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ABSTRACT 

PHYLOGENETIC STRUCTURE OF TWO 
CENTRAL MEXICAN CENTRUROIDIES 

SPECIES COMPLEXES 

By William Ian Towler 

Central Mexico is home to numerous species of highly toxic Centruroides scorpions.  

Two species complexes C. infamatus, (C.L. Koch, 1844), and C. limpidus (Karsch, 1879) 

typify the complex relationships that exist between and within the complexes.  Their 

existing taxonomic status is based on morphological features such as coloration and 

morphosculpture.  A complete and modern study of these scorpions does not exist, and is 

needed.  In an attempt to clarify the status and relationship between these complexes we 

initiated a molecular based approach applying mitochondrial gene markers (16S and 

CO1).  This study confirms two divergent clades within C. infamatus; divergence rate 

estimates their common ancestor’s age as 2-4 Ma for HKY+G+I divergence rate (11.7 ± 

0.9 %) and 3-5 Ma for uncorrected p (7.2 ± 0.4 %).  Further study is necessary with 

sampling all over the range of both taxa, to confirm existence of two independent                      

study also suggests that more than one ancient monophyletic lineage (possibly, more than 

one species) exist within currently accepted Centruroides limpidus limpidus.  The type 

locality of Centruroides limpidus is Puebla, which lies in the same geographic area as 

Guerrero. Thus, we might assume that the Querétaro/Guerrero lineage corresponds to 

‘true’ C. limpidus, and that the Balsas Depression populations could belong to another, 

‘cryptic’, or ‘sibling’ species.  Further, detailed investigations should be done to test these 

preliminary conclusions: the need for many more populations from the entire range of C. 

limpidus  is needed.  Several data sets (mitochondrial and nuclear genes, allozymes, 

morphology, toxin structure/activity, etc.) could be analyzed to establish the true 

taxonomic and genetic structure of the populations and species of Centruroides.  
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CHAPTER I 

 

Introduction 
The Species Debate 
 
What is a species?  Few questions asked in biology today stir up more intense feelings 

than, the ‘what is a species’ question.  Charles Darwin once stated “No one definition has 

satisfied all naturalists; yet every naturalist knows vaguely what he means when he 

speaks of a species…In determining whether a form should be ranked as a species or as a 

variety, the opinion of naturalists having sound judgment and wide experience seems the 

only guide to follow” (Darwin, 1859).  

 

In 1758, Linnaeus defined the fundamentals of modern classification as we know it 

today. The system was based around the type concept of species, and stated the species 

was the lowest category of nomenclature, but did not explicitly define ‘species’ and what 

a ‘species’ entails.  In this classification system, different species are grouped together to 

form genera.  The genera then group together to make up families, families form orders, 

and so on.   In 1940, Mayr modified the concept of the Linnaean species and introduced 

the idea of a biological species, after having found polytypic species, or species which are 

composed of several subspecies or geographical variants.  The idea of a biological 

species stated that “a species are a group of actually or potentially interbreeding natural 

populations, which are reproductively isolated from other such groups” (Mayr, 1942).  

With introduction of the biological species concept came the question of subspecies.  As 

defined by Mayr and Ashlock (1991), a subspecies is "an aggregate of local populations 

of a species inhabiting a geographic subdivision of the range of the species and differing 

taxonomically from other populations of the species."    According to the International 

Code of Zoological Nomenclature, the subspecies is the lowest recognized category and 

is still in use (Jeffrey, 1973).  Even though the subspecies stands as a valid taxonomic 

unit, it presents some problems in the usage of this unit.  With the use of Mayr’s 



Biological species model as the definition of subspecies, how do you “draw the line” on 

what a subspecies is; how do you differentiate a zone of intergradation from a zone of 

hybridization? Because of this confusion many biologists and systematists would like to 

remove subspecies as a valid taxonomic category as it does not offer any utility in 

relation to questions of evolutionary processes and patterns.  When talking about the 

systematics of organisms you inevitably end up talking about evolution as well.  

Evolution, no matter how you choose to look at the process, is just that, a process.  The 

process of evolution is continuous and never ending.  With that in mind we must 

remember that as we collect our data we are only getting a “snapshot in time” of this 

process of evolution. The species and subspecies debate continues, and recent advances 

in molecular biology have added to the debate.  Since all living organisms contain DNA 

as their molecule that serves as a “blueprint for life”, we can study the relationship of 

organisms by comparing their DNA using sequence analysis.  This molecular approach 

has several advantages over the classical morphological approach.  The first advantage is 

that DNA comparison, via sequence analysis, can be used to compare any organism that 

was living at one time.  Secondly, since the evolutionary change of DNA follows a more 

or less regular pattern, we can use quantitative analysis of these changes, to compare the 

organisms.   

 

Advances in DNA Technology 
 
In the spring of 1983, Kary Mullis, an employee of Cetus Corporation, conceived the idea 

for the polymerase chain reaction or PCR, and changed the study of systematics forever 

(Mullis, 1990).  The process of PCR allows users to target a specific section of DNA and 

make millions of copies in a matter of hours using an enzyme named DNA polymerase.  

Although there are several different DNA polymerases available for use, Taq polymerase 

is the most commonly used.  Thermus aquaticus is a species of bacteria that lives in a hot 

spring, and therefore has a DNA polymerase that is able to withstand the high 

temperatures that are routinely reached in a PCR reaction.  The PCR process employs the 

use of a machine called a thermocycler.  The thermocycler is nothing more than a 

sophisticated heating block which changes the temperature of the block according to the 
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conditions preset by the experimenter via a computer.  The standard PCR reaction 

consists of many cycles (anywhere from 15 – 40 cycles), each cycle having three 

different parts.  The first part of a cycle is called denaturing.  During denaturing, the 

double stranded DNA template (or target DNA) becomes single stranded due to the high 

temperature at this step.  The second step is called annealing.  The temperature is dropped 

and the primers (the oligonucleotides that target specific genes) find and stick to their 

corresponding sequences in the single stranded DNA template.  In the last step of the 

process, the temperature is raised slightly to activate the enzyme Taq polymerase, which 

extends the sequence off of the primer in the 5’ direction.  This process is repeated over 

and over to produce the millions of copies.  The process won Kary Mullis the Nobel Prize 

in 1993, and has changed biology and systematics forever.  With PCR, systematists are 

able to target genes for amplification and sequence these genes directly and use these 

sequences as characters in the development of cladograms or phylogenetic trees.  To 

obtain the sequence of a given target, the product of the PCR reaction is used in a process 

called the Sanger method of sequencing, which uses fluorescently labeled nucleotides. 

These labeled nucleotides are then read by a laser that is tunable to the specific 

wavelength of light emitted by these fluorescently labeled nucleotides (Hillis, 1996).  

This information is read after a polyacrylamide gel electrophoresis (PAGE) is performed. 

One reaction is loaded into one lane for a total of four lanes per sequence. In PAGE, the 

shortest fragments will migrate the farthest. Therefore, the bottom-most band indicates 

that its particular dideoxynucleotide was added first to the labeled primer.  

 

DNA Systematics 
 

During the early 1990’s mitochondrial genes were the target of choice for phylogenetic 

studies.  The success of the mitochondria genes is due in a large part because they have 

their own DNA separate from the nucleus, the ability to have multiple mitochondria per 

cell, and they are found in high abundances in muscle tissue.  Multiple mitochondria per 

cell, makes extraction of the mitochondrial DNA (mtDNA) much easier than extracting 

nuclear DNA.  The mitochondrial DNA found in animals, with one exception, is a duplex 

covalently closed circular molecule.  This molecule in animals is completely 
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uninterrupted and the sequence contains no intronic regions (Moritz et al., 1987).  In 

almost all animal systems, the mtDNA is inherited buy the offspring via the female, and 

there is virtually no recombination.  Due to the low amount of recombination, the 

mtDNA molecule contains highly conserved gene arrangement and product functionality 

across animals.  The mitochondrial genome contains two ribosomal RNA genes, 22 

transfer RNA genes, and 13 genes that are protein coding (Avise, 1994). The 

mitochondrial genes most often used in phylogenetic studies are 16S, 12S, ND4, COI and 

COII.  The 16S ribosomal RNA gene has been used before in scorpions (Fet et al., 1999), 

and is widely used in modern molecular evolutionary studies of various arthropods 

(Simon et al.,1994).  The additional information that is provided by molecular data allows 

systematists, a new tool to look at organisms that have previously been hard to study due 

to fixed or conservative morphology.  Molecular approaches to systematics have begun to 

play an important role in looking at the evolutionary history of scorpions.   

 

Scorpions 
 

Scorpions date back about 450 million years ago, where their appearance is first seen in 

the middle Silurian (Polis, 1990).  Eurypterida, or the water scorpions, most probably 

served as the starting point for scorpion evolution (Savory, 1977).  Marine and 

amphibious scorpions persisted well into the Carboniferous (250 – 300 million years 

ago).  The first unmistakably terrestrial scorpion is Palaeopisthacanthus, which appeared 

in the Upper Carboniferous, and the stigmata are preserved (Rolfe, 1980).  Today’s 

scorpions are generally similar in appearance to the Paleozoic forms.  With exception to 

the changes due to locomotion and breathing in a terrestrial environment, the basic body 

plan is externally similar to the scorpions that lived 425 million years ago (Polis, 1990).  

Today, scorpions can be found on all continents except Antarctica.  Scorpions have come 

to occupy all nonboreal habitats, including deserts, temperate forests, rain forests, tropical 

forests, savanna, grasslands, the intertidal zone, and snow covered mountains with 

elevations over 5,500 meters.  In some habitats, the densities of scorpions can be as high 

as 2-12 per  square meter (Polis, 1990).  In ideal habitats, as many as 13 species can be 

found sympatrically, and in most areas three to six species are common (Polis, 1990).  

 4



The success of these animals can be explained by their ability to adapt, and make use of 

habitats that are not commonly used by other organisms.  Many scorpions spend 92-97 

percent of their time inactive in burrows, allowing them to have very low metabolic rates, 

among the lowest arthropod rates ever recorded (Polis, 1990).  While still primitive in 

morphology, scorpions do exhibit some advanced characteristics like their sensory 

organs.  The scorpion eye is among the most sensitive of the arthropod eyes and may 

allow them to navigate and orient themselves using starlight (Fleissner, 1977).  Scorpions 

have an extremely varied diet including insects and various other arachnids.  As a very 

old group, scorpions have survived over 400 million years by incorporating a mix of both 

primitive and advanced characteristics. They have shown a great deal of plasticity in 

physiology, behavior and response to environmental stresses rather than plasticity in 

gross morphology, this is the most probable reason for their persistence as a taxon over 

time.  Scorpions now number 1270 species, over 159 genera, in 18 different families (Fet 

et al., 2000).   
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CHAPTER II 

 

Review of Literature 
 
Centruroides 
 

Centruroides Marx, 1890, with 41 species and 24 subspecies (Fet & Lowe, 2000) is one 

of the most diverse genera of Buthidae (second only to Tityus C. L. Koch with 46 species 

and 22 subspecies), and the only genus of this family found in North America (Fet et al., 

2000).  Centruroides are only found in the New world, with a center of radiation in 

Central America ((Fet et al., 2000).  They are abundant in various natural habitats 

ranging from tropical forest to temperate deserts. Centruroides is especially diverse in 

Mexico (Lourenço & Sissom, 2000) and the Caribbean (Armas, 1988), and is also found 

in Central and South America (Sissom & Lourenço, 1987).  A few species within the 

genus are toxic, and potentially lethal to humans.  In Mexico alone, scorpions of this 

genus caused an average of 1696 deaths per year for the twelve years reported by 

Mazzotti and Bravo-Becherelle (1963).  Between the years of 1890 and 1926, the 

Mexican city of Durango (pop. 40,000) had an average of 45 deaths per year (Baerg, 

1961), and yet this rate only ranked 14th among all the Mexican states (Mazzotti and 

Bravo-Becherelle,1963).  Because of their impact on human health scorpions of the genus 

Centruroides are a group of scorpions that receive a great deal of attention.  Lourenço 

and Sissom (2000) reviewed scorpion diversity in Mexico, emphasizing the need for 

more investigation and novel approaches (including DNA techniques) to understand 

complex taxonomy, origin, and distribution of Mexican Centruroides. They say 

(Lourenço and Sissom, 2000, p. 117): “...it is likely that some of these species will prove 

to be synonyms, and equally likely that others will represent complexes of sibling species 

rather than single species”. 

 



The genus Centruroides was first described in 1890, by G. Marx.  A complete and modern study 

of the genus does not exist, and is much needed.  The taxonomy of many Centruroides species is 

confusing, and has traditionally been based mainly on morphological characters such as 

coloration and morphosculpture, with the only existing key (Stahnke & Calos, 1977) being 

outdated due to current research on species with in the genus.  

 

Centruroides infamatus infamatus 
 

The first species complex consists of Centruroides infamatus infamatus (Koch, 1844) and 

Centruroides infamatus ornatus ( Pocock, 1902 ).  These subspecies can be differentiated 

from each other by coloration in the field.  Geography is another defining character, but 

does not serve as the best character because these two subspecies have overlapping 

ranges.  In this study the samples that represent Centruroides infamatus infamatus (Cii) 

were taken in Zumpimito, which is in the center of the country at 1560 meters above sea 

level.  The samples that represent Centruroides infamatus ornatus (Cio), were taken 

further North and West from Zumpimitio, at four different sites.  The sites together have 

an average elevation of 1795 meters above sea level, with the highest sight at 2020 

meters above sea level.  Figure 2.1 below, shows a distribution map for both species 

(Beutelspacher, 2000).  This species complex is a mountainous species that lives in a 

transitional area between mountains and warm land, with tropical deciduous forest, thorn-

shrubs and xerophytic vegetation at the lower lands over the Balsas Basin.  In 2000, these 

two subspecies were suggested to be only forms of the species, and that they should be 

collapsed (Beutelspacher, 2000). 
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FIGURE 2.1   DISTRIBUTION MAP OF C. INFAMATUS INFAMATUS AND C. INFAMATUS 
ORNATUS, AS STATED BY BEUTELSPACHER IN, CATÁLOGO DE LOS ALACRANES DE 
MÉXICO, 2000. 
 

 

Centruroides limpidus limpidus 
 
The second species complex consists of Centruroides limpidus limpidus (Cll) (Karsch, 

1879 ), and Centruroides limpidus tecomanus (Clt)(Hoffman, 1932) which are 

morphologically distant from C. infamatus.  The data from existing litertature (Hoffman, 

1932), these two subspecies can be differentiated by the presence or absence of a 

subacular tooth.  This subacular tooth is just below the aculas on telson of the scorpion.  

Figure 2.2 below, shows a clear picture of this subacular tooth.  The tooth can be found 

on C. limpidus tecomanus, but not as prevalent on C. limpidus limpidus.   The use of the 

subacular tooth as a character to differentiate the two subspecies is not a good idea.  In a 

later study, the subaculaer tooth was shown as a character that declines in size with an 

increase in age within the genus of Centruroides (Lourenco, 1982).   
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(A) (B) (C) D)(  
 
 
FIGURE 2.2  PICTURES OF THE SUBACULEAR TOOTH ON ALL FOUR SPECIES USED IN 
THIS STUDY.  (A) C. LIMPIDUS TECOMANUS, (B) C. LIMPIDUS LIMPIDUS, (C) C. INFAMATUS 
INFAMATUS, AND (D) C. INFAMATUS ORNATUS.  THE SUBACULEAR TOOTH IS MUCH MORE 
PROMINENT IN (A), THAN ANY OTHER SPECIES. 
 

