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ABSTRACT 

 

Determining the distribution of antibiotic resistant and fecal indicator bacteria 

in the Ohio River 

 

Caitlin Swecker, Department of Biological Sciences, Marshall University, One John 

Marshall Drive, Huntington, WV 25755 

 

The Ohio River extends 981 miles from Pittsburgh, PA to Cairo, Ill providing drinking water to 

over three million people, a natural habitat for aquatic life, a public recreation resource, a major 

transportation route, and a source of water for industry.  The Guyandotte River is a highly 

impacted tributary emptying into the Ohio River in Huntington, WV.  The objectives of this 

study were to determine if sediment load is correlated to the number of antibiotic resistant 

bacteria (ARB) and determine if a single surface sample is a sufficient representative 

measurement of ARB populations in a large river.  In 2007, subsurface and bottom water 

samples from the Ohio River were analyzed for total coliforms, E. coli, as well as tetracycline 

resistant and ciprofloxacin resistant coliforms and E. coli.  In 2008, samples were collected from 

the mouth of the Guyandotte River and the mainstem Ohio River via SCUBA.  Samples were 

analyzed for coliforms and E. coli using IDEXX Quanti-Tray/2000©.  The R2A plate count 

method was used to determine antibiotic resistance to tetracycline, ciprofloxacin, and 

virginiamycin.  Water chemistry and sediment data were also collected.  SigmaStat 3.5 and 

Statistica 8.0 were used to analyze and detect significant differences between sites and samples.  

Results show that depth and sediment were not contributing factors; however, location was a 

factor due to the direct input of water and bacteria from the tributary.  Intense sampling may be 

needed in order to detect the impact of a source as well as in determining whether water quality 

standards are met at that location. 
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CHAPTER I 

 THE OHIO RIVER 

The Ohio River’s glacial birth dates back millions of years, its European settlement 

history began in the early 1600’s, and it became an important commercial route for 

transportation during the 1800’s (Ohio Historical Society, 2005).  Today, the Ohio River extends 

981 miles beginning at the confluence of the Monongahela and Allegheny Rivers in Pittsburgh, 

Pennsylvania, meandering southwesterly along the borders of West Virginia, Ohio, Kentucky, 

and Indiana, until reaching Cairo, Illinois, where it then empties into the Mississippi River.  

Twenty one major tributaries contribute to the Ohio River drainage basin (Benke & Cushing, 

2005) within 15 states, while 20 locks and dams maintain year round navigation.  The Ohio 

River basin is home to over 25 million people and provides drinking water to approximately five 

million.  It is an active and important route for industry, transporting coal, oil, petroleum and 

other resources by barge (ORSANCO, 2006).  It provides a water resource for the generation of 

power, and for major manufacturers; including 67 power plants, 28 major petroleum facilities, 12 

grain elevators and terminals, and 29 chemical plants (Benke & Cushing, 2005).  

The Ohio River is termed a high order stream.  There are many discrepancies on the exact 

order; therefore many just use the term “large river” to describe its hierarchy.  This large river 

provides recreational opportunities, as well as a significant habitat for a diversity of aquatic 

fauna and wildlife.  Due to the various uses of this watershed there are a multitude of negative 

impacts occurring directly, as well as indirectly.  According to the Ohio River Valley Water 
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Sanitation Commission’s (ORSANCO) 2007 Ohio River Fact Sheet, nonpoint source pollution 

from urban runoff, agricultural activities, and abandoned mines are the major causes of water 

pollution in the Ohio River.  The US EPA survey indicates that 1,200 combined sewer outflows 

(CSOs) are located in cities along the mainstem of the Ohio River (ORSANCO, 1997).  These 

CSOs empty a combination of storm water overflow and untreated human and industrial waste 

directly into the river during rain events.  The city of Huntington, WV has a combined sewer 

system including 23 CSO discharge points with 15 discharging directly into the Ohio River, 

while the remaining eight discharge into tributaries of the Ohio River (James, 1994).  In 2005, 

only 55% of West Virginians were connected to a public sewer system, leaving the other 45% 

using onsite home systems such as septic systems or direct discharge pipes leading straight into 

their local river or stream.  In 2002, the United States Environmental Protection Agency 

(USEPA) estimated that 60% of onsite home systems were failing resulting in contamination to 

surface and groundwater (West Virginia Rivers Coalition, 2005).  Statistics like these show how 

important it is to understand the impacts on major water resources like the Ohio River.   

While there are many different parameters necessary to understanding the quality of a 

large river system, this paper will focus on bacteria, specifically the effects and distribution of 

antibiotic resistant bacteria (ARB) in the Ohio River, and whether current methods of detection 

are reliable in identifying the potential risks ARB have on the aquatic environment and public 

health.   
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WHY STUDY BACTERIA? 

 Bacteria play a vital role in maintaining life on earth.  Bacteria are essential to the 

environment and necessary for the production of atmospheric oxygen, the recycling of nutrients, 

decomposition, and the fixation of nitrogen into its usable form.  Without bacteria, life on earth 

could not exist.  A small fraction of bacteria are responsible for causing diseases in plants and 

animals, and those pathogenic bacteria are often transmitted via surface waters.  Human practices 

contribute to the distribution of potentially dangerous bacteria, including antibiotic resistant 

bacteria.     

THE THREAT OF ANTIBIOTIC RESISTANCE 

 Research has shown that antibiotic resistant bacteria are common in surface waters, 

specifically within the Ohio River (Somerville, Smith, Loughman, & Johnson, 2004); (Smith & 

Somerville, 2003); (Somerville, Saunders, & Van Meter, May 2002).  The threat that these 

microbes may cause treatable diseases to become untreatable has become a cause for further 

research and preventive actions against this threat.  The warning of antibiotic resistance dates 

back to 1945, when Alexander Fleming, discoverer of penicillin, interviewed with the New York 

Times, stating that “the misuse of penicillin could lead to the selection and propagation of the 

mutant forms of bacteria resistant to the drug” (Levy, 2002).  Single drug resistant strains are not 

as much as a threat; however, the emergence of multi-drug resistant strains of bacteria and other 

pathogens are cause for concern all around the world.  The main causes of multi-drug resistance 

(MDR) are the overuse and misuse of antibiotics in human medicine, veterinary medicine, 

agriculture, and aquaculture (McManus & Stockwell, 2001).  The Center for Disease Control 
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(CDC) estimates that of the 50 million pounds of antibiotics produced in the United States a 

year, half is consumed by humans, 40% is used in animal feed to prevent disease and promote 

growth, while the remaining 10% is used to treat infections of fish in aquaculture industry and 

prevent bacterial diseases in plants (McManus & Stockwell, 2001); (Murray, 1997).  The large 

amount of antibiotics used annually around the world is only the cause; however, it’s the effects 

of such use that has medical and veterinary researchers, pharmaceutical companies, federal 

agencies for disease control, and environmentalists concerned.  

ANTIBIOTICS IN THE ENVIRONMENT 

 Pharmaceuticals, specifically antibiotics, may enter the environment by several pathways.  

Some common routes of contamination include; waste or loss during production, excretion from 

humans and animals, improper disposal, dispersion on fruits and plants, fertilization of cropland 

with manure or sewage sludge, and direct input from sewage treatment plants (STPs), combined 

sewer outflows (CSOs) or straight pipelines into local lakes, rivers, or streams.  Whether the 

antibiotics have been metabolized by humans or animals or filtered through STPs, many still 

have the ability to remain active or stable within the environment (Kummerer, 2001).  These 

pathways eventually will lead to the contamination of soils, sediments, surface water, 

groundwater, and even drinking water.  The widespread use and persistence of antimicrobial 

agents in the environment have led to the emergence of antibiotic resistant bacteria.  

AN EARLY ASSUMPTION 

 Most research on antibiotic resistance begins with the assumption that ARB originate 

within the intestinal gut flora of warm blooded animals, such as humans and animals after 
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prolonged exposure to antibiotics.  While normal resident bacteria of the gut are capable of being 

resistant, only a small percentage of gut flora are capable of being studied due to their strict 

anaerobic nature.  The overuse and misuse of antibiotics in human medicine and agriculture 

allows undigested antibiotics, as well as antibiotic resistant bacteria to be excreted into the 

environment through feces.  Although fecal bacteria are likely to be resistant to antibiotics, many 

other bacterial species including those not of fecal origin have been found to be resistant as well.  

Many government and local environmental agencies use coliform bacteria as biological 

indicators of food and water quality.  Coliform bacteria comprise a common group of gram 

negative, rod-shaped, lactose fermenting bacteria, and non spore forming bacteria which includes 

the genera, Citrobacter, Enterobacter, Klebsiella and Escherichia.  Coliforms are commonly 

found in the environment and thermotolerant coliforms capable of growth at 44.5°C are 

predominately found in the gut and feces of humans and animals.  Escherichia coli is primarily 

of fecal origin and therefore has been effectively used to test for fecal contamination in food and 

water.  It has been commonly assumed that environmental ARB are primarily distributed by 

fecal contamination; however, current research findings do not support this assumption.  

Previous studies on the Ohio River show significant differences in the distributions of E. coli and 

coliforms versus antibiotic resistant bacteria from surface samples.  Analyses also show that 

antibiotic resistant bacteria are present in much greater numbers than E. coli and coliforms; thus 

concluding that ARB are not a subset of fecal indicator bacteria (Smith & Somerville, 2003) 

(Somerville, Saunders, & Van Meter, May 2002) (Somerville, Smith, Loughman, & Johnson, 

2004).  If environmental ARB are not primarily derived from fecal contamination then further 

work is required to determine the factors that determine or predict their distributions. 
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MONITORING BACTERIA LEVELS IN THE OHIO RIVER 

 It is important to continue monitoring bacteria and fecal contamination for managing 

water quality and protecting public health.  The Ohio River Valley Sanitation Commission 

(ORSANCO) routinely monitors fecal indicator bacteria levels to assess public water supply use 

and contact recreation use of the Ohio River.  The 2008 Biennial Assessment of Ohio River 

Water Quality Conditions summarizes the rivers conditions based on data collected from 2006 - 

2007.  According to their assessment, due to the exceedingly high counts of the fecal coliform 

bacteria, approximately one-tenth of the river is classified as partially supporting public water 

supply use.  Data from 2003 – 2007 show approximately 484 miles (50%) of the river being 

classified as impaired for contact recreation use (ORSANCO, 2006).  According to the data, the 

Ohio River often exceeds the bacteria criterion for recreation use, therefore, posing a threat to 

those who come into contact with the water.  The fecal coliform standard states that “the monthly 

geometric mean is not to exceed 200 fecal coliforms per 100 ml, nor any sample exceed 400/100 

ml” and the “E. coli monthly geometric mean is not to exceed 130/100 ml, nor any sample 

exceed 240/100 ml (ORSANCO River Facts/Conditions).”  The risk associated with exposure to 

ARB is unclear because neither the pathogenicity of these cells nor the likelihood of their 

transferring resistance to pathogenic bacteria is known.  If a credible risk does exist, it cannot be 

managed by monitoring for fecal indicator bacteria because the two populations are distinct, as 

previously described.   
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ANTIBIOTIC RESISTANT BACTERIA IN TREATED WATER 

Recent studies also show ARB present in treated water and drinking water (Armstrong, 

Shigeno, Calomiris, & Seidler, 1981); (Silvia, 2006); (Somerville, 2008).  Silvia and his 

colleagues along with many other researchers have recognized that wastewater treatment plants 

harbor ARB and provide the perfect place for resistance gene transfer among microorganisms.  

Studies have shown significant increases among resistant strains of coliform bacteria in treated 

water versus untreated water (Armstrong, Shigeno, Calomiris, & Seidler, 1981) (Agerse, 2007).  

Armstrong and his colleagues investigated the occurrence of multi-drug resistant (MDR) bacteria 

in drinking water and found that 33% of the bacteria enumerated from several communities were 

resistant to two or more antibiotics.  Their results showed an enrichment of MDR bacteria from 

standard plate count bacteria in complex treated water as compared to raw river water, 86.1% to 

27.1% respectively (Armstrong, Shigeno, Calomiris, & Seidler, 1981).  A 2008 study by 

Somerville and colleagues at Marshall University found ARB present in Huntington’s drinking 

water supply, which comes from the Ohio River.  Ampicillin resistant bacteria were found 

present in high numbers (~70,000 CFU/ml) in the first 100 ml of water coming from a laboratory 

tap.  After the first 100 ml of water ran from the tap the numbers dropped by approximately 

50%; however ARB levels still remained detectable in some samples even after 10 minutes of 

running the water.  These results suggest that the resistant bacteria are resident inside the 

pipelines or within the faucets.  Further research is being done on ARB found in drinking water 

supplied by the Ohio River (Somerville, 2008). With this current evidence, the following 

questions should be addressed: 1. Are current monitoring methodologies sufficient for 
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determining water quality? and 2. should ARB be a factor in determining water quality and 

public health standards?   

SAMPLING LARGE RIVERS 

 The current methods for taking bacteria samples within a river or stream usually consist 

of one to three surface grab samples at a designated sampling location.  Sterile bottles are used, 

and samples are most often collected at the surface only.  A detailed description of this technique 

is discussed in the Materials and Methods section, Chapter III.  While the single surface sample 

technique is used by most governmental and local agencies assessing water quality, this study 

compares surface samples to those taken at different depths and at the bottom of the river to 

determine whether there were significant differences between samples as a function of depth.  

This approach addresses an important question whether single surface samples provide 

representative measurements of coliform bacteria, E. coli, and ARB in large rivers.  The working 

hypothesis is that bacterial numbers will be greater in samples at the bottom of the river and in 

samples with greater amounts of sediment, thereby, casting doubt on the accuracy of the current 

detection methods.       

WHY SEDIMENT? 

The transfer and emergence of new resistant genes occur most frequently within 

“environmental compartments” with high bacterial densities (Murray, 1997).  Examples of these 

compartments include soils, sediments, and sewage sludge (Kummerer, 2004).  Many antibiotics 

are capable of entering the environment and persisting in an active state because they are 

resistant to biodegradation.  This allows the concentrations within these “environmental 
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compartments” to be much greater due to the sorption of antibiotics onto solid surfaces.  Soils, 

sediments, and sludge allow bacteria to form biofilms on their surfaces, creating a suitable 

environment for resistance and gene transfer to occur.  It has been said that quinolones, 

sulphonamides, and tetracyclines (see Chapter II for descriptions) absorb and adsorb well to 

sediments.  Kummerer (2004) investigated this concluding that “An increased antibacterial 

resistance in sedimentary bacteria is often the most sensitive environmental indicator of past 

antibacterial use.”  This study investigates whether sediments play an important role in the 

distribution of ARB within the Ohio River. 

IMPACTS FROM THE GUYANDOTTE RIVER 

 The Guyandotte River is a major tributary of the Ohio River; entering the mainstem from 

the south at Huntington, West Virginia.  Under USA EPA Clean Water Act regulations, the 

Guyandotte watershed is considered an impaired system for the following: pH, aluminum, iron, 

manganese, selenium, fecal coliform bacteria and/or biological impairments (WV EPA, 2004).   

These impairments are mostly a result of poor wastewater treatment, sedimentation, abandoned 

mine drainage, and litter (Upper Guyandotte Water Association, 2006).  The impacts that the 

Guyandotte River has on the Ohio River have never been examined extensively; therefore, the 

second part of this study compares samples taken in the Guyandotte River to samples taken in 

the mainstem Ohio River upstream and downstream of the Guyandotte.  The objectives of this 

portion of the study are to determine how sampling location in the mainstem are effected by 

tributary input.  Data for fecal coliform bacteria, E. coli, total cultivable bacteria, antibiotic 

resistant bacteria, as well as, temperature, pH, dissolved oxygen, and turbidity were collected to 
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investigate whether the Guyandotte River water has a detectable effect on the downstream 

portion of the Ohio River and how well individual sample points represent conditions along a 

sample transect.  Sediment data were also analyzed to determine if sediment load from the 

Guyandotte River is detectable in the Ohio River and whether that has an effect on the 

distribution of ARB.  Because the Guyandotte River is a local river, it is an important water 

source worth studying to the researchers of this project and the community of Huntington, WV. 
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CHAPTER II 

ORIGIN AND DISCOVERY OF ANTIBIOTICS 

 An antibiotic was first defined as “a natural substance produced by one microorganism 

that selectively inhibits the growth of another microorganism” (MedicineNet, Inc, 1996-2009). 

The first natural antibiotic, pyocyanase, was discovered in 1888, and the first chemical drug, 

Salvarsin was produced in 1910.  Although these discoveries may have led to the golden age of 

antibiotics, these early drugs were later found to be toxic and ineffective.  It wasn’t until 1928, 

when Alexander Fleming discovered the first “true antibiotic,” penicillin, which was able to kill 

the pathogenic bacterium, Staphylococcus aureus.  The discovery of Protonsil, the first man-

made drug, led to the success of synthetic antimicrobials like sulfonamides and quinolones, two 

families of antibiotics still widely used today in modern medicine.  Broad-spectrum antibiotics, 

such as tetracycline, began to appear in the late 1940s, and were used against both Gram positive 

and Gram negative bacteria (Levy, 2002).  Antimicrobial discoveries have continued for years all 

over the world.  While many of these early antibiotics are still in use, growing antibiotic 

resistance means that the search for new and effective antibiotics must continue.   

INTRODUCTION OF ANTIBIOTICS: TETRACYCLINE, CIPROFLOXACIN, AND 

VIRGINIAMYCIN 

This study used three different antibiotics to test for resistant bacteria:  tetracycline, 

ciprofloxacin, and virginiamycin.  Part One of this research will only include tetracycline and 

ciprofloxacin resistant coliform bacteria and E. coli.  Part Two of this research will include all 
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three antibiotics and analyze total cultivable resistant bacteria present for each antibiotic.  The 

following section will introduce and summarize each antibiotic, including their uses in medicine, 

as well as their use in past research. 

 TETRACYCLINE 

 Tetracycline [Fig 1] is a broad spectrum antibiotic, meaning that it is effective against 

both Gram positive and Gram negative bacteria.  The tetracycline family of antibiotics ranks 

second to penicillin in worldwide production and use (Levy, 2002).  Tetracycline inhibits protein 

synthesis by binding to the small subunit of the prokaryotic ribosome, thus preventing bacterial 

growth.  It has been used in human medicine since 1950 for the treatment of several types of 

bacterial infections including urinary, respiratory, and skin infections, as well in the treatment 

against typhus, rickettsial infections, parasite infections, Lyme disease, cholera, anthrax, syphilis, 

and acne.  Tetracycline is also widely used in animal husbandry as a growth promoter and in 

fisheries.  Because tetracycline was one of the most commonly used antibiotics during the 1950s 

and 1960s, bacterial resistance to the drug and tetracycline like derivatives is widespread (Speer, 

Shoemaker, & Salyers, 1992).  Researchers have identified approximately thirty-eight classes of 

tetracycline resistant genes found in bacteria (Harvey, Funk, Wittum, & Hoet, 2009).  In 2001, 

Chee-Sanford and colleagues tested waste lagoons and groundwater near two swine farms for 

eight tetracycline resistant determinants.  All eight determinants were found in total DNA 

extracted from the waters and were detected as far as 250 meters downstream of the lagoons 

(Chee-Sanford, Aminov, Krapac, Garrigues-Jeanjean, & Mackie, 2001). Tetracycline resistance 

has also been frequently detected among bacteria isolated from fish tissues and sediments.  

Resistance among Aeromonas species has become widespread due to their aquatic nature.  
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Aeromonas spp. are mostly found in freshwater environments and are highly associated with 

human gastroenteritis infections, as well as disease in freshwater fishes (DePaola, Flynn, 

McPhearson, & Levy, 1988); (Benke & Cushing, 2005).   Many of these tetracycline resistant 

genes are found on horizontally transferable plasmids; therefore, making resistance easily spread 

among other bacterial species, such as E. coli, in aquatic environments (Agerse, 2007); (Jin Jun, 

et al., 2004). 

