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ABSTRACT 

EFFICACY OF DEFERASIROX IN PREVENTING COMPLICATIONS OF IRON 
OVERLOAD IN THE IRON OVERLOADED GERBIL 

 
By Rabaa M. Al-Rousan 

 
Iron overload is a significant, world-wide problem that results in several 

chronic diseases including cardiovascular, hepatic and pancreatic complications. 

The newly developed, orally effective, iron chelating agent deferasirox is thought 

to offer tremendous promise as an alternative to deferoxamine. However, the 

efficacy and safety profile of deferasirox is not yet clear. In the present study, the 

efficacy of deferasirox in removing iron from target tissues has been examined 

using the gerbil model of iron overload.  

Deferasirox administration resulted in a significant reduction of iron from 

cardiac and hepatic tissue. In addition deferasirox reduced iron induced increase 

in cardiac and hepatic oxidative stress indices including ferritin expression, 

superoxide production, protein oxidation, and ERK1/2, P38, and JNK 

phosphorylation. These results indicate that deferasirox is capable of attenuating 

iron- induced oxidative stress. Continuing our investigation we observed that iron 

overload was also associated with an increase in hepatic cell death and 

upregulation of Bax/Bcl-22, Bad expression, and caspase-3 cleavage. These 

levels were significantly lower with deferasirox treatment suggesting a protective 

role against cell death. 

The primary overall goal of managing iron overload is to reduce/prevent 

cardiac or other organ complications. In the present study we examined the 

effect of iron overload on cardiac remodeling and functional parameters, and the 
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effectiveness of chronic deferasirox administration to prevent or reduce these 

changes using electro- and echocardiographic procedures. Compared to control, 

iron overload was associated with left ventricular remodeling, arrhythmia, valve 

regurgitation, and a decline in cardiac function.  These changes were highly 

preserved with deferasirox treatment. 

Following the preceding studies, we demonstrated a reduction in tissue 

iron with deferasirox treatment in the iron overloaded gerbil model. The findings 

of the present report established for the first time that deferasirox treatment is 

capable of attenuating iron-induced increase in oxidative stress indices, tissue 

ferritin protein expression, cell death, and more importantly, iron related 

cardiovascular alterations. These findings suggest that deferasirox may be useful 

in protection against iron-induced organ damage. The present report also 

provides data elaborating on the possible mechanism by which iron overload 

contributes to cellular injury, thereby allowing the development of better 

therapeutic regimens to control this disorder.   

 

 

 
 

 

 

 



 
 

-iv- 
 

ACKNOWLEDGEMENTS 
 

This work would not have been possible without the support of my advisor, 

Dr. Eric Blough. Eric has been a wonderful source of innovative research ideas, 

and his encouragement and support helped to instill in me a sense of confidence 

in my own work. He continually challenged me to see the bigger picture and has 

helped me to achieve more than I could have ever imagined was possible. Most 

of my knowledge related to cardiovascular physiology and cell signaling is the 

direct result of his open-door policy, patience, and dedication to teaching.  I will 

always remember his warm personality and positive outlook which made my 

graduate experience all the more enjoyable. I’m also grateful to Dr. Ernest 

Walker from the Department of Pathology.  Dr. Walker’s knowledge of pathology 

has been invaluable during my research project. He spent many hours with me 

reviewing my tissue sections and helped to interpret the research findings. I will 

always remember his sense of humor and devotion to research. Dr. Blough and 

Dr. Walker are both wonderful role models and I am honored to have worked with 

such intelligent and generous individuals. 

I’m also grateful to Dr. Monica Valentovic for including me in the 

Toxicology and Environmental Health Sciences Cluster. Dr. Valentovic is an 

incredible teacher and researcher and has taught me a great deal about 

toxicology. I’m also grateful to Dr. Nalini Santanam, Dr. Todd Green, and Dr. Elsa 

Mangiarua who provided valuable comments throughout the course of my 

project. 



 
 

-v- 
 

Many thanks to the Laboratory of Molecular Physiology team. I consider 

myself fortunate to have been a part of such a warm and collegial group of 

people who set high standards for research, and continually motivate and inspire 

me. Kevin Rice, Satyanarayana Paturi, Sunil Kakarla, Ravi Arvapalli, Miaozong 

Wu, Kamran Manzoor, Lucy Darnon, Raja Nawaz, Brent Kidd, and Anjaiah Katta 

have all been a huge help to me throughout this dissertation.  I can’t thank them 

enough for all of their advice and moral support during my research. 

I am so grateful to my colleagues in the Byrd Biotechnology Science 

Center; Jackie Fannin, Lauren Waugh, Mike Brown, and Aileen Marcelo.  I am 

lucky to have such wonderful friends who have made my time at Marshall 

University a lot more enjoyable experience.   

Last but not least, thanks to my incredible family for their never-ending 

love and support. They have always encouraged me to follow my dreams and 

have made this experience a reality. 

Thank you! 

 

 

 

 

 



 
 

-vi- 
 

DEDICATION 
 

To my parents Majed & Asia Al-Rousan who believed I could be anything I want 

to be 

To my brothers and sisters Rabab, Sahel, Ruba, Razan, Batool, & Hisham 

To my husband, Fadi Alkhateeb, who stood by my side and supported me from A 

to Z in this Journey 

To my little superman, Haroon 

& 

To all of those who suffer iron overload 

 

 

 

 

 

 

 

 

 



 
 

-vii- 
 

TABLE OF CONTENTS 

ABSTRACT ......................................................................................................................... ii 

ACKNOWLEDGEMENTS ................................................................................................. iv 

DEDICATION ..................................................................................................................... vi 

LIST OF TABLES ............................................................................................................. xiii 

LIST OF FIGURES ........................................................................................................... xiv 

CHAPTER I - INTRODUCTION .......................................................................................... 1 

PURPOSE ........................................................................................................................... 6 

SPECIFIC AIMS .................................................................................................................. 7 

CHAPTER II – REVIEW OF THE LITERATURE .............................................................. 9 

2.1 BODY IRON HOMEOSTASIS ...................................................................................... 9 

2.1.1 Normal distribution of body iron stores .................................................................... 9 

2.1.2 Regulation of iron absorption................................................................................... 10 

2.1.3 Regulation of systemic iron homeostasis .............................................................. 12 

2.1.4 The IRP-IRE regulation of cellular iron homeostasis ........................................... 13 

2.2 DISORDERS OF IRON OVERLOAD ........................................................................ 14 

2.2.1 Primary iron overload (Hereditary hemochromatosis) ......................................... 15 

2.2.2 Secondary iron overload .......................................................................................... 16 

2.3 CLINICAL MANIFESTATION OF IRON OVERLOAD .............................................. 18 

 



 
 

-viii- 
 

2.4 MECHANISMS OF IRON MEDIATED TOXICITY ..................................................... 20 

2.4.1 Formation of non-transferrin bound iron ................................................................ 20 

2.4.2 Chemistry of iron and ROSs .................................................................................... 21 

2.4.3 Targets of iron-driven cellular damage .................................................................. 23 

2.4.4 ROS and iron-mediated intracellular signaling ..................................................... 26 

2.5 METHODS OF DETECTING BODY IRON ................................................................ 28 

2.5.1 Indirect Assessment .................................................................................................. 28 

2.5.2 Direct assessment ..................................................................................................... 30 

2.6 MANAGEMENT OF IRON OVERLOAD .................................................................... 30 

2.6.1 Phlebotomy ................................................................................................................ 31 

2.6.2 Chelation therapy ...................................................................................................... 32 

2.7 ANIMAL MODELS OF IRON OVERLOAD ............................................................... 39 

CHAPTER III – MATERIALS AND METHODS ............................................................... 41 

3.1 Animal selection and care ....................................................................................... 41 

3.2 Iron loading and chelation ....................................................................................... 42 

3.3 Electrocardiographic procedures ........................................................................... 43 

3.4 Transthoracic echocardiography ........................................................................... 44 

3.5 Tissue collection ....................................................................................................... 45 

3.6 Tissue iron assessment ........................................................................................... 46 

3.7 Histological analysis ................................................................................................ 47 



 
 

-ix- 
 

3.8 SDS-PAGE and immunoblotting ............................................................................. 48 

3.9 Oxidative fluorescent microscopy.......................................................................... 49 

3.10 Oxidized Protein Analysis ..................................................................................... 50 

3.11 In situ cell death detection (TUNEL) ..................................................................... 50 

3.12 Statistical analysis .................................................................................................. 51 

3.13 Materials ................................................................................................................... 51 

CHAPTER IV - RESULTS ................................................................................................ 53 

DEFERASIROX REMOVES CARDIAC IRON AND ATTENUATES OXIDATIVE 

STRESS IN THE IRON-OVERLOADED GERBIL ........................................................... 54 

Abstract ............................................................................................................................ 55 

Introduction ...................................................................................................................... 56 

Results .............................................................................................................................. 57 

Characterization of animals ............................................................................................... 57 

Cardiac iron levels ............................................................................................................... 57 

Ferritin protein expression ................................................................................................. 59 

Superoxide abundance ...................................................................................................... 60 

Protein oxidation .................................................................................................................. 61 

Determination of ERK1/2-, p38-, and JNK-MAPK phosphorylation ............................ 63 

Discussion ....................................................................................................................... 64 

Deferasirox decreases cardiac iron and ferritin levels in the iron overloaded gerbil 65 



 
 

-x- 
 

Reduced cardiac iron levels are associated with decreases in tissue ROS .............. 66 

Reduced cardiac iron levels are associated with decreases in iron-associated MAPK 

phosphorylation ................................................................................................................... 67 

DEFERASIROX PROTECTS AGAINST IRON-INDUCED HEPATIC INJURY IN 

MONGOLIAN GERBIL ..................................................................................................... 71 

Abstract ............................................................................................................................ 72 

Introduction ...................................................................................................................... 73 

Results .............................................................................................................................. 74 

Characterization of animals ............................................................................................... 74 

Hepatic iron levels ............................................................................................................... 75 

Ferritin protein expression ................................................................................................. 78 

Superoxide abundance ...................................................................................................... 79 

Cell death ............................................................................................................................. 82 

Bcl-2 apoptotic signaling .................................................................................................... 84 

Caspase-3 activation .......................................................................................................... 86 

Discussion ....................................................................................................................... 88 

Deferasirox decreases hepatic iron and ferritin levels in the iron-overloaded gerbil 89 

Reduced hepatic iron levels are associated with decreases in iron-associated cell 

death ..................................................................................................................................... 93 

 



 
 

-xi- 
 

LONG TERM EFFICACY OF DEFERASIROX IN PREVENTING 

CARDIOVASCULAR COMPLICATIONS IN THE IRON OVERLOADED GERBIL ...... 97 

Abstract ............................................................................................................................ 98 

Introduction ...................................................................................................................... 99 

Results .............................................................................................................................101 

Characterization of animals ............................................................................................. 101 

Cardiac, aortic, and hepatic iron levels .......................................................................... 101 

Electrocardiographic evaluation ...................................................................................... 103 

Echocardiographic evaluation (cardiac structure) ........................................................ 105 

Echocardiographic evaluation (cardiac function) ......................................................... 108 

Discussion ......................................................................................................................112 

Deferasirox removes cardiac, aortic, and hepatic iron ................................................ 112 

Deferasirox treatment preserves cardiac structure and prevents ventricular 

remodeling .......................................................................................................................... 113 

Deferasirox treatment preserves cardiac function and reduces incidence of 

arrhythmia ........................................................................................................................... 114 

IRON LEVELS IN OTHER TISSUES ..............................................................................116 

Pancreatic iron level ......................................................................................................116 

Kidney iron level .............................................................................................................118 

 

 



 
 

-xii- 
 

CHAPTER V – GENERAL DISCUSSION ......................................................................119 

Effect of iron overload and deferasirox treatment on tissue iron 

concentration ..................................................................................................................120 

Effect of iron overload and deferasirox treatment on tissue iron distribution ......121 

Effect of iron overload and deferasirox treatment on ferritin protein 

expression .......................................................................................................................121 

Effect of iron overload and deferasirox treatment on oxidative stress 

indices and apoptosis ...................................................................................................123 

Effect of iron overload and deferasirox treatment on cardiac structure and 

function ............................................................................................................................126 

CONCLUSIONS ...............................................................................................................129 

FUTURE DIRECTIONS ...................................................................................................131 

REFERENCES .................................................................................................................133 

CURRICULUM VITAE .....................................................................................................149 

 

 

 
 

 
  



 
 

-xiii- 
 

LIST OF TABLES 
 
 
Table 1. Hereditary hemochromatosis; Classification and associated gene 

products ................................................................................................................. 15 

 

Table 2. Comparison of the main available iron chelators to an ideal 

chelating drug ....................................................................................................... 38 

 

Table 3. Deposition of gerbils in the experimental groups ...................................... 43 

 

Table 4. Deposition of gerbils in the experimental groups and heart/body 

weights. .................................................................................................................. 57 

 

Table 5. Deposition of gerbils in the experimental groups and liver/body 

weights. .................................................................................................................. 75 

 

Table 6. Regression analysis of the relationship between expression levels 

of specific proteins and TUNEL, HE staining intensity, liver weight, and 

hepatic iron levels obtained from experimental groups .................................... 88 

 

Table 7. Average heart, liver, and Kidney weights of gerbils in the 

experimental groups followed for 9 months ..................................................... 101 

 



 
 

-xiv- 
 

LIST OF FIGURES 
 

 
Figure 1. Schematic representation of iron transport across duodenal 

epithelial cells ....................................................................................................... 11 

 

Figure 2. Role of cellular iron level in the regulation of ferritin and 

transferrin receptor expression via the IRE/IRP system ................................... 14 

 

Figure 3. Catalysis and autocatalysis in the Haber-Weiss and Fenton 

reactions leading to the production of the hydroxyl radical, including 

the liberation by superoxide of free iron from ferritin. ...................................... 23 

 

Figure 4. Chemical structure of the iron chelating agents in clinical use and 

their corresponding iron binding ratio. ............................................................... 39 

 

Figure 5. Average iron levels in mg/g tissue weight in cardiac tissue of 

gerbils in the experimental groups ..................................................................... 58 

 