Another difference between the two subspecies is the geography.  C. limpidus limpidus 

has a range that is more Southern and Western in comparison to that of C. limpidus 

tecomanus.  The samples of C. limpidus limpidus represented in this study were all taken 

from the East side of the Sierra Madre del Sur Mountian range.  The C. limpidus 

tecomanus samples used in this study were taken from the West side of the Mountian 

range, and were both near costal environments.  Figure 2.3 below shows a distribution 

map of both C. limpidus tecomanus (open circles), and C. limpidus limpidus (filled 

circles) (Beutelspacher, 2000).   
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FIGURE 2.3  DISTRIBUTION MAP OF C. LIMPIDUS LIMPIDUS (FILLED CIRCLES) AND C. 
LIMPIDUS TECOMANUS (OPEN CIRCLES), AS STATED BY BEUTELSPACHER IN, CATÁLOGO 
DE LOS ALACRANES DE MÉXICO, 2000. 

 

The Mexican deserts and mountains represent an ancient area of scorpion evolution.  

Although scorpions seem to preserve some of the most ancient arthropod features, they 

exhibit high genetic differentiation and active speciation (Fet et al., 1999, 2001).  

Centruroides are one of a few extant scorpion genera for which Cenozoic fossils exist, 

from both the Miocene amber of the Dominican Republic (Schawaller, 1979) and the 

Miocene/Oligocene amber of Chiapas, Mexico (Santiago-Blay & Poinar, 1993). Thus, the 

age of the extant lineages can be very old, and their evolution could be considered against 

the geological events that occurred in the geographical area. The toxicological studies 

show that such speciation in a number of cases is paralleled by increased venom potency.  

Developing independent DNA-based phylogenies will allow us to investigate relatedness 

versus convergence of high toxicity within this diverse genus. 
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These characters are not conclusive for phylogenetic purposes.  Using modern DNA-

based methods of phylogenetic analysis (Maximum Parsimony, Maximum Likelihood, 

Neighbor-Joining algorithms; Gantenbein et al., 1999; Fet et al., 2001), we are able to get 

a better picture of what has happened in an organisms history. 

 

Molecular Systematics 

From the time of Charles Darwin, it has long been a dream for many biologists to 

reconstruct the evolutionary history for all organisms on the Earth, and express it in the 

form of a tree (Haeckel, 1866). The classical approach to this pursuit was to use fossils, 

but the fossil record presents some problems.  The fossil record generally only preserves 

hard substances, and soft tissue is lost; rendering the fossil record incomplete and 

fragmented (Nei & Kumar, 2000).  With the advances in molecular biology DNA has 

given us a new tool to construct these trees.  The use of DNA based phylogenies requires 

the use of certain mathematical models or algorithms.  In the past, the algorithms of 

choice in the past have been Neighbor Joining (NJ), Maximum Parsimony (MP), and 

Maximum Likelihood (ML) (Nei & Kumar, 2000).  As the science of phylogenetics is 

advancing and becoming more refined, the tools are becoming more powerful and refined 

as well.  This study will include a new arguably more powerful analysis tool called 

Bayesian Analysis.  With the combination of these four methods, the data collected 

should reveal a good picture of the evolution of these scorpions.   

Neighbor Joining 
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The neighbor joining (NJ) process is a distance matrix method used to compare the taxa.  

In a distance matrix method, evolutionary distances are computed for all pairs of taxa in 

the sample, and a phylogenetic tree is constructed from these distance values.  The logic 

behind all distance matrix methods is that a pair of DNA sequences differing at 10% of 

their nucleotide sites are more closely related to each other than a pair differing 30%.  

The more time that has passed between two sequences diverged from a common ancestor, 

the more the sequences will differ.  The NJ algorithm is very similar to another algorithm 

called the Minimum Evolution method (ME).  Both the NJ and ME methods are distance 



matrix methods, but the NJ method is used more frequently because it is more efficient, 

and produces the same tree topology the ME would.  One of the important ideas with the 

NJ method is the idea of neighbors (Saitou & Nei, 1987).  Neighbors are defined as two 

different taxa that are connected by a single node in an unrooted tree.  It is important to 

note that the starting tree in the NJ method is unrooted and in a star formation where 

every taxa is connected to the center of the tree.  From this star tree, the length of each 

branch on the tree (determined by the distance computed for all the pairs of taxa) is 

compared and neighbors are put together based on their branch lengths.  The results of a 

NJ tree are often given a statistical value to show the confidence in the tree produced, this 

value is called the bootstrap value and is usually found the branch of the tree that the 

value corresponds with.  The fact that you can put a statistical value to this tree makes it 

attractive and well accepted.  

Maximum Parsimony 

Originally developed for processing morphological characters, the Maximum Parsimony 

method has been in use since 1966 (Hennig, 1966).  Since its introduction, the MP 

method for phylogenetic tree generation has been adapted to deal with molecular data 

(Fitch, 1971, Hartigan, 1973).  A MP tree is based on the assumption that the tree that is 

most likely, is the tree that requires the fewest number of changes or steps, to explain the 

data in the sequences.  When comparing the sequences, the MP method only uses 

variable sites for analysis.  Sites in the sequence that do not vary between taxa are 

eliminated from the analysis.   Sober states, “the less we need to know about the 

evolutionary process to make a phylogenetic inference, the more confidence we can have 

in our conclusions (Sober, 1988).  MP methods have advantages over other methods 

because it is free from assumptions that are required in ML and NJ methods.   Since 

every mathematical model used today is a crude approximation of reality, the model-free 

MP method may give more reliable trees than other methods (Miyamoto& Cracraft, 

1991).  Like the NJ method the MP method can be assigned bootstrap values to show the 

confidence in the tree produced. 
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Maximum Likelihood 

The idea of using a Maximum Likelihood (ML) method for phylogenetic inference was 

first used in 1967 for gene frequency data (Cavalli-Sforza & Edwards, 1967).  The ML 

method tries to infer an evolutionary tree by finding the tree that maximizes the 

probability of observing the data in that tree.  The ML method is a well established 

statistical method (Nei & Kumar, 2000).  When using any Maximum likelihood method, 

you have to have a model from which to work from.  In phylogenetics, this model 

describes how the various rates and probabilities of a nucleotide substitution will occur.  

For example, the standard software used in for determining a model to use, tests 56 

different models for the use in ML analysis.  When the ML method is computing the 

probability of a given tree or topology, the accurateness of this computation is the based 

on how well the chosen model fits the data set.  If a model is chosen that does not fit the 

data well, the tree will be flawed.   Like the methods mentioned above, the ML method 

can be assigned bootstrap values to show the confidence in the tree produced. 

Bayesian Analysis 

The last method of analysis that will be used in this project is Bayesian Analysis.  The 

use of Bayesian Analysis (BA) is somewhat new in phylogenetics, but its use offers some 

advantages.  Unlike the ML method of analysis, which searches for the single best tree, 

BA searches for the best set of trees.  The Bayesian analysis for this study will be carried 

out using the program called Mr.Bayes (Huelsenback & Ronquist, in press).  BA differs 

from ML in that in BA, the program is looking at 4 different tree topologies and 

comparing them all at the same time.  By doing this you increase the likelihood that you 

will actually get the most probable tree topology.  The tree generated by the BA method 

is a strict consensus tree derived from each of the best trees picked per cycle.  Unlike the 

previous methods of analysis, there is no bootstrapping on a BA tree.  Bootstraping a BA 

tree is not necessary due to algorhythm that BA uses, not to mention that bootstrapping a 

BA tree would take roughly 30 days of solid computing time. 
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With four different methods, each generating their own tree, we are left to choose which 

tree to trust the most.  If changes in the gene sequence we studied really represent the 



history of evolution in our taxa, and the alignment of these sequences are robust, then, in 

theory, the more closely the trees produced by different methods should be in topology.  

The differences will be small and indicate a real uncertainty in the process of evolution 

(Hall, 2001). 

 
Objective 

Two species selected for this study are Centruroides infamatus (C. L. Koch, 1845) and C. 

limpidus (Karsch, 1879), which are widely distributed in Central Mexico. Each of those 

has two described subspecies but validity of these forms is not clear.  We intend to study 

11 populations of these two species complexes throughout Central Mexico, 

encompassing all ecological gradients and altitudinal levels.  Figure 2.4 below shows a 

map of our sampling locations.   

 

FIGURE 2.4  MAP OF THE SAMPLES OF CENTRUROIDES IN CENTRAL MEXICO (SEE 
DETAILED LOCALITIES DATA IN TEXT). C. INFAMATUS INFAMATUS: 1 – CIIZU1, 
ZUMPIMITO; C. INFAMATUS ORNATUS: 2 – CIOCO1, EL COBANO; 3 – CIOLC1, LA 
CARATACUA; 4 - CIIMO1, MORELIA; 5 – CIOTI1, TIRIPETIO; C. LIMPIDUS LIMPIDUS: 6 – 
CLLCH1 AND 7 – CLLCH2, CHURUMUCO; 8 – CLLTO1, TZIRANDARO; 9 – CLLAR1, ARUA; 10 - 
CLLTZ1, TZITZIO; 11 – CLLQU1, QUERÉTARO; 12 – CLLHU1, HUITZUCO; C. LIMPIDUS 
TECOMANUS: 13 – CLTFB1 AND 14 – CLTFB2, EL FARO DE BUCERIAS. 
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A set of molecular (mtDNA) sequences will be produced through total DNA extraction 

and PCR amplification.  These molecular markers have recently become a powerful tool 

for evaluating the taxonomic status of animal populations, subspecies, and species. The 

first information on applicability of mtDNA analysis to the species-level taxonomy of 

Centruroides was reported by Fet and Poindexter (1992). Recently, comparisons of 16S 

rRNA mtDNA sequences allowed to clarify phylogeny at the species level among the 

populations of Centruroides exilicauda (Wood) from Baja California and Sonora 

(Mexico) and Arizona (USA) (Fet et al., 1999; Gantenbein et al., 2001) as well as other 

scorpion genera and families (Fet et al., 2001; Gantenbein et al., 1999,2000).  The 

number of base pairs that are sequenced from this gene fragment in this study are high 

enough for a good phylogenetic signal (Huelsenbeck & Hillis, 1996).  Analysis of  DNA 

sequences from mitochondrial genes, which are routinely used for phylogenetic studies at 

the species level (Fet et al., 1999) will be done using standard alignment and 

phylogenetic software. We will create and analyze phylogenies of species, subspecies, 

and populations.  As outgroups, C. exilicauda (Wood) (Fet & Poindexter, 1992) from 

Baja California, C. vittatus (Say) from Arkansas, and C. bani (Armas & Fondeur) from 

the Dominican Republic, will be used. 

The goal is to analyze historical origin of these species, to test various biogeographic 

hypotheses of the origin (otherwise untestable), and to resolve confusing taxonomy that 

exists in the scorpion genus Centruroides of Central Mexico.  This study will help to 

understand unique features of Central Mexican biodiversity and the ways of its historical 

formation.  Since species of Centruroides are among the deadliest scorpions in the world, 

understanding of their taxonomy is also necessary for species delineation in practical 

studies such as toxicology, and public health. 
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CHAPTER III 

 

Methods 
 
Sample Collection 

Two different species complexes, the Centruroides infamatus (C. L. Koch, 1844) 

complex that includes Centruroides infamatus ornatus and Centruroides infamatus 

infamatus and the Centruroides limpidus (Karsch, 1879) complex that includes 

Centruroides limpidus limpidus, and Centruroides limpidus tecomanus were chosen and 

collected.  Our collaborator Mr. Javier Ponce Saavedra, in central Mexico, collected all 

samples.  Mr. Ponce Saavedra is a Ph. D student at the Universidad Michoacana de San 

Nicolás de Hidalgo in Michoacan, Mexico, and has all the appropriate permits required 

by the Mexican government to collect these samples.  The samples were collected by Mr. 

Saavedra using standard black light techniques as described in previous literature 

(Stahnke, 1972).  Once collected the samples were placed on dry ice and shipped to 

Marshall University.  Upon arrival they were removed from the dry ice and placed in 

individual labeled vials filled with 97% ethanol.  The ethanol serves as a preservative for 

the DNA.   Below is a list of the samples by label, with a description of the habitat and 

locality they were collected from.   Table 3.1 below, presents a summary of this 

information. 

 
 
 
Centruroides infamatus infamatus 
 
CiiZU1 This specimen was found in Zumpimito, Municipal of Uruapan, 
Michoacán.  The area is located in the transition between the temperate zone and the 
warmer areas.  This locality is just west, but near the center of the state.  The elevation is 
5118 feet above sea level.  Female 
 
 
 



 
 
 
 
 
Centruroides infamatus ornatus 
 
CioLC1 From “La Caratacua”, Municipal of Coeneo, Michoacán.  This area is 
located in the temperate zone, near the mountains of the Neovolcanic belt.  This area is in 
the Northwest portion of the state, and has an elevation of 5511 feet above sea level. 
Male. 
 
CioTI1 This specimen was found in Tiripetío, Municipal of Morelia, Michoacán.  
Found in the temperate zone of Morelia valley, this area lies in the north central part of 
the state.  The elevation is 6627 feet above sea level.  Female 
 
CioMO1 From within Morelia City, Municipal of Morelia, Michoacán.  This area is 
in the northern-central portion of the state with an elevation of 6364 feet above sea level.  
Female 
 
CioEC1 Found at “El Cóbano”, Municipal of Gabriel Zamora, Michoacán.  This 
area has warmer weather near the Neovolcanic belt with an elevation of 5052 feet above 
sea level.  Male 
 
 
Centruroides limpidus limpidus 
 
CllTZ1 From “Tres Puentes” Tzitzio, Municipal of Tzitzio, Michoacán.  This 
region lies in the north central part of the state with warm weather and an altitude of 5823 
feet above sea level.  This is just on the edge of the depression of the Balsas.  Female 
 
CllQU1 This specimen was found in Querétaro, Querétaro.  This population was 
found within the city limits at an elevation of 5971 feet above sea level.  Female 
 
CllTO1 From Tzirándaro, Guerrero, which is located in the middle of the balsas 
depression, near the balsas river.  The weather is very hot with an altitude of only 1607 
feet above sea level.  Female 
 
CllAR1 Found at Arúa, Municipal of Huetamo, Michoacán.  This locality is 
situated on the boarder of the Michoacán and Guerrero States.  With an altitude of 1607 
feet above sea level, it is very hot, but has a very high relative humidity.  The conditions 
here are similar to Tzirándaro, except it is more humid.  Male 
 
CllHU1 From Huitzuco, Guerrero, near Iguala.  This is the type locality for this 
species.  It has an elevation of 3149 feet above sea level.  Female 
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CllCH1 This is an example from Churumuco, Michoacán.  This locality is located 
in the Balsas depression, and has the lowest elevation at 984 feet above sea level.  Very 
hot and dry. Female 
 
CllCH2 Same as above.  Female 
 
 
Centruroides limpidus tecomanus 
 
CltFB1 This specimen was found at “El Faro de Bucerías”, Municipal of Aquila, 
Michoacán.  This locality is within the zone Hoffman reports the type examples are 
found.  Male 
 
CltFB2 Same as above.  Female 
 
 
Table 3.1   Species labels with Gender, species name and GPS cordinates.  
GPS cordinates are given in UTM. 