CIPROFLOXACIN  

Ciprofloxacin [Fig 2] is a broad spectrum antibiotic used mostly in human medicine.  It 

was introduced into human medicine in the 1980’s and has not been FDA approved for use in 

veterinary medicine or agriculture.  Ciprofloxacin belongs to the fluoroquinolone class of 

antibiotics and is given as prophylaxis for anthrax. It is also widely used in the United States to 

treat urinary tract infections and infectious diarrhea commonly caused by E. coli, as well as 

treatment for gonococcal infections (Livermore, 2002).  Ciprofloxacin works by inhibiting the 

reproduction and repair mechanisms of bacterial DNA.   Previous studies on flouroquinolone 

resistance have been done in clinical settings, testing patient stool and blood samples.  Results 

from these clinical studies show flouroquinolone resistance most prevalent among bacteria 

within the family Enterobacteriaceae, especially among strains of E .coli (Cometta, Calandra, 

Bille, & Glauser) (Kern, Andriof, Oethinger, Kern, Hacker, & Marre, 1994) (Kern, Markus, & 

Andriof, 1994).  In 2005, the United States Food and Drug Administration (US FDA) banned the 

use of enrofloxacin, a flouroquinilone used to treat bacterial infections in poultry, because 

scientific data indicated its use led to the emergence of flouroquinilone resistant Campylobacter, 

a bacterium which causes foodborne illnesses in humans (US FDA, 2000).   
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There is a limited amount of data associated with the occurrence of ciprofloxacin 

resistant bacteria in the environment; however, past studies on the Ohio River have shown 

ciprofloxacin- resistant bacteria to be present around mainly urban areas.  In 2007, a thesis study 

on the Mud River, the last major tributary of the Guyandotte River before it enters the Ohio 

River showed consistently elevated counts of ciprofloxacin resistant bacteria at one site 

regardless of whether samples were taken during dry weather or after a rain event.  The 

researcher concluded that there was a direct input of ARB into the river at that site (Dotson, 

2008).  Although survey data on ciprofloxacin resistant bacteria found in the Ohio River basin 

indicate median counts per ml at or below 500 CFU/ml, that still translates to billions or trillions 

of ciprofloxacin resistant bacteria flowing past a point in the river at any given time.  The public 

health input of that population is not yet known.  It is important to continue monitoring 

watersheds in and near urban areas, where the direct input of ARB and/or antibiotic containing 

contaminants (i.e. hospital wastewater effluent) have the potential to enter without treatment.    

VIRGINIAMYCIN 

 Virginiamycin [Fig 3] belongs to the class of antibiotics known as streptogramins, and 

has been used in the United States for over twenty six years.  It is primarily used as a food 

additive in veterinary medicine for growth promotion and to prevent and control diseases in 

food-producing animals such as chickens, turkeys, swine, and cattle (US FDA, 2004).  

Virginiamycin inhibits protein synthesis by binding to the ribosomal RNA 23S subunit of the 

50S subunit therefore halting translation and bacterial reproduction (Yonath, 2005).  Many 

studies on virginiamycin resistance have focused on the potential effects streptogramin use in 

food-producing animals has on streptogramin resistance in human medicine.  The use of 
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virginiamycin in food animals has been banned in Denmark since 1998 and Europe since 1999 

due to the spread of streptogramin resistant strains of Enterococcus faecium in humans 

(Aarestrup, Seyfarth, Hanne-Dorthe, Pedersen, Hendriksen, & Bager, 2001) (Mehnam, Beighton, 

Philpott-howard, & Woodford, 2000).  Enterococcal infections are the leading cause of urinary 

tract infections, bacteremia, bacterial endocarditis, diverticulitis, and meningitis.  E. faecium has 

become a widespread nosocomial infection affecting patients worldwide.  In 1999, the US FDA 

approved Synercid, a streptogramin antibiotic, for the treatment of vancomycin resistant E. 

faecium infections.  Emerging resistance among Synercid using patients has encouraged the FDA 

to perform a risk assessment to determine the relationship between the use of virginiamycin in 

food producing animals and the development of streptrogramin (Synercid) resistant E. faecium in 

human medicine (US FDA, 2000).   

 Since virginiamycin is still being used today in veterinary and agricultural applications in 

the United States, the spread of virginiamycin resistant bacteria is likely.  Agriculture remains an 

economically important activity in the Ohio River Valley, and a large percentage of land within 

the basin is used for farming.  According to the EPA, agriculture is the second leading source of 

pollution to the Ohio River and Tennessee River basins due to pastureland, animal holding, and 

feedlots.  As a result, 40% of the rivers and streams are impaired, not achieving full support for 

aquatic life (WV EPA & ORSANCO, 1994). 
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FIGURE 1: CHEMICAL STRUCTURE OF TETRACYCLINE 

 

FIGURE 2:  CHEMICAL STRUCTURE OF CIPROFLOXACIN 

 

FIGURE 3: CHEMICAL STRUCTURE OF VIRGINIAMYCIN 
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CHAPTER III: MATERIALS & METHODS 

 

PART 1:  OHIO RIVER STUDY, 2007 

OVERVIEW  

During the summer of 2007, 77 sites along the mainstem of the Ohio River were sampled 

for bacteria.  All sites were randomly chosen by one-tenth river mile using Excel’s random 

number generator.  The location across the width of the river at each river mile was also 

randomly chosen, designated by; 1.  Left Bank (LB), 2.  Left Channel (LC), 3. 

Center/Navigational Channel (C), 4.  Right Channel (RC), and 5. Right Bank (RB) [Fig 4].  All 

sites were located by boat, with the aid of the Ohio River navigational charts and a Garmin 480C 

GPS unit.  GPS waypoints were also recorded to mark the precise location of the boat at each site 

along the river [Fig 5].  A total of six 100 ml water samples were aseptically taken at each site, 

including three subsurface (≤ 1 ft below surface tension layer) samples and three bottom 

samples.  The bottom samples were collected via SCUBA.  For each set of samples, surface and 

bottom, one water sample was used as the control (no antibiotic added), and the other two 

samples were used to test for tetracycline resistant coliforms and E. coli, and ciprofloxacin 

resistant coliforms and E. coli. 
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FIGURE 4:  AERIAL PHOTO DEPICTING RIVER QUADRANTS 

 

5. Right Bank (RB)

4. Right Channel (RC)

3. Center  Channel ( C )

2. Left Channel (LC)

1. Left Bank (LB)
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FIGURE 5: OHIO RIVER RUN 2007, SITE MAP 
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WATER SAMPLE COLLECTION 

Sterile 100 ml collection bottles were used to collect three subsurface water samples and 

three samples collected from the bottom of the river.  Dates and times were noted for each 

sample site.  The subsurface samples were collected from the boat, and the bottom samples were 

collected by a SCUBA diver.  The bottom sampling method included using a hand “wafting” 

motion at the bottom of the river to stir up the substrate just before taking the sample.  Neutral 

buoyancy was maintained to avoid mixing and stirring up of the water in any other form than the 

“wafting” motion.  The three sterile bottles were then opened by the diver and tightly closed 

before bringing the sample to the surface.  All water samples were placed on ice and processed 

for total coliforms, E. coli, and antibiotic resistant coliforms and E. coli using the IDEXX 

Colilert® Quanti Tray/® 2000 method, with and without antibiotic addition, within six hours of 

each collection.     

ENUMERATION OF TOTAL AND RESISTANT COLIFORM BACTERIA AND E. COLI 

 Coliforms and E. coli were enumerated as well as tetracycline and ciprofloxacin resistant 

coliforms and E. coli using the IDEXX Colilert® QuantiTray® 2000/ method.  Excess water was 

poured off of each collection bottle until the water meniscus reached the 100 ml mark.  One pre-

measured Colilert® reagent packet was added to each bottle of sample water.  The bottles were 

vigorously shaken until the Colilert® reagent was completely dissolved.  The control samples 

were poured into the IDEXX 97 well QuantiTray®/2000, heat sealed, and incubated at 35°C for 

24 hours.  Total coliforms and E. coli MPN’s were analyzed for each of the control samples as 

described below. 
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To select for antibiotic resistant coliform and E. coli from each sample set, antibiotics 

were aseptically added to the sample bottles after the Colilert® reagent had dissolved.  

Tetracycline hydrochloride was added at a final concentration of 12.5 µg/ml to one sample and 

ciprofloxacin was added at a final concentration of 4.7 µg/ml to a separate sample for each set.  

The samples were then shaken again to thoroughly mix and transferred to an IDEXX 97 well 

QuantiTray®/2000, heat sealed and incubated at 35°C for 24 hours. 

After incubation, the QuantiTrays were removed from the incubator and analyzed for the 

presence of coliform bacteria and E. coli.  Yellow wells indicated a positive reaction for coliform 

bacteria as a result of the hydrolysis of ortho-Nitrophenyl-β-galactoside (ONPG) by the bacterial 

enzyme β-galactosidase, while fluorescence under UV light indicated a positive reaction for E. 

coli as a result of the hydrolysis of 4-methylumbelliferyl-βD-glucuronide (MUG) by β-

glucuronidase.  Colorless wells indicated the absence of coliforms and E. coli.  All positive wells 

were counted and the most probable number (MPN) per 100 ml sample was determined for total 

coliforms, E. coli, tetracycline resistant coliforms, tetracycline resistant E .coli, ciprofloxacin 

resistant coliforms, and ciprofloxacin resistant E. coli using the IDEXX Colilert ® QuantiTray® 

2000 Most Probable Number Table (Appendix C).  
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PART 2:  OHIO RIVER/GUYANDOTTE RIVER STUDY, 2008 

SITE DESCRIPTION 

On July 3, 2008, a detailed study of a small section of the Ohio River was done at the 

mouth of the Guyandotte River.  This study was done to determine how well a single grab 

sample represented bacteriological conditions at other horizontal and vertical positions along a 

perpendicular river transect.  The Guyandotte River was chosen because it is known to be highly 

impacted by abandoned acid mine drainage, pollution, poor wastewater treatment, and 

sedimentation.  Land use and the current conditions of the Guyandotte River make it a known 

source for bacterial loading into the Ohio River (Somerville, Saunders, & Van Meter, May 

2002).  Previous studies on the Mud River, the last tributary of the Guyandotte River before it 

empties into the Ohio River, has also been studied in some detail, revealing it too is a possible 

source for E. coli, and antibiotic resistant bacteria loading into the Ohio River via flow from the 

Guyandotte River (Dotson, 2008).  Water chemistry and sediment data were also collected to 

look for relationships between these variables and bacterial counts.   

Sets of samples were taken within the Guyandotte River, in the Ohio River above the 

Guyandotte at river mile 305, and just below the mouth of the Guyandotte River.  A total of 13 

sites were sampled.  Samples were taken along a horizontal transect, perpendicular to flow, to 

include sites on the left bank (LB), center channel (C), and right bank (RB) of the Guyandotte 

River.  Ohio River samples were taken at the left bank (LB), left channel (LC), center 

navigational channel (C), right channel (RC), and right bank (RB).  At each site samples were 

collected at every five feet in depth via SCUBA.  
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To collect samples at every five feet, a SCUBA diver followed an anchored rope marked 

in five feet increments from the surface taking two 100 ml samples at each stopping point until 

reaching the bottom of the river.  The maximum depth reached was 20 feet in the Ohio River.  

After each collection, the water samples were placed on ice and processed in the laboratory 

within six hours of collection.   

 Both rivers were navigated by boat and GPS waypoints were marked at each site using a 

Garmin 480C GPS unit.  [Figures 6 & 7].  A total of 43 water samples were collected and 

enumerated for E. coli and total coliforms (see IDEXX Colilert® Quanti Tray®/2000 Method 

from part 1), as well as total cultivable bacteria, and antibiotic resistant bacteria using the R2A 

plate count method. 

ENUMERATION OF TOTAL CULTIVABLE AND ANTIBIOTIC RESISTANT BACTERIA 

To enumerate total cultivable bacteria, 100 µl (0.1 ml) of river water from one of the 

sample bottles for each site and depth was added to 9.9 ml of sterile water to dilute the sample.  

100 µl aliquots of the diluted samples were aseptically transferred onto prepared Difco R2A agar 

plates containing fungizone (375 ng/ml).  Five, 5 mm sterile glass beads were added to each plate 

and the plates were shaken horizontally to evenly spread the diluted water sample on the surface 

of the agar.  Once the plate was inoculated the beads were discarded into a beaker containing 

95% ethanol.  This step was performed in triplicate to calculate the average colony forming units 

of bacteria per milliliter (CFU/ml) of sample water.  Each set of three plates was wrapped with 

parafilm to keep them from drying out and incubated at 25°C for seven days.   
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To enumerate antibiotic resistant bacteria, R2A agar plates were prepared containing 

fungizone plus the appropriate concentration of a single antibiotic.  The specified concentrations 

used for the antibiotics ciprofloxacin, tetracycline hydrochloride, and virginiamycin were 4.7 

µg/ml, 12.5 µg/ml, and 16 µg/ml, respectively.  Triplicate plates for each antibiotic were 

prepared by aseptically transferring 100 µl of undiluted river water for each sample onto the R2A 

plates (containing fungizone plus antibiotic).  Five, 5 mm sterile glass beads were used to evenly 

spread the solution across the surface of the agar and then discarded as previously described.  

Upon inoculation, each set of plates was wrapped in parafilm and incubated at 25°C for seven 

days.      

After seven days, all plates were removed from the incubator and the numbers of colonies 

per plate were counted.  Triplicate plate counts were averaged and the number of CFU per ml in 

the original sample was determined by multiplying the average number of colonies counted by 

the dilution factor; 10
3
 for total cultivable bacteria, and 10

1
 for ARB.  This raw data is 

summarized in Tables 3 - 7 of Appendix B. 

See Appendix C for detailed protocols summarizing the preparation and enumeration of 

total cultivable and ARB using the R2A spread plate method.   
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FIGURE 6:  AERIAL PHOTO DEPICTING 2008 STUDY SITES IN THE OHIO RIVER AND 

GUYANDOTTE RIVER 
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FIGURE 7:  AERIAL PHOTO DEPICTING 2008 STUDY SITES IN THE GUYANDOTTE 

RIVER (ZOOMED IN) 
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WATER CHEMISTRY 

Water chemistry data was collected at the surface and at every five feet in depth, 

including temperature, pH, percent dissolved oxygen (%DO), and turbidity using a YSI.  The 

diver descended with the YSI as the results were read from the handheld base on the boat.  The 

diver wore a full face mask and used Ocean Reef dive Com gear to allow communication 

between the diver and boat at all times.  Water chemistry data are summarized in Table 2 of 

Appendix B.   

  Sediment Analysis 

To determine the amount of sediment present in each sample, a simple vacuum filtration 

method was used.  Each sample was vigorously shaken prior to filtering to equally suspend the 

amount of the sediment throughout the 100 ml collection bottle.  A sub-sample (25 ml) of each 

sample was filtered through a pre-weighed 0.45 micron membrane filter.  Upon filtration, each 

filter membrane with sediment was placed in a drying oven for 24 hour.  The filters were then 

weighed and the amount of sediment in grams per 25 ml of water was calculated.  This 

calculation was then converted to mg/ml of sediment [Table 8 of Appendix B].     

DATA ANALYSIS  

The objectives of part 1 of this study were to analyze the distribution of total E. coli, total 

coliforms, as well as tetracycline resistant E. coli and coliforms, and ciprofloxacin resistant E. 

coli and coliforms along the length of the Ohio River.  Subsurface and bottom samples were 

compared to determine whether there were any significant differences between samples taken at 
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the surface and samples taken at the bottom of the river which were manipulated to include 

sediment.  Statistica 8.0 and SigmaStat 3.5 statistical analysis programs were used to analyze the 

data.  Nonparametric statistics including Spearman’s rho correlations and Mann-Whitney rank 

sum tests were used based on the assumption that the population tested was not normally 

distributed.  This assumption was verified when the data set failed to pass the Kolmogorov-

Smirnov normality test [Results shown in Appendix A].  Bacteria were plotted by river mile to 

determine bacterial distribution patterns, as well as locate sites where bacterial populations 

“spiked” along the river.  These sites were further examined to determine possible inputs of 

bacterial loading, such as tributaries, outfalls, and sewer outputs.   

Part 2 of this study further investigated how E. coli and ARB are distributed throughout 

the water column and tested the hypothesis that sediments are critical to their distribution.  

Analysis of both studies were used to determine whether a single surface sample provides a 

representative measurement of bacteria for the entire river at a specific location, and decide 

whether ARB should be used in assessing water quality and meeting public health standards.  To 

explore these questions, once again, statistical analysis was performed using Statistica 8.0 and 

SigmaStat 3.5.  All data variables including river quadrant, depth, pH, percent dissolved oxygen 

(%DO), turbidity, E. coli, total cultivable bacteria (TCB), ciprofloxacin resistant bacteria (CipR), 

tetracycline resistant bacteria (TetR), virginiamycin resistant bacteria (VirR), and amount of 

sediment were compared.  Pearson’s product-moment correlation coefficient (PMCC) was used 

to compare all variables with each other to determine the correlation coefficient, designated 

Pearson’s r, as well as significant P-values for each correlation.  All significant correlations were 

graphed and visualized by scatter plots.  Regression analysis was used to analyze and plot 
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bacterial data and sediment data, without any regard to the location or depth at which the sample 

was taken to determine whether the amount of sediment in a sample could predict the amount of 

bacteria in the sample.  PMCC was used to analyze all variables within the Guyandotte River, in 

the Ohio River upstream of the Guyandotte River, and in the Ohio River downstream of the 

Guyandotte River separately.  These results were used to determine whether depth and location 

across the river (quadrant) had an effect on the amount of E. coli, TCB, and ARB present at that 

location.  Further analysis by ANOVA was used to establish whether or not the Guyandotte 

River is a source for total bacteria, E. coli, and/or antibiotic resistant bacteria into the Ohio River.  

Water chemistry data for each location was also compared for similarities and dissimilarities 

between the Guyandotte River and the Ohio River.   
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CHAPTER IV: RESULTS 

 

PART 1 : OHIO RIVER STUDY, 2007 

COLIFORM BACTERIA DISTRIBUTIONS 

 All subsurface bacterial counts for total coliforms, tetracycline resistant coliforms and 

ciprofloxacin resistant coliforms were plotted and compared to bottom bacterial counts by river 

mile [Figs. 8 – 10].  These scatter plots show spikes in specific bacterial counts at different river 

locations.  The majority of total coliform subsurface and bottom counts were above the MPN 

>2419.6 enumeration limit for the QuantiTray assay [Fig. 8].  These counts were recorded as 

2500 MPN for graphing purposes but the actual MPN for these samples is not known.   

Subsurface tetracycline resistant (TetR) coliform counts showed spikes at four specific 

locations along the river as compared to the remaining sites.  These four locations include river 

miles, 36.1, 324.2, 528.4, and 793.0 [Fig. 9].  Several more bottom sample sites than top sample 

sites showed spikes in TetR coliforms.  These river miles included 0.2, 36.1, 87.7, 414.8, 623.7, 

and 740.0 [Fig. 9].  There was an overall lower number of ciprofloxacin resistant (CipR) 

coliforms present across all sites, subsurface and bottom, as compared to TetR coliforms.  The 

Mann-Whitney Rank Sum Test verified that the differences between subsurface and bottom 

coliform populations were significant.  Many of the samples and sites had zero CipR bacterial 

cells present.  Two spikes are seen in the subsurface samples in Figure 10 at river miles 324.2 

and 369.2, with only 39.3 CipR coliform cells (MPN) and 18.3 CipR coliform cells (MPN) 
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respectively.  Figure 10 also shows three spikes in CipR coliforms in samples taken from the 

bottom of the river at river miles 0.2, 36.1, and 87.7, with CipR cell counts of 103.9, 123.9, and 

248.9, respectively.  When comparing bottom CipR and TetR coliforms, river miles 0.2, 36.1, 

and 87.7 were found to have increased numbers of coliforms that were resistant to both 

antibiotics.  See Figure 49 for descriptions of each of these river mile sites in Chapter V: 

Discussion. 
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FIGURE 8:  Ohio River Study 2007, Subsurface vs Bottom Total Coliform Bacteria Counts by River 
Mile. 

Sites with > 2419.6 MPN of coliform bacteria are graphed as 2500 MPN, due to the maximum limitability 
of the IDEXX QuantiTray 2000 Method.    
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FIGURE 9: Ohio River Study 2007, Subsurface vs Bottom Tetracycline Resistant (TetR) Coliform 

Bacteria Counts by River Mile. 

