodified 

(Eu) 

Efficiency 
Modified     

(Em) 
Mean    
Em 

S.D.      
Em 

Oxo CONTROLb 100fmole 4.16 6.48E-02 1 0.936 0.925 0.776 0.0792 
 10fmole 7.17 1.09E-02 1 0.936 0.760     
 1fmole 11.0 8.65E-04 1 0.936 0.760   
 100amole 14.5 9.10E-05 1 0.936 0.720     
 10amole 17.8 1.07E-05 1 0.936 0.704     
 1amole 21.2 9.68E-07 1 0.936 0.789     
                 

OxodG2T 100fmole 10.1 5.47E-02 1 0.954 0.0192 0.0171 0.0051 
 10fmole 13.6 7.65E-03 1 0.954 0.0140     
 1fmole 17.1 7.70E-04 1 0.954 0.0129   
 100amole 20.6 6.72E-05 1 0.954 0.0142     
 10amole 23.8 7.18E-06 1 0.954 0.0156     
 1amole 26.3 7.93E-07 1 0.954 0.0265     
              

OxodG3T 100fmole 14.4 1.04E-02 1 0.991 0.0046 0.0045 0.0014 
 10fmole 17.7 1.41E-03 1 0.991 0.0037     
 1fmole 21.4 1.08E-04 1 0.991 0.0037   
 100amole 24.7 1.20E-05 1 0.991 0.0034     
 10amole 27.6 1.24E-06 1 0.991 0.0043     
 1amole 30.1 1.32E-07 1 0.991 0.0073     
              

OxodG4T 100fmole 11.8 6.14E-02 1 0.986 0.0046 0.0045 0.0012 
 10fmole 15.2 7.23E-03 1 0.986 0.0040     
 1fmole 18.4 9.14E-04 1 0.986 0.0035   
 100amole 21.9 7.66E-05 1 0.986 0.0039     
 10amole 25.2 7.70E-06 1 0.986 0.0038     
 1amole 27.7 7.88E-07 1 0.986 0.0069     
              

OxodG6 100fmole 14.8 5.25E-02 1 0.989 0.0007 0.0007 0.0002 
 10fmole 18.1 6.23E-03 1 0.989 0.0006     
 1fmole 21.5 7.35E-04 1 0.989 0.0005   
 100amole 24.8 5.99E-05 1 0.989 0.0006     

 10amole 28.2 6.32E-06 1 0.989 0.0006     

 1amole 30.3 6.72E-07 1 0.989 0.0013     
a- Calculations were performed as described in Table 4.8. 
b- Data from Table 4.8. 



Table 4.10. Mean modified efficiencies of templates with cis-syn TT dimers a.  

 
Input 

Template 
Mean    
CTM Xo

Threshold 
(k) 

Efficiency 
Unmodified 

(Eu) 

Efficiency 
Modified     

(Em) 
Mean     
Em 

S.D.      
Em 

Dimer CONTROL 100fmole 4.11 5.35E-02 1 0.962 1.14 1.28 0.159 
 10fmole 6.62 7.98E-03 1 0.962 1.40     
 1fmole 10.1 7.64E-04 1 0.962 1.40   
 100amole 13.4 8.26E-05 1 0.962 1.41     
 10amole 16.7 9.34E-06 1 0.962 1.33     
 1amole 20.1 1.19E-06 1 0.962 1.04     
                  

TT Dimer1  100fmole 10.7 5.09E-02 1 0.975 0.012 0.0091 0.0022 
 10fmole 13.7 7.76E-03 1 0.975 0.011     
 1fmole 17.3 9.58E-04 1 0.975 0.0080   
 100amole 20.4 9.22E-05 1 0.975 0.0099     
 10amole 23.8 1.05E-05 1 0.975 0.0084     
 1amole 27.0 1.65E-06 1 0.975 0.0060     

a-  Calculations were performed as described in Table 4.8. 
 

4.1.1.5. Lesion bypass rate:  the Inherent Template Efficiency method 

The use of standard curves to generate unmodified efficiency values was 

necessary in obtaining precise estimates of DNA damage (MME and equation 6).  The 

generation of and subsequent amplification of standards is costly from both a time and 

reagent perspective.  In an effort to eliminate the standard curve requirement, an 

alternative mathematical treatment for real-time PCR data was adopted which calculates 

input template amounts and efficiency values based on whole reaction curve kinetics 

(142-143).  Mathematical formulae were developed to adapt this methodology to 

compare amounts of DNA damage.  

Raw PCR data was collected from a subset of the damaged oligonucleotides 

(presented in Table 3.1) and then fit to a logistic/sigmoid curve from which variables 

representing efficiency and input template amounts were derived.  Using equation 23, 

inherent template efficiencies (ITE) were calculated from these data (Table 4.11).        

Values representing both ITE and PCR derived unmodified template efficiencies ( ) 

were determined.  ITEs followed similar patterns seen in the RTC and MME data; 

OxodG2T, OxodG4T, and OxodG6 dropped 98.0%, 99.6%, and 99.9% respectively when 

compared with the Oxo CONTROL values (Table 4.11; all significant at p < 0.001).  

PCRE
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PCRE  increased as the number of 8-oxodG modifications on the input template increased 

(Table 4.11).  These values were expected to remain constant between templates as the 

value being measured, PCR derived unmodified template reaction efficiency, is thought 

to be consistent between reactions.   

 

Table 4.11.  Inherent template efficiencies a.  

 

Mean               

Unmodified Efficiency

(EPCR) 

Mean                           

Inherent Template Efficiency 

(ITE) 

Oxo CONTROL 0.482 0.201 

OxodG2T 0.579 0.0040 

OxodG4T 0.641 0.0007 

OxodG6 0.711 0.0001 

a-  Means  were calculated by averaging five amplifications of the ICR and full-length targets with input 
amounts equal to 1 fmole at a threshold (T) of 1.0. 
 

To determine the reason for the differences in observed , a serial dilution of 

Oxo CONTROL templates was prepared and amplified.  Variables necessary for input 

into equation 23 to produce ITE and  values were generated.   The  value (finite 

plateau) is defined by the point at which no growth occurs in a reaction (Figure 4.11).  

Recognizing that amplification curves for the oligonucleotide templates were not 

achieving true plateau after 40 cycles, reaction data was collected out to the instrument 

limit of 99 cycles.  By increasing the amount of data used in the fit, the observation that 

the raw PCR data did not produce a true fit to a logistic model became clear (Figure 

4.11).  The linear phases of the reactions (point at which the reaction curves exited 

exponential growth and began to plateau) were not symmetric with the detectable 

exponential growth phases in the data (point at which the curve data rises above 

background; Figure 4.11).  Notice the difference between the curve fit and raw data 

increased as the amount of data points included increased; e.g. the variation between raw 

and fit data during the initial ramping phase increases when 75 cycles of data are used 

versus a fit from the same raw data cropped at 35 cycles (Figure 4.11).  The result of this 

PCRE

PCRE maxR
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improper fit was variation in kinetic data ( , and ), which ultimately produced 

differences between derived input template and efficiency values from the same data set 

(Table 4.12).  For calculation of input template, the values obtained using the 2

maxR 2/1N K

-∆CT 

comparison method closely paralleled those of the expected values with the greatest 

discrepancy existing in the 10 fmole samples which differed by 35.9% (Table 4.12; 

(141)).   Measures of input template Ro , derived from curve-fit data, differed greatly 

from the expected values; an apparent difference that was influenced by the number of 

data points used in the fit (Table 4.12).  For example, in the samples containing 10 fmole 

of input Oxo CONTROL, cycRo35 , representing derived input template amounts using 35 

cycle data, was 0.0101 fmoles and  cycRo75  was 0.0028 fmoles (representing 89.9% and 

99.7% deviations from the expected value; Table 4.12).  These data emphasize the need 

for a proper curve-fit to PCR raw data and suggest the rate at which PCRs plateau must 

be equivalent to the rate at which reactions proceed into detectable exponential phase to 

authorize the use of curve-fitting methods of real-time PCR comparative analysis.   
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Figure 4.11. Kinetic analysis of raw PCR data.  Variables derived from the logistic fit of raw PCR data 
were influenced by the number of reaction cycles used in the curve fit;  raw PCR data (        ), fit curve 
representing data cropped at 35 cycles ( * * ), and fit curve representing data cropped at 75 cycles            
(            ).  The gradual plateauing toward a finite  value in the raw data influenced the overall 
shape of the fit curve as the number of cycles used in curve fitting increased.   

maxR

(Rmax) 
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Table 4.12.  Comparison between 2-∆CT and curve-fit calculations.  

Input 

Template 

Efficiency 

Unmodified 

(Eu)a   

Efficiency 

(E35cyc)b

Efficiency 

(E75cyc)b

Input 

Template     

(2-∆CT) 

Input 

Template     

(Ro35cyc) c

Input 

Template     

(Ro75cyc) c Expected 

  10fmole 0.936 0.42 0.32 13600 1020 27.8 10000 

  1fmole 0.936 0.43 0.32 1230 243 9.40 1000 

  100amole 0.936 0.47 0.30 120 45.4 4.97 100 

 10amole  0.936 0.44 0.29 11.1 7.97 1.83 10.0 

 8amole 0.936 0.45 0.28 9.08 6.52 1.75 8.00 

 6amole  0.936 0.44 0.27 5.82 5.41 1.57 6.00 

 4amole  0.936 0.46 0.28 4.63 3.85 1.51 4.00 

 2amole 0.936 0.46 0.26 1.91 2.23 1.35 2.00 

 1amole  0.936 0.49 0.27 1.00 1.00 1.00 1.00 

a- UE  values were derived as described in Table 4.6 

b- cycE35  and cycE75  were derived from curve-fit data cropped at 35 and 75 cycles respectively. 

c- cycRo35  and cycRo75  represent input template amounts derived from 35 and 75 cycle curve-fit data and 
normalized to 1 amole.    
 

To correct for this lack of curve symmetry, experimental design was created to 

limit a single reaction component, thereby creating a unique rate-limiting step in the 

PCR, and forcing amplification curves to plateau at a much greater rate.  As stated in the 

materials and methods section, PCRs contain 1 µl of 10 µM forward and reverse primers 

which was estimated to be approximately 300 nmoles of each per reaction (data not 

shown).  Reactions with primer amounts ranging from 30 to 300 nmoles were amplified; 

the rates of plateau and corresponding curve-fits were observed (Figure 4.12; data not 

shown).  Decreasing both primer amounts to 37.5 nmoles provided a better fit to raw 

PCR data using both 40 and 50 cycles of data when compared with that of the 300 nmole 

primer reactions (Figure 4.12).  
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Figure 4.12. Real-time PCR raw data fit to a logistic curve. (**) represent raw data points, (-) are the 
data post logistic fit.  Reactions containing 300 nmoles of total primer present a divergence between the fit 
and raw data; this divergence increased as the amount of raw data used in the fit is increased from A) 40 to 
B) 50 cycles.  Decreasing the amount of primer to 37.5 nmoles lessened the degree of difference between 
raw and curve-fit data using both C) 40 and D) 50 cycles of data. 
 