Label GPS Species Sex 
CioTI1 -101.3333,19.5500 C. infamatus ornatus Female 
CiiZU1 -102.0500,19.3667 C. infamatus infamatus Female 
CioEC1 -102.0333,19.1500 C. infamatus ornatus Male 
CioLC1 -101.5833,19.8167 C. infamatus ornatus Male 
CioMo1 -101.1167,19.7000 C. infamatus ornatus Female 
CllAR1 -100.8833,18.5833 C. limpidus limpidus Male 
CllCH1 -101.6333,18.6167 C. limpidus limpidus Female 
CllCH2  -101.6333,18.6167 C. limpidus limpidus Female 
CllHU1 -99.3500,18.3000 C. limpidus limpidus Female 
CllQU1 -100.3833, 20.6000 C. limpidus limpidus Female 
CllTO1 -100.8633,18.5633 C. limpidus limpidus Female 
CllTZ1 -100.9167,19.5667 C. limpidus limpidus Female 
CltFB1 -103.5000,18.6000 C. limpidus tecomanus Female 
CltFB2   -103.5000,18.6010 C. limpidus tecomanus Male 
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As outgroups for phylogenetic analysis, C. exilicauda (Wood), from Baja California, C. 

vittatus (Say) from Arkansas, and C. bani (Armas & Fondeur) from the Dominican 

Republic, will be used.  These are all samples that have been used in previous studies in 

this lab.   

 
 
DNA Extraction, Amplification and Sequencing. 
 
Total DNA was extracted from the legs of the samples, one at a time using a 

commercially available DNA extraction kit from Quiagen Inc.  The extraction was 

carried out using the Qiagen Dneasy tissue kit protocol with slight modifications.  For 

further information see appendix B.   

 

This study amplified two different mtDNA genes, 16S and COI.  All amplification 

reactions were carried out on a Perkin Elmer Geneamp ® PCR 2400, version 2.10 

thermocycler.  The protocol used in the 16S and COI amplification can be found in table 

3.2 below. 

 

 

 

Table 3.2  Temperature and time settings for each step of the PCR 
reaction used in the amplification of all target sequences.  Pre-cycling 
conditions, number of cycles, and post-cycling conditions given 
below. 

16S & CO1 Time Temperature 
Denaturing 0:45 94 
Annealing 0:45 48 
Extension 0:45 72 

Pre-cycling 5:00 94 
Cycles 30 

Post-cycling 10:00 72 
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The primers used in amplification of the 16S gene fragment have the following 

sequences, CGA TTT GAA CTC AGA TCA (forward 18-mer, also known as 38) and 

GTG CAA AGG TAG CAT AAT CA ( reverse 20-mer, also known as 40).  The primers 

used in the CO1 amplification have the sequence of  CCC GGT AAA ATT AAA ATA 

TAA ACT TC ( forward 25-mer, also known as Nancy) and GGT CAA CAA ATC ATA 

AAG ATA TTG (reverse 24-mer, also known as LCO).  For more information on the 

primers please see appendix G.  The PCR product is then checked using gel 

electrophoresis.  If the product is good, then it is cleaned using an Ultrafree MC 30,000 

cellulose centrifuge filter from Millipore Inc.  The cleaned and filtered product is then 

sent to the Molecular Genetics Instrumentation Facility, Department of Genetics, 

University of Georgia, for sequencing.  All sequences have been submitted to 

GENBANK, further information can be found in Appendix F. 

   

Data Analysis 

All data analysis was performed on an IBM compatiable PC, with an AMD K6-450 

processor, 128 megs of RAM, running Windows® 98SE operating system. 

 

After the sequences were obtained for all samples, they were aligned using the default 

settings in CLUSTALX version 1.81 for windows (Thompson et al., 1997).  The 

alignment of the sequences was done by software to help maximize the repeatability of 

the study, as the computer program uses algorithms and will align the same sequences in 

the same manner every time where as a human may not.  For further information about 

the CLUSTALX program and its use, please see Appendix E. 

 

The testing of different evolutionary models for the ML method was done using a 

Software package MODELTEST 3.06 (Posada & Crandall, 1998).  The program tested 

56 different models of nucleotide substitution.  The appropriate model chosen by 

MODELTEST was then implemented in the ML analysis. 
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All estimates and trees of ML, NJ and MP methods, were computed using the PAUP* 

4.10b software (Swofford, 1998).  The parameters for ML were estimated to πA = 0.34, 

πC = 0.15, πG = 0.12, and πT = 0.37, α = 0.15, transition (ti)/transversion (tv) ratio = 7.45 

(κ = 18.41), -ln L = 1411.76. For MP, ti's were down-weighted relative to tv's by factor 

seven.  The tree topology of the MP tree is a strict concensus of 12 trees, with 209 steps.  

NJ analysis was done with default settings. 

 

Bayesian Analysis was done using the software package entitled Mr.Bayes (Huelsenbeck 

& Ronquist, In Press).  The tree generated is a strict concensus tree of 10,000 trees 

generated after running 1,000,000 repititons.  

 

All trees generated by both PAUP* and MrBayes, were imported into TREEVIEW (Page, 

1996) for processing and enhancement.  The trees were then saved and ready for use in 

this article.  
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CHAPTER IV 
 
Results 
 
Table 4.1 shows the log likelihood scores from the MODELTEST program for 56 

different evolutionary models.   The model that was chosen was HKY + I + G with a 

score of 1,936.20. 

 
 

Table 4.1  Log of the likelihood scores computed by 
MODELTEST for 56 evolutionary models for use in 
analysis. 

       +I    +G   +I+G 
 JC              2,087.26    2,087.26    2,080.96    2,077.52 
 F81             2,056.11    2,056.11    2,050.27    2,047.10 
 K80             1,996.69    1,996.69    1,988.46    1,984.11 
 HKY             1,947.49    1,947.49    1,939.77    1,936.20 
 TrNef           1,995.59    1,995.59    1,987.05    1,982.60 
 TrN             1,947.33    1,947.33    1,939.58    1,936.14 
 K81             1,996.17    1,996.17    1,988.02    1,983.67 
 K81uf           1,947.14    1,947.14    1,939.15    1,935.59 
 TIMef           1,995.08    1,995.08    1,986.63    1,982.18 
 TIM             1,946.98    1,946.98    1,938.92    1,935.52 
 TVMef          1,994.90    1,994.90    1,986.71    1,982.13 
 TVM             1,943.51    1,943.51    1,934.88    1,931.74 
 SYM             1,993.83    1,993.83    1,985.53    1,980.89 
 GTR             1,943.36    1,943.36    1,934.67    1,931.69 

 

 

 

 

Table 4.2 shows the Maximum Likelihood distance matrix (upper right) and uncorrected 

p distance matrix (lower left) of Centruroides 16S mtDNA sequences. Parameters for 

ML-distances were set to the HKY85 +I +G model; transition/transversion ratio = 7.44 

(kappa = 18.41); assumed nucleotide frequencies (set by user): A=0.35, C=0.15, G=0.12, 

T=0.38; shape parameter α = 0.15. 58 characters are excluded, 366 characters remaining. 

 22



 

23 
 

                   
  

 

Table 4.2  Maximum Likelihood distance matrix (upper right) and uncorrected p distance matrix (lower left) of Centruroides 16S 
mtDNA sequences.  
 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 CioLC1 - 0.00 0.00 0.01 0.11 0.14 0.16 0.22 0.23 0.21 0.22 0.22 0.50 0.41 0.20 0.28 0.37
2  

  
 
  
  
  
  
  

  
 
  
  
 
  
  
  

CioEC1 0.00 - 0.00 0.01 0.11 0.14 0.16 0.22 0.23 0.21 0.22 0.22 0.50 0.41 0.20 0.28 0.37
3 CioMO1

 
0.00 0.00 - 0.01 0.12 0.15 0.16 0.22 0.22 0.22 0.23 0.23 0.51 0.42 0.21 0.29 0.36

4 CioTI1 0.01 0.01 0.01 - 0.13 0.16 0.19 0.25 0.26 0.24 0.25 0.25 0.54 0.42 0.22 0.31 0.38
5 CiiZU1 0.07 0.07 0.07 0.08 - 0.12

 
0.14 0.21 0.22 0.20 0.24 0.24 0.53 0.46 0.23 0.29 0.40

6 CltFB1 0.08 0.08 0.08 0.09 0.07 - 0.01
 

0.22 0.23 0.21 0.20 0.20 0.41 0.40 0.20 0.28 0.36
7 CltFB2 0.09 0.09 0.09 0.10 0.08 0.01 - 0.22 0.23 0.24 0.23 0.23 0.44 0.44 0.23 0.31 0.35
8 CllCH1 0.10 0.10 0.10 0.11 0.10 0.10 0.09 - 0.00 0.03 0.08 0.08 0.54 0.39 0.19 0.20 0.23
9 CllCH2 0.11 0.11 0.10 0.11 0.10 0.10 0.10 0.00 - 0.03 

 
0.09 0.09 0.56 0.40 0.18 0.21 0.22

10 CllTO1
 

0.10 0.10 0.10 0.11 0.09 0.09 0.10 0.02 0.03 - 0.06 0.06 0.46 0.40 0.20 0.19 0.26
11 CllTZ1 0.10 0.10 0.10 0.11 0.10 0.09 0.10 0.05 0.06 0.04 - 0.00 0.44 0.40 0.23 0.24 0.29
12 CllAR1 0.10 0.10 0.10 0.11 0.10 0.09 0.10 0.05 0.06 0.04 0.00 - 0.44 0.40 0.23 0.24 0.29
13 Cbani127

 
0.14 0.14 0.14 0.15 0.14 0.13 0.13 0.14 0.14 0.12 0.12 0.12 - 0.46 0.40 0.50 0.60

14 Cvit126 0.15 0.15 0.15 0.15 0.15 0.14 0.15 0.14 0.14 0.14 0.14 0.14 0.14 - 0.36 0.49 0.38
15 Cexil83 0.10 0.10 0.11 0.11 0.11 0.10 0.11 0.09 0.09 0.10 0.11 0.11 0.13 0.14 - 0.29 0.27
16 CllQU1 0.12 0.12 0.13 0.13 0.12 0.12 0.13 0.10 0.10 0.09 0.11 0.11 0.15 0.16 0.12 - 0.11
17 CllHU1 0.15 0.15 0.15 0.16 0.15 0.14 0.14 0.11 0.11 0.12 0.12 0.12 0.18 0.14 0.12 0.07 - 
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Four different trees from the different analysis’s were constructed.  The ML and NJ trees 

were combined, with bootstraps for each method at the nodes of each branch.  Figure 4.1 

shows 3 of the four trees constructed.  The ML/NJ tree were placed opposite the MP tree 

for the ease of comparison.   
 

 
FIGURE 4.1  16S MTDNA GENE GENEALOGY (366 BP) OF CENTRUROIDES FROM CENTRAL 
MEXICO. TREE TOPOLOGY WAS REVEALED BY MAXIMUM LIKELIHOOD (ML) ANALYSIS (LEFT) 
USING THE HKY85 + I +G MODEL AND BY WEIGHTED MAXIMUM PARSIMONY (MP) ANALYSIS 
(RIGHT). THE PARAMETERS FOR ML ARE LISTED IN THE METHODS SECTION. THE SINGLE MPTREE 
NEEDED 209 STEPS, AND THE CONSISTENCY INDEX EXCLUDING UNINFORMATIVE CHARACTERS 
(CIU) AND THE RETENTION INDEX (RI) WERE 0.56 AND 0.70, RESPECTIVELY. THE TREE TOPOLOGY OF 
THE CLADOGRAM ESTIMATED BY ML DIFFERS FROM THE TOPOLOGY REVEALED BY MP ONLY IN 
THE PHYLOGENETIC POSITION OF THE SEQUENCE OF C. EXILICAUDA. BOOTSTRAP VALUES 
CORRESPOND TO BOOTSTRAPPING (IN PARENTHESES FROM NEIGHBOUR-JOINING ANALYSIS).  



The fourth tree generated was the Bayesian analysis tree shown in figure 4.2, which is a 
concensus tree generated from 10,000 sampled trees. 
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FIGURE 4.2  BAYESIAN ANALYSIS CONCENSUS TREE OF 10,000 TREES SAMPLED FROM 
1,000,000 REPETITIONS.  
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The results from the CPU time needed in the analysis are found in table 4.3.  The table 

shows the amount of time need for each of the data analysis methods used in hours: 

minuets: seconds format.   

 
Table 4.3  CPU time needed in the analysis of  17 DNA sequences in Central Mexican 
Centruroides species.  Data shown in hours: minuets: seconds format. 
 

 
Neighbor 
Joining 

Maximum 
Parsimony

Maximum 
Likelihood Bayesian

CPU time 
used 0:00:48 0:02:35 0:18:51 18:36:24 
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CHAPTER V 

 
Summary and Conclusion 
 
 

This study, first of all, confirmed monophyly of the studied populations of Centruroides 

infamatus.  There were clearly observed two clade within this species. One was 

represented by the sole C. infamatus infamatus specimen taken from a humid pine-oak 

forest of Zumpimito, on the southern slope of the Trans-Mexican Volcanic Belt mountain 

range (these mountains are also known as "Corredor Tarasco"). Another clade included 

four specimens identifed as C. infamatus ornatus collected from the same landscape as 

Zumpimito (El Cobano, 1540 m) and three colder and drier highland localities (La 

Caratacua, 1680 m; Morelia city, 1940 m; and Tiripetio, 2020 m) of the northern slope. 

The taxonomic status of these two subspecies is unresolved.  They were originally 

described as separate species, and C. ornatus (type locality Jalisco, Mexico) was later 

downgraded to a subspecies of C. infamatus by Hoffmann (1932).  Most recently, 

Beutelspacher (2000) synonymized this taxon with C. infamatus (treating it as a “forma 

ornatus” is not in accordance with the International Code of Zoological Nomenclature, 

which does not allow categories below subspecies rank).  However, Ponce and 

Beutelspacher (2001) suggested that these two subspecies do in fact have certain 

morphometric differences.   Further support is offered by the fact that, at least in 

Michoacán these two forms were never found sympatrically (observations of J.P.S.; the 

data from literature showing sympatry of C. i. infamatus and C. i. ornatus are based on 

misidentifications).  This study confirms two divergent clades; divergence rate estimates 

their common ancestor’s age as 2-4 Ma for HKY+Γ divergence rate (11.7 ± 0.9 %) and 3-

5 Ma for uncorrected p (7.2 ± 0.4 %).  Further study is necessary with sampling all over 

the range of both taxa, to confirm existence of two independent lineages.  If such are 

confirmed, C. i. ornatus could be elevated to a species rank.  It appears that the 



nomenclatural category of subspecies is not consistent with the viewpoint of the 

phylogenetic species concept (PSC), which defines species based on monophyly. 

 

For Centruroides limpidus, the situation was more complicated, since monophyly of this 

species was not confirmed by the DNA data.  The coastal population from El Faro de 

Bucerias, identified as the subspecies C. l. tecomanus, in all analyses, formed an 

unexpected but highly supported sister clade to C. infamatus rather than to C. l. limpidus! 

Moreover, at least in one of our analyses C. exilicauda from Arizona formed an ingroup, 

cutting between C. l. limpidus clade and C. limpidus tecomanus (Fig. 4).  The 

evolutionary rate estimate of the age of common ancestor of C. infamatus and “C. 

limpidus tecomanus” is ca. 3-5 Ma for HKY+Γ divergence rate (15.3 ± 1.9 %), and 4-7 

Ma for uncorrected p (10.1 ± 0.8 % ). 