Sites with >2419.6 MPN of TetR coliform bacteria are graphed as 2500 MPN, due to the maximum 

limitability of the IDEXX QuantiTray 2000 Method.  Spikes in subsurface TetR coliforms are shown at 

river miles, 36.1 (MPN 913.9), 324.2 (MPN 1203.3), 528.4 (MPN >2419.6), and 793.0 (MPN 435.2).  

Spikes in bottom TetR coliforms are shown at river miles, 0.2 (MPN 658.6), 36.1 (MPN 1011.2), 87.7 

(MPN 1119.9), 414.8 (MPN 816.0), 623.7 (MPN 1119.9) and 740.0 (MPN 648.8).  
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FIGURE 10:  Ohio River Study 2007, Subsurface vs Bottom Ciprofloxacin Resistant (CipR) Coliform 

Bacteria Counts by River Mile 

Spikes in subsurface CipR coliform bacteria are shown at river miles 324.2 (MPN 39.3) and 

369.2 (MPN 18.3).  Spikes in bottom CipR coliform bacteria are shown at river miles 0.2 (103.9 

MPN), 36.1 (123.9 MPN), and 87.7 (248.9 MPN).  
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E. COLI DISTRIBUTIONS 

  All subsurface and bottom bacterial counts for total E. coli, tetracycline resistant E. coli 

(TetREc), and ciprofloxacin resistant E. coli (CipREc) were plotted by river mile [Figs. 11-13].  

Like the coliform scatter plots, these plots also reveal “spikes” in E. coli contamination 

throughout the Ohio River at specific river mile locations.  Subsurface total E. coli samples 

showed increased counts at river miles 89.7, 324.2, and 302.2 [Fig. 11].  River miles 89.7 and 

324.2 exceed the recreational water use criteria, which states no single 100 ml sample can exceed 

240 MPN of E. coli (ORSANCO River Facts/Conditions). Although total bottom E. coli counts 

did not exceed the criteria Figure 11 also shows an increase in E. coli taken from the bottom of 

the river at river miles 0.2 and 186.2.  River mile 324.2, furthermore, showed an increase in 

subsurface and bottom TetREc [Fig. 12]. At river mile 793.0, the subsurface sample contained 

272.3 cells (MPN) of TetREc, once again exceeding the criteria, as well as being resistant [Fig. 

12].  The majority of samples taken from the bottom of the river showed < 10 MPN of TetREc 

with all samples containing MPN <60 for TetREc [Fig. 12].    CipREc counts were lower than 

TetREc counts throughout all of the samples with the majority having zero cells and the rest 

having < 30 MPN [Figs 13].  Figure 49 lists the descriptions of each of these sites in Chapter V: 

Discussion. 
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FIGURE 11:  Ohio River Study 2007, Subsurface vs Bottom Total E. coli Bacteria Counts by 

River Mile 

Spikes in subsurface total E. coli bacteria counts are shown at river miles, 89.7 (MPN 467.4), 

302.2 (MPN 123.9) and 324.2 (MPN 344.8). Spikes in bottom total E. coli bacteria counts are 

shown at river miles, 0.2 (MPN 172.6), 47.7 (MPN 84.7) and 186.2 (MPN 116.9) 
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FIGURE 12:  Ohio River Study 2007, Subsurface vs. Bottom Tetracycline Resistant E. coli 

(TetREc) Bacteria Counts by River Mile 

Spikes in subsurface TetREc counts are shown at river miles 324.2 (MPN 102.2) and 793.0 

(MPN 272.3).  Spikes in bottom TetREc relative to their subsurface samples are shown at river 

miles 0.2 (MPN 30.9), 28.4 (MPN 27.9), 36.1 (MPN 56.9), 324.2 (MPN 33.2), 623.7 (MPN 

13.7), 809.1 (MPN 22.6) and 960 (MPN 42.6) 
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FIGURE 13:  Ohio River Study 2007, Subsurface vs. Bottom Ciprofloxacin Resistant E. coli 

(CipREc) Bacteria Counts by River Mile. 

Spikes in bottom CipREc bacteria counts relative to their subsurface samples are shown at river 

miles; 28.4 (MPN 11), 36.1 (MPN 26.4), 87.7 (MPN 8), and 740.0 (MPN 9).  River mile 369.2 

shows a spike in both subsurface and bottom samples with MPN 12 and 12.1, respectively.    
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STATISTICAL ANALYSES 

MANN-WHITNEY RANK SUM 

All subsurface versus bottom samples for each bacteria type were then compared for 

median and sum rank differences and plotted.   Point plot Figures 14 through 18 show these 

results for TetR coliforms, CipR coliforms, total E. coli, TetREc, and CipREc., respectively.  

Note that a comparison between total coliforms is exempt due to a majority of the samples 

having MPN > 2419.6, with no exact value obtained.   

ANOVA ON RANKS 

 When an ANOVA on ranks (Kruskal-Wallis One Way Analysis of Variance on Ranks) 

was run to determine the correlation between river quadrant and coliforms/E. coli, only total 

subsurface E. coli median values among the left bank samples showed a significant difference 

from the rest of the quadrants (p=0.013).  A Pairwise Multiple Comparison Procedure (Dunn’s 

Method) reveals that samples taken from the left bank show significant differences in subsurface 

total E. coli counts compared to the right and center channel samples.  All other quadrant versus 

bacteria correlations were not significant among all samples taken in the Ohio River.  
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FIGURE 14:  Ohio River Study 2007, Mann-Whitney Sun Rank Test Point Plot Analysis for 

Comparing Subsurface (top) vs. Bottom Tetracycline Resistant Coliforms (TetR) 

Sampling sites with maximum values (MPN >2419.6) were not used in this analysis.  Median 

values equal 9.75 and 52.35 for subsurface and bottom TetR coliforms, respectively. Mann-

Whitney U Statistic = 4583.5; The difference in the rank sum between the two groups is greater 

than would be expected by chance; there is a statistically significant difference (P < 0.001) 
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FIGURE 15:  Ohio River Study 2007, Mann-Whitney Sum Rank Test Point Plot Analysis for 

Comparing Subsurface (top) vs. Bottom Ciprofloxacin Resistant Coliforms (CipR) 

Mann-Whitney U Statistic = 3693.5;  Both median values for subsurface and bottom coliforms 

are equal to zero; however, the sum of their ranks is larger for bottom CipR coliforms.  The 

difference in values between the two groups is greater than would be expected by chance; there 

is a statistically significant difference (P = 0.002) 
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FIGURE 16:  Ohio River Study 2007, Mann-Whitney Sum Rank Test Point Plot Analysis for 

Comparing Subsurface (top) vs. Bottom Total E. coli  

Mann-Whitney U Statistic = 3458.0;  Median values equal 4.1 and 5.1 for subsurface and bottom 

total E. coli, respectively.  The difference in the rank sum between the two groups is not great 

enough to exclude the possibility that the difference is due to random sampling variability; there 

is not a statistically significant difference (P = 0.074) 
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FIGURE 17:  Ohio River Study 2007, Mann-Whitney Sum Rank Test Point Plot Analysis for 

Comparing Subsurface (top) vs. Bottom Tetracycline Resistant E. coli  

Mann-Whitney U Statistic = 3412.5;  Both median values for subsurface and bottom TetR E. coli 

equal zero.  The difference in the rank sum between the two groups is not great enough to 

exclude the possibility that the difference is due to random sampling variability; there is not a 

statistically significant difference (P = 0.074) 
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FIGURE 18:  Ohio River Study 2007, Mann-Whitney Sum Rank Test Point Plot Analysis for 

Comparing Subsurface (top) vs. Bottom Ciprofloxacin Resistant E. coli  

Mann-Whitney U Statistic = 3459.5; Both median values for CipR E. coli equal zero; however, 

the sum of their ranks is greater for bottom CipR E. coli.  The difference between the two groups 

is greater than would be expected by chance; there is a statistically significant difference (P = 

0.004) 
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SPEARMAN’S CORRELATION 

A spearman’s rho analysis was performed on the entire data set.  However, the goal of 

this test was to determine how the bacteria populations near the surface and at the bottom of the 

river correlate to each other.  The Mann-Whitney Rank Sum Test determined that certain 

populations were independent of each other meaning they represent different bacterial 

communities; however, this test reveals that although the samples may represent different 

populations, these populations may tend to increase or decrease together based on their 

correlation coefficients.  All of the subsurface versus bottom correlations for each bacteria type 

were significant (P <0.05) and showed positive correlation coefficients (ρ).  These positive ρ 

values and significant P-values indicate that as subsurface bacteria values tend to increase, 

bottom sample bacteria values will likely increase as well.  The Spearman’s Rho Analysis in 

Figure 19 represents only the P-values for the subsurface versus bottom correlations.  The values 

for the entire data set are summarized in Table 3 in Appendix A  
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FIGURE 19:  Ohio River Study 2007, Subsurface (top) vs. Bottom Spearman's Rho Analysis Output of P - values 

           Top Top Top Top Top Top

 Total coliforms TetR coliforms CipR coliforms Total E. coli TetR E. coli CipR E.coli

Bot Total coliforms 0.0001

Bot TetR coliforms 0.0212

Bot CipR coliforms 0.0001

Bot Total E. coli 0.0001

Bot TetR E. coli 0.0016

Bot CipR E. coli 0.0001

                        
Top

Bottom
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PART 2:  OHIO RIVER/GUYANDOTTE RIVER, 2008 

THE OHIO RIVER UPSTREAM OF THE GUYANDOTTE RIVER  

 To begin analyzing this data, a Pearson’s Product Moment Correlation (PPMC) was first 

performed on the data set of each individual location separately. The samples taken in the Ohio 

River upstream of the Guyandotte River were analyzed independently to determine any 

relationships between the variables tested at that location.  The PPMC involved the following 

variables:  river quadrant (designated by numbers 1-5), depth in feet, temperature in degrees 

Celsius, percent dissolved oxygen, pH, turbidity (NTU), total E. coli, total cultivable bacteria 

(TCB), ciprofloxacin resistant cultivable bacteria (CipR), tetracycline resistant cultivable 

bacteria (TetR), virginiamycin resistant cultivable bacteria (VirR), and the amount of sediment 

per sample (mg/ml).  The PPMC output of p-values for this specific location within the Ohio 

River upstream of the Guyandotte River is shown in Figure 20.  A statistical summary of 

Pearson’s r- values as well as P- values are shown in Table’s 9-11   located in Appendix B.   

 Linear regression analysis was performed on all statistically significant correlations 

within the data set.  These results are shown in Figures 21-27.   
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            Quad Quad 

          Depth 0.5953 Depth 

         

Temp  
    
0.0109* 0.8087 Temp 

        
% DO 0.2620 0.4923 0.4538 % DO 

       
pH 0.9017 0.8131 0.9621 0.6254 pH 

      

NTU 0.4928 

     
0.0009* 0.4925 0.9421 0.9685 NTU 

     E. coli 0.3970 0.7822 0.0799 0.2179 0.1484 0.5465 E. coli 

    

TCB 0.1072 0.7699 0.4445 

     
0.0124* 0.4979 0.7533 0.3235 TCB 

   CipR 0.6447 0.6899 0.0927 0.7961 0.8262 0.0554 0.0835 0.9365 CipR 
  

TetR 0.9604 0.8806 0.1409 

     
0.0034* 0.6788 0.1452 

     
0.0279* 

     
0.0149* 

     
0.0408* TetR 

 VirR 0.5004 0.0639 0.1772 0.1001 0.6949 0.2293 0.5350 0.4799 0.6829 0.2376 VirR 

Sediment 0.5142 0.0587 0.7370 0.5551 0.5781 0.1200 0.2697 0.7144 0.5372 0.9504 0.5274 

             

 

FIGURE 20:  2008 Pearson's Product Moment Correlation (PPMC) Output of p-values for the Ohio River Sites Upstream of the 

Guyandotte River 

Statistically significant P -values (P <0.05) are bold and indicated with asterisks* 
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FIGURE 21:  2008 Linear Regression Analysis of the Ohio River Sites Upstream of the 

Guyandotte River, River Quadrant vs. Temperature 

River Quadrants designated by (1) Left Bank, (2) Left Channel, (3) Center Channel, (4) Right 

Channel, and (5) Right Bank 
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FIGURE 22:  2008 Linear Regression Analysis of the Ohio River Sites Upstream of the 

Guyandotte River, Depth (ft) vs. Turbidity (NTU) 
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FIGURE 23:  2008 Linear Regression Analysis of the Ohio River Sites Upstream of the 

Guyandotte River, Percent Dissolved Oxygen (%DO) vs. Total Cultivable Bacteria (TCB) 
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FIGURE 24:  2008 Linear regression Analysis of the Ohio River Sites Upstream of the 

Guyandotte River, Percent Dissolved Oxygen (%DO) vs. Tetracycline Resistant Cultivable 

Bacteria (TetR) 
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FIGURE 25:  2008 Linear Regression Analysis of the Ohio River Sites Upstream of the 

Guyandotte River, Total E. coli vs. Tetracycline Resistant Cultivable Bacteria (TetR) 
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FIGURE 26:  2008 Linear Regression Analysis of the Ohio River Sites Upstream of the 

Guyandotte River, Tetracycline Resistant Cultivable Bacteria (TetR) vs. Total Cultivable 

Bacteria (TCB) 
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FIGURE 27:  2008 Linear Regression Analysis of the Ohio River Sites Upstream of the 

Guyandotte River, Tetracycline Resistant Cultivable Bacteria (TetR) vs. Ciprofloxacin Resistant 

Cultivable Bacteria (CipR) 
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THE GUYANDOTTE RIVER 

 The samples taken within the Guyandotte River were also analyzed independently at first 

to determine whether there were any significant relationships between the variables of this 

population.  A separate PPMC was performed with the same variables as described for Ohio 

River above the Guyandotte.  The output of P-values for this location is shown in Figure 28 and 

the statistical summary is shown in Table 10 located in Appendix B.  Linear regressions in 

Figures 29 - 34 indicate the significant correlations for the Guyandotte River sample set. 
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Quad Quad 
          

Depth No value  Depth  
         

Temp  0.0099* 0.4970 Temp  
        

% DO  0.1910 0.1081 0.0326* % DO  
       

pH 0.9245 0.0188* 0.5333 0.2451 pH 
      

NTU 0.8625 0.1377 0.5827 0.2040 0.2148 NTU 
     

E. coli 0.2421 0.2387 0.0670 0.0039* 0.4185 0.2231 E. coli 
    

TCB 0.7180 0.7236 0.8596 0.6550 0.2830 0.8862 0.3701 TCB 
   

CipR 0.4741 0.2333 0.6528 0.6462 0.7167 0.4036 0.7057 0.4889 CipR 
  

TetR 0.9043 0.1388 0.8019 0.5687 0.1838 0.9100 0.8938 0.3677 0.4827 TetR 
 

VirR 0.2846 0.3305 0.3817 0.8246 0.5995 0.8604 0.5642 0.6632 0.0705 0.1591 VirR 

Sediment 0.0916 0.2988 0.2331 0.8432 0.5541 0.6114 0.7504 0.9555 0.0274* 0.3479 0.0169* 

 

 

FIGURE 28: 2008 Pearson’s Product Moment Correlation (PPMC) Output of P - values for the Guyandotte River Sites 

Statistically significant P-values (P <0.05) are bold and indicated with asterisks *  
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FIGURE 29:  2008 Linear Regression Analysis for the Guyandotte River Samples, River 

Quadrant vs. Temperature 

River Quadrants designated by (1) Left Bank, (2) Left Channel, (3) Center Channel, (4) Right 

Channel, and (5) Right Bank 
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FIGURE 30:  2008 Linear Regression Analysis of the Guyandotte River Sites, pH vs. Depth (ft) 

  



 

 

60 

 

 

Temperature (°C)

23.54 23.56 23.58 23.60 23.62 23.64 23.66

%
 D

O

102

104

106

108

110

112

114

116

118

p = 0.033

 

 

 

 

FIGURE 31:  2008 Linear Regression Analysis of the Guyandotte River Sites, Temperature vs. 

Percent Dissolved Oxygen (%DO) 
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FIGURE 32:  2008 Linear Regression Analysis of the Guyandotte River Sites, Percent Dissolved 

Oxygen (%DO) vs. Total E. coli 
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FIGURE 33:  2008 Linear Regression Analysis of the Guyandotte River Sites, Amount of 

Sediment (mg/ml) vs. Ciprofloxacin Resistant Cultivable Bacteria (CipR) 
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FIGURE 34:  2008 Linear Regression Analysis of the Guyandotte River Sites, Amount of 

Sediment (mg/ml) vs. Virginiamycin Resistant Cultivable Bacteria (VirR) 
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THE OHIO RIVER DOWNSTREAM OF THE GUYANDOTTE RIVER 

 The PPMC results for the samples taken in the Ohio River downstream of the Guyandotte 

River are shown in Figure 35.  The output of P- values and statistical summary for this location 

is shown in Table 11 in Appendix B.  Figures 36 - 41 show the correlations that are significantly 

related within this data set.     
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Quad Quad 
          

Depth 0.8717 Depth  
         

Temp  0.0222* 0.8926 Temp  
        

% DO  0.5646 0.5604 0.5255 % DO  
       

pH 0.0019* 0.8722 0.1797 0.5986 pH 
      

NTU 0.4326 0.0052* 0.3044 0.1554 0.9194 NTU 
     

E. coli 0.0029* 0.4708 0.0000* 0.3496 0.0508 0.1247 E. coli 
    

TCB 0.2950 0.2982 0.6280 0.5203 0.1442 0.6635 0.8100 TCB 
   

CipR 0.8266 0.1289 0.2190 0.9074 0.7139 0.6923 0.4243 0.1979 CipR 
  

TetR 0.7947 0.2973 0.2531 0.9183 0.8179 0.2410 0.2770 0.4583 0.1592 TetR 
 

VirR 0.0711 0.1114 0.1165 0.8144 0.2741 0.0756 0.1046 0.6476 0.0739 0.0018* VirR 

Sediment 0.3825 0.2437 0.6771 0.4173 0.2530 0.1322 0.9224 0.7675 0.4437 0.7417 0.4659 

                                                 

FIGURE 35:  2008 Pearson's Product Moment Correlation (PPMC) output of P- values for the 

Ohio River Sites Downstream of the Guyandotte River 

Statistically significant P-values (P <0.05) are bold and indicated with asterisks* 
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FIGURE 36:  2008 Linear Regression Analysis of the Ohio River Sites Downstream of the 

Guyandotte River, River Quadrant vs. Temperature 

River Quadrants designated by (1) Left Bank, (2) Left Channel, (3) Center Channel, (4) Right Channel, 
and (5) Right Bank 

 

 

 



 

 

67 

 

 

 

Quadrant

0 1 2 3 4 5 6

p
H

5.55

5.60

5.65

5.70

5.75

5.80

5.85

p = 0.002

 

 

 

FIGURE 37:  2008 Linear Regression Analysis of the Ohio River Sites Downstream of the 

Guyandotte River, River Quadrant vs. pH 

River Quadrants designated by (1) Left Bank, (2) Left Channel, (3) Center Channel, (4) Right 

Channel, and (5) Right Bank 
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FIGURE 38:  2008 Linear Regression Analysis of the Ohio River Sites Downstream of the 

Guyandotte River, Total E. coli vs. River Quadrant 

River Quadrants designated by (1) Left Bank, (2) Left Channel, (3) Center Channel, (4) Right 

Channel, and (5) Right Bank 
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FIGURE 39:  2008 Linear Regression Analysis of the Ohio River Sites Downstream of the 

Guyandotte River, Depth (ft) vs. Turbidity (NTU) 
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FIGURE 40:  2008 Linear Regression Analysis of the Ohio River Sites Downstream of the 

Guyandotte River, Total E. coli vs. Temperature 
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FIGURE 41:  2008 Linear Regression Analysis of the Ohio River Sites Downstream of the 

Guyandotte River, Virginiamycin Resistant Cultivable Bacteria (VirR) vs. Tetracycline Resistant 

Cultivable Bacteria (TetR) 
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DEPTH & RIVER QUADRANT ON BACTERIA 

 Once each river location was analyzed independently, the PPMC results revealed that 

depth had no significant effect on the amount of bacteria present in the samples at any location.  