Values for efficiency and input template were derived from curve-fit data from reactions 

containing 300 and 37.5 nmoles of forward and reverse primers (Table 4.13).  The 

difference between the normalized Ro and expected values was not as dramatic in the 

reactions where primer amounts were the rate-limiting step; for example, in reactions 

with 10 fmoles of input oligonucleotide, 300 nmoles of primer produced normalized 

cycRo40  and cycRo50  of 3.23 and 2.97 fmoles where normalized values for 37.5 nmoles 

were 5.512 and 5.141 fmoles (Table 4.13).  Values for unmodified efficiency increased 

from approximately 0.32 to 0.46 when primer amounts were limited (Table 4.13).   

While decreasing primer amounts provided results closer to expected values, 

accuracy and precision are critical for the evaluation of damaged template.  Curve-fit 

methods, in their current format, could not be adapted for reliable measurement of DNA 

damage in synthetic template.  Derivation of new formulae characterizing the 

A

C D

B
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discrepancies between raw and curve-fit data is necessary before the utilization of these 

methods for DNA damage detection is achieved. 

 

Table 4.13. Curve-fit calculations from reactions with differing primer amountsa. 

Primer 
Concentration 

Template 
Amount 

Efficiency 
(E40cyc) 

Efficiency 
(E50cyc) 

Input 
Template   
(Ro40cyc) b

Input 
Template     
(Ro50cyc) b

Expected 

300nmole 10fmole 0.34 0.31 3.23 2.97 10.0 

300nmole 8fmole 0.34 0.31 2.59 2.28 8.00 

300nmole 6fmole 0.32 0.29 2.81 2.64 6.00 

300nmole 4fmole 0.34 0.30 1.94 1.98 4.00 

300nmole 2fmole 0.35 0.32 1.37 1.36 2.00 

300nmole 1fmole 0.36 0.32 1.00 1.00 1.00 

300nmole 100amole 0.35 0.31 0.340 0.440 0.100 

300nmole 10amole 0.36 0.30 0.100 0.170 0.010 

300nmole 1amole 0.32 0.27 0.040 0.090 0.001 

       

Primer 
Concentration 

Template 
Amount 

Efficiency 
(E40cyc) 

Efficiency 
(E50cyc) 

Input 
Template   
(Ro40cyc) b

Input 
Template     
(Ro50cyc) b

Expected 

37.5nmole 10fmole 0.46 0.45 5.52 5.14 10.0 

37.5nmole 8fmole 0.46 0.45 4.49 4.05 8.00 

37.5nmole 6fmole 0.45 0.44 4.13 3.88 6.00 

37.5nmole 4fmole 0.51 0.49 1.97 1.95 4.00 

37.5nmole 2fmole 0.48 0.46 1.57 1.64 2.00 

37.5nmole 1fmole 0.48 0.46 1.00 1.00 1.00 

37.5nmole 100amole 0.45 0.43 0.270 0.290 0.100 

37.5nmole 10amole 0.42 0.39 0.080 0.110 0.010 

37.5nmole 1amole 0.34 0.30 0.050 0.100 0.001 

a- cycE  and  cycRo  values were derived as described in Table 4.12. 

b- cycRo  values were normalized to 1 fmole data. 

 
 
4.1.1.6. Alternative PCR components increase lesion bypass rate 

 A subset of 90-mer oligonucleotides were amplified using the Restorase DNA 

polymerase system (Sigma) to determine if changes in the PCR reagents impacted 

observed RTC efficiencies.  Restorase DNA polymerase is a mixture of Sigma AccuTaq 

LA and a proprietary DNA damage repair enzyme that is thought to be specific for the 

repair of abasic lesions (165).  RTC efficiencies were calculated from real-time data.  

Oxo CONTROL, OxodG2A, OxodA1, and Abasic mean RTC efficiencies were 0.614, 
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0.460, 0.611, and 0.0298 respectively (Table 4.14).  While neither the OxodG2A nor 

OxodA1 RTC efficiencies differed significantly from those of the Oxo CONTROL, the 

Abasic RTC efficiency dropped 95.1% (significantly different at p < 0.001).   

When compared with amplifications using AmpliTaq Gold (Table 4.3; Applied 

Biosystems), no significant differences were seen between RTC efficiencies from Oxo 

CONTROL or OxodG2A amplifications (Figure 4.13).  However, when using Restorase, 

OxodA1 RTC efficiencies increased from 0.114 to 0.611 (levels mimicking the control 

reactions; Figure 4.13; significantly different at p < 0.001).  Abasic RTC efficiencies 

were also increased; from 0.009 to 0.029 (Figure 4.13; significantly different at p < 0.05).  

These data suggested that the PCRs with Restorase and matching reagents were more 

efficient than AmpliTaq Gold protocols at processing templates with 8-oxodA and abasic 

lesions.   

 



Table 4.14. RTC efficiencies from PCRs with Restorase DNA polymerasea. 

 
Input 

Template 
Mean 
CTU

Mean 
CTM

∆CT     

(U-M) RTC 
Mean 
RTC S.D. C.V. 

Oxo CONTROL 1fmole 11.6 12.6 -0.949 0.518 0.614 0.0862 0.14 
 1fmole 11.8 12.3 -0.536 0.690    
 1fmole 12.1 12.6 -0.547 0.685    
 1fmole 11.8 12.6 -0.824 0.565    
             

OxodG2A 1fmole 11.1 12.0 -0.898 0.537 0.460 0.134 0.29 
 1fmole 11.1 11.9 -0.792 0.578    
 1fmole 11.1 12.3 -1.16 0.449    
 1fmole 10.4 12.3 -1.86 0.276    
             

OxodA1 1fmole 11.7 12.4 -0.688 0.621 0.611 0.0959 0.16 
 1fmole 11.6 12.0 -0.477 0.719    
 1fmole 11.3 12.4 -1.04 0.485    
 1fmole 11.7 12.4 -0.692 0.619    
             

Abasic 1fmole 11.0 15.7 -4.70 0.0384 0.0298 0.0074 0.25 
 1fmole 10.5 16.1 -5.62 0.0203    

 1fmole 11.4 16.5 -5.02 0.0308    

 1fmole 11.4 16.5 -5.08 0.0296    

a- , ,TUC TMC  RTC, and C.V. were calculated as described in Table 4.3.    

 

 
 

Figure 4.13. RTC efficiencies from PCRs using AmpliTaq Gold and Restorase.  RTC efficiencies from 
Oxo CONTROL, OxodG2A, OxodA1 and Abasic templates were calculated from PCRs using either 
AmpliTaq Gold (average of 6 DNA template amounts, each with N=5) or Restorase DNA polymerase (1 
template amount; N=4) master mixes.   
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4.1.1.7. Lesion bypass rate: long template amplification   
 

To transition from real-time damage quantification from short synthetic templates 

to quantification of damage in cellular DNA, amplicon target size must be increased and 

assay sensitivity must be determined.  Instrument limitations do not permit the usage of 

PCR extension times comparable to Taq DNA polymerase processivity (reported to be as 

high as 2.8 kb per minute or less than 5 s to traverse 90 bases; (146)).  Therefore, to 

estimate the sensitivity of real-time polymerase stop assays for damage detection, longer 

templates with controlled modification were necessary.  To study the influence of base 

modifications under native polymerase conditions, a subset of the synthetic 90 base 

oligonucleotides were used as primers and ligated into PCR products (Figure 4.14).  To 

remove the original template and anti-sense strand, PCR products were separated using 

biotin:streptavidin association (Figure 4.14B).  Primers were designed and used to 

amplify a full-length 593 base template (Figure 4.14C) and a ligated oligo internal control 

region (LO-ICR) containing no base modification (Figure 4.14D).  Extension times in 

these PCRs were 1 min; still in excess of the time necessary to replicate the templates but 

not to the degree seen with the 90-mer oligonucleotides.  MMEs for the control templates 

were 0.559 (Oxo CONTROL) and 0.819 (Dimer CONTROL) (Table 4.15).  MMEs from 

reactions with 8-oxodG modifications showed a steady trend lower as the number of base 

modifications increased; OxodG1, OxodG2A, and OxodG3A had MMEs of 1.03, 0.739, 

and 0.514 respectively (Table 4.15).  The OxodA1 template generated a MME of 0.614; 

which mimics trends in the 90-mer data when compared with the OxodG2A and 

OxodG3A templates but not when compared with the Oxo CONTROL (Table 4.15).  

Abasic and TT Dimer1 containing templates substantially altered their respective 

reactions; generating MMEs of 0.062 and 0.014, similar to those observed in the short 

template data (Table 4.15). 

While these modified templates present decreasing trends similar to those 

observed with the 90-mer data, the differences with respect to the Oxo CONTROL are 

not easily explained.  The data suggests that multiple factors influenced the kinetics of 

these PCRs.  The decrease in the Oxo CONTROL MME can be partially explained by the 

previously mentioned secondary structures (Figure 4.9) which may play a role in limiting 



primer annealing.  In the 8-oxodG reactions, it is possible that the insertion of the base 

modifications altered the backbone dynamics in the single stranded template (159), which 

decreased stable secondary structures, and therefore increased observed MMEs.  Then, as 

the number of 8-oxodGs was increased, the influence of 8-oxodG base modification on 

Taq DNA polymerase progression became evident.   

 
 

 

 

PMP 
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Figure 4.14. Creation of long templates containing controlled DNA base modification.  A) To increase 
the availability of template for modified oligonucleotide ligation, 751 bp PCR products were created from 
human mtDNA.  Modified and unmodified 90-mers were then used as primers to amplify a 593 bp nested 
PCR target; the forward primer in these reactions was labeled with biotin.  B) 593 bp PCR products, 
containing the 90-mers, were associated with streptaviden coated magnesphere beads (Promega), collected, 
and denatured; the sense strands containing the 90-mers were collected and used as templates in C) full-
length PCRs (593 bp) or D) LO-ICR reactions (545 bp). (*) represents modified nucleotides; (         ) 
represents synthetic oligonucleotide containing sense strand; (              ) represents biotin containing anti-
sense strand; (             ) represents PCR sense strand; (                 ) equals PCR anti-sense strand. 
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Table 4.15.  Mean modified efficiencies from long templatesa.   