 

It is suspected that “C. l. tecomanus” is, in fact, a separate species, which may not be 

closely related to C. limpidus at all.  This enigmatic taxon was not studied in detail since 

it its description by Hoffmann (1932) from several localities in the Mexican state of 

Colima (Colima, Tecoman, and Manzanillo).  It is differentiated from the nominotypic 

subspecies essentially only by presence of a developed subaculear tooth (Stahnke, 1977) 

– a character which is known to vary even within developmental stages in Centruroides 

(Lourenço, 1982); some juvenile specimens identified formerly as C. l. tecomanus appear 

in fact to be juveniles of C. l. limpidus (Ponce & Beutelspacher, 2001).  Additional 

morphological data (Ponce, in preparation) show that this form also is distinguished from 

C. limpidus limpidus by the shape of female pectinal teeth, the color pattern on the 

carapace, and the carination of mesosomal tergites.  The recent comparative study by 

Dehesa-Dávila, (1996) on the primary amino acid structure of the Na+-channel-specific 

β-toxins supports our view that C. l. tecomanus is highly divergent from C. limpidus.  

Comparing the amino acid sequences, in their study, i.e. the Cii-1 toxin (= C. i. 

infamanus) and two Cll toxins (= C. l. limpidus) with the Clt-1 toxin (= C. l. tecomanus) 

revealed that 3-4 % amino acid replacements were found between the Cii and the Cll 
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sequences, whereas 4-7 % substitutions were found between Clt-1 and all other toxins.  

Moreover, a phylogenetic tree reconstructed from their alignment by Maximum 

Parsimony revealed that Clt-1 clearly was found separated from the two Cll1-2 and Cii-1 

sequences. Although these sequences might represent actually paralogous genes of a 

closely related toxin gene family, our phylogenetic approach indicates that toxin genes 

harbor considerably phylogenetic information despite the high selective constraint.  In 

this context, especially synonymous mutations (expected to be neutral) at the DNA level 

would be more informative since amino acid replacements might be of adaptive nature.  

The geographic range of C. l. tecomanus is confined to a rather narrow ecological area 

along the Pacific coast (Región de la Costa) within the states of Nayarit, Colima, 

Michoacán, and Jalisco. C. l. tecomanus does not cross the mountains of Sierra Madre del 

Sur into the Región de Sierras del Centro in Michoacán (Ponce, 2001) and thus is 

practically allopatric with C. l. limpidus.  

The nominotypic subspecies C. limpidus limpidus has a rather wide range in the south-

central Mexico (central Guerrero, Morelos, Michoacán, Distrito Federal, Mexico, 

Querétaro, and parts of Oaxaca and Puebla).  Samples were taken from its populations at 

Michoacán, Guerrero, and Querétaro.  Within this material, the DNA phylogeny reveals 

two clear lineages of deep divergence.  One lineage (well supported at 79 to 84 % 

bootstrap) includes specimens from Churumuco, Arua, Tzirandaro, and Tzitzio, all found 

within the boundaries of the Balsas Depression in Michoacán, along the entire altitudinal 

profile (300 to 1775 m a. s. l.).  Another well-supported lineage (96 to 97 % bootstrap) 

includes two specimens sampled from the mountains further to the west (two distant 

localities in Querétaro and Guerrero).  Time of divergence between two lineages can be 

estimated at ca. 5-8 Ma BP for both HKY +I+G divergence (23.7 ± 3.5 %) and 

uncorrected p (10.9 ± 1.0 %) (Table 3).  This estimate is consistent with the geological 

age of Balsas Depression, which was formed from 4 to 6 Ma BP.  The mountains of 

Sierra Madre del Sur in the south, and the Mexican Transverse Volcanic Belt in the north 

and west have been rising since the Eocene-Oligocene time.  The tectonic events could 

have isolated the populations in the area of modern Balsas Depression, which possibly 

could speciate in situ and then disperse toward the adjacent mountain slopes of the 
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transitional zone (e.g. Tzitzio, 1775 m).  The divergence time between Querétaro and 

Guerrero samples was estimated as 2-4 Ma BP for HKY +I +G rate (11 %) and 3-5 Ma 

for uncorrected p (7 %).  

 

This study suggests that more than one ancient monophyletic lineage (possibly, more 

than one species) exist within currently accepted Centruroides limpidus limpidus.  The 

type locality of Centruroides limpidus is Puebla, which lies in the same geographic area 

as Guerrero. Thus, we might assume that the Querétaro/Guerrero lineage corresponds to 

‘true’ C. limpidus, and that the Balsas Depression populations could belong to another, 

‘cryptic’, or ‘sibling’ species.  Further, detailed investigations should be done to test these 

preliminary conclusions: the need for many more populations from the entire range of C. 

limpidus  is needed.  Several data sets (mitochondrial and nuclear genes, allozymes, 

morphology, toxin structure/activity, etc.) could be analysed to establish the true 

taxonomic and genetic structure of the populations and species of Centruroides. 

 

This study used four different data analysis methods, including three established 

methods, neighbor joining, maximum parsimony, and maximum likelihood.  The fourth 

method, bayesian analysis was used in addition to the previous methods mentioned.  

When looking at the resulting trees from each of the four methods they are all very 

similar, so similar that 3 of them NJ, MP, and ML can be shown together with out any 

problem.  The BA tree is again similar in overall tree topology, and for the most part 

gives the same results.  This says a few things, first, the gene we have chosen for analysis 

is a good gene to use within these animals.  Second, it says that all methods of data 

analysis are valid forms, and should be considered for use in future studies.  With that 

being said, because the trees generated by these four different analysis methods are so 

similar to each other, BA may not need to be done.  When looking at table 4.3, you can 

see that the BA program, at 18 plus hours, takes a significantly longer time to generate 

the ‘final tree’ that we are looking for, and since the four trees do not differ in topology 

drastically there is really no need to render the computer useless for 18 plus hours.  
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Future studies should use NJ, ML, and MP in analysis until the BA becomes more 

efficient in regards to time and resource uses.    
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Appendix 

 

Appendix A 
 
Recipes and Formulas 
 
50x TAE (Tris, Acetic Acid and EDTA) Buffer 
For 1 Liter 
 
40 mM Tris Base  193.8g  
40 mM Acetic Acid 45.7g 
1 mM EDTA  14.8g 
  
PH=8.0 
Stored at room temperature 
 
 
Ethidium Bromide (EtBr) 
10mg/ml concentration 
 
H2O   10mL 
Ethidium bromide 0.1 gram 
 
Stored at room temperature 
 
 
Primers 

100µM Stock 
10µM use 
1/9  One part primer/ Nine part H2O 
 
Store in freezer 
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Appendix B 
 
 
Extracting DNA from Animal Tissue 
 
1. Remove specimen from ethanol.  Using forceps (and gloved hands), place the forceps where 

the legs join the main body, and pull two legs off of the scorpion. 

2. Pour some liquid nitrogen into a mortar, and add the legs.  Using the pestle slowly rock / 

grind the legs into small pieces. 

3. The rest of the protocol is taken from the Qiagen Dneasy tissue kit and is used as a 

modified and listed below. Using the now ground tissue, place in a 1.5-ml micro-

centrifuge tube, and add 180 µl Buffer ATL. Ensure the correct amount of starting 

material is used (see page 8). For tissues such as spleen with a very high number of cells 

for a given mass of tissue, no more than 10 mg starting material should be used. It is 

advisable to cut the tissue into small pieces to enable more efficient lysis. 

4. Add 20 µl Proteinase K, mix by vortexing, and incubate at 55°C until the tissue is 

completely lysed. Vortex occasionally during incubation to disperse the sample, or place 

in a shaking water bath or on a rocking platform.  Lysis time varies depending                          

on the type of tissue processed. Lysis is usually complete in 1–3 h. If it is more          

convenient, samples can be lysed overnight; this will not affect them adversely. After 

incubation, the lysate may appear viscous but should not be gelatinous as it may clog the 

DNeasy mini column.  

5. Add 4 µl of RNase A (100 mg/ml), mix by vortexing, and incubate for 2 min at room 

temperature.  Transcriptionally active tissues such as liver and kidney contain high levels 

of RNA, which will copurify with genomic DNA. If RNA-free genomic DNA is required, 

carry out this optional step. If residual RNA is not a concern, omit this step. 

6. Vortex for 15 sec. Add 200 µl Buffer AL to the sample, mix thoroughly by vortexing, 

and incubate at 70°C for 10 min.  It is essential that the sample and Buffer AL are mixed 

immediately and thoroughly by vortexing or pipetting to yield a homogeneous solution. 

A white precipitate may form on addition of Buffer AL, which in most cases will dissolve 

during the incubation at 70°C. The precipitate does not interfere with the DNeasy 

procedure. Some tissue types (e.g., spleen, lung) may form a gelatinous lysate after 
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addition of Buffer AL. In this case, vigorously shaking or vortexing the preparation 

before addition of ethanol in step 7 is recommended. 

7. Add 200 µl ethanol (96–100%) to the sample, and mix thoroughly by vortexing. It is 

important that the sample, Buffer AL, and the ethanol are mixed thoroughly to yield a 

homogeneous solution.  A white precipitate may form on addition of ethanol. It is 

essential to apply all of the precipitate to the DNeasy spin column. 

8. Pipette the mixture from step 4 into the DNeasy mini column sitting in a 2-ml collection 

tube. Centrifuge at ³6000 x g(8000 rpm) for 1 min. Discard flow-through and collection 

tube. 

9. Place the DNeasy mini column in a new 2-ml collection tube, add 500 µl Buffer AW1, 

and centrifuge for 1 min at ³6000 x g (8000 rpm). Discard flow-through and collection 

tube. 

10. Place the DNeasy mini column in a 2-ml collection tube, add 500 µl Buffer AW2, and 

centrifuge for 3 min at full speed to dry the DNeasy membrane. Discard flow-through 

and collection tube.  This centrifugation step ensures that no residual ethanol is carried 

over during the following elution. Discard flow-through and collection tube.  Following 

the centrifugation step, remove the DNeasy spin column carefully so that the column 

does not contact the flow-through, since this will result in carryover of ethanol.  (If 

carryover of ethanol occurs, empty the collection tube and reuse it in another 

centrifugation step for 1 min at full speed.)  

11. Place the DNeasy mini column in a clean 1.5-ml or 2-ml microcentrifuge, and pipette 200 

µl Buffer AE directly onto the DNeasy membrane. Incubate at room temperature for 1 

min, and then centrifuge for 1 min at 6000 G (8000 rpm) to elute.  Elution with 100 µl 

(instead of 200 µl) increases the final DNA concentration in the elute, but also decreases 

the overall DNA yield (see Figure 3 on page 12). 

12. Repeat elution once as described in step 11. 
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Appendix C  
 
Setting up and running a Thermocycler Reaction 
Wear Gloves at all times 
 

1. Pull needed ingredients out of the freezer and start them thawing.   

2. Prepare an ice bucket to keep the master mix in while mixing. 

3. Measure out the following ingredients in the respective proportions. All ingredients 

are listed in µl. (For Eight different samples) 

H2O   300 
MgCl2   48 
10x buffer  41 
Primer 1  8 
Primer 2  8 
DNTP   8 
Taq polymerase 2.0 

4. Label a 1.5 ml microcentrafugue tube “master mix” in which all of the above 

ingredients will be placed. 

5. Label all thin wall tubes that will be placed in the thermocycler. 

6. Starting with the largest volume, add all ingredients except for the Taq polymerase, 

which will be added at the very end.  Be sure to change pipette tips between each 

ingredient. 

7. Add taq polymerase, be sure to pipette up and down to make sure that you have all of 

the Taq out of the pipette tip and into the master mix. 

8. Vortex master mix for 5 seconds. 

9. Pipette 46.5 µl out of the master mix tube into each of the waiting thin-walled tubes 

that are going into the thermocycler. 

10. Add 3.5 µl of template DNA to the each of the corresponding thin-walled tubes, and 

close the lid on the tube.  Tap the side gently to knock down anything that may be on 

the sidewall.  When adding the template DNA be sure that you get the tip of the 

pipette all the way down to the bottom of the thin-walled tube. 

11. Place the thin-walled tubes into the thermocycler and press start. 

12. When the thermocycler is finished remove the thin-walled tubes from the machine 

and secure them in a rack and place the rack in a refrigerator. 
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Appendix D 
 
 
How to prepare for and run a gel electrophoresis 
 
Pouring the Gel 

1. Measure out 70 ml of TAE buffer 

2. Weigh out .70 grams of Agarose Low EED (Fisher Biotech) 

3. Add both TAE buffer and .70 grams of Agarose to a small Earlameirer flask. 

4. Microwave flask for 45 seconds until agarose is in solution.  This usually happened when 

the contents of the flask have come to a boil. 

5. Remove from microwave, and wait until the flask is cool enough to touch with the bare 

hand; at this point add 2.2 ul of Ethidium Bromide Solution to the mixture. 

6. Stir 

7. Prepare casting tray by putting stoppers on the each end, and pour gel. 

8. After having poured the gel, insert comb that is most appropriate (8, 12 or two combs), and 

wait for the gel to solidify.  This can be determined by the opaqueness of the gel.  When the 

gel is warm and still liquid it is clear, and solid it is opaque.  

 

Running the Gel  

1. Carefully remove the stoppers at the ends of the gel tray.  Place the tray with the gel on it, 

into the electrophoresis box.  Be sure that the well side of the gel is to the right, or the side 

with the negative electrode. 

2. Fill the electrophoresis box with buffer until the gel is completely submersed.  There should 

be a thin layer over the gel. 

3. Remove the comb in the gel by gently moving the comb side to side, rocking it out of the 

wells.  This prevents air bubbles in the wells.  In the event that an air bubble occurs, use an 

empty pipette tip to dislodge the bubble. 

4. On a piece parafilm, place N dots of 3µl of loading dye, (N is the number of PCR samples 

that are going to be examined. 

5. With a new tip each time, add 4µl of your PCR product to one of the dots of loading dye, 

and mix by pipetting up and down.  The solution should turn blue in color. 
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6. With the mixture in the pipette tip, carefully position the tip over the well.  Release the 

mixture into the well.   

7. Change tips and repeat.  Once all samples are loaded, place electrodes / lid on 

electrophoresis box, and connect the box to the power supply. 

8. Turn power supply on, and set to about 90 Milliamps.  Let the gel run for 25 min, or 2/3 of 

the length of the gel. 

9. Turn the power off and unplug leads from power supply.  Remove lid and take gel out of the 

buffer. 

10. Place gel on the transilluminator box.  Put on eye protection, and turn on the UV light tray. 

11. Look at your results, and take a picture. To take a picture, place camera over the gel and 

hold trigger for 2 seconds.  

12. Pull the tab on the film (near the top of the camera) and wait for 30 seconds.  Remove 

picture from the chemical sheet. 

 
 
 
 

 42



Appendix E 
 
Using ClustalX for sequence alignment 1.81 
 

1. Open notepad.  You cannot use Microsoft Word for the preparation of the input file.  
The file needs to be saved as a *.txt file.   

2. Each sequence needs to entered as follows: 
 

Start:   Each sequence starts with the “>” symbol.   
Label: The next ten character spaces directly after the start symbol are assigned 

to the sequence as the name or label.  I suggest that you do not use 
anything longer than 8 characters.   

Space:    This space separates the data label from any other information that you 
may want to include.   

