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Abstract 

Acute myelogenous leukemia (AML) is the deadliest of the lymphatic and bone marrow 

cancers. Patients diagnosed with AML have a five year survival rate of 23.4%. AML is 

characterized by an accumulation of undifferentiated and functionless myeloid precursors in the 

bone marrow and blood. Heat shock protein 90 (Hsp90) inhibitors, such as 17-AAG, an analog 

of geldanamycin (GM), are currently undergoing phase I, and II and III clinical trials for various 

cancers with mixed results. I found distinct responses to 17-AAG treatment among the AML cell 

lines tested. I also discovered two mutant TP53 alleles in Kasumi-3 cells, an AML cell line that 

was very sensitive to 17-AAG. I hypothesized that this high sensitivity was due to the degradation 

of mutant p53, a known Hsp90 binding protein. Although I was not able to show that this 

mutant p53 was acting in an oncogenic fashion, it still raises the possibility that tailoring 17-AAG 

treatment to patients with known oncogenic TP53 alleles might prove to be very effective. 

Kasumi-3 cells will provide a valuable model to determine which biomarkers may indicate 

sensitivity to Hsp90 inhibition. In addition to studying the role of Hsp90 inhibition in cancer, I 

also explored the hypothesis that Hsp90 acts as a morphological capacitor for evolution in a 

mammalian model. EML cells were used as a model for hematopoiesis and treated with GM to 

inhibit Hsp90. It was postulated that this treatment would cause a trans-differentiation event or 

have an effect on differentiation. What was observed was an increase in GM treated cell survival 

when selective conditions were applied. This data suggests that GM treatment was giving the 

cells a selective advantage. Unfortunately, experimental results were very variable and I was 

unable to obtain consistent results upon numerous replicate experiments. The various diverse 

responses to Hsp90 inhibition presented in these studies may help explain the mixed results of 

17-AAG in clinical trials. 
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Chapter 1 : Introduction 

Leukemia  

About five hundred billion blood cells need to be replaced in the human body each day. The 

hematopoietic stem cell (HSC), which resides mostly in bone marrow, is the pluripotent 

precursor cell that gives rise to all the different cell types in the blood (Figure 1.1). It stays in a 

relatively quiescent state and retains self renewal capabilities. External signals, such as cytokines, 

initiate asymmetric division of the HSC resulting in either a common lymphoid progenitor (CLP) 

or a common myeloid progenitor (CMP). These progenitors are very different from the 

hematopoietic stem cell in that they can divide much more rapidly; however, they have a finite 

lifetime. The CLP cells divide and undergo successive stages of differentiation to create more 

committed progenitor cells of the lymphoid lineage until mature cells, including B and T cells, 

are produced. The CMP produces more committed myeloid progenitors that eventually mature 

into granulocytes, macrophages, megakaryoctyes and erythrocytes (Terskikh et al., 2003; 

Passague et al., 2003). 

HSC maintenance is very complex and involves many factors. Probably the most important 

cytokines involved in HSC maintenance are thrombopoietin (TPO) and stem cell factor (SCF). The 

SCF receptor, KIT, and the TPO receptor, c-mpl, are both highly expressed on HSCs. TPO has been 

reported to suppress apoptosis in HSCs, which indicates its role in HSC maintenance may be to 

promote cell survival. Furthermore, mice engineered with mutations in KIT were reported to 

have 10- to 20- times less HSC than their wild-type counterparts (reviewed in Kent et al., 2007; 

Blank et al., 2007). Another study provided additional evidence of the importance of SCF in HSC 

maintenance by showing that injection of an anti-kit antibody into adult mice causes a significant 

decrease in the number of HSCs as well as progenitor cells in the bone marrow (Ogawa, 1991). 

This antibody binds to the KIT receptor and causes its inactivation. This study also highlights the 

importance of SCF in progenitor cell biology. SCF can act synergistically with other cytokines, 

such as interleukin-3 (IL-3), granulocyte monocyte colony stimulating factor (GM-CSF) and  
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Figure 1.1. Proposed mechanism for hematopoiesis. The myeloid compartment is outlined in 
green. Asymmetric division of the HSC is initiated and can result in either a CLP or a CMP. The CLP 
cells divide and undergo successive stages of differentiation to create more committed progenitor 
cells of the lymphoid lineage until mature cells, including B and T cells and natural killer cells, are 
produced. The CMP produces more committed myeloid progenitors that eventually mature into 
neutrophils, basophils, macrophages, megakaryoctyes and erythrocytes. Abbreviations: 
hematopoietic stem cell (HSC), common myeloid progenitor cell (CMP), common lymphoid progenitor 
cell (CLP), erythroid and megakaryocyte progenitor cell (EMP), and granulocyte and monocyte 
progenitor cell (GMP).  The committed progenitor cells are abbreviated as follows: neutrophil (MP-N), 
monocyte (MP-M), eosinophil (MP-Es), basophil (MP-B), erythrocyte (MP-E), and megakaryocyte 
(MP-Meg). 

erythropoietin (EPO), to increase the number and size of myeloid progenitor colonies formed in 

semisolid media (Broudy, 1997).  

The role of cytokines, as well as other factors, involved in hematopoiesis is very complex 

and there is a great amount of redundancy in their function (Metcalf, 1993). Many studies have 

elucidated their importance in myeloid progenitor proliferation, survival and differentiation 

(reviewed in Kaushansky, 2006). IL-3, SCF and TPO are important in the production of the 

erythrocyte megakaryocyte progenitors (EMP) from a CMP. The continued presence of either TPO 

or EPO dictates whether these progenitors progress to produce mature megakaryocytes or 
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erythrocytes, respectively. On the other hand, the presence of GM-CSF promotes the creation of 

the granulocyte macrophage progenitor (GMP) from a CMP. This committed progenitor requires 

macrophage colony stimulating factor (M-CSF) or granulocyte colony stimulating factor (G-CSF) 

to mature along the monocyte lineage or the granulocyte lineage respectively (Figure 1.1).   

Understanding the pathways controlling hematopoiesis is essential for studying leukemia. It 

is unique from other cancers in that the uncontrolled accumulation of cancer cells circulate 

throughout the body, instead of forming a mass or a tumor. As a result, vascularization and 

metastasis are not necessary for this disease to progress. As the disease advances, more and 

more immature and functionless cells, called blast cells, accumulate in the bone marrow and 

peripheral blood. This inhibits the bone marrow from producing mature, functional white blood 

cells that are needed for the immune system and red blood cells, which are needed for delivery 

of oxygen to tissues. As a result, common symptoms for leukemia are anemia, fatigue, easy 

bruising (from lack of platelets), as well as symptoms of a suppressed immune system such as 

frequent infections.  

Leukemia accounts for about one third of cancers in children 0–14 and is the 5th most 

common cause of cancer deaths overall. Those diagnosed with leukemia have an overall five 

year survival rate of 54%; however, leukemia causes more death than any other cancer in 

children and young adults under 20 years of age (Leukemia, Lymphoma, Myeloma, Facts 2009-

2010, June 2009). Although overall survival rates have increased in recent years, these statistics 

clearly show that more treatment options are needed.  

There are four major types of leukemia: acute and chronic lymphocytic leukemia and acute 

and chronic myelogenous leukemia. As the names suggest, they are categorized by which arm of 

the hematopoietic system the cancer cells originated from and the extent of blast cell 

accumulation. Lymphocytic leukemias are characterized by accumulation of lymphocytic 

precursor cells whereas the myeloid leukemias have an increased proliferation of myeloid 

precursors. The acute leukemias are characterized by a rapid increase of blast cells that interfere 

with normal hematopoietic function, while, the chronic leukemias progress more slowly. There 
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is a buildup of immature blast cells, but not as extensively as in the acute leukemias. Chronic 

leukemias often progress to the acute category, which is also called blast crisis. The acute 

leukemias, as the name implies, are the most severe and life threatening. 

Acute myelogenous leukemia (AML) is the most deadly among the four major types. Patients 

diagnosed with AML have a five year survival rate of 23.4%. The median age at diagnosis for AML 

is 70 years; however, elderly patients in general only survive a few months after diagnosis. AML 

can be further sub-classified based on the characteristics of the main proliferating blast cell. The 

French-American-British classification is commonly used, which categorizes AML into eight 

different subtypes listed in Table 1.1 (Bennet et al., 1976). These subtypes can be identified by 

examining the cells in the bone marrow and blood by either microscopy, cytogenetic methods, 

or through cell surface marker expression via flow cytometry. Because different subtypes have 

varying responses to therapy, identifying the subtype of AML can help tailor patient treatment 

options.  

Chromosome alterations are very common in AML, which are detected in over 50% of cases 

(Mrozek et al., 2004). These alterations have been accepted as the strongest prognostic factor for 

survival and therapy response. Therefore, patients are generally placed into one of three large  

 

FAB subtype Description 
M0 Undifferentiated 

M1 
Myeloblastic without 

differentiation 
M2 Myeloblastic with maturation 
M3 Promyelocytic 
M4 Myelomonocytic 
M5 Monocytic 
M6 Erythroleukemia 
M7 Megakaryoblastic 

Table 1.1. French-American-British (FAB) classification of AML. Subtypes are based on the type 
of cell from which the leukemia developed and the degree of maturity. These help physicians 
in deciding treatment options for patients. 

risk groups based on the cytogenetic makeup of their leukemia cells: favorable, intermediate or 

adverse (Grimwade et al., 1998). Treatment options are based on type of leukemia, age, and the 
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cytogenetic risk group of the patient. It should be noted that tailoring treatment using the 

cytogenetic risk groups does have limitations because the groups are based on common 

chromosomal abnormalities. Therefore, patients with uncommon chromosomal aberrations, 

such as p53 deletion, may not receive appropriate treatment because these aberrations are poorly 

understood in AML.  

A diverse array of mutations has been implicated in AML progression. These mutations can 

be classed into two groups. Class I mutations are those that stimulate signal transduction 

pathways resulting in increased proliferation or survival of the cell. Examples include receptor 

tyrosine kinases such as, FMS like tyrosine kinase 3, FLT3 (Reilly, 2003), and KIT (Gari et al., 

1999). KIT is the receptor for SCF and promotes HSC maintenance. FLT3 is also expressed in HSC 

and early progenitors and has been reported to facilitate proliferation in these cells (Kaushansky, 

2006). These mutations usually result in constitutive activation in the absence of ligand binding 

resulting in unregulated growth.  

Class II mutations are those that occur within transcription factors or components of the 

transcriptional machinery (classes of mutations reviewed in Renneville et al., 2008). The three 

classes of transcription factors that are most commonly affected are core binding factors 

(Example: AML1), retinoic acid receptor (RARα), and homeobox family members (example: 

HOXA9), which are all important in myeloid cell development. These mutations often result in a 

block in differentiation of the cells, a hallmark of AML. A classic example of this type of 

mutation is the chromosomal translocation t(15;17) which results in the fusion of the retinoic 

acid receptor alpha (RARα) gene with the promyelocytic leukemia (PML) gene. This mutation is 

found in 95% of acute promyelocytic leukemias (APL) and creates a chimeric protein product 

that blocks differentiation of granulocytes. Treatment with retinoic acid, the ligand that activates 

RARα, results in the differentiation of the immature precursor cells and has a high response rate 

in the treatment of patients with APL (Melnick et al., 1999; Tallman et al., 2002). 
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Interestingly, these fusion proteins can promote leukemogenesis, although with a latent 

period, when expressed in mouse models. This latent period suggests that another mutation is 

required before AML is induced. Consistent with the multi-hit model, one hypothesis is that a 

combination of class I and class II mutations is required in order for leukemogenesis to occur 

(Dash and Gilliland, 2001).  

Kasumi-3 cells are a relatively new AML cell line with the classification of M0. They were 

isolated from a 57 year old Japanese patient, who unfortunately died 16 days after he was 

admitted to the hospital. These cells have a complex karyotype including a translocation 

between chromosome 3 and 7 [t(3;7)(q27;q22)], that results in aberrant expression of ectopic viral 

integration site-1 (EVI1)(Asou et al., 1996). EVI1 is an early transcription factor and its expression 

has been correlated with poor prognosis in patients with AML. This transcription factor has 

recently been reported to be essential for HSC maintenance and proliferation and is hypothesized 

to participate in generation of leukemic stem cells (Goyama and Kurokawa, 2009). Since this cell 

line is relatively new, data is lacking regarding its molecular profile. In chapters 2 and 3, I report 

that these cells have two mutated TP53 alleles and are sensitive to Hsp90 inhibition. 

In contrast, HL-60, KG-1a and THP-1 cells have been available for more than three decades. 

They have been used as a model for hematopoiesis because they can be induced to differentiate 

by addition of various compounds. HL-60 cells were isolated from a patient with promyelocytic 

leukemia, and are classified as M3 (Gallager et al., 1979). KG-1a cells are a subclone of their 

parental cell line, KG-1. These cells were isolated from a patient with erythroleukemia that 

progressed into full blown AML (Koeffler et al., 1980). Both of these cell types also have a 

complex karyotype. THP-1 cells were isolated from a one-year old patient with monocytic 

leukemia and have the classification of M5 (Tsuchiya et al., 1980). They have frequently been 

used as a human macrophage model because they can be easily differentiated into monocytes by 

treating with phorbol esters. These four cell lines offer a range of different types of AML and 

provide a good model to study effects of chemical treatments for this disease.  
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Hsp90 

Molecular characteristics of Hsp90  

Chaperones are proteins that bind to other proteins and assist them in attaining a stable and 

active conformation. Some chaperones function by preventing the formation of deleterious 

aggregates that often occur in newly synthesized proteins, which allows for natural folding to 

take place. In addition, they can also contribute to folding the protein into their correct three-

dimensional structures (Hartl, 1996). Stressful conditions such as irregular temperature changes, 

abnormal pH and nutrient deprivation can result in protein denaturation as well as production 

of new proteins to assist the cell’s recovery. As a result, these conditions cause the induction of a 

special class of chaperones called heat shock proteins. These proteins help to refold denatured 

proteins and aid in the folding of newly synthesized proteins. Thus heat shock proteins play a 

key role in a cell’s stress response by maximizing the number of active proteins, which in turn 

contributes to the cell’s health and survival (Linquist and Craig, 1988). 

Heat shock protein 90 (Hsp90) is one of these very important chaperones. Under normal 

conditions, Hsp90 constitutes 1 – 2% of soluble cellular protein. Many signaling molecules, such 

as kinases, hormone receptors and transcription factors have been identified as Hsp90 binding 

targets, which are termed client proteins. These client proteins depend directly on Hsp90 to 

reach their biologically active conformation (reviewed in Pearl et al., 2008). Hsp90 is an essential 

part of a large multi-protein complex that facilitates folding these proteins.   

Hsp90 has five known isoforms that are a result of gene duplication events. Humans have 

two cytosolic isoforms, Hsp90α and Hsp90β. Hsp90α is the inducible isoform and Hsp90β is 

the isoform that is constitutively expressed. These two isoforms are 76% homologous (Moore et 

al., 1989) but are not completely interchangeable. Studies in yeast have demonstrated that 

expression of either isoform can rescue viability in cells that lack endogenous expression of 

Hsp90. However, there does seem to be a difference in client proteins between the two isoforms 

(Millson et al., 2007). Interestingly, this same study indicated that although yeasts expressing 
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Hsp90β were able to survive, they were highly sensitive to Hsp90 inhibition. Although studies 

are being conducted to understand the difference between these two isoforms, much is still not 

understood. Hsp90N (Grammatikakis et al., 2002) is another Hsp90 isoform that is mostly 

associated with the membrane and lacks the N-terminal domain of the protein. However, 

existence of this isoform in humans is now controversial (Zurawska et al., 2008). 

The other two known isoforms are only present in higher eukaryotes; however, not much is 

known about their client proteins. GRP94 is associated with the endoplasmic reticulum (Ni and 

Lee, 2007) and is 50% homologous to the cytoplasmic isoforms (Gupta et all, 1995). Studies 

have shown GRP94 to be involved in the folding of components of the immune system (Nichitta 

et al., 2004; Melnick et al., 1992). It has also been implicated in the secretion of insulin-like 

growth factors (Wanderling et al., 2007). TRAP1 is a mitochondrial isoform (Song et al., 1995; 

Felts et al., 2000). The biological role of this isoform is very poorly understood. However, a 

recent study indicated that TRAP1 could play an important role in regulation of reactive oxygen 

species in the mitochondria (Im et al., 2007). Studies to discover the functions of these two 

Hsp90 isoforms are ongoing.  

Hsp90 protein has four main domains (Figure 1.2) The N-terminal domain contains an 

ATP/ADP binding site that is very important for Hsp90 function. As will be explained later, this 

is a common site for binding of natural and synthetic inhibitors. Next, there is a small, highly 

charged linker region that is thought to provide the protein with more flexibility and can also 

facilitate client binding. This region is absent in TRAP1. The middle region, which is thought to 

be where protein clients bind, connects the linker to the C-terminal domain. Finally, the C-

terminal domain contains the dimerization domain as well as another nucleotide binding domain 

capable of binding adenine as well as guanine nucleotides (Soti et al., 2003; Marcu et al., 2000). 

In the cytosolic forms of Hsp90, the C-terminal domain also contains a tetratricopeptide repeat 

(TPR) binding region, (composed of amino acids MEEVD). This is a site for some co-chaperones, 

such as HOP (Hsp70-Hsp90 organizing protein), to bind. In GRP94, this domain is replaced with   
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Figure 1.2. Structure of Hsp90 isoforms. Hsp90 protein structure has four main functional 
domains. The N-terminal domain holds an ATP binding domain. The middle region is thought to 
contain client protein binding sites. The linker domain is a positively charged region that links the N-
terminal and the middle region of the protein. The C-terminal houses the dimerization domain 
necessary for Hsp90 to function. The TPR-binding site is where co-chaperones such as HOP can 
bind. Hsp90α/β are the cytosolic isoforms. GRP94 contains an ER-retention signal in place of the 
TPR-binding site and thus it functions mostly in the endoplasmic reticulum. It also has a short addition 
to the N-terminal region, the function of which is unknown. TRAP1 lacks the linker region and the very 
end of the C-terminal and is mostly associated with the mitochondria. All three isoforms contain the 
different functional domains marked on the bottom of the schematic and the three regional domains 
indicated in the top of the schematic.  

an endoplasmic reticulum retention domain and is totally absent in TRAP1 (structure reviewed in 

Prodromou and Pearl, 2003). All three isoforms share the ATP-binding, client protein binding 

and dimerization domains  

The protein folding pathway is not completely understood, but data support that the folding 

process takes place in a multi-protein complex with Hsp90 being a central player (Figure 1.3). 

Hsp90 forms a homodimer at its C-terminal end, resulting in a U-shaped structure that allows the 

two N-terminal domains to become available for protein interactions. Hsp70 forms a complex 

with new proteins to stabilize and deliver them to Hsp90. HIP (Hsp70 interacting 



–10– 

Figure 1.3. Proposed Hsp90 chaperone cycle. Hsp90 forms a homodimer at its C-terminal end. 
Hsp70 forms a complex with new proteins to stabilize and deliver them to Hsp90. HIP (Hsp70 
interacting protein) and Hsp40 helps in stabilizing this complex. The Hsp70 complex binds to Hsp90 
through HOP with its TRP domains that connect the two. The client protein is then loaded and the 
Hsp70 complex is released. Other co-chaperones and immunophilins, which are peptidyl-prolyl cis-
trans isomerases, then bind to form the folding complex. ATP is then recruited which results in the 
dimerization of the N-terminal domains forming a “clamp” around the client protein. p23 acts to 
stabilize the clamp and facilitates ATP hydrolysis. This protein folding complex helps the client find its 
three-dimensional structure before it is ultimately released as a mature protein.  

protein) and Hsp40 helps in stabilizing this complex. The Hsp70 complex binds to Hsp90 

through HOP, which contains TRP domains that can bind both Hsp90 and Hsp70 and thus 

connect the two. The client protein is then loaded into Hsp90’s middle domain and the Hsp70 

complex is released. CDC37 is a known Hsp90 co-chaperone that has recently been found to 
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specifically aid in the loading of kinases into the complex and stays associated until folding is 

complete. At this point, other co-chaperones and immunophilins, which are peptidyl-prolyl cis-

trans isomerases, bind to form the folding complex. ATP is then recruited to the N-terminal 

pocket of Hsp90 resulting in the dimerization of these domains and the formation of a “clamp” 

around the client protein (Chadli et al., 2000; Prodromou et al., 2000). p23 is then recruited and 

acts to stabilize the clamp and facilitate ATP hydrolysis. This protein folding complex helps the 

client find its three-dimensional structure before it is ultimately released as a mature protein. 