  
Mean     
MME 

S.D.        
MME 

Oxo CONTROL  0.559 0.0849 

OxodG1 1.04 0.0718 

OxodG2A 0.739 0.0309 

 OxodG3A 0.514 0.0382 

OxodA1 0.614 0.0428 

Abasic 0.062 0.0354 

Dimer CONTROL 0.819 0.0585 

 TT Dimer1 0.0144 0.0002 
 a- MMEs were derived using equation 14 as described in Table 4.8.    
 

4.1.2. Quantification of cellular DNA damage 

To this point, quantification of DNA damage has involved 90-mer 

oligonucleotides with set amounts and types of base damage.  In order to be useful as a 

general research tool to study DNA damage and repair, characterization of damage in 

cellular DNA sample material must be achieved.  Given that the majority of damage 

events to DNA are random, the sensitivity of polymerase stop assays in detecting damage 

increases with the size of the PCR amplicon (5, 11).  To validate real-time PCR as a 

method to estimate damage in cellular DNA, primers were designed to amplify a segment 

of human mtDNA; by holding the reverse primer constant and moving the forward 

primer, amplicon sizes were increased and observed differences in the PCRs attributed to 

differences in amounts of DNA damage (Figure 4.15).  
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Figure 4.15. Amplification of mitochondrial DNA by primer walking. The schematic represents a 
model of mammalian mtDNA; reverse primer (REV #14841) was held constant and forward primers 
moved to create amplicons ranging between 221 bp and 3082 bp.  Actual fragment size is given in 
parenthesis.   

 

Prior to damage estimation, it was first necessary to validate the use of long 

cellular DNA targets in PCRs on the ABI 7000 sequence detection system.  To do so, 

three amounts of total cellular DNA (4.5 ng, 9.0 ng, and 13.5 ng) were amplified with 

different primer sets ranging from 200 bp to 8.0 kb (Figure 4.15; data not shown).  Input 

template fluorescence was calculated using equation 16 and normalized to the 4.5 ng 

DNA sample data (Table 4.16).  For amplicons up to 3.0 kb, normalized template 

fluorescent amounts mirrored the expected values (Table 4.16).  For amplicons greater 

than 4.0 kb, the reliability of Xo calculations were found to be inconsistent and therefore 

not sufficient for further experimentation (data not shown).  These data suggested that the 

real-time PCR protocols presented here were adequate for amplification of DNA targets 

up to 3.0 kb.     
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Table 4.16.  Input template fluorescence at different amplicon sizes. 

  
Input 

Templatea Xo
b

Normalized 
Xo Expected 

Amplicon 1         
  4.5 ng 1.57E-08 1.00 1.00 
  9.0 ng 3.12E-08 1.99 2.00 
  13.5 ng 4.71E-08 3.00 3.00 

Amplicon 2         
  4.5 ng 4.60E-08 1.00 1.00 
  9.0 ng 9.08E-08 1.97 2.00 
  13.5 ng 1.38E-07 3.01 3.00 

Amplicon 5         
  4.5 ng 2.16E-08 1.00 1.00 
  9.0 ng 4.31E-08 2.00 2.00 
  13.5 ng 6.47E-08 3.00 3.00 

Amplicon 7         
  4.5 ng 1.82E-09 1.00 1.00 
  9.0 ng 3.79E-09 2.09 2.00 
  13.5 ng 5.41E-09 2.98 3.00 

a- Estimated using optical density at 260nm. 
b- Xos were derived using equation 16 as described in Table 4.7.    
 

Extracted total cellular DNA was irradiated at 254 nm for various times and then 

amplified using real-time PCR.   Rightward shifts in amplification curves were observed 

(data not shown).  Input template amounts were held constant and input fluorescent 

values calculated for each amplicon size using non-irradiated controls; therefore, any 

differences in amplification (observed changes in  values) can be defined as 

differences in amounts of DNA damage (151).  Using the mean modified efficiency 

calculation method, a decrease in amplification was observed that correlated to increased 

PCR product size and increased time of exposure to UV radiation (Table 4.17).  To 

account for inherent differences in amplification between different sized templates 

(including differences in the efficiencies of PCR derived unmodified templates and 

different amounts of fluorescent dye incorporation (Appendix B)), MMEs were 

normalized to untreated controls at each amplicon size.  While the normalized MME 

from the amplification of Amplicon 1 (221 bp) was 0.786 after 0.5 min of exposure, 

Amplicons 2 (371 bp), 5 (1654 bp), and 7 (3082 bp) had normalized MMEs of 0.793, 

0.175, and 0.128, respectively (Table 4.17).  Doubling the exposure time decreased 

normalized MMEs to 0.716, 0.413, 0.068, and 0.028 for Amplicons 1, 2, 5, and 7 

TC
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respectively (Table 4.17).  Further decreases in normalized MMEs were observed as 

exposure times were increased (Table 4.17).   Amplification in the no template controls, 

as a result of stable primer dimer formation, provided an experimental baseline value for 

MMEs which was specific for each primer set (data not shown).  These results are 

consistent with reports that the sensitivity of polymerase stop based assays increases with 

the size of the PCR target (5, 11) and also suggest that real-time PCR can be used to 

estimate damage in cellular DNA. 

Cellular DNA does not contain templates with homogenous damage in a 

particular target region; more appropriately, cellular DNA is a mixture of damaged and 

undamaged template.  Both the MME and RTC are rate based methods of estimating 

DNA damage and assume no unmodified templates exist at the beginning of the PCR 

(151).  Therefore, the observed changes in  values from damaged sample PCRs, it was 

necessary to redefine damage in terms of probability rather than reaction rate (10); 

equation 26 was developed which defined differences in  values as lesion frequency 

(proportion of damaged bases in treated sample material).  Using equation 26, lesion 

frequencies were calculated from data used to generate MMEs for UV irradiated cellular 

DNA (Table 4.18).   Lesion frequencies increased as the time of UV exposure increased 

in all amplicon sizes tested (Table 4.18).  Lesion frequencies seemingly decreased as 

amplicon size increased; this was not expected as UV damage to DNA is assumed to be 

random and should, therefore, increase with fragment size.  This apparent decrease could 

be explained by increased precision in lesion frequency estimation at longer template 

lengths; increased precision was a result of an observed decrease in unmodified reaction 

efficiencies (E

TC

TC

u values), which resulted in an increase (spread out) in CT values.   This 

finding suggested that damage studies involving short fragments were unreliable; even at 

excessive UV exposure dosages.   

While these studies were encouraging and suggested that damage to DNA could 

be measured using real-time polymerase stop assays, further refinement of amplicon 

targets and the use of samples enduring biologically relevant amounts of UV exposure 

were necessary to determine the applicability of these methods in clinical and research 

settings. 
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Table 4.17.  Mean modified efficiencies from UV irradiated DNA.   

Sample Exposurea MME 
Normalized 

MMEb

Amplicon 1 0 0.943 1 
Amplicon 2 0 1.04 1 
Amplicon 5 0 0.967 1 
Amplicon 7 0 0.869 1 

        
Amplicon 1 0.5 0.741 0.786 
Amplicon 2 0.5 0.822 0.793 
Amplicon 5 0.5 0.169 0.175 
Amplicon 7 0.5 0.112 0.128 

        
Amplicon 1 1 0.675 0.716 
Amplicon 2 1 0.428 0.413 
Amplicon 5 1 0.0658 0.0680 
Amplicon 7 1 0.0241 0.0278 

        
Amplicon 1 3 0.499 0.530 
Amplicon 2 3 0.253 0.244 
Amplicon 5 3 0.0109 0.0113 
Amplicon 7 3 0.00240 0.0028 

        
Amplicon 1 7 0.309 0.328 
Amplicon 2 7 0.170 0.164 
Amplicon 5 7 0.0020 0.0021 
Amplicon 7 7 0.0004 0.0004 

        
Amplicon 1 15 0.178 0.189 
Amplicon 2 15 0.0439 0.0424 

Amplicon 5c 15 0.0002 0.0002 

Amplicon 7c 15 0.0002 0.0002 
a- Listed in minutes of exposure to 254 nm UV radiation. 
b- Normalized to the control sample to account for inherent differences between template sizes. 
c- Samples approached background MME values as exposure times increased; background MMEs were 
derived from no template controls and were a result of primer-dimer amplification (data not shown).    
 



Table 4.18.  Lesion frequencies from UV irradiated DNA. 

  Exposurea     CT Meanb CT  S.D. ∆CT

Unmodified 
Efficiency 

(Eu)c
Lesion 

Frequencyd L.F./10 kb 

Amplicon 1 0 17.5 0.137 0.000 0.950   

(N=221) 0.5 18.0 0.0730 -0.516 0.950 0.0016 16 

  1 18.1 0.251 -0.626 0.950 0.0019 19 

  3 18.8 0.403 -1.36 0.950 0.0041 41 

  7 19.2 0.0350 -1.77 0.950 0.0053 53 

  15 20.3 0.159 -2.85 0.950 0.0086 86 

                

Amplicon 2 0 17.7 0.0880 0.000 0.900   

(N=371) 0.5 18.1 0.0950 -0.326 0.900 0.00056 5.6 

  1 18.2 0.133 -0.492 0.900 0.00085 8.5 

  3 19.7 0.919 -1.98 0.900 0.0034 34 

  7 20.3 0.0310 -2.54 0.900 0.0044 44 

  15 22.2 0.316 -4.44 0.900 0.0077 77 

                

Amplicon 5 0 18.3 0.119 0.000 0.751   

(N=1654) 0.5 19.5 0.0650 -1.28 0.751 0.00043 4.3 

  1 20.9 0.262 -2.67 0.751 0.00090 9.0 

  3 23.6 0.0330 -5.33 0.751 0.0018 18 

  7 26.1 0.301 -7.81 0.751 0.0026 26 

  15 31.7 0.298 -13.4 0.751 0.0045 45 

                

Amplicon 7 0 21.1 0.143 0.000 0.650   

(N=3082) 0.5 23.3 0.160 -2.25 0.650 0.00036 3.6 

  1 25.8 0.232 -4.70 0.650 0.00076 7.6 

  3 29.5 0.181 -8.38 0.650 0.0014 14 

  7 32.4 1.04 -11.4 0.650 0.0018 18 

  15 33.6 0.770 -12.5 0.650 0.0020 20 
a- As described in Table 4.17. 
b- Mean CTs were calculated from an N=3 at threshold of 1.0. 
c- Calculated using equation 15. 
d- Calculated using equation 26 (listed per base). 
 