Extra data: It is important to note that this information will not be shown anywhere 
other than the input file.  PAUP, and CLUSTALX will not use this data.  
This is the chance to enter any other data that you would like to see. 

Hard Return: Enter a hard return.  This separates the label information from the actual 
sequence itself. 

Sequence data: Here is the sequence data 
Hard return: Hard return and start again for the next sequence. 
 

There is no symbol or character needed to indicate the end of a file.  Please see the example 
input file below. 

 
 

>123asdf Location data 
GTCGTCGTCGTCGTCGTCGTCGTCGTCGT………..etc. 
 
>234asdf location data 
CTGCTGCTGCTGCTGCTGCTGCTGCTGCT………..etc. 
 

3. Once the input file has been created, save the file as *.txt.   
4. Open CLUSTALX 1.81.  Open the “File” menu, and select “load sequences”.  This will 

bring up a browsing window, find your file and click open. 
5. Open the “Alignment” menu and select “Output format options”.  Select the nexus 

format, and click close  
Open the “Alignment” menu and select “Do complete alignment”  At this point CLUSTALX 
will generate the alignment and save it to the disk.  The file generated can be used right away by 
PAUP. 

 
 
 
 
 

 43



 
Appendix F 
 
DNA Sequences 
 
All sequences used or generated for this thesis are listed in the following appendix.  The 
sequences have also been submitted to GenBank, a public database for sequences, and can be 
found at the following address  : 
 
 http://www.ncbi.nlm.nih.gov/ 
 
16S Sequence accension numbers : 
  
 CiiZU1 AF439753  CllAR1 AF439760 
 CioEC1 AF439754  CllTO1 AF439761 
 CioLC1 AF439755  CllTZ1 AF439762 
 CioMo1 AF439756  CllHU1 AF439763 
 CiiTI1 AF439757  CllQU1 AF439764 
 CllCH1 AF439758  CltFB1 AF439765 
 CllCH2 AF439759  CltFB2 AF439766 
 
Cytochrome Oxidase 1 accension Numbers: 
 
 CiiZU1    CllAR1  
 CioEC1    CllTO1  
 CioLC1    CllTZ1  
 CioMo1    CllHU1  
 CiiTI1    CllQU1  
 CllCH1    CltFB1  
 CllCH2    CltFB2  
 
 
 
Paper label   our label      ponce         Paper label   our label      ponce 
CiiZU1 (171)     [A]  CllAR1 (181)       [I] 
CioEC1 (176)    [E]  CllTO1 (177)       [H] 
CioLC1 (172)    [B]  CllTZ1 (180)       [F] 
CioMo1 (175)       [D]  CllHU1 (182)       [K] 
CiiTI1 (179)    [C]  CllQU1 (173)       [G] 
CllCH1 (178)           [J]  CltFB1 (174)       [M] 
CllCH2   (184)           [N]         CltFB2    (183)       [L] 
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Appendix G 
 
Primer Information 
 
CO I primers 
Ron   
 
Length : 23 
Sequence: GGA TCA CCT GAT ATA GCA TTC CC 
Td :  66.0 
Tm:  71.8 ( %GC method ) 
Tm:  68.0 (2 * (A + T) + 4*(GC)) 
 
A + T = 12 (52.2%) 
G + C = 11 (47.8%) 
 
Nancy 
 
Length: 26 
Sequence: CCC GGT AAA ATT AAA ATA TAA ACT TC 
Td:  64.1 (nearest neighbor method) 
Tm:  66.6 (%GC method) 
Tm:  66.0 (2 * (A + T) + 4*(GC)) 
 
A+T = 19 (73.1 %) 
G+C = 7  (26.0 %) 
 
LCO I 
Length:  24 
Sequence:  GGT CAA CAA ATC ATA AAG ATA TTG 
Td:   60.2 (nearest neighbor method) 
Tm:   65.3 (%GC Method) 
Tm:   62.0 (2* (A + T) + 4*(GC)) 
 
A + T =  17 (70.8 %) 
G + C =  7 (29.2 %) 
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16S Primers  
 
38 
Length:  18 
Sequence:  CGA TTT GAA CTC AGA TCA 
Td:   52.3 (nearest neighbor method) 
Tm:   59.9 (%GC method) 
Tm:   50.0 (2* (A + T) + 4*(GC)) 
 
A + T = 11 (61.1 %) 
G + C = 7   (38.9 %) 
 
 
40 
Length:  20  
Sequence:  GTG CAA AGG TAG CAT AAT CA 
Td:   58.0 (nearest neighbor method) 
Tm:   64.2 (%GC method) 
Tm:   56.0 (2* (A + T) + 4*(GC)) 
 
A + T = 12 (60.0 %) 
G + C = 8  (40.0 %) 
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Appendix H 
 
 
MEXICO COI  raw data 
 
CiiZU1 (171) [A]  {835} 
AGNGGTTCGCCCCATAGAATAACNTATAGCCGNATGGCTGANNATNNAATAGGTATGCCNCT
CCTCCAGTCTAGGGATCAAAAAATAGTAGGTATGTAAAATTCCGATCAGTCAACANCATNGT
AATNGCCCCAGCCAACACAGGAAGAGACAACAAAAGCAAAACAGCAGTAACCATTACAGATC
AAACAAACAATGGAAGACGATCCAACCCCATACCACTTCTCCGCATATTAATAATAGTGGTA
ATAAAATTAATAGCCCCCAAAATAGAAGAAACACCAGCTAAATGCAAAGAAAAAATAGTAAG
GTCAACCGAACCCCCAACATGAGCCAAAGAAGAAGAAAGAGGGGGGTAGACTGTTCAGCCAG
TCCCCGCCCCTCTTTCTAATGCTGCAGAAGAGAGCAAAAGAAAAAAAGCAGGAGGAAGTAGT
CAAAAACTCATATTATTTATCCGAGGGAAAGCTATATCTGGAGCACCTAACATCAAAGGAAC
CAATCAATTACCAAATCCACCAATTATAATAGGTATAACCATAAAAAAAATCATAACAAAAG
CATGAGCCGTCACAACTACATTATAAACTTGGTCATCCCCAATCAAAGATCCCGGCATTCCA
ATCTCCCCACGAACAATCAAACTCAAAGCAGTCCCAACCATAGAAGCTCAAATCCCTAACAC
CAAATACATAGTACCAATATCTTTATGTTGGNNNNGNCCNANNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 
 
CioLC1 (172) [B]  {836} 
TAGTGGTNNGCTCCATAGAATACCNNTGTNAATGCTGANTTNNNATAGTGGTNCCCCCCCAC
CAGTCAGGGATCAAAANAAGAAGTATNAAAGATTCCGGTCCGTCATACAACATAGGAATNGC
TCCAGCTCAACACAGGAAGAGTCNACAAANGTTANACNGCNGTTTCNATCACNGATNAAACA
AACAAAGGGNGTCGATCCAACCCCATACCTACTTCTACGTATATTAATAATAGTATGTAATA
AAATTAATATGCCCCCAAAATAGTATGAAACACCAGCTAAATGTAAAGAAAAAATAGTAAGA
TCAACCGAACCCCCCACATGAGCCAAAGAAGAAGAAAGAGGGGGGTAGACTGTTCAGCCAGT
CCCCGCCCCTCTTTCTAGTGCCGCAGAAGAAAGCAAAAGGAAAAAAGCAGGAGGAAGAAGCC
NGAAACTCATATTATTCATCCGAGGAAAAGCCATGTCCGGAGCACCTAACATCAAAGGAACC
AACCAATTACCAAATCCCCCAATTATAACAGGCATAACCNTAAAAAAAATCATAACAAAAGC
ATGAGCCGTNACAACTACATTATAAACCTGATCATCCCCAATCAAAGATCCCGGCATTCCAA
TCTCTCCACGAACAATTAATCTTAAAGCAGNTCCAACCATAGAAGCCCAAATTCCCAACACC
AAATACATAGTACCAATATCTTTATGATTNGNTNGNCCANNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 
 
CllQU1 (173)  [G]  {837} 
AGATGNTGNTCTCCATAGTATNNGTATAGCTCNCATGGCTGGCNCNTCACGAAGAGTGTNGC
TGCCCCACACAGACGCTGTGTATAGAATTAAGGNANGTCTTAAAGTTCCGTATGCTGTCATA
CATCATAGTANTCGCCCCNGCCAACTACAGGCAAGGGATANTCNAAAGCTAAACAGCAGTAA
CCATCACAGACCAAGCAAACAAAGGATGACGATCCAAACCTATCCCACTTCTCCGCATATTA
ATAATAGTAGNCAATAAAATTAATAGCCCCTAAAATAGAAGAAACACCAGCCAAATGCAAAG
AAAAAATAGTAAGATCAACCGACCCCCCAACATGAGCCAAAGAAGAAGAAAGAGGGGGGTAG
ACTGTTCAGCCAGTCCCCGCCCCTCTTTCCAATGCAGCAGAGGAAAGCAAAAGAAAAAAAGC
CGGCGGAAGCAACCAAAAACTCATATTATTCATACGAGGAAAAGCCATGTCCGGAGCACCCA
ACATCAAGGGCACCAACCAATTCCCAAACCCACCAATTATAATGGGCATAACCATAAAAAAA
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ATTATCACAAAAGCATGAGCTGTCACAACTACATTATAAACCTGATCATCCCCAATCAAAGA
GCCAGGCATACCAATCTCACCACGAACAATCAAGCTCAAAGCAGTCCCAACCATAGAAGCCC
AAATCCCTAATACTAAATACATAGTACCAATATCTTTATATNGGGNGGGAACCAANNNNNNN 
 
CltFB1   (174)      [M]   {838} 
GTANTGCTCATGATANCNANATAGNTNCATGTTGATATAAAATAGGATCCCCCCCACCAGCA
GGATCAAAAAAAGAAGTATTAAAATTCCGATCTGTTAACAATATGGTAATAGCCCCAGCCAA
CACAGGAAGAGACAATAAAAGCAAAACAGCAGTAACCATCACAGACCATACAAATAAAGGAA
GACGATCCAACCCCATTCCACTTCTCCGTATATTAATAATAGTAGTGATAAAATTAATAGCC
CCTAAAATAGAAGAAACACCAGCTAAATGCAAAGAAAAAATAGTAAGATCAACCGAACCCCC
AACATGAGCTAAAGAAGAAGAAAGAGGGGGGTAAACTGTTCAACCAGTCCCCGCCCCTCTTT
CTAATGCCGCAGAAGAAAGCAAAAGAAAAAAAGCAGGGGGAAGCAGCCAAAAACTCATATTA
TTCATTCGAGGAAAAGCCATATCAGGAGCACCTAACATTAAAGGAACTAATCAATTACCAAA
CCCCCCAATTATAATAGGCATAACCATAAAAAAAATTATAACAAAAGCATGAGCCGTCACAA
CCACGTTATAAACTTGATCATCTCCAATCAAAGACCCCGGCATCCCAATCTCCCCACGAACA
ATCAATCTCAAAGCAGTTCCAACCATAGAAGCTCAAATCCCTAAAACCAAATATATAGTACC
AATATCTTTATATTGGGNNNGNNCCANNN 
 
CioMO1  (175)   [D]  {839} 
TGATGATAGTCTCNATAGATNTGTTGTNCATGCTGAGTTAANATAGGGTGCCCCCCCACCAG
GCAGGNATCAAAAAAGGANGTATTAAAGATTCCGGTCCGTCGTACAACATAGTAATNGCTCC
AGCCAACACAGGAAGAGACAACAAAAGTATAGACTGCAGTAACCATCACAGATCAGACAAAC
AAAGGANGACGATCCAACTCGCATACCACTTCTACGTNTATTAATAATAGTAGTANATAAAA
TTAATAGCCCCCAAAATAGAAGAANCACCNGCTAAATGTAAAGAAAAAATAGTAAGATCAAC
CGAACCCCCCACATGAGCCAAAGAAGAAGAAAGAGGGGGGTAGACTGTTCAGCCAGTCCCCG
CCCCTCTTTCTAGTGCCGCAGAAGAAAGCAAAAGGAAAAAAGCAGGAGGAAGAAGCCAGAAA
CTCATATTATTCATCCGAGGAAAAGCCATATCCGGAGCACCTAACATCAAAGGAACCAACCA
ATTACCAAATCCCCCAATTATAATAGGCATAACCATAAAAAAAATCATAACAAAAGCATGAG
CCGTAACAACTACATTATAAACCTGATCATCCCCAATCAAAGATNCCGGCATTCCAATCTCT
CCACGAACAATTAATCTTAAAGCAGTCCAAACCATAGAAGCCCAAATTCCCAACACCAAATA
CATAGTACCAATATCTTTATGATTNGGNNNGANCNANNNNN 
 
CioEC1 (176)    [E]   {840} 
TGTNTNGTTNATGATTTGTTGTNCATGCTGAGTTAGANATAGGGTGCCCCCCCACCAGCAGG
ATCAAAAAAAGANGTATTAGAAATTCCGGTCCGTCAACAACATAGTAATAGCTCCAGCCAAC
ACAGGAAGAGACAACAAAAGTATAGACAGCAGTAACCATCACAGATCAAACAATCAAAGGAA
GACGATCCAACCCCATACCACTTCTACGTATATTAATAATAGTAGTAATAAAATTAATAGCC
CCCAAAATAGAAGAAACACCAGCTAAATGTAAAGAAAAAATAGTAAGATCAACCGAACCTCC
CACATGAGCCAAAGAAGAAGAAAGAGGGGGGTAGACTGTTCAGCCAGTCCCCGCCCCTCTTT
CTAGTGCCGCAGAAGAAAGCAACAGGAAAAAAGCAGGAGGAAGAAGCCNGAAACTCATATTA
TTCATCCGAGGAAAAGCCATGTGCCGGAGCACCTAACATCAAAGGAACCAACCAATTACCAA
ATCCCCCAATTATANTAGGCATANCCNTAAAAAAAATCATNACAGNAGCATGAGCCGTAACA
ACTACATTATAAACCTGATCATCCCCAATCAAAGATNCCGGCATTCCAATCTCTCCACGAAC
AATTAATCTTAAAGCAGTTCAANCCATAGAAGCCCAAATTCCCAACACCAAATACATAGTAC
CAATATCTTTATGATTGGGGTGGACCNANNNNN 
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CllTO1  (177)    [H]  {841} 
TTACANGGTGCGTCCCCTAGGATCATTGTTAGTTTCATAGCNTTGTAGTATCGNNCACAAGG
TATNCCNTCNACNACGCAGACTGNGTGCTNNANATAGAGNAGGNTCTTAAAATTCCGATTCC
GTTTNTAACATAGTAATAGCTCCAGCACAGATACTGGCAAGAAGGACAACAAAAGCTNNACA
GCNGTNACCATTACAGATCAAACATTCAAAGGNTGACGATCCAACCCTATNCCACTACTTCG
CGTATTAATAATAGTAGTAATAAAATTAATAGCCCCCAAAATAGAAGAAACACCAGCCAAAT
GTAAAGAAAAAATAGTAAGATCAACCGACCCTCCTACATGAGCCAAAGATGAAGAAAGAGGG
GGGTATACTGTTCAACCAGTCCCCGCCCCTCTTTCCAATGCCGCAGAAGAAAGTAAAAGAAA
AAAAGCAGGAGGAAGCAACCAAAAACTCATATTATTCATACGAGGAAAAGCCATATCCGGAG
CCCCCAACATCAAAGGAACTAACCAATTCCCAAACCCTCCAATCATAATCGGCATAACTATA
AAAAAAATTATAACAAAAGCATGAGCCGTAACAACTACATTATAAACCTGATCATCCCCAAT
CAAAGACCCCGGCATCCCAATCTCACCTCGAACAATTAAACTCAAAGCAGTTCCAACTATAG
AAGCCCAAATTCCTAACACCAAATATATAGTCCCAATATCTTTATGATTGGGNTNGACCNAN
NN N
 