This releasing process is poorly understood, but p23 (Pratt et al., 2003) is hypothesized to 

facilitate the process (folding process reviewed in Buchner, 1999; Blagg and Kerr, 2006). Most 

Hsp90 inhibitors bind in the N-terminal ATP pocket thus preventing the clamp formation 

(Figure 1.3) and ultimately resulting in the degradation of the protein client.  

Hsp90 and cancer  

The aberrant activity of multiple signaling pathways is necessary for the progression of 

cancer. Interruption of just one of these abnormally activated pathways alone is frequently not 

effective for treatment. Therefore, the identification of new targets that are responsible for 

activation of multiple pathways has become important for the development of new cancer 

therapeutics. To date, Hsp90α/β has been found to interact with 70 kinases, 20 transcription 

factors (including steroid receptors) and 100 other proteins (see http://www.picard.ch). 

Through the folding machinery mentioned above, Hsp90 acts to stabilize these proteins and 

help them attain their biologically active form. Many of these client proteins are directly involved 

in signal transduction pathways that are associated with oncogenesis. In addition to normal 

protein clients, Hsp90 has been implicated in the maintenance of many mutated and chimeric 

proteins that result in transformation, such a p53 and BCR/ABL respectively (Blagosklonny et al., 

1996; Nimmanapalli et al., 2001). Thus, Hsp90 has become an exciting new target for 

development of cancer therapeutics.  
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Inhibition of Hsp90 completely disrupts the folding process and targets client proteins for 

degradation. Inhibition can be accomplished through the binding of small molecules in the N-

terminal ATP binding domain or in the C-terminal nucleotide binding domain. Studies 

investigating inhibitors that are designed to disrupt Hsp90 protein interactions with its binding 

partners in the multi-protein folding complex have also shown some success (inhibitors 

extensively reviewed in Yanyan et al., 2009).  

Geldanamycin is a benzoquinone ansamycin antibiotic that binds in the N-terminal ATP 

binding pocket of Hsp90 and inhibits its ATP binding. This inhibition causes the degradation of 

Hsp90 client proteins and has been used as a tool to identify additional Hsp90 clients. 

Unfortunately, geldanamycin is poorly soluble in water and was found to be highly hepatotoxic, 

making it unsuitable for clinical trials. 17-allylamino-17-desmethoxygeldanamycin (17-AAG) was 

designed to improve the therapeutic index of geldanamycin by making it more water soluble. As 

a result, 17-AAG has been investigated in many different cancers and is currently the focus of 

numerous clinical trials (Usmani et al., 2009). 

Many studies have investigated 17-AAG effects in leukemia cells alone or in combination 

with other chemotherapeutic agents. FLT3 is a frequent target for gain-of-function mutations in 

AML. Mutant FLT3 is an Hsp90 client and was shown to be degraded with Hsp90 inhibition 

(Minami et al., 2002; Yao et al., 2003). Molm13 and MV4-11 are leukemia cell lines that have 

activating FLT3 mutations. Treatment with 17-AAG and etoposide, a topoisomerase II inhibitor, 

was shown to have a synergistic effect on cell death in these two cell lines. This effect was not as 

pronounced in cell lines that were tested which had wild-type FLT3, which illustrates the 

importance of Hsp90 in stabilizing mutant proteins (Yao et al., 2007). Treatment of HL-60 and 

Jurkat leukemia cells sequentially with 17-AAG and then arsenic trioxide resulted in the same 

synergistic effect in cell death (Pelicano et al., 2006). 17-AAG was also shown to act in 

combination with cytarabine in HL-60 and ML1 leukemia cells to cause apoptosis (Messa et al., 

2005). 
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ABL is a tyrosine kinase that is constitutively activated by the fusion with BCR found in most 

chronic myeloid leukemias. Gleevec is a tyrosine kinase inhibitor that has had great success in 

treating chronic myeloid leukemia patients with BCR/ABL positive cells. Nimmanapolli et al. 

developed Gleevec resistant K562 cells, which have endogenous BCR/ABL expression, and 

BCR/ABL expressing HL-60 cells (Nimmanapalli et al., 2002). This group was able to show that 

treatment of these resistant cells with 17-AAG induced apoptosis. In addition, patients that had 

failed Gleevec therapy had increased apoptosis of leukemia cells with 17-AAG treatment. These 

studies illustrate that targeting Hsp90 in AML with specific mutated client proteins, such as FLT3 

may prove to be effective treatment. 

A long term study examined the expression of heat shock proteins in 98 patients newly 

diagnosed with AML over a period of up to 4.5 years. These patients varied in their FAB subtype 

as well as their karyotypic profile. The expression of heat shock proteins in leukemic cells was 

much higher compared to expression in normal marrow. High expression of Hsp90 was 

correlated with high levels of multi-resistant protein expression. In addition, low Hsp90 

expression was correlated with complete remission of the patients. The overall survival of 

patients was also significantly lower in those with high expression of Hsp90 (24.2 months versus 

4.9 months) (Thomas et al., 2005). 

A more recent study from the same group, confirmed that high Hsp90 expression is 

correlated with poor prognosis. They subsequently showed that higher percentages of Hsp90 

positive cells were associated with PI3K/AKT activation and with BCL-2 positive cells. Patients 

who obtained complete remission also had significantly lower percentages of Hsp90 positive 

blast cells at diagnosis. Ex vivo studies demonstrated that samples with higher expression of 

Hsp90 had improved survival in growth factor-free medium. Additionally, samples that formed 

higher numbers of colonies in semi-solid medium had higher percentages of Hsp90 positive 

cells. Importantly, they also demonstrated that samples with a high percentage of Hsp90 positive 

cells were the most susceptible to 17-AAG treatment. The 17-AAG IC50 of samples with at least 

50% Hsp90 positive cells was 1 µM, compared to an IC50 of almost 10 µM in those samples 
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with the lowest Hsp90 expression (Flanderin et al., 2008). In other words, those samples with 

high Hsp90 expression needed a dose 10 times less than those samples with low Hsp90 

expression to kill of 50% of the cells. These two studies demonstrate the role of Hsp90, as well 

as other heat shock proteins, in the progression of AML. 

Early phase I/II clinical trials of tanespimycin, or 17-AAG, have shown it to be well tolerated 

in patients with advanced cancers. The drug is administered intravenously and patient side 

effects include fatigue, thrombocytopenia, abdominal pain and some hapatotoxicity, all of which 

are reversible. Degradation of Hsp90 client proteins and up-regulation of Hsp70 was measured 

in tumor biopsies and peripheral blood monocytes to demonstrate that treatments were 

effectively inhibiting Hsp90 function. However, there was minimal disease response in these 

clinical trials suggesting that 17-AAG alone may not be an effective treatment strategy (reviewed 

in Reikvam et al., 2009; Usmani et al., 2009).  

Data from clinical trials involving AML patients has been sparse. However, recent results 

from a phase I clinical study with alvespimycin, a new geldanamycin derivative, show that it is 

more water soluble than 17-AAG, more potent in inhibiting Hsp90, and has a longer half-life in 

the circulation. Data from this clinical trial demonstrated induction of Hsp70 expression and 

apoptosis in bone marrow blast cells (Lancet et al., 2010). These results suggest that more 

effective Hsp90 inhibitors may improve the efficacy of treatment in clinical trials.  

The studies discussed above indicate that leukemia cells with high Hsp90 expression are 

more susceptible to 17-AAG treatment (Thomas et al., 2005; Flanderin et al., 2008). Furthermore, 

another study demonstrated that Hsp90 derived from tumor tissue is present mostly in the 

active folding complex. Since Hsp90 in normal tissue is mostly uncomplexed (Kamal et al., 

2003), these results demonstrate that Hsp90 is highly active in cancerous cells. Hsp90 is known 

to stabilize a variety of signaling proteins that have random mutations and are required for 

cancer cell survival (Neckers, 2002). The over expression of these signaling proteins can also 

cause the up-regulation of Hsp90 seen in many cancers. As a result, cancer cells become more 

dependent on Hsp90, which makes them more sensitive to inhibitors than normal cells.  
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Hsp90 and phenotypic plasticity  

Previous studies in Drosophila and Arabidopsis provided evidence that Hsp90 inhibition could 

cause the inheritance of unexpected morphological phenotypes. In Drosophila a reduction of 

Hsp90 function, either by pharmacological inhibition or mutant genotype, allowed phenotypic 

variation which affected many different adult features. The structures affected depended on the 

genetic background. Upon selection of these phenotypes, they became fixed independent of 

Hsp90 mutation and also became more penetrant. The authors stated that these observations 

were due to multiple genetic determinants that mapped to the second and third chromosome 

(Linquist et al., 1998). This group also showed that inhibition of Hsp90 in Arabidopsis resulted in 

the creation of atypical phenotypes (Queitsch et al., 2002), which demonstrates that the effect 

can be seen across species. It should be noted that the specific phenotypes seen were strain 

dependent, indicating that the mechanism could be genetically based.  

However, another study in Drosophila provided evidence that Hsp90 inhibition could elicit 

phenotypic variation through epigenetic modulation. Epigenetics is defined as reversible, 

heritable changes in gene regulation that occur without a change in DNA sequence. These 

changes are brought about by histone modifications, such as acetylation, or by DNA methylation. 

Genetic or pharmacological inhibition of the Hsp90 homolog, Hsp83, had similar effects to 

heterozygous mutations in a variety chromatin remodeling genes. A transdifferentiation event, 

seen as a limb-like outgrowth in the eye, was observed in offspring whose parents were fed 

geldanamycin. The percentage of offspring with the eye phenotype increased upon selective 

breeding, in the absence of Hsp90 inhibition, suggesting an epigenetic mechanism. Further 

studies showed a reversal of the phenotype with histone deacetylase inhibitors, providing a link 

between Hsp90 and epigenetic modulation (Sollars et al., 2003). 

These three important studies have led to the hypothesis that Hsp90 acts as a “capacitor” 

for morphological evolution. In other words, Hsp90 acts as a buffer to stabilize certain  
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Figure 1.4. Canalization of phenotypic diversity. The potential expression patterns of genes from 
one organism to the next in a particular species are diverse enough to give a wide range of 
phenotypes that are not present in the population. This is theorized to be the result of canalization of 
these phenotypes during development. Meaning, the present morphology of the species is favored 
and variations in gene expression that would result in deviation from this model are compensated for 
by canalyzers (or capacitors) present in the system. However, if the canalyzer is knocked out or 
inhibited, the result is a release of varying phenotypes. This can allow for a greater adaptability of the 
species when selective pressures are applied or in the case of cancer progression a greater potential 
for full transformation. 

phenotypes. Conrad Waddington first developed the theory of canalization in evolution 

(Waddington, 1942). He hypothesized that certain traits become fixed in a population so that 

even minor variations, through an unknown mechanism, still result in the same phenotypic 

outcome. Hsp90 fits very nicely into this theory (Figure 1.4). Non-deleterious mutations could 

go unnoticed due to the help of Hsp90 in folding and activation of proteins. Hsp90 function 

could be a possible mechanism for canalization, and has been called “Waddington’s widget” for 

that reason (Ruden et al., 2003). Hsp90 could therefore act as a capacitor in that it “stores” 

phenotypic variation. In times of stress, Hsp90 activity would be reduced due to an increase in 

protein production and misfolded proteins placing a higher demand on its activity. Higher 

demand would cause a decrease in activity which could bring about the release of varying 
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phenotypes. Selection of phenotypes that are beneficial to the organism would become fixed in 

the population allowing for adaptation to occur.  

While studies have demonstrated Hsp90’s ability to act as a phenotypic capacitor for 

morphological evolution in Drosophila and Arabidopsis, data is lacking for this effect in 

mammalian systems. In studies that will be presented later, I have attempted to reproduce these 

results in a mammalian hematopoietic model, with mixed results. Even though my data were not 

reproducible, there is still the possibility that this phenomenon occurs in mammals. If this can 

be demonstrated, it would have a large impact on how Hsp90 inhibitors are used in cancer 

treatment. If Hsp90 acts as a phenotypic capacitor in humans, then its inhibition could make 

cancer cells more adaptable to their environment.  

Hsp90 plays a role in many signal transduction pathways by its specific interaction with 

signaling proteins. Hsp90 has been proposed not only to participate in the folding process, but 

also to poise many of these signaling proteins in preparation for propagating these signals. In 

fact, Hsp90 has been shown to interact with over 10% of the yeast proteome, including 

chromatin remodeling complexes (Zhao et al., 2005). It would be reasonable to expect this 

interaction occurs in mammalian models since Hsp90 is so highly conserved in many different 

species. This provides further evidence that Hsp90 could be involved in epigenetic modulations. 

With Hsp90’s diverse array of protein associations it is not surprising that perturbation in Hsp90 

function could allow phenotypic variation.   

p53 

The discovery of p53 

 In 1979 investigators analyzed protein content of cells transformed by the SV40 virus by 

immunoprecipitation using sera from rodents with SV40-induced tumors. They found a novel 53 

kD protein that bound to the SV40 T-antigen. Interestingly, this protein was also 

immunoprecipitated using the same sera from uninfected carcinoma cell lines, indicating this 
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protein was of cellular origin (Linzer and Levine, 1979). Later, it came to be known as p53 based 

upon its apparent molecular weight.  

Determining the function of this protein has taken many investigators down a winding but 

remarkable road. At first it was thought to be a tumor antigen because animals immunized with 

tumor cells produced antibodies to p53 (DeLeo et al., 1979; Linzer and Levine, 1979). This 

finding initiated a race to isolate the cDNA in order to test the function of this protein in 

oncogenesis. Subsequent transfection studies indicated that p53 acts as an oncogene due to its 

apparent ability to cooperate with oncogenic RAS and immortalize cells (Eliyahu et al., 1984; 

Jenkins et al., 1984; Parada et al., 1984). At the same time these studies were ongoing researchers 

in Levine’s group were performing the same experiment, but with a different p53 cDNA clone, 

but obtaining an opposite result. This prompted the two groups to exchange cDNA clones and 

perform the experiments again. Interestingly, they were able to reproduce each other’s original 

results. However, comparison of the two cDNA clone’s amino acid sequences held the key to the 

discrepancy. They were identical apart from one amino acid at position 135. Subsequent studies 

showed that wild-type p53 had an alanine at position 135 while the clone that acted as an 

oncogene had a valine at this amino acid position. This finding clearly demonstrated that one 

amino acid difference in p53 could make the difference between a protein that promotes 

oncogenesis and one that acts as a tumor suppressor (Hinds et al., 1989). These studies, along 

with others classified p53 as a tumor suppressor and documented the possible oncogenic 

properties of mutant p53. 

p53 structure, regulation and function  

In humans the p53 gene, TP53, is located on the short arm of chromosome 17. It is 20 kb in 

length and contains 11 exons and 10 introns. The first exon is non-coding, with the translational 

start site located in exon 2. The full length wild-type p53 cDNA is 1182 nucleotides long and 

encodes a 363 amino acid protein. Recently ten isoforms of p53 were identified (Bourdon et al., 

2005; Rohaly et al., 2005). These are formed through alternative splicing in intron 9 and 2 and an 
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additional promoter located within intron 4. A combination of all these alternative splicing and 

promoter events results in the ten known isoforms to date (Bourdon, 2007).  

It is apparent that these isoforms are expressed in normal tissue in a tissue specific manner. 

Two of these isoforms, Δ133p53 and Δ40p53, are known to act in a dominant negative manner 

to full length p53 due to the fact that they still have the oligomerization domain, but lack the 

transactivation domain (Curtois et al., 2002; Ghosh et al., 2004). Preliminary studies show the 

different p53 isoforms that are capable of DNA binding show a differential preference for p53-

responsive promoters and can result in alternate p53 responses (Bourdon et al., 2005; Rohaly et 

al., 2005). This differential gene regulation has been proposed as a possible mechanism for the 

tissue specific actions of p53. Bone marrow or peripheral blood samples express seven isoforms 

(Bourdon et al., 2005; Anensen et al., 2006). This finding raises the possibility that protein levels 

of the different p53 isoforms could be important in leukemia. However, the functions of these 

isoforms and how they interact in the canonical p53 pathways are still poorly understood.  

p53 consists of five main domains (Figure 1.5). The N-terminal region of the protein 

contains the transactivation domain and a proline rich domain. The core domain of the protein 

contains a large DNA binding domain, this region is also the target of 95% of the point 

mutations in p53 that is expressed in a large number of different types of cancer (Vousden and 

Lu, 2002). An oligomerization domain is located in the C-terminal region of the protein. This 

allows for two p53 molecules to dimerize and then bind to another dimer, ultimately forming a 

tetramer. The C-terminal region also contains a regulatory domain with several lysine residues 

that can either be ubiquitinated or acetylated. These post translational modifications have a 

direct effect on p53 stabilization and activation. 

Under normal conditions, p53 has a very short half-life, on the order of 20 minutes. This is 

mostly due to its negative regulator MDM2, also known as HDM2 in humans. HDM2 is an E3 

ubiquitin ligase that binds to the N-terminal transactivation domain of the protein and inhibits 
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Figure 1.5. Schematic of p53 protein structure. p53 protein can be divided into five functional 
domains. The N-terminal region has the transactivation domain (TA) and the proline rich (PR) 
domain. The central region contains the DNA binding domain. The C-terminal holds the 
oligomerization domain (OD) and the regulatory domain (Reg). The Roman numerals indicate highly 
conserved regions of the TP53 gene.  

p53 function. It can also ubiquitinate p53 in the C-terminal region causing its subsequent 

degradation by the proteasome, resulting in low protein levels (Woods and Vousden, 2001; 

Michael and Oren, 2002). However, when a cell experiences stress such as DNA damage, 

hypoxia, ribonucleotide depletion, or deregulated oncogene expression, p53 rapidly accumulates 

in the cell. This is can result either from the covalent modification of the p53, such as 

acetylation and phosphorylation that activate p53 and inhibit HDM2 binding, or by modifying 

HDM2 and preventing its interaction with p53 (Figure 1.6).  

In normal cells, p53 is constitutively expressed. Regulation of protein levels are 

accomplished through post-translational modifications as discussed above. This is a common 

control mechanism used to regulate stress proteins such as hypoxia-inducible factor-α. It allows 

cells to rapidly respond to stress by stabilizing instead of synthesizing proteins. Stabilization of 

p53 allows for the swift activation of pathways that prevent the propagation of cells that could 

cause cancer and other pathologies.  