Box plots are shown relating all bacterial samples with depth in Figures 42 – 46.  Due to this 

finding, further analyses on bacteria counts were based on arithmetic mean of counts taken at 

each site.  The PPMC results also revealed TCB, TetR, CipR, and VirR bacteria counts were not 

significantly related to river quadrant.  However, the results did show a significant relationship 

(P<0.05) between E. coli and river quadrant for the samples taken in the Ohio River below the 

mouth of the Guyandotte River.  To further analyze E. coli in the Ohio River, an ANOVA t-test 

was performed on E. coli (averaged by depth) grouped by location (upstream or downstream) 

and river quadrant (LB, LC, C, RC, RB).  The t-test results for each relationship are shown in 

Table 12 of Appendix B.   A simple bar graph was used to compare E. coli counts upstream of 

the Guyandotte River to E. coli downstream of the Guyandotte River by river quadrant [Fig. 47]. 

 SEDIMENT AND BACTERIA 

 To analyze whether the amount of sediment per sample was significant in determining 

the amount of bacteria per sample, all bacterial samples (TCB, total E. coli, TetR, CipR and 

VirR) were plotted against the amount of sediment measured in each sample.  A linear regression 

analysis was performed to determine significance [Fig. 48].  Note that all points were analyzed 

independently, regardless of the location or depth at which the sample was taken.     
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FIGURE 42:  2008 Box Plot Analysis of Total Cultivable Bacteria (TCB) grouped by Depth (ft) 
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FIGURE 43:  2008 Box Plot Analysis of Total E. coli grouped by Depth (ft) 
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FIGURE 44:  2008 Box Plot Analysis of Tetracycline Resistant Cultivable Bacteria (TetR) 

grouped by Depth (ft) 
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FIGURE 45:  2008 Box Plot Analysis of Ciprofloxacin Resistant Cultivable Bacteria (CipR) 

grouped by Depth (ft) 
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FIGURE 46:  2008 Box Plot Analysis of Virginiamycin Resistant Cultivable Bacteria (VirR) 

grouped by Depth (ft) 
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FIGURE 47:  2008 E. coli Mean Bar Graph,  Ohio River upstream of the Guyandotte 

River vs Ohio River downstream of the Guyandotte River by river quadrant 

indicates a significant difference (p< 0.01) from the left bank below the Guyandotte River 
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FIGURE 48:  2008 Linear Regression Analysis, Bacteria Counts vs Amount of Sediment per 

Sample 

 

P-values and r
2
 values for each correlation: Total Cultivable Bacteria (TCB), P=0.1381, 

r
2
=0.0529; Ciprofloxacin Resistant (CipR), P=0.1210, r

2
=0.0213; Virginiamycin Resistant 

(VirR), P=0.6579, r
2
=0.0048; Tetracycline Resistant (TetR), P=0.4846, r

2
=0.0120;   

E. coli, P=0.1210, r
2
=0.0576. 
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CHAPTER  V:  DISCUSSION 

 

PART 1:  OHIO RIVER SURVEY, 2007 

ANALYZING TOTAL COLIFORM & ANTIBIOTIC RESISTANT COLIFORM COUNTS 

 Coliform bacteria are normally present in all environments, including aquatic 

environments.  The Ohio River provides a suitable habitat for coliform survival.  The majority of 

samples taken from the river had coliform counts above the maximum number MPN >2419.6 

that could be enumerated by this method.  In the results, all coliform counts >2419.6 MPN were 

plotted as an exact 2500 MPN to show the majority of samples were maxed out for TC bacteria.  

Because this data set failed the normality test, nonparametric statistics were used to analyze the 

data.  Spearman’s rho analysis shows a positive correlation relationship for subsurface total 

coliform bacteria and bottom total coliform bacteria, meaning their values tend to increase 

together.  When comparing subsurface versus bottom total coliform counts the null hypothesis is 

that these two samples were drawn from populations with the same median.  The Mann Whitney 

Rank Sum Test results showed the difference between the two groups to be statistically 

significant (P<0.0001), rejecting the null hypothesis, concluding the samples were drawn from 

different populations.  This test revealed that the bottom samples had a greater median value for 

total coliform bacteria.  The results also seem to show a slight trend with total bottom coliform 

counts being the greatest furthest downstream beginning at river mile ~500 to the mouth of the 

Ohio River before it enters the Mississippi River [Fig. 8].     
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 Antibiotic resistant (TetR and CipR) coliforms were also enumerated in subsurface and 

bottom samples.  Spearman’s rho analysis showed a positive correlation between subsurface and 

bottom TetR coliforms, and subsurface and bottom CipR coliforms.  This positive correlation 

indicates populations of bacteria at the surface and at the bottom tend to increase together.  To 

determine whether these populations are independent of each other, the median values of each 

correlation were compared statistically using the Mann Whitney Rank Sum Test.  These results 

showed that the bottom TetR coliform median value (x) was significantly greater than the 

subsurface TetR coliform median value (y; P< 0.001).  The results for CipR coliforms also 

showed a statistically significant difference in median values with a P-value of 0.002 when 

comparing CipR subsurface versus CipR bottom coliforms.  These tests indicate that all coliform 

samples taken in the Ohio River represented independent bacterial communities and the median 

values suggest that samples taken from the bottom of the river contained more antibiotic resistant 

coliforms than the subsurface samples.   

ASSESSING SPIKES IN ANTIBIOTIC RESISTANT COLIFORM BACTERIA ALONG THE 

OHIO RIVER 

 To determine potential antibiotic resistant problem areas of the Ohio River, point plots of 

each bacterial group plotted by river mile were analyzed and river mile sites were observed more 

closely for land use (ie. industrial, agricultural) and possible inputs (ie. tributaries, CSOs) that 

may have influenced these “spikes” in antibiotic resistant bacteria.  The following resources were 

used to investigate these sites; GIS, Google Earth, and USACOE Ohio River Navigational 

Charts. 
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 Spikes in subsurface and bottom TetR coliforms were found at river miles 0.2, 36.1, 87.7, 

324.2, 414.8, 528.4, 623.7, 740.0 and 793.0.  Spikes in CipR coliforms were consistent with 

almost all of the same sites as TetR coliforms, but with lower counts.  Descriptions of these sites 

are given in Figure 49a and b.  Many of these sites were located right along the banks or just 

downstream of urbanized cities and towns, large metropolitan areas, near industrial parks (ie.  

power plants, wastewater treatment plants) and/or near rural areas where land is used mostly for 

farming and agriculture.  Urbanization, industrialization, and agriculture are three major potential 

sources that could be linked to antibiotic resistant bacteria in the Ohio River due to higher 

concentrations of waste materials (ie. sewage, fertilizers, medical waste, heavy metals) being 

released straight into the river from these areas.  These waste materials may contain 

concentrations of tetracycline and/or ciprofloxacin due to their uses in human medicine and 

animal husbandry.  Also, heavy metal contaminants from industrial waste have been shown to be 

linked to increases in antibiotic resistant bacteria counts (Calomiris, Armstrong, & Seidler, 1984) 

(Dhalkephalkar & Chopade, 1994).   

ANALYZING TOTAL E. COLI AND ANTIBIOTIC RESISTANT E. COLI 

 A specific type of coliform bacteria, Escherichia coli (E. coli), is used to assess water 

quality as an indicator of fecal contamination.  The presence of E. coli in a water source indicates 

an increased risk to public health for those coming in contact with the water source.  Random 

samples along the length of the Ohio River were taken and enumerated for the MPN of E. coli  in 

each sample.  The current Ohio River standard for contact recreation safety states that a single 

100 ml sample of water cannot exceed 240 MPN (ORSANCO River Facts/Conditions)  Only a 

few of the samples came close to or exceeded this standard (RM 89.7 & 324.2).  The majority of 
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samples contained less than 100 MPN of total E. coli (TE).  To compare the median values and 

determine whether the subsurface populations and bottom populations are distributed equally for 

total and antibiotic resistant E. coli, the Mann-Whitney Rank Sum Test was used.  For total E. 

coli (TE) and tetracycline resistant E. coli (TetREc), the differences in the median values 

between the subsurface samples and bottom samples were not great enough to exclude the 

possibility that the differences were due to random sampling variability; in other words, no 

significant differences were found (P=0.074 for TE and TetREc ).  This result fails to reject the 

null hypothesis that these two samples were drawn from a single population.  However, it was 

determined that the median values between subsurface ciprofloxacin resistant E. coli (CipREc) 

and bottom CipREc were greater than expected by chance; therefore, the difference was 

significant (P=0.004).  This indicates these two populations for ciprofloxacin resistant E. coli 

were independent, and bottom counts were higher than surface counts.   

ASSESSING SPIKES IN TOTAL E. COLI AND ANTIBIOTIC RESISTANT E. COLI ALONG 

THE OHIO RIVER  

  To assess potential areas in and along the Ohio River that may be at risk for fecal 

contamination, all E. coli counts were graphed by river mile and “spikes” in E. coli at specific 

river miles were noted.  Two subsurface samples along the length of the river exceeded the 

criteria for recreational contact for total E. coli at river miles 89.7 and 324.2.  These sites are 

both near urbanized areas, and sewer outlets were noted along the left bank of the river in which 

these two samples were grabbed.  No bottom total E. coli counts exceeded the contact recreation 

standard.    Two “spikes” in subsurface TetR E. coli were noted at river miles 324.2 and 793.0.  
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Although there is no criteria for antibiotic resistant bacteria present in a single sample, river mile 

793.0 exceeded 240 MPN, the criteria for total E. coli in one sample.  The discrepancy between 

subsurface total E. coli and TetRE.c at river mile 793.0 is questionable and no reasonable 

conclusion can be made at this time on why TetRE.c showed over a 200 fold increase in MPN to 

total E. coli at this particular site.  Based on all sites; however, total E. coli and TetRE.c 

subsurface and bottom populations were not different, and statistically insignificant.  Like CipR 

coliforms, the majority of CipR E. coli counts for subsurface and bottom samples also recorded 

zero MPN.  Descriptions of the sites showing “spikes” in total E. coli and antibiotic resistant E. 

coli are shown with the coliform data in Figure 49a and b.  The Ohio River is likely less exposed 

to the antibiotic ciprofloxacin or CipR bacteria and more exposed to tetracycline or TetR bacteria 

due to tetracycline not only being used in human medicine but in veterinary medicine and 

agriculture as well.  There is more opportunity along the Ohio River for tetracycline resistance to 

occur based solely on the land use of the Ohio River Basin.    
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 (a) 

River Mile 

Site 

Bacteria “spikes” Site Description 

0.2 Bottom TetR coliforms 

Bottom CipR coliforms 

 

At the confluence of the Allegheny and 

Monongahela Rivers located in the 

downtown metropolis city of Pittsburgh, PA.  

This site is likely to be highly impacted by 

the city and it’s industrialization 

 

36.1 Subsurface TetR coliforms 

Bottom TetR coliforms 

Bottom CipR coliforms 

This site is located just downstream of 

Shippingport, PA.  This area is highly 

industrialized harboring a major power 

station along the left bank of the river. 

 

87.7 Bottom TetR coliforms 

Bottom CipR coliforms 

This site is located along the bank of 

Martins’s Ferry, OH. 

 

89.7 

 

 

 

Subsurface Total E. coli 

 

This site is located downstream of a sewer 

outlet located at ~ RM88 emptying into the 

Ohio River on the left bank 

 

186.2 Subsurface Total E. coli 

Bottom Total E. coli 

This site is located just downstream of 

Parkersburg, WV.  The Little Kanawha 

River empties into the Ohio River just 

upstream of this site. 

 

302.2 Subsurface E. coli This site is located upstream of 

Huntington,WV right off the banks of 

Proctorville, OH.  

  

324.2 Subsurface TetR coliforms  

Subsurface CipR coliforms 

Subsurface Total E. coli 

Subsurface TetR E.coli 

 

This site is located between Ashland, KY on 

the left bank and Ironton, OH on the right 

bank.  Between RM 321-323, there are 5 

CSOs that empty into the Ohio River in that 

area on the KY side.  This site is likely to be 

impacted by industrialization and 

urbanization   

 

369.2 Subsurface CipR coliforms This site is located right off the banks of 

Garrison,KY.  Kinniconick Creek empties 

into the Ohio River just upstream of this site 
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414.8 

 

 

 

Bottom TetR coliforms 

 

 

 

This site is located between the banks of 

Moranburg, KY and Ripley, OH.  The site is 

just downstream of a powerstation located 

on the left bank 

 

528.4 Subsurface TetR coliforms This site is located along the bank of 

Warsaw, KY.  Two industrial discharge 

points are located on the river in this area.  

Bryant’s Creek also enters the river just 

upstream of this site 

623.7 Bottom TetR coliforms This site is located between the banks of 

Sugar Grove, IN and Orell, KY.  The land 

use surround this site includes mostly fields 

and agricultural land along the right bank, 

while the left bank is civilized and 

industrialized. 

 

740.0 Bottom TetR coliforms This site is mostly surrounded by fields and 

agricultural land.  It is located just 

downstream of the two small towns of 

Lewisport, KY, and Grandview, IN. 

 

793.0 Subsurface TetR coliforms This site is located along the banks of 

Evansville, IN, a large metropolitan city that 

sits right along the Ohio River.  This site is 

likely to be highly impacted by the city and 

its industrialization 
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                             River 
                                     Mile 
Bacteria 

0.2 36.1 87.7 89.7 186.2 302.2 324.2 369.2 414.8 528.4 623.7 740 793 

Subsurface TetR coliforms  X X    X   X   X 

Subsurface CipR coliforms       X X      

Subsurface Total E. coli    X X X X       

Subsurface TetR E. coli       X       

Subsurface CipR E. coli              

Bottom TetR coliforms X X       X  X X  

Bottom CipR coliforms X X X           

Bottom Total E. coli     X         

Bottom TetR E. coli              

Bottom CipR E. coli              

              

 

FIGURE 49:  (a) Descriptions of Sites with Noted "Spikes" in Bacterial Counts. (b) Chart depicting bacterial spikes by river mile. 

 

 

 

(b) 
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CHAPTER VI :  CONCLUSIONS 

PART I:  OHIO RIVER SURVEY 2007 

Subsurface and bottom samples for some bacteria counts showed the samples represent 

different populations, while other comparisons between top and bottom samples were not 

significantly different.   Antibiotic resistant coliform bacteria were found in greater numbers 

from samples taken from the bottom of the river compared to subsurface samples taken.  This 

was consistent throughout the entire river.  With that it is reasonable to say that other types of 

bacteria may also be present in greater numbers at the bottom of the river that were not tested.  

Upon analyzing the 2007 results, a few testable hypotheses were formed; (i) bacterial 

populations are different at different locations in the stream, including different depths and (ii) 

samples taken from the bottom of the river likely contain more sediment; thus providing 

substrate for the accumulation of bacterial populations and the potential for spread of resistance 

genes among these populations.  With lower numbers of antibiotic resistant coliforms and E. coli 

present from the previous study and the lack of significance between TE and TetRE.c subsurface 

and bottom sample populations, the new hypotheses were tested by analyzing the amount of total 

cultivable bacteria, and antibiotic resistant cultivable bacteria at different depths, as well as total 

E. coli.  The amount of sediment per sample was also compared to the amount of bacteria in each 

sample.  This way the analysis wasn’t limited to only coliform bacteria, but included all bacteria 

that can be cultivated in the laboratory.  This hypothesis was tested during the 2008 sample 

season, summarized and analyzed in Part 2 of this Chapter.   
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During rain events, runoff is likely to expose the river to even greater amounts of 

coliform bacteria, E. coli and ARB; however, due to the lack of rainfall during this 2007 

sampling period and normal flow conditions, these data may represent baseline bacterial data for 

the areas tested along the Ohio River.  These results can also be used to further investigate 

fluctuations in bacterial counts along the river as a result of other physical changes such as 

season, precipitation, flow etc.  Some areas of concern were also noted, specifically with sites 

containing fecal contamination; therefore, monitoring of these sites should be continued in order 

to identify sources of contamination. 
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PART 2: OHIO /GUYANDOTTE RIVER STUDY, 2008 

 To further investigate how bacteria, including antibiotic resistant bacteria are distributed 

throughout a large river system a second study was performed on a much smaller area of the 

Ohio River, including samples within the Ohio River upstream and downstream of the mouth of 

the Guyandotte River and samples within the Guyandotte River.   This section addresses the 

questions of whether a single surface sample provides a representative measurement of bacteria 

for an entire large river at that location and whether sediments play a critical role in the 

distribution of antibiotic resistant bacteria throughout the water column of a large river system 

based on the results found.   

DEPTH AND RIVER QUADRANT VS. BACTERIA 

 The samples taken in the Ohio River and in the Guyandotte River were analyzed 

separately to first determine whether depth and location across the river (also referred to as 

quadrant) correlated with the amount of bacteria in each sample, including total cultivable 

bacteria (TCB), total E. coli (TE), tetracycline resistant bacteria (TetR), ciprofloxacin resistant 

bacteria (CipR), and virginiamycin resistant bacteria (VirR).  The evidence shows neither depth 

nor river quadrant was correlated with any bacteria samples taken in the Ohio River upstream of 

the Guyandotte River and samples taken within the Guyandotte River.  However, samples taken 

from the Ohio River downstream of the mouth of the Guyandotte revealed that E. coli was not 

correlated with depth but was significantly correlated with river quadrant.  E. coli counts taken 

from the left bank samples of the Ohio River were approximately three orders of magnitude 

greater than samples taken from any other quadrant downstream, as well as samples taken 
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upstream of the Guyandotte River.  This provides evidence that flow from the Guyandotte River 

is carrying greater amounts of E. coli  thus causing a heterogeneous distribution of  fecal bacteria 

in the Ohio River just downstream of the Guyandotte.  It is important to emphasize that there 

were no significant differences in bacteria taken upstream of the tributary or in samples taken in 

the tributary, concluding that a single grab sample can be a reasonable representation of a river 

transect, except where major local changes can be expected to create local heterogeneity (ie. the 

entrance of a major tributary or other large input). 

WATER CHEMISTRY 

Correlation statistics also included water chemistry data.  Linear regressions performed 

on the significant correlations revealed temperature changes occurred dependent on the where 

the sample was taken in relation to river quadrant for all river locations.  When comparing each 

location and regression, the results suggest that the Guyandotte River water was cooler than the 

mainstem Ohio River and the left bank samples taken below the Guyandotte River revealed 

cooler water temperatures as well.  Linear regression analysis also revealed that turbidity 

significantly increased with depth, but only in the Ohio River samples.  Turbidity is the 

measurement of the light scattering properties of water due to suspended particles.  More 

samples were taken in the Ohio River across each transect and at more depths creating better 

results for a linear regression analysis.  Turbidity is suspected to increase with depth in a large 

river system due to suspended solids settling towards the bottom.  It is also likely that 

resuspension may occur at greater depths due to bottom feeders stirring up the substrate.  The 

lack of a significant correlation between turbidity and depth in the Guyandotte River is most 

likely due to the limited amount of samples taken in the shallower river, and the fact that the 
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river was well stirred up.  pH readings revealed fairly low, acidic conditions for all samples.  It is 

questionable whether the YSI was accurately calibrated for pH prior to taking these readings; and 

therefore, the pH correlations are being considered inconclusive at this time.  Percent dissolved 

oxygen levels for the Ohio River were considered good with most samples containing 99-100%.  

The Guyandotte River measurements indicated slightly higher percents, with an average of 110% 

DO, likely due to algal bloom activity. 