CllCH1    (178)    [J]  {842} 
AGNNNNNTTTTACNGGTGGCTCCCNCNAGAANATATTGTATNGTNACACATCGCCTTGCACT
ATCTANTAANTANGTANNCCGNACACNNCACAGANTGTGTGATATNANAACAGAGNAGGCCT
TAAAATTCCGATCCGTCTATAACATAGNAATAGCTCCAGCCAATACTGGAAAACACAACAAA
AGCAAAACAGCAGTAACCATTACAGATCAAACAAACAAAGGAAGACGATCCAACCCTATNCC
ACTACTTCGCNTATTAATAATAGTAGTAATAAAATTAATAGCTCCTAAAATAGAAGAAACAC
CAGCCAAATGTAAAGAAAAAATAGTAAGATCAACCGACCCTCCTACATGAGCCAAGGATGAA
GAAAGAGGGGGGTATACTGTTCAACCAGTCCCCGCCCCTNTTTNCAATGCCGNANAANAAAN
CNAAANAAANNNNCNNNNNGNANNNNCCNAANNCTNATNTTTNNATNCNANNNNNNNNNNNT
NNNNNNNNNNNNNNNNNNNNNNNTNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNTNN
NNN 
 
CiiTI1   (179)    [C]     {843} 
GTGTNGCCCAAAAAATCAAAATNAATGCTGATATAAAATAGGGTCCCCCCCACCAGCAGGAT
CAAAAAAAGAAGTATTAAAATTCCGGTCCGTCAACAACATAGTAATAGCTCCAGCCAACACT
AGGAAGAGACAACAAAAGTAAGACAGCAGTAACTCATCACAGATCAAACAAACAAAGGAAGA
CGATCCAACCCCATACCACTTCTACGTATATTAATAATAGTAGTAATAAAATTAATAGCCCC
CAAAATAGAAGAAACACCAGCTAAATGTAAAGAAAAAATAGTAAGATCAACCGAACCCCCCA
CATGAGCCAAAGAAGAAGAAAGAGGGGGGTAGACTGTTCAGCCAGTCCCCGCCCCTCTTTCT
AGTGCCGTAGAAGAAAGCAAAAGGAAAAAAGCAGGAGGAAGAAGCCAGAAACTCATATTATT
CATCCGAGGAAAAGCCATGTCCGGAGCACCTAACATCAAAGGAACCAACCAATTACCAAATC
CCCCAATTATAATAGGCATAACCATAAAAAAAATCATAACAAAAGCATGAGCCGTAACAACT
ACATTATAAACCTGATCATCCCCAATCAAAGATCCCGGCATTCCAATCTCTCCACGAACAAT
TAATCTTAAAGCAGTTCCAACCATAGAAGCCCAAATTCCCAACACCAAATACATAGTACCAA
TATCTTTTTNGGNGGGGNCNCNANNN 
 
CllTZ1     (180)   [F]   {844} 
GGTTGCCCAAAAAATCAAAACAAATGCTGATACAAAATAGGATCCCCCCCACCAGCAGGATC
AAAAAAAGAAGTATTAAAATTCCGATCCGTCAACAACATAGTAATAGGCCCCAGCCAATACA
GGAAGAGACAACAAAAGCAAAACAGCAGTAACCATTACAGATCAAACAAACAAAGGAAGACG
ATCTAACCCTATTCCTCTACTTCGCATATTAATAATAGTAGTAATAAAGTTAATAGCCCCTA
AAATAGAAGAGACACCAGCCAAATGTAAAGAAAAAATAGTAAGATCAACCGACCCCCCTACA
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TGAGCTAAAGAAGAAGAAAGAGGGGGGTACACTGTTCAACCAGTCCCCGCCCCTCTTTCCAA
TGCTGCAGAAGAAAGTAAAAGAAAAAAAGCAGGAGGAAGCAACCAAAAACTCATATTATTCA
TACGAGGAAAAGCCATATCTGGAGCCCCCAACATCAAAGGAACTAACCAATTTCCAAACCCC
CCAATCATAATTGGTATAACCATAAAAAAAATTATAACAAAAGCATGAGCCGTAACAACTAC
ATTATAAACCTGATCATCCCCAATTAAAGACCCCGGCATCCCAATCTCACCCCGAACAATTA
AACTCAAAGCAGTCCCAACTATAGAAGCCCAAATTCCCAACACCAAATATATAGTACCAATA
TCTTTTTNNNNNGGGNNCCCN 
 
CllAR1      (181)     [I]  {845} 
TGGTNGCCCAAAAAATCAAAACNAATGCTGATACAAAATAGGATCCCCCCCACCAGCAGGAT
CAAAAAAAGAAGTATTAAAATTCCGATCCGTCAACAACATAGTAATGGCCCCAGCCAATACA
GGAAGAGACAACAAAAGCAAAACAGCAGTAACCATTACAGATCAAACAAACAAAGGAAGACG
ATCTAACCCTATTCCTCTACTTCGCATATTAATAATAGTAGTAATAAAGTTAATAGCCCCTA
AAATAGAAGAGACACCAGCCAAATGTAAAGAAAAAATAGTAAGATCAACCGACCCCCCTACA
TGAGCTAAAGAAGAAGAAAGAGGGGGGTACACTGTTCAACCAGTCCCCGCCCCTCTTTCCAA
TGCTGCAGAAGAAAGTAAAAGAAAAAAAGCAGGAGGAAGCAACCAAAAACTCATATTATTCA
TACGAGGAAAAGCCATATCTGGAGCCCCCAACATCAAAGGAACTAACCAATTTCCAAACCCC
CCAATCATAATTGGTATAACCATAAAAAAAATTATAACAAAAGCATGAGCCGTAACAACTAC
ATTATAAACCTGATCATCCCCAATTAAAGACCCCGGCATCCCAATCTCACCCCGAACAATTA
AACTCAAAGCAGTCCCAACTATAGAAGCCCAAATTCCCAACACCAATATATAGTACCAATAT
CTTATATTGGGGGGGNACCCAANNN 
 
CltFB2    (183)   [L]  {846} 
GGGNNAGTTCTACTNTTATCGCATTNCGNANGGCCAGATATAAAATAGGATCTCCCCCACCA
GCAGGATCAAAAAAAGAAGTATTAAAATTTCGATCTGTTAACAATATGGTAATAGCCCCAGC
CAACACAGGAAGAGACAATAAAAGCAAAACAGCAGTAACCATCACAGACCATACAAATAAAG
GAAGACGATCCAACCCCATTCCACTTCTTCGTATGTTAATAATAGTAGTGATAAAATTAATA
GCCCCTAAAATAGAAGAAACACCAGCTAAATGCAAAGAAAAAATAGTAAGATCAACCGAACC
CCCAACATGAGCTAAAGAAGAAGAAAGAGGGGGGTAAACTGTTCAACCAGTCCCCGCCCCTC
TTTCTAATGCCGCAGAAGAAAGCAAAAGAAAAAAAGCAGGGGGAAGCAACCAAAAACTCATA
TTATTCATTCGAGGAAAAGCCATATCAGGAGCACCTAACATTAAAGGAACTAATCAATTACC
AAACCCCCCAATTATAATAGGCATAACCATAAAAAAAATTATAACAAAAGCATGAGCCGTCA
CAACCACGTTATAAACTTGATCATCTCCAATCAAAGACCCCGGCATCCCAATCTCCCCACGA
ACAATCAATCTCAAAGCAGTTCCAACCATAGAAGCTCAAATTCCTAAAACCAAATATATAGT
ACCAATATCTTTTTNGNGGGGGNCCCCNNNNN 
 
CllCH2   (184)      [N]  {847} 
GGGTGCCCANAAATCAAAGTCAATGCTGATATAAAATAGGATCCCCCCCACCAGCAGGATCA
AAAAAAGAAGTATTAAAATTCCGATCCGTCAATAACATAGTAATAGCTCCAGCCAATACTGG
AAGAGACAACAAAAGCAAAACAGCAGTAACCATTACAGATCAAACAAACAAAGGAAGACGAT
CCAACCCTATCCCACTACTTCGCATATTAATAATAGTAGTAATAAAATTAATAGCTCCTAAA
ATAGAAGAAACACCAGCCAAATGTAAAGAAAAAATAGTAAGATCAACCGACCCTCCTACATG
AGCCAAAGATGAAGAAAGAGGGGGGTATACTGTTCAACCAGTCCCCGCCCCTCTTTCCAATG
CCGCAGAAGAAAGTAAAAGAAAAAAAGCAGGAGGAAGCAACCAAAAACTCATATTATTCATA
CGAGGAAAAGCCATATCCGGAGCCCCCAACATCAAAGGAACTAACCAATTCCCAAACCCTCC
AATCATAATCGGCATAACCATAAAAAAAATTATAACAAAAGCATGAGCCGTAACAACTACAT
TATAAACCTGATCATCCCCAATCAAAGACCCCGGCATTCCAATCTCACCTCGAACAATTAAA
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CTCAAAGCAGTTCCAACTATAGAAGCCCAAATTCCTAATACCAAATATATAGTCCNATATCT
TNTTNGGGGGGGNNCCCCNNNNN 
 
(83)     {848} 
GGGTGTCCAAAAAACCAAAACAAATGCTGATATAAAATAGGATCTCCGCCCCCANCAGGGTC
AAAAAAAGANGTATTAAAATTCCGATCCGTCAACAACATAGTAATAGCCCCTGCTAACACAG
GAAGAGACAATAACAACAAAACAGCAGTAACTATCACAGATCAAACAAACAAAGGAAGACGA
TCTAATCCCATACCACTTCTCCGTATATTAATAATAGTAGTAATAAAATTAATAGCCCCCAA
AATAGAAGAAACACCAGCCAAATGAAGAGAAAAAATAGTAAGATCAACTGAACCCCCAACAT
GAGCCAAAGAGGAAGAAAGAGGAGGATAGACCGTTCACCCCGTTCCTGCCCCTCTCTCCAGT
GCAGCAGAAGAAAGTAAGAGAAAAAAAGCAGGAGGAAGTAACCAAAAACTCATATTATTCAT
CCGAGGAAAGGCCATATCAGGAGCACCTAACATCAAGGGGACTAACCAGTTCCCAAAACCCC
CAATCATAATAGGCATGACTATAAAAAAAATTATAACAAAAGCATGGGCCGTCACAACAACA
TTATAAACTTGATCATCCCCAATCAAAGAACCTGGTATCCCAATCTCACCCCGAACAATTAA
ACTCAAAGCAATCCCAACCATAGAAGCCCAAATACCCAACACCAAATACATAGTACCAATAT
CTTTTTTNGGNGGGNNCCNCN 
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16 S data raw 
 
CiiZU1 (171) [A]  {685}  
TNTTNNCGCCTNTTTTGGGTCCGAACAGACCCCCTTTTACTCCTCTTGCGGAATAGAGGAAATCTAAT
CCAACATCGAGGTCGCAAACATATTCGTCAATTTGAGCTTTAAGAATATATTACGCTGTTATCCCTAA
AGTAACTTGTTTAAGCTTCAAAAGTTTTGGGTATCAAAATAATGTTATCTTAATATTATGAAAGTGTT
TATCTTTCCACCGCCCCAGTAAAACATACTTTTAATTTATTAAATTATTATATGTAAAGCTTTATAGG
GTCTTCTTGTCTAAAAGACATATTTTAGCCTTTTTACTAAAAAGTAAATTTTAAAGAAAAAAGTTAAT
AAAGAAACTTTCTAGTTTATCCTTTCATTCCAGTCTTAAATTACAAGACTAATGATTATGCTACCTTT
GCACA   
Bases :413 
 
CioEC1  (176) [E]  {691}  
NGCCTTTTTACAGGTCGAACAGACCTCCTTTTACTCCTCTTGCGGAGTGAAGGAAATCTAATCCAACA
TCGAGGTCGCAAACGTATTTGTCAATTTGAACTTTAAAAATACATTACGCTGTTATCCCTAAAGTAAC
TTATTTAAGCTTCAAAAATTTTGGGTATCAAAATAATACTATTTTAATACTTTGAAAGTGTTTATCTT
TCCACCGCCCCAGTAAAACACACTTTTAATTTACTAAATTATTATATGTAAAGCTTTATAGGGTCTTC
TTGTCTAAAAGAGGTATTTTAGCCTTTTTACTAAAAGGTAAATTTTGAAGAAAAAAGCTAAGAAAGAA
ACTCTCTAGTTTATCCTTTCATTCCAGTCTTAAATTATAAGACTAATGATTATGCTACCTTTGCACAC   
Bases :408 
 
CioLC1 (172)  [B]  {686}   
AGNCCACTTTACAGGTCCGAACAGACCTCCTTTTACTCCTCTTGCGGAGTGAAGGAAATCTAATCCAA
CATCGAGGTCGCAAACGTATTTGTCAATTTGAACTTTAAAAATACATTACGCTGTTATCCCTAAAGTA
ACTTATTTAAGCTTCAAAAATTTTGGGTATCAAAATAATACTATTTTAATACTTTGAAAGTGTTTATC
TTTCCACCGCCCCAGTAAAACACACTTTTAATTTACTAAATTATTATATGTAAAGCTTTATAGGGTCT
TCTTGTCTAAAAGAGGTATTTTAGCCTTTTTACTAAAAGGTAAATTTTGAAGAAAAAAGCTAAGAAAG
AAACTCTCTAGTTTATCCTTTCATTCCAGTCTTAAATTATAAGACTAATGATTATGCTACCTTTGCAC
A     
Bases :409 
 
CioMO1   (175) [D]  {809} 
GGTTTTTTTACAGGTCGAACAGACCTCCTTTTACTCCTCTTGCGGAGTGAAGGAAATCTAATCCAACA
TCGAGGTCGCAAACGTATTTGTCAATTTGAACTTTAAAAATACATTACGCTGTTATCCCTAAAGTAAC
TTATTTAAGCTTCAAAAATTTTGGGTATCAAAATAATACTATTTTAATACTTTGAAAGTGTTTATCTT
TCCACCGCCCCAGTAAAACACACTTTTAATTTACTAAATTATTATATGTAAAGCTTTATAGGGTCTTC
TTGTCTAAAAGAGGTATTTTAGCCTTTTTACTAAAAGGTAAATTTTGAAGAAAAAAGCTAAGAAAGAA
ACTCTCTAGTTTATCCTTTCATTCCAGTCTTAAATTATAAGACTAATGATTATGCTCTCTTTTNGCCA
CA    
Bases :410 
  
CiiTI1  (179)    [C]    {747} 
TNTTGGANACCNNTTNAGGACGCCAGACCTCCTTTTACTCCTCTTGCGGAGTGAAGGAAATCTAATCC
AACATCGAGGTCACAAACGTATTTGTCAATTTGAACTTTAAAAATACATTACGCTGTTATCCCTAAAG
TAACTTATTTAAGCTTCAAAAATTTTGGGTATCAAAATAGTACTATTTTGATACTTTGAAAGTGTTTA
TCTTTCCACCGCCCCAGTAAAACACACTTTTAATTTACTAAATTATTATATGTAAAGCTTTATAGGGT
CTTCTTGTCTAAAAGAGGTATTTTAGCCTTTTTACTAAAAGGTAAATTTTGAAGAAAAAAGCTAAGAA
AGAAACTCTCTAGTTTATCCTTTCATTCCAGTCTTAAATTATAAGACTAATGATTATGCTACCTTTGC
ACA     
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Bases :411 
 