Figure 6. Histological examination of left ventricular myocardium of Ctrl 

(A), IO (B), and IO+DFR (C) gerbils ...................................................................... 59 

 



 
 

-xv- 
 

Figure 7. Effect of iron overload and iron chelation on ferritin heavy chain 

(FerH) protein expression in cardiac tissue of gerbils in the 

experimental groups ............................................................................................. 60 

 

Figure 8. Detection of cardiac superoxide by dihydroethidium in Ctrl, IO, 

and IO+DFR groups. ............................................................................................. 61 

 

Figure 9. Effect of iron overload or deferasirox treatment on cardiac protein 

carbonylation. ....................................................................................................... 62 

 

Figure 10. Effect of iron overload or deferasirox treatment on the 

expression of total and phosphorylated ERK1/2-, P38-, and JNK-MAPKs....... 64 

 

Figure 11. Average iron levels in mg/g tissue weight in hepatic tissue of 

gerbils in the experimental groups ..................................................................... 76 

 

Figure 12. Iron deposition in hepatic tissue of Ctrl (A), IO (B,C), and IO+DFR 

(D)  gerbils. ............................................................................................................ 77 

 

Figure 13. Western blot analysis of ferritin heavy chain (ferH) protein 

expression in hepatic tissue of gerbils in the experimental groups. ............... 78 

 



 
 

-xvi- 
 

Figure 14. Detection of cardiac superoxide by hydroethidine in Ctrl, IO, and 

IO+DFR. .................................................................................................................. 80 

 

Figure 15. Representative oxy-blots of hepatic protein isolates from Ctrl, IO, 

and IO+DFR . ......................................................................................................... 81 

 

Figure 16. Representative cross sections showing the changes in nuclei 

exhibiting DNA strand breakage as determined by TUNEL staining in 

Ctrl, IO, and IO +DFR. ........................................................................................... 83 

 

Figure 17. Effects of iron overload and deferasirox treatment on Bax/Bcl-2 

protein level in hepatic tissue of gerbils in the experimental groups .............. 85 

 

Figure 18. Effects of iron overload and deferasirox treatment on Bad 

protein level in hepatic tissue of gerbils in the experimental groups. ............. 86 

 

Figure 19. Effects of iron overload and deferasirox treatment on full length 

and cleaved caspase-3 in hepatic tissue of gerbils in the experimental 

groups .................................................................................................................... 87 

 



 
 

-xvii- 
 

Figure 20. Average iron levels in mg/g tissue weight in cardiac (A), aortic 

(B), and hepatic (C) tissue of gerbils in the experimental groups 

followed for 9 months ......................................................................................... 102 

 

Figure 21. Histological analysis of cardiac and aortic tissue of Ctrl (A), IO 

(B), and IO+DFR (C) gerbils.. .............................................................................. 103 

 

Figure 22. Representative ECGs (standard leads I, II, III) from control, iron 

overload, a deferasirox (DFR) treated groups followed for 9 months ............ 104 

 

Figure 23. Frequency of electrocardiographic abnormalities observed in 

Ctrl, IO, and IO+DFR followed for 9 months ..................................................... 105 

 

Figure 24. Effect of iron overload and deferasirox treatment on left 

ventricular dimension.. ....................................................................................... 107 

 

Figure 25. Representative M-mode echocardiograms from control (A), iron 

overload (B), and deferasirox treated (C) groups followed for 9 months ...... 108 

 

Figure 26. Effect of iron overload and deferasirox treatment on left 

ventricular ejection fraction (EF), and fractional shortening (FS) in 

gerbils from experimental groups. .................................................................... 109 



 
 

-xviii- 
 

Figure 27. Frequency of cardiac valvular regurgitations observed in control, 

iron overload, and deferasirox treated groups followed for 9 months ........... 110 

 

Figure 28. Correlation between cardiac iron concentration and heart/body 

wt, or echocardiographic parameters ............................................................... 111 

 

Figure 29. Average iron levels in mg/g tissue weight in pancreatic tissue of 

gerbils in the experimental groups. .................................................................. 117 

 

Figure 30. Histological analysis of pancreatic tissue of control, iron 

overload, and deferasirox treated groups followed for 3 months .................. 117 

 

Figure 31. Average iron levels in mg/g tissue weight in kidney tissue of 

gerbils in the experimental groups ................................................................... 118 

 
 

 

 

 

 

 

 

 



 
 

-xix- 
 

ABBREVIATIONS 

 
 

AALAC 

ALB 

Association for accreditation of laboratory animal care 

Albumin 

ANOVA Analysis of variance 

BBB 

BSA 

Bundle branch block 

Bovine serum albumin 

DH2O Distilled water 

Dcytb 

DMT-1 

Duodenal cytochrome b 

Divalent metal transporter-1 

DFO 

ECL 

Deferoxamine 

Enhanced chemiluminiscence 

EDTA Ethylene diamine tetra acetic Acid 

EF 

ERK 

Ejection fraction 

Extracellular signal regulated kinase 

FDA 

FS 

Food and drug administration 

Fractional shortening 



 
 

-xx- 
 

GDF 15 

HAMP 

HE 

HJV 

HMGCoAR 

ICP-AES 

Growth-differentiation factor 15 

Hepcidin antimicrobial peptide 

Hydroethidine 

Haemojuvelin 

3-hydroxy-3-methylglutaryl coenzyme A reductase 

Inductively coupled plasma-atomic emission spectrometry 

IOD Integrated optical density 

i.p. 

IRE 

Intraperitoneal 

Iron responsive element 

IRP Iron responsive element-binding protein 

JNK 

KRB 

LIC 

c- jun-N-terminal kinase 

Krebs-ringers buffer 

Liver iron concentration 

LIP 

LTCC 

LVSd 

LVIDd 

Labile iron pool 

L type calcium channels 

Left ventricular septum dimension during diastole 

Left ventricular internal dimension during diastole 



 
 

-xxi- 
 

LVPWd 

MAPK 

MRI   

Left ventricular posterior wall dimension during diastole 

Mitogen activated protein kinase 

Magnetic resonance imaging 

NTBI 

PBS 

PBST 

Non-transferrin bound iron 

Phosphate buffered saline 

Phosphate buffered saline with 0.5% tween-20 

PLAX 

p.o. 

PSAX 

PUFA  

Parasternal long axis view 

Oral 

Parasternal short axis view 

Polyunsaturated fatty acid 

PVC 

ROS  

Premature ventricular contraction 

Reactive oxygen species 

SAPK 

SEM 

Stress activated protein kinase 

Standard error of mean 

SDS-PAGE Sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

SOD 

SQUID 

Superoxide dismutase 

Superconducting quantum interference device 



 
 

-xxii- 
 

SVT 

TBS 

TBST 

Supraventricular tachycardia 

Tris buffered saline 

Tris buffered saline with 0.5% tween-20 

TGF-β 

TIBC 

Tf 

TfR-1 

Transforming growth factor-β 

Total iron binding capacity 

Transferrin 

Transferrin receptor-1 

TfR-2 

t.i.d 

T-PER 

TUNEL 

Transferrin receptor-2 

Three times daily 

Tissue protein extraction reagent 

Terminal deoxynucleotidyl transferase dUTP nick end labeling 

UTR 

VT 

Untranslated region 

Ventricular tachycardia 

  

 
 
 



 
 

-1- 
 

CHAPTER I 

INTRODUCTION 
 

Iron represents a paradox for living systems as it is essential for a wide variety of 

metabolic processes, but also toxic if in excess. Iron is an indispensable constituent of 

living cells and organisms due to its involvement in fundamental functions, which, 

among others, include oxygen transport, transfer of electrons in the respiratory chain 

and DNA synthesis (Ponka  1999).  The chemical basis underlying the versatility of iron 

for use in such crucial functions is provided by its unique ability to serve as both an 

electron donor and acceptor, thus representing a potential partner in redox reactions. 

However, this fundamental chemical property also is the basis of its toxicity, which 

poses a threat when iron is present in excess or  in non-protected forms (Eaton and 

Qian 2002). Thus, organisms were compelled to solve one of the many paradoxes of 

life, that is, to keep "free iron" at the lowest possible level through the evolution of 

specialized molecules for the acquisition, transport, and storage of iron in a soluble, 

nontoxic form to meet cellular and organismal iron requirements. Moreover, organisms 

are equipped with highly sophisticated mechanisms that coordinately regulate cellular 

iron uptake and storage and maintain iron in the intracellular labile pool at appropriate 

levels (MacKenzie, Iwasaki et al. 2008). 

Under conditions of iron overload this tight regulatory mechanism is disrupted 

resulting in the accumulation of iron in toxic levels (Hershko, Link et al. 1998). Iron 

overload can result from both primary and secondary causes. Primary iron overload 

(hereditary hemochromatosis) results from genetic disorders of iron metabolism that 

http://en.wikipedia.org/wiki/Electron_donor�
http://en.wikipedia.org/wiki/Electron_acceptor�
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cause excessive absorption of iron from the diet or deficient iron transport within the 

body. Secondary iron overload results from factors that bypass normal iron metabolic 

pathways, such as multiple blood transfusions (transfusional iron overload), or acute or 

chronic iron poisoning (Kushner, Porter et al. 2001). As transfusion therapy for chronic 

anemias and medical care has become more widely used, iron overload has become 

increasingly more common (Wood, Skoien et al. 2009). Indeed, it is estimated that in 

excess of two million individuals in the United States and up to one hundred million 

humans worldwide acquire some degree of iron overload and tissue accumulation of the 

metal (Hahalis, Alexopoulos et al. 2005). 

Iron toxicity occurs when the amount of circulating iron exceeds the amount of 

transferrin available to bind it forming non-transferrin bound iron (NTBI) (Andrews 

2005). NTBI enters the cell at a high rate through a transferrin receptor-independent 

pathway leading to iron accumulation in metabolically active tissues such as the liver, 

heart, and pancreas (Hershko 2007). If left undiagnosed or untreated, excess iron in the 

body is likely to cause cumulative toxicity which can lead to heart failure, hepatic 

cirrhosis, and diabetes mellitus (Kohgo, Ikuta et al. 2008).   

The mechanism(s) for iron mediated cellular injury are not clear, However, the 

formation of the highly toxic hydroxyl radical via the Fenton reaction has been 

suggested to be involved. Hydroxyl radical and other iron-mediated reactive oxygen 

species (ROS) induce protein oxidation, lipid peroxidation, and DNA damage resulting 

in loss of normal cellular functions (Galaris and Pantopoulos 2008). Iron is also 

inhibitory to the proper functioning of ion channels including L-type calcium channels, 

ryanodine sensitive calcium channels, fast-sodium channels, as well as the rectifier 
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potassium channels, which can lead to the development of arrhythmias and poor 

cardiac function in iron overload conditions (Wood, Enriquez et al. 2005). 

As the human body has no inherent mechanism to remove excess iron, iron 

chelating agents are used to treat iron overload. The goal of iron chelation therapy is to 

remove the amount of iron accumulated and, as required, to reduce the existing iron 

burden (Hershko, Link et al. 2005; Cianciulli 2008). To date, only deferoxamine is 

globally available for the first-line treatment of transfusion-related iron overload. While 

deferoxamine is effective, its administration is burdensome as it requires overnight 

subcutaneous infusions for 5-7 nights/week. As such, many patients do not undergo 

iron chelation therapy, exposing themselves to the dangers of iron overload (Chaston 

and Richardson 2003). Deferiprone has been used for approximately 20 years and is 

approved in Canada and Europe as a second-line therapy for patients unable to receive 

deferoxamine or for those in which deferoxamine is less effective (Victor Hoffbrand 

2005).  Although administered orally, the short half live of deferiprone necessitates 

multiple daily oral doses for effectiveness.  Like deferoxamine, deferiprone therapy is 

also problematic as it is associated with serious toxic side effects including 

transaminase increase, joint problems, severe neutropenia, and rare but life threatening 

agranulocytosis (Kontoghiorghes, Neocleous et al. 2003). Further, because three 

molecules of deferiprone are required to bind one molecule of iron, the ability of 

deferiprone to adequately control body iron burden for long periods of time (4-6 years) is 

questionable.  Studies have demonstrated that liver iron levels are not as well controlled 

with deferiprone as with deferoxamine, with liver iron levels remaining at levels above 

the threshold associated with systemic complications (Kontoghiorghes, Neocleous et al. 

2003).   
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Despite dramatic gains in life expectancy with deferoxamine chelation therapy, 

the leading cause of death for iron overload patients remains cardiac disease from 

cardiac iron deposition (Neufeld 2006). Strategies to reduce cardiac disease by 

improving chelation regimens have been of the highest priority. These strategies have 

included development of novel oral iron chelators to improve compliance, improved 

assessment of cardiac iron status, and careful epidemiologic assessment of outcomes 

with the current chelation regimens (Hider and Zhou 2005; Taher, Hershko et al. 2009). 

As a result of these efforts, the novel oral chelator deferasirox was recently approved by 

the Food and Drug Administration (FDA) for treatment of chronic iron overload in 

transfusion dependent patients and is the first oral medication approved in the United 

States for this purpose (Lindsey and Olin 2007; Stumpf 2007).  

Unlike deferoxamine, deferasirox is a long acting, orally effective iron chelating 

agent with favorable patient satisfaction  (Neufeld 2006; Cappellini and Pattoneri 2009). 

Deferasirox is a novel rationally designed iron chelator that has been selected from 

more than 700 compounds (Cappellini and Piga 2008). It represents a new class of 

tridentate iron chelators with a high specificity for iron (Cario, Janka-Schaub et al. 