SEDIMENT 

Upon analyzing the amount of bacteria in each sample and the amount of sediment in 

each sample, only samples taken from the Guyandotte River showed any correlation between 

bacteria counts and sediment.  CipR bacteria decreased with increasing amounts of sediment, 

while VirR bacteria increased as the amount of sediment increased.  These findings may be a 

result of some other unknown factor.  At this time no conclusion has been made regarding these 

differences.  In order to compare all of the bacteria samples taken to the amount of sediment 

measured in each sample, location and depth at which the sample was taken was disregarded and 

a linear regression revealed no significant relationship between the amount of sediment per 

sample and the amount of total bacteria, ARB, or E. coli per sample.  The linear regression 

results fail to support the hypothesis that more sediment in a sample provides substrate for 

greater bacterial populations.  Figure 48 shows statistically powerful yet surprising results, 

indicating that sediments are not associated bacterial populations.  With contradicting evidence, 

we conclude that sediment cannot be used as a proxy for bacterial counts.   
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SUMMARY 

  Several factors play a role in determining whether a single surface sample can provide a 

representative bacterial measurement for an entire river at that location.  The two key factors 

considered in this study were location of the sample and depth of the sample; however, there are 

many other factors such as, size of the watershed, flow at that particular time, past and present 

precipitation events, surrounding land use, and possibly most importantly, whether there are 

direct inputs into the system that may affect that particular sample.  In the Ohio River 2007 study 

subsurface samples and bottom samples showed “spikes” in highly urbanized areas as well as 

areas where streams or local inputs were likely to occur.  In the 2008 study, depth had no 

significance; however, location was found to be a factor due to the direct input of water and 

bacteria from the Guyandotte River, a major tributary of the Ohio River.  For a large river 

system, surface samples will only provide representative bacterial measurements for sample 

locations where the water is well mixed and homogenized.  In the case of a tributary or another 

large input, this single surface sample would not provide an accurate enough measurement for 

that stretch of river.  In conclusion, for large rivers like the Ohio River, single grab samples are 

sufficient for most sites; however, intense sampling is needed in order to detect the degree of 

impact of specific source like a tributary in order to define local heterogeneity.  In cases where 

sources of contamination are not yet known, intense sampling techniques would aid in finding 

these potentially harmful sources or in cases where contaminants are known, but the source is yet 

to be found, more intense sampling techniques may lead to a resolution to the problem.  
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Since the presence of antibiotics and/or ARB is not currently used in the assessment of 

stream quality and the distribution of ARB and fecal indicator bacteria in the Ohio River Basin 

have been shown to be distinct (Smith & Somerville, 2003) it is questionable whether or not 

current water quality standards are reliable in assessing public health risks.  Maryland is 

currently using the Antibiotic Resistance Analysis (ARA) Bacteria Source Tracking 

methodology to determine the sources of bacterial pollution.  “This method uses enterococci 

patterns of antibiotic resistance for identifying bacterial sources” and is based on the assumption 

that human fecal bacteria are resistant to different concentrations and different types of 

antibiotics than domestic animal fecal bacteria, while wildlife fecal bacteria should be less 

resistant than both humans and domestic animals due to less exposure to antibiotics through 

therapeutic practices (Maryland Dept of the Environment).  Many other researchers and agencies 

have adopted this method to identify sources of fecal pollution in surface and groundwater 

(Whitlock, Jones, & Harwood, 2002) (Wiggens, et al., 1999); however, these source tracking 

efforts are distinct from this study.  No method involving the quantification of ARB has been 

used to assess public health risks or set standards for the quality and safety of surface waters.  

We believe that monitoring of ARB is important to understanding the impacts humans and 

development have on the resource.  Assessing the safety and quality of the most important 

resource on this earth, fresh water, is the first step to maintaining a clean and healthy ecosystem 

for all life to flourish.   
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FUTURE DIRECTIONS 

 

 Several testable hypotheses have stemmed from the results and conclusions of this study.  

Previous studies on the Ohio River show spikes in fecal indicator and antibiotic resistant bacteria 

particularly after heavy rain events, likely due to overland flow and runoff.  The results of this 

study are surprising yet statistically powerful, indicating that sediments are not associated with 

fecal and/or ARB.  Because this study was performed under dry weather conditions, it is 

questionable whether high bacteria counts are associated with sediment loading occurring in a 

stream after a rain event.  Resident sediments within a stream may not be associated with 

bacterial contamination, which were tested in this study.  However, one hypothesis is that 

sediments carried into a river or stream by overland flow may provide a different answer to the 

same question, are sediments critical to the distribution of fecal indicator and ARB?  Sediments 

washed into a river or stream after it rains may carry bacterial populations along with them; 

therefore, a continuation study on sediments during wet weather conditions would provide a 

great source of comparable data to this study.   

 This thesis showed that subsurface samples are sufficient for large river sampling in areas 

where the water is well mixed.  Recall that samples taken in the Ohio River above the 

Guyandotte River showed no significant differences in bacteria counts across the horizontal 

transect.  This indicates that in instances where the river is homogenized, a single surface sample 

provides a good representation of bacteria populations in that area.  However, in a heterogeneous 

area of the river (ie. where a tributary enters), our results show that a subsurface sample taken 
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from the middle of the river would not provide a good representation of the bacteria present 

where the tributary enters.  Knowing where to sample to provide the best representation of 

bacteria counts in a specific location of a large river is key to making sure bacteria criteria are 

met.  A more intensive study on tributary impacts to large river systems could provide greater 

details to how flow and mixing occurs between the two systems, and where the two become 

homogenized within the mainstem.   
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Latitude and Longitude Coordinates for 2007 Ohio River Sites 

River 

Mile Quadrant Latitude Longitude 

0.2 2 40.44327 -80.0171 

28.4 1 40.67188 -80.3415 

36.1 1 40.62674 -80.4587 

45.6 2 40.62267 -80.6105 

47.4 3 40.60927 -80.6395 

65.7 5 40.38452 -80.6242 

67.3 4 40.36766 -80.6073 

85.8 3 40.12839 -80.7088 

87.7 5 40.10177 -80.7086 

89.7 5 40.07929 -80.7281 

119.2 1 39.74654 -80.8595 

171.4 3 39.40866 -81.4416 

178.8 4 39.34714 -81.5482 

186.2 1 39.27421 -81.5967 

191.9 4 39.26089 -81.6928 

215.9 2 39.00682 -81.7638 

220.2 2 38.94987 -81.7724 

224.5 4 38.93224 -81.7983 

250.7 3 39.02248 -82.0378 

275.1 5 38.73975 -82.1901 

302.2 5 38.43897 -82.3373 

302.9 4 38.43714 -82.3513 

324.2 5 38.49808 -82.663 

345.5 1 38.70805 -82.8769 

355.1 3 38.72714 -82.9896 

369.2 1 38.61575 -83.1758 

377.3 3 38.59698 -83.3041 

378.2 4 38.60489 -83.3173 

405.3 4 38.63685 -83.706 

412.5 5 38.69911 -83.7932 

413.5 4 38.70353 -83.8104 

414.8 2 38.71369 -83.8291 

433.7 3 38.78393 -84.1268 

457.3 3 39.03633 -84.3518 

467.8 1 39.11801 -84.4729 

483.7 5 39.12443 -84.7134 

485.1 4 39.13883 -84.7289 

492.8 1 39.09223 -84.838 

501.1 5 39.00468 -84.8512 

509.1 3 38.91089 -84.8749 

528.4 2 38.78214 -84.9103 

544 5 38.69167 -85.1584 

562.1 2 38.71332 -85.4486 

APPENDIX A 
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572.5 3 38.56933 -85.4135 

589.7 3 38.41605 -85.6177 

592.5 4 38.3768 -85.6307 

593.8 2 38.36049 -85.6394 

609.9 1 38.26409 -85.8317 

623.7 4 38.08564 -85.908 

633.7 2 37.99652 -86.0173 

647.3 3 38.01279 -86.1899 

657 5 38.1171 -86.2738 

667.9 2 38.16518 -86.3654 

668.7 1 38.15961 -86.353 

682.7 1 38.10122 -86.4589 

701 3 37.91759 -86.5294 

702.7 3 37.9172 -86.556 

716.1 2 37.89065 -86.6467 

736.5 5 37.96091 -86.885 

737.4 1 37.95058 -86.9002 

740 4 37.93643 -86.939 

759.7 4 37.80793 -87.1393 

793 4 37.97108 -87.5896 

796.1 3 37.93618 -87.6139 

796.9 4 37.92688 -87.6209 

800.9 5 37.88298 -87.5889 

809.1 4 37.82825 -87.6747 

835.2 4 37.85833 -87.9237 

848.4 4 37.80116 -88.027 

857.5 2 37.69634 -88.1225 

889.8 1 37.43138 -88.3157 

893 3 37.40182 -88.3602 

906.1 1 37.31794 -88.5004 

919.9 5 37.14861 -88.425 

923.9 4 37.10184 -88.4368 

928.8 2 37.05643 -88.4952 

960 5 37.22623 -88.9936 

 

River Quadrants:  (1) Left Bank, (2) Left Channel, (3) Center Channel, (4) Right Channel, (5) Right Bank 
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TABLE 1

River Mile Quadrant Total/Control TetR CipR Total/Control TetR CipR 

0.2 2 1986.3 20.3 3.1 2419.6 658.6 103.9

28.4 1 >2419.6 13.4 4.1 >2419.6 240 18.3

36.1 1 >2419.6 913.9 2 >2419.6 1011.2 123.9

45.6 2 648.8 8.5 0 1986.3 34.1 0

47.4 3 517.2 7.4 0 >2419.6 328.2 32.9

65.7 5 920.8 7.5 2 >2419.6 103.4 13.4

67.3 4 >2419.6 13.5 2 >2419.6 31.3 1

85.8 3 980.4 6.3 0 >2419.6 91.3 3

87.7 5 913.9 42.8 1 >2419.6 1119.9 248.9

89.7 5 1732.9 5.2 0 1119.9 64.2 1

119.2 1 770.1 24.1 0 1732.9 190.4 0

171.4 3 920.8 26.6 1 866.4 59.4 0

178.8 4 1203.3 88.2 0 >2419.6 62.4 0

186.2 1 1299.7 23.8 0 2419.6 40.4 0

191.9 4 248.9 16.8 0 1011.2 218.7 6

215.9 2 >2419.6 15.8 0 1732.9 12.1 0

220.2 2 275.5 1 0 579.4 4.1 0

224.5 4 >2419.6 73.8 0 >2419.6 88.8 0

250.7 3 410.6 6.3 0 1203.3 5.2 0

275.1 5 344.8 2 1 >2419.6 42.6 6.3

302.2 5 613.1 2 0 1732.9 60.2 3

302.9 4 231 5.2 0 960.6 28.5 0

324.2 5 >2419.6 1203.3 39.3 >2419.6 98.7 24.6

345.5 1 >2419.6 19.9 1 >2419.6 50.4 2

355.1 3 9.8 16 4.1 >2419.6 30.1 10.9

369.2 1 >2419.6 53.8 18.3 >2419.6 88.6 12.1

377.3 3 >2419.6 31.8 3.1 >2419.6 34.6 5.2

378.2 4 2419.6 17.3 7.5 >2419.6 70.3 6.3

405.3 4 1986.3 11 0 1046.2 2 0

412.5 5 1553.1 13.2 0 >2419.6 172.5 4.1

413.5 4 1203.3 7.5 0 1732.9 16.8 0

414.8 2 365.4 6.3 0 >2419.6 816.4 0

433.7 3 1553.1 7.4 0 >2419.6 35 0

457.3 3 2419.6 41.7 0 >2419.6 23.3 0

467.8 1 >2419.6 4.1 0 >2419.6 22.5 0

483.7 5 1553.1 5.2 2 >2419.6 14.6 1

485.1 4 1986.6 5.2 0 >2419.6 54.3 4.1

492.8 1 >2419.6 16.1 0 >2419.6 32.7 0

501.1 5 >2419.6 9.7 0 >2419.6 3.1 0

509.1 3 1986.3 3.1 0 >2419.6 35.9 0

528.4 2 >2419.6 >2419.6 0 >2419.6 135.5 0

Total Coliforms (MPN)

Surface Bottom
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Table 1 (Cont.)

River Mile Quadrant Total/Control TetR CipR Total/Control TetR CipR 

572.5 3 >2419.6 9.8 0 >2419.6 86 2

589.7 3 2419.6 3.1 0 >2419.6 9.7 0

592.5 4 870.4 8.6 0 >2419.6 8.6 0

593.8 2 >2419.6 5.2 0 >2419.6 46.5 0

609.9 1 >2419.6 45.7 0 >2419.6 115.3 2

623.7 4 >2419.6 36.9 1 >2419.6 1119.9 13.8

633.7 2 2419.6 14.6 0 >2419.6 68.7 0

647.3 3 866.4 11 0 1732.9 3.1 0

657 5 2419.6 7.5 0 >2419.6 21.3 5

667.9 2 2419.6 123.9 0 2419.6 44.1 0

668.7 1 1119.9 1 0 >2419.6 72.4 8

682.7 1 >2419.6 2 0 >2419.6 135.4 0

701 3 816.4 6.3 0 >2419.6 39.9 0

702.7 3 >2419.6 46.2 0 >2419.6 96 0

716.1 2 648.8 1 0 >2419.6 77.6 7.2

736.5 5 1203.3 3.1 0 >2419.6 61.4 10

737.4 1 1413.6 6.3 0 >2419.6 61.6 1

740 4 1299.7 2 0 >2419.6 648.8 35.8

759.7 4 2419.6 5.2 0 >2419.6 7.5 4

793 4 >2419.6 435.2 0 >2419.6 27.2 1

796.1 3 >2419.6 26.5 0 >2419.6 22.8 0

796.9 4 >2419.6 66.3 0 >2419.6 43.9 0

800.9 5 >2419.6 61.3 0 >2419.6 116.9 0

809.1 4 >2419.6 13.4 0 >2419.6 249.5 0

835.2 4 >2419.6 4.1 0 >2419.6 39.9 0

848.4 4 >2419.6 108.6 0 >2419.6 137.6 0

857.5 2 >2419.6 7.5 0 >2419.6 26.2 0

889.8 1 1299.7 7.4 0 1986.3 6.3 0

893 3 248.1 0 0 >2419.6 74.7 0

906.1 1 816.4 6.3 0 >2419.6 4.1 0

919.9 5 1553.1 7.4 0 >2419.6 27.5 0

923.9 4 >2419.6 9.7 0 >2419.6 14.5 0

928.8 2 >2419.6 14.8 1 >2419.6 103.1 0

960 5 >2419.6 23.1 0 >2419.6 83.6 0

Table 1:   River Run 2007 bacteria data by river mile and quadrant.  All quadrants are 

designated by (1) Left Bank, (2) Left Channel, (3) Center/Navigational Channel, (4) Right 

Channel, (5) Right Bank.  Total coliform counts include total coliforms (control), Tetracycline 

resistant coliforms (TetR), and Ciprofloxacin resistant coliforms (CipR) for surface and bottom 

samples at each site.  All bacteria count units are in MPN (Most Probable Number).

Total Coliforms (MPN)

Surface Bottom
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Table 2

River Mile Quadrant Total/Control TetR CipR Total/Control TetR CipR

0.2 2 48.8 2 0 172.6 30.9 2

28.4 1 41.7 2 0 57.8 27.9 11

36.1 1 11 9.5 0 36.8 56.9 26.4

45.6 2 1 0 0 1 4.1 0

47.4 3 4.1 2 0 84.7 9.7 1

65.7 5 14.5 1 0 9.6 4.1 1

67.3 4 51.2 1 0 33.2 1 0

85.8 3 0 0 0 3.1 0 0

87.7 5 7.5 1 1 53.5 0 8

89.7 5 467.4 0 0 1 0 0

119.2 1 6.3 0 0 3.1 0 0

171.4 3 1 1 0 6.3 1 0

178.8 4 18.7 2 0 36.9 1 0

186.2 1 57.3 1 0 116.9 4.1 0

191.9 4 4.1 0 0 8.4 0 0

215.9 2 13.1 1 0 2 0 0

220.2 2 1 1 0 2 0 0

224.5 4 15.6 0 0 22.3 0 0

250.7 3 5.2 0 0 4.1 1 0

275.1 5 3.1 1 0 10.9 0 0

302.2 5 123.9 1 0 16.9 3.1 0

302.9 4 2 0 0 4.1 0 0

324.2 5 344.8 102.2 3.1 60.2 33.2 2

345.5 1 13.2 0 0 21.3 4.1 0

355.1 3 0 1 0 46 1 2

369.2 1 63.1 19.7 12 30.5 18.5 12.1

377.3 3 26.6 3.1 2 17.1 3.1 3.1

378.2 4 42.6 7.5 3.1 19.7 13.5 4.1

405.3 4 4.1 0 0 4.1 1 0

412.5 5 10.7 0 0 20.4 4.1 1

413.5 4 11.9 1 0 5.1 0 0

414.8 2 1 0 0 13.2 1 0

433.7 3 1 0 0 4.1 1 0

457.3 3 0 0 0 0 0 0

467.8 1 2 1 0 3 1 0

483.7 5 4.1 1 0 21.1 0 1

485.1 4 15.5 0 0 19.7 1 0

492.8 1 2 0 0 5.1 0 0

501.1 5 6.3 0 0 16 0 0

509.1 3 4.1 1 0 7.2 0 0

528.4 2 1 1 0 2 0 0

E-coli  (MPN)

Surface Bottom
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Table 2 (Cont.)

River Mile Quadrant Total/Control TetR CipR Total/Control TetR CipR

572.5 3 20.1 3.1 0 3.1 0 1

589.7 3 0 0 0 5.2 0 0

592.5 4 31.3 0 0 4.1 0 0

593.8 2 1 0 0 2 2 0

609.9 1 1 1 0 3 0 1

623.7 4 2 1 0 17 13.7 2

633.7 2 8.4 0 0 6.2 0 0

647.3 3 2 2 0 3 2 0

657 5 7.5 0 0 7.4 3 0

667.9 2 1 0 0 7.1 1 0

668.7 1 1 0 0 0 6.3 0

682.7 1 3.1 0 0 4.1 0 0

701 3 7.4 0 0 2 0 0

702.7 3 1 0 0 4.1 0 0

716.1 2 0 0 0 2 0 0

736.5 5 2 0 0 5.2 1 2

737.4 1 3 0 0 2 0 0

740 4 0 0 0 19.1 4 9

759.7 4 3.1 0 0 2 0 0

793 4 1 272.3 0 1 2 0

796.1 3 6.3 0 0 8.6 0 0

796.9 4 4.1 0 0 9.7 0 0

800.9 5 4.1 5.2 0 5.2 0 0

809.1 4 1 0 0 1 22.6 0

835.2 4 1 0 0 6.3 0 0

848.4 4 2 0 0 2 0 0

857.5 2 1 0 0 6.3 0 0

889.8 1 1 0 0 1 0 0

893 3 0 0 0 0 0 0

906.1 1 0 0 0 0 0 0

919.9 5 3.1 0 0 0 0 0

923.9 4 3 0 0 3 0 0

928.8 2 0 0 0 3.1 1 0

960 5 5.1 0 0 5.1 42.6 0

Table 2:   River Run 2007 bacteria data by river mile and quadrant.  All quadrants are 

designated by (1) Left Bank, (2) Left Channel, (3) Center/Navigational Channel, (4) Right 

Channel, (5) Right Bank.  Total E.coli counts include total E.coli (control), Tetracycline resistant 

E.coli (TetR), and Ciprofloxacin resistant E.coli (CipR) for surface and bottom samples at each 

site.  All bacteria count units are in MPN (Most Probable Number).

E-coli  (MPN)

Surface Bottom
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Table 3:  2007 River Run Data:  Top Coliforms and E. coli vs Bottom Coliforms  

and E. coli. 