CllCH1 (178)  [J]   {810}  
TGGTTTTATTTTATGNGTCGAACAGNACCCCCTTTTATTCCTCTTGCGGAATAGTGGAAATCTAATCC
AACATCGAGGTCGCAAACATATTTGTCAATTTGAACTTTCAAAATATATTACGCTGTTATCCCTAAAG
TAACTTATTTAAGCTTCAAAATTTTTGGGTATTAAAATGATGATATTTTAATATTGTAAAGGTGTTTT
ATCCTTCCACCGCCCCAGTGAAACATATTTTTAATCTATTAAATTATTTTATGTAAAGCTTTATAGGG
TCTTCTTGTCTAAAAGAAACATTTTAGCCTTTTTACTAAAAAGTAAAATTTAAAAGAAAAAGCTAAGA
AACAAGCTCTCTAGTTTATCCTTTCATTCCAGTCTTAAATTATAAGACTAATGATTATGCTCTTTTTT
GNCACA   
Bases :414 
 
CllCH2 (184)   [N] {813} 
GGTTTATTTTATGNGTCGAACAGNCCCCCTTTTATTCCTCTTGCGGAATAGTGGAAATCTAATCCAAC
ATCGAGGTCGCAAACATATTTGTCAATTTGGACTTTCAAAATATATTACGCTGTTATCCCTAAAGTAA
CTTATTTAAGCTTCAAAATTTTTGGGTATTAAAATGATGATATTTTAATATTGTAAAGGTGTTTTATC
CTTCCACCGCCCCAGTGAAACATATTTTTAATCTATTAAATTATTTTATGTAAAGCTTTATAGGGTCT
TCTTGTCTAAAAGAAACATTTTAGCCTTTTTACTAAAAAGTAAAATTTAAAAGAAAAAGCTAAGAAAC
AAGCTCTCTAGTTTATCCTTTCATTCCAGTCTTAAATTATAAGACTAATGATTATGCTCTTTTTTGGC
ACA     
Bases :411 
 
CllAR1 (181)  [I]   {751,748}, [sequence is identical to 748]  
TTTTTNGAAGCCTTTATGGGTCGCCAGACCCCCTTTTATTCCTCTTGCGGAATAATGGAAATCTAATC
CAACATCGAGGTCGCAAACATATTCGTCAATTTGAACTTTCAAAATACATTACGCTGTTATCCCTAAA
GTAACTTATTTAATCTTCAAAATTTTTGGGTATTAAAATAATGATATTTTAATATTATAGAGGTGTTT
AATCCTCTCACCGCCCCAGTGAAACATAATTTTAATTTATTAAATTATTTTATGTAAAGCTTTATAGG
GTCTTCTTGTCTAAAAGAAGCATTTTAGCCTTTTTACTAAAAGGTAAAATTTAAAAGAAAAAATTAAG
AAAGAAGCTCTCTAGTTTACCCTTTCATTCCAGTCTTAAATTATAAGACTAATGATTATGCTACCTTT
GCACANCTC   
Bases :417 
 
CllTO1 (177) [H]  {692}  
CCANTCATGGGTCCGAACAGACCCCCTTTTATTCCTCTTGCGGAATAGTGGAAATCTAATCCAACA
TCGAGGTCGCAAACATATTTGTCAATTTGAACTTTCAAAATATATTACGCTGTTATCCCTAAAGTA
ACTTATTTAAGCTTCAAAATTTTTGGGTATTAAAATGATGGTATCTTAATATTGTAAAGGTGTTTC
ATCCTCCCACCGCCCCAGTGAAACATATTTTTAATTTATTAAATTATTTTATGTAAAGCTTTATAG
GGTCTTCTTGTCTAAAAGAAGCATTTTAGCCTTTTTACTAAAAAGTAAAATTTAAAAGAAAAAACT
AAGAAACAAGCTCTCTAGTTTATCCTTTCATTCCAGTCTTAAATTATAAGACTAATGATTATGCTN
CCTTTGC   
Bases :403 
 
CllTZ1 (180) [F]  {748} 
GAGCCCTTTGGGTCGNCAGACCCCCTTTTATTCCTCTTGCGGAATAATGGAAATCTAATCCAACATCG
AGGTCGCAAACATATTCGTCAATTTGAACTTTCAAAATACATTACGCTGTTATCCCTAAAGTAACTTA
TTTAATCTTCAAAATTTTTGGGTATTAAAATAATGATATTTTAATATTATAGAGGTGTTTAATCCTCT
CACCGCCCCAGTGAAACATAATTTTAATTTATTAAATTATTTTATGTAAAGCTTTATAGGGTCTTCTT
GTCTAAAAGAAGCATTTTAGCCTTTTTACTAAAAGGTAAAATTTAAAAGAAAAAATTAAGAAAGAAGC
TCTCTAGTTTACCCTTTCATTCCAGTCTTAAATTATAAGACTAATGATTATGCTACCTTTGCACA    
Bases :405 
 
CllHU1  (182)  [K] {811} 
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GGTCTTTTTATCGNCNTCGACAGNACCTTCTTTTATCCCTCTTGCGGGATAGAGGAAGCTTAATCCAA
CATCGAGGTCGCAAACATGTTTGTCAATTTGGACTTTCGAAACACATTACGCTGTTATCCCTAAAGTA
ACTTATTTAAATTTCAAAATTTTTGGGTATTAAAATAGTTTTATTTTAGCCCTCTAAAAGTGTTTTAT
CTTTCCGCCGCCCCAGTGAAACATGTTTTTAATTTTTTAAATTATTTTATGTAAAGCTTTATAGGGTC
TTCTTGTCTAAAAGAGACATTTTAGCCTTTTTACTAAAAAGTAAAATTCAAAAGAAAAAACTAAGAAA
GAAACTTCCTGGTTTACCCCTTCATCCCAGTCTTAAATTATAAGACTAATGATTATGCTCTTTTTGNC
ACA   
Bases :411 
 
CllQU1  (173) [G]  {687} 
GCCCCTTTTATGGGTCGAACAGACCCCCATTTATTCCTCTTGCGGAATAGTGGAAGCTTAATCCAACA
TCGAGGTCGCAAACATATTTGTCAATTTGAGCTTTCAAAATACATTACGCTGTTATCCCTAAAGTAAC
TTATTTAAGCTTCAAAATTTTTGGGTATTAAAATAATTCTATTTTAGCCCTCTAAAAGTGTTTATCTT
TCCACCGCCCCAGTGAAACATATTCCTAATTTTTTAGATTATTATATGTAAAGCTTTATAGGGTCTTC
TTGTCTGAAAGAAATATTTTAGCCTTTTTACTAAAAAGTAAAATTCAAAAGGAAAAACTAAGAAAGAA
ACTTCCTGGTTTATCCCTTCATCCCAGTCTTAAATTATAAGACTAATGATTATGCTACCTTTGCACA    
Bases :407 
 
CltFB1  (174)  [M] {688} 
CTTNGCCACTTTATGGGTCGAACAGACCCCCTTTTTACTCCTCTTGCGGAATAAAGGAAATCTAAT
CCAACATCGAGGTCGCAAACATATTTGTCAATTTGAGCTTTAAAAATATATTACGCTGTTATCCCT
AAAGTAACTTATTTAAAGTTCAAAAATTTTGGGTATTAAAATAATATTATTTTAATGTTTTAGAAG
TGTTAGTCTTCTCACCGCCCCAGTGAAACATATTTTTAATTTATTAAATTATTATATGTAAAGCTT
TATAGGGTCTTCTTGTCTAAAAGACATATTTTAGCCTTTTTACTAAAAAGTAAAATTTAAAGAAAA
AAGTCNAGAAAGAAACTCTCCAGTTTATCCTTTCATTCCAGTCTTAAATTACAAGACTAATGATTA
TGCTACCTTTGC   
Bases :408 
 
CltFB2  (183) [L] {812} 
GGTTTCTTTTATGNGTCGAACAGNCCNCCTTTTTACTCCTCTTGCGGAATAAAGGAAATCTAATCCAA
CATCGAGGTCGCAAACATATTTGTCAATTTGAGCTTTAAAAATATATTACGCTGTTATCCCTAAAGTA
ACTTATTTAAAGTTCAAAAATTTTGGGTATTAAAATAATATTATTTTAATGTTTTAGAAGTGTTAGTC
TTCTCACCGCCCCAGTGAAACATATTTTTAATTTATTAAATTATTATATGTAAAGCTTTATAGGGTCT
TCTTGTCTAAAAGACATATTTTAGCCTTTTTACTAAAAAGTAAAATTTAAAGAAAAAAGTCAAGAAAG
AAACTCTCCAGTTTATCCTTTCATTCCAGTCTTGAATTACAAGACTAATGATTATGCTCTTTTTNGNC
AC   
Bases :410 
 
 
 
 
 
 
 
 
 
 
 
 
16S Aligned 
 
CllCH1      ---TGGTTTTATTTTATGNGTC-GAACAGNACCCCCTTTTATTCCTCTTG 
CllCH2      -----GGTTTATTTTATGNGTC-GAACAGN-CCCCCTTTTATTCCTCTTG 
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CllTO1      ---------CCANTCATGGGTCCGAACAGA-CCCCCTTTTATTCCTCTTG 
CllAR1      TTTTTNGAAGCCTTTATGGGTC--GCCAGA-CCCCCTTTTATTCCTCTTG 
CllTZ1      -------GAGCCCTT-TGGGTC--GNCAGA-CCCCCTTTTATTCCTCTTG 
CioEC1      ------NGCCTTTTTACAGGTC-GAACAGACCTCCTTTT-ACTCCTCTTG 
CioMO1      ------GGTTTTTTTACAGGTC-GAACAGACCTCCTTTT-ACTCCTCTTG 
CioLC1      -----AGNCCACTTTACAGGTCCGAACAGACCTCCTTTT-ACTCCTCTTG 
CiiTI1      -TNTTGGANACCNNTTNAGGAC--GCCAGACCTCCTTTT-ACTCCTCTTG 
CiiZU1      -TNTTNNCGCCTNTTTTGGGTCCGAACAGACCCCCTTTT-ACTCCTCTTG 
CltFB1      ---CTTNGCCACTTTATGGGTC-GAACAGACCCCCTTTTTACTCCTCTTG 
CltFB2      -----GGTTTCTTTTATGNGTC-GAACAGNCCNCCTTTTTACTCCTCTTG 
CllHU1      ------GGTCTTTTTATCGNCNTCGACAGNACCTTCTTTTATCCCTCTTG 
CllQU1      ------GCCCCTTTTATGG--GTCGAACAGACCCCCATTTATTCCTCTTG 
 
CllCH1      CGGAATAGTGGAAATCTAATCCAACATCGAGGTCGCAAACATATTTGTCA 
CllCH2      CGGAATAGTGGAAATCTAATCCAACATCGAGGTCGCAAACATATTTGTCA 
CllTO1      CGGAATAGTGGAAATCTAATCCAACATCGAGGTCGCAAACATATTTGTCA 
CllAR1      CGGAATAATGGAAATCTAATCCAACATCGAGGTCGCAAACATATTCGTCA 
CllTZ1      CGGAATAATGGAAATCTAATCCAACATCGAGGTCGCAAACATATTCGTCA 
CioEC1      CGGAGTGAAGGAAATCTAATCCAACATCGAGGTCGCAAACGTATTTGTCA 
CioMO1      CGGAGTGAAGGAAATCTAATCCAACATCGAGGTCGCAAACGTATTTGTCA 
CioLC1      CGGAGTGAAGGAAATCTAATCCAACATCGAGGTCGCAAACGTATTTGTCA 
CiiTI1      CGGAGTGAAGGAAATCTAATCCAACATCGAGGTCACAAACGTATTTGTCA 
CiiZU1      CGGAATAGAGGAAATCTAATCCAACATCGAGGTCGCAAACATATTCGTCA 
CltFB1      CGGAATAAAGGAAATCTAATCCAACATCGAGGTCGCAAACATATTTGTCA 
CltFB2      CGGAATAAAGGAAATCTAATCCAACATCGAGGTCGCAAACATATTTGTCA 
CllHU1      CGGGATAGAGGAAGCTTAATCCAACATCGAGGTCGCAAACATGTTTGTCA 
CllQU1      CGGAATAGTGGAAGCTTAATCCAACATCGAGGTCGCAAACATATTTGTCA 
 
CllCH1      ATTTGAACTTTCAAAATATATTACGCTGTTATCCCTAAAGTAACTTATTT 
CllCH2      ATTTGGACTTTCAAAATATATTACGCTGTTATCCCTAAAGTAACTTATTT 
CllTO1      ATTTGAACTTTCAAAATATATTACGCTGTTATCCCTAAAGTAACTTATTT 
CllAR1      ATTTGAACTTTCAAAATACATTACGCTGTTATCCCTAAAGTAACTTATTT 
CllTZ1      ATTTGAACTTTCAAAATACATTACGCTGTTATCCCTAAAGTAACTTATTT 
CioEC1      ATTTGAACTTTAAAAATACATTACGCTGTTATCCCTAAAGTAACTTATTT 
CioMO1      ATTTGAACTTTAAAAATACATTACGCTGTTATCCCTAAAGTAACTTATTT 
CioLC1      ATTTGAACTTTAAAAATACATTACGCTGTTATCCCTAAAGTAACTTATTT 
CiiTI1      ATTTGAACTTTAAAAATACATTACGCTGTTATCCCTAAAGTAACTTATTT 
CiiZU1      ATTTGAGCTTTAAGAATATATTACGCTGTTATCCCTAAAGTAACTTGTTT 
CltFB1      ATTTGAGCTTTAAAAATATATTACGCTGTTATCCCTAAAGTAACTTATTT 
CltFB2      ATTTGAGCTTTAAAAATATATTACGCTGTTATCCCTAAAGTAACTTATTT 
CllHU1      ATTTGGACTTTCGAAACACATTACGCTGTTATCCCTAAAGTAACTTATTT 
CllQU1      ATTTGAGCTTTCAAAATACATTACGCTGTTATCCCTAAAGTAACTTATTT 
 