The role of p53 as a transcription factor has been intensely studied and is necessary for 

tumor suppressor activity. Once p53 is activated, it forms a tetramer that binds to specific 

sequences of DNA activating transcription of target genes (El-Deiry et al., 1992; Funk et al., 

1992). Depending on tissue type and the extent of cellular damage, this can result in one of two 

outcomes. The cell can undergo cell cycle arrest, which occurs when p21, GADD45 and 14-3-3 

protein expression is up-regulated. Cell cycle arrest buys the cell time to repair its DNA and thus 
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Figure 1.6 (previous page). Control of p53 levels by various kinases. Under normal conditions 
HDM2 ubiquitinates p53, which causes its export from the nucleus followed by polyubiquitination and 
targeting to the proteasome where it is degraded. This keeps p53 levels quite low during 
homeostasis. However, when stress is applied, such as DNA damage, kinases such as ATM and 
ATR activate p53 via phosphorylation. This phosphorylation is thought to disrupt HDM2 binding to 
p53 and thus lengthening its half-life, which then allows it to activate transcription of target genes. 
ATM and ATR also phosphorylate HDM2 in an inhibitory manner to prevent its interaction with p53. 
Survival signals can activate kinases such as AKT, which can phosphorylate HDM2 causing its 
activation. This subsequently causes p53 to be degraded, which then prevents p53 from initiating an 
apoptosis response. 

promotes survival. p53 can also activate pro-apoptotic genes such as BAX, PUMA, and NOXA, 

that forces the cell to undergo programmed cell death. By being a major switch to control these 

two pathways, p53 prevents the propagation of damaged cells that could contain mutations and 

become cancerous.  

Indeed, p53 plays a central role in protecting the integrity of the genome, and thus 

preventing cellular transformation. The significance of this role is demonstrated by three key 

observations. One is that over 50% of all cancers have mutant p53, making it the most frequent 

mutated gene identified in human cancer. The second is Li-Fraumeni syndrome, which is a 

genetic disease often caused by a germline mutation in p53. Li-Fraumeni syndrome patients 

usually develop tumors by early adulthood with the loss of heterozygosity (Malkin et al., 1990). 

Finally, mice that are p53-null have normal development but develop cancer within 3-6 months 

of birth (Donehower et al., 1992; Jacks et al., 1994). These important functions of p53 have 

prompted scientists to call it the ‘guardian of the genome’ (Lane, 1992).  

How exactly p53 makes the choice between apoptosis and cell cycle arrest has been 

extensively studied, but is still not completely understood. One hypothesis is that the decision 

between the life and death of a cell actually does not reside with p53, but with the intracellular 

and extracellular signaling events present with p53 activation. These signals can come from the 

cell-cell and cell-matrix interactions, or simply by activation of pro-survival signaling pathways 

such as AKT (Li, 2002). Survival signals present at the time of p53 activation could make a cell 

more prone to cell cycle arrest. It has also been proposed that specific covalent modifications to 

p53 can dictate which promoters it binds and activates. p53 protein binding partners can also 
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dictate promoter specificity. It seems abundantly clear that p53 acts as an important element in a 

complex network of signals and protein interactions that ultimately decides cell fate. p53 may be 

central in this network, but downstream effects of p53 activation can be largely dependent on 

availability and activation of other proteins (extensively reviewed in Oren, 2003). 

When a cell is experiencing certain types of stress, e.g. DNA damage, p53 protein needs to be 

stabilized so that its accumulation can stimulate target pathways. When DNA damage occurs, the 

protein kinases ATM and ATR become activated and phosphorylate p53 in the N-terminal region 

(Figure 1.6). This disrupts HDM2 association with p53 and prevents its subsequent 

ubiquitination (Bannin et al., 1998; Canman et al., 1998). ATM can also phosphorylate HDM2 in 

such a way that causes it to be functionally inactive towards p53 (Maya et al., 2001). These 

actions increase p53 protein levels in the cell and increase its activity. The outcome of p53 action 

depends in a large part on the extent of DNA damage that has occurred. 

HDM2 is frequently a target in cancer because of its role in p53 regulation. Hyper-

proliferation induced by oncogenes, such as β-catenin, can induce p53 activity. p14ARF, an 

alternative reading frame gene product of the INK4a locus (Sherr, 1998), is a known tumor 

suppressor that is frequently disabled in many cancers. ARF binds to HDM2 directly and blocks 

its ability to inhibit p53 function (Sherr et al., 2001). Deregulation of β-catenin activity has been 

shown to induce ARF protein expression (Damalas et al., 2001), which ultimately leads to p53 

activation and cell cycle arrest. Activated AKT can also act directly on HDM2 in an opposite 

manner. Survival signals activate AKT, which allows it to phosphorylate HDM2 on different 

residues from those mentioned above to cause its relocation to the nucleus (Figure 1.6). There 

it can bind and ubiquitinate p53 causing its export from the nucleus and degradation (Mayo et 

al., 2001; Ogawara et al., 2002). These studies show that HDM2 can be phosphorylated on 

different residues by other pathways to increase or decrease its activity, which ultimately affect 

p53 function. 
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Mutant p53 in cancer  

There are three mechanisms through which mutant p53 is thought to contribute to tumor 

development: (1) loss of wild-type p53 function; (2) dominant-negative inhibition of wild-type 

function; and (3) gain-of-function mutations. Loss of the wild-type tumor suppressor abilities of 

p53 would critically compromise the ability of a cell to respond to many different types of stress. 

As discussed previously, loss-of-function can be acquired by deleterious mutation or deletion of 

either TP53 itself or one of the regulators of p53 activity. This would be especially advantageous 

to a precancerous cell. Without p53, genomic alterations would go unnoticed and provide the 

cell with a means to acquire new characteristics that could aid in tumor progression. The cell 

would also lack a means to detect uncontrolled proliferation, which is one of the hallmarks of 

cancer.  

Of the 50% of mutant p53 genes in cancer, 90% are missense mutations that give rise to a 

full length stable protein that shows an increase in accumulation compared to wild-type. This 

distinguishes p53 from other tumor suppressor genes in which inactivation often results in 

truncated proteins or complete lack of protein expression. The majority of the missense 

mutations are in the DNA binding domain, disrupting sequence-specific DNA binding. At the 

same time, the oligomerization domain would remain intact allowing the mutant form to hetero-

oligomerize with wild-type p53 (if wild-type is present). Since tetramer formation is necessary 

for DNA binding, it is conceivable that hetero-oligomerization would inhibit wild-type p53 from 

binding to DNA and activating transcription. This would result in a classic dominant-negative 

phenotype, whereby the mutant form dominantly inhibits the wild-type form and results in the 

same effect as what is seen in p53-null cells. Several studies have clearly shown this 

phenomenon to be present. For example, mice with endogenous wild-type p53 and engineered 

to express a missense p53 mutant in trans have a higher rate of developing tumors (Lavigueur et 

al., 1989; Harvey et al., 1995). 
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The very high frequency of missense mutations of p53 in cancer resulting in a stable protein 

suggests that those cancer cells with mutant p53 obtain a selective advantage during 

oncogenesis. This selective advantage indicates that mutant p53 could have other functions in 

the cell rather than just resulting in loss-of-function (reviewed in Kim and Deppert, 2004; Strano 

et al., 2007). Studies have been undertaken that test this hypothesis by ectopically expressing 

various p53 mutants in a cells without endogenous p53. Expression of mutant p53 in cells that 

lack endogenous p53 resulted in an increase in tumorigenicity (Shaulsky et al., 1991; Pohl et al., 

1988; Dittmer et al., 1993). Many other studies have demonstrated that mutant p53 can induce 

the expression of genes important in tumor cell progression such as MDR1, EGFR and c-Myc 

(Chin et al., 1992; Deb et al., 1994; Frazier et al., 1998). More recently microarray analysis has 

shown that mutant p53 can alter global gene expression in different cell lines (O’Farrel et al., 

2004). These studies make the case for mutant TP53 acting as a transcription factor that has a 

different set of target genes to that of wild-type.  

The possibility of mutant p53 acting as a transcription factor begs the question: can 

missense mutant p53 proteins still bind to DNA? This question has remained under vigorous 

debate. Despite numerous efforts of comparing promoter regions of mutant p53 target genes, 

no consensus sequence has been found to date. However, chromatin immunoprecipitation 

(ChIP) assays have demonstrated that mutant p53 proteins do indeed physically associate with 

the promoters whose expression they regulate (Zalcenstein et al., 2003). This demonstrates that 

mutant p53 proteins can target promoters in a specific manner, but that no sequence homology 

between promoters has been discovered.  

Two mechanisms have been postulated to explain how mutant p53 can associate with its 

respective target promoter. One is that the mutant protein can bind to DNA based on the 

specific DNA structure. This hypothesis is supported by the findings that wild-type p53 can 

interact with DNA in a sequence specific AND non-specific manner. As discussed earlier, the 

sequence specific mode is facilitated by the DNA binding domain of the protein. However, the 

non-specific manner in which p53 can bind DNA is strictly dependent on DNA topography 
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(reviewed in Kim and Deppert, 2003) and is accomplished through the C-terminal domain. In 

fact, the C-terminus was found to be required for efficient binding to chromatin in vitro 

(Epinosa and Emerson, 2001). Wild-type p53 can bind with high affinity to double-stranded and 

single stranded DNA, secondary DNA structures and bulges in DNA caused by mismatched bases. 

As one can imagine, this method of binding DNA could facilitate the DNA repair function of p53.  

This evidence suggests that DNA binding and transactivation of promoters by wild-type p53 

may result from the sequence specific and non-specific interactions making the process much 

more complex than initially proposed (Yakovleva et al., 2002). These interactions of the C-

terminal domain of p53 with DNA structure could allow mutant proteins, with inactive sequence 

specific DNA binding domains, to bind DNA and possibly facilitate transcription. This is further 

supported by a study demonstrating that mutant p53 was able to bind non-linear DNA structures, 

such as stem-loop and four-way junction structures, with high affinity, but unable to bind the 

linear counterpart of the same sequence (Goehler et al., 2005). 

Another possible mechanism for the association of mutant p53 with various target 

promoters is its interaction with other sequence specific transcription factors. One example is 

specific protein 1 (SP1) (Gualberto and Baldwin, 1995; Chicas et al., 2000), a transcription factor 

that participates in the regulation of genes involved in proliferation, resistance to apoptosis and 

angiogenesis. (Black et al., 2001). Interestingly, wild-type p53 inhibits SP1 dependent gene 

expression, but mutant p53 acts synergistically to amplify transcriptional activation of SP1 

(Bargonetti et al., 1997). Similar effects are seen with ETS-1, a proto-oncogene that regulates 

expression of angiogenic and extracellular matrix remodeling genes (Sampath et al., 2001). 

Expression of these types of proteins is typically associated with tumors of a more invasive 

phenotype and thus can be indicative of poor prognosis. 

p53 and leukemia  

About 10% of myeloid and lymphoid leukemias have mutated p53 at the time of diagnosis 

(Mitani et al., 2007). However, p53 inactivation is often more commonly associated with 
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progression of hematological malignancies, such as the progression of CML to blast crisis (Sander 

et al., 1993; Nakai et al., 1994). As discussed previously, chromosomal aberrations is a common 

occurrence in AML. In fact, loss of 17p is often associated with a complex abnormal karyotype, 

and is correlated with poor outcome (Haferlach et al., 2008). A recent study indicated that a 

single TP53 deletion was a strong independent negative prognostic factor for disease free 

survival. This was also true of patients without the presence of other chromosomal 

abnormalities (Seifert et al., 2009). Another study showed that patients with abnormal 

chromosome 17 had significantly higher drug resistance and shorter overall survival (Nahi et al., 

2008). These studies show that although TP53 mutations in AML are uncommon, inactivating 

TP53 can have a devastating outcome.  

A very early case study revealed that a TP53 mutation became dominant in the peripheral 

blood cells of chronic myeloid leukemia patient after progression to blast crisis. After successful 

treatment and return of the patient’s condition to chronic phase, the mutant TP53 clones could 

not be detected by sequencing, indicating that the TP53 wild-type clones were predominant. 

This case study suggests TP53 alteration can play a role in the acceleration from chronic phase 

to blast crisis in chronic myeloid leukemia (Foti et al., 1991).  

Interestingly, a differential p53 isoform expression pattern was detected in peripheral blood 

cells before and after chemotherapy in AML patients (Anensen et al., 2006). Two isoforms, Δp53 

and p53α (full length), were prevalent before the induction of chemotherapy. After two hours 

of the start of chemotherapy, p53α was up-regulated along with common p53 targets such as 

p21 and BAX. This prompted the authors to suggest that it is the alpha isoform that contributes 

the most in the p53 response of AML cells to stress.  

Since TP53 is mutated in only about 10% of myeloid and lymphoid leukemias, clinical drug 

studies have been designed to enhance the activity of wild-type p53. Nutlin and MI-63 both bind 

to HDM2 and inhibit its interaction with p53, resulting in an increased amount and activity of this 

protein. RITA (reactivation of p53 and induction of tumor cell apoptosis) is a furanic compound 

that binds to the N-terminal domain of p53 and causes a conformational change that reduces 
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HDM2 interaction with p53. There are some compounds available that can also reactivate mutant 

forms of p53. One such compound is PRIMA-1 (p53 reactivation and induction of massive 

apoptosis) that restores wild-type conformation to p53 through a mechanism that is not entirely 

understood. PRIMA-1 activation induces apoptosis without toxic effects to normal cells. CP-

31398 is thought to stabilize the DNA binding domain and rescue DNA binding activity of p53 

mutants. MIRA-1 rescues the transcriptional transactivation of p53 mutants by aiding the mutant 

protein in folding to a more native conformation (reviewed in Saha et al., 2010). 

In studies that will be presented in Chapter 3, an AML cell line Kasumi-3 was found to 

possess two mutant alleles of TP53. We demonstrated that this cell line was very sensitive to 

Hsp90 inhibition by 17-AAG and that the p53 protein present in the cells was degraded with 

treatment. Therefore, we investigated whether the p53 present in these cells had oncogenic 

function.  

Interaction of mutant p53 with the genome of cancer cells is very complex and may involve 

more than one mechanism of action. A further complication is the thousands of different TP53 

mutations reported in various types of cancer (Petitjean et al., 2007) and not all mutant p53 

proteins have the same activity. Some mutant p53 proteins may act in a dominant negative 

manner rendering wild-type p53 useless, thus promoting tumor progression. Some mutants may 

act as transcriptional activators either by binding the DNA directly or through binding to protein 

complexes that can either abrogate or potentiate gene expression. The recent discovery of 

different p53 isoforms adds yet another layer of complexity to studying the role of p53.  
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Abstract 

The goal of this study was to ascertain the specific effects of 17-N-Allylamino-17-

demethoxygeldanamycin (17-AAG) treatment in human acute myelogenous leukemia (AML). Four 

human leukemia cell lines were treated with varying doses of 17-AAG followed by analysis of 

toxicity, apoptosis, proliferation, and cell cycle. Treatment with 17-AAG caused the cells to 

accumulate in the G2/M phase. However, the effect was variable among the four AML cell lines. 

The expression of p21, p53 and P-glycoprotein (MDR1) activity were among the possible 

mechanisms responsible for the differential cell line response to 17-AAG. Exploiting these 

differences may allow for more effective combinatory treatments in patients with AML. 
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Introduction 

Hsp90 is a constitutively expressed protein that makes up 1-2% of cellular protein (Csremely 

et al., 1998). It is a member of the chaperone protein family, whose function includes protein 

folding and quality control. In times of stress, Hsp90 expression is up-regulated to assist the 

cell’s recovery by stabilizing misfolded proteins. Under normal conditions, Hsp90 is required for 

the activation of many signaling proteins including protein kinases and transcription factors 

(Pearl et al., 2008). In cancer, it acts to stabilize a variety of mutated and over-expressed 

signaling proteins that are required for cancer cell survival (Neckers, 2002). As a result, cancer 

cells become more dependent on Hsp90, which makes them more sensitive to inhibitors of this 

protein than normal cells. Thus, Hsp90 has become an exciting new target in chemotherapy for 

cancer. 

Geldanamycin is an ansamycin antibiotic that inhibits Hsp90 by competitively binding in the 

ATP binding pocket located in the N-terminal domain of the protein. Although it showed 

promise as an anticancer agent, it was eventually determined that the drug was highly 

hepatotoxic. An analogue of geldanamycin, 17-AAG, was developed in order to improve the 

therapeutic index. These drugs ultimately cause the proteasomal degradation of Hsp90 client 

proteins by inhibiting the ATPase activity necessary for Hsp90 to function as a chaperone 

(Workman, 2004; Usmani et al., 2009). Because Hsp90 clients include many signaling proteins, 

inhibitors such as 17-AAG can have an impact on multiple signaling pathways making them 

desirable therapeutic agents. (extensively reviewed in Reikvam et al., 2009) 

Recently, a phase I clinical trial investigating alvespimycin treatment, another geldanamycin 

derivative, in AML showed complete remission in 3 out of 17 patients and 1 patient achieved a 

50% reduction in bone marrow blasts (Lancet et al., 2010). These results demonstrate that 

Hsp90 inhibition can produce clinically relevant effects; however, there is a need to determine 

the mechanisms responsible for the positive responses in order to improve response rate for 

AML patients. Consequently, the goal of this study was to ascertain the cellular and molecular 

changes that occur with 17-AAG treatment in human AML. To that end, the human leukemia cell 
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lines HL-60, KG-1a, THP-1 and Kasumi-3 cells, representing a variety of AML subtypes, were 

studied. Apoptosis, proliferation, cell cycle, and differentiation studies were performed after 

exposure of these cell lines to 17-AAG for various periods of time. Our data indicate that there 

was a diverse response among these AML cell types to 17-AAG treatment. These findings suggest 

that tailoring treatment on an individual basis may prove to be more effective in treating AML 

with 17-AAG. 

Materials and Methods 

Materials  

p21 (clone CP36, CP74) and GAPDH (clone 6C5) antibodies were purchased from Millipore 

(Temecula, CA). Secondary antibody used with p21 was purchased from Abcam (Cambridge, 

MA). CDC2 and CDC25c (clones pstaire & H-6) antibodies were purchased from Santa Cruz 

Biotechnology, Inc (Santa Cruz, CA). p53 antibody (clone DO-1) was a kind gift from Dr. Pier 

Palo Claudio. Clone DO-1 recognizes amino acids 21-25 in the transactivating domain of the 

protein, and in our hands resulted in a single band. This epitope makes it specific for the full 

length isoforms α, β, γ and the truncated isoform Δp53 (Bourdon, 2007; Anensen et al., 2006). 

Rabbit secondary antibody was purchased from Cell Signaling (Boston, MA), and mouse 

secondary was purchased from Amersham Biosciences. 17-AAG was purchased from A. G. 

Scientific, (San Diego, CA). Rh123 and Verapamil were purchased from Sigma (St. Louis, MO) 

Cell Culture 

All cell lines were purchased from American Type Culture Collection (Manassas, VA) and 

grown in the recommended culture medium and incubated at 37 ºC with 5% CO2.  

Apoptosis Studies  

Cells were seeded at 2x105 cells/mL and treated with vehicle, 2 or 3 µM of 17-AAG. After 48 

hours, cells were labeled with pacific blue conjugated annexin V (Molecular Probes, Eugene OR) 
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and 7-aminoactinomycin D (BD Pharmingen, San Jose, CA) according to the Annexin V product 

sheet. Fluorescence was then measured by flow cytometry on a BD FACSAria flow cytometer. 

Data was analyzed using Flowjo 8.8.6 (Mac version).  

Proliferation Studies 

Cell Trace CSFE Proliferation Kit was purchased from Molecular Probes (Eugene, OR). The 

basic protocol was followed as given on the product information sheet to load the cells with dye. 

The cells were then seeded at 2x105 cells/mL and were treated with vehicle, 2 or 3 µM 17-AAG. 