2007).  Deferasirox possesses oral activity with around 70% bioavailability and long 

plasma half life (8 to 16 hours) allowing once daily dosing.  Deferasirox is well tolerated 

as it is associated with relatively few side effects and a favorable pharmacokinetic 

profile (Stumpf 2007). As such, deferasirox is expected to greatly enhance the 

acceptance of iron chelation therapy, especially for children, and offers a new 

alternative to the burdensome continuous infusion therapy. However, due to the limited 

information regarding its effectiveness in removing tissue iron, deferasirox is less 

frequently prescribed and is only available through specialty pharmacies where patients 
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have limited access to the medication. Deferoxamine has been the mainstay of iron 

chelation therapy and still remains the most commonly used for the control of iron 

overload conditions (Vichinsky, Pakbaz et al. 2008). It is clear that there is a critical lack 

of information regarding several aspects of deferasirox therapy including whether or not 

deferasirox is protective against iron-induced cardiac complications. This latter point is 

important as this information is crucial to establishing the efficacy and safety profile of 

deferasirox for fully justified use in human iron-overload therapy. 
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PURPOSE 

 

To date, only one investigation has examined the efficacy of deferasirox in 

removing tissue iron in the gerbil model (Wood, Otto-Duessel et al. 2006). The effect of 

deferasirox treatment on cellular indices of oxidative stress and iron-related cardiac 

complications is not known. To address these gaps in our understanding, the purpose of 

this research project was to examine: i) whether deferasirox is effective in removing iron 

from target tissues and whether iron removal, if present, is associated with the reduction 

of iron overload-related cell injury, and ii) whether deferasirox treatment can reduce or 

prevent cardiovascular complications associated with iron overload. It is anticipated that 

the outcomes derived from this study will be invaluable for understanding the efficacy 

profile of deferasirox and will contribute important insight into the nature of the 

protective mechanism(s) involved. 
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SPECIFIC AIMS 

 

Iron overload is an increasing worldwide problem associated with serious 

complications. The present standard of care for iron overload is iron chelation by 

deferoxamine; however, the use of this treatment is burdensome, invasive and thus 

associated with low patient adherence (Brittenham 2003). The new iron chelating agent 

deferasirox is thought to offer tremendous promise as an alternative to deferoxamine 

(Olivieri and Brittenham 1997; Franchini 2005; Cappellini and Taher 2008).  A review of 

the scientific literature, however, demonstrates that the efficacy and safety profile of 

deferasirox is not yet clear (Porter, Taher et al. 2008; Vichinsky 2008).  Specifically, 

information regarding the ability of deferasirox to protect against iron induced 

cardiovascular alterations is lacking. This is important as it limits the utilization of a 

potentially useful medication. The long-term goals are to improve our understanding of 

deferasirox efficacy and safety in an endeavor to help improve the quality of life of 

patients with iron overload. This study aims to firstly, determine whether deferasirox is 

capable of removing iron from target tissues and reduce oxidative stress associated 

with iron overload and secondly, to determine whether deferasirox is protective against 

iron overload-induced cardiovascular alterations. These goals will be accomplished by 

the following specific aims. 

 

SPECIFIC AIM I: To determine if deferasirox is able to reduce cardiac iron 

content, iron-induced ferritin upregulation, and iron-related increases  in indices 

of oxidative stress such as superoxide overproduction, protein oxidation, and the 

phosphorylation of the mitogen activated protein kinase (MAPK) proteins 
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extracellular signal regulated kinase 1/2 (ERK1/2)-, p38-, and c-Jun N-terminal 

kinase (JNK).  

 

SPECIFIC AIM II: To determine if deferasirox is able to reduce hepatic iron 

content, iron-induced ferritin upregulation, and iron related increases in indices of 

oxidative stress and the effect of these changes, if present, on  the incidence of  

iron-related changes in cell death and apoptotic signaling. 

 

SPECIFIC AIM III: To determine the long term cardiovascular complications 

associated with iron overload and to determine if chronic deferasirox 

administration is able to prevent/reduce these complications including those 

related to cardiac remodeling and functional abnormalities. 
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CHAPTER II 
 

REVIEW OF THE LITERATURE 
 

 
 The following chapter presents a review of the pertinent literature concerning the 

present study.  Specifically, the following areas will be addressed:  Body iron 

homeostasis, disorders of iron overload, mechanisms of iron mediated toxicity, methods 

of detecting body iron, management of iron overload, and animal models of iron 

overload. 

 

2.1 BODY IRON HOMEOSTASIS 

 2.1.1 Normal distribution of body iron stores 

The total amount of iron in the human body is approximately 3-4 g (Andrews 

2005). The vast majority of body iron (about 2.5 g) is contained in hemoglobin. A 

significant portion of iron (~ 400 mg) is devoted to cellular proteins that use iron for 

important cellular processes like storing oxygen (myoglobin), or performing energy-

producing redox reactions (cytochromes). Approximately 3-4 mg circulates in the 

plasma as an exchangeable pool bound to transferrin. This chelation serves three 

purposes: it renders iron soluble under physiologic conditions, it prevents iron-mediated 

free radical toxicity, and it facilitates transport into cells (MacKenzie, Iwasaki et al. 

2008). The sum of all iron binding sites on transferrin constitutes the total iron binding 

capacity (TIBC) of plasma. Under normal circumstances, about one-third of transferrin 

iron-binding pockets are filled and non-transferrin-bound iron in the circulation is virtually 

nonexistent. 

http://en.wikipedia.org/wiki/Myoglobin�
http://en.wikipedia.org/wiki/Redox�
http://en.wikipedia.org/wiki/Cytochrome�
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Physiologically, most stored iron (~1g) is bound by ferritin molecules; the largest 

amount of ferritin-bound iron is found in hepatocytes, bone marrow, and spleen (Lash 

and Saleem 1995). Of these, the liver is considered the primary physiologic source of 

reserve iron in the body. Reticuloendothelial cells store iron as part of the process of 

phagocytosis and breakdown of aging red cells. These cells extract iron from heme and 

return it to the circulation bound to transferrin (Andrews and Schmidt 2007). There is no 

specific physiological mechanism for iron excretion from the body and thus the amount 

of body iron is controlled by the rate of its absorption by duodenal enterocytes. On a 

daily basis, adult humans absorb 1–2 mg of iron from the diet to compensate for non-

specific iron losses such as that which occurs following desquamation or blood loss 

(Donovan, Roy et al. 2006). 

2.1.2 Regulation of iron absorption 

It is thought that the first step of iron absorption involves the reduction of Ferric 

iron Fe(III) in the intestinal lumen by ferroreductase Dcytb (duodenal cytochrome b), to 

the more soluble form Fe(II) (Pantopoulos 2004). Ferrous iron Fe(II) is then transported 

across the basolateral membranes of the enterocytes by divalent metal transporter 1 

(DMT1) (Figure 1, Panel A). The export of Fe(II) across the basolateral membranes of 

enterocytes to circulation is mediated by ferroportin. This step is coupled with 

reoxidation of ferrous to ferric iron by membrane-bound hephastin (or its plasma-soluble 

homologue ceruloplasmin) (Donovan and Andrews 2004; Pantopoulos 2004). Plasma 

iron is immediately scavenged by the plasma iron carrier transferrin (Tf) in 2:1 ratio. 

Plasma Tf binds to its cell surface receptor (TfR) and the complex is internalized by 

endocytosis. Acidification of the endosomes results in the release of ferric iron from Tf 

http://en.wikipedia.org/wiki/Ferritin�
http://en.wikipedia.org/wiki/Hepatocytes�
http://en.wikipedia.org/wiki/Bone_marrow�
http://en.wikipedia.org/wiki/Spleen�
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and reduction and subsequent transport of ferrous iron across the endosomal 

membranes by DMT1. The pathway is completed by recycling of the apo Tf-TfR 

complex to the cell surface and release of apoTf which is transported back to the 

circulation to carry new iron ions (Figure 1, Panel B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. (A) Schematic representation of iron transport across duodenal 
epithelial cells. (B) Cellular iron uptake from transferrin (Tf) via receptor 
mediated endocytosis. (Pantopoulos 2004) 
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Following its release from transferrin within endosomes, iron is thought to enter 

the labile iron pool (LIP) where it becomes available for intracellular use or for storage in 

ferritin  (Andrews 2008). Another source of iron for this pool comes from the breakdown 

of nonheme-  and heme- iron-containing proteins. It has been proposed that iron in this 

pool may form complexes with citrate, sugars, various amino acids, pyridoxal, or 

nucleotides, but the details regarding the regulation of this pool remain elusive (Kakhlon 

and Cabantchik 2002). 

2.1.3 Regulation of systemic iron homeostasis 

Iron homeostasis in mammals is regulated at the level of intestinal absorption, as 

there is no excretory pathway for iron. Hepcidin, a circulating peptide hormone, is the 

master regulator of systemic iron homeostasis, coordinating the use and storage of iron 

with iron acquisition (Hershko 2006). This hormone is primarily produced by 

hepatocytes and is a negative regulator of iron entry into plasma (Sela 2008). Hepcidin 

acts by binding to ferroportin, an iron transporter present on cells of the intestinal 

duodenum, macrophages, and cells of the placenta (Ramey, Deschemin et al. 2009). 

Binding of hepcidin induces ferroportin internalization and degradation resulting in 

reduced iron entry into plasma. Conversely, decreased expression of hepcidin leads to 

increased cell surface ferroportin and increased iron absorption. Plasma hepcidin levels 

are regulated by different stimuli, including cytokines, plasma iron, anemia, and hypoxia 

(Ganz 2003; De Domenico, Ward et al. 2007). Overexpression of hepcidin has been 

linked to the development of anemia, while low hepcidin is associated with hereditary 

hemochromatosis (De Domenico, Ward et al. 2007). 
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2.1.4 The IRP-IRE regulation of cellular iron homeostasis 

The iron-responsive element, (IRE), is present in the mRNA of various iron 

regulatory proteins including ferritin and the transferrin receptor. Enlargement of the 

intracellular transit iron pool, in general, leads to a stimulation of ferritin synthesis and 

decrease in the expression of transferrin receptors (Pantopoulos 2004).  

Iron-dependent regulation of both ferritin and transferrin receptors is mediated by 

virtually identical IREs. The IREs are hairpin structures recognized by iron-regulatory 

protein-1 (IRP1). When cellular iron becomes limiting, the IRP-1 becomes bound to the 

IRE located within the 5' UTR of the ferritin mRNA and this represses the translation of 

ferritin (Figure 2, upper panel). A similar mechanism regulates the expression of 

transferrin receptor. Under conditions of low iron, IREs within the 3' UTR of the 

transferrin receptor mRNA become bound by IRP-1, which in turn stabilizes the 

transcript against ribonuclease activity (Figure 2, lower panel). Together, these 

responses lead to increased iron uptake and reduced iron storage. Conversely, the 

expansion of the labile iron pool inactivates IRP-1, resulting in an efficient translation of 

ferritin mRNA and rapid degradation of transferrin receptor mRNA. These responses 

lead to decreased iron uptake and elevated iron storage (Ponka 1999; Munoz, Villar et 

al. 2009). 
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Figure 2. Role of cellular iron level in the regulation of ferritin and transferrin 
receptor expression via the IRE/IRP system. (Ponka  1999) 
 
 

2.2 DISORDERS OF IRON OVERLOAD 

Iron overload is a group of disorders caused by the accumulation of iron in the 

body. These disorders can be either acute or chronic in nature (Heeney and Andrews 

2004).  Acute iron overload is typically caused by excess iron intake such as that seen 

after the accidental ingestion of large quantities of iron-containing multivitamins, or iron 

supplements in young children. Acute iron overload has been found to irritate the 

stomach lining, and is associated with nausea and vomiting. If the intake is excessive, 

damage to internal organs (e.g. brain and the liver), metabolic acidosis and death 

oftentimes result  (Singhi, Baranwal et al. 2003). In contrast to that observed for acute 

iron overload, the manifestation of chronic iron overload appears to be more varied as 

 

http://en.wikipedia.org/wiki/Iron�
http://en.wikipedia.org/wiki/Brain�
http://en.wikipedia.org/wiki/Liver�
http://en.wikipedia.org/wiki/Metabolic_acidosis�
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this disorder can be caused by primary (genetically determined) conditions or arise 

secondary to other conditions (Piperno 1998). 

2.2.1 Primary iron overload (Hereditary hemochromatosis) 

Hereditary hemochromatosis is caused by mutation of genes involved in 

regulation of iron homeostasis (Table 1). The majority depend on defined- HFE gene 

mutations discovered in 1996 and are referred to as “classical hemochromatosis”  

(Janssen and Swinkels 2009).  

 

Table 1. Hereditary hemochromatosis; Classification and associated gene products 

Classification Associated gene product 

 Type I:  "classical" hemochromatosis HFE 

Type IIA: Juvenile hemochromatosis Hemojuvelin “HJV” 

Type IIB: Juvenile hemochromatosis Hepcidin antimicrobial peptide “HAMP” 

Type III Transferrin receptor-2 “TFR-2” 

Type IV: African iron overload Ferroportin 

Neonatal hemochromatosis Unknown 

Aceruloplasminemia Ceruloplasmin 

Congenital atransferrinemia Transferrin 

GRACILE syndrome BCS1L 

 

 

 

http://en.wikipedia.org/wiki/Haemochromatosis_type_1�
http://en.wikipedia.org/wiki/HAMP�
http://en.wikipedia.org/w/index.php?title=Acaeruloplasminemia&action=edit&redlink=1�
http://en.wikipedia.org/wiki/Atransferrinaemia�
http://en.wikipedia.org/wiki/GRACILE_syndrome�
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Other gene mutations have been discovered later and are grouped together as 

"non-classical hereditary hemochromatosis" or "non-HFE hemochromatosis". Most 

types of hereditary hemochromatosis have autosomal recessive inheritance, while type 

IV has autosomal dominant inheritance (Janssen and Swinkels 2009). 

While the genetic mutations causing several variants of hemochromatosis have 

been identified, the exact function of these genes is yet unknown. However, most 

genetic forms of iron overload seem to be associated with hepcidin deficiency resulting 

in increased intestinal absorption of iron (Lee and Beutler 2009). An exception is type IV 

hemochromatosis where ferroportin becomes mutated resulting in a deficiency in the 

action of hepcidin (Fernandes, Preza et al. 2009). 

2.2.2 Secondary iron overload 

Secondary iron overload may result from chronic blood transfusion, from 

increased gastrointestinal absorption of iron, or from some combination thereof 

(Kushner, Porter et al. 2001). 