 Nonparametric: Spearman's ρ 

 

 

       Variable by Variable Spearman ρ Prob > lpl 
   Top TetR Coliforms Top Total Coliforms 0.4525 <.0001 
   Top CipR Coliforms Top Total Coliforms 0.1062 0.3579 
   Top CipR Coliforms Top TetR Coliforms 0.2992 0.0082 
   Bot Total Coliforms Top Total Coliforms 0.4361 <.0001 
   Bot Total Coliforms Top TetR Coliforms 0.0477 0.6801 
   Bot Total Coliforms Top CipR Coliforms 0.1383 0.2302 
   Bot TetR Coliforms Top Total Coliforms 0.0844 0.4657 
   Bot TetR Coliforms Top TetR Coliforms 0.2623 0.0212 
   Bot TetR Coliforms Top CipR Coliforms 0.2612 0.0217 
   Bot TetR Coliforms Bot Total Coliforms 0.2374 0.0376 
   Bot CipR Coliforms Top Total Coliforms -0.0963 0.4046 
   Bot CipR Coliforms Top TetR Coliforms -0.0125 0.9138 
   Bot CipR Coliforms Top CipR Coliforms 0.5766 <.0001 
   Bot CipR Coliforms Bot Total Coliforms 0.2110 0.0653 
   Bot CipR Coliforms Bot TetR Coliforms 0.4634 <.0001 
   Top Total E. coli Top Total Coliforms 0.1669 0.1468 
   Top Total E. coli Top TetR Coliforms 0.2432 0.0331 
   Top Total E. coli Top CipR Coliforms 0.3241 0.004 
   Top Total E. coli Bot Total Coliforms -0.0965 0.4038 
   Top Total E. coli Bot TetR Coliforms 0.0982 0.3956 
   Top Total E. coli Bot CipR Coliforms 0.2896 0.0106 
   Top TetR E. coli Top Total Coliforms 0.0870 0.4518 
   Top TetR E. coli Top TetR Coliforms 0.3456 0.0021 
   Top TetR E. coli Top CipR Coliforms 0.5717 <.0001 
   Top TetR E. coli Bot Total Coliforms -0.0291 0.8015 
   Top TetR E. coli Bot TetR Coliforms 0.1779 0.1217 
   Top TetR E. coli Bot CipR Coliforms 0.4127 0.0002 
   Top TetR E. coli Top Total E. coli 0.3837 0.0006 
   Top CipR E. coli Top Total Coliforms 0.1268 0.272 
   Top CipR E. coli Top TetR Coliforms 0.2970 0.0087 
   Top CipR E. coli Top CipR Coliforms 0.5513 <.0001 
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Top CipR E. coli Bot Total Coliforms 0.1388 0.2287 
   Top CipR E. coli Bot TetR Coliforms 0.1635 0.1555 
   Top CipR E. coli Bot CipR Coliforms 0.3790 0.0007 
   Top CipR E. coli Top Total E. coli 0.3499 0.0018 
   Top CipR E. coli Top TetR E. coli 0.4252 0.0001 
   Bot Total E. coli Top Total Coliforms 0.0482 0.6769 
   Bot Total E. coli Top TetR Coliforms 0.3039 0.0072 
   Bot Total E. coli Top CipR Coliforms 0.5686 0.0001 
   Bot Total E. coli Bot Total Coliforms 0.1156 0.3168 
   Bot Total E. coli Bot TetR Coliforms 0.3012 0.0078 
   Bot Total E. coli Bot CipR Coliforms 0.4631 <.0001 
   Bot Total E. coli Top Total E. coli 0.5112 <.0001 
   Bot Total E. coli Top TetR E. coli 0.4286 0.0001 
   Bot Total E. coli Top CipR E. coli 0.3288 0.0035 
   Bot TetR E. coli Top Total Coliforms 0.0982 0.3957 
   Bot TetR E. coli Top TetR Coliforms 0.1800 0.1173 
   Bot TetR E. coli Top CipR Coliforms 0.4512 <.0001 
   Bot TetR E. coli Bot Total Coliforms 0.0312 0.7877 
   Bot TetR E. coli Bot TetR Coliforms 0.3097 0.0061 
   Bot TetR E. coli Bot CipR Coliforms 0.4715 <.0001 
   Bot TetR E. coli Top Total E. coli 0.2697 0.0177 
   Bot TetR E. coli Top TetR E. coli 0.3529 0.0016 
   Bot TetR E. coli Top CipR E. coli 0.2613 0.0217 
   Bot TetR E. coli Bot Total E. coli 0.3974 0.0003 
   Bot CipR E. coli Top Total Coliforms 0.0615 0.595 
   Bot CipR E. coli Top TetR Coliforms 0.2177 0.0572 
   Bot CipR E. coli Top CipR Coliforms 0.6637 <.0001 
   Bot CipR E. coli Bot Total Coliforms 0.2294 0.0448 
   Bot CipR E. coli Bot TetR Coliforms 0.4492 <.0001 
   Bot CipR E. coli Bot CipR Coliforms 0.7544 <.0001 
   Bot CipR E. coli Top Total E. coli 0.2734 0.0161 
   Bot CipR E. coli Top TetR E. coli 0.5546 <.0001 
   Bot CipR E. coli Top CipR E. coli 0.5279 <.0001 
   Bot CipR E. coli Bot Total E. coli 0.5460 <.0001 
   Bot CipR E. coli Bot TetR E. coli 0.4556 <.0001 
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Normality Test (Kolmogorov-Smirnov) 
  

 

Quadrant:    K-S Dist. = 0.182    P  < 0.001  Failed 

Top_Total_Coliforms:  K-S Dist. = 0.292    P  < 0.001  Failed 

Top_TetR_Coliforms:  K-S Dist. = 0.421    P  < 0.001  Failed 

Top_CipR_Coliforms:  K-S Dist. = 0.404    P  < 0.001  Failed 

Bot_Total_Coliforms:  K-S Dist. = 0.448    P  < 0.001  Failed 

Bot_TetR_Coliforms :  K-S Dist. = 0.331    P  < 0.001  Failed 

Bot_CipR_Coliforms :  K-S Dist. = 0.390    P  < 0.001  Failed 

Top_Total_E.coli:   K-S Dist. = 0.378    P  < 0.001  Failed 

Top_TetR_E.coli:   K-S Dist. = 0.455    P  < 0.001  Failed 

Top_CipR_E.coli :   K-S Dist. = 0.510    P  < 0.001  Failed 

Bot_Total_E.coli :   K-S Dist. = 0.288    P  < 0.001  Failed 

Bot_TetR_E.coli:   K-S Dist. = 0.365    P  < 0.001  Failed 

Bot_CipR_E.coli :   K-S Dist. = 0.389    P  < 0.001  Failed 

 

 

A test that fails indicates that the data varies significantly from the pattern expected if the data 

was drawn from a population with a normal distribution. 

A test that passes indicates that the data matches the pattern expected if the data was drawn 

from a population with a normal distribution. 
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Latitude and Longitude Coordinates for the 2008 Guyandotte and Ohio River 

Sites 

River and Location Quadrant Location Latitude  Longitude 

Guyandotte Right Bank 38.42815 -82.39139 

Guyandotte Center Channel 38.42807 -82.3916 

Guyandotte Left Bank 38.42811 -82.3918 

Ohio R. Upstream of Guyandotte Right Bank 38.43532 -82.38362 

Ohio R. Upstream of Guyandotte Right Channel 38.43478 -82.38393 

Ohio R. Upstream of Guyandotte Center Channel 38.43353 -82.38343 

Ohio R. Upstream of Guyandotte Left Channel 38.43223 -82.38397 

Ohio R. Upstream of Guyandotte Left Bank 38.43138 -82.38411 

Ohio R. Downstream of Guyandotte Right Bank 38.44028 -82.4062 

Ohio R. Downstream of Guyandotte Right Channel 38.43971 -82.40681 

Ohio R. Downstream of Guyandotte Center Channel 38.43829 -82.40605 

Ohio R. Downstream of Guyandotte Left Channel 38.43704 -82.40725 

Ohio R. Downstream of Guyandotte Left Bank 38.43623 -82.4066 

 

 

 

APPENDIX B 
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Date Time Sample # River Location Quad Depth (ft)

7/3/2008 9:37 AM 1 Guyandotte Guyandotte LB 0

7/3/2008 9:38 AM 2 Guyandotte Guyandotte LB 5

7/3/2008 9:46 AM 3 Guyandotte Guyandotte C 0

7/3/2008 9:50 AM 4 Guyandotte Guyandotte C 5

7/3/2008 9:55 AM 5 Guyandotte Guyandotte RB 0

7/3/2008 9:57 AM 6 Guyandotte Guyandotte RB 5

7/3/2008 10:55 AM 7 Ohio Downstream of Guy LB 0

7/3/2008 11:00 AM 8 Ohio Downstream of Guy LB 5

7/3/2008 11:00 AM 9 Ohio Downstream of Guy LB 10

7/3/2008 11:14 AM 10 Ohio Downstream of Guy LC 0

7/3/2008 11:19 AM 11 Ohio Downstream of Guy LC 5

7/3/2008 11:19 AM 12 Ohio Downstream of Guy LC 10

7/3/2008 11:20 AM 13 Ohio Downstream of Guy LC 15

7/3/2008 11:30 AM 14 Ohio Downstream of Guy C 0

7/3/2008 11:35 AM 15 Ohio Downstream of Guy C 5

7/3/2008 11:36 AM 16 Ohio Downstream of Guy C 10

7/3/2008 11:37 AM 17 Ohio Downstream of Guy C 15

7/3/2008 11:40 AM 18 Ohio Downstream of Guy C 20

7/3/2008 11:50 AM 19 Ohio Downstream of Guy RC 0

7/3/2008 11:54 AM 20 Ohio Downstream of Guy RC 5

7/3/2008 11:55 AM 21 Ohio Downstream of Guy RC 10

7/3/2008 11:56 AM 22 Ohio Downstream of Guy RC 15

7/3/2008 12:06 PM 23 Ohio Downstream of Guy RB 0

7/3/2008 12:07 PM 24 Ohio Downstream of Guy RB 5

7/3/2008 12:19 PM 25 Ohio Upstream of Guy RB 0

7/3/2008 12:20 PM 26 Ohio Upstream of Guy RB 5

7/3/2008 12:48 PM 27 Ohio Upstream of Guy RC 0

7/3/2008 12:50 PM 28 Ohio Upstream of Guy RC 5

7/3/2008 12:51 PM 29 Ohio Upstream of Guy RC 10

7/3/2008 12:52 PM 30 Ohio Upstream of Guy RC 15

7/3/2008 1:00 PM 31 Ohio Upstream of Guy C 0

7/3/2008 1:02 PM 32 Ohio Upstream of Guy C 5

7/3/2008 1:05 PM 33 Ohio Upstream of Guy C 10

7/3/2008 1:06 PM 34 Ohio Upstream of Guy C 15

7/3/2008 1:08 PM 35 Ohio Upstream of Guy C 20

7/3/2008 1:17 PM 36 Ohio Upstream of Guy LC 0

7/3/2008 1:19 PM 37 Ohio Upstream of Guy LC 5

7/3/2008 1:20 PM 38 Ohio Upstream of Guy LC 10

7/3/2008 1:21 PM 39 Ohio Upstream of Guy LC 15

7/3/2008 1:32 PM 40 Ohio Upstream of Guy LB 0

7/3/2008 1:33 PM 41 Ohio Upstream of Guy LB 5

7/3/2008 1:34 PM 42 Ohio Upstream of Guy LB 10

7/3/2008 1:37 PM 43 Ohio Upstream of Guy LB 15

DATE AND TIME OF EACH SAMPLE

Table 1 
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River Location Quad Depth (ft) Temp_C DO_% pH NTU

Guyandotte Guyandotte LB 0 23.65 116.5 4.75 26.8

Guyandotte Guyandotte LB 5 23.62 107.9 5.35 29.4

Guyandotte Guyandotte C 0 23.62 113 4.31 21.3

Guyandotte Guyandotte C 5 23.6 106.6 4.99 32

Guyandotte Guyandotte RB 0 23.57 107.3 4.45 28.3

Guyandotte Guyandotte RB 5 23.55 104.8 5.54 28.3

Ohio R. Downstream of Guy LB 0 24.72 99.8 5.78 38.2

Ohio R. Downstream of Guy LB 5 24.71 99.6 5.78 44.9

Ohio R. Downstream of Guy LB 10 24.71 99.5 5.76 46.7

Ohio R. Downstream of Guy LC 0 24.84 100 5.68 50.2

Ohio R. Downstream of Guy LC 5 24.84 100 5.68 50.2

Ohio R. Downstream of Guy LC 10 24.83 100 5.8 52.9

Ohio R. Downstream of Guy LC 15 24.83 100 5.79 54.8

Ohio R. Downstream of Guy C 0 24.81 101.4 5.71 49.5

Ohio R. Downstream of Guy C 5 24.81 101.4 5.71 49.5

Ohio R. Downstream of Guy C 10 24.8 101.1 5.63 52.6

Ohio R. Downstream of Guy C 15 24.8 101 5.67 52.5

Ohio R. Downstream of Guy C 20 24.8 100.9 5.65 53.2

Ohio R. Downstream of Guy RC 0 24.82 99.4 5.68 48.3

Ohio R. Downstream of Guy RC 5 24.82 99.4 5.68 48.3

Ohio R. Downstream of Guy RC 10 24.8 99.3 5.71 50.9

Ohio R. Downstream of Guy RC 15 24.8 99.2 5.68 53.4

Ohio R. Downstream of Guy RB 0 24.85 99.6 5.7 33.2

Ohio R. Downstream of Guy RB 5 24.79 99.4 5.58 39.3

Ohio R. Upstream of Guy RB 0 25 101.4 5.82 32.2

Ohio R. Upstream of Guy RB 5 24.95 100.5 5.67 43

Ohio R. Upstream of Guy RC 0 24.94 100.4 5.64 45.8

Ohio R. Upstream of Guy RC 5 24.94 99.9 5.63 69.2

Ohio R. Upstream of Guy RC 10 24.9 101.7 6.2 43.2

Ohio R. Upstream of Guy RC 15 24.86 101.7 5.68 48.5

Ohio R. Upstream of Guy C 0 24.86 101.5 5.75 49.7

Ohio R. Upstream of Guy C 5 24.86 101.4 5.73 50.1

Ohio R. Upstream of Guy C 10 24.86 104.2 5.52 46.9

Ohio R. Upstream of Guy C 15 24.84 101.6 5.4 53.4

Ohio R. Upstream of Guy C 20 24.84 101.5 8.48 53.1

Ohio R. Upstream of Guy LC 0 24.84 101.5 5.45 55

Ohio R. Upstream of Guy LC 5 24.85 101.5 5.42 52.3

Ohio R. Upstream of Guy LC 10 24.83 100.2 5.59 45.2

Ohio R. Upstream of Guy LC 15 24.83 100.2 5.59 45.2

Ohio R. Upstream of Guy LB 0 24.82 99.8 5.49 50.9

Ohio R. Upstream of Guy LB 5 24.81 99.8 5.34 52.2

Ohio R. Upstream of Guy LB 10 24.83 99.7 5.79 36.6

Ohio R. Upstream of Guy LB 15 23.86 100.2 5.82 40.9

WATER CHEMISTRY DATA SUMMARY

Table 2 
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River Location Quad Depth (ft) Total Coliforms (MPN) E. coli  (MPN)

Guyandotte Guyandotte LB 0 >2419.6 88.8

Guyandotte Guyandotte LB 5 >2419.6 238.2

Guyandotte Guyandotte C 0 >2419.6 141.4

Guyandotte Guyandotte C 5 >2419.6 225.4

Guyandotte Guyandotte RB 0 >2419.6 260.3

Guyandotte Guyandotte RB 5 >2419.6 238.2

Ohio R. Downstream of Guy LB 0 >2419.6 260.3

Ohio R. Downstream of Guy LB 5 >2419.6 222.4

Ohio R. Downstream of Guy LB 10 >2419.6 275.5

Ohio R. Downstream of Guy LC 0 >2419.6 101.0

Ohio R. Downstream of Guy LC 5 >2419.6 72.8

Ohio R. Downstream of Guy LC 10 >2419.6 73.8

Ohio R. Downstream of Guy LC 15 >2419.6 62.0

Ohio R. Downstream of Guy C 0 >2419.6 70.3

Ohio R. Downstream of Guy C 5 >2419.6 90.6

Ohio R. Downstream of Guy C 10 2419.6 70.8

Ohio R. Downstream of Guy C 15 >2419.6 110.0

Ohio R. Downstream of Guy C 20 >2419.6 52.9

Ohio R. Downstream of Guy RC 0 >2419.6 63.8

Ohio R. Downstream of Guy RC 5 >2419.6 88.2

Ohio R. Downstream of Guy RC 10 >2419.6 91.2

Ohio R. Downstream of Guy RC 15 >2419.6 60.9

Ohio R. Downstream of Guy RB 0 >2419.6 55.4

Ohio R. Downstream of Guy RB 5 >2419.6 98.7

Ohio R. Upstream of Guy RB 0 >2419.6 67.0

Ohio R. Upstream of Guy RB 5 >2419.6 47.4

Ohio R. Upstream of Guy RC 0 >2419.6 67.0

Ohio R. Upstream of Guy RC 5 >2419.6 70.3

Ohio R. Upstream of Guy RC 10 >2419.6 65.0

Ohio R. Upstream of Guy RC 15 >2419.6 66.3

Ohio R. Upstream of Guy C 0 >2419.6 79.8

Ohio R. Upstream of Guy C 5 >2419.6 90.6

Ohio R. Upstream of Guy C 10 >2419.6 93.3

Ohio R. Upstream of Guy C 15 >2419.6 65.0

Ohio R. Upstream of Guy C 20 >2419.6 63.1

Ohio R. Upstream of Guy LC 0 >2419.6 58.3

Ohio R. Upstream of Guy LC 5 >2419.6 68.3

Ohio R. Upstream of Guy LC 10 >2419.6 62.7

Ohio R. Upstream of Guy LC 15 >2419.6 79.8

Ohio R. Upstream of Guy LB 0 1986.3 68.9

Ohio R. Upstream of Guy LB 5 >2419.6 95.9

Ohio R. Upstream of Guy LB 10 >2419.6 52.9

Ohio R. Upstream of Guy LB 15 >2419.6 67.7

TOTAL COLIFORMS & TOTAL E. COLI (MPN)

Table 3 
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River Location Quad Depth (ft) AVG TCB x Dilution Total Cult. Bact.

Guyandotte Guyandotte LB 0 82.00 1000 82000.0

Guyandotte Guyandotte LB 5 71.33 1000 71333.3

Guyandotte Guyandotte C 0 70.33 1000 70333.3

Guyandotte Guyandotte C 5 69.00 1000 69000.0

Guyandotte Guyandotte RB 0 63.33 1000 63333.3

Guyandotte Guyandotte RB 5 83.33 1000 83333.3

Ohio R. Downstream of Guy LB 0 46.67 1000 46666.7

Ohio R. Downstream of Guy LB 5 51.33 1000 51333.3

Ohio R. Downstream of Guy LB 10 42.67 1000 42666.7

Ohio R. Downstream of Guy LC 0 50.33 1000 50333.3

Ohio R. Downstream of Guy LC 5 48.33 1000 48333.3

Ohio R. Downstream of Guy LC 10 32.33 1000 32333.3

Ohio R. Downstream of Guy LC 15 36.67 1000 36666.7

Ohio R. Downstream of Guy C 0 45.00 1000 45000.0

Ohio R. Downstream of Guy C 5 44.33 1000 44333.3

Ohio R. Downstream of Guy C 10 51.67 1000 51666.7

Ohio R. Downstream of Guy C 15 49.00 1000 49000.0

Ohio R. Downstream of Guy C 20 52.50 1000 52500.0

Ohio R. Downstream of Guy RC 0 39.33 1000 39333.3

Ohio R. Downstream of Guy RC 5 44.67 1000 44666.7

Ohio R. Downstream of Guy RC 10 64.67 1000 64666.7

Ohio R. Downstream of Guy RC 15 69.33 1000 69333.3

Ohio R. Downstream of Guy RB 0 46.50 1000 46500.0

Ohio R. Downstream of Guy RB 5 46.00 1000 46000.0

Ohio R. Upstream of Guy RB 0 53.00 1000 53000.0

Ohio R. Upstream of Guy RB 5 56.00 1000 56000.0

Ohio R. Upstream of Guy RC 0 44.67 1000 44666.7

Ohio R. Upstream of Guy RC 5 77.67 1000 77666.7

Ohio R. Upstream of Guy RC 10 71.00 1000 71000.0

Ohio R. Upstream of Guy RC 15 56.33 1000 56333.3

Ohio R. Upstream of Guy C 0 30.00 1000 30000.0

Ohio R. Upstream of Guy C 5 53.33 1000 53333.3

Ohio R. Upstream of Guy C 10 45.33 1000 45333.3

Ohio R. Upstream of Guy C 15 56.00 1000 56000.0

Ohio R. Upstream of Guy C 20 39.33 1000 39333.3

Ohio R. Upstream of Guy LC 0 43.33 1000 43333.3

Ohio R. Upstream of Guy LC 5 57.00 1000 57000.0

Ohio R. Upstream of Guy LC 10 46.67 1000 46666.7

Ohio R. Upstream of Guy LC 15 49.00 1000 49000.0

Ohio R. Upstream of Guy LB 0 45.00 1000 45000.0

Ohio R. Upstream of Guy LB 5 44.33 1000 44333.3

Ohio R. Upstream of Guy LB 10 57.67 1000 57666.7

Ohio R. Upstream of Guy LB 15 40.67 1000 40666.7

TOTAL CULTIVABLE BACTERIA TOTALS (cfus/ml)