HL-60 cells and THP-1 cells were treated for 48 hours and Kasumi-3 cells were treated for 72 

hours before collection. KG-1a cells were treated for 48 hours, counted and reseeded at 2x105 

cells/mL in fresh treated medium. 48 hours later (96 hours total) the cells were collected. All 

cells were fixed in 2% paraformaldehyde at time of collection for at least 18 hours before 

measuring fluorescence by flow cytometry. Median fluorescent values were determined using 

Flowjo 8.8.6 (Mac version). 

Cell cycle  

Cells were seeded at 2x105 cells/mL and treated with vehicle, 0.25, 0.50, 1.0, 2.0 or 3.0 µM 

of 17-AAG. After 48 hours, HL-60, THP-1 and Kasumi-3 cells were collected and fixed in 70% 

ethanol. KG-1a cells were counted and resuspended at 2x105 cells/mL in fresh treated medium. 

After an additional 48 hours, the cells were also fixed in 70% ethanol. DNA staining was 

performed by addition of 50 µg/mL of propidium iodide and 250 µg/mL of RNAse A (both 

purchased from Sigma, St. Louis, MO) in PBS and incubated at 37 ºC for 30 minutes. Cells were 

then placed on ice and fluorescence was measured by flow cytometry. Subsequent data was 

analyzed using ModFit LT for MacIntel. 

Western Blotting  

Protein was extracted by resuspension of the cells in RIPA lysis buffer [25mM Tris pH 7.4, 

1% Triton X100, 1% SDS, 1% Na deoxycholate, 150mM NaCl + Halt protease inhibitor 
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(Thermoscientific, Rockford, IL)]. Protein was quantified using BCA Protein Assay Kit (Pierce, 

Rockford, IL). 50 µg of protein was loaded onto a 10% polyacrylamide gel and subjected to 

electrophoresis. Protein was then transferred to a nitrocellulose membrane and blocked with 5% 

milk in 0.1% Tween in tris-buffered saline (TBST). Antibodies were incubated over night at 4 ºC 

in blocking solution (except for CDC25c, which was incubated in ½ block) at 1:1000 dilution. 

Washes and secondary incubations (1:3000 dilution) were performed at room temperature. 

Membranes were stripped by gently rocking in medium stripping buffer (200 mM glycine, 0.1% 

SDS, & 1% Tween, pH 2.2) for five minutes two times at room temperature. The membrane was 

then washed by rocking in TBST four times for five minutes each. The immunoreactivity bands 

were visualized using chemiluminescence (ECL) detection reagents or Super Signal West Pico 

(Thermoscientific, Rockford, IL). The bands on the autoradiograms were quantified using 

Quantity One 4.5.2 software program from Bio-Rad by densitometry. 

Rh123 efflux assay  

Rh123 efflux assay was performed as previously described (Petriz and Garcia-Lopez, 1997). 

Briefly, cells were seeded at 2 x 105 cells/mL. Rh123 was added at a final concentration of 200 

ng/mL for Rh123 positive samples. Verapamil, at a final concentration of 50 µM, was added to 

the appropriate cultures. Cells were incubated at 37 ºC for one hour. The cells were then washed 

once with PBS and resuspended in fresh medium with or without Verapamil. After 90 minutes 

incubation the cells were collected by centrifugation and resuspended in FACS buffer for analysis 

by flow cytometry as described above. 

Verapamil combined with 17-AAG treatments  

Cell cycle profile and apoptosis assays were performed as described above with the 

following treatments: 2 x 105 cells/mL were seeded into a six well plate and treated with vehicle, 

50 µM Verapamil, 3 µM 17-AAG or both. After 24 hours a portion of the culture was harvested 

and fixed as described above for cell cycle analysis. Cells were analyzed for apoptosis after 48 

hours of treatment. 
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Statistical analysis  

All statistical analysis was performed using SigmaStat, Systat Software, Inc. Analysis of 

variance was performed on all data sets where normality and equal variance assumptions were 

met. Student’s t-test was performed with Tukey’s correction for multiple comparisons. 

Significance was assigned for all data with p<0.05. Cell cycle data sets were analyzed using 

Dunnett’s method, comparing each group to the control. For all other non-normal data, ANOVA 

on Ranks was performed. Pairwise testing was performed using Dunn’s method for multiple 

comparisons. 

Results 

Human leukemia cells have varying susceptibilities to 17-AAG treatment  

A 17-AAG toxicity assay was performed on the four AML cell lines. Cells were seeded at 

2x105 cells/mL and incubated with varying concentrations of 17-AAG ranging from 2 µM to 15 

µM for 48 hours. At this time, erythrosin B dye exclusion counts were performed. The results 

illustrate that there are distinct differences in the susceptibility of these cell lines to 17-AAG 

treatment (Figure 2.1A). KG-1a cells are still able to proliferate as demonstrated by an increase 

in cell number at lower treatment levels. In fact, these cells did not attain an apparent static state 

until they were treated with 8 µM of 17-AAG. On the other hand, Kasumi-3 cells exhibit a much 

higher susceptibility to apoptosis than the other cell lines, as can be seen by the low cell counts 

even at the lowest concentrations of treatment. These cells also continued to decline in cell 

number with greater doses of 17-AAG, unlike the other three cell lines which were able to sustain 

a constant cell concentration at higher doses.  

To determine if 17-AAG was inducing apoptosis, annexin V studies were performed. It 

should be noted that in phase I clinical trials, the circulating concentration of 17-AAG in 

peripheral blood was less than 3.5 µM (Grem et al., 2005). Because of this, the rest of the 

experiments performed in this study centered on the physiologically relevant concentrations of 2 
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Figure 2.1. 17-AAG treatment inhibits proliferation in human leukemia cells and causes apoptosis. A) Cells were seeded at a density of 2x105 
cells/mL at indicated 17-AAG concentrations. Cell counts were performed after 48 hours. B) Cells were treated with 0, 2 or 3 μM of 17-AAG for 48 hours. 
Apoptosis was assessed using annexin V and 7-aminoactinomycin D. Graphs show percentage of apoptotic and dead cells combined at the various 
concentrations. C) Cells were loaded with CSFE dye and treated with 17-AAG as outlined in the materials and methods. Median fluorescence was 
measured by flow cytometry. Proliferation rate was assessed by calculating the median fluorescence percentage of untreated values to treated values. 
All results depicted here are representative of three separate experiments performed in triplicate (mean + S.E.M.). (*) designates significance of p<0.05 
when data is compared to the vehicle control, (**) designates significance of p<0.05 when 3 μM treatment is compared to the 2 μM treated cells.  
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Figure 2.2. 17-AAG treatment causes arrest in G2/M phase of the cell cycle. Cells were treated as outlined in the materials and methods with the 
indicated concentrations of 17-AAG. Cell cycle was measured by flow cytometry. Graphs illustrate percentage of cells in each phase: A) represents HL-
60, B) KG-1a, C) THP-1 and D) Kasumi-3 cells. Results depicted here are the mean values representative of three separate experiments performed in 
triplicate. (*) indicates p<0.05 as compared to the vehicle control. 
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and 3 µM. The cells were seeded as described above and treated with 0, 2 and 3 µM of 17-AAG. 

After 48 hours the cells were collected and labeled with annexin V and 7-aminoactinomycin D as 

a dead cell counter stain. HL-60, KG-1a and THP-1 cells showed significant apoptosis and/or cell 

death; however, there was only about a 5% increase compared to vehicle control (Figure 2.1B). 

On the other hand, treatment induced a greater percentage of cellular apoptosis and death with 

short-term treatment in Kasumi-3 cells (Figure 2.1B). These data indicate that Kasumi-3 cells 

are much more vulnerable to short term 17-AAG treatment than the other cell lines.  

Due to the resistance of KG-1a cells to treatment, they were exposed to 17-AAG for 96 hours 

with a re-treatment after 48 hours in order to obtain the similar results as the other cell lines. All 

the other cell lines were treated for 48 hours unless otherwise noted.   

Dye dilution assays were performed next to confirm that treatment slowed proliferation of 

the cells. Kasumi-3 cells doubling time is quite long, ranging from 50-60 hours. Therefore, in 

this particular study, proliferation rate for this cell line was assessed after 72 hours to give the 

cells ample time to double. The proliferation rate of HL-60, THP-1 and Kasumi-3 cells was 

decreased significantly by up to 60% with 2 and 3 µM treatment (Figure 2.1C). KG-1a cells 

exhibit a significant dose dependent reduction in proliferation rate, 20% for 2 µM and 45% for 3 

µM. These data indicate that even with more stringent treatment, KG-1a cells were still less 

responsive to 17-AAG treatment when compared to the other cell lines.  

17-AAG treatment causes G2/M arrest  

The cells were treated with a range of 17-AAG concentrations and cell cycle was assessed 

using flow cytometry. HL-60 cells arrest in G1 at the lower concentrations of 17-AAG, but high 

concentrations result in a 2.0 to 2.5-fold increase in the percentage of cells in the G2/M phase 

compared to the vehicle control (Figure 2.2A). Not surprisingly, KG-1a cells show a 2-fold 

increase in G2/M only with the highest concentration of 17-AAG (Figure 2.2B). KG-1a cells’ 

lack of response in the lower concentrations of treatment provides further evidence of their 

resistant phenotype. THP-1 cells however, arrested at the lowest concentrations tested, with a 3- 
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Figure 2.3. CDC2 and CDC25c levels are diminished with 17-AAG treatment. Cells were treated 
with 0, 2 and 3 μM 17-AAG as outlined in the materials and methods. Total cell lysates were 
subjected to SDS PAGE analysis on a 10% polyacrylamide gel and blotted onto a nitrocellulose 
membrane.  Each panel shows a representative western blot after probing with CDC2 and CDC25c 
antibodies: A) represents HL-60, B) KG-1a, C) THP-1 and D) Kasumi-3. Graphs represent 
densitometry from 3-4 experiments (mean + S.E.M.). (*) indicates p<0.05 as compared to the vehicle 
control.  
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fold increase in G2/M phase cells. This occurred with no concurrent change in G1 phase cells 

(Figure 2.2C). Kasumi-3 cells accumulated to approximately 14% in G2/M phase with the 

highest concentration of 17-AAG, however this was still very low compared to the other cell lines 

(Figure 2.2D). This result was surprising given that this cell line was the most susceptible to 

treatment. This suggests an alternate mechanism of cell death for Kasumi-3 cells and illustrates 

the complexity of the cell lines’ responses to 17-AAG treatment. 

17-AAG depletes CDC25c and CDC2 cell cycle protein levels  

CDC25c and CDC2 were recently described as Hsp90 client proteins and subsequently down 

regulated with 17-AAG treatment in glioblastoma and lung cancer (Senju et al., 2006; Garcia-

Morales et al., 2007). These two proteins are very important regulators of G2/M progression 

(Stark and Taylor, 2006). In all of the AML cell lines, both proteins were diminished with Hsp90 

inhibition (Figure 2.3A, B, C and D). According to the densitometry results, CDC2 and CDC25c 

proteins were degraded significantly in THP-1, Kasumi-3, and HL-60 cells treatment. However, 

only CDC2 was degraded to a significant extent in KG-1a cells at the highest concentration tested. 

It is interesting that the two proteins are degraded to a greater degree in HL-60 cells considering 

THP-1 cells undergo cell cycle arrest much more readily. This is suggestive of an additional 

mechanism facilitating G2/M arrest in THP-1 cells.   

p21 is up-regulated with 17-AAG treatment in THP-1 cells  

p21 is an important protein that is up-regulated in times of stress by p53 (el-Deiry et al., 

1994; Ohnishi et al., 1996). Recently, p21 has been shown to be up-regulated independently of 

p53 in chronic lymphocytic leukemias tested with geldanamycin (Lin et al., 2008). Expression of 

p21 promotes cell cycle arrest and differentiation and has been shown to disrupt CDC25c 

interactions with CDC2 (Abbas and Dutta, 2009). To determine whether p21 correlated with the 

observed G2/M arrest, protein levels were measured by western blot in the four cell lines. 

Protein levels of p21 were persistently elevated in treated THP-1 cells, but was not induced in the  
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Figure 2.4. THP-1 cells up-regulate p21 with 17-AAG treatment. Cells were treated with 17-AAG as outlined in the material and methods. Total cell 
lysates were western blotted and probed with p21 antibody. The blot shown is representative of three blots in which all blots exhibits the same effect. 
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other cell lines (Figure 2.4). Up-regulation of p21 provides a possible mechanism for the high 

propensity of THP-1 cells to arrest in the G2/M phase of the cell cycle with 17-AAG treatment. 

p53 is significantly down-regulated with 17-AAG treatment in Kasumi-3 cells  

Wild-type p53 is known to help facilitate apoptosis in response to chemotherapeutic drugs 

(Lotem and Sachs, 1993; Lowe et al., 1993). Therefore, it was hypothesized that Kasumi-3 cells’ 

high sensitivity to 17-AAG treatment was due to wild type p53 expression. Western blotting was 

performed to assess p53 expression in all of the cell lines. The antibody used in this study 

recognizes an epitope in the N-terminal region of p53 ( 21-25 aa), which makes it is specific for 

the full length isoforms α, β, γ and the truncated isoform Δp53 (Anensen et al., 2006; Bourdon, 

2007). A recent study revealed that AML patients have higher levels of Δp53 compared to αp53 

in their leukemic cells. However, after receiving chemotherapy, there was a fast up-regulation of 

αp53 protein levels and p53 target genes (Anensen et al., 2006). This indicates the importance of 

the αp53 isoform in the chemotherapeutic response of AML patients. Indeed, p53 protein was 

highly expressed in Kasumi-3 cells as compared to the p53 over-expressing cell line Wi38 

(Figure 2.5A). The other cell lines did not express detectable levels of p53 as previously 

reported (Kastan et al., 1991; Sugimoto et al., 1992; Akashi et al., 1999), and only a single band 

was detected in Kasumi-3 cell lysate.  

Western blotting also revealed that p53 levels were significantly reduced with Hsp90 

inhibition in Kasumi-3 cells (Figure 2.5B). This is consistent with mutant p53 being a known 

Hsp90 client that is degraded upon Hsp90 inhibition (Blagosklonny et al., 1996; Sepehrnia et al., 

1996; Whitesell et al., 1998; Nagata, et al., 1999). This evidence suggests that Kasumi-3 cells 

harbor mutant p53 and not wild type. Sequencing of the p53 cDNA revealed that Kasumi-3 cells 

do indeed express mutant forms of p53 (see Chapter 3). Studies investigating these mutations 

are currently underway. Mutations and deletions of p53 occur in over 50% of all cancers 

(Hainaut and Hollstein, 2000) and have been shown to protect cancer cells from apoptosis  
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Figure 2.5. p53 is significantly down-regulated with 17-AAG treatment in Kasumi-3 cells. A) 
untreated cellular protein was blotted and probed with p53 antibody. WI-38 cells transfected with a 
p53 over-expression vector was used as a positive control. B) Kasumi-3 cells were treated for 48 
hours with 0, 2 and 3 μM 17-AAG. p53 levels were measured by western blot. A representative blot is 
shown. Densitometry from four independent trials is graphed in panel under blot (mean + S.E.M.). (*) 
indicates p<0.05 as compared to the vehicle control.  
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(Cadwell and Zambetti, 2001; Dittmer et al., 1993; Kim and Deppert, 2004). It is conceivable 

that degradation of mutant p53 could be a possible mechanism for Kasumi-3 cells’ high 

sensitivity to 17-AAG treatment. 

KG-1a cells have P-glycoprotein (P-gp) activity facilitating their resistance to 

17-AAG treatment  

P-gp is an ATP-binding cassette (ABC) transporter that allows for efficient efflux of substrates 

from cells. It has been well characterized as a mechanism in multi-drug resistance (MDR), due to 

its inherent ability to clear chemotherapeutic agents from cells before they can inflict harm. KG-

1a cells are known to have active P-gp (Bailly et al., 1995). In order to determine if this was the 

mechanism causing KG-1a cells’ resistant phenotype, the efflux capacity of the different cell lines 

were measured. KG-1a cells have P-gp activity, as illustrated by decreased fluorescence in non-

inhibited cells (Figure 2.6A, black histogram). This effect was ablated when 50 µM of verapamil 

(Vp), a specific P-gp inhibitor, was added to the cell culture (Figure 2.6A, shaded histogram). 

THP-1 and HL-60 cells however, were not able to efflux Rh123 to a significant degree (Figure 

2.6B and C, black histograms). Results shown are representative of three independent 

experiments. KG-1a cells were then treated with a combination of 17-AAG and verapamil to 

determine whether inhibition of P-gp would result in a more susceptible phenotype. Cells were 

seeded as described above and treated with vehicle, 50 µM verapamil, 3 µM 17-AAG or a 

combination of both reagents. The cell cycle profile of each treatment group was measured after 

24 hours. Treatment with 17-AAG and verapamil alone did result in a slight increase in the 

number of G1 phase cells. This effect is not surprising since verapamil has been previously 

shown to inhibit growth of primary AML cells in vitro (Bruserud et al., 1995; Bruserud et al., 

1993). However, this effect is ablated when the cells are treated with both reagents (Figure 

2.6D). In fact, a 2-fold increase in the number of cells in G2/M phase of the cell cycle was 

observed, which is more indicative of the phenotype displayed by the other cell lines in this 

study. There was also a significant increase in dead and apoptotic cells after 48 hours of 17-AAG  
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Figure 2.6. KG-1a cells possess P-gp activity. Cells were loaded with Rh123 dye in the presence 
or absence of 50 μM verapamil (Vp) for an hour. Dye efflux was measured by flow cytometry. Each 
panel shows a representative graph of fluorescence from three independent trials. A) KG-1a, B) HL-
60, and C) THP-1. In panel D) KG-1a cells were treated with 50 μM of Vp alone, 3 μM of 17-AAG or a 
combination of both. After 24 hours, cell cycle was measured by flow cytometry. Results depicted are 
the means from three independent trials each performed in triplicate. E) Cells from the same cultures 
were incubated an additional 24 hours. At this time, they were labeled with annexin V and 7-
aminoactinomycin D. Graph shows percentage of cells undergoing apoptosis and cellular death. Data 
is from three independent trials (mean + S.E.M.). (*) indicates p<0.05 as compared to the vehicle 
control (**) indicates p<0.05 as compared to single treatment. 
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treatment (Figure 2.6E). Not only was the increase significant when compared to vehicle 

control, it was also significant when compared to cells treated with Vp or 17-AAG alone. These 

results illustrate that P-gp activity is clearly playing a role in KG-1a cells resistance to 17-AAG 

treatment. 

Discussion  

Our data indicate that the response of AML cell lines to 17-AAG treatment is diverse and that 

Hsp90 operates to stabilize AML cancer cells by varied mechanisms. Previous studies have 

shown that 17-AAG sensitivity is variable among primary AML cells treated in vitro. This effect 

was correlated to Hsp90 expression, which was also found to be heterogeneous among the 

samples tested (Flandrin et al., 2008). Another study confirmed this observation showing that 

heat shock protein expression is highly variable among AML patients (Thomas et al., 2005). Both 

studies reported that high expression of heat shock proteins was associated with lower complete 

remission rates, illustrating the importance of heat shock proteins in AML. Our results add to the 

current known data by offering further mechanisms to explain the diversity of sensitivities of 

AML cells.  