 

4.1.2.1. Validation of real-time PCR to estimate biologically relevant UV DNA damage 

 In order to establish if changes in  values could be detected from biologically 

relevant  amounts of UV DNA damage and translated into lesion frequencies, damaged 

cellular DNA was acquired from Drs. Bennett Van Houten and Joel Meyer; lesion 

TC
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frequencies were estimated using conventional QPCR (11).  Three template samples were 

generated by exposing MGH-U1 bladder carcinoma cells to 0, 10 or 20 J/m2 UV 

radiation and extracting total cellular DNA.  Using the QPCR method, lesion frequencies 

of these samples (designated 0 L, 0.5 L and 1.0 L respectively) were estimated to be 0, 

0.5 and 1 lesion per 10,000 bp.  To determine if polymerase stop assays for DNA damage 

quantification could be adapted for use on a real-time PCR platform, the primer walking 

strategy was adapted as described in sections 3.2.2.2. and 4.1.2. (Figure 3.4, 4.15).  By 

holding the reverse primer constant and moving the position of the forward primer, four 

fragment lengths were amplified ranging from 700 bp to 2.25 kb (Table 4.19).   

 This method relies on the assumption that templates containing one or more 

damaged bases do not contribute to the PCR, and so for reactions with equal input 

template quantities, samples with damage will show higher CT values than samples with 

no damage. For a given lesion frequency, the probability that any input template contains 

a damaged base increases as the template length increases. Thus the difference in CT 

values (∆CT) between undamaged and damaged samples will be higher for longer 

templates.   

 For each sample at each template length, ∆CTs were computed, along with 95% 

confidence intervals for these ∆CT values (Table 4.19). Where the confidence interval 

does not contain the value zero, a significant difference between the CT value for the 

damaged sample and that for the undamaged sample was inferred. Significant differences 

could also be predicated based on a relatively low standard deviation within samples 

(data not shown).   ∆CTs were determined from two independent real-time PCR data sets.  

For the first data set, significant differences between 0 L and 1.0 L samples were inferred 

at all template lengths (Table 4.19). Significant differences between 0 L and 0.5 L 

samples were inferred at template lengths of 1654 bp and 2241 bp, but not at template 

lengths of 693 bp or 942 bp (Table 4.19). For the second data set, significant differences 

were inferred between both damaged samples and the undamaged sample at all template 

lengths (Table 4.19). The standard deviations of CT values were generally lower in the 

second data set, particularly for the shorter template lengths and may have provided a 

degree of precision necessary to calculate significance (Table 4.19). 
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 Lesion frequencies were computed for both damaged samples (0.5 L and 1.0 L) at 

each template length and for each data set, using equation 26 (Table 4.19). The variation 

between data sets was smaller at templates lengths of 1654 and 2241 bp than at the 

shorter template lengths of 693 bp and 942 bp, consistent with the confidence interval 

analysis. Lesion frequency estimates using this method were generally 2-fold to 3-fold 

higher than the estimates of 0.5 lesions and 1.0 lesions per 10,000 bases provided by 

QPCR.   

 

4.1.2.2. Lesion bypass does not affect estimation of lesion frequencies in simulated data 

 Data presented by Sikorsky et al. (2004) suggest the assumption that damaged 

templates are completely blocked in the PCR is not technically correct, and that damaged 

templates contribute to the PCR with reduced efficiency ED (151).  For templates 

containing single cis-syn thymine-thymine dimers, ED is on the order of 1% (151).  In 

order to test the significance of this effect on lesion abundance calculations, a range of 

simulated lesion bypass efficiencies from damaged templates were created and, using 

equation 27 with each estimate, lesion frequencies were computed (Table 4.20; for full 

derivation of equation 14, see Appendix E). With simulated efficiencies in the range 0%-

5%, differences in the computed lesion frequency were less than 10% (Table 4.20).  

Therefore, assuming that templates with UV lesions in the target region did not contribute 

to the reaction was valid in these lesion abundance calculation experiments. 

 Other types of DNA base modifications, such as 8-oxodG and 8-oxodA, allow 

lesion bypass at a much higher rate (151). Without an independent, and accurate, 

measurement of lesion bypass rate, the method presented here is unsuitable for the 

measurement of such damage. In theory, it is possible to compare ∆CT values from 

reactions at two different amplicon lengths and simultaneously calculate both lesion 

frequency and lesion bypass rate (Appendix F). However, at this time, current limitations 

in instrumentation and fluorescent detection do not provide the precision necessary to 

perform these assays. 



Table 4.19.  Lesion frequencies calculated using real-time QPCR. 

  
Sample 
Name     CT Meana  CT  S.D. ∆CT Significantb 

Unmodified 
Efficiency 

(Eu) 
Lesion 

Frequencyc
Mean 
L.F. 

S.D. 
L.F.d

Amplicon 3 CNTL#1  18.1 0.157 0.000   0.891       

(N= 693) 0.5L #1  18.1 0.149 -0.0460 No 0.891 0.42 1.1 0.90 

  1.0L #1  18.5 0.153 -0.394 Yes 0.891 3.6 3.2 0.54 

                    

  CNTL#2   17.8 0.100 0.000   0.891       

  0.5L #2  18.0 0.087 -0.184 Yes 0.891 1.7     

  1.0L #2  18.1 0.032 -0.310 Yes 0.891 2.8     

                    

Amplicon 4 CNTL#1  18.2 0.139 0.000   0.849       

(N=942) 0.5L #1  18.4 0.223 -0.202 No 0.849 1.3 1.7 0.60 

  1.0L #1  18.7 0.243 -0.486 Yes 0.849 3.2 4.0 1.1 

                    

  CNTL#2   18.5 0.134 0.000   0.849       

  0.5L #2  18.8 0.151 -0.332 Yes 0.849 2.2     

   1.0L #2  19.2 0.351 -0.736 Yes 0.849 4.8     

                    

Amplicon 5 CNTL#1   19.4 0.229 0.000   0.751       

(N=1654) 0.5L #1  19.7 0.162 -0.344 Yes 0.751 1.2 1.4 0.35 

  1.0L #1  20.1 0.200 -0.755 Yes 0.751 2.6 2.7 0.27 

                    

  CNTL#2   19.5 0.111 0.000   0.751       

  0.5L #2  20.0 0.134 -0.489 Yes 0.751 1.7     

  1.0L #2  20.4 0.208 -0.866 Yes 0.751 2.9     

                    

Amplicon 6 CNTL#1   20.6 0.177 0.000   0.692       

(N=2241) 0.5L #1  21.3 0.471 -0.703 Yes 0.692 1.7 1.3 0.49 

  1.0L #1  21.6 0.0980 -0.938 Yes 0.692 2.2 2.2 0.059 

                    

  CNTL#2  21.0 0.0590 0.000   0.692       

  0.5L #2  21.5 0.0950 -0.411 Yes 0.692 0.97     

  1.0L #2  21.9 0.0540 -0.903 Yes 0.692 2.1     
a- Mean CTs were calculated from an N=4 at threshold of 1.0. 
b- Significance of mean TC  , using a 95% confidence interval, as established by comparing treated versus control 
samples (see materials and methods). 
c- Calculated using Equation 26 and listed as lesion per 10000 bases. 
d- S.D. is the standard deviation of the LF calculations. 
e- Amplicons 1 and 2 are not shown.  
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Table 4.20.  Influence of lesion bypass (ED) on lesion frequency (p) estimationa. 
0.5 L Sample 

 Target Base Length 
Simulated ED 693 942 1654 2241 

0% 1.7 2.2 1.7 0.97 

0.1% 1.7 2.2 1.7 0.97 

0.2% 1.7 2.2 1.7 0.97 

0.5% 1.7 2.2 1.7 0.97 

1% 1.7 2.2 1.7 0.98 

2% 1.7 2.2 1.7 1.0 

5% 1.8 2.3 1.8 1.1 

10% 1.9 2.5 2.0 1.2 

 
1.0 L Sample 

 Target Base Length 
Simulated ED 693 942 1654 2241 

0% 2.8 4.8 2.9 2.1 

0.1% 2.9 4.8 2.9 2.1 

0.2% 2.9 4.8 2.9 2.1 

0.5% 2.9 4.8 3.0 2.1 

1% 2.9 4.9 3.0 2.2 

2% 2.9 4.9 3.0 2.2 

5% 3.0 5.2 3.2 2.3 

10% 3.3 5.6 3.5 2.6 

a- Lesion frequencies are computed using equation 27, using the EU, CU, and CD values from Table 
4.19 and presented as lesions per 10000 bases. 



98 

4.2. Characterization of Lesion Induced PCR Mutation 
 

When present in synthetic templates, 8-oxodG, 8-oxodA, and abasic sites are 

known to retard but not absolutely block extension by the Klenow fragment of E. coli 

DNA polymerase I (2, 18, 51, 68) and Taq DNA polymerase is able to slowly bypass cis-

syn thymidine dimers (87).  These properties are consistent with observations presented 

above that replication of some damaged templates is impeded, but not absolutely blocked, 

during early rounds of the PCR (151).  

 

4.2.1. Melt curves of PCR products from damaged template suggest multiple products 

One benefit of amplifying DNA in real-time using SYBR green dye detection is 

the ability to generate dissociation curves of PCR products to determine melting 

temperature and the presence of spurious product formation.  Annealing kinetics of 

duplex DNA are mainly influenced by interstrand hydrogen bonding (113); differences in 

nucleotide sequences can result in changes in duplex melting temperatures.  To determine 

the melting temperatures of PCR products generated from amplification of 90-mer 

oligonucleotide templates, dissociation curve profiles were generated (Figure 4.15).  Oxo 

CONTROL templates generated PCR products with a unique peak suggesting the 

formation of a single product; the melting temperature for this 90 bp sequence was 

approximately 75o C (Figure 4.16).  As the amount of 8-oxodG modifications increased 

in the input oligonucleotide, the ability to resolve definitive peaks in the dissociation 

curves decreased (OxodG2T, OxodG4T, and OxodG6; Figure 4.16).  Dissociation curves 

from OxodG1, OxodG2A, and OxodG3A templates mimicked those of the Oxo 

CONTROL (data not shown).  These observations implied that multiple products were 

formed in the PCRs of templates with increased 8-oxodG lesions.   