Chronic blood transfusion: An adequate transfusion program can sustain life in 

patients with severe chronic refractory anemia, but transfusion therapy alone produces 

a progressive accumulation of the iron contained in transfused red cells. In patients with 

severe congenital anemias, such as thalassemia major and the Blackfan-Diamond 

syndrome, regular transfusions can prevent death from anemia in infancy and permit 

normal growth and development during childhood but, if left uncontrolled, may result in 

severe iron overload by adolescence (Borgna-Pignatti, Rugolotto et al. 2004; Chen, 

Tseng et al. 2009). Treatment of acquired transfusion-dependent anemias, such as 

aplastic anemia, pure red cell aplasia, and hypoplastic or myelodysplastic disorders, 

http://en.wikipedia.org/wiki/Autosomal_recessive�
http://en.wikipedia.org/wiki/Autosomal_dominant�
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among others, may also result in the development of marked iron overload (Malcovati 

2009). In addition, although sickling disorders (e.g., sickle cell anemia) are not 

transfusion-dependent, these patients may acquire a considerable iron load from 

repeated transfusions for the prevention of stroke, painful crises, and other recurrent 

complications (Ballas 2001).  

About 200 to 250 mg of iron is added to the body iron load with each unit of 

transfused red cells. Most transfusion-dependent patients require 200 to 300 ml/kg of 

blood a year; for example, a 70 kg adult requires about two to three units of blood every 

3 to 4 weeks, adding about 6 to 10 g of iron a year (Agarwal 2009). The severity of iron 

toxicity seems to be related to the magnitude of the body iron burden. Almost all 

patients who have been treated with transfusion alone and have received 100 or more 

units of blood (about 20 to 25 g of iron) develop cardiac iron deposits, often in 

association with signs of hepatic, pancreatic, and endocrine damage (Brittenham 2006) 

Ineffective erythropoiesis: This disorder occurs in patients with congenital 

dyserythropoietic anemia, pyruvate kinase deficiency, thalassemia major, thalassemia 

intermedia, sideroblastic anemia, some myelodysplastic anemias, and other anemic 

disorders in which the incorporation of iron into hemoglobin is impaired (Sarnaik 2005; 

Rivella 2009). As a result of ineffective erythropoiesis, plasma iron turnover increases 

drastically, resulting in excessive production of growth differentiation factor 15 (GDF15) 

(Tanno, Bhanu et al. 2007). GDF15 is a member of the transforming growth factor-β 

(TGF-β) superfamily which, at high levels, is able to suppress hepcidin production, 

resulting in increased intestinal iron absorption and release of catabolic iron from 

macrophages (Gardenghi, Marongiu et al. 2007). 
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Chronic liver disease: Some patients with chronic liver disease, for example 

alcoholic cirrhosis, may experience minor or modest degrees of iron loading as a result 

of increased dietary iron absorption (Schulz and Sanft 1984; Duane, Raja et al. 1992). 

The mechanisms responsible for the increased gastrointestinal iron uptake have not 

been identified, although ineffective erythropoiesis and hyperferremia associated with 

alcohol-induced folate and sideroblastic abnormalities have been proposed as etiologic 

factors (Gentry-Nielsen, Preheim et al. 2001; Harrison-Findik 2007). Body iron stores 

are increased only to a minor degree, but in alcoholic cirrhosis, the higher the liver iron 

the shorter the survival. 

Focal sequestration of iron:  Focal iron sequestration is found in rare disorders, 

including idiopathic pulmonary hemosiderosis and renal hemosiderosis (Piperno 1998). 

Such abnormal iron deposition is also associated with neurologic abnormalities 

including Friedreich ataxia, in which decreased iron-sulphur-cluster and heme formation 

leads to mitochondrial iron accumulation primarily in sensory neurons, myocardium and 

endocrine glands (Boddaert, Le Quan Sang et al. 2007; Gucev, Tasic et al. 2009). 

 

2.3 CLINICAL MANIFESTATION OF IRON OVERLOAD 

Because humans lack a physiologic means of eliminating excess iron, iron 

progressively accumulates and eventually damages the liver, heart, pancreas, and other 

organs with death usually occurring as a result of cardiac failure (Hershko 2007). In 

younger patients, the iron burden results in growth failure and, in adolescence, delayed 

or absent sexual maturation (Nabavizadeh, Anushiravani et al. 2007; Safarinejad 2008). 

The precise manifestations of iron overload, however, depend on different factors 



 
 

-19- 
 

including, the underlying abnormality, body iron burden, the rate at which the increase in 

body iron has occurred and the distribution of the excess iron between storage sites 

(Kontoghiorghes, Pattichi et al. 2000; Wood, Skoien et al. 2009). 

Initially, the deleterious effects of iron loading are not clinically significant, and 

manifest as discomfort in hand joints, increased skin pigmentation and fatigue 

(MacKenzie, Iwasaki et al. 2008). As tissue iron accumulates, liver damage ranging 

from fibrosis to cirrhosis can develop in affected individuals. In hereditary 

hemochromatosis, hepatomas develop almost exclusively in patients with hepatic 

cirrhosis and are the ultimate cause of death in 20% to 30% of these patients 

(MacKenzie, Iwasaki et al. 2008).  

Iron overload also leads to iron deposition in the heart and endocrine tissues. 

Chronically elevated cardiac iron concentrations impair diastolic function, increase the 

propensity for arrhythmias, and, ultimately, cause end stage cardiomyopathy (Wood, 

Enriquez et al. 2005). Iron overload cardiomyopathy, defined as the presence of systolic 

or diastolic cardiac dysfunction secondary to increased iron deposition, is an important 

cause of heart failure and is the primary determinant of survival in patients with iron 

overload (Wood, Enriquez et al. 2005; Lekawanvijit and Chattipakorn 2009). 

Cardiomyopathy develops initially as a severe diastolic dysfunction; in the later stages 

however, heart failure progresses to severe systolic dysfunction and ventricular dilation. 

Death ensues promptly in the later stages due to cardiac failure and/or severe 

arrhythmias (Bartfay 1999). Other targets of iron deposition include pancreas (glucose 

intolerance, diabetes), posterior pituitary gland (secondary hypogonadism), joints 

(arthropathy), and neurons (neurological abnormalities) (Gamberini, De Sanctis et al. 

2008) . 
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2.4 MECHANISMS OF IRON MEDIATED TOXICITY 

2.4.1 Formation of non-transferrin bound iron 

Iron toxicity results when iron in the circulation exceeds serum transferrin iron-

binding capacity, leading to the appearance of non-transferrin-bound iron (NTBI) (Eaton 

and Qian 2002). The exact nature of NTBI is not clear, but it is believed to consist of 

labile low-molecular weight complexes of iron with plasma components such as 

albumin, citrate and phosphate (Cabantchik, Breuer et al. 2005). Unlike transferrin–

bound iron, NTBI enters cells via a transferrin receptor-independent mechanism and at 

a rate exceeding the normal uptake of transferrin iron. NTBI uptake into cells bypasses 

the normal negative feedback regulatory mechanisms that control cellular iron uptake 

and metabolism. Once NTBI enters the cells, it is rapidly buffered by ferritin, limiting its 

potential for redox damage or other harmful interactions in the cell (Wood, Enriquez et 

al. 2005). Nonetheless, all buffering systems have limited capacity or can be disrupted 

by other factors. Thus, excess uptake of NTBI, combined with the lack of an effective 

iron excretory pathway, leads to the expansion of the labile intracellular iron pool (LIP), 

resulting in the formation of highly-reactive oxygen free radicals (Kruszewski 2003; 

Ozment and Turi 2009). 

Ferritin molecules aggregate over time to form clusters, which are engulfed by 

lysosomes and degraded (Iancu et al. 1977, Bridges 1987). The end-product of this 

process, hemosiderin, is an amorphous agglomerate of denatured protein and lipid 

interspersed with iron oxide molecules (Wixom et al. 1980). Although the iron enmeshed 

in this insoluble compound constitutes an endstage product of cellular iron storage, it 

remains in equilibrium with soluble ferritin. Ferritin iron, in turn, is in equilibrium with iron 

complexed to low molecular weight carrier molecules (Konijn, Glickstein et al. 1999). 
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Therefore the introduction into the cell of an effective chelator captures iron from the low 

molecular weight "toxic iron" pool, draws iron out of ferritin, and eventually depletes iron 

from hemosiderin as well, though only very slowly (Crichton and Ward 2003).  

2.4.2 Chemistry of iron and ROSs 

The initial reactive oxygen intermediate produced in most cases of oxidative 

stress is superoxide (O2·−) (Turrens 2003). Cellular sources of O2·− include 

mitochondria and lysosomes, with the production of this molecule exacerbated under 

conditions of hypoxia or ischemia. Once formed, superoxide is rapidly converted to 

H2O2 by the action of superoxide dismutases (SOD):  

 

2O2·− + 2H+ → H2O2
 + O2 

 

Neither O2·− nor H2O2 are strong oxidizing agents, however when free iron ions are 

available, Fenton-type reaction takes place (Galaris and Pantopoulos 2008), producing 

the extremely reactive hydroxyl radical (·HO): 

 

Fe2+ + H2O2 → Fe3+ + OH- + OH• 

 

Superoxide anion may reduce Fe3+ back to Fe2+ (Haber-Weiss reaction), thus allowing 

iron to act as an autocatalyst of the reaction (Kell 2009): 

 

Fe3+ + O2·− → Fe2+ + O2 
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In addition, Fe2+ and certain Fe2+ chelates react with lipid hydroperoxides (LOOH), as 

they do with hydrogen peroxide, splitting the O–O bond. This gives rise to the alkoxyl 

radical (LO·), which can also abstract H· from polyunsaturated fatty acids and from 

hydroperoxides (Kell 2009): 

 

LOOH + Fe2+ → OH- + LO• + Fe3+ 

 

Alternatively, Fe3+ can initiate the reaction with lipid hydroperoxides (LOOH). The 

resulting peroxyl radicals (LOO·) can continue propagation of lipid peroxidation:  

 

LOOH + Fe3+ → H+ + LOO• + Fe2+ 

 

Furthermore, elevated superoxide liberates free iron from ferritin, thereby 

providing a positive feedback loop where the increase in the amount of free iron 

catalyses the production of further hydroxyl radical formation  (Keyer and Imlay 1996) 

(figure 3).  
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2.4.3 Targets of iron-driven cellular damage 

Given the tendency of transition metals such as iron to amplify oxidant damage, 

the fact that organs with very active mitochondria are targeted in iron overload disorders 

is probably no coincidence (Eaton and Qian 2002). The liver and heart have high 

steady-state production of O2·−  and H2O2, largely derived from mitochondrial activity 

(Han, Williams et al. 2001). The pancreatic beta cell is also rich in mitochondria and is 

highly sensitive to oxidant-generating substances (Maiese, Chong et al. 2007). 

However, although the hepatic, cardiac, and pancreatic beta cell pathologies caused by 

iron overload probably involve an iron-driven oxidative component, the precise 

mechanisms through which reactive iron conspires with oxygen to amplify cellular 

oxidant damage remain unknown. The fundament of iron-mediated oxidant damage 

may be the tendency of free iron to associate with oxidizable targets within cells (e.g., 

Figure 3. Catalysis and autocatalysis in the Haber-Weiss and 
Fenton reactions leading to the production of the hydroxyl 
radical, including the liberation by superoxide of free iron from 
ferritin. (Kell, 2009) 
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polyunsaturated fatty acids, proteins, or DNA) and to engage in site-specific oxidation 

reactions  (Lucesoli and Fraga 1995). These latter reactions have often been ascribed 

to the hydroxyl radical but more likely represent multiple reactions arising from 

complexes of iron bound to particular target molecules and oxidants which, upon 

reaction with the iron, form a highly oxidizing intermediate (ferryl or perferryl) (Eaton and 

Qian 2002). 

Iron catalyzes the production of free radicals which can directly interact with 

many biological macro- and small molecules, leading to oxidative membrane damage 

throughout the cell (Galaris and Pantopoulos 2008). Excessive free radical generation 

leads to increased lipid peroxidation, protein oxidation, and gene modulation, triggering 

cellular damage and antioxidant depletion (Livrea, Tesoriere et al. 1996; Brown, Kinter 

et al. 1998; Bartfay, Dawood et al. 1999). Metal-catalyzed damage to proteins includes 

loss of histidine residues, bityrosine cross links, oxidative scission, the introduction of 

carbonyl groups (through, e.g., oxidative deamination), and the formation of protein-

centered alkyl, alkylperoxyl, and alkoxyl radicals (Valko, Rhodes et al. 2006). 

Polymerization and denaturation of proteins and proteolipids form insoluble structures 

typically known as lipofuscin (Kell 2009). Elevated cellular iron levels also leads to DNA 

damage. Products of reactions between DNA, iron, and oxidants are not yet fully 

elucidated but include strand breaks, oxidatively modified bases, and DNA protein 

cross-links (Meneghini 1997; Gao, Campian et al. 2009). The relative importance of all 

these products in long-term iron-mediated DNA damage is not yet known. Alterations in 

gene expression and gene modulation have also been reported (Barouki and Morel 

2001; Parkes and Templeton 2003); however, whether these changes represent 
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controlled interactions through iron response elements or nonspecific effects from redox 

damage is unclear. 

  Iron is preferentially taken up by mitochondria and lysosomes. In the 

mitochondria, iron accumulation results in peroxidation of polyunsaturated fatty acids 

(PUFA) within membrane phospholipids (Britton, O'Neill et al. 1990), disruption of 

mitochondrial respiratory enzymes (Bacon, O'Neill et al. 1993; Link, Saada et al. 1998) 

and mitochondrial DNA damage (Gao, Campian et al. 2009). Accumulation of iron within 

the cellular lysosomal compartment will sensitize the lysosomes to damage and rupture 

with release of damaging lysosomal digestive enzymes into the cytoplasm of the cell 

(Stal, Glaumann et al. 1990). Minimal release of lysosomal enzymes may induce 

transient reparative autophagocytosis, while moderate lysosomal rupture is followed by 

caspase activation and apoptosis (Kurz, Terman et al. 2008). Severe oxidative stress, 

resulting in massive lysosomal breakdown, is associated with necrosis (Kurz, Terman et 

al. 2008).  