We verified a previous report (Flandrin et al., 2008) that 17-AAG treatment inhibits AML cell 

growth. Further analysis revealed the cells undergo G2/M arrest, although this response was 

certainly not equivalent. We observed a 5 – 25% increase of cells within the G2/M phase upon 

17-AAG treatment among the cell lines tested. KG-1a cells required a more aggressive treatment 

regimen to achieve cell cycle arrest. THP-1 cells exhibited the highest susceptibility to 17-AAG 

treatment with a high percentage of cells accumulating in the G2/M phase at the lowest 

concentration tested. HL-60 cells initially arrested in G1 at 0.25 – 1.0 µM; however, they began 

accumulating in G2/M at 2 – 3 µM of 17-AAG. G1 arrest has been observed in malignant pleural 

mesothelioma and in Jurkat cells (Okamoto et al., 2008; Shelton et al., 2009) with 17-AAG 

treatment. The exact mechanism responsible for this shift of cell cycle compartment with 

increasing concentrations of 17-AAG is not known. Kasumi-3 cells also show a small, but 
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significant, accumulation in G2/M phase when treated with 3 µM 17-AAG. However, these cells 

display a much higher level of apoptosis with 48 hours treatment as compared to the other cell 

lines (Fig. 1B). This indicates that there is an alternate mechanism that is directing them to 

undergo apoptosis instead of cell cycle arrest.  

p21 is an important effector in cell cycle arrest. Therefore, p21 expression was measured in 

the cell lines to determine whether its induction correlated with cell cycle arrest. We found that 

17-AAG only up-regulated p21 in THP-1 cells. This result correlates with THP-1 cells being the 

most sensitive to 17-AAG induced G2/M arrest. It is tempting to speculate that p21 expression is 

the driving force behind this effect; however, more studies are needed to confirm this 

hypothesis. 

Our data suggest that targeting mutant p53 with 17-AAG may prove to be an effective 

therapy in AML patients having this mutation. Evidence presented in this study indicates 

Kasumi-3 cells harbor mutant p53. Some forms of mutant p53 have been shown to protect 

cancer cells against apoptosis and enhance their tumorigenic potential (Cadwell and Zambetti, 

2001). Loss of mutant p53, as seen with 17-AAG treatment (Figure 2.5B), could possibly 

alleviate this protection from apoptosis causing the cells to die instead of undergo cell cycle 

arrest. Additional studies, such as siRNA knock down of p53, are needed to support this 

hypothesis. Mutant p53 could be an important biomarker for 17-AAG treatment in AML as well 

as other cancers.  

A previous study published by Ryningen et. al. (Ryningen et al., 2006) illustrated that low 

BCL-2 versus BAX ratios were associated with high in vitro apoptosis of primary AML cells. They 

also found that low Hsp70 levels were related to low vitality of the cells. It is possible that upon 

added stress of Hsp90 inhibition, Kasumi-3 cells may succumb to treatment due to an 

unfavorable ratio of these proteins. Further studies need to be performed to determine the 

mechanism for Kasumi-3 cells’ high sensitivity to Hsp90 inhibition. 

Overall our study shows that a possible reason for the lackluster response of 17-AAG in 

clinical trials is due to the heterogeneous nature of this cancer. Among the cell lines in this 
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study, a diverse response was elicited by 17-AAG treatment. Three different possible mechanisms 

for this diversity were observed. Clinical trials are ongoing investigating 17-AAG as a single agent, 

as well as in combination with other chemotherapeutic agents. Specific biomarkers, such as 

mutant p53 or P-gp, might aid in targeting patients that will benefit from 17-AAG treatment 

either alone or in combination with another drug. Future clinical studies are needed to 

determine whether mutant p53 or P-glycoprotein can predict patient response to 17-aag 

treatment. 
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Chapter 3 : Kasumi-3 cells possess two different mutant 
TP53 alleles 

Abstract 

p53 is a well known tumor suppressor protein. 90% of the mutations in its gene that are 

present in cancer result in production of a stable protein. Most of these mutations arise in the 

DNA binding domain and lead to an accumulation of the protein. We report here that the acute 

myelogenous leukemia (AML) cell line, Kasumi-3, is heterozygous for two point mutations and 

homozygous for the 72R polymorphism within the p53 gene. The p53 protein present in these 

cells is non-functional and no gene amplification was detected. Knockdown studies of p53 

revealed that the mutant p53 is not involved in cell survival or P-glycoprotein expression in this 

cell line. However, Kasumi-3 cells can still serve as an important tool to study the effects of 

mutant p53 in various forms of cancer. 



–61– 

Introduction 

p53 has been well established as a transcription factor that has tumor suppressor activities. 

Under normal conditions, it has a short half-life due to its rapid degradation. Upon cellular 

stresses, such as heat shock and DNA damage, a rapid accumulation of the protein occurs. This 

accumulation results in the expression of various genes that are involved in DNA damage 

control, including CDKN1A, which encodes p21 that induces cell cycle arrest, BAX an inducer of 

apoptosis, and mdm2, which encodes HDM2 that is a negative regulator of p53. This creates a 

tightly regulated pathway that can quickly be activated and then deactivated when conditions 

return to normal (reviewed in Oren, 2003). Expression of these genes and other p53 targets are 

key in regulating cellular processes that prevent transformation. 

In order to circumvent its tumor suppressor activities, TP53 is mutated in over 50% of all 

cancers. Interestingly, over 90% of these mutations are missense mutations in the DNA binding 

region but result in the expression of a stable full length protein (Vousden and Lu, 2003). The 

high incidence of these mutant p53 proteins in cancer has led to the hypothesis that they offer 

cancer cells a survival advantage. In fact, oncogenic activities have been reported with some 

mutant p53 proteins (reviewed in Kim and Deppert, 2004). 

We recently reported that Kasumi-3 cells, an AML cell line, are especially sensitive to Heat 

shock protein 90 (Hsp90) inhibition and provided evidence to support the hypothesis that these 

cells express mutant p53 (Napper and Sollars, in press). We report here that Kasumi-3 cells are 

homozygous for the P72R polymorphism and heterozygous for two separate point mutations of 

the TP53 gene. 

Materials and Methods 

Materials  

p21 (clone CP36, CP74) and GADPH (clone 6C5) antibodies were purchased from Millipore 

(Temecula, CA). Secondary antibody used with p21 was purchased from Abcam (Cambridge, 
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MA). BAX (clone 2D2) antibody was purchased from Santa Cruz Biotechnology, Inc (Santa Cruz, 

CA). p53 and HDM2 antibodies (clone DO-1 and A10, respectively) were a kind gift from Dr. Pier 

Palo Claudio. Rabbit secondary antibody was purchased from Cell Signaling (Boston, MA) and 

mouse secondary was purchased from Amersham Biosciences. Camptothecin was purchased 

from Sigma (St. Louis, MO). Digoxygenin labeling kit (cat# 11 585 614 910) was purchased from 

Roche. EcoRI, NcoI, HindIII, and StuI were purchased from Promega (Madison, WI). The 

siRNA for p53 (Cat# sc-29435) and control (Cat# sc-37007) were purchased from Santa Cruz 

Biotechnology Inc. (Santa Cruz, CA). The P-glycoprotein antibody, isotype control and 

secondary antibody used in this study were obtained from BD (cat # 557001, 55740 and 550826 

respectively). 

Cell culture  

Kasumi-3 and A549 cell lines were purchased from the American Type Culture Collection 

(Manassas, VA) and grown in the recommended culture medium and incubated at 37 ºC with 5% 

CO2.  

Sequencing 

 p53 cDNAs were obtained by isolating RNA from Kasumi-3 cells using the Master Pure kit 

from Epicenter (Madison, WI). The cDNA was prepared using the Advantage RT-for-PCR kit 

from Clontech (Mountain View, CA). The p53 cDNAS were PCR amplified using primers 

described previously (Liu and Bodmer, 2006). The resulting PCR products were cloned using an 

Invitrogen TOPO TA Cloning kit. Clones containing the plasmid were selected by plating on LB 

plates containing 40 µg/mL of kanamycin. Plasmids were harvested from 3 mL an overnight 

liquid culture using the Zyppy Plasmid Prep kit from Zymo Research (Orange, CA) and 

sequenced using M13 primers. The 1.8 kb insert necessitated sequencing from an internal primer 

(5'-gtgaaatattctccatccagtg-3') as well as the external M13 primers. Four of the 1.8 kb PCR 

products and 16 of the 1.5 kb PCR products were sequenced from the recombinant plasmids by 

the Genomics Core Facility at Marshall University School of Medicine.  



–63– 

Genomic sequencing was accomplished by first isolating genomic DNA from Kasumi-3 cells 

using the GenElute Mammalian DNA Prep Kit from Sigma (St. Louis, MO). Subsequently, the 

genomic regions containing the three polymorphisms found by sequencing the cDNAs were PCR 

amplified followed by gel purification. These PCR products were then sequenced on an ABI 

3130 Genetic Analyzer in the MU Genomics Core Facility. The primers used for sequencing and 

PCR amplification are as follows. For the 782+1G>A mutation primers were described 

previously for exon 7 (Liu and Bodmer, 2006); for the P72R polymorphism and the 484A>T 

mutation the primers were described previously to amplify exon 4 and 5 respectively (Kandel et 

al., 2000). Three PCR products of each region were sequenced. 

p53 transcriptional activity assay  

Kasumi-3 were seeded at 3x105 cells/mL and treated with DMSO or 300 nM camptothecin. 

A549 cells were grown to 50-70% confluence before treatment. Cells were harvested 24 hours 

after treatment and protein was extracted by resuspension of the cells in RIPA lysis buffer [25mM 

Tris pH 7.4, 1% triton X100, 1% SDS, 1% Na Deoxycholate, 150mM NaCl + Halt protease 

inhibitor (Thermoscientific, Rockford, IL). Protein (20 µg) was loaded from each sample and 

probed with p21, HDM2, BAX, p53 and GAPDH antibodies. 

Southern blotting 

For probe preparation, template DNA was obtained by amplification of one of the plasmids 

containing the large insert and subsequently purified using Qiaquick PCR Purification Kit from 

Qiagen (Valencia, CA). This PCR product (1 µg) was used in the probe labeling reaction following 

the protocol provided in the Digoxygenin labeling kit. DNA was extracted from each cell line 

using GenElute Mammalian DNA Prep Kits from Sigma (St. Louis, MO). DNA (12 µg) was 

digested with 5u/µg of EcoRI, HindIII, StuI and NcoI for 3 hours at 37 ºC in a total volume of 

200 µL. The DNA was then precipitated and equal amounts (8-10 µg) were loaded onto a 0.7%, 7 

mm thick agarose gel. DNA fragments were separated by electrophoresis at 2.5 v/cm for about 1 

hour, when the bromophenol blue was about 2
3 of the way down the gel. All gel treatments 
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were performed with gentle rocking at room temperature. The gel was first depurinated with 

0.25 M HCl for 15 min. The gel was then treated with denaturation solution (1.5 M NaCl, 0.5 M 

NaOH) 2x for 20 minutes each. This was followed by treatment with neutralization solution (1.5 

M NaCl, 0.5 M TrisCl, pH 7.0) 2x for 20 minutes each. The DNA was then transferred to a 

nitrocellulose membrane with 20x SSC (3 M NaCl, 0.3 M sodium citrate, pH 7.0) using a vacuum 

blotter (model 785) from BioRad at 6 mmHg for 90 minutes. DNA fragments were crosslinked 

to the membrane with a UV crosslinker (Fisher FB-UVXL-1000); membranes were rinsed once in 

2x SSC and allowed to air dry. The filter was then pre-hybridized using the hybridization buffer 

from the kit. Hybridization was performed over night at 37ºC with gentle rocking and 25 

ng/mL of probe. The membrane was then washed 2x at room temperature with 0.1% SDS, 2x 

SSC for 5 minutes each followed by two more 15 minute washes at 63ºC with 0.1% SDS, 0.5x SSC 

in a UVP Hybridization Oven (model HB-100). Detection of the digoxygenin labeled probe was 

based on Digoxygenin labeling kit’s protocol. For the best result, the membrane was exposed to 

film for 20 minutes after the initial 1 hour of increasing signal was achieved. 

p53 knockdown studies  

The day before transfection, Kasumi-3 cells were seeded at 3-4 x 105 cells/mL in fresh 

medium. Electroporation was done by pipetting 800 nM of siRNA, control or p53, in a cuvette. 

100 µL of media without serum containing 2 x 106 cells was added to the cuvette. The cells were 

gently mixed to ensure even distribution of siRNA. The cuvette was then electroporated using a 

mammalian electroporator (Elector Square Porator model ECM830 from BTX Genetronics) with 

2 pulses of 250 volts for 13 ms each. The cells were then plated in 3 mL of full media in a 6 well 

plate. Protein knockdown and other assays were performed 72 hours later. Apoptosis and efflux 

assays were performed as described previously (Chapter 2 materials and methods). P-

glycoprotein expression was measured by first blocking Fc receptors with human IgG for 20 

minutes. The antibody was then added in FACS buffer (3% BSA, 0.02% sodium azide, 1mM EDTA 

in PBS) at 0.2ug/106 cells for 30 minutes 4ºC. The cells were washed once and secondary 
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conjugated to APC was added to a total volume of 100 µL. The cells were incubated again for 30 

minutes at 4ºC, then washed once and subjected to analysis on a BD FACSAria. 

Statistical analysis  

Statistical analysis was performed using SigmaStat, Systat Software, Inc. Student’s t-test was 

performed and significance was assigned for all data with p<0.05.  

Results 

Kasumi-3 cells are heterozygous for two mutant TP53 alleles  

p53 cDNAS from Kasumi-3 cells were prepared by PCR amplification of the entire open 

reading frame. Surprisingly, two products were obtained, the expected 1.5 kb product and a 

larger 1.8 kb product. Sequencing of several clones of each of the products revealed that both 

products contain a single nucleotide polymorphism, 215C>G (Figure 3.1B and C). Translation 

of these mRNAs results in the amino acid change, P72R, which turns out to be a common 

polymorphism. 

The smaller product also contains a point mutation, 484A>T (Figure 3.1B). This results in a 

missense mutation in the DNA binding region of the protein with the amino acid substitution 

I162F (Figure 3.1A). The larger product also contains a point mutation in the intron 7 donor 

site, 782+1G>A (Figure 3.1C), which results in retention of intron 7 in the mature messenger 

RNA. Translation of this mRNA would produce a truncated form of p53 due to a stop codon 

located within the intronic sequence (Figure 3.1C). Therefore, protein structures after exon 7 

would be absent, including the oligomerization domain and the regulatory domain (Figure 

3.1A). 

This data led to the hypothesis that Kasumi-3 cells are homozygous for the P72R 

polymorphism and heterozygous for the two point mutations. In order to confirm this, the three 

regions of genomic DNA containing the polymorphisms were PCR-amplified and sequenced.
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Figure 3.1. Kasumi-3 cells have two mutant TP53 alleles. A) Schematic of p53 protein structure 
can be divided into five functional domains. The N-terminal region has the transactivation domain 
(TA) and the proline rich (PR) domain. The central region contains the DNA binding domain. The C-
terminal holds the oligomerization domain (OD) and the regulatory domain (Reg). The Roman 
numerals indicate highly conserved regions of the TP53 gene. Placement of the two point mutations 
in reference to the protein domains is indicated. Both mutations are in the DNA binding region. B) 
The 484A>T point mutation and the 215C>G polymorphism are indicated (highlighted in yellow) 
within the cDNA sequence. The base pair changes results in the amino acid change P72R and I162F 
upon translation. C) The second mutation, 782+1G>A, is in the intron 7 donor site (highlighted in 
yellow), which entraps intron 7 (highlighted in green) in the mature messenger RNA. A stop codon 
(highlighted in red) is encountered within the intronic region which would result in a truncated protein 
lacking the C-terminal domain. This cDNA also contains the 215C>G polymorphism (highlighted in 
yellow). 

Figure 3.2 shows a representative example, out of three, of each sequencing result with the base 

in question highlighted with an orange rectangle. A single black peak, representing G, is seen at 

base 215 on the DNA sequencing trace when exon 4 was amplified (Figure 3.2A). This would be 

expected if the cells were homozygous for the P72R polymorphism. When exon 5 was 

sequenced, two peaks are observed at base 484, a green (indicating an A) and a red peak 

(indicating a T), which can be seen on the DNA sequence trace (Figure 3.2B). Exon 7 and the 

flanking regions were also amplified and the sequencing trace shows a black and a green peak at 

base 782+1 (Figure 3.2C), the intron donor site of intron 7. These data support the hypothesis 

that Kasumi-3 cells are heterozygous for two mutant TP53 alleles, both of which also contain the 

P72R polymorphism.  

Kasumi-3 cells lack p53 transcriptional activity  

Next, we sought to verify the transcriptional activity of these p53 mutant proteins in 

Kasumi-3 and A549 cells. To that end, we treated the cells with 300 nM of camptothecin (Cpt), 

a topoisomerase inhibitor, to induce DNA damage. A549 cells, which have wild type p53, were 

used as a positive control to show our treatments could elicit a p53 response. After a 24 hour 

exposure to Cpt, regulation of p53 target proteins p21, BAX, and HDM2 was measured by 

western blotting. Results confirmed that p21 and BAX were significantly up-regulated in A549 

cells with Cpt treatment, a result not observed in Kasumi-3 cells (Figure 3.3A & D). Also, upon 
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Figure 3.2. DNA sequencing traces of the regions of genomic DNA with the point differences 
found in the cDNAs. Panel A) represents the genomic region containing the P72R polymorphism, B) 
the 484A>T region and C) the 782+1G>A region. Results show that A) is a homozygote and B) and 
C) are heterozygous for the representative point mutations.
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DNA damage, p53 is rapidly stabilized and thus an increase in protein level is generally seen. We 

found that p53 up-regulation occurred in A549 cells but not in Kasumi-3 cells (Figure 3.3A & 

B). HDM2 was not significantly up-regulated in either cell line(Figure 3.3A & C). These results 

indicate that the p53 present in Kasumi-3 cells lacks wild type function in response to DNA 

damage. 

TP53 is not amplified in Kasumi-3 cells  

The presence of two separate mutations in TP53 could indicate the presence of multiple 

copies of the gene throughout the genome. We therefore performed a Southern Blot to 

determine whether TP53 was amplified in Kasumi-3 cells. Kasumi-3 and A549 cell DNA were 

isolated and subjected to restriction enzyme digestion with four different enzymes: EcoRI, 

NcoI, StuI and HindIII. The DNA samples were separated on a 0.7% agarose gel and blotted 

onto a positively charged nitrocellulose membrane. It was subsequently probed with a 

digoxygenin labeled probe produced from PCR amplification of the large p53 cDNA insert.  We 

anticipated that if TP53 gene was amplified in Kasumi-3 cells, either an increase in band intensity 

or a different pattern of bands from the wild type DNA, A549 cellS, would be observed. As can 

be seen in Figure 3.4 neither of these results were obtained. This indicates that TP53 is most 

likely present as a single locus with two alleles, both of which are mutated. 