Table 4 
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River Location Quad Depth (ft) AVG TetR x Dilution Total TetR

Guyandotte Guyandotte LB 0 27 10 273.3

Guyandotte Guyandotte LB 5 37 10 370.0

Guyandotte Guyandotte C 0 37 10 366.7

Guyandotte Guyandotte C 5 34 10 343.3

Guyandotte Guyandotte RB 0 21 10 206.7

Guyandotte Guyandotte RB 5 42 10 415.0

Ohio R. Downstream of Guy LB 0 17 10 170.0

Ohio R. Downstream of Guy LB 5 26 10 256.7

Ohio R. Downstream of Guy LB 10 41 10 413.3

Ohio R. Downstream of Guy LC 0 28 10 283.3

Ohio R. Downstream of Guy LC 5 18 10 176.7

Ohio R. Downstream of Guy LC 10 20 10 203.3

Ohio R. Downstream of Guy LC 15 22 10 220.0

Ohio R. Downstream of Guy C 0 24 10 243.3

Ohio R. Downstream of Guy C 5 28 10 276.7

Ohio R. Downstream of Guy C 10 29 10 293.3

Ohio R. Downstream of Guy C 15 33 10 333.3

Ohio R. Downstream of Guy C 20 23 10 230.0

Ohio R. Downstream of Guy RC 0 26 10 260.0

Ohio R. Downstream of Guy RC 5 30 10 303.3

Ohio R. Downstream of Guy RC 10 27 10 270.0

Ohio R. Downstream of Guy RC 15 30 10 295.0

Ohio R. Downstream of Guy RB 0 22 10 216.7

Ohio R. Downstream of Guy RB 5 20 10 200.0

Ohio R. Upstream of Guy RB 0 23 10 233.3

Ohio R. Upstream of Guy RB 5 12 10 123.3

Ohio R. Upstream of Guy RC 0 23 10 230.0

Ohio R. Upstream of Guy RC 5 21 10 206.7

Ohio R. Upstream of Guy RC 10 17 10 170.0

Ohio R. Upstream of Guy RC 15 22 10 223.3

Ohio R. Upstream of Guy C 0 40 10 403.3

Ohio R. Upstream of Guy C 5 28 10 283.3

Ohio R. Upstream of Guy C 10 27 10 273.3

Ohio R. Upstream of Guy C 15 25 10 246.7

Ohio R. Upstream of Guy C 20 25 10 253.3

Ohio R. Upstream of Guy LC 0 25 10 253.3

Ohio R. Upstream of Guy LC 5 20 10 203.3

Ohio R. Upstream of Guy LC 10 16 10 160.0

Ohio R. Upstream of Guy LC 15 25 10 253.3

Ohio R. Upstream of Guy LB 0 17 10 170.0

Ohio R. Upstream of Guy LB 5 20 10 200.0

Ohio R. Upstream of Guy LB 10 16 10 160.0

Ohio R. Upstream of Guy LB 15 27 10 270.0

TETRACYCLINE RESISTANT TOTALS (cfus/ml)

Table 5 
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River Location Quad Depth (ft) AVG CiproR x Dilution Total CiproR

Guyandotte Guyandotte LB 0 116 10 1155.0

Guyandotte Guyandotte LB 5 67 10 670.0

Guyandotte Guyandotte C 0 90 10 900.0

Guyandotte Guyandotte C 5 39 10 393.3

Guyandotte Guyandotte RB 0 120 10 1196.7
Guyandotte Guyandotte RB 5 116 10 1163.3

Ohio R. Downstream of Guy LB 0 101 10 1005.0

Ohio R. Downstream of Guy LB 5 41 10 410.0

Ohio R. Downstream of Guy LB 10 127 10 1270.0

Ohio R. Downstream of Guy LC 0 47 10 470.0

Ohio R. Downstream of Guy LC 5 82 10 823.3

Ohio R. Downstream of Guy LC 10 46 10 460.0

Ohio R. Downstream of Guy LC 15 90 10 900.0

Ohio R. Downstream of Guy C 0 86 10 860.0

Ohio R. Downstream of Guy C 5 85 10 853.3

Ohio R. Downstream of Guy C 10 78 10 783.3

Ohio R. Downstream of Guy C 15 95 10 950.0

Ohio R. Downstream of Guy C 20 91 10 906.7

Ohio R. Downstream of Guy RC 0 84 10 840.0

Ohio R. Downstream of Guy RC 5 65 10 653.3

Ohio R. Downstream of Guy RC 10 102 10 1016.7

Ohio R. Downstream of Guy RC 15 114 10 1143.3

Ohio R. Downstream of Guy RB 0 67 10 665.0

Ohio R. Downstream of Guy RB 5 83 10 833.3

Ohio R. Upstream of Guy RB 0 81 10 810.0

Ohio R. Upstream of Guy RB 5 31 10 313.3

Ohio R. Upstream of Guy RC 0 91 10 913.3

Ohio R. Upstream of Guy RC 5 98 10 976.7

Ohio R. Upstream of Guy RC 10 110 10 1100.0

Ohio R. Upstream of Guy RC 15 73 10 730.0

Ohio R. Upstream of Guy C 0 116 10 1160.0

Ohio R. Upstream of Guy C 5 85 10 845.0

Ohio R. Upstream of Guy C 10 90 10 900.0

Ohio R. Upstream of Guy C 15 62 10 616.7

Ohio R. Upstream of Guy C 20 28 10 276.7

Ohio R. Upstream of Guy LC 0 80 10 800.0

Ohio R. Upstream of Guy LC 5 97 10 970.0

Ohio R. Upstream of Guy LC 10 74 10 743.3

Ohio R. Upstream of Guy LC 15 106 10 1055.0

Ohio R. Upstream of Guy LB 0 44 10 436.7

Ohio R. Upstream of Guy LB 5 81 10 806.7

Ohio R. Upstream of Guy LB 10 64 10 640.0

Ohio R. Upstream of Guy LB 15 130 10 1300.0

CIPROFLOXACIN RESISTANT TOTALS (cfus/ml)

Table 6 
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River Location Quad Depth (ft) AVG VirR x Dilution Total VirR

Guyandotte Guyandotte LB 0 55 10 550.0

Guyandotte Guyandotte LB 5 58 10 576.7

Guyandotte Guyandotte C 0 59 10 586.7

Guyandotte Guyandotte C 5 65 10 653.3

Guyandotte Guyandotte RB 0 39 10 390.0

Guyandotte Guyandotte RB 5 53 10 530.0

Ohio R. Downstream of Guy LB 0 44 10 440.0

Ohio R. Downstream of Guy LB 5 53 10 533.3

Ohio R. Downstream of Guy LB 10 95 10 953.3

Ohio R. Downstream of Guy LC 0 54 10 536.7

Ohio R. Downstream of Guy LC 5 52 10 520.0

Ohio R. Downstream of Guy LC 10 54 10 543.3

Ohio R. Downstream of Guy LC 15 61 10 606.7

Ohio R. Downstream of Guy C 0 40 10 400.0

Ohio R. Downstream of Guy C 5 56 10 560.0

Ohio R. Downstream of Guy C 10 70 10 700.0

Ohio R. Downstream of Guy C 15 55 10 553.3

Ohio R. Downstream of Guy C 20 45 10 446.7

Ohio R. Downstream of Guy RC 0 48 10 480.0

Ohio R. Downstream of Guy RC 5 45 10 453.3

Ohio R. Downstream of Guy RC 10 73 10 726.7

Ohio R. Downstream of Guy RC 15 56 10 555.0

Ohio R. Downstream of Guy RB 0 32 10 323.3

Ohio R. Downstream of Guy RB 5 37 10 370.0

Ohio R. Upstream of Guy RB 0 40 10 396.7

Ohio R. Upstream of Guy RB 5 38 10 383.3

Ohio R. Upstream of Guy RC 0 46 10 456.7

Ohio R. Upstream of Guy RC 5 52 10 516.7

Ohio R. Upstream of Guy RC 10 51 10 506.7

Ohio R. Upstream of Guy RC 15 50 10 496.7

Ohio R. Upstream of Guy C 0 51 10 513.3

Ohio R. Upstream of Guy C 5 50 10 500.0

Ohio R. Upstream of Guy C 10 57 10 570.0

Ohio R. Upstream of Guy C 15 52 10 516.7

Ohio R. Upstream of Guy C 20 73 10 726.7

Ohio R. Upstream of Guy LC 0 46 10 463.3

Ohio R. Upstream of Guy LC 5 60 10 600.0

Ohio R. Upstream of Guy LC 10 48 10 480.0

Ohio R. Upstream of Guy LC 15 53 10 530.0

Ohio R. Upstream of Guy LB 0 58 10 580.0

Ohio R. Upstream of Guy LB 5 40 10 403.3

Ohio R. Upstream of Guy LB 10 41 10 406.7

Ohio R. Upstream of Guy LB 15 51 10 506.7

VIRGINIAMYCIN RESISTANT TOTALS (cfus/ml)

Table 7 
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River Location Quad Depth (ft)  Meas. (g/25 ml) Final (mg/ml)

Guyandotte Guyandotte LB 0 0.0013 0.052

Guyandotte Guyandotte LB 5 0.0017 0.068

Guyandotte Guyandotte C 0 0.0013 0.052

Guyandotte Guyandotte C 5 0.0017 0.068

Guyandotte Guyandotte RB 0 0.0007 0.028

Guyandotte Guyandotte RB 5 0.001 0.04

Ohio R. Downstream of Guy LB 0 0.0014 0.056

Ohio R. Downstream of Guy LB 5 0.0022 0.088

Ohio R. Downstream of Guy LB 10 0.002 0.08

Ohio R. Downstream of Guy LC 0 0.002 0.08

Ohio R. Downstream of Guy LC 5 0.0025 0.1

Ohio R. Downstream of Guy LC 10 0.0026 0.104

Ohio R. Downstream of Guy LC 15 0.002 0.08

Ohio R. Downstream of Guy C 0 0.0016 0.064

Ohio R. Downstream of Guy C 5 0.0021 0.084

Ohio R. Downstream of Guy C 10 0.0013 0.052

Ohio R. Downstream of Guy C 15 0.0019 0.076

Ohio R. Downstream of Guy C 20 0.0017 0.068

Ohio R. Downstream of Guy RC 0 0.0011 0.044

Ohio R. Downstream of Guy RC 5 0.0025 0.1

Ohio R. Downstream of Guy RC 10 0.002 0.08

Ohio R. Downstream of Guy RC 15 0.0024 0.096

Ohio R. Downstream of Guy RB 0 0.0015 0.06

Ohio R. Downstream of Guy RB 5 0.0017 0.068

Ohio R. Upstream of Guy RB 0 0.0012 0.048

Ohio R. Upstream of Guy RB 5 0.0024 0.096

Ohio R. Upstream of Guy RC 0 0.0023 0.092

Ohio R. Upstream of Guy RC 5 0.0023 0.092

Ohio R. Upstream of Guy RC 10 0.0015 0.06

Ohio R. Upstream of Guy RC 15 0.001 0.04

Ohio R. Upstream of Guy C 0 0.0026 0.104

Ohio R. Upstream of Guy C 5 0.002 0.08

Ohio R. Upstream of Guy C 10 0.0018 0.072

Ohio R. Upstream of Guy C 15 0.0022 0.088

Ohio R. Upstream of Guy C 20 0.0023 0.092

Ohio R. Upstream of Guy LC 0 0.0014 0.056

Ohio R. Upstream of Guy LC 5 0.0019 0.076

Ohio R. Upstream of Guy LC 10 0.0007 0.028

Ohio R. Upstream of Guy LC 15 0.0021 0.084

Ohio R. Upstream of Guy LB 0 0.0021 0.084

Ohio R. Upstream of Guy LB 5 0.0022 0.088

Ohio R. Upstream of Guy LB 10 0.0018 0.072

Ohio R. Upstream of Guy LB 15 0.0017 0.068

AMOUNT OF SEDIMENT PER SAMPLE (mg/ml)

Table 8 
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Ohio River Upstream of the Guyandotte River: 

  Pearson’s Correlation Statistical Summary Table 

 

Variables Pearson’s r value P value of significance 

Quad:Quad   r = 1.0000 p = --- 

 Depth:Quad   r = -0.1302 p = 0.5953 

 Temp (C):Quad   r = -0.5695 p = 0.0109* 

 DO (%):Quad   r = -0.2709 p = 0.2620 

 pH:Quad   r = -0.0304 p = 0.9017 

 NTU:Quad   r = -0.1676 p = 0.4928 

 E.coli:Quad   r = -0.2062 p = 0.3970 

 Control:Quad   r = 0.3813 p = 0.1072 

 CipR:Quad   r = -0.1131 p = 0.6447 

 TetR:Quad   r = -0.0122 p = 0.9604 

 VirR:Quad   r = -0.1647 p = 0.5004 

 Sediment:Quad   r = -0.1595 p = 0.5142 

 Depth:Depth   r = 1.0000 p = --- 

 Temp (C):Depth   r = 0.0595 p = 0.8087 

 DO (%):Depth   r = -0.1678 p = 0.4923 

 pH:Depth   r = -0.0581 p = 0.8131 

 NTU:Depth   r = 0.6989 p = 0.0009* 

 E.coli:Depth   r = -0.0680 p = 0.7822 

 Control:Depth   r = 0.0719 p = 0.7699 

 CipR:Depth   r = -0.0980 p = 0.6899 

 TetR:Depth   r = -0.0370 p = 0.8806 

 VirR:Depth   r = 0.4332 p = 0.0639 

 Sediment:Depth   r = 0.4411 p = 0.0587 

 Temp (C):Temp (C)   r = 1.0000 p = --- 

 DO (%):Temp (C)   r = 0.1828 p = 0.4538 

 pH:Temp (C)   r = -0.0117 p = 0.9621 

 NTU:Temp (C)   r = 0.1677 p = 0.4925 

 E.coli:Temp (C)   r = 0.4117 p = 0.0799 

 Control:Temp (C)   r = -0.1865 p = 0.4445 

 CipR:Temp (C)   r = 0.3967 p = 0.0927 

 TetR:Temp (C)   r = 0.3508 p = 0.1409 

 VirR:Temp (C)   r = 0.3231 p = 0.1772 

 Sediment:Temp (C)   r = 0.0803 p = 0.7437 

 DO (%):DO (%)   r = 1.0000 p = --- 

 pH:DO (%)   r = 0.1197 p = 0.6254 

 NTU:DO (%)   r = -0.0179 p = 0.9421 

 E.coli:DO (%)   r = 0.2964 p = 0.2179 

 Control:DO (%)   r = -0.5611 p = 0.0124* 

 CipR:DO (%)   r = 0.0635 p = 0.7961 

 TetR:DO (%)   r = 0.6364 p = 0.0034* 

 VirR:DO (%)   r = 0.3886 p = 0.1001 

 Sediment:DO (%)   r = -0.1445 p = 0.5551 

 pH:pH   r = 1.0000 p = --- 

Table 9 
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 NTU:pH   r = 0.0097 p = 0.9685 

 E.coli:pH   r = 0.3447 p = 0.1484 

 Control:pH   r = -0.1657 p = 0.4979 

 CipR:pH   r = 0.0540 p = 0.8262 

 TetR:pH   r = 0.1017 p = 0.6788 

 VirR:pH   r = 0.0963 p = 0.6949 

 Sediment:pH   r = 0.1362 p = 0.5781 

 NTU:NTU   r = 1.0000 p = --- 

 E.coli:NTU   r = 0.1476 p = 0.5465 

 Control:NTU   r = -0.0772 p = 0.7533 

 CipR:NTU   r = 0.4463 p = 0.0554 

 TetR:NTU   r = 0.3473 p = 0.1452 

 VirR:NTU   r = 0.2895 p = 0.2293 

 Sediment:NTU   r = 0.3690 p = 0.1200 

 E.coli:E.coli   r = 1.0000 p = --- 

 Control:E.coli   r = -0.2394 p = 0.3235 

 CipR:E.coli   r = 0.4073 p = 0.0835 

 TetR:E.coli   r = 0.5036 p = 0.0279* 

 VirR:E.coli   r = 0.1518 p = 0.5350 

 Sediment:E.coli   r = 0.2667 p = 0.2697 

 Control:Control   r = 1.0000 p = --- 

 CipR:Control   r = 0.0196 p = 0.9365 

 TetR:Control   r = -0.5489 p = 0.0149* 

 VirR:Control   r = -0.1726 p = 0.4799 

 Sediment:Control   r = 0.0899 p = 0.7144 

CipR:CipR   r = 1.0000 p = --- 

 TetR:CipR   r = 0.4730 p = 0.0408* 

 VirR:CipR   r = -0.1003 p = 0.6829 

 Sediment:CipR   r = 0.1510 p = 0.5372 

 TetR:TetR   r = 1.0000 p = --- 

 VirR:TetR   r = 0.2846 p = 0.2376 

 Sediment:TetR   r = -0.0153 p = 0.9504 

 VirR:VirR   r = 1.0000 p = --- 

 Sediment:VirR   r = -0.1546 p = 0.5274 

 Sediment:Sediment   r = 1.0000 p = --- 

   
*indicates significance of p <0.05 
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Guyandotte River:  

Pearson’s Correlation Statistical Summary Table  

 

Variables Pearson’s r value p value of significance 

Quad:Quad   r =  1.0000 p = ---      

 Depth:Quad   r =  0.0000 p = ---      

 Temp (C):Quad   r = -0.9174 p =   0.0099* 

 DO %:Quad   r = -0.6181 p =   0.1910 

 pH:Quad   r = -0.0503 p =   0.9245 

 NTU:Quad   r =  0.0250 p =   0.9625 

 E.coli:Quad   r =  0.5656 p =   0.2421 

 Control:Quad   r = -0.1903 p =   0.7180 

 CipR:Quad   r =  0.3671 p =   0.4741 

 TetR:Quad   r = -0.0639 p =   0.9043 

 VirR:Quad   r = -0.5252 p =   0.2846 

 Sediment:Quad   r = -0.7415 p =   0.0916 

 Depth:Depth   r =  1.0000 p = ---      

 Temp (C):Depth   r = -0.3496 p =   0.4970 

 DO %:Depth   r = -0.7180 p =   0.1081 

 pH:Depth   r =  0.8857 p =   0.0188* 

 NTU:Depth   r =  0.6794 p =   0.1377 

 E.coli:Depth   r =  0.5689 p =   0.2387 

 Control:Depth   r =  0.1865 p =   0.7236 

 CipR:Depth   r = -0.5743 p =   0.2333 

 TetR:Depth   r =  0.6780 p =   0.1388 

 VirR:Depth   r =  0.4842 p =   0.3305 

 Sediment:Depth   r =  0.5123 p =   0.2988 

 Temp (C):Temp (C)   r =  1.0000 p = ---      

 DO %:Temp (C)   r =  0.8488 p =   0.0326* 

 pH:Temp (C)   r = -0.3223 p =   0.5333 

 NTU:Temp (C)   r = -0.2860 p =   0.5827 

 E.coli:Temp (C)   r = -0.7805 p =   0.0670 

 Control:Temp (C)   r =  0.0939 p =   0.8596 

 CipR:Temp (C)   r = -0.2358 p =   0.6528 

 TetR:Temp (C)   r = -0.1328 p =   0.8019 

 VirR:Temp (C)   r =  0.4408 p =   0.3817 

 Sediment:Temp (C)   r =  0.5745 p =   0.2331 

 DO %:DO %   r =  1.0000 p = ---      

 pH:DO %   r = -0.5626 p =   0.2451 

 NTU:DO %   r = -0.6042 p =   0.2040 

 E.coli:DO %   r = -0.9489 p =   0.0039* 

 Control:DO %   r =  0.2343 p =   0.6550 

 CipR:DO %   r =  0.2405 p =   0.6462 

 TetR:DO %   r = -0.2962 p =   0.5687 

 VirR:DO %   r =  0.1175 p =   0.8246 

 Sediment:DO %   r =  0.1049 p =   0.8432 

 pH:pH   r =  1.0000 p = ---      

 NTU:pH   r =  0.5930 p =   0.2148 

Table 10 
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 E.coli:pH   r =  0.4107 p =   0.4185 