Iron can also directly interact with ion channels. For example, ferrous iron has 

similar size and charge to that of calcium ions and can permeate through cardiac L-type 

calcium channels (LTCC) (Oudit, Sun et al. 2003). Fe2+ slows Ca2+ current inactivation 

resulting in increase in the time integral of the Ca2+ current and net Ca2+ influx, which 

may possibly contribute to the impaired diastolic function observed during the early 

stages of iron overload  (Oudit, Trivieri et al. 2006). With higher concentrations of 

ferrous iron there is a reduction in Ca2+ current due to competition with ferrous iron. This 

may contribute to the systolic dysfunction that is characteristic of more advanced iron-

overload cardiomyopathy (Oudit, Trivieri et al. 2006) . Ferrous iron can also directly 

interact with the ryanodine sensitive calcium channel in the sarcoplasmic reticulum 
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(Kim, Giri et al. 1995). This channel is responsible for activation of contraction and also 

modulates calcium reuptake in the sarcoplasmic reticulum.  

In addition to its effects on calcium homeostasis, intracellular iron impairs the 

function of membrane-bound fast-sodium channels as well as delayed rectifier 

potassium currents (Wood, Enriquez et al. 2005). The former channels are responsible 

for the rapid upstroke of the cardiac action potential. Channel blockage or other 

interference will slow cardiac conduction, and delay action potential spread across the 

myocardium (Wood, Enriquez et al. 2005). Hence it is not surprising that iron overload 

results in arrhythmias and poor cardiac function. 

 

2.4.4 ROS and iron-mediated intracellular signaling 

Mammalian cells exhibit a broad spectrum of responses toward oxidative stress, 

which is dependent on the severity of the stress encountered and the availability of 

catalytically active iron (Deb, Johnson et al. 2009). The members of mitogen-activated 

protein kinases (MAPKs), including ERK, JNK, and p38 subfamilies, have all been 

shown to be activated in response to oxidant injury and therefore could potentially 

contribute to influencing cell survival (Griendling, Sorescu et al. 2000). Each MAPK 

subtype is activated by phosphorylation on threonine and tyrosine residues by upstream 

dual-specificity kinases. In general, the ERK cascade appears to mediate signals 

promoting cell proliferation, differentiation or survival, whereas the p38 and JNK 

cascades appear to be involved in the cell responses to stresses (Martindale and 

Holbrook 2002). However, activation of distinct MAPK subtypes is dependent on the cell 

type and the stimuli. It was recently suggested that iron loading in vitro  induces p38 and 
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ERK 1/2 phosphorylation associated with an increase in ROS levels (Antosiewicz, 

Ziolkowski et al. 2007). 

Ferritin represents the main iron storage protein, and its concentration is mutually 

related with the cytosolic level of labile iron. Changes in iron availability regulate ferritin 

expression primarily at the translational level through specifically regulated protein-RNA 

interactions between IRPs and IREs as described earlier in this chapter. In iron overload 

conditions, serum ferritin expression is increased, which is used as one common 

diagnostic tool to reflect body iron status (Piperno 1998). 

Other pathways that are clearly linked to ROS include the induction of 

programmed cell death (apoptosis) (Orrenius 2007). Apoptosis is a genetically 

controlled response to eliminate unwanted cells that is involved in the regulation of cell 

number under several physiological and pathological conditions. High levels of ROS can 

lead to necrotic cell death, whereas low levels of ROS have been shown to induce 

apoptotic cell death (Denecker, Vercammen et al. 2001). Apoptosis is regulated through 

different mechanisms, including the expression of the members of the Bcl-2 protein 

family consisting of pro- and anti-apoptotic peptides interacting with each other by 

forming homo- and heterodimers. Bcl-2 is thought to act as negative regulator of 

apoptosis and has been thought to protect cells from ROS (Li, Ueta et al. 2004), 

although the mechanism by which this latter event occurs remains unclear. Conversely, 

Bax has been implicated to promote or accelerate cell death with recent data showing 

that Bax may be able to induce apoptosis by both caspase-dependent and -independent 

mechanisms. Recent studies have suggested that iron induces cell apoptosis via the 

promotion of Bax translocation, cytochrome c release, and caspase-3 activation (Yajun 

2005). Whether iron exerts its signaling effects independently or it simply participates in 
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reactions of ROS-mediated signaling is presently unknown and needs further 

investigation. 

 

2.5 METHODS OF DETECTING BODY IRON 

Both direct and indirect means for the assessment of body iron are available but 

no single indicator or combination of indicators is ideal for the evaluation of iron status in 

all clinical circumstances. As 90% of excess iron is deposited in the liver, measurement 

of hepatic iron stores provides the most quantitative means of assessing the body iron 

burden and may be considered the reference method for comparison with other 

techniques (Vermylen 2008). The invasive nature of the liver biopsy, however, means 

that other markers such as serum ferritin levels are frequently employed. Other 

approaches using biomagnetic susceptometry and magnetic resonance imaging (MRI) 

are also being assessed in order to identify an accurate, low-risk, and convenient 

approach to assessing patient iron status. 

 

2.5.1 Indirect Assessment  

Serum ferritin: Serum ferritin is easily measured using a commercially available 

kit. A ferritin level constantly below 2500 µg/L has been shown to reduce the risk of 

cardiac complications, but a target value of 1000 µg/L is recommended. Factors such as 

inflammation, ascorbate status, and hepatitis can affect serum ferritin levels (Olivieri, De 

Silva et al. 2000). Therefore, results should be interpreted with caution and a trend in 

the evolution of serial measurements is a better index than day-to-day variation. In 

patients with transfusion-dependent diseases, chelation should be initiated after 10–20 

blood transfusions or when ferritin level rises above 1000 µg/L (Vermylen 2008). 
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24–hour deferoxamine-induced urinary iron excretion: This includes 

measuring the amount of chelated iron in the urine after a single intramuscular dose or 

prolonged subcutaneous infusion of deferoxamine. The usefulness of this method has 

several limitations in the accurate assessment of body iron burden (Olivieri and 

Brittenham 1997). Most important is the poor correlation between urinary iron excretion 

and hepatic iron concentration which develops, at least in part, because the relative 

amounts of iron excreted into stool and urine vary with the dose of deferoxamine 

administered, body iron burden, and erythroid activity (Olivieri and Brittenham 1997). 

Chelator-induced urinary iron excretion is also vulnerable to extraneous influences by 

infection, inflammation, the activity and effectiveness of erythropoiesis, extramedullary 

hematopoiesis, liver disease, and ascorbic acid deficiency. 

 

Magnetic resonance imaging (MRI): MRI measures tissue iron concentration 

indirectly by detecting the paramagnetic influences of storage iron (ferritin and 

hemosiderin) on proton resonance behavior. Iron deposits act like little magnets when 

placed in a strong magnetic field, disrupting coherence among the emitted protons and 

darkening the image more quickly (Vermylen 2008). Liver iron content (LIC) determined 

using MRI shows excellent correlation with that obtained from liver biopsy 

(Papakonstantinou, Maris et al. 1995). Furthermore, MRI has the ability to evaluate the 

entire organ and gives more accurate measurement of LIC, particularly in patients with 

heterogeneous iron content (Li, Aisen et al. 2004). Although very promising, the 

widespread use of this method in many parts of the world may be hampered by the 

need for expensive equipment and trained personnel to perform the scan. 



 
 

-30- 
 

 

2.5.2 Direct assessment 

Liver biopsy: The measurement of liver iron content is the most accurate 

method for assessing body iron and thus it is referred to as the “gold standard” as there 

is a high correlation between LIC and total body iron (Alustiza, Castiella et al. 2007). 

The procedure also provides information about the severity of the liver disease. Liver 

biopsy, however, is an invasive technique that is associated with some pain and risk of 

hemorrhage and infection. Thus, it is not indicated for routine assessment. 

 

Superconducting quantum interference device (SQUID): SQUID provides a 

direct measure of tissue iron that is based on a fundamental physical property of ferritin 

and hemosiderin (Olivieri et al, 1997). SQUID is capable of measuring very small 

changes in magnetic flux. Iron stored as ferritin and hemosiderin is the only relevant 

paramagnetic material in the human body. The magnitude of paramagnetic response is 

directly related to the amount of iron in a certain volume of tissue (Vermylen 2008). This 

is a noninvasive method, with a linear correlation with LIC assessed by biopsy. 

However, equipment availability is extremely limited. 

 

2.6 MANAGEMENT OF IRON OVERLOAD 

Iron overload treatment is dependent on the underlying condition. Phlebotomy is 

currently the recommended iron overload treatment for most patients with hereditary 

excess iron, although iron chelation therapy could be an option for patients who cannot 

or choose not to undergo phlebotomy (Brissot 2009). For transfusional iron overload, 

iron chelation therapy is the first-line therapy (Cappellini 2005). 

http://www.excessiron.com/hereditary_iron_overload2.jsp#treatment�
http://www.excessiron.com/hereditary_iron_overload.jsp�
http://www.excessiron.com/hereditary_iron_overload.jsp�
http://www.excessiron.com/hereditary_iron_overload.jsp�
http://www.excessiron.com/iron_chelation_therapy.jsp�
http://www.excessiron.com/transfusional-iron-overload.jsp�
http://www.excessiron.com/iron_chelation_therapy.jsp�
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2.6.1 Phlebotomy 

The treatment of choice for hereditary hemochromatosis is phlebotomy to reduce 

the body iron levels to normal or near-normal and maintain them in that range (Tavill 

2001). In patients with hereditary hemochromatosis who develop cardiac failure, the use 

of both phlebotomy and chelation therapy has been suggested. Phlebotomy therapy 

should be started as soon as the diagnosis of the homozygous state for hereditary 

hemochromatosis has been established, as postponement is likely to increase the risk 

of organ damage from iron overload. The phlebotomy program should remove 500 ml of 

blood (containing 200 to 250 mg of iron) once weekly or, for heavily loaded patients, 

twice weekly until the patient is iron deficient (Brissot 2009).  

In patients with hereditary hemochromatosis, prolonged treatment is often 

needed. For example, if the initial body iron burden is 25 g, complete removal of the iron 

burden with weekly phlebotomy may require 2 years or more.  After the iron load has 

been completely removed, a lifelong program of maintenance phlebotomy is required to 

prevent reaccumulation of the iron burden (Tavill 2001). Typically, phlebotomy of 500 ml 

of blood every 3 to 4 months is needed. If phlebotomy therapy removes the iron load 

before diabetes mellitus or cirrhosis develops, the patient's life expectancy is expected 

to be normal. If cirrhosis develops, however, the risk of hepatocellular carcinoma is 

increased by more than 200-fold (Bacon 2001). Phlebotomy therapy is almost always 

indicated for patients with hereditary hemochromatosis, even when cirrhosis or organ 

damage is already present, as further progression of the disease can be stopped with 

the possibility of minimizing organ dysfunction (Brissot 2009). 
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2.6.2 Chelation therapy 

For patients requiring regular blood transfusions, iron chelation may represent 

life-saving therapy. In patients with thalassemia major, the availability of chelation 

therapy led to one of the most marked improvements in morbidity and mortality 

associated with a genetic disease (Cianciulli 2008; Agarwal 2009). The major goal of 

iron chelation therapy is to bind NTBI and intracellular labile iron, thereby effectively 

eliminating toxic iron (Porter 2007). Due to the cumulative nature of iron loading, 

continuous (24-hour) control of NTBI levels is desirable (Ozment and Turi 2009). 

Although the benefits of chelation therapy with regard to a reduction in morbidity 

and mortality may be apparent within a much shorter timeframe, it may take years for 

body iron levels to reach normal levels. The availability of effective iron chelation 

therapies has significantly extended the life expectancy of transfusion-dependent 

patients, and consistent therapy reduces the toxicity and organ damage associated with 

excess iron (Cario, Janka-Schaub et al. 2007). 

For any given patient, reaching their target body iron levels depends to a large 

extent on their ability to comply with long-term therapy, which itself is largely determined 

by the side effects, tolerability, perceived efficacy and convenience of the iron-chelating 

agent (Cohen 2006). Unfortunately, the survival and health benefits of current iron 

chelation agents decline measurably with even minimal reductions in compliance. 

Therefore, optimal compliance requires that patients both understand the nature of the 

threat of iron overload, and receive psychological and social support for continuing both 

blood transfusions and iron chelation therapy (Cohen 1990). 
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Three approved iron chelation agents are available currently: Deferoxamine, 

deferiprone, and deferasirox, with the approval and availability of these agents largely 

country specific (Cohen 2006). These three compounds are compared in table 2 to the 

properties of an ideal chelator. 

Deferoxamine (DFO)  

DFO, a hexadentate siderophore (Figure 4) isolated from Streptomyces pilosus, 

has been the clinical chelator of choice for the treatment of iron overload diseases since 

the 1970s (Brittenham 2003). The high affinity of this siderophore for Fe(III) renders iron 

bound in the resulting 1:1 complex metabolically inactive, preventing the production of 

ROS. Consequently, DFO is able to decrease oxidative stress, alleviating the symptoms 

associated with iron overload disease (Olivieri and Brittenham, 1997). However, the 

DFO-iron chelate is charged and does not readily enter and leave cells.  The high 

hydrophilic nature of DFO limits the membrane permeability and efficiency of this ligand, 

imparting poor absorption from the gastrointestinal tract and a short plasma half-life of 

12 minutes due to rapid drug metabolism (Aouad et al. 2002). As a result, DFO must be 

administered via subcutaneous infusion for extensive periods to achieve a negative iron 

balance, ranging from 8 to 12 h, five to seven times per week at a daily dosage of 20 to 

60 mg/kg (Hershko et al. 2003). Apart from the cumbersome administration route and 

high cost, a third of patients treated with DFO experience pain and swelling at the 

injection site, cumulatively leading to poor patient compliance (Olivieri and Brittenham, 

1997; Wong and Richardson, 2003). Irrespective of its shortcomings, it should be noted 

that DFO use has been credited with producing dramatic strides in survival of 

thalassemia patients. 
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Given the potential problems associated with the prolonged use of DFO, there 

have been numerous attempts to improve its efficacy. These include the generation of a 

high molecular weight form of the chelator coupled to hydroxyethyl starch, lipophilic 

DFO analogs, and libraries of structural DFO analogs (Kalinowski and Richardson 

2005). Unfortunately, the evolution of DFO analogs has not resulted in chelators with 

advantages over the original siderophore. Hence, other orally active alternatives have 

been sought in the quest to develop effective and specific iron chelators. 