CllCH1      AAGCTTCAAAATTTTTGGGTATTAAAATGATGATATTTTAATATTGTAAA 
CllCH2      AAGCTTCAAAATTTTTGGGTATTAAAATGATGATATTTTAATATTGTAAA 
CllTO1      AAGCTTCAAAATTTTTGGGTATTAAAATGATGGTATCTTAATATTGTAAA 
CllAR1      AATCTTCAAAATTTTTGGGTATTAAAATAATGATATTTTAATATTATAGA 
CllTZ1      AATCTTCAAAATTTTTGGGTATTAAAATAATGATATTTTAATATTATAGA 
CioEC1      AAGCTTCAAAAATTTTGGGTATCAAAATAATACTATTTTAATACTTTGAA 
CioMO1      AAGCTTCAAAAATTTTGGGTATCAAAATAATACTATTTTAATACTTTGAA 
CioLC1      AAGCTTCAAAAATTTTGGGTATCAAAATAATACTATTTTAATACTTTGAA 
CiiTI1      AAGCTTCAAAAATTTTGGGTATCAAAATAGTACTATTTTGATACTTTGAA 
CiiZU1      AAGCTTCAAAAGTTTTGGGTATCAAAATAATGTTATCTTAATATTATGAA 
CltFB1      AAAGTTCAAAAATTTTGGGTATTAAAATAATATTATTTTAATGTTTTAGA 
CltFB2      AAAGTTCAAAAATTTTGGGTATTAAAATAATATTATTTTAATGTTTTAGA 
CllHU1      AAATTTCAAAATTTTTGGGTATTAAAATAGTTTTATTTTAGCCCTCTAAA 
CllQU1      AAGCTTCAAAATTTTTGGGTATTAAAATAATTCTATTTTAGCCCTCTAAA 
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CllCH1      GGTGTTTTATCCTTCCACCGCCCCAGTGAAACATATTTTTAATCTATTAA 
CllCH2      GGTGTTTTATCCTTCCACCGCCCCAGTGAAACATATTTTTAATCTATTAA 
CllTO1      GGTGTTTCATCCTCCCACCGCCCCAGTGAAACATATTTTTAATTTATTAA 
CllAR1      GGTGTTTAATCCTCTCACCGCCCCAGTGAAACATAATTTTAATTTATTAA 
CllTZ1      GGTGTTTAATCCTCTCACCGCCCCAGTGAAACATAATTTTAATTTATTAA 
CioEC1      AGTGTTT-ATCTTTCCACCGCCCCAGTAAAACACACTTTTAATTTACTAA 
CioMO1      AGTGTTT-ATCTTTCCACCGCCCCAGTAAAACACACTTTTAATTTACTAA 
CioLC1      AGTGTTT-ATCTTTCCACCGCCCCAGTAAAACACACTTTTAATTTACTAA 
CiiTI1      AGTGTTT-ATCTTTCCACCGCCCCAGTAAAACACACTTTTAATTTACTAA 
CiiZU1      AGTGTTT-ATCTTTCCACCGCCCCAGTAAAACATACTTTTAATTTATTAA 
CltFB1      AGTGTTA-GTCTTCTCACCGCCCCAGTGAAACATATTTTTAATTTATTAA 
CltFB2      AGTGTTA-GTCTTCTCACCGCCCCAGTGAAACATATTTTTAATTTATTAA 
CllHU1      AGTGTTTTATCTTTCCGCCGCCCCAGTGAAACATGTTTTTAATTTTTTAA 
CllQU1      AGTGTTT-ATCTTTCCACCGCCCCAGTGAAACATATTCCTAATTTTTTAG 
 
CllCH1      ATTATTTTATGTAAAGCTTTATAGGGTCTTCTTGTCTAAAAGAAACATTT 
CllCH2      ATTATTTTATGTAAAGCTTTATAGGGTCTTCTTGTCTAAAAGAAACATTT 
CllTO1      ATTATTTTATGTAAAGCTTTATAGGGTCTTCTTGTCTAAAAGAAGCATTT 
CllAR1      ATTATTTTATGTAAAGCTTTATAGGGTCTTCTTGTCTAAAAGAAGCATTT 
CllTZ1      ATTATTTTATGTAAAGCTTTATAGGGTCTTCTTGTCTAAAAGAAGCATTT 
CioEC1      ATTATTATATGTAAAGCTTTATAGGGTCTTCTTGTCTAAAAGAGGTATTT 
CioMO1      ATTATTATATGTAAAGCTTTATAGGGTCTTCTTGTCTAAAAGAGGTATTT 
CioLC1      ATTATTATATGTAAAGCTTTATAGGGTCTTCTTGTCTAAAAGAGGTATTT 
CiiTI1      ATTATTATATGTAAAGCTTTATAGGGTCTTCTTGTCTAAAAGAGGTATTT 
CiiZU1      ATTATTATATGTAAAGCTTTATAGGGTCTTCTTGTCTAAAAGACATATTT 
CltFB1      ATTATTATATGTAAAGCTTTATAGGGTCTTCTTGTCTAAAAGACATATTT 
CltFB2      ATTATTATATGTAAAGCTTTATAGGGTCTTCTTGTCTAAAAGACATATTT 
CllHU1      ATTATTTTATGTAAAGCTTTATAGGGTCTTCTTGTCTAAAAGAGACATTT 
CllQU1      ATTATTATATGTAAAGCTTTATAGGGTCTTCTTGTCTGAAAGAAATATTT 
 
CllCH1      TAGCCTTTTTACTAAAAAGTAAAATTTAAAAGAAAAAGCTAAGAAACAAG 
CllCH2      TAGCCTTTTTACTAAAAAGTAAAATTTAAAAGAAAAAGCTAAGAAACAAG 
CllTO1      TAGCCTTTTTACTAAAAAGTAAAATTTAAAAGAAAAAACTAAGAAACAAG 
CllAR1      TAGCCTTTTTACTAAAAGGTAAAATTTAAAAGAAAAAATTAAGAAAGAAG 
CllTZ1      TAGCCTTTTTACTAAAAGGTAAAATTTAAAAGAAAAAATTAAGAAAGAAG 
CioEC1      TAGCCTTTTTACTAAAAGGTAAATTTTGAAGAAAAAAGCTAAGAAAGAAA 
CioMO1      TAGCCTTTTTACTAAAAGGTAAATTTTGAAGAAAAAAGCTAAGAAAGAAA 
CioLC1      TAGCCTTTTTACTAAAAGGTAAATTTTGAAGAAAAAAGCTAAGAAAGAAA 
CiiTI1      TAGCCTTTTTACTAAAAGGTAAATTTTGAAGAAAAAAGCTAAGAAAGAAA 
CiiZU1      TAGCCTTTTTACTAAAAAGTAAATTTTAAAGAAAAAAGTTAATAAAGAAA 
CltFB1      TAGCCTTTTTACTAAAAAGTAAAATTTAAAGAAAAAAGTCNAGAAAGAAA 
CltFB2      TAGCCTTTTTACTAAAAAGTAAAATTTAAAGAAAAAAGTCAAGAAAGAAA 
CllHU1      TAGCCTTTTTACTAAAAAGTAAAATTCAAAAGAAAAAACTAAGAAAGAAA 
CllQU1      TAGCCTTTTTACTAAAAAGTAAAATTCAAAAGGAAAAACTAAGAAAGAAA 
 
CllCH1      CTCTCTAGTTTATCCTTTCATTCCAGTCTTAAATTATAAGACTAATGATT 
CllCH2      CTCTCTAGTTTATCCTTTCATTCCAGTCTTAAATTATAAGACTAATGATT 
CllTO1      CTCTCTAGTTTATCCTTTCATTCCAGTCTTAAATTATAAGACTAATGATT 
CllAR1      CTCTCTAGTTTACCCTTTCATTCCAGTCTTAAATTATAAGACTAATGATT 
CllTZ1      CTCTCTAGTTTACCCTTTCATTCCAGTCTTAAATTATAAGACTAATGATT 
CioEC1      CTCTCTAGTTTATCCTTTCATTCCAGTCTTAAATTATAAGACTAATGATT 
CioMO1      CTCTCTAGTTTATCCTTTCATTCCAGTCTTAAATTATAAGACTAATGATT 
CioLC1      CTCTCTAGTTTATCCTTTCATTCCAGTCTTAAATTATAAGACTAATGATT 
CiiTI1      CTCTCTAGTTTATCCTTTCATTCCAGTCTTAAATTATAAGACTAATGATT 
CiiZU1      CTTTCTAGTTTATCCTTTCATTCCAGTCTTAAATTACAAGACTAATGATT 
CltFB1      CTCTCCAGTTTATCCTTTCATTCCAGTCTTAAATTACAAGACTAATGATT 
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CltFB2      CTCTCCAGTTTATCCTTTCATTCCAGTCTTGAATTACAAGACTAATGATT 
CllHU1      CTTCCTGGTTTACCCCTTCATCCCAGTCTTAAATTATAAGACTAATGATT 
CllQU1      CTTCCTGGTTTATCCCTTCATCCCAGTCTTAAATTATAAGACTAATGATT 
 
CllCH1      ATGCTCTTTTTTG-NCACA-- 
CllCH2      ATGCTCTTTTTTG-GCACA-- 
CllTO1      ATGCTNCCTTTGC-------- 
CllAR1      ATGCTACCTTTGC-ACANCTC 
CllTZ1      ATGCTACCTTTGC-ACA---- 
CioEC1      ATGCTACCTTTGC-AC-AC-- 
CioMO1      ATGCTCTCTTTTN-GCCACA- 
CioLC1      ATGCTACCTTTGC-ACA---- 
CiiTI1      ATGCTACCTTTGC-ACA---- 
CiiZU1      ATGCTACCTTTGC-ACA---- 
CltFB1      ATGCTACCTTTGC-------- 
CltFB2      ATGCTCTTTTTNG-NCAC--- 
CllHU1      ATGCTCTTTTTGNCACA---- 
CllQU1      ATGCTACCTTTGC-ACA---- 
 
 
 

Label Sex GPS Sequence 16S
16S accession 

Number Sequence CO1
CiiTI1 Female -101.3333,19.5500 747 AF439757  

CiiZU1 Female -102.0500,19.3667 685 AF439753  

CioEC1 Male -102.0333,19.1500 691 AF439754  

CioLC1 Male -101.5833,19.8167 686 AF439755  

CioMo1 Female -101.1167,19.7000 809 AF439756  

CllAR1 Male -100.8833,18.5833 751 AF439760  

CllCH1 Female -101.6333,18.6167 810 AF439758  

CllCH2  Female -101.6333,18.6167 814 AF439759  

CllHU1 Female -99.3500,18.3000 811 AF439763  

CllQU1 Female -100.3833, 20.6000 687 AF439764  

CllTO1 Female -100.8633,18.5633 692 AF439761  

CllTZ1 Female -100.9167,19.5667 748 AF439762  

CltFB1 Female -103.5000,18.6000 688 AF439765  

CltFB2   Male -103.5000,18.6010 812 AF439766   
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Appendix I 
Pictures 
 
Centruroides exilicauda 
Collected Mexico, Baja del Sur. 
 
  

Movable blade of the pedipalp in full color 
 
 

 
Movable blade of the pedipalp in sepia color 
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Picture of the face showing carination and the eyes  
 
 
 

Picture of the third metasoma 
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Picture of the telson including vesicle and aculeus  
 
 

Another view of the face 
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Centruroides vittatus 
Collected Arkansas, Russelville 
 

 
Movable blade of the pedipalp in full color 
 
 
 
 
 

 
Movable blade of the pedipalp in sepia color 
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Picture of the face showing carination and eyes. 
 
 
 

Picture of the third segment of the metasoma 
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Picture of the telson including vesicle and aculeus  
 

Full view of the face. 
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Centruroides bani 
Collected Hispaniola 
 

 
Movable blade of the pedipalp in full color 
 
 
 
 
 

 
Movable blade of the pedipalp in sepia color 
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Picture of the face showing carination and eyes  
 
 
 

Picture showing the tarsus & ungues from the side 
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Picture showing the tarsus & ungues from above  
 
  
 
 

 
Picture of the third segment of the metasoma 
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Picture of the telson including vesicle and aculeus   
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Full view of the face. 
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Centruroides infamatus infamatus  
(CiiZU1) 

Picture of the chelicerae 
   

 
Movable blade of the pedipalp in full color 
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Movable blade of the pedipalp in sepia color. 
  
 
 

Picture if the spiracles and pectines 
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Picture of the telson including vesicle and aculeus  
 
 
 
 

Full view of the carapace 
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Centruroides infamatus ornatus 
(CioLC1)

 
Picture of the chelicerae 
  
 

 
Movable blade of the pedipalp in full color 
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Movable blade of the pedipalp in sepia color  
 
  
 
 

 
Picture of the spiracles and pectines 
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Picture of the third & fourth segment of the metasoma  
  
 
 
 
 

 
Picture of the telson including vesicle and aculeus 
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Full view of the face 
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Centruroides limpidus limpidus 
(CllQU1) 
 

 
Movable blade of the pedipalp in full color   
  
 
 

 
Movable blade of the pedipalp in sepia color 
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Picture of the chelicerae    
 

 
Picture of the third segment of the metasoma 
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Picture of the telson including vesicle and aculeus   
 
 

 
Full view of the face 
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Centruroides limpidus tecomanus 
(CltFB1) 
  

 
Movable blade of the pedipalp in full color  
   
 
 
 
 
 

 
Movable blade of the pedipalp in sepia color 
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Picture of the spiracles and pectines   
 
 
 
 

 
Picture of the telson including vesicle and aculeus  
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Full view of the face 
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Centruroides infamatus ornatus 
(CioMo1) 
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Movable blade of the pedipalp in sepia color  
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Picture of the third segment of the metasoma    
 
 
 

 
Picture of the telson including vesicle and aculeus   
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Centruroides infamatus ornatus 
(CioEC1) 
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Movable blade of the pedipalp in sepia color 
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Picture of the telson including vesicle and aculeus   
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Centruroides limpidus limpidus 
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Movable blade of the pedipalp in sepia color 
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 93
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Picture of the telson including vesicle and aculeus   
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Centruroides limpidus limpidus 
(CllCH1) 
 

 
Movable blade of the pedipalp in full color   
 
  
 
 
 
 

 
Movable blade of the pedipalp in sepia color 

 96



 
Picture of facial carination and eyes   
  
 
 
 
 

 
Picture showing the tarsus ungues from the bottom 
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Picture of the telson including vesicle and aculeus 
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Full view of the face 
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Centruroides limpidus limpidus 
(CllCH2) 
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Picture of facial carination and the eyes.  
  
 
 
 

 
Picture showing the tarsus ungues from the bottom 
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Picture of the third segment of the metasoma    
 
 
 
 

 
Picture of the telson including vesicle and aculeus 
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Full view of the face 
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Centruroides limpidus limpidus 
(CllTZ1) 
 
 

 
Movable blade of the pedipalp in full color   
 
 
 
 

 
Movable blade of the pedipalp in sepia color 
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Picture of the third segment of the metasoma   
 
 
 

 
Picture of the telson including vesicle and aculeus 
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Full view of the face 
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Centruroides limpidus limpidus 
(CllAR1) 
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Movable blade of the pedipalp in sepia color 
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Picture of the telson including vesicle and aculeus   
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Centruroides limpidus limpidus 
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Picture of facial carination and the eyes.   
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Picture of the telson including vesicle and aculeus 
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Centruroides limpidus tecomanus 
(CltFB2) 
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Movable blade of the pedipalp in sepia color 
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Picture of facial carination and the eyes 
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Picture of the third segment of the metasoma   
 
 
 
 
 

 
Picture of the telson including vesicle and aculeus 
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Centruroides limpidus limpidus  
(CllCH2) 
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Picture of the chelicerae   
 
 
 

 
Picture of the chelicerae and facial carination 
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Picture of the telson including vesicle and aculeus 
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Picture of the telson including vesicle and aculeus  
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Centruroides gracilis 
Collected Monroe County, Florida, Dry Tortugas Islands, Garden Key 
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Picture of the telson including vesicle and aculeus 
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Centruroides hentzi 
Collected Alachua County Florida, Gainsville 
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Full view of the face 
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Collected in Monroe County Florida, Key largo 
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Full view of the face. 
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Full view of the face 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 137



Lychas Mucronatus 
Collected Maumere, Flores Island, Indonesia 
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Movable blade of the pedipalp in sepia color 
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Picture of the telson including vesicle and aculeus   
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