 Control:pH   r =  0.5267 p =   0.2830 

 CipR:pH   r = -0.1912 p =   0.7167 

 TetR:pH   r =  0.6259 p =   0.1838 

 VirR:pH   r =  0.2738 p =   0.5995 

 Sediment:pH   r =  0.3069 p =   0.5541 

 NTU:NTU   r =  1.0000 p = ---      

 E.coli:NTU   r =  0.5845 p =   0.2231 

 Control:NTU   r = -0.0760 p =   0.8862 

 CipR:NTU   r = -0.4228 p =   0.4036 

 TetR:NTU   r = -0.0601 p =   0.9100 

 VirR:NTU   r =  0.0934 p =   0.8604 

 Sediment:NTU   r =  0.2653 p =   0.6114 

 E.coli:E.coli   r =  1.0000 p = ---      

 Control:E.coli   r = -0.4504 p =   0.3701 

 CipR:E.coli   r = -0.1988 p =   0.7057 

 TetR:E.coli   r =  0.0709 p =   0.8938 

 VirR:E.coli   r = -0.2995 p =   0.5642 

 Sediment:E.coli   r = -0.1680 p =   0.7504 

 Control:Control   r =  1.0000 p = ---      

 CipR:Control   r =  0.3558 p =   0.4889 

 TetR:Control   r =  0.4524 p =   0.3677 

 VirR:Control   r =  0.2285 p =   0.6632 

 Sediment:Control   r =  0.0297 p =   0.9555 

 CipR:CipR   r =  1.0000 p = ---      

 TetR:CipR   r = -0.3604 p =   0.4827 

 VirR:CipR   r = -0.7746 p =   0.0705 

 Sediment:CipR   r = -0.8617 p =   0.0274* 

 TetR:TetR   r =  1.0000 p = ---      

 VirR:TetR   r =  0.6537 p =   0.1591 

 Sediment:TetR   r =  0.4692 p =   0.3479 

 VirR:VirR   r =  1.0000 p = ---      

 Sediment:VirR   r =  0.8917 p =   0.0169* 

 Sediment:Sediment   r =  1.0000 p = ---      

                                                                                         
                                                                                                                                                * indicates significance of p < 0.05 
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Ohio River Downstream of the Guyandotte River:   

Pearson’s Correlation Statistical Summary Table 

 

Variables Pearon’s r value p value of significance 

Quad:Quad   r =  1.0000 p = ---       

 Depth:Quad   r = -0.0410 p =   0.87170 

 Temp (C):Quad   r =  0.5349 p =   0.02220* 

 DO (%):Quad   r = -0.1455 p =   0.56460 

 pH:Quad   r = -0.6800 p =   0.00190* 

 NTU:Quad   r = -0.1973 p =   0.43260 

 E.coli:Quad   r = -0.6599 p =   0.00290* 

 Control:Quad   r =  0.2613 p =   0.29500 

 CipR:Quad   r =  0.0556 p =   0.82660 

 TetR:Quad   r = -0.0660 p =   0.79470 

 VirR:Quad   r = -0.4352 p =   0.07110 

 Sediment:Quad   r = -0.2190 p =   0.38250 

 Depth:Depth   r =  1.0000 p = ---       

 Temp (C):Depth   r = -0.0343 p =   0.89260 

 DO (%):Depth   r =  0.1470 p =   0.56040 

 pH:Depth   r = -0.0408 p =   0.87220 

 NTU:Depth   r =  0.6289 p =   0.00520* 

 E.coli:Depth   r = -0.1816 p =   0.47080 

 Control:Depth   r =  0.2596 p =   0.29820 

 CipR:Depth   r =  0.3716 p =   0.12890 

 TetR:Depth   r =  0.2601 p =   0.29730 

 VirR:Depth   r =  0.3882 p =   0.11140 

 Sediment:Depth   r =  0.2897 p =   0.24370 

 Temp (C):Temp (C)   r =  1.0000 p = ---       

 DO (%):Temp (C)   r =  0.1602 p =   0.52550 

 pH:Temp (C)   r = -0.3310 p =   0.17970 

 NTU:Temp (C)   r =  0.2564 p =   0.30440 

 E.coli:Temp (C)   r = -0.9066 p =   0.00000* 

 Control:Temp (C)   r = -0.1226 p =   0.62800 

 CipR:Temp (C)   r = -0.3046 p =   0.21900 

 TetR:Temp (C)   r = -0.2842 p =   0.25310 

 VirR:Temp (C)   r = -0.3832 p =   0.11650 

 Sediment:Temp (C)   r =  0.1054 p =   0.67710 

 DO (%):DO (%)   r =  1.0000 p = ---       

 pH:DO (%)   r = -0.1331 p =   0.59860 

 NTU:DO (%)   r =  0.3493 p =   0.15540 

 E.coli:DO (%)   r = -0.2342 p =   0.34960 

 Control:DO (%)   r = -0.1622 p =   0.52030 

 CipR:DO (%)   r = -0.0295 p =   0.90740 

 TetR:DO (%)   r =  0.0260 p =   0.91830 

 VirR:DO (%)   r = -0.0595 p =   0.81440 

 Sediment:DO (%)   r = -0.2038 p =   0.41730 

 pH:pH   r =  1.0000 p = ---       

 NTU:pH   r =  0.0257 p =   0.91940 

 E.coli:pH   r =  0.4668 p =   0.05080 

Table 11 
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 Control:pH   r = -0.3584 p =   0.14420 

 CipR:pH   r = -0.0929 p =   0.71390 

 TetR:pH   r = -0.0584 p =   0.81790 

 VirR:pH   r =  0.2724 p =   0.27410 

 Sediment:pH   r =  0.2842 p =   0.25300 

 NTU:NTU   r =  1.0000 p = ---       

 E.coli:NTU   r = -0.3754 p =   0.12470 

 Control:NTU   r =  0.1101 p =   0.66350 

 CipR:NTU   r =  0.1003 p =   0.69230 

 TetR:NTU   r =  0.2912 p =   0.24100 

 VirR:NTU   r =  0.4291 p =   0.07560 

 Sediment:NTU   r =  0.3687 p =   0.13220 

 E.coli:E.coli   r =  1.0000 p = ---       

 Control:E.coli   r = -0.0610 p =   0.81000 

 CipR:E.coli   r =  0.2008 p =   0.42430 

 TetR:E.coli   r =  0.2708 p =   0.27700 

 VirR:E.coli   r =  0.3952 p =   0.10460 

 Sediment:E.coli   r = -0.0247 p =   0.92240 

 Control:Control   r =  1.0000 p = ---       

 CipR:Control   r =  0.3184 p =   0.19790 

 TetR:Control   r =  0.1867 p =   0.45830 

 VirR:Control   r =  0.1157 p =   0.64760 

 Sediment:Control   r =  0.0750 p =   0.76750 

 CipR:CipR   r =  1.0000 p = ---       

 TetR:CipR   r =  0.3463 p =   0.15920 

 VirR:CipR   r =  0.4314 p =   0.07390 

 Sediment:CipR   r = -0.1927 p =   0.44370 

 TetR:TetR   r =  1.0000 p = ---       

 VirR:TetR   r =  0.6830 p =   0.00180* 

 Sediment:TetR   r =  0.0835 p =   0.74190 

 VirR:VirR   r =  1.0000 p = ---       

 Sediment:VirR   r =  0.1836 p =   0.46590 

 Sediment:Sediment   r =  1.0000 p = ---       

   
*indicates significance of  p <0.05 
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Table 12:  ANOVA T-test comparing E. coli samples taken in the Ohio River upstream and downstream of the Guyandotte 

River by river quadrant 
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Table 12 (cont) 
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APPENDIX C 
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Antibiotic Stock Solutions 
 
1. The antibiotics, solvents, and concentrations used are shown in Table 1. 
 
 
Table 1.  Antibiotics used and recommended concentrations. 

Antibiotic Catalog No. Solvent
a
 Stock Conc. Working Conc. 

Fungizone BioWhitaker          
17-836R 

N/A 250 g/ml 375 ng/ml 

Ampicillin Sodium Salt Fisher BP1760-25 H2O 50 mg/ml 50 g/ml 

Ciprofloxacin Cellgro 61-277-RF DMSO 4 mg/ml 4 g/ml 

Erythromycin Fisher BP920-25 EtOH:H2O 8 mg/ml 8 g/ml 

Streptomycin Sulfate Fisher BP910-50 Water 25 mg/ml 25 g/ml 

Sulfamethizole Fisher 
ICN15671125 

DMSO 128 mg/ml 128 g/ml 

Tetracycline Hydrochloride Fisher BP912-100 EtOH:H2O 12.5 mg/ml 12.5 g/ml 

Virginiamycin Fisher 50-213-730 DMSO 16 mg/ml 16 g/ml 

a
 Fungizone is purchased as a stock solution, it is stored frozen and thawed before use.  DMSO = 

dimethylsulfoxide (Certified ACS).  EtOH:H2O = a mixture of equal parts ethanol (100% USP) and reagent 

grade water (18 M  ). 
 
 
2. Using an analytical balance, weigh out sufficient antibiotic to make a 10 ml stock (see Table 1 and 

note below) and transfer the antibiotic powder to a sterile 15 ml plastic centrifuge tube (Falcon 2095; 
Becton Dickinson, Sparks, MD or equivalent). 
 
Note – for determining amount of antibiotic powder to use 
 
a. Be sure to account for the purity of the antibiotic powder by dividing the weight of pure antibiotic 

required by the purity.  For example, ciprofloxacin may be provided as a powder that contains 803 
mg ciprofloxacin per gram.  To achieve a stock concentration of 4 mg ciprofloxacin per ml, it is 
necessary to add 4.98 [or 4.0 mg cipro x (1000 mg powder / 803 mg cipro)] mg powder per ml of 
stock solution. 

 
3. Add 10 ml of the appropriate solvent (see Table 1) to the tube, and vortex to mix. 
 
4. In some cases (e.g. when making stock solutions of ciprofloxacin) the tube can be placed in a bath 

sonicator to facilitate dissolution of the solute.  Take care to be certain that all of the antibiotic has 
gone into solution. 

 
5. Draw the antibiotic solution into a sterile 10 ml syringe, and sterilize by forcing the solution through a 

sterile, 0.2 m syringe filter (Fisher Scientific cat. no. 09-719C or equivalent) into a second sterile 
plastic centrifuge tube.  Do not filter sterilize antibiotics dissolved in DMSO. 
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6. Store the antibiotic stocks at -20°C until used.  Replace antibiotic stocks each month. 
 
Media Preparation 
 
1. Suspend 9.1 grams Difco R2A agar (Becton Dickinson, Sparks, MD; cat no. 218263) in 500 ml of 

purified water in a 1,000 ml capacity glass Erlenmeyer flask. 
 
2. Add a magnetic stir bar, cover the flask with aluminum foil, place and piece of autoclave tape on the 

foil, and mark the name of the antibiotic to be added (if appropriate) on the foil. 
 
3. Swirl the flask to evenly hydrate the suspended powder, and autoclave at 121°C and 15 psi for 20 

minutes on a slow exhaust cycle. 
 
4. Move the medium from the autoclave to a 48°C water bath, and hold for at least 30 minutes but not 

more than 4 hours. 
 
5. While the medium is cooling, remove the appropriate antibiotic stock solutions from the freezer and 

thaw on ice (all solvents except DMSO) or at room temperature (antibiotics in DMSO). 
 
6. Place the flask on a magnetic stir plate and stir gently until the medium is well mixed.  Be careful not 

to introduce bubbles.  Test the temperature of the medium by touching the side of the flask briefly 
with your bare hand.  It should be warm, but not hot.  If the flask is hot to the touch, return it to the 
water bath until it has cooled enough to be handled comfortably.  Do not allow the medium to cool 
below 48°C. 

 
7. Wear disposable latex gloves for the remaining steps of media preparation.  When properly 

tempered, again move the medium to the magnetic stirrer.  While stirring gently, aseptically add 750 

l of fungizone stock. 
 
8. Continue stirring for 15 to 30 seconds after the addition of the fungizone to the medium.  Tilt the flask 

to insure that all the fungizone stock solution is transferred to the medium. 
 
9. If you are preparing R2A plus fungizone for the enumeration of total cultivable bacteria, aseptically 

pour 25 ml per plate into pre-sterilized 100 x 15 mm Petri dishes (Falcon 1029, Becton Dickinson, 
Sparks, MD or equivalent).   

 
10. If you are preparing R2A plus fungizone and an additional antibiotic for the enumeration of a 

particular resistant population, aseptically add 500 l of the appropriate antibiotic stock to the flask.  
Stir gently for an additional 15 seconds and tilt the flask to insure that all the antibiotic stock is 
transferred to the medium. 

 
11. Pour the plates as described in step 9. 
 
12. Clearly mark the plates to indicate media content.  E.g. “R2Af “ can be used to indicate R2A agar plus 

fungizone, and “R2Afc” to indicate R2A agar plus fungizone and ciprofloxacin, etc. 
 
13. Allow plates to cure at room temperature for at least 48 hours before use.  Plates should be 

inoculated no later than seven days after pouring. 
 
 
Sample Collection 
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1. Whole water samples must be collected in sterile containers with secure, leak-proof lids.  Containers 

must be clearly labeled with a sample number, and the sample number must be recorded in a 
notebook in which the location, date and time of sampling are clearly and fully described.  If available, 
include additional information such as: latitude and longitude, air temperature, water temperature, 
weather conditions, turbidity, level of boating activity, land use patterns, etc. 

 
2. The container should be opened so that the opening is pointing downward, and the inside of the lid 

does not come into contact with any non-sterile surfaces.   
 
3. Continue holding the opening downward while passing the container through the surface tension 

layer.   
 
4. When the container is fully submerged, invert it so that it fills with water. 
 
5. Pour off enough water to leave approximately a 10% air headspace. 
 
6. Seal the container and place on ice.  Samples should be cultivated within 6 hours of collection. 
 
 
Enumeration of Total Cultivable Bacteria 
 
1. Remove a sample bottle from the ice chest and mix by inversion to re-suspend any sediment that 

may have settled out during transit. 
 

2. Aseptically transfer 0.1 ml of sample to a sterile 9.9 ml dilution blank in a screw-cap test tube. 
 
3. Tightly cap the tube and mix at full speed on a vortex mixer for at least 5 seconds. 
 
4. Aseptically transfer 0.1 ml of diluted sample to each of three plates of Difco R2A agar plus 375 ng/ml 

fungizone.   
 
5. Spread the diluted water sample on the surface of the agar plates using a sterile glass spreading rod, 

a pre-sterilized inoculating loop, or five sterile glass beads (5 mm; see note) until all of the liquid has 
been absorbed. 

 
Note – for use of sterile glass beads 
 
a. Place six glass beads (Fisher Scientific cat no. 11-312C) into a 1000 ml pipette tip (Biolog cat no. 

3001; other tips should be tested for suitability).  One set of beads is required for each plate 
inoculated. 

 
b. Place the tip with beads into the original pipette box, cover all the tips with a sheet of aluminum 

foil, place the cap on the box, place a piece of autoclave tape on the box, and autoclave at 121°C 
and 15 psi for 15 minutes. 

 
c. When plating – open the pipette tip box, roll back the aluminum foil to expose a single row of 

pipette tips, remove one tip at a time, lift the lid of an inoculated plate, and pour the sterile beads 
onto the agar surface.  Normally, one bead remains stuck in the bottom of the tip. 

 
d. Repeat step c for all replicate plates.   
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e. Cover the plates and stack them.  Then shake the plates by moving them in a quick back and 
forth motion while keeping the bottom plate in contact with the bench top - it is important to avoid 
allowing the beads to run in a circular motion around the outer edge of the plate.  Shake five 
times, then rotate the plates by one-quarter turn and shake again five times.  Repeat shaking and 
turning the plates a total of five times.   

 
f. Invert the plates and collect the used beads in a beaker containing 70% ethanol. 

 
6. Plates must be clearly marked with sample number and date of inoculation. 
 
7. Wrap each set of three plates with parafilm and incubate inverted at 25°C for one week (see note) 
 

Note – for incubation of R2A plates 
 
a. R2A agar plates inoculated with river or lake water will continue to develop new microcolonies for 

5 to 6 days after inoculation.  Therefore, incubation for at least seven days is recommended.  
Incubation at temperatures above 25°C is not recommended as it may reduce the number of 
colony forming units. 

 
8. After incubation, count the number of colony forming units (CFU) on each plate and record in a 

laboratory notebook. 
 
9. Determine the mean and standard deviation of CFU counts on replicate plates and record in a 

laboratory notebook. 
 
10. Determine the CFU per ml of total cultivable bacteria in the original sample by multiplying the average 

CFU value by a dilution factor of 1,000 (accounts for the initial 10
-2

 dilution and the plating volume of 
0.1 ml).  Record this value in the laboratory notebook. 
 
 

Enumeration of Antibiotic Resistant Bacteria 
 
1. Remove a sample bottle from the ice chest and mix by inversion to re-suspend any sediment that 

may have settled out during transit. 
 

2. Aseptically transfer 0.1 to 0.2 ml (see note) of undiluted sample to each of three plates of Difco R2A 
agar plus 375 ng/ml fungizone, plus the appropriate concentration of a single antibiotic (see Table 1).  

 
Note – for selection of plating volume  
 
a. Preliminary tests to determine the volume of sample to be plated are recommended.  A plating 

volume of 0.1 ml is the default volume, but if the number of antibiotic resistant colony forming 
units is consistently less than 30 per plate, the volume should be increased to 0.2 ml 

 
3. Spread the undiluted water sample on the surface of the agar plates using a sterile glass spreading 

rod, a pre-sterilized inoculating loop, or five sterile glass beads (5 mm; see note above) until all of the 
liquid has been absorbed. 

 
4. Plates must be clearly marked with sample number and date of inoculation. 
 
5. Wrap each set of three plates with parafilm and incubate inverted at 25°C for one week (see note 

above). 
 



 

 

133 

 

6. After incubation, count the number of colony forming units (CFU) on each plate and record in a 
laboratory notebook. 

 
7. Determine the mean and standard deviation of CFU counts on replicate plates and record in a 

laboratory notebook. 
 
8. Determine the CFU per ml of total cultivable bacteria in the original sample by multiplying the average 

CFU value by a dilution factor of 10 (for a plating volume of 0.1 ml) or 5 (for a plating volume of 0.2 
ml).  Record this value in the laboratory notebook. 

 
 
 
 
 
Determination of Impact Scores 
 
1. Enter enumeration data for fecal indicators and antibiotic resistant bacteria into an Excel spreadsheet. 
 
2. For each population (i.e. fecal coliforms or ciprofloxacin resistant cells), rank the average count for a 

site within the population data set of all sites using the PERCENTRANK function.  Multiply the 
PERCENTRANK output by 100 to achieve a percentile score for each data point within the entire 
population data set (see note). 

 
Note – on determining percentile scores 
 
a. The PERCENTRANK function in Excel cannot simply be copied and pasted from cell to cell.  If 
the function is transferred it will carry the original array size, but the array will be offset and the 
function will calculate an inappropriate rank.  Therefore, you must set the array to contain the entire 
population data set for each individual data point. 

 
3. Choose the boundaries that you wish to apply to the data.  For example, an IS90 score weights sites 

with population counts above the 90
th
 percentile and below the 10

th
 percentile.  An IS80 score weights 

sites with population counts above the 80
th
 percentile and below the 20

th
 percentile.  In our hands, 

IS85 to IS90 scores provide a useful signal to noise ratio in the index. 
 
4. Assign a population score of 1 to all data points that fall above the upper percentile boundary. 
 
5. Assign a population score of -1 to all data points that fall below the lower percentile boundary. 
 
6. Assign a population score of 0 to all data points that fall between the chosen boundaries. 
 
7. Repeat the determination of population scores for all microbial populations enumerated, i.e. for each 

antibiotic resistant population measured and for the fecal indicator population. 
 
8. Determine the total impact score (IS) by adding the population scores.  For studies that include three 

antibiotics and one fecal indicator, impact scores can range from -4 to +4.  Higher impact scores are 
indicative of a more impacted water source. 

 
9. Plot IS versus river mile to get a visual representation of water quality variability. 
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