Deferiprone 

Deferiprone is an orally active hydroxypyridineone (Figure 4) first used in humans 

in 1987. An advantage of this compound is that the iron(III) chelate of deferiprone 

carries no net charge and therefore can penetrate membranes easily, allowing removal 

of potentially toxic iron from tissues (Neufeld 2006). Deferiprone is available in Europe 

and some other countries but not the United States (Kontoghiorghes et al. 2004). The 

reasons for this difference in availability between countries is not entirely understood but 

may be due to conflicting clinical trials related to the safety and iron clearing efficiency 

of this ligand (Richardson, 2001).  

As deferiprone is bidentate, three molecules are necessary to occupy the 

coordination sites of iron. In biological systems, deferiprone appears to exhibit 

incomplete coordination of iron which would enable access of reductants to the iron 

core and may potentially lead to ROS production (Kalinowski and Richardson 2005). 

Such findings could question the safety of deferiprone, and to overcome this problem 

combination therapy with DFO has been assessed. Deferiprone often causes 

gastrointestinal symptoms and idiosyncratic side effects including erosive arthritis 
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(common in patients in South Asian countries, 5%-20% of patients), neutropenia (up to 

5% of patients), and severe agranulocytosis (up to 0.5% of patients) (Neufeld 2006). 

Thus, close monitoring is required. 

To maintain a negative iron balance in overload patients, deferiprone must be 

administered at a high daily dosage (75 mg/kg/d in 3 divided doses, up to 100 mg/kg) 

(Balfour and Foster, 1999). The limited efficiency of deferiprone is due mainly to 

extensive phase II drug metabolism in the liver where the hydroxyl group, essential for 

chelation and iron clearance, undergoes glucuronidation (Liu and Hider 2002). The 

metabolic inactivation of deferiprone has sparked research into the synthesis of other 

hydroxypyridinones that do not undergo this form of modification in vivo. 

Deferasirox 

Deferasirox (ICL670, Exjade) belongs to a new class of oral tridentate chelators 

N-substituted bis-hydroxyphenyltriazoles (Figure 4), that uses a triazolyl nitrogen and 

two phenolic oxygens as donor groups. This ligand represents one of > 700 compounds 

designed through computer modeling intended for the treatment of transfusional iron 

overload (Nick et al. 2003). Deferasirox is selective for iron (as Fe3+) and binds iron with 

high affinity in a 2:1 ratio. Although deferasirox has very low affinity for zinc and copper, 

there are variable decreases in the serum concentration of these trace metals after the 

administration of deferasirox. The clinical significance of these decreases is uncertain. 

Deferasirox is orally active with 70% bioavailability and is marketed in the form of tablets 

for oral suspension (Exjade®). It is highly (~99%) protein bound almost exclusively to 

serum albumin and is mainly metabolized in the liver by glucuronidation. With a plasma 

half-life of 8 to 16 hours, once-daily dosing permits circulating drug at all times to 
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scavenge NTBI (Cappellini and Pattoneri 2009). Deferasirox-iron complexes undergo 

enterohepatic recycling and are mainly excreted in the feces (84% fecal, 8% renal). 

Females have a moderately lower apparent clearance (by 17.5%) for deferasirox 

compared to males.  

In addition to its ability to remove NTBI, a recent study has shown that 

deferasirox can also cross the plasma membrane and enter the cell using unknown 

carriers (Glickstein, El et al. 2005; Glickstein, El et al. 2006). Clinical studies have 

demonstrated that after one year , deferasirox produced significant reduction in liver iron 

concentration (Cappellini 2008).  In animal models, deferasirox has been shown to be 5 

times more potent than deferoxamine and 10 times more potent than deferiprone 

(Choudhry and Naithani 2007). 

Deferasirox is indicated for the treatment of chronic iron overload due to blood 

transfusions (transfusional hemosiderosis) in patients 2 years of age and older. The 

recommended initial daily dose of deferasirox is 20 mg/kg body weight. Doses of 

deferasirox should not exceed 30 mg/kg per day since there is limited experience with 

doses above this level. The decision to remove accumulated iron should be 

individualized based on anticipated clinical benefit and risks of deferasirox therapy. In 

patients who are in need of iron chelation therapy, it is recommended that therapy with 

deferasirox be started when a patient has evidence of chronic iron overload, such as the 

transfusion of approximately 100 mL/kg of packed red blood cells (approximately 20 

units for a 40-kg patient) and a serum ferritin consistently >1000 µg/L.  

The most frequently occurring adverse events in the therapeutic studies of 

deferasirox were abdominal pain, nausea, vomiting, diarrhea, and skin rashes. Some 

deferasirox-treated patients also experienced dose-dependent increases in serum 
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creatinine, though most of the creatinine elevations remained within the normal range 

(Cappellini 2005). Serum creatinine should be assessed in duplicate before initiating 

therapy to establish a reliable pretreatment baseline and monitored monthly thereafter. 
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Table 2. Comparison of the main available iron chelators to an ideal chelating 
drug. (modified from Neufeld, 2006) 

 

 Ideal 

Chelator 

Deferoxamine 

1970 

Deferiprone 

1987 

Deferasirox 

2005 

Route of 

administration 

Oral S/C, IV Oral Oral 

 

Plasma t1/2 

Long 

enough to 

prevent 

NTBI 

Short (minutes); 

requires constant 

delivery 

Moderate 

(<2 hr); required 

t.i.d dosing 

Long (8-6 hr); 

remains in 

plasma 24 hr 

Therapeutic index High High Idiosyncratic side 

effects 

High 

 

Chelating efficacy/ 

charge 

High 

Uncharged 

High 

Charged 

Low 

Uncharged 

Moderate 

Uncharged 

 

Side effects 

None Auditory and retinal 

toxicity, effects on 

bone and growth, 

lung toxicity, local 

skin reactions 

Agranulocytosis, 

neutropenia, 

abdominal 

discomfort, 

erosive arthritis 

Abdominal 

discomfort 

rash, mild 

diarrhea 

 

Ability to chelate 

intracellular 

cardiac & other 

tissue iron 

High Lower than 

deferiprone and 

deferasirox 

High in clinical and 

in vitro studies 

Insufficient 

clinical data 

Promising 

laboratory 

studies 
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Figure 4. Chemical structure of the iron chelating agents in clinical use and their 

corresponding iron binding ratio. 

 

2.7 ANIMAL MODELS OF IRON OVERLOAD 

Past efforts to study iron overload and its associated toxicity have been 

hampered by the lack of a suitable experimental model of human iron overload; most 

animal species have a far greater capacity to excrete iron than humans. Recently, the 

Mongolian gerbil (Meriones unguiculatus) was developed as a model of iron overload 

using weekly subcutaneous injections of iron dextran (Carthew, Dorman et al. 1993). 

Studies using the gerbil model have reported that cardiac and hepatic iron content was 
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increased to amounts within the range reported in patients with iron overload (Kuryshev, 

Brittenham et al. 1999). In addition, the gerbil model tends to reproduce critical features 

of the cardiomyopathy found in human iron overload as the gerbil seems unable to 

excrete iron as effectively as other rodents.  In one study, gerbils treated with repeated 

injections of iron dextran over a period of months developed a cardiomyopathy that 

resembles the cardiomyopathy that develops over a period of years in patients with 

chronic iron overload (Kuryshev, Brittenham et al. 1999). Similarly, the accumulation of 

iron in the gerbil heart has been associated with myocyte degeneration and intracellular 

calcification, whereas in the hearts of mice treated identically with iron-dextran that had 

accumulated comparable cardiac iron levels, similar evidence of myocyte damage was 

absent (Yang, Dong et al. 2002). These results suggest that the gerbil model would be 

useful in studying the progression of end organ damage associated with iron-overload.  
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CHAPTER III 

MATERIALS AND METHODS 

 

 This chapter outlines the procedures used for data collection and analysis in the 

present study.  The adult male Mongolian gerbil (Meriones unguiculatus) model of iron 

overload was used.  Iron overload was achieved by multiple intraperitoneal injections of 

iron-dextran. Deferasirox treatment was administered orally at different time points after 

the completion of iron loading. Electrocardiographic and echocardiographic 

measurements were conducted at baseline (before iron loading) and every three 

months thereafter. After the completion of deferasirox treatment, gerbils were sacrificed 

and heart, aorta, liver, kidney and pancreas were excised.  Examination for changes in 

tissue iron concentration, expression of ferritin, and cardiac morphology followed. 

 

3.1 Animal selection and care  

All experiments were conducted using male Mongolian gerbils. Adult male 

Mongolian gerbils (Meriones unguiculatus) were obtained from Charles River 

Laboratories and housed four per cage in an AALAC approved vivarium. Housing 

conditions consisted of a 12h: 12h dark-light cycle with temperature maintained at 22 ± 

2° C. Animals were provided food and water ad libitum.  Gerbils were allowed to 

acclimate to the housing facilities for at least two weeks before experimentation began. 

During this time, the animals were carefully observed. None of the animals exhibited 

signs of failure to thrive, such as precipitous weight loss, disinterest in the environment, 

or unexpected gait alterations. Animal care and procedures were conducted in 

accordance with the Institutional Animal Care and Use Committee of Marshall University 
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using the criteria outlined by the American Association of Laboratory Animal Care 

(AALAC) as proclaimed in the Animal Welfare Act (PL89-544, PL91-979, and PL94-

279). 

 

3.2 Iron loading and chelation 

Gerbils were divided into Control (Ctrl), Iron overload (IO), and iron overload 

followed by deferasirox treatment (IO+DFR). Iron treated animals received 15 

subcutaneous injections of iron dextran (Sigma Chemical, St. Louis, Mo) at a dose of 

100 mg/kg every 5 days for 10 weeks. Deferasirox was administered for one, three, or 

nine months post iron loading. For each treatment group, an age-matched Ctrl and IO 

group was maintained for comparison (Table 3).  

To avoid the stress of chronic, repeated gavage feeding, deferasirox was 

homogenously mixed in plain peanut butter (vehicle) for oral feeding via a 1-mL syringe. 

Deferasirox powder was carefully blended or mixed with creamy, low-fat peanut butter 

and the mixture placed into conical bakery squeeze applicators and delivered into 15-

mL plastic syringes which have had tips cut off.  The mixture was then delivered into 1-

mL syringes with tips removed from which small volumes of the mixture containing the 

desired quantity of drug was carefully introduced into the animal mouths and eaten.  We 

have found that animals acquire a taste for peanut butter after a few days of feeding 

and thereafter eagerly consume the peanut butter. Therefore, the animals were 

adjusted to peanut butter prior to administration of deferasirox-peanut butter mixtures.  

This method of administration is equivalent to giving the drug with food or in 

formulations of drug with filler material. 
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Deferasirox treatment was started 1-week after the last iron dextran injection and 

was given at a single daily dosage of 100 mg/kg. This dosage is based on a previously 

determined dose-response curve of deferasirox in iron overloaded gerbils and 

represents 67% of human values when normalized for body surface area (Wood, Otto-

Duessel et al. 2006). Oral chelator administration gave the animals approximately 0.15 

mL of peanut butter per day. Control and iron overload groups received plain peanut 

butter (vehicle) and were housed, fed, and maintained under identical conditions.  

 

Table 3. Deposition of gerbils in the experimental groups 

Interval Groups 
n = 10/ group   Treatment   

Baseline Ctrl   10 wk Saline   
IO   10 wk iron   

  Ctrl   10 wk Saline + 1 mo vehicle    
1 months IO  10 wk iron + 1 mo vehicle    

  IO+ DFR   10 wk iron + 1 mo DFR    
  Ctrl   10 wk Saline + 3 mo vehicle    

3 months IO  10 wk iron + 3 mo vehicle    
  IO+ DFR   10 wk iron + 3 mo DFR    
  Ctrl   10 wk Saline + 9 mo vehicle    

9 months IO  10 wk iron + 9 mo vehicle    
  IO+ DFR   10 wk iron + 9 mo DFR    

 

 

3.3 Electrocardiographic procedures 

Gerbils were anesthetized with a ketamine (100 mg/ml)/xylazine (20 mg/ml) 

mixture. EKG recording was performed using standard limb lead system (Biopac)®. To 

emulate lead II, we utilized subcutaneously placed electrodes located in the line with the 

long access of the heart. One electrode (anode) is placed in the upper right quadrant of 

the chest and the other (cathode) in the lower left abdominal wall, just cranial to the 
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groin area. Lead I configuration was performed by placing the cathode and the anode in 

the upper right, and left quadrants of the chest, respectively. Lead III configuration was 

performed by placing the cathode in the upper left quadrant of the chest, while the 

anode was placed in the lower left abdominal wall. 

 

3.4 Transthoracic echocardiography 

Echocardiography is a noninvasive ultrasound procedure in which harmless, 

high-frequency sound waves (frequency >20,000 cycles/sec) are emitted from a 

piezoelectric crystal or transducer, beamed in particular directions, and reflected back 

(echo) by small structures in the mm and sub-mm range. These waves are beamed 

toward and penetrate the heart and are reflected back to the transducer as a series of 

echoes, which are amplified and displayed on a cathode ray tube. It is used to evaluate 

the position, size, and movement of cardiac valves, heart wall structure and function, 

and directional flow of blood within cardiac chambers (Walker, Epling et al. 2007). 