PCR products from OxodA1 templates generated a unique peak with decreased 

amplitude when compared with that of the Oxo CONTROL (Figure 4.16).  This 

suggested the majority of PCR product formed in these reactions had similar melting 

temperatures to those from the controls.  The Abasic template profiles were less 

definitive; at least three peaks were observed, one of which occurred at a point similar to 



the Oxo CONTROL (Figure 4.16).  These data indicated that multiple products were 

formed as a result of abasic site bypass.  

 

 
Figure 4.16.  Dissociation curves of PCR products from modified oligonucleotides.  Melting 
temperatures of PCR products from the amplification of 90-mer Oxo CONTROL oligonucleotides were 
approximately 75o C.  The amount and type of modification influenced the ability to resolve definitive 
peaks in the dissociation profiles; all graphs represent N=5. 
 

4.2.2. The fidelity of Taq polymerase is influenced by lesions on the input DNA 

template.   

To determine if lesions on the oligonucleotide templates influenced nucleotide 

incorporation, the real-time PCR products from modified oligonucleotide amplifications 

were purified and the sequences determined (Figures 4.17-4.20; summarized in Table 

4.21; data not shown).  The forward amplification primer was used to sequence the PCR 

products.  This primer binds to the complement of the input oligonucleotide used and 

therefore any sequence obtained is suggestive of lesion bypass and full-length product 

formation.  Sequence data from all oligonucleotides tested is summarized below (Table 

4.21).   
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The Oxo CONTROL and Dimer CONTROL matched their expected sequences 

(Figure 4.17; 4.20A).  In all templates with 8-oxodG lesions, a mixture of reaction 

products was obtained (Figure 4.18).  The majority of amplicons contained the normal 

Watson-Crick insertion of dCMP opposite the lesion site; the minority amplicon 

sequence from most 8-oxodG containing templates included dAMP pairing opposite the 

base lesion, creating a stable transversion [guanine to thymine] (Figure 4.18).  When two 

8-oxodGs were adjacent on the input template, in addition to the incorporation of dCMP 

and dAMP opposite the lesion sites, a pronounced n-1 deletion event occurred (Figure 

4.18).  The addition of subsequent adjacent 8-oxodGs resulted in indistinct product 

sequences (Table 4.21; data not shown).  

 

 
Figure 4.17.  Sequence analysis of PCR product from Oxo CONTROL oligonucleotide.  Black, green, 
red, and blue represent guanine, adenine, thymine, and cytosine bases respectively.  PCR product sequences 
from the amplification of 90-mer Oxo CONTROL oligonucleotides were equivalent to the expected input 
synthesis sequence; neither failed synthesis products nor PCR derived mutations were detected.  
Background fluorescence was observed and could be attributed to increased peak amplitude resulting from 
excess fluorescent dye incorporation. 
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Figure 4.18.  Sequence analysis of PCR product from oligonucleotides containing 8-oxodG base 
modifications.  Black, green, red, and blue represent guanine, adenine, thymine, and cytosine bases 
respectively.  Amplification of 90-mer oligonucleotides, A) OxodG1, B) OxodG2A, C) OxodG3A, and D) 
OxodG2T, resulted in multiple PCR products; sites of DNA modification are designated (M) in the 
sequence header.  In all products examined, G!T transversions at the site of modification were observed 
(*).  In addition, two adjacent 8-oxodGs (OxodG2T) resulted in n-1 deletion products (solid down arrows).   
 

 Amplicons created by replication through 8-oxodA were also mixed.  The 

predominant sequence generated contained the incorporation of dTMP opposite the lesion 

site (Figure 4.19A).  In addition, a pronounced n-1 deletion occurred during amplicon 

synthesis, originating opposite the 8-oxodA (Figure 4.19A).  Nucleotide incorporation 

opposite single abasic sites also resulted in mixtures of amplicons (Figure 4.19B); n-1 

deletions, n+1 insertions, and a mixture of dNMP incorporations were observed.  Base 

association across from single thymine dimer modifications and subsequent strand 

extension were not clear (Figure 4.20B).  While the predominate base incorporated 
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opposite the TT Dimer modification appeared to be dCMP, an unambiguous 

characterization of extension products could not be determined (Figure 4.20B).  Like that 

seen in products from multiple adjacent 8-oxodGs (greater than 3), this ambiguity can be 

attributed to the presence of multiple extension products (deletions and insertions), none 

of which could be considered a majority sequence, which disrupt the dye terminator 

sequencing reactions.   

 

 

# # B 

A 

 
Figure 4.19.  Sequence analysis of PCR product from oligonucleotides containing 8-oxodA and abasic 
base modifications.  Black, green, red, and blue represent guanine, adenine, thymine, and cytosine bases 
respectively.  Amplification of 90-mer oligonucleotides, A) OxodA1, and B) Abasic templates resulted in 
multiple PCR products; sites of DNA modification are designated (M) in the sequence header.  In addition 
to the majority sequence (dTMP incorporation opposite modification), a pronounced n-1 deletion originated 
at the 8-oxodA site (dashed down arrows).  Guanine is present at the site of modification in PCR products 
from Abasic template (suggesting dCMP incorporation); in addition, minority peaks were observed (#).   
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Figure 4.20.  Sequence analysis of PCR product from oligonucleotides containing a cis-syn Thymine-
Thymine dimer.  Black, green, red, and blue represent guanine, adenine, thymine, and cytosine bases 
respectively.  Amplification of the A) Dimer CONTROL oligonucleotide resulted in PCR products 
containing the appropriate thymine substitutions (boxed).  PCR products from amplification of the B) TT 
Dimer1 template resulted in multiple sequences; guanine is present in the sense strand at the site of 
modification suggesting dCMP was predominately incorporated across from the dimer; multiple minority 
peaks were observed but could not be distinguished.  Sites of DNA modification are designated (M) in the 
sequence header.   
 

B 

A 
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Table 4.21.  Summary of PCR derived mutation as a result of lesion bypass. 

Sample Majority Nucleotidea      Minority Nucleotideb

Oxo CONTROL no modification no modification 

OxodG1 (48) dCMP dAMP 

OxodG2A (48/61) dCMP dAMP 

OxodG3A (48/53/61) dCMP dAMP; possible n-1c

OxodG2T (47/48) dCMP n-1c;  dAMP 

OxodG3T (46-48) NA NA 

OxodG4T (45-48) NA NA 

OxodG6 (45-48/59/60) NA NA 

OxodA1 (49) dTMP n-1c

Abasic (49) possible dCMP possible n-1c, possible n+1 

Dimer CONTROLd no modification no modification 

TT Dimer1 dCMP possible n-1c, possible n+1 

 
a- Predominant nucleotide incorporated opposite site of DNA base modification. 
b- Secondary sequences created, in addition to the majority sequence, during the PCR; listed by order of 
observed fluorescent intensity. 
c- Observed frame-shifting originated at site of modification. 
d- To create Dimer CONTROL, with respect to the Oxo CONTROL sequence and the 3� terminus, thymine 
base substitutions were made at positions 49, 50, and 59 (Table 3.1). 
 

4.2.3. Restorase DNA polymerase misincorporates nucleotides opposite base lesions  

Four 90-mer oligonucleotides were amplified using the Restorase DNA 

polymerase system (Sigma).  To determine base incorporation opposite the modifications, 

PCR products were sequenced as described above (section 3.3.3.).  PCR products from 

all templates tested contained the sequencing primer binding site which suggested lesion 

bypass and full-template amplification (summarized in Table 4.22).  Sequences of 

products from the Oxo CONTROL oligonucleotide template were as expected (Figure 

4.21A; Table 3.1).  Restorase bypass of 8-oxodG modifications (OxodG2A) produced 

multiple sequences, the majority of which mimicked the control; however, some products 

contained guanine to thymine transversions suggesting dAMP incorporation opposite the 
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site of modification (Figure 4.21B).  Templates containing 8-oxodA resulted both in 

expected and PCR products with n-1 deletions originating at the site of modification 

(Figure 4.21C).  The majority of products produced from abasic site bypass by Restorase 

followed the �A-rule�, with dAMP being the predominate nucleotide incorporated 

opposite the empty abasic site (Figure 4.21D; (73)).  In addition to dAMP incorporation, 

n-1 deletions were present, originating at the abasic site, in some PCR products (Figure 

4.21D).      



 

 

B 

A 

C 

D 

 
Figure 4.21.  Sequence analysis of PCR product from modified oligonucleotides amplified by 
Restorase DNA polymerase.  Black, green, red, and blue represent guanine, adenine, thymine, and 
cytosine bases respectively.  Amplification of 90-mer A) Oxo CONTROL oligonucleotides using Restorase 
DNA polymerase resulted in the expected Anderson sequence (156).  B) The majority of nucleotide 
insertions opposite 8-oxodG modifications (OxodG2A) were dCMPs; some dAMP insertion was observed 
at one of the modified sites (solid down arrow).   C) OxodA1 oligonucleotide template produced products 
with dTMP incorporations (majority) and n-1 deletions (minority; designated with dashed down arrows).  
D) Abasic templates resulted in multiple PCR products; dAMP incorporation (majority) and n-1 deletions 
(minority; designated with dashed down arrows) were observed.  Sites of DNA modification are designated 
(M) in the sequence header  
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Table 4.22.  Restorase lesion bypass productsa. 

Sample Majority Nucleotide       Minority Nucleotide 

Oxo CONTROL no modification no modification 

OxodG2A (48/61) dCMP dAMPb

OxodA1 (49) dTMP n-1 

Abasic (49) dAMP n-1 

a- Sequence descriptions were as described in Table 4.18. 
b- dAMP incorporation was only detected above background fluorescence opposite the 8-oxodG 
modification at position 61 and not the modification at position 48. 
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CHAPTER V 
 

Summary and Conclusions 
 
 

5.1. Quantification of DNA Damage 
 

Implicating DNA damage as a preliminary step in carcinogenesis and aging 

emphasizes a need for clinical assays to screen for aberrant amounts of damage to cellular 

DNA.  Current QPCR methods are the most sensitive of the polymerase stop based 

assays but require long template amplification (greater than 10 kb; (5)) and, in some 

cases, the use of hazardous radioisotopes.  To alleviate these requirements, real-time PCR 

mathematics and protocols were adapted to quantify damage to DNA.  In addition to 

redefining changes in CT values as degrees of damage rather than differences in input 

template, data indicated that different types and amounts of DNA base modification 

impact the rate of the PCR to different degrees.  The observation that lesions did not 

terminally block Taq polymerase progression lead to the discovery of lesion induced PCR 

mutagenesis.      