Transfection of p53 siRNA can cause protein knockdown in Kasumi-3 cells  

Ongoing studies indicate that some mutant p53 proteins can actually act to contribute to 

cancer progression by inducing the expression of genes that can facilitate transformation (Kim 

and Deppert, 2004). We have presented here evidence that Kasumi-3 cells express mutant p53 

protein. We previously reported that Kasumi-3 cells are sensitive to the Hsp90 inhibitor, 17-

AAG, and that this treatment coincides with a reduction in p53 levels (Napper and Sollars, in 

press). This data led us to hypothesize that the mutant p53 protein in Kasumi-3 cells is acting in 

an oncogenic capacity and that because of the aberrant transcriptional program, the cells 

become dependent on it for survival. Consequently, when mutant p53 levels are degraded by 
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Figure 3.3. Kasumi-3 p53 
protein does not have wild 
type function with DNA 
damage. DNA damage was 
induced in Kasumi-3 cells and 
A549 cells by treatment with 300 
nM of camptothecin (Cpt) for 24 
hours. A) After treatment cell 
lysates were harvested and 
subjected to western blotting 
and three p53 target proteins 
were probed. The blot is 
representative of three 
experiments. Kasumi-3 cells are 
deficient in wild type p53 activity 
as can be seen by lack of up-
regulation of p53 target genes. 
A549 cells were used as a 
positive control and do exhibit 
wild type p53 activity. Graphs 
below and to the right represent 
densitometry from 3 
experiments (mean + S.E.M.) as 
compared to the vehicle treated 
cells for B) p53, C) HDM2, and 
D) BAX. (*) indicates p<0.05 as 
compared to the vehicle control. 
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Figure 3.4. Kasumi-3 cells do not have amplified TP53 gene. A southern blot was performed to 
verify that Kasumi-3 cells only have two copies of the TP53 gene. A549 cells were once again used 
as a control. DNA was harvested from both cell lines and subjected to EcoRI, HindIII, StuI and NcoI 
digestion for 3 hours at 37ºC. Equal amounts (8-10 μg) were loaded and ran on a 0.7%, 7 mm thick 
agarose gel. The DNA was subsequently blotted and probed for TP53. The pattern of the bands for 
Kasumi-3 cells (marked K) and A549 cells (marked A) are identical which indicated that most likely 
Kasumi-3 cells do not have multiple copies of the p53 gene. 
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Hsp90 inhibition, the cells undergo apoptosis rather than cell cycle arrest, as seen with the other 

17-AAG treated cell lines. 

In order to test this hypothesis, we needed to reduce p53 levels in the absence of 17-AAG. 

Thus, we tried p53 siRNA transfection. Kasumi-3 cells are an undifferentiated form of AML 

(Asou et al., 1996) and as a result have a long doubling time of about 60 hours. Being that they 

are of hematopoietic origin, they are also a suspension cell line. All of these factors contribute to 

the difficultly in transfection by traditional means. Therefore, we had to resort to electroporation 

in order to attain efficient transfection. To assess transfection efficiency 2 x 106 cells were 

electroporated in the presence of 600 and 800 nM of control FITC labeled siRNA or 800 nM of 

non-labeled control siRNA. The cells were then plated in full media for at least 6 hours before 

analyzed by flow cytometry. High transfection efficiency (~88%) was achieved as indicated by 

the full histogram shift of the labeled siRNA transfected cells (green and blue) from the unlabeled 

siRNA transfected control (red) (Figure 3.5A).  

In order to verify that p53 was being knocked-down at the protein level, cells were 

transfected with 800 nM of either non-specific control siRNA or p53 siRNA and whole cell lysates 

were harvested after 72 hours for analysis of protein expression by western blotting. Figure 

3.5B shows that these transfection parameters do indeed result in a decrease of p53 protein 

levels. The blot shown is representative of three blots. 50-55% knockdown was attained in every 

experiment with 800 nM of siRNA. It should be noted that in our previous study, Hsp90 

inhibition resulted in about a 50% knockdown of p53 (Figure 2.5B). Therefore, this amount of 

knockdown should be sufficient to test our hypothesis. 

Mutant p53 knockdown does not affect cell viability or reduce P-glycoprotein 

activity  

Kasumi-3 cells were transfected with 800 nM of siRNA, and 72 hours later, apoptosis levels 

were measured by annexin V labeling with 7-AAD as the dead cell stain. There was no difference 

in apoptosis levels between cells treated with p53 siRNA and control siRNA (Figure 3.6A). The  
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Figure 3.5. Kasumi-3 cells can be efficiently transfected with siRNA. A) Kasumi-3 cells were 
transfected with 600 and 800 nM of FITC tagged siRNA and analyzed by flow cytometry. Results 
clearly show that there is a definite histogram shift of the tagged siRNA compared to the non-tagged 
control siRNA. B) Western blotting was performed to verify that transfection of siRNA effectively 
knocked-down protein levels. Cells were transfected with 800 nM of p53 siRNA or non-specific 
control. After 72 hours p53 levels were assayed. Blot and panel underneath showing densitometry, 
indicates p53 protein and was knocked down by 55% (representative of three). 
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cells normally have a population of cells, about 30%, undergoing apoptosis at any given time 

(Figure 2.2A). However, the amount of apoptosis seen in these experiments indicates that the 

cells are undergoing apoptosis at an even higher rate, which is probably due to the harsh nature 

of electroporation in general. 

Because electroporation can cause a large amount of cell death, without any contribution 

from the siRNA, any effects of mutant p53 knockdown could be masked. Therefore, another 

downstream target of mutant p53 was measured. P-glycoprotein (P-gp) is known to be up-

regulated in the presence of mutant p53 (Chin et al., 1992). As described in chapter 2, P-gp is an 

ATP-binding cassette (ABC) transporter that pumps substrates out of cells. In our studies, we 

have discovered that P-gp activity facilitates KG-1a cells’ resistance to 17-AAG treatment (Figure 

2.4). We have also observed that Kasumi-3 cells have P-gp activity (Figure 3.6C); however, they 

are much more sensitive to 17-AAG treatment than KG-1a cells. This data led us to hypothesize 

that the mutant p53 in Kasumi-3 cells could be facilitating the expression of P-gp. This finding 

would fit well into the data reported in Chapter 2. Hsp90 inhibition down-regulates mutant p53 

levels in the cells, which consequently causes the down-regulation of P-gp. This would make the 

cells much more sensitive to 17-AAG treatment, as was seen when P-gp activity was inhibited by 

verapamil in KG-1a cells (Figure 2.6). Thus, Hsp90 inhibition in this cell line could have a 

compound effect on their susceptibility to 17-AAG.  

To test this hypothesis, the cells were once again transfected with 800 nM of either p53 or 

control siRNA and allowed to rest for 72 hours. After this time, the levels of P-gp were measured 

directly with antibody labeling followed by flow cytometry. There was no significant difference 

in P-gp expression between the different treatments (Figure 3.6B). Efflux assays were also 

performed on these same cells as a secondary assay to confirm the antibody labeling results. As 

can be seen in Figure 3.6C there was no difference in efflux capacity between the control siRNA 

treated cells (blue histogram) and the p53 siRNA treated cells (green histogram). In fact, both 

treatment groups were able to pump out the dye quite readily. Verapamil, a P-gp inhibitor, was 
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Figure 3.6. Mutant p53 does not play a role in Kasumi-3 survival. A) Kasumi-3 cells were 
transfected with p53 siRNA or non-specific control and apoptosis was assayed after 72 hours by 
annexin V labeling with 7-AAD as a dead cell stain. There was no significant difference in the two 
treatment groups. Cells were transfected with p53 siRNA or non-specific control and P-glycoprotein 
levels and activity was measured. Panel B) shows that there is no significant difference in P-
glycoprotein expression with p53 knockdown as assessed by flow cytometry. Panel C) shows that 
there is no difference in efflux capacity of the cells with p53 knockdown (green and blue histograms). 
As a positive control, cells were treated with 50 μM of verapamil, a P-glycoprotein inhibitor, during 
loading and rest period of the cells to show efficient dye loading (orange histogram). 

used as a positive control to show the cells loaded the dye efficiently (orange histogram). 

Unfortunately, these data do not support our hypothesis that the mutant p53 in Kasumi-3 cells 

is acting in an oncogenic capacity. However, more studies are needed to completely rule out this 

possibility. 

Discussion 

We have identified two mutant TP53 alleles in the Kasumi-3 cell line. The large cDNA 

product contains an uncommon point mutation that traps intron 7 within the mature p53 

mRNA. Inclusion of intron 7 results in a truncated protein, due to the stop codon located in the 

intronic region. This means that even though most of the DNA binding domain would remain 

intact, the oligomerization domain, which is very important for p53 to function, would be 

absent. The p53 proteins have to tetramerize in order to bind to DNA and activate genes in a 

sequence specific manner (El-Deiry et al., 1992; Funk et al., 1992). Therefore, this mutant would 

be predicted to be non-functional and not able to act in a dominant negative manner, due to the 

lack of the oligomerization domain.  

Whether this protein is stable is not clear. The presence of only a single 53 kD protein band 

in Western blot analysis suggests that it is rapidly degraded. Further evidence was provided by a 

previous study which analyzed p53 mutations in lung cancer (Takahashi et al., 1990). In this 

study, one tumor sample had a mutation in the intron 7 acceptor site causing it to be trapped in 

the p53 cDNA. This sample also lacked the presence of a normal allele. Immunoprecipitation 

assays with this particular sample were unsuccessful at pulling down any p53 protein when 

performed with antibodies recognizing the C-terminal and the N-terminal region. 
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Immunohistochemistry experiments confirmed the lack of p53 protein. This evidence 

collectively suggests that the protein product of this cDNA, with intron 7 trapping, would not be 

stable.  

The single 484A>T mutation in the smaller cDNA product results in a substitution of a small 

side chain amino acid for a large side chain amino acid in the DNA binding domain. This would 

be foreseen to impose steric hindrance upon the protein structure. In fact, transactivation assays 

of over 2400 different mutant p53 proteins performed in yeast demonstrated this mutant to be 

non-functional (Kato et al., 2003). Nevertheless, we have confirmed through DNA damage assays 

that the p53 protein present in Kasumi-3 cells does not function as wild-type (Figure 3.3). 

An extensive search of the IARC database (Petitjean et al., 2007) revealed that both of these 

mutations have been detected in various types of cancer, such as lung and liver cancers. This is 

the first incidence of these mutations detected in leukemia. The P72R polymorphism is in the 

proline rich domain of p53 (see Figure 3.1A). It has an average frequency of heterozygotes of 

about 50% in populations analyzed (http://www-p53.iarc.fr/PolymorphismView.asp). 

Interestingly, this SNP becomes more prevalent as populations get closer to the equator (Olivier 

et al., 2010). Because it is so common, it has been extensively analyzed for a link to cancer; 

however, results from these studies have been inconsistent (Storey et al., 1998; Klug et al., 2001; 

Schmidt et al., 2007; Matakidou et al., 2003).  

We hypothesized that the mutant p53 in the Kasumi-3 cells was acting in an oncogenic 

capacity. However, a knockdown of 50% of p53 levels with siRNA was not sufficient to induce 

apoptosis above the non-specific control. There was also no measured difference in P-gp levels 

and activity with p53 knockdown (Figure 3.6). These results do not support our hypothesis. 

Although, there is a possibility that the mutant p53 present in these cells may be facilitating 

other oncogenic functions of these cells that we have not measured.  

In theory, the I162F mutant allele (Figure 3.1B), with the intact oligomerization domain, 

could exert a dominant negative effect. Therefore, this single mutation event would mimic a 

p53-null phenotype, which could stimulate quick progression of cancer. However, further 
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studies in which this mutant p53 protein is expressed in a wild type background, are needed to 

support this proposal. A recent study indicated that a single p53 deletion was a strong 

independent negative prognostic factor for disease free survival in AML (Seifert et al., 2009). This 

demonstrates that although p53 mutations in AML are uncommon, the effect of inactivating p53 

can have a devastating outcome. This clinically relevant observation makes Kasumi-3 cells a 

valuable tool to study mutant p53 function in AML. 
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Chapter 4 : EML cells exhibit a developmental plasticity 
when pre-treated with Hsp90 inhibitor geldanamycin 

Abstract 

New treatment strategies for AML are needed to increase patient survival. Heat shock protein 

90 (Hsp90) inhibitors such as 17-AAG, an analog of geldanamycin (GM), are currently in phase I 

and II clinical trials for various leukemias and other cancers. Previous studies in Drosophila have 

shown that inhibition of Hsp90 by GM produced a trans-differentiation event in which eye tissue 

developed into a limb-like outgrowth. The outgrowth persisted after several generations in the 

absence of GM, indicating the occurrence of a heritable epigenetic event. Our current studies 

suggest that Hsp90 plays a similar role in EML cells, a mammalian hematopoietic stem cell line. 

By treating these cells with GM prior to differentiation, we have seen a dose dependent survival 

of the cells after selective conditions are imposed. Unfortunately our results were highly variable. 

However, our data could suggest that Hsp90 inhibition is causing an epigenetic modulation 

which results in cells that are more adaptable. Epigenetics has become increasingly studied as a 

mechanism enabling cancer progression by allowing precancerous cells to become more 

adaptable to their environment. Studying the role of Hsp90 in myeloid cell differentiation 

through epigenetic mechanisms will provide insights into normal blood development as well as 

possible treatment strategies for AML. 
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Introduction 

A diverse set of important signaling proteins depends on Hsp90 for activation, including 

transcription factors and protein kinases. The inactivation of Hsp90 can therefore affect many 

systems in the cell (Pearl et al., 2008). It was shown that Drosophila bearing a mutant Hsp83 gene 

created offspring with phenotypic variations in many adult structures (Rutherford et. al., 1998) 

Because of this, the authors hypothesized that Hsp90 stores genetic morphological potential for 

later release or acts as a genetic capacitor. 

A later study in Drosophila supported these findings that genetic or pharmacological 

inhibition of Hsp83 created phenotypic variations. However, this study provided evidence that 

this was based on an epigenetic mechanism (Sollars et. al., 2003). A trans-differentiation event, 

seen as a limb-like outgrowth in the eye, was observed in offspring whose parents were fed the 

Hsp90 inhibitor geldanamycin (GM), which was also seen in flies with heterozygous mutations in 

a chromatin remodeling gene. The percentage of offspring with the eye phenotype increased 

upon selective breeding in the absence of Hsp90 inhibition, which is suggestive of an epigenetic 

mechanism. Further studies showing a reversal of the phenotype with chromatin remodeling 

inhibitors provided a link between Hsp90 and epigenetic modulation (Sollars et. al., 2003). 

In times of stress, Hsp90 is up-regulated to assist the cell in survival. Hsp90 becomes 

overwhelmed refolding and cleaning up misfolded proteins, which detracts from its normal 

function of activating signaling molecules. This is significant in evolutionary terms, because in 

times of stress, Hsp90 dependent pathways become perturbed which can generate more diverse 

phenotypes. If these phenotypes are a better fit to the environment, they can be selected for and 

become fixed in the population.  

The studies detailed here were designed to test whether this phenomenon is conserved in 

mammalian model systems. As discussed previously, along the pathway from HSC to mature cell, 

different cell surface markers appear and disappear (Akashi et al., 2000; Terskikh et al., 2003). 

This provides a convenient method to track the development of a cell. Therefore, hematopoiesis 

provides a good model to study differentiation events brought on by Hsp90 inhibition. 
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EML cells are a hematopoietic stem cell line that was developed by inserting a dominant 

negative retinoic acid receptor (RAR) in hematopoietic stem/progenitor cells isolated from the 

bone marrow of BDF1 mice (Tsai et al., 1994). The BDF1 strain is produced by a C57BL/6 cross 

with DBA/2. By blocking retinoic acid receptor function, the cells can be cultured in normal cell 

culture conditions in the presence of stem cell factor (SCF) and retain their stem cell features. 

They can be induced to differentiate into any of the mature cells of the blood by various 

treatments, which makes them an ideal model for studying hematopoiesis.  

It is our hypothesis that Hsp90 is an epigenetic modulator that can play a role in myeloid cell 

differentiation. To test this hypothesis, we treated EML cells prior to differentiation with GM. 

First, the differentiation protocol was confirmed by treating EML cells as prescribed followed by 

observation of morphological changes by microscopy and measurement of cell surface marker 

expression by flow cytometry. Toxicity assays were then performed by counting the cells after 

treatment with various concentrations of GM. In order to assay for specific epigenetic events, the 

cells were treated with GM 48 hours prior to differentiation. Cell surface marker expression and 

cell counts were performed at various points throughout the protocol to assess the effects of GM 

treatment in hematopoiesis. 

Materials and Methods 

Materials  

Geldanamycin (cat. G3381), retinoic acid (cat. R2625) and Wright/Giemsa stain were 

purchased from Sigma. Antibodies and Fc block were all purchased from BD scientific lineage 

panel (cat. 5599710), Sca-1 (cat. 557403), CD117 (cat. 553355), CD127 (cat. 555288), Fc Block 

(cat. 553142), and streptavidin-APC (CAT. 554067). F4/80 was purchased from Caltag (cat. 

MF48004). GM-CSF was purchased from Stem Cell Technologies (Vancouver, BC).  
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Cell culture  

EML.C1 and BHK cells were obtained from Dr. Schickwann Tsai at the University of Utah. 

EML cells were cultured in growth medium, which is base medium (IMDM supplemented with 

20% heat inactivated horse serum) and 10% BHK conditioned medium, which contains SCF. The 

cells were incubated at 37 ºC and 5% CO2 and maintained between 5 x 104 and 5 x 105 cells/mL 

by addition of media every 2-3 days. Cells were not passed more than 6-8 weeks for these 

experiments. Due to the synergistic effect of antibiotics with GM, the cells were cultured without 

antibiotics. 

BHK cells were cultured in EMEM supplemented with 10% FBS at 37 ºC and 5% CO2. They 

were sub-cultured when 80% confluence was reached, about every 3 days. To make conditioned 

media containing SCF, T-175 flasks were seeded and cells were grown to 80% confluence. Old 

media was discarded and 50 mL of fresh media was added to the flasks. After 48 hours, the 

media was collected and another 60 mL of media was added to the flasks. After another 48 the 

media was collected and the cells were discarded. All of the media were pooled and filtered 

through a 0.22 µm filter to sterilize, aliquoted and stored at -20 ºC. 

WEHI-3 cells were obtained from ATCC (catalog # TIB-68). The cells were cultured in IMDM 

supplemented with 10% FBS at 37 ºC and 5% CO2. They were maintained between 2 x 105 and 2 

x 106 cells/mL by addition of media every 2-3 days. To obtain conditioned media containing IL-

3, the cells were seeded at 3 x 105 cells/mL and cultured in fresh media for three days. The 

cultures were then centrifuged to collect the media and the cells were discarded. The media were 

filtered through a 0.22 µm filter to sterilize, aliquoted and stored at -20 ºC. 

Differentiating EML cells 

 EML cells were resuspended at 1 x 105 cells/mL in base medium supplemented with 10 µM 

ATRA, 15% IL-3 and 10% BHK media, unless otherwise noted. After three days, the cells were 

counted, washed twice with PBS and resuspended at 1 x 106 cells/mL in base medium containing 

10 ng/mL GM-CSF.  
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GM treatments  

Cells were seeded at 2 x 105 cells/mL in growth medium. Cells were treated with 0, 15 and 

20 nM GM with an equalization of vehicle among the treatments. After 24 hours, the cells were 

washed and reseeded at 2 x 105 cells/mL in growth medium for a rest period. After an additional 

24-48 hours the cells were differentiated as described above.  

Microscopy  

Cells were differentiated for the first three days as described above. After this initial priming, 

the cells were washed and reseeded at 5 x 105 cells/mL in base medium containing 50 ng/mL of 

GM-CSF over cover slips. Cells on the cover slips were fed again by removing spent media and 

replacing with fresh media on days 7, 10 and 14. Before photographing, the cover slips were 

washed twice with PBS and fixed for 30 sec in methanol and allowed to dry. They were then 

dipped in Wright/Giemsa stain for 1 minute and then immediately washed with water. The 

cover slips were mounted using crystal mounting medium. Pictures were taken on days 10, 11, 

13 and 19 using an Olympus BX51 epifluorescent microscope under 1000x magnification 

equipped with an Olympus DP70 Camera and associated software (DP Controller and DP 

manager), version 1.2.1.108. 

Flow cytometry  

Fc receptors were blocked by incubating the cells with 1 µg of Fc block per 1 x 106 cells for 

at least 20 minutes. After the Fc receptors were blocked, 1 x 105 cells were incubated with 

appropriate amount of antibody in 100 µL of FACS buffer (3% BSA, 0.02% sodium azide, 1mM 

EDTA in PBS) at 4 ºC for 30 minutes. Each sample was washed with 2 mL of FACS buffer. The 

appropriate amount of streptavidin conjugated to APC was then added for a total volume of 100 

µL and incubated at 4 ºC for 30 minutes. The cells were washed again with 2 mL of FACS buffer. 