Animals were anesthetized with ip injections of a 2:1 mixture of ketamine HCl (100 

mg/ml) and xylazine (20 mg/ml). Echocardiographic recordings were performed at the 

Cabell Huntington Hospital, Huntington, WV.  Gerbils were shaved in the chest area for 

adequate sonic transference, an ultrasonic transmission gel was applied to the chest 

area, and the animals were positioned on their left sides or backs. Two-dimensional 

echocardiographic measurements, two-dimensional guided M-mode, Doppler M-mode, 

and other recordings from parasternal long- (PLAX) and short-axis (PSAX) views were 

obtained using a Phillips 5500 ECHO system with a 12 MHz transducer. Two-

dimensional measurements were used to image cardiac structures in the parasternal 

long- and short-axis views. The echocardiographic views were then used to position the 
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M-mode echocardiographic line. In the long-axis procedures, the probe was oriented 

toward the base of the heart projecting toward the apex (x-axis) with depth along the y-

axis, thus allowing pulse wave Doppler evaluation of valvular blood flow velocities. In 

the short-axis procedures, the probe was oriented toward the left ventricle and across 

the heart for evaluation of wall structure, which was utilized in the calculation of ejection 

fraction and fractional shortening during systole. M-mode displays were analyzed by a 

digital echocardiographic analysis system. Six measurements were selected for each 

assessment of cardiac structure and function. The structural parameters included 

diastolic (LVSd) and systolic (LVSs) left ventricular septal thickness, diastolic (LVIDd) 

and systolic (LVIDs) left ventricular internal dimension, diastolic (LVPWd) and systolic 

(LVPWs) left ventricular posterior wall thickness, and right ventricular diastolic internal 

dimension (RV). Functional measurements included left ventricular ejection fraction 

(EF), left ventricular fractional shortening during systole (FS), maximal aortic (AVmax), 

pulmonary (PVmax), mitral (MVmax), and tricuspid (TVmax) valvular blood flow velocity. 

Left ventricular ejection fraction (EF), and fractional shortening (FS) were used to 

evaluate systolic function.  

 

3.5 Tissue collection 

Prior to sacrifice, gerbils were anesthetized with a ketamine-xylazine (4:1) 

cocktail (50 mg/kg i.p.) and supplemented as necessary to achieve loss of reflexive 

response. Loss of toe pinch and eye blink reflexes was assessed prior to the initiation of 

any experimental manipulations. Every effort was made to minimize stress and 

discomfort to the animals. 
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 After midline laparotomy, heart, liver, pancreas and aorta were removed and placed in 

Krebs-Ringer bicarbonate buffer (KRB) containing: 118 mM NaCl, 4.7 mM KCl, 2.5 mM 

CaCl2, 1.2 mM KH2PO4, 1.2 mM MgSO4, 24.2 mM NaHCO3, and 10 mM α-D-glucose 

(pH 7.4) equilibrated with 5% CO2/ 95% O2 and maintained at 37°C. Isolated tissues 

were quickly cleaned of connective tissue, weighed, and immediately snap frozen in 

liquid nitrogen. 

 

3.6 Tissue iron assessment 

After sacrifice, portions of the heart, liver, kidney, pancreas, and aorta were 

isolated, weighed, and sent for quantitative iron (total, heme plus non-heme, tissue iron)  

determination (University of Tampa, Tampa, FL) by inductively coupled plasma-atomic 

emission spectrometry (ICP-AES) (Walker, Epling et al. 2007). Briefly, digestions were 

performed using commercially available trace metal grade HNO3 (ThermoFisher 

Scientific). Dilutions were made with 2% (vol.) HNO3 (trace metal grade) prepared with 

deionized water. All digestion tubes, volumetric pipettes, and volumetric glassware were 

soaked for 24 hours in 2% (vol.) HNO3 (trace metal grade), rinsed four times with 

deionized water, and air dried prior to use. Approximately 300 mg (wet weight) of 

sample was weighed into a glass digestion tube and 6.0 ml of concentrated trace metal 

grade HNO3 added. A 1000 mg/L Yttrium solution in 2% HNO3 (Perkin Elmer), used as 

an internal standard (final concentration 1.67 mg/L), was added to each tube. Samples 

were heated at 37oC for 1 hour and then at 110oC for 2 hours. After digestion, 5.0 ml of 

the clear solution was transferred to a 50 ml volumetric flask and brought to volume with 

2% (vol) HNO3 (trace metal grade). Solutions were filtered through a 0.22 μm syringe 

driven filter unit (Millipore) and analyzed by ICP-AES. A 1.67 mg/L iron solution was 
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used as a control for the digestion procedure. Analyses were performed on a Perkin 

Elmer ICP-AES (Optima 2100 DV) using a 0 to 1 mg/L, 0 to 10 mg/L, or 0 to 100 mg/L 

(for iron only) standard curve, depending upon iron concentration. Calibration and 

control solutions for the 0 to 1 mg/L and 0 to 10 mg/L standard curves were prepared 

from a multi-element standard (ICP Multi-element Solution 2, Spex Chemicals, 10 

mg/L). Calibration and control solutions for the 0 to 100 mg/L standard curve were 

prepared from a 1000 mg/L iron standard solution (Perkin Elmer).  All calibrators and 

controls contained an internal Yttrium standard. The measurements for iron (238.204 

nm) were conducted in the axial mode. Sample concentrations were determined from 

standard curves generated by linear regression analysis. The minimal detectable 

concentration for each metal was determined using the mean plus the three-fold 

standard deviation obtained from 10 blank digestions.  

 

3.7 Histological analysis 

Whole hearts (breadloaf sectioned) and representative sections of liver, 

pancreas, and aorta were fixed in 10% buffered formalin solution, and processed into 

paraffin blocks by routine procedures. Samples were then sectioned (8 μm) with a 

cryostat and sections were mounted on poly-lysine (Sigma, St. Louis, MO) coated 

slides. Sections were stained with Prussian blue iron stain. Slides were evaluated by 

light microscopy and images were taken at 200X, or 400X. This data was collected and 

reviewed in a blinded fashion. 
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3.8 SDS-PAGE and immunoblotting  

Tissue was pulverized in liquid nitrogen using a mortar and pestle until a fine 

powder was obtained.  After washing with ice cold PBS, samples were lysed on ice for 

15 minutes in T-PER (2 mL/1 g tissue weight) and centrifuged for 10 minutes at 12000 x 

g.  The supernatant was collected and the protein concentrations of homogenates were 

determined in triplicate via the Bradford method (Pierce) using bovine serum albumin as 

a standard. Samples were solubilized at a concentration of 3 mg/ml in SDS-loading 

buffer and boiled for 5 minutes.  Sixty µg of protein from each sample was separated on 

10% SDS-PAGE gels and then transferred onto Hybond nitrocellulose membranes 

using standard conditions. To verify transfer of proteins and equal loading of lanes, the 

membranes were stained with Ponceau S.  Membranes were blocked in buffer (5% 

nonfat dry milk in tris-buffered saline with 0.1% Tween-20 (TBST) for 1 hour at room 

temperature, washed (TBST, 3 X 5 minutes), and incubated in primary antibody (1:1000 

dilution) in TBST with 5% milk overnight at 4ºC.  After washing (TBST, 3 X 5 minutes), 

membranes were incubated in horseradish peroxidase HRP-linked anti-biotin and the 

appropriate secondary antibody (1:1000 dilution) in TBST with 5% milk for 1 hour at 

room temperature, then rewashed (TBST, 3 X 5 minutes).  Proteins were visualized by 

ECL and quantified by densitometry.  Exposure times were adjusted to keep the 

integrated optical densities (IOD) of the film within a linear and nonsaturated range.  

Specificity of the bands was assessed by comparison of molecular weight markers and 

positive controls.  To allow direct comparisons to be made between the expression 

levels of different signaling molecules and the amount of protein present, immunoblots 

were stripped with Restore western blot stripping buffer and reprobed as detailed by the 

manufacturer.  After verifying the absence of residual HRP activity, membranes were 
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washed and reprobed for other proteins.  All membranes were probed for GAPDH for 

analysis and loading control.  

 

3.9 Oxidative fluorescent microscopy 

Cardiac or hepatic specimens were serially sectioned (8 μm) using an IEC 

Minotome cryostat and collected on poly-lysine coated slides. Hydroethidine (HE), an 

oxidative fluorescent dye, was used to visualize superoxide (O2•–) production in situ 

(Miller, Gutterman et al. 1998; Lund, Faraci et al. 2000). Hydroethidine freely permeates 

the cells and, in the presence of O2•–, is oxidized to ethidium bromide, which is trapped 

by intercalating with the DNA (Rothe, Emmendorffer et al. 1991). Because ethidium 

bromide is impermeable to cell membranes, extracellular O2•– would not be expected to 

contribute significantly to the observed cellular fluorescence. Neither hydroxyl radical, 

nitric oxide radical, peroxynitrite, hydrogen peroxide, hypochlorite, nor singlet oxygen 

significantly oxidize hydroethidine; as such, an increase in ethidium bromide 

fluorescence is thought to indicate O2•– generation specifically within the fluorescing 

cell. Heart sections were stained with hydroethidine and visualized under fluorescence 

as described previously (Rice, Preston et al. 2006). The intensity of fluorescent ethidium 

bromide-stained nuclei was calculated by digitizing images and then determining the 

average pixel intensity of six randomly positioned regions (1000 μm2) per cross section. 

Morphometric evaluation was performed with the use of a computerized imaging 

analysis system (Olympus MicroSuite™ Basic). 
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3.10 Oxidized Protein Analysis  

Cardiac and hepatic protein isolation was conducted as described above. To 

identify carbonyl groups that are introduced into the amino acid side chain after 

oxidative deamination of proteins, oxyblot analysis was performed. The level of protein 

oxidation was determined by an Oxidized Protein Detection Kit (Oxyblot, Chemicon 

Cat# S7150-Kit). Oxyblot kit derivatizes carbonyl groups to a 2, 4-

dinitrophenylhydrazone (DNP) moiety. The DNP moiety can then be detected using 

anti-DNP antibodies and is a method to assay for one form of oxidative damage to a 

protein. The proteins are derivatized as per the protocol given in the kit. These proteins 

are separated on 10% SDS-PAGE gels and transferred onto nitrocellulose membrane. 

After the transfer, membranes were blocked with 2.5% BSA in Tris Buffered Saline 

(TBS) with 0.2% Tween-20 for 1 hour at room temperature. The nitrocellulose 

membrane was exposed to a primary rabbit anti-DNPH protein antibody from Chemicon 

Oxyblot (1:200 working dilution) for 1 hour, and then to a secondary antibody (Goat 

Anti-Rabbit IgG (HRP-conjugated) diluted in the blocking solution 1:500 for 1 hour at 

room temperature. Membranes were washed after every step in washing buffer (TBS 

with 0.2% Tween-20). Protein bands were visualized with ECL (Amersham 

Biosciences). Band signal intensity was quantified by densitometry using a flatbed 

scanner (Epson Pefection 3200 PHOTO) and Imaging software (AlphaEaseFC). 

 

3.11 In situ cell death detection (TUNEL) 

Liver samples were cut into serial 8μm sections using an IEC Minotome Cryostat.  

After fixing with 4% paraformaldehyde, sections were washed with phosphate-buffered 

saline (PBS, pH7.4), and then permeabilized with 0.1% sodium citrate and 0.1% Triton 
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X-100. DNA fragmentation was determined by TdT-mediated dUTP nick end labeling 

(TUNEL) as suggested by the manufacturer’s recommendations.  Cross-sections from 

each liver were treated with DNase I to induce DNA fragmentation as a positive control.  

Three randomly selected regions from each cross section were visualized by 

epifluorescence using an Olympus fluorescence microscope (Melville, NY) fitted with a 

40X objective.  Images were recorded digitally using a CCD camera (Olympus, Melville, 

NY), and the samples were analyzed by counting positively stained nuclei with DAPI 

nuclear staining for contrast.  

  

3.12 Statistical analysis 

Results are presented as mean ± SEM.  Data were analyzed by using SigmaStat 

3.0 computer software.  One-way (or two-way) analysis of variance (ANOVA) was used 

for overall comparisons where appropriate with the Student-Newman-Keuls post hoc 

test used to determine statistical significance. The level of significance accepted a priori 

was P ≤ 0.05. 

 

3.13 Materials 

Deferasirox powder used in the study was provided by Novartis Pharmaceuticals 

(East Hanover, NJ). Primary antibodies against P-ERK1/2 MAPK (Thr202, Tyr204) (cat 

#9106), p-p38 MAPK (Thr180, Tyr182) (cat#9216), p-JNK (Thr183, Tyr185) (cat #9251), 

ERK1/2 MAPK (cat #9102), p38 MAPK (cat #9218), JNK (cat #9252), caspase-3 

(#9662), anti-biotin as well as anti- mouse and -rabbit secondary antibodies, and NIH 

3T3 cell lysates were obtained from Cell Signaling Technology (Beverly, MA). Anti-Bax 

(N-20) (sc-492), Bcl-2(C-2) (sc-7382), and Bad (H-168) (sc-7869), ferritin heavy chain 
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(H-53) (cat #25617) and anti-goat secondary antibodies were from Santa Cruz 

Biotechnology (Santa Cruz, CA).  The TUNEL assay kit was purchased from Roche 

Diagnostics Corporation (Indianapolis, IN).  Precast 10% and 15%  SDS-PAGE gels 

were procured from Cambrex Biosciences (Baltimore, MD) while the enhanced 

chemiluminescence (ECL) Western blot detection reagents, Hyperfilm, and Hybond 

nitrocellulose membranes came from Amersham Biosciences (Piscataway, NJ).  

Restore western blot stripping buffer and T-PER tissue lysis buffer were obtained from 

Pierce (Rockford, IL).  Dual Color molecular weight markers were from BioRad 

(Hercules, CA).  All other chemicals were purchased from Sigma (St. Louis, MO).  

 
 
 

 
 

 

 

 

 

 

 

 

 

 



 
 

-53- 
 

CHAPTER IV 

RESULTS 
 

The results chapter will be subdivided into three articles.  Each article will deal 

specifically with a specific aim of the dissertation project. 

Note: The method section has been omitted from these articles to avoid redundancy. 

Please refer to Chapter III for detailed materials and methods. 

 

Article #1: Corresponds to Specific Aim #1 

To determine if deferasirox is able to reduce cardiac iron content, iron-induced 

ferritin upregulation, and iron-related increases in indices of oxidative stress such 

as superoxide overproduction, protein oxidation, and the phosphorylation of the 

extracellular regulated kinase 1/2 (ERK1/2)-, p38-, and c-Jun N-terminal kinase 

(JNK)-mitogen activated protein kinases (MAPKs). 
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Abstract 
 

Iron-induced cardiovascular disease is the leading cause of death in iron-

overloaded patients. Deferasirox is a novel, once daily oral iron chelator that was 

recently approved for the treatment of transfusional iron overload. Here, we investigate 

whether deferasirox is capable of removing cardiac iron and improving iron-induced 

pathogenesis of the heart using the iron overload gerbil model. Animals were randomly 

divided into three groups: control, iron overload, and iron overload followed by 

deferasirox treatment. Iron-dextran was given 100 mg/kg per 5 days i.p for 10 weeks. 