 

5.1.1. Lesion bypass 

When present in synthetic templates, 8-oxodG, 8-oxodA, and abasic sites are 

known to retard but not absolutely block extension by the Klenow fragment of E. coli 

DNA polymerase I (2, 18, 51, 68, 73) and Taq DNA polymerase is able to slowly bypass 

cis-syn thymidine dimers (87).  These properties are consistent with the observation that 

replication of some damaged templates is impeded, but not absolutely blocked, during 

early rounds of the PCR (Figures 4.6-4.8).    

Lesion bypass during the PCR results in the creation of unmodified amplicons 

that mimic the reaction kinetics of the control templates masking any influence of 

modifications on reaction efficiency at detectable fluorescent levels (Figure 5.1).  

Creation of novel mathematical treatments to define differences between PCRs with 



equal template amounts as differences in the rate of reaction efficiencies from templates 

with DNA modification were necessary to characterize this apparent lag in early 

exponential amplification (Figure 5.2).     
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Figure 5.1.  Observed PCR curves of modified and unmodified templates.  Templates containing DNA 
base modifications hinder but do not halt the PCR.  PCR derived unmodified amplicons are present in each 
subsequent cycle and produce reaction curves, at detectable fluorescence levels, that mimicked those of 
unmodified control templates.   
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Figure 5.2.  DNA base lesions create a delay in early exponential phase.  Templates containing DNA 
base modifications decrease the rate of the PCR.  This decreased rate is observed as a rightward shift in 
amplification curves prior to detectable amplification.   
 
 
 
5.1.1.1. Rate of lesion bypass: the RTC efficiency method 

The RTC method was designed to explain differences in PCR curves resulting 

from inherent input template quality while holding input template quantity constant 

(151).  In early real-time PCR cycles, replication of full-length modified oligonucleotides 

gave rise to unmodified PCR products which were exponentially amplified in subsequent 

cycles.  Even though the amplification curves of unmodified and some modified 

templates had similar exponential phases (Figure 5.1), rightward shifts in the 

amplification curves of templates with single 8-oxodA, abasic site, TT dimer, with three 

separated 8-oxodG, or with any number of tandem 8-oxodG modifications were observed 

(Figures 4.6-4.8).  This shift stemmed from a prolonged lag in early exponential phase 

(Figure 5.2) that could be described as a difference in  values and translated into RTC 

efficiencies (Tables 4.3-4.5). Although a single 8-oxodG base had no detectable effect on 

RTC efficiency, the presence of a single 8-oxodA, abasic site, and TT dimer 

modifications dramatically reduced RTC efficiencies by 81.2%, 98.5%, and 99.2% 

TC
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respectively.  Two tandem 8-oxodG bases reduced RTC efficiency by 98.5%.   Assuming 

that the reaction efficiencies from the ICR and full-length amplifications are identical and 

assuming that these are interchangeable between templates, RTC efficiency is an 

appropriate method to characterize large differences in the rate of the PCR resulting from 

lesion bypass (Tables 4.3-4.5).     

 

5.1.1.2. Rate of lesion bypass: the MME method 

The mean modified efficiency method builds on the RTC method for quantifying 

aggregate damage to DNA template using real-time PCR.  By calculating the reaction 

efficiencies for the ICR and full-length amplifications, as well as the amount of 

fluorescence generated by each input template, and incorporating these into the equation 

14, significant differences in MMEs were observed between the Oxo CONTROL and 

both the OxodG1 and OxodG2A templates (statistically significant at p < 0.05; Table 

4.9).  These observations suggest the MME calculations are appropriate to characterize 

small differences in the rate of lesion bypass during the PCR, not detectable using the 

RTC method. 

 

5.1.1.3. Different lesions influence PCRs to different degrees 

 DNA base lesions cause extended lags in exponential amplification during the 

PCR.  These lags result in rightward shift in real-time PCR curves and translated into 

differences in RTC (Tables 4.3-4.5) and MME (Tables 4.8-4.10).  Contrary to current 

QPCR assumptions that thermostable polymerase progression is blocked by single 

lesions, observations presented here indicated different lesions impact the PCR to 

different degrees (Figure 5.3).   
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Figure 5.3. Different base modifications influence the PCR to different degrees.  When compared to 
sequence matched controls, mean modified efficiencies of templates containing single 8-oxodG (X), 8-
oxodA (Y), and abasic site (Z) modifications were reduced.  These reductions in MME were base lesion 
specific. 
 

The observation that single 8-oxodA lesions decreased amplification efficiency by 

82% when compared with 8-oxodG was unexpected and not easily explained.  These base 

modifications both contain additional hydroxyl groups at the 8th position on their 

respective purine rings (8-oxodG formation reviewed in above; Figure 2.2).  Both 

modifications impact backbone dynamics of short oligonucleotides (157) but neither 

severely impedes the progression of Klenow (18, 68).  Initial reports diagramming 8-

oxodA bypass by Klenow indicate very low chain termination opposite 8-oxodA (67).  

Studies also show that, in the presence of excess polymerase, the insertion and extension 

of dTMP opposite the 8-oxodA lesion far exceed that of any other dNTP (68).  Given that 

dTMP is exclusively incorporated opposite the 8-oxodA modification, one possible 

explanation of the observed drop in RTC and MMEs from 8-oxodA containing templates 

is the presence of dUTP (rather than dTTP) in the experimental dNTP mixture; a measure 

used to decrease PCR carryover contamination.  The insertion kinetics of an incoming 

dUMP opposite 8-oxodA has not been characterized and it is certainly possible that this 
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could impact the PCR.  The increase in observed RTC efficiencies from 8-oxodA 

templates in the Restorase reactions strengthens this hypothesis.  These reactions 

contained dTTP and corroborated earlier reports of 8-oxodA bypass by Taq (Figures 4.4, 

4.13; (67)). Results must be viewed with caution because the possibility of lesion repair 

exists in reactions with Restorase; however, the likelihood of this impacting reactions 

with 8-oxodA is decreased due to repair selectively (165), the use of ssDNA (Restorase 

repair works on duplex DNA (167)), and the short incubation times (less than 5 min) at 

low temperatures (4o C; (165)). 

A tetrahydrofuran analog (synthetic abasic site) creates a more formidable block 

to Klenow progression but full-length extension products are eventually generated (73).  

Smith et al. (1998) report that both Klenow and Taq are able to bypass cis-syn dimers 

slowly; with both polymerases stopped one nucleotide prior to and directly opposite the 

3�-T and with Taq synthesis also stopped opposite the 5�-T (87).  Observations presented 

here are in full agreement with these results; PCRs from templates with abasic sites and 

TT dimers are slowed dramatically but not stopped completely, which resulted in 

significantly lower RTC and MMEs (Tables 4.3, 4.5 and 4.8, 4.10 respectively). 

 

5.1.1.4. The position of 8-oxodG lesions relative to each other impacts the PCR 

The presence of the 8-oxo group can cause pronounced changes in base 

interactions and changes in phospho-deoxyribose backbone (157). These alterations in 

template secondary structure could prevent Taq DNA polymerase advancement resulting 

in the observed reduction in RTC and MMEs. Increased numbers of 8-oxodGs 

systematically reduced RTC and MMEs; coupled with observations that placing 8-

oxodGs adjacent to one another (OxodG2T; OxodG3T; OxodG4T; OxodG6) enhanced 

the reduction (Figure 5.4), an argument that the position of base modifications on a DNA 

template has a much greater influence in reducing template amplification than does the 

number of 8-oxodG modifications can be made and that these reductions may, in part, be 

attributed to altered oligonucleotide backbone structure.  
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Figure 5.4. The positioning of multiple 8-oxodGs relative to one another significantly alters modified 
reaction efficiency.  Placing two modifications adjacent one another results in a 96% decrease in modified 
amplification efficiency when compared to the MMEs from templates with two 8-oxodGs separated by 13 
bases.  Sites containing modified 8-oxodG bases are designated by (X). 
 

The basis for QPCR methods of DNA damage detection is that the PCR is 

blocked by the presence of certain lesions in the DNA template which results in a 

decrease in amplification product (5, 8-11). These methods assume that each lesion 

blocks polymerase advancement to the same degree and that there are no positional 

effects (e.g. that two separate lesions would have the same effect as two tandem lesions). 

Observations that the type and position of base damage strongly influenced the PCR to 

differing degrees, suggest that some QPCR methods may underestimate or overestimate 

the amount of damage.   

 

5.1.2. Calculation of lesion abundance  

Current QPCR DNA damage assays rely on endpoint analysis and, in some 

instances, the incorporation of radiolabeled nucleotides in order to quantify PCR product 

from damaged or undamaged templates (5, 8-11).  In addition, these methods require the 

independent establishment of exponential phase amplification for each DNA target (5, 8-



11).  Adaptation of real-time PCR technology to DNA damage detection methods have 

allowed for rate-based determination of the extent of damage and obviated the need for 

radiolabeled nucleotides (151). 

Most real-time PCR protocols require a short target DNA, usually less than one 

hundred fifty base pairs to insure high amplification efficiency. However, in order to 

achieve detection of biologically relevant levels of damage and estimate the sensitivity of 

the detection method, protocols for the real-time amplification of larger (1000-10,000 bp) 

target must be developed.  In addition, development of formulae which calculate the 

probability of encountering a damaged base in cellular DNA containing both damaged 

and non-damaged template from changes in threshold cycle vales was required.   

To validate real-time PCR for detection of biologically relevant levels of UV 

induced photoproducts in cellular DNA, mtDNA fragments ranging from 600 bp to 2.25 

kb (Amplicons 2-5; Figure 3.4) were amplified using the ABI 7000 sequence detection 

system from total cellular DNA stocks which had been previously determined to contain 

0 L, 0.5 L, and 1.0 L per 10 kb by conventional QPCR methods (11).  Significant 

differences in cycle threshold  values were observed and, in combination with 

equation 26, translated into lesion frequencies (Table 4.18).  Significant levels of damage, 

ranging from 1 to 4 lesions per 10 kb, were consistently detected in amplicon sizes 

greater than 1.5 kb (Table 4.18).   

TC

Despite maintaining trends between both sample populations, real-time based 

polymerase stop assays estimated damage to be 1.9 to 4.8-fold higher than QPCR assays.  

This increase in frequency could be explained by differences in (1) amplification targets 

or (2) PCR protocols.   