A total of 1 x 104 events were recorded on a BDFACSAria. Data were analyzed using FlowJo 8.8.6 

software. Dmax subtraction method was used to calculate the percentage of positive cells. 
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Figure 4.1. Schematic of EML differentiation. EML cells can be induced to differentiate into 
granulocytes and macrophages first by treatment with all trans-retinoic acid (ATRA), interleukin-3 (IL-
3), and stem cell factor (SCF) for three days. At this time, the cells are washed thoroughly and 
resuspended in medium containing granulocyte macrophage colony stimulating factor (GM-CSF), 
which further allows the cells to mature into macrophages and neutrophils within 5-10 days. 
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Figure 4.2. EML cells change in morphology when differentiation is induced. EML cells were 
microscopically examined at various stages to chart their morphological changes during 
differentiation. A) After 10 days of differentiation, the cells transitioned from suspension to more 
adherent cells and readily attached to cover slips. White arrow point out neutrophilic type cells as can 
be seen by their lobular nuclei. B) After 11 days of treatment, white arrows point out cells that began 
developing small projections. This is more indicative of macrophage development. C) and D) On day 
14 and 19 of differentiation respectively, some of the cells became spread out and increased 
projections were observed (white arrows). However, there a majority of cells were still round with 
more monocytic morphological features. 

Results 

EML cells can be differentiated specifically along the macrophage/granulocytic 

lineage  

We were particularly interested in the granulocyte/macrophage lineage. EML cells can be 

induced to differentiate down this pathway by treatment with all trans-retinoic acid (ATRA), 

interleukin-3 (IL-3), and stem cell factor SCF. Conditioned medium (CM) containing the cytokines 

SCF (BHK CM) and IL-3 (WEHI CM) was used to grow and differentiate the cells. Under normal 
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conditions, addition of 10% BHK CM to the culture medium was used to grow the cells. For the 

first experiments outlined here, differentiation was achieved by addition of 10% BHK CM, 15% 

WEHI CM and 10 µM ATRA for three days. At this time, the cells were washed and resuspended in 

medium containing granulocyte macrophage colony stimulating factor (GM-CSF), which induces 

differentiation into macrophages and neutrophils within 5-10 days (Figure 4.1).  

In order to confirm differentiation, the cells were microscopically examined at various stages 

to chart their morphological changes. After 10 days of differentiation, the cells transitioned from 

suspension to more adherent cells and readily attached to cover slips. Neutrophilic type cells 

began appearing, as can be seen by their lobular nuclei (Figure 4.2A). After 11 days of 

treatment, cells began developing small projections that are more indicative of macrophage 

development (Figure 4.2B). On day 14 and 19 of differentiation, some of the cells became 

spread out and increased projections were observed. However, there a majority of cells were still 

round with more monocytic morphological features (Figure 4.2C & D). 

Cell surface markers were also measured to track EML cell differentiation. Table 4.1 lists the 

markers used in this study and the cell types that they target. The expression of these markers 

  
Marker Cell Type 
CD117 Hematopoietic stem/progenitor 

cells 
Sca-1 Early hematopoietic stem cells 

CD11b Macrophage/granulocytes 
F4/80 Macrophages 
CD127 Early lymphocytes 
CD45 All leukocytes  
Ly6G Granulocytes 
CD3ε Lymphocytes 

Ter119 Erythrocytes 

Table 4.1. Markers used to determine stages of EML cell differentiation. The cell surface markers in 
the left column and the cell types which they identify are in the right hand column. 

was measured everyday over a period of seven days via flow cytometry.  Figure 4.3A illustrates 

that the treatments used in this study were successful in inducing differentiation following the 
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macrophage/granulocyte lineage. As expected, cells positive for Sca-1 decreased considerably. 

The median fluorescent values of CD117 also decreased dramatically with differentiation; 

however, this change was not reflected in the percentage positive cells due to the persistently 

high expression of this marker above background ( Figure 4.3B). CD11b, Ly6G and F4/80 

increased to 90% over the seven day period, showing that the cells were maturing into 

granulocyte/macrophage cells. On the other hand, CD127, Ter119 and CD3e remained at 

baseline levels, indicating that the cells were not differentiating toward the erythrocytic or 

lymphocytic lineage. All these data taken together illustrate that the protocol used in this study 

differentiates EML cells along the macrophage/granulocyte lineage. 

EML cells exhibit a restriction point 

 During the extensive differentiation treatment, EML cells undergo rapid proliferation for the 

first three days as illustrated in Figure 4.4. It is during this time that we believe the cells are 

primed for further development. On day three, the cells were washed and then treated with 

media supplemented with GM-CSF to promote macrophage/granulocyte differentiation. During 

this media switch, a restriction point is observed, in that only those cells that have differentiated 

suitably are able to survive. Therefore, massive cell death of up to 80% is observed between days 

three and four of differentiation. After this initial step, the progenitors that survive are able to 

rapidly divide and differentiate. 

High doses of GM is toxic to EML cells  

In order to determine proper dosing of EML cells with GM, a toxicity assay was performed. 

Cells were seeded at 2 x 105 cells/mL and treated with varying doses of GM. Doses above 25 nM 

caused death among the cells as noted by a 50% decrease in cell number (Figure 4.5). In testing 

our hypothesis, it was necessary to treat the cells with GM at high enough doses to inhibit 

Hsp90, but not cause significant toxicity. Doses of 15 and 20 nM were chosen because the cells 

could still proliferate at 15 nM and at 20 nM the cell number remained at the seeded cell 

concentration.  
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 Figure 4.3. Marker profile of EML cells during differentiation. A) A total of nine cell surface 
markers were used to follow the differentiation progress of EML cells to a macrophage/granulocyte 
lineage over 7 days. CD117 and Sca-1 are stem cell markers. F4/80, CD11b and Ly6G are 
granulocyte/macrophage markers. CD127 and CD3e are lymphocyte markers. Ter119 is an 
erythrocyte marker and CD45 is a leukocyte marker. As anticipated, the number of cells expressing 
the stem cell markers decrease. The macrophage and granulocyte markers increase dramatically 
over the seven day period. This indicates that the protocol is functioning to differentiate the cells as 
expected. This study also provides a baseline of cell surface marker expression to compare against 
vehicle and GM treated cells. Results depicted are from three independent experiments performed in 
triplicate (mean + S.E.M.). B) The expression of CD117 does in decrease when the cells are 
differentiated as can be seen by the drop in median fluorescence over time. Histogram is 
representative of three experiments. 

Figure 4.4. Cell counts during EML cell differentiation. The first stage of differentiating EML cells 
consists of incubating the cells with interleukin-3, stem cell factor, and all trans retinoic acid for three 
days. During this time cell numbers increase dramatically. After this initial priming, the media is 
switched to that containing granulocyte macrophage colony stimulating factor. In the next 24 hours an 
average of 80% of the cells die. This generates a selection window whereby only cells properly 
primed for differentiation survive. The cells that do survive continue to proliferate and develop into 
mature macrophages/neutrophils. Results depicted are from three independent experiments 
performed in triplicate (mean + S.E.M.). 
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Figure 4.5. Toxicity of geldanamycin on EML cells. Geldanamycin is an HSP90 inhibitor. As a 
preliminary experiment to test the toxicity of this compound, a kill curve was constructed. 200,000 
cells were incubated with varying concentrations of GM. After 24 hours, cell counts were performed 
using a hemocytometer. Results depicted are from three independent experiments performed in 
triplicate (mean + S.E.M.). 

GM pre-treatment does not change EML cellsʼ differentiation profile  

The goal of this study was to ascertain the epigenetic affects of Hsp90 inhibition on 

hematopoiesis. Therefore, EML cells were pretreated with GM before differentiation was induced. 

The cells were treated with vehicle, 15 or 20 nM of GM for 24 hours followed by a 48 hour rest 

period. Given the short half-life of the GM/Hsp90 complex (Kamal et al., 2003), the brief 

inactivation of Hsp90 followed by a rest period will allow for the specific assay of epigenetic 

events. The cells were then differentiated as described above. Flow cytometry was used to 

measure cell surface marker expression before differentiation was induced (day 0), as well as on 

day 3, day 4 and day 6 of differentiation (Figure 4.6A, B, C and D, respectively). CD11b was 

significantly up-regulated on day 0 with GM pretreatment; however, this effect was ablated after 

differentiation was induced. There were no other differences in marker expression with GM pre-

treatment. 
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Figure 4.6. Cell surface marker expression during differentiation does not vary significantly 
with GM treatment. Cell surface markers of EML cells were examined with GM treatment over six 
days. Based on the toxicity assay, the cells were treated with 0, 15nM, and 20nM of GM for 24 hours. 
The cells were then allowed to rest for 48 hours before they were differentiated. Cell surface markers 
where evaluated on A) day 0, B) day 3, C) day 4, and D) day 6 by flow cytometry. Surprisingly, there 
was no significant difference in the markers, except for one. On day 0 CD11b, which is a macrophage 
marker, was notably increased with GM treatment. However, this effect was lost during the 
differentiation process. Results depicted are from three independent experiments performed in 
duplicate (mean + S.E.M.). 

Cells treated with GM have an increased adaptability through the restriction 

point  

On day three of the differentiation protocol, the culture media was switched from that 

containing IL-3, SCF and ATRA to media containing just GM-CSF. Only those cells that are suitably 

primed for the media switch survive as seen in Figure 4.4. This environment provides an 

efficient way to assay increased adaptability of the cells. There was no significant difference in 

cell counts on day three of differentiation between the treatment groups (Figure 4.7A). 

However, a dose dependent increase in the survival of cells through this media switch was 

observed with GM pre-treatment (Figure 4.7B). These cell counts were performed on the same 

cultures as those in which the cell surface marker expression was measured in Figure 4.6. 

The increased adaptability through the restriction point was not reproducible  

Further studies, such as microarray analysis and extended dose response curves, were 

attempted in order to further our understanding of the exciting effect described above. 

Unfortunately, as Figure 4.7C illustrates, the same adaptability was not seen when these 

experiments were performed. Therefore, we hypothesized that a 48 rest period might be too 

long, making the epigenetic effects unstable. Subsequently, we tried resting the cells for only 24 

hours. At first this seemed to work, as a significant increase in survival was observed through 

the restriction point with treatment (Figure 4.7D). However, this effect was short lived and still 

seemed to be unstable (Figure 4.7E).  

In next set of experiments, we tried various methods to stabilize the phenotype. The cells 

were treated three times over a 30 hour time period. Because this was harsh to the cells, they  
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Figure 4.7. Geldanamycin offer cells a greater phenotypic plasticity that is unreliable. Cells 
were treated for 24 hours with GM prior to differentiation, with a 48 hour rest period. Cell counts in 
panels A) and B) were performed together alongside the marker study in Figure 4.6. A) There was no 
significant difference in cell counts performed on day 3 of differentiation. B) On day 4, a significant 
increase in cell survival was seen through the selection window that is dosage dependent. This 
indicates that inhibition of Hsp90 could be offering greater phenotypic diversity in the cells allowing 
them to respond to GM-CSF. Subsequent experiments were performed in the same manner after the 
above data was collected. C) Cell counts on day 4 were no longer significant when treated with the 
above conditions. 24 hours of GM treatment followed by 24 hours rest period before differentiation 
was then employed to try and induce the phenotype. D) and E) are two independent experiments that 
show that the results were still unreliable. Results depicted in A), B) and C) are from three 
independent experiments performed in triplicate (mean + S.E.M.). D) and E) are from one experiment 
performed in triplicate (mean + S.E.M.) under the same exact conditions. 
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Figure 4.8. Efforts to try and rescue the plastic phenotype previously observed were 
unsuccessful. Different methods were employed to try and rescue the phenotype observed in Figure 
4.7B. A) Cells were treated with GM three times over a 30 hour period and allowed to rest for 48 
hours before differentiation was induced. No significant difference was seen in the cell counts on day 
4. B) Cells were treated three times over a 72 hour period with low doses of GM before resting for 24 
hours. Differentiation was then induced and cell counts on day 4 show a dose dependent increase in 
cell survival, but this was not significant. The next method that was tried was to pre-treat the cells 
with low doses of GM for 24 hours and then continue with treatment during differentiation. Panels C), 
D) and E) represent day 4 cell counts from one experiment performed in this manner. By separating 
the experiments it became clear how the data was variable. Results depicted in A), B) are from three 
independent experiments performed in triplicate (mean + S.E.M.). C), D), and E) are from one 
experiment performed in triplicate (mean + S.E.M.) under the same exact conditions. (*) indicates 
p<0.05 as compared to the vehicle control. 
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were allowed to rest for 48 hours before inducing differentiation. This method was not 

successful in bringing back the phenotype (Figure 4.8A). The next method we tried was treating 

at low a dose for a long period of time, 72 hours, and then resting the cells for 24 hours before 

differentiating them. This method brought back a similar trend, with a higher survival of the 

treated cells, but it was not significant (Figure 4.8B). One of the last techniques we tried was 

treating throughout differentiation. The cells were pre-treated with GM for 24 hours before 

differentiation was induced and then treated every day with fresh GM. At first it seemed like this 

would work to rescue the phenotype. A significant increase in survival through the restriction 

point was seen with treatment (Figure 4.8C). However, once again, this was short lived (Figure 

4.8D & E). We also tried serum starvation to synchronize cells before treatment and varying the 

concentrations of IL-3, SCF and ATRA to try and stabilize the phenotype. We also tried treating 

for 48 hours, treating 4 times over a period of a day and a half at various concentrations of GM. 

Treating with 17-AAG was also tried as well. Again mixed results were obtained as seen in Figure 

4.7 and 4.8, as none of these methods were successful in stabilizing the desired result.  

Discussion 

About 40% of the time we observed an increase in EML cell survival when selective 

conditions were applied. This increased plasticity observed in EML cells during differentiation 

with GM treatment could be explained in one of three ways: (1) the cells are more proliferative 

with GM treatment; (2) GM causes the cells to differentiate more quickly; (3) inhibition of Hsp90 

causes the cells to become more plastic, which would make them more adaptable and thus 

enhance their survival through selective conditions. Cell counts on the day previous to the 

media switch were not significantly different between treatment groups (Figure 4.7A). This 

indicates the treated cells were not more proliferative. The marker studies revealed that pre-

treating with GM did not change the differentiation profile of the cells ( Figure 4.3A), so an 

acceleration in differentiation was not occurring. Therefore, we hypothesize that Hsp90 

inhibition could be causing the cells to become more plastic. The inhibition of Hsp90 could 
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release a phenotype, or range of phenotypes, that allows the cells to be more adaptive to the 

selective environment of the media switch. Furthermore, this release occurs six days before the 

effect is observed, which would be suggestive of an epigenetic mechanism. If the results from 

this study were reproducible, it would corroborate previous data that Hsp90 acts an epigenetic 

morphological capacitor in a mammalian model.  

This would be significant in cancer treatment. Precancerous cells must overcome a series of 

steps before they become full blown cancer (Hanahan and Weinberg, 2000). Survival within the 

host creates a Darwinian sort of environment whereby only those cancer cells that are able to 

adapt survive. Cancer cells are more susceptible to Hsp90 inhibition than normal cells, but 

Hsp90 inhibition could allow cancer cells to be more adaptable in certain types of cancer. 

Understanding how Hsp90 inhibition affects cell development will lead to a better 

understanding of treatment mechanisms. 

The increased survival through the media switch experiments were repeated three times 

consistently. Unfortunately, when further experiments were performed to expand our 

understanding of this exciting result, reliability issues developed. Various methods were tried in 

order to stabilize the phenotype. Regrettably, none of these were successful. An unpredictable 

nature in the data seemed to develop as Figure 4.7D & E and Figure 4.8C, D, & E illustrate. 

The rest of the experiments performed with these cells were plagued with variable results.  

We also tried varying the percentage of conditioned medium used during treatment of the 

cells and during differentiation. Again, unstable results were obtained. Sometimes the amount of 

conditioned medium seemed to affect the results, but upon repeating with the same lot of 

conditioned medium these effects were not seen. This made it difficult to implicate a causal role 

for the amount of SCF and IL-3 in the media. It should also be noted that using conditioned 

media could have contributed to the inconsistencies experienced with these studies. Although 

variability was seen within the same lot of CM, there could have been other factors present in the 

conditioned medium that may have had an effect on our system. 
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Two recent studies have demonstrated that EML cells exist in subpopulations with differing 

characteristics. One study sorted EML cells based on CD34 expression (Ye et al., 2005), which is a 

marker of a sub-fraction of HSCs and progenitors (Osawa et al., 1996). The authors found that 

there were equal fractions of CD34+ and CD34- among the lineage negative EML cells. These two 

sub-fractions were quite different in their response to cytokines. The CD34- population was 

unable to proliferate in the presence of SCF, even though they expressed high levels of SCF 

receptor. Interestingly, the CD34+ population was able to proliferate with SCF stimulation and 

reconstitute the original heterogeneous population of cells. The CD34- population was 

responsive to IL-3 alone, while the CD34+ population was not. This indicates that these two 

populations of cells behave very differently and the CD34+ population may represent a more 

primitive progenitor (Ye et al., 2005). 

In a related study, other authors noted the broad range of expression of Sca-1 in EML cells 

via flow cytometry, and hypothesized that this was due to heterogeneity in the cell population. 

They sorted EML cells based on Sca-1 expression into high, mid and low populations. As was 

seen with CD34 expression, within hours the Sca-1 expression broadened for each sorted 

population regenerating the same presort expression pattern. They also examined whether these 

populations had different differentiation potentials. The Sca-1lo population favored erythroid 

development and the Sca-1hi populations favored granulocyte/macrophage development (Chang 

et al., 2008).  

These studies demonstrate that there seems to be an inherent heterogeneity of EML cells, 

which could impact the results seen in our studies. This is corroborated by the findings that 

stem cells are heterogeneous by nature (Orkin and Zon, 2002; Roeder and Radtke, 2009). This 

could be due to the innate properties of the stem cells or the exposure to a variety of small 

disturbances from their surrounding environment. It has been hypothesized that these 

influences could cause “transcriptional noise”, or small, random variations in transcriptional 

activity that can account for this heterogeneity (Chang et al., 2008). 
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Our results imply that the enhanced survival through the restriction point with GM treatment 

is a very complex phenotype, which may require specific conditions be met to observe the 

desired outcome. Given this, as well as reports on the heterogeneity of stem cells, it is not 

surprising that problems with reliability were encountered. It should be noted that this does not 

necessarily mean that Hsp90 is not involved in EML cell plasticity during differentiation. We 

believe there were unknown factors present that we could not control for that may have had 

deleterious effects on this complex phenotype. 
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Chapter 5 : Discussion and Conclusions 

AML is among the deadliest of the lymphatic and bone marrow cancers with a five year 

survival rate of 23.4%. Therefore, new treatment strategies are needed in order to improve 

patient survival. Heat shock protein 90 (Hsp90) is a molecular chaperone that serves a critical 

function in many different signaling cascades by ensuring proper protein structure, activity, 

proteolytic turnover, and localization. Because of this, it has been proposed that Hsp90 serves as 

a buffer to stabilize over expressed and mutated proteins helping cancer cells survive in the 

harsh environment of the host. Therefore, Hsp90 has become a target to cancer therapy. AML is 

characterized by an accumulation of undifferentiated and functionless myeloid precursors in the 

bone marrow and blood. Studying how Hsp90 impacts myeloid cell differentiation and AML cells 

specifically will provide insight into possible treatment strategies for AML. Therefore, the aim of 

our studies was to determine the specific effects of Hsp90 inhibition in hematopoiesis and AML. 

Mutant p53 is an Hsp90 client protein. Wild-type p53 is a tumor suppressor protein that is 

muted in 50% of total cancers and studies have shown that it can have oncogenic properties. 

Studies are needed to determine the role, if any, of mutant p53 in AML. Targeting mutant p53 

might provide new treatment opportunities. 

AML studies 

We were able to show that Hsp90 inhibition, by treatment with 17-AAG, in leukemic cell 

lines caused cell cycle arrest in the G2/M phase of the cell cycle. Previously, these findings were 

also observed in lung and glioblastoma cell lines (Garcia-Morales et al., 2007; Senju et al., 2006). 

However, the diverse reactions to 17-AAG treatment that we observed were not reported in 

these studies and correlates well with the fact that AML is a heterogeneous disease. Our data 

support previous reports that the block in G2/M phase was due to the down-regulation of CDC2 

and CDC25c, two important G2/M checkpoint proteins that are known to be Hsp90 clients. Our 
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publication broadens the knowledge on how 17-AAG treatment can act specifically in AML and 

may shed light on the lack-luster response of patients to 17-AAG in clinical trials.  

Studies have shown that Hsp70 and Hsp90 expression levels in cells can be indicative of 

their response to Hsp90 inhibition (Thomas et al., 2005; Flanderin et al., 2008). An additional 

experiment that would have been beneficial to my research would be to measure the expression 

of these two proteins in the cells before treatment. We may have been able to correlate their 

expression with 17-AAG susceptibility. Attempts were made to measure Hsp90 protein 

expression between the cell lines; however, difficulties with protein transfer during western 

blotting prevented accurate protein measurement.  

Kasumi-3 studies 

Mutations in the TP53 gene occur more frequently than any other mutations found in cancer 

cells. These point mutations often result in the expression of a stable full length protein, which 

suggests that mutant p53 could be providing some sort of survival advantage to the cancer (Kim 

and Deppert, 2004). In fact, there is evidence that suggests that mutant forms of p53 can act in 

an oncogenic capacity and have been shown to activate transcription of genes that are important 

in oncogenesis. However, the mechanisms involved in these activities are poorly understood.  

Even though mutant p53 is present in only about 10% of leukemias, a recent study indicated 

that a single p53 deletion was a strong independent negative prognostic factor for disease free 

survival in AML (Seifert et al., 2009). This demonstrates that although p53 mutations in AML are 

uncommon, the effect of inactivating p53 can have a devastating outcome on patient survival. In 

our studies, we found that p53 was mutated in the leukemia cell line Kasumi-3. It is interesting 

that this cell line harbors two separate mutant alleles. One mutant allele results in of intron 7 

being trapped in the mature messenger RNA. This produces a truncated protein that is most 

likely not stable. The other is a point mutation in the DNA binding domain, which is the most 

common site for point mutations in the p53 gene. This allele probably codes for the up-

regulated protein product seen in our experiments. The characterization of the mutations in p53 
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in Kasumi-3 cells provides a valuable tool to study p53 oncogenic function in general as well as 

in AML specifically. 

This cell line was also very sensitive to Hsp90 inhibition, in that significant apoptosis was 

observed after just 48 hours of 17-AAG treatment. Hsp90 inhibition also caused significant 

down-regulation of mutant p53. These two observations led us to hypothesize that perhaps the 

cells were dependent on mutant p53 in some fashion and that this dependency was the 

mechanism behind the high sensitivity of this cell line.  

This hypothesis however, was not validated. The mutant p53 was knocked down 

independently of Hsp90 inhibition. In order to mimic the 17-AAG studies, measurement of 

apoptosis was used as the endpoint of this experiment. Unfortunately, Kasumi-3 cells were 

difficult to transfect and as a result electroporation was used as a last resort for sufficient 

transfection efficiently. A 50% knockdown of p53 was achieved, but there was no difference in 

the apoptosis between the control and p53 siRNA treated cells. Regrettably, even though 

apoptosis was measured 72 hours after electroporation, apoptosis levels were around 50% in 

both treatment groups. This high rate of apoptosis could be masking the specific survival effects 

of mutant p53 protein knockdown in these cells.  

Subsequently, we measured P-glycoprotein activity, which is a gene known to be up-

regulated by mutant p53 (Chin et al., 1992). P-glycoprotein is an ABC transporter that is often 

expressed in drug resistant cases of AML and other cancers. It contributes to resistance through 

its ability to efficiently efflux drugs from cells. The thought behind this experiment was that 

perhaps there was a compound effect of 17-AAG down-regulating P-glycoprotein, through 

mutant p53 degradation, which would cause the cells to be more sensitive to 17-AAG. 

Unfortunately, there was no difference in P-glycoprotein activity with p53 knock down.  

We were only able to study these two effects, apoptosis and P-glycoprotein expression, of 

mutant p53 knockdown due to time and monetary constraints. It is feasible that the methods we 

used to measure this effect were flawed, or that the mutant p53 could be affecting the cells in a 

different capacity than the two effects we studied. Therefore, it is still possible that the mutant 
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p53 in Kasumi-3 cells is acting in an oncogenic capacity. Perhaps looking at gene expression at 

the protein level of some other known mutant p53 targets would have provided evidence to 

support our hypothesis.  

Kasumi-3 cells are under the AML classification of M0, which means they are an 

undifferentiated subtype. Stem cells are known to possess efflux pumping capabilities and in 

fact, they are sometimes isolated based on this ability. It is reasonable that Kasumi-3 cells, being 

undifferentiated, could express P-glycoprotein as a result of their immature precursor origins. P-

glycoprotein and other drug resistant phenotypes are also common in AML. Perhaps, P-

glycoprotein expression is accomplished through a completely separate mechanism in this cell 

line.  

In clinical trials, there has been more success in treatments using 17-AAG and other Hsp90 

inhibitors in combination with other drugs. Our results in Chapter 2, studying the effect of 

Hsp90 inhibition in several cell lines, agree with this result. If the mutant p53 in Kasumi-3 cells 

is acting in an oncogenic capacity, it is very possible that the compound effect of Hsp90 

inhibition and mutant p53 degradation could be responsible for the sensitivity of these cells to 

17-AAG. During the course of our studies, we were only able to knockdown the mutant p53 by 

about 50% either with 17-AAG or siRNA alone. It would be interesting to see if there was a 

synergistic effect of using p53 siRNA and 17-AAG. It would also be interesting to produce an 

inducible shRNA Kasumi-3 stable cell line to study the effects of mutant p53 knockdown. This 

would avoid the electroporation/apoptosis issue and allow p53 knockdown to be studied in 

conjunction with other drugs.  

Another appealing experiment would be to take this particular p53 mutant and express it in 

a different p53-null cell line, such as HL-60. This would allow the direct assessment of 

phenotypes this mutant is capable of producing, if any. On a similar note, if this mutant p53 

served in only a dominant-negative capacity to promote leukemogenesis in the original patient, it 

would be exciting to express it in a wild type p53 expressing AML cell line. Dominant-negative 

activity would be straightforward to measure. In our studies, these cells arrested growth with 
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treatment of camptothecin, which was most likely due to up-regulation of p21 in a p53 

dependent manner. If this mutant p53 is acting as a dominant-negative this effect would be 

ablated in cells expressing both the mutant and the endogenous p53 protein.  

It is remarkable that Kasumi-3 cells are so sensitive to Hsp90 inhibition given that they 

possess P-glycoprotein activity. KG-1a cells are very resistant to 17-AAG treatment and we were 

able to show that this was, at least in part, due to P-glycoprotein activity. This indicates that 

there must be some special mechanism(s) or protein client(s) responsible for Kasumi-3 cells’ 

sensitivity. Discovering the reason of this susceptibility may uncover an important therapeutic 

target to use in conjunction with Hsp90 inhibition.  

Kasumi-3 cells aberrantly express the EVI1 oncogene that has been implicated in 

leukemogenesis (Asou et al., 1996; Goyama and Kurokawa, 2009). Therefore, my next 

hypothesis would be that EVI1 is an Hsp90 client protein. This would be readily tested by 

measuring protein levels in the cells with and without 17-AAG treatment. Degradation of EVI1 

would provide evidence that it is a client, but immunoprecipitation assays are needed for 

confirmation.  

Kasumi-3 cells’ dependence on EVI1 could be tested with EVI1 siRNA. However, as discussed 

earlier, this could have the same pitfalls as investigating mutant p53 in the same role. If EVI1 is 

an Hsp90 client, it would support the hypothesis that Hsp90 inhibition in this cell line has the 

compound effect that was hoped for when 17-AAG was introduced in clinical trials. One thing is 

certain, elucidating why Kasumi-3 cells are so susceptible to 17-AAG treatment would add much 

to our understanding of how Hsp90 contributes to cancer progression as well as targeting 

specific AML and other cancer patients who would benefit the most from this treatment. 

EML studies 

Because of the Darwinian nature in which cancer develops, any treatments that might 

impact the adaptability of cancer are important to understand. Therefore, the idea that Hsp90 

can act as a genetic and epigenetic capacitor in Drosophila should be explored in a mammalian 
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model for this reason. Earlier studies showed in Drosophila that with parental Hsp90 inhibition, 

offspring were born with limb-like outgrowths in the eye. When selective conditions were 

imposed, this outgrowth continued over several generations without Hsp90 inhibition, 

indicating a heritable epigenetic mechanism (Sollars et al., 2003). We tried to replicate these 

findings in a mammalian hematopoietic stem cell model using EML cells. The cells were 

pretreated with geldanamycin before inducing differentiation. Initially, we were hoping for a 

trans-differentiation event in which the cells spontaneously differentiated, but we did not 

observe this change. We then looked for a trans-differentiation event during the normal 

differentiation protocol but this was also not observed. Perhaps our inability to detect these 

events is because the differentiation signals brought on by the cytokine stimulation are so strong 

that it would overcome any epigenetic modulation that could have taken place from Hsp90 

inhibition.  

In the Drosophila study, the eye tissue was sensitized by ectopic expression of Krüpple 

(Sollars et al., 2003), which is a gap gene important in the development of several thoracic and 

abdominal segments in the embryo. Ectopic expression of this developmental transcription 

factor caused the cells in the eye tissue to not have a clear developmental fate. When Hsp90 was 

inhibited, it caused these cells to trans-differentiate into appendages. One thing to consider in 

our EML studies is that there was no sensitizing agent present in our system. Perhaps if we had 

employed a sensitizer, such as expression of AML1, we may have also seen a trans-differentiation 

event.  

We observed that with Hsp90 inhibition, cells that were primed to differentiate seemed to 

be more adaptable during the regular differentiation protocol. This is illustrated by their ability 

to survive better through a restriction point, which normally caused around 80% cell death. This 

finding was exciting because this adaptability had not previously been seen in a mammalian 

model, and the pretreatment of the cells suggested that it was caused by epigenetic change. 

Unfortunately, we encountered problems with replicating the experiments.   
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I have suggested that the non-reproducible results could be due to the inherent 

heterogeneity present in the cells, which has been documented in previous studies. One study 

sorted populations of CD34+ and CD34- EML cells. Interestingly, when comparing expression of 

Sca-1, an early stem cell marker in mice, and CD34, cells that were CD34+ were also Sca-1hi and 

cells that were CD34- were Sca-1lo. This suggests that cells that the CD34+ are more stem cell like 

than their CD34- counterparts (Ye et al., 2005).  

These two populations also differed in their response to IL-3 and SCF. An essential 

experiment in this case would be to sort the two different populations of cells and immediately 

treat with geldanamycin and follow through with the experiment protocol. It is conceivable that 

perturbations in these populations could be partially responsible for the lack of reproducibility. 

The disturbances in the populations could be brought about through the conditioned medium 

used or other unknown factors in their environment. By sorting the two populations, these 

possible problems could be circumvented.  

Another study observed Sca-1 expression to be highly variable in EML cells, and we have 

confirmed this finding in our studies (Chang et al., 2008). They went on to show that cells with 

differing levels of Sca-1 expression had different developmental tendencies. They also showed 

that when EML cells were sorted based on Sca-1 expression and subsequently cultured, the 

original population with broad Sca-1 expression was soon reproduced. Sorting EML cells based 

on Sca-1 expression followed by geldanamycin treatment would make a nice additional study to 

go along with those mentioned above. Perhaps these differing populations show different 

responses to geldanamycin treatment and enriching for one population over another would 

provide a more robust response. 

In our studies with EML cells, we saw a significant increase in CD11b expression with Hsp90 

inhibition without induction of differentiation. EML cells were produced by transfection with a 

dominant-negative retinoic acid receptor which blocks differentiation down the 

monocyte/macrophage lineage. Perhaps this block in differentiation obstructed the trans-

differentiation event that could have occurred with treatment of geldanamycin alone. EML cells 
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are a continuously passaged cell line and there could be artifacts inherent in the cell line that 

could introduce confounding factors.  

In light of our study of 17-AAG in the leukemia cell lines, further questions about 

geldanamycin treatment in EML cells has arisen. Treatment of EML cells with geldanamycin 

resulted in related cellar toxicity. At the doses that we used in our EML study, the cells were still 

able to proliferate or remained at a constant cell number. It would have been a good idea to do a 

cell cycle analysis study to determine if the cells were arresting in G2/M phase as was seen in the 

leukemic cells. This data would have shown that G2/M arrest was consistent in ‘normal’ cells.  

Besides just focusing on the survival advantage of treated cells, it would have been 

interesting to look at the levels of acetylated histones after geldanamycin treatment. In the 

previous study, supplementing the flies’ diet with histone deacetylase inhibitors lowered the 

frequency of outgrowths in the eye. This piece of evidence provided a molecular link to 

epigenetic modulation behind the phenotype. It would have been interesting if geldanamycin 

treatment in EML cells modulated histone acetylation, or even methylation and phosphorylation. 

An examination of the histone code may have proven to be more informative. 

It is certainly possible that Hsp90 inhibition in EML cells was having an effect on gene 

expression without causing a measurable change in phenotype by the assays that we employed. 

These effects could have been ablated upon cytokine stimulation when differentiation was 

induced. Another procedure that would have provided additional information would have been 

a microarray analysis on EML cells with and without Hsp90 inhibition. This would have given us 

some idea of what genes were affected and would have allowed us to make a more informed 

hypotheses. Financial considerations did not allow use of this option. 

Looking at how Hsp90 inhibition affects hematopoiesis in a whole organism using colony 

formation and flow cytometry assays of bone marrow could have also been very informative. 

Mice would have been a great model for this study given the experience our lab has with 

measuring stem and progenitor cells in bone marrow. Cells from the bone marrow can be 

cultured in semi-solid medium, containing different stimulatory cytokines. Every progenitor cell 



–110– 

present will form a colony after six days. The morphology of the cells within the colony can be 

assessed to determine what type of progenitor originally seeded that colony. The number of 

colonies present can be extrapolated back to the original seeding density of the culture to 

determine the frequency of progenitors present in the bone marrow. Flow cytometry can also be 

used to measure stem and progenitor cells by taking advantage of specific cell surface markers, 

which are well characterized in mice, present on each cell type. Treating the mice with 17-AAG 

followed by a complete bone marrow study would have broadened our understanding of the 

potential role that Hsp90 plays in hematopoiesis. These experiments could have also provided 

evidence to support the theory that Hsp90 acts as an evolutionary capacitor in mammalian 

models. However, financial and time constraints did not allow these experiments to be pursued.  

Evidence of Hsp90 acting as an evolutionary capacitor in a mammalian model is still lacking, 

even though the first study in Drosophila was published over a decade ago (Rutherford et al., 

1998). It would have been a great contribution to our understanding of Hsp90, as well as 

knowledge about evolution, if we would have obtained consistent results in the EML cell study. 

Such results would have contributed to our understanding of how Hsp90 inhibitors may work in 

cancer. If Hsp90 inhibition does indeed cause an increase in adaptability in hematopoietic cells, 

this could contribute to cancer progression in AML patients as well as other cancers. 

Our model of choice may not have been the most efficient one with which to test our 

hypothesis. Embryonic stem cells might have provided another model system to use; however, 

we were not equipped to culture these types of cells. Perhaps in the future the confounding 

factors that plagued these experiments will be revealed and proper protocols implemented to 

control for them. 

Hsp90 inhibitors were first proposed to be used in clinical trials because it is responsible for 

the folding and activation of many important signal transduction proteins, some of which are 

involved in cancer progression. Given that cancer is a multi-step process, it was thought that 

through Hsp90 inhibition, many pathways could be targeted with just one drug. Additionally, 

recent data show that cancer cells are dependent on Hsp90 and it is frequently up-regulated in 
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cancer. It is also present in active, complexed forms when compared to normal cells (Kamal et 

al., 2003). This dependence makes cancer cells more sensitive to Hsp90 inhibition than normal 

cells. Based on this knowledge, it would be feasible that Hsp90 inhibition would kill cancer cells 

without difficulty. However, Hsp90 inhibitors in clinical trials have not had the response that 

was hoped for as a single agent (Reikvam et al., 2009; Usmani et al., 2009).  

Why aren’t Hsp90 inhibitors more effective? One reason could be the dosing. Due to the 

Hepatotoxicity of available inhibitors, a high enough dose to impart damage to cancer cells 

cannot be achieved without unreasonable toxic side effects. However, in some studies, effective 

Hsp90 inhibition was attained as measured by down-regulation of client proteins and up-

regulation of Hsp70. To try and combat these issues, the search for novel Hsp90 inhibitors that 

are more potent and less toxic is still ongoing.  

We were able to show that between four human AML cell lines, the responses to 17-AAG 

were quite diverse. It is possible that the results of the clinical trials are due to diverse sensitivity 

of tumors to 17-AAG. Hsp90 inhibition has been shown in Drosophila and Arabidopsis to promote 

phenotypic diversity among progeny. An alternative hypothesis is that by inhibiting Hsp90 in 

human cancer, instead of eradicating the tumor, inhibition may allow the cancer cells to become 

more adaptable to their environment. Support for this hypothesis can be found in the existing 

literature and implied from our EML studies.  

However, it should be noted that Hsp90 is often up-regulated in cancer due to the stressful 

conditions in which a cancer develops as well as the dependency of cancer on Hsp90 to stabilize 

mutated and misfolded proteins. Therefore, cancer is highly dependent on Hsp90 for its very 

survival, which makes the relationship of Hsp90 in cancer cells much more complex than in 

normal cells. This means that it is possible that the effects of Hsp90 inhibition in normal cells 

may not be the same as in cancer cells. Regardless, it is interesting to speculate on the reasons 

for the meager response of Hsp90 inhibition in clinical trials.  

In summary, the studies presented here add to our understanding of how Hsp90 inhibition 

specifically acts in AML. We observed distinct responses to 17-AAG among the cell lines tested. 
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This may explain the lackluster results of this inhibitor in clinical trials. This study also led to the 

discovery of two alleles of mutant TP53 in Kasumi-3 cells, an AML cell line that was very 

sensitive to 17-AAG. We hypothesized that the reason for this sensitivity was due to the 

degradation of mutant p53, a known Hsp90 client. Although we were not able to show that this 

mutant p53 was acting in an oncogenic fashion, it still raises the possibility that tailoring 17-AAG 

treatment to patients with known oncogenic TP53 alleles might prove to be very effective. 

Unfortunately, we were not able to determine why Kasumi-3 cells were so sensitive to 17-AAG. 

However, they do provide a valuable model with which to determine which biomarkers may 

dictate sensitivity to Hsp90 inhibition. In addition, Kasumi-3 cells will make a good model to 

study mutant p53 function in cancer, as well as AML specifically.  
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