Previous studies comparing oxidative damage to nuclear and mitochondrial DNA 

suggest that mtDNA has a two to three fold higher lesion frequency than nuclear targets 

in the same sample (5, 11).  It is reasonable to assume that UV damage would present 

with similar patterns and therefore the observed differences in lesion frequency would be 

expected.  However, Kalinowski et al. (1992) see only marginal, although elevated, 

differences between lesion frequencies of nDNA and mtDNA from UV irradiated sample 

material (approximately 1.5-fold more in mtDNA (7)).  In general, such discrepancies 
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may be caused by a difference in AT content.  However, a review of the targets used in 

this study yielded no appreciable difference in sequence content.  Therefore, at least in 

this case, AT content was not a likely cause in observed differences in lesion frequency 

(data not shown).   

Shielding by nuclear chromatin may afford protection to nDNA, a mechanism not 

found in mitochondria and therefore can not be ruled out as a possible reason for lesion 

differences in mitochondrial and nuclear DNA.  In addition, NER mechanisms which 

remove bulky adducts from DNA do not exist in the mitochondria and could inflate the 

proportion of mitochondrial versus nuclear lesions should damaged cells have time to 

initiate repair processes (9).  Approximately 10% of UV induced blocking lesions are 

repaired after 4 hrs (7); making it highly unlikely that appreciable repair occurred 

between exposure and freezing in this current study. 

QPCR employs rTth DNA polymerase XL and a protocol optimized to amplify 

long fragments of DNA.  The real-time PCR assay described here uses Taq DNA 

polymerase and was adapted from protocols optimized to amplify short fragments (less 

than 150 bp).  Despite a similarity in polymerases, differences in incorporation/extension 

kinetics past DNA modifications would result in changes in observed lesion frequencies.  

While certainly possible, the likelihood that these differences would impact lesion bypass 

to a degree significant enough to alter lesion frequencies is remote (as inferred by lesion 

bypass simulations; Table 4.20).  QPCR measures lesion frequency based on the 

amplification of longer DNA targets (5, 11).  It is possible that UV photoproducts impact 

the PCRs to a lesser degree in longer DNA target lengths and would, therefore, increase 

the observed lesion frequencies in shorter templates.     

Even with observed differences in lesion frequency, these data implied that real-

time PCR protocols could be adapted to estimate relevant amounts of UV damage in 

cellular DNA and may provide greater sensitivity than conventional QPCR protocols.    

 

5.1.3. Matched controls are required for real-time PCR quantification 

In order to prepare an appropriate control template for the TT Dimer1 

oligonucleotide, several thymidine substitutions were made in the Oxo CONTROL 
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sequence (Table 3.1). The RTC and MMEs from this Dimer CONTROL (1.03 and 1.28; 

Tables 4.5, 4.10) were greater than those of Oxo CONTROL (0.544 and .776; Tables 4.3, 

4.8). Theoretically, these values should have equaled 1.0; the differences represented 

shifts in the full-length amplification curves when compared with curves from the ICRs 

(Figure 4.6).  Observed differences in control RTC and MMEs can be explained by a 

reduction in the stability of secondary structure in the Dimer CONTROL template which 

resulted in improved Taq progression (Figures 4.9, 4.10).  These observations emphasize 

the need for matched controls in the RTC/MME methods and, for that matter, any real-

time PCR protocol. 

 

5.1.4. PCR efficiency during early amplification impacts real-time calculations 

 Nogva et al. (2004) present evidence that products produced in early rounds of 

amplification by the PCR form secondary structures that alter their respective replication 

efficiencies and impact real-time PCR based transcript abundance calculations (Figure 

2.8; (145)).  The work presented here is in agreement with these findings (Figures 4.9, 

4.10); adding that DNA base lesions impact early rounds of the PCR and influence 

current real-time PCR mathematics (Tables 4.1, 4.2).  Due to the decreased probability of 

encountering a damaged site in short targets (used in most real-time PCR assays; 

presented in lesion frequency results section 4.1.2.1.), attempts to correlate DNA amounts 

determined from short template amplification to those of larger targets should be done 

with great caution.  An example of this would be the use of real-time PCR to determine 

DNA amounts in forensic science where the environmental assault on sample material is 

great; the amplification of 50 bp (real-time PCR target) may not translate into amplifiable 

DNA at 400 bp (largest target loci).  In these cases, it would be more appropriate to 

define results obtained as amplifiable template at a particular target length than it would 

be to report template abundance from real-time data. 
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5.2. Lesion Induced PCR Mutation 
 

5.2.1. PCR derived mutation as a consequence of lesion bypass 

The generation of full-length products in PCRs with 8-oxodG, 8-oxodA, abasic, 

and TT dimer lesion containing oligonucleotide templates suggested that Taq DNA 

polymerase was not completely blocked by these base modifications.  These observations 

are in accordance with lesion bypass studies using DNA polymerase I (2, 18, 51, 68, 73) 

and indicate the assumption that lesions block thermostable polymerase progression 

requires revision (5).  Given that these lesions do not completely block Taq, the degree to 

which the fidelity of the PCRs was impacted was characterized. 

From previous work done by others, in addition to influencing the rates of proper 

nucleotide insertion and extension, the capability to insert mismatched bases by many 

DNA polymerases is increased in the presence of base lesions (2, 18, 51, 68, 73).  For 

example, Shibutani et al. (1991) report that dAMP is introduced opposite 8-oxodG and 

readily extended by both the Klenow fragment and intact DNA polymerase I; therefore, 

8-oxodG is considered pre-mutagenic (17).  Sequence data from PCR products obtained 

from reactions with 8-oxodG templates contained a mixture of dG and dT at the sites of 

modification suggesting that both dCMP and dAMP were incorporated by Taq DNA 

polymerase and, therefore, that the 8-oxodG base lesion was pre-mutagenic in the PCRs 

(Figure 4.18).   

8-oxodA, on the other hand, is not mutagenic in the presence of all four dNTP 

promoting the insertion and extension of dTMP by DNA pol I opposite the site of 

damage (68).   The authors point out, however, that if the concentration of the polymerase 

is reduced 100-fold, translesional synthesis past 8-oxodA by Klenow is retarded one base 

before and directly opposite the lesion (68).  Guschlebauer et al. (1991) observe that, in 

the presence of all four dNTPs, Taq DNA Polymerase (1 U of enzyme) directs dTMP 

incorporation exclusively (67).  In addition to the expected dTMP, n-1 deletions were 

observed in PCRs with 8-oxodA originating at the site of modification (Figure 4.19A).  

These findings were surprising as they aren�t consistent with other reports of Taq 

polymerase bypass of this lesion (67).  One possible explanation for this discrepancy is 



that the amount of enzyme used in each study differed; while the amount of enzyme in 

the Applied Biosystems master mix used within is proprietary, the number of units of 

enzyme per reaction were estimated to be half of that used in the Guschlebauer et al. 

(1991) experiments (data not shown; (67)).   Given, when in excess, Klenow is also not 

hindered at the site of modification (68), it is reasonable to assume that an excess amount 

of Taq would react in the same fashion and could explain why Guschlebauer and 

colleagues observed no 8-oxodA impact on Taq polymerase progression.  In addition, the 

ABI master mix contains a dNTP mixture with dUTP; a measure used to decrease PCR 

carryover contamination.  The insertion kinetics of an incoming dUMP opposite 8-oxodA 

has not been characterized and it is certainly possible that this could result in decreased 

polymerase fidelity and the observed n-1 deletion.  This argument is strengthened by the 

apparent decrease in n-1 deletion products from the Restorase PCRs; containing dTTP 

rather than dUTP (Figure 5.5). 

 

 
Fig. 5.5. Mutations opposite 8-oxodA lesions are reduced with Restorase.  Black, green, red, and blue 
represent guanine, adenine, thymine, and cytosine bases respectively.  The frequency of n-1 deletions 
appears to decrease in reactions with the A) Restorase polymerase mixture and dTTP in comparison to B) 
AmpiTaq Gold and dUMP.   
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Smith et al. (1998) report that both Klenow and Taq are able to bypass cis-syn 

dimers slowly (87).  Data presented here are in agreement with these findings as the 

presence of the primer binding site required for the cycle sequencing reactions suggested 

that full-length products were generated.  dCMP was the most incorporated dNTP 

opposite the modification and the lack of readable sequence post modification suggested 

the presence of multiple frameshifting mutations; originating at the site of damage 

(Figure 4.20B).   

In reactions containing templates with single abasic sites, a stalling occurred 

during early amplification (as suggested by the RTC and MME data) and the resulting 

lesion bypass produced a mixture of n-1 deletions and n+1 insertions (Figure 4.19B).  

While data suggested the tetrahydrofuran analog in this Taq polymerase model didn�t 

follow the A-rule proposed by Grollman and colleagues, a mechanistic deletion similar to 

that seen by Shibutani et al. (1997) with Klenow was observed (73).  In this model, 

authors hypothesize that sequences flanking the absent base can mispair during the period 

in which the polymerase is stalled at the site of modification creating either insertions or 

deletions (73).    

    

5.3. Future Directions 
Polymerase stop based assays used to determine lesion frequencies assume that 

each DNA base lesion blocks polymerase advancement to the same degree and that there 

are no positional effects (e.g. two separate lesions would have the same effect as two 

tandem lesions). Since observations presented here implied that the type and position of 

base damage strongly influenced the PCR (presented as differences in RTC and MME), 

some polymerase stop assays may underestimate or overestimate the amount of DNA 

damage (151).   

The rate of lesion bypass can be estimated using RTC or MME.  These 

measurements can be determined and, using equation 27, incorporated into lesion 

frequency calculations (as presented as estimations in Table 4.20).  In addition, novel 

formulae, presented in Appendix E, model the PCRs of mixed templates and report both 

lesion bypass rate and lesion frequency.  Work to adapt lesion frequency measurements 
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to include rate of lesion bypass will increase precision and accuracy of lesion abundance 

measurements.  However, instrument precision, in its current format, is insufficient to 

permit these types of calculations but may occur in the future as technology advances 

(Appendix E).   

Real-time PCR based damage quantification methods presented here represent a 

stepping stone for the implementation of polymerase stop based assays as clinical tools to 

estimate DNA damage.  Advancement of real-time PCR instrumentation and polymerase 

stop based protocols could present alternatives to current clinical monitoring assays of 

DNA intercalating drugs such as Cisplaten.  In addition, screening aggregate levels of 

DNA damage and/or rates of DNA repair in age and cancer related disorders by PCR 

methods could become possible.  Work to characterize the sensitivity limits of these 

assays is the next step in determining applicability of real-time PCR damage 

quantification methods in both research and clinical settings. 
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APPENDIX A 
 

 
PCR Primers 

 
 Primers were adapted from Levin et al. (1999), Ayala-Torres et al. (2000), or 

created using ABI primer express software to amplify fragments of mtDNA from cellular 

and synthetic samples (Table A.1; (10, 158)). 

 

Table A.1.  Oligonucleotide primer sequences. 

Designationa OLIGONUCLEOTIDE SEQUENCE Functionb

FWD#15912 5�-CCAGTCTTGTAAACCGGAGATGA-3� 751 bp template 
REV#93 5�-TCGCAATGCTATCGCGTG-3� 751 bp template 

Oxo CONTROL See Table 3.1 Modified Oligo ligation 
FWD#12-B 5�-AGACCTGTGATCCATCGTGAT-3� Modified Oligo ligation 
REV#16090 5�-TATTTCGTAATTACTGCCAGCC-3� Oligo ligation- ICR 

FWD#16138c 5�-CCCAAAGCTAAGATTCTAATTT-3� 90mer Oligo 
REV#16053 5�-GGGTGAGTCAATACTTGGGT-3� 90mer Oligo-Full 
REV#16095 5�-CATGAAAGAACAGAGAATAGT-3� 90mer Oligo- ICR 
REV#14841 5'-TTTCATCATGCGGAGATGTTGGATGG-3' Amplicons 1-7 
FWD#14620 5�-CCCCACAAACCCCATTACTAAACCCA-3� Amplicon 1 
FWD#14470 5'-TCCAAAGACAACCATCATTCC-3' Amplicon 2 
FWD#14148 5'-CCTATTCCCCCGAGCAATCTCAATTAC-3' Amplicon 3 
FWD#13899 5'-TTTCTCCAACATACTCGGATTC-3' Amplicon 4 
FWD#13188 5'-CACTCTGTTCGCAGCAGTCTG-3' Amplicon 5 
FWD#12601 5'-TTCATCCCTGTAGCATTGTTCG-3' Amplicon 6 
FWD#11760 5�-ACGAACGCACTCACAGTCG-3� Amplicon 7 
FWD#14642 5'-CCCACACTCAACAGAAACAAAGC-3' LX-ICR 
REV#14693 5'-TGTAGTCCGTGCGAGAATAATGAT-3' LX-ICR 

a- Numerical designation is based on Anderson mtDNA reference sequence (154). 
b- To create Amplicons 1-7, forward PCR primers were coupled with REV#14841. 
c- Also used in combination with FWD#12 to amplify full-length ligated Oligo templates. 
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APPENDIX B 
 

Amplicon Size Impacts Threshold Cycle Values 
 

 The real-time PCR assays presented here are based on the increase of excited 

fluorescent dye corresponding to an increase in PCR product formation during 

amplification.  SYBR Green dye, used in these experiments, is an intercalating agent that 

can be excited when associated with double stranded DNA.  It is reasonable to assume 

that larger amplicon target sizes will permit more dye incorporation.   

 To determine if increased dye incorporation translated into observed differences 

in CT values, untreated cellular DNA stocks were amplified using LX-ICR primers 

(Appendix A) and then diluted to attain CT values of 19.5 (based on direct 2-∆CT 

comparison methods (141)).  Diluted samples were then amplified using the primer 

walking strategy described above (Figures 3.4, 4.15) and CT values obtained.  As 

amplicon sizes increased from 51 bp to 693 bp, CT values dropped from 19.61 to 17.83 

(Table B.1).  Further increases in amplicon size resulted in observed increases in CT 

values (Table B.1).  Given that 2-∆CT comparison mathematics assumes that efficiency of 

the reaction is equal between templates (141), the observations above suggested that 

increased dye incorporation endured by larger amplicons decreased observed CT values 

until the efficiency of large fragment amplification became low enough to ultimately 

mask any dye influences. 

 

Table C.1.  Amplicon sizes and threshold cycle values. 

Amplicon CT S. D. CT Efficiency 
51 bp 19.61 0.291 1.000a

221 bp 18.21 0.028 0.953 

693 bp 17.83 0.100 0.891 

942 bp 18.49 0.134 0.849 

1654 bp 19.50 0.111 0.751 

2241 bp 21.05 0.059 0.692 

a- Estimate of efficiency based on short template assumptions (141).  
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APPENDIX C 
 

Dissociation Curves and PCR Product Gels from Long Extension PCRs 
 

Dissociation profiles can be used to determine homogeneity of PCR products and 

may suggest the presence of non-specific product formation during the PCRs (Figure 

4.16).  To generate these profiles, temperatures are increased to denature duplex DNA 

and therefore decrease the amount of SYBR incorporation and subsequent fluorescent 

intensity.  With longer amplicon targets, the likelihood of encountering regions within an 

amplicon that have different denaturation kinetics increases. 

To determine if increasing amplicon size impacted observed dissociation profiles,  

the primer walking strategy described above was again used (Figures 3.4, 4.15); by 

holding the reverse primer constant at all amplicon sizes, larger targets effectively 

contain the smaller ones (for example, the 693 bp amplicon is contained in the 2.25 kb 

amplicon; Figure 4.15).  Five different targets were amplified, ranging from 221 bp to 

2.25 kb, and the products were separated by agarose gel electrophoresis (Figure C.1).  

Single bands of expected sizes were observed in all cases suggesting unique product 

formation. 

 
Figure C.1. Product gel of long templates PCRs.  PCR products ranging from 221 bp to 2.25 kb were 
separated by agarose gel electrophoresis.  The appearance of single bands suggested that unique products 
were generated by each primer set.  Lanes 1-5 represent reaction products from Amplicons 1, 3, 4, 5, and 6, 
respectively. 
 
 
Dissociation profiles for each sized amplicon were generated (Figure C.2).  A unique 

peak with an approximate melting temperature of 75o C was observed in the 221 bp 

2241 bp 
1654 bp 

942 bp 

693 bp 

221 bp 
1 2 3 4 5
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products.  When product size was increased to 693 bp, two peaks with equal amplitude 

could be distinguished.  As product sizes increased from 900 to 2.25 kb the two peaks 

observed in the 693 bp profiles existed but the amplitude of the first peak decreased as 

product sizes increased.  These observations, coupled with the unique bands on the PCR 

product gel (Figure C.1), suggested that two distinct melting domains existed in the PCR 

products larger than 693 bp; the impact of the first melting domain became less 

influential on product denaturation as amplicon size increased.   
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Figure C.2. Dissociation profiles of long PCR products.  Melting curves of PCR products ranging from 
221 bp to 2.25 kb were created by incrementally increasing temperature.  Multiple peaks were present in 
dissociation profiles as PCR product size increased.  The amplitude of the peaks shifted in larger products. 
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APPENDIX D 
 

Simulated Lesion Bypass and Lesion Frequency Calculations 
 

 In developing equation 26 above (section 3.4.4.), the assumption was made that 

damaged input templates did not contribute to the reaction (11). It has been demonstrated 

that, for DNA damaged by UV radiation (specifically TT dimers), that such templates do 

contribute to the reaction but at a very low efficiency (of the order of 1%; (151)). In order 

to confirm that this does not invalidate the results presented in section 4.1.2.1., an 

additional mathematical model was developed which accounts for damaged templates 

participating in the reaction but at efficiencies different to the undamaged templates. This 

model was used to compute the lesion frequency over a range of simulated lesion bypass 

efficiencies and demonstrated that the assumption did not significantly affect the 

precision of the method (Table 4.20). 

 As before, let p be the proportion of damaged bases in the DNA (lesion 

frequency), x0 be the number of input templates,  xn the total number of molecules present 

after n cycles of the PCR, and N be the number of base pairs in the target. Additionally, 

let yn be the number of undamaged molecules present after n cycles of the reaction, and P 

be the proportion of input templates that are undamaged creating 

 
NpP )1( −= ,  

0)1( xPyx nn −+= , and 

00 Pxy = . 

 

Suppose now that in each cycle of the reaction, undamaged templates replicate with 

efficiency EU, and damaged templates produce undamaged templates with efficiency ED. 

Since the number of damaged templates is fixed at 0)1( xP− , the following equation 

models each cycle of the reaction: 
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140 



       

This equation has solution 
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For control input templates, P=1, and this reduces as usual to  
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Again using the previous notation, where T denotes the common threshold value for both 

damaged and undamaged templates, CU denotes the threshold cycle for undamaged 

(control) templates, and CD denotes the threshold cycle for damaged templates, we have 
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Equating these two expressions for T and solving for P gives 
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APPENDIX E 
 

Simultaneous Calculation of Lesion Frequency and Rate of Lesion Bypass 
 

In theory, it is possible to compare ∆CT values from reactions at two different 

amplicon lengths and simultaneously calculate both lesion frequency and lesion bypass 

rate.  

By applying the equation described in the ABI RNaseP Specification Sheet (166), 

the instrument specification to �distinguish between 5,000 and 10,000 genomic 

equivalents with a 99.7% confidence level" can be converted to a CT Standard Deviation 

of 0.16 (data not shown). At this time, these current limitations in instrumentation and 

fluorescent detection do not provide the precision necessary to perform these damage 

calculations.  Below is a complete derivation of the formulae needed to simultaneously 

calculate LBR and LF in the event instrument precision is increased. 

 

Starting with equation 27 from Appendix D: 
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which can be rearranged to give 
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For convenience, let 
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Making the assumption that lesion bypass occurs at the same relative rate for all template 

length, in other words, assume that the quantity  is independent of template 

length N. 

UD EE /

Consider two PCRs in the experiment, using template lengths M and N respectively 

(without loss of generality we may assume that M > N). Find EU, CU, and CD in the usual 

manner (section 4.1.2.2.; Appendix E) for each and compute A and B from the formulae 

above. Denote by AM and BM the values of A and B computed for the PCR using 

templates of length M, and by AN  and BN the values computed for the PCR using 

templates of length N. By assumption: 
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 which is simplified to 
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Equation 29 can be solved for p; in general, the equation cannot be solved algebraically 

(though it may be noted that if M=2N it can be reduced to a quadratic equation), so a 

method for solving this numerically using Newton�s method is presented. 
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First observe that there is a spurious solution at p=1 (this solution results from 

multiplying both sides of equation 29 by (1-pN)(1-pM) to obtain equation 30). Note also 

that the function  
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It follows that there is exactly one more zero of f(p), corresponding to the solution to 

equation (26) (the lesion frequency). 

 

In order to find this solution, Newton�s method is employed. Choosing to start with the 

value p0=1-2p*, which will be close to the desired solution. Newton�s method gives the 

iteration 
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This iteration can be repeated until convergence to any degree of precision is obtained: 

typically it will converge to a precision of 2n digits after n iterations. 
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