Deferasirox treatment was started post iron loading and was given at 100 mg/kg/day p.o 

for 1- or 3- months. Cardiac iron concentration was determined by inductively coupled 

plasma atomic emission spectroscopy. Compared with the untreated group, deferasirox 

treatment for 1- and 3- months decreased cardiac iron concentration 17.1% (P = 0.159) 

and 23.5% (P < 0.05), respectively. These treatment-associated reductions in cardiac 

iron were paralleled by decreases in tissue ferritin expression of 20% and 38% at 1 and 

3 months, respectively (P < 0.05). Using oxyblot analysis and hydroethidine 

fluorescence, we showed that deferasirox significantly reduces cardiac protein oxidation 

and superoxide abundance by 47.1% and 36%, respectively (P < 0.05). Iron-induced 

increase in oxidative stress was also associated with increased phosphorylation of 

ERK1/2-, p38-, and JNK-mitogen-activated protein kinases (MAPKs). Interestingly, 

deferasirox treatment significantly diminished the phosphorylation of all three MAPK 

subfamilies. These results suggest that deferasirox may confer a cardioprotective effect 

against iron induced injury. 

  

  



 
 

-56- 
 

Introduction 

Excessive body iron or iron overload in thalassemia and other conditions is a 

serious health issue the world over (Hershko 2007). Increased cardiac iron deposition is 

the leading cause of morbidity and mortality in transfusion-dependent patients as these 

conditions are oftentimes associated with diastolic dysfunction, arrhythmias, and dilated 

cardiomyopathy (Walker, Epling et al. 2007). The mechanism(s) by which increased iron 

affects cellular function are not well understood; however, increases in reactive oxygen 

species (ROS) have been posited to be involved as current data has suggested a 

strong link between elevations in cardiac ROS levels and cardiac dysfunction (Oudit, 

Trivieri et al. 2004).  

In the past, iron overload was treated with deferoxamine and deferiprone, 

although effective, treatment compliance was frequently compromised as the 

administration of these compounds is often burdensome or associated with serious side 

effects (Hershko, Link et al. 2005; Neufeld 2006). Deferasirox is a recently approved, 

orally administered tridentate iron chelator that is administered on a once-daily regimen 

(Vichinsky 2008). Initial findings regarding the use of deferasirox have suggested that 

this chelator is very effective in removing liver iron, while other data have suggested that 

deferasirox may be effective in diminishing cardiac iron (Rachmilewitz, Weizer-Stern et 

al. 2005; Pennell, Porter et al. 2008; Pennell, Sutcharitchan et al. 2008). The primary 

objective of this investigation was to determine if chronic administration of deferasirox is 

capable of removing excess iron from the heart in the gerbil model of iron overload. We 

hypothesized that deferasirox would reduce cardiac iron content and that this reduction, 

if present, would be associated with diminished cardiac ROS.  

 



 
 

-57- 
 

Results 

Characterization of animals 

Total body and liver weights were obtained and compared. All animals tolerated 

the iron loading and chelation without any apparent ill effects. The body weights of iron 

overloaded gerbils were similar to controls, indicating that the injection of iron dextran 

did not result in debilitation or weight loss. Heart/ body weight ratio was ~20% higher in 

the IO group compared to the Ctrl group (P < 0.05) (Table 4). No significant difference 

was observed after one or three months of follow up or with deferasirox treatment. 

 

Table 4. Deposition of gerbils in the experimental groups and heart/body weights. 

Interval 
Groups 

n = 10/ group 
Treatment       Heart/ body wt (%) 

Baseline 
Ctrl 10wk saline 0.41 ± 0.04 

IO 10wk iron         0.49 ± 0.02* 

 
Ctrl 10 wk saline + 1mo vehicle 0.42 ± 0.01 

1 months IO 10 wk iron + 1 mo vehicle 0.43 ± 0.01 

 
IO+ DFR 10 wk iron + 1 mo DFR 0.42 ± 0.01 

 
Ctrl 10 wk saline + 3 mo vehicle 0.38 ± 0.01 

3 months IO 10 wk iron + 3 mo vehicle          0.39 ± 0.01 

 
IO+ DFR 10 wk iron + 3 mo DFR 0.38 ± 0.01 

An asterisk (*) indicates significant difference from age matched control  

 

Cardiac iron levels 

Cardiac iron levels were measured using inductively coupled plasma atomic 

emission spectrometry (ICP-AES). Compared to hearts obtained from control animals, 

iron overload increased cardiac iron level by 10.4 fold (P < 0.05). Cardiac iron levels 

were 8.1- and 7.4-fold higher than that of the corresponding age-matched controls at 
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one and three months of follow up, respectively (P < 0.05). Compared to the 3 month-IO 

group, deferasirox treatment decreased cardiac iron levels by 23.5% (P < 0.05) (Figure 

5). Prussian blue staining demonstrated elevated iron deposition in cardiac sections 

from gerbils in the 3 month-IO group (Figure 6). Iron deposition exhibited a 

nonhomogenous distribution with a higher deposition in the ventricle compared to atria. 

In the left ventricular wall, iron accumulation was higher in the epicardium and 

endocardium, and was the least in the myocardium. Within the myocardium, iron tended 

to accumulate in the interstitium although deposition was clearly visible inside the 

myocytes. Deferasirox treatment for three months produced a notable decrease of 

stainable iron visible in all regions of the heart (Figure 6).  

 

 

Figure 5. Average iron levels in mg/g tissue weight in cardiac tissue of gerbils in 
the experimental groups. Ctrl: control, IO: Iron overload, IO+ DFR: Iron overload 
followed by deferasirox treatment, 1m: 1 month interval, 3m: 3 months interval. (*) 
indicates significant difference from control, (†) indicates significant difference from iron 
overload group (P < 0.05).                           
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Figure 6. Histological examination of left ventricular myocardium of Ctrl (A), IO 
(B), and IO+DFR (C) gerbils followed for 3 months. Ferric iron was detected by 
Prussian blue staining. No apparent iron deposition was observed in control gerbils. Iron 
overload resulted in iron accumulation in endothelial cells in cardiac interstitium and to a 
lesser extent in cardiac myocytes. Deferasirox treatment diminished iron deposition 
from all regions of cardiac tissue. Bar represents 100 µm, Images were taken at 400X 
original magnification. 
 
 

Ferritin protein expression 

Cardiac ferritin protein levels were analyzed by immunoblot using total protein 

isolates from each of the experimental groups. Compared to control animals, ten weeks 

of iron overload increased ferritin protein by 1.9 fold (P < 0.05) (Figure 7). After 

completion of iron loading ferritin levels remained elevated and were  1.7 and 1.6 fold 

higher than that of the corresponding age-matched control after one and three months 

of follow up, respectively (P < 0.05). Deferasirox treatment significantly reduced cardiac 

ferritin expression by 20% and 38% after one (1m-IO+DFR) and three months (3m-

IO+DFR) of treatment, respectively (P < 0.05). 
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Figure 7. Effect of iron overload and iron chelation on ferritin heavy chain (FerH) 
protein expression in cardiac tissue of gerbils in the experimental groups. (Upper 
panel) Results were obtained from six experiments in each group and expressed as a 
percentage of the corresponding age matched control value. (Lower panel) 
Representative Western blot analysis. Ctrl: control, IO: Iron overload, IO+ DFR: Iron 
overload followed by deferasirox treatment, 1m: 1 month interval, 3m: 3 months interval.  
(*) indicates significant difference from control, (†) indicates significant difference from 
iron overload group (P < 0.05). 
 
 

Superoxide abundance 

Because increased iron accumulation has been found to be associated with 

increased oxidative stress, we examined cardiac tissue sections from Ctrl, IO, and 

IO+DFR groups from 3 months interval for superoxide generation using HE 

fluorescence. Compared to 3 months-Ctrl, a 101% increase in HE fluorescence was 

observed in the 3 months-IO groups (P < 0.05). Three months of deferasirox treatment 

(3mIO+DFR) resulted in 36% reduction in HE fluorescence (P < 0.05) (Figure 8). The 

overall distribution of superoxide abundance appears to be similar in all regions of the 

cardiac myocardium (Figure 8).  
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Figure 8. Detection of cardiac superoxide by dihydroethidium in Ctrl, IO, and 
IO+DFR groups. (Upper panel) The increase in superoxide involves all layers of 
ventricular wall. Bar represents 100µm, images were taken at 400X original 
magnification. (Lower panel) Quantification of cardiac superoxide as determined by 
intensity of fluorescent ethidium bromide-stained nuclei from six animals in each group. 
3m = 3 months interval. An asterisk (*) indicates significant difference from control 
animals, (†) indicates significant difference from iron overload (P < 0.05). 
 

Protein oxidation 

To investigate whether iron overload modifies cardiac proteins, we next 

examined protein isolates obtained from the hearts of Ctrl, IO, and IO+DFR for three 

months for the presence of carbonylated protein using OxyBlot™ detection kit. Protein 
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carbonylation was increased by 114% in the 3 month-IO group compared to that of 

3months-Ctrl (P < 0.05). These levels were reduced by 47% after three months of 

deferasirox treatment (3mIO+DFR) (P < 0.05) (Figure 9).   

 

 

Figure 9. Effect of iron overload or deferasirox treatment on cardiac protein 
carbonylation. (Left) Representative oxyblots of cardiac protein isolates from ctrl, IO, 
and IO+DFR from 3 months interval. (Right) Quantification of oxidatively modified 
proteins in the corresponding groups. 3m = 3 months interval. An asterisk (*) indicates 
significant difference from control animals, (†) indicates significant difference from iron 
overloaded animals (P < 0.05). 
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Determination of ERK1/2-, p38-, and JNK-MAPK phosphorylation 

The MAPK pathway has been identified as an important signaling cascade 

involved in the control of cell growth, differentiation, and adaptation whose activity is 

thought to be regulated, at least in part by cellular ROS levels (Martindale and Holbrook 

2002). No significant difference in ERK1/2, P38, or JNK-MAPK protein expression was 

observed between groups. ERK1/2-MAPK phosphorylation was 67%, 50%, and 58% 

higher in the IO, 1 month-IO, 3 months-IO groups compared to the corresponding age 

matched control, respectively (P < 0.05). Deferasirox treatment for one or three months 

significantly reduced ERK1/2 phosphorylation by 13% and 32%, respectively (P < 0.05) 

(Figure 10A). p38-MAPK phosphorylation was 164%, 218%, and 134% higher in the IO, 

1 month-IO, 3 month-IO groups compared to the corresponding age-matched control, 

respectively. Similar to our findings for ERK1/2, the phosphorylation of p38-MAPK was 

decreased 33% and 46% after one and three months of deferasirox treatment, 

respectively (Figure 10B). Likewise, JNK-MAPK phosphorylation, was 52%, 50%, and 

98% higher in the IO, 1 month-IO, 3 month-IO groups compared to the corresponding 

age-matched control, respectively (P < 0.05) (Figure 10C). Deferasirox treatment 

significantly reduced the phosphorylation of JNK-MAPK by 27%, and 47% after one and 

three months of chelation, respectively (P < 0.05) (Figure 10C).  
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Figure 10. Effect of iron overload or deferasirox treatment on the expression of 
total and phosphorylated ERK1/2-, P38-, and JNK-MAPKs. (Left) Representative 
western blot demonstrating the expression of total and phosphorylated ERK1/2-, P38-, 
and JNK-MAPK in the hearts in the experimental groups. (Right) Quantification of 
protein expression of p-ERK1/2- (A), p-P38- (B), p-JNK-MAPKs (C) in the 
corresponding groups. Results are expressed as a percentage of the corresponding age 
matched control value. Ctrl: control, IO: Iron overload, IO+ DFR: Iron overload followed 
by deferasirox treatment, 1m: 1 month interval, 3m: 3 months interval.  (*) significantly 
different from control group; (†) significantly different from iron overload group (P < 0 
.05).  

 

Discussion  

The accumulation of cardiac iron is a complication of iron overload in transfusion-

dependent patients that if allowed to proceed unchecked can lead to cardiac 

arrhythmias and heart failure (Wood, Otto-Duessel et al. 2006). This study 

demonstrated that oral deferasirox administration significantly reduces cardiac iron 

p-ERK1/2 

   P38 

   p-JNK 

   JNK 

  GAPDH 

   p-P38 

ERK1/2 



 
 

-65- 
 

levels in the iron-overloaded Mongolian gerbil. In addition, our data demonstrates that 

these deferasirox-induced decreases in cardiac iron were associated with diminished 

indices of cardiac reactive oxygen species (ROS), and decreased activation of MAPK 

signaling.  

Deferasirox decreases cardiac iron and ferritin levels in the iron overloaded gerbil 

The similarities of iron accumulation, distribution, and associated pathology in 

gerbil and human hearts have suggested that the Mongolian gerbil iron-overload model 

may mimic many of the events seen in the iron-overloaded human (Kaiser, Davis et al. 

2003). Our findings demonstrated that iron loading for ten weeks resulted in a 10.4 fold 

increase in cardiac iron concentration (Figure 5). Although decreasing slightly, tissue 

iron concentration in the iron overloaded animals remained elevated one- (8.1 fold) and 

three- (7.4 fold) months following discontinuation of iron administration. Three months of 

oral deferasirox treatment significantly reduced cardiac iron concentration by 23.5% 

compared to the corresponding untreated group (Figure 5). This decrease in tissue iron 

levels with treatment was consistent with previous reports that have used a similar 

duration of iron loading and deferasirox treatment (Wood, Otto-Duessel et al. 2006; 

Otto-Duessel, Aguilar et al. 2007; Walker, Epling et al. 2007). For example, Wood and 

colleagues (2006) have demonstrated that deferasirox treatment for 12 weeks reduced 

cardiac iron content 20.5%. In an effort to expand upon these findings, we also 

performed Prussian blue iron staining of cardiac tissue sections. As expected, and 

similar to previous studies (Otto-Duessel, Aguilar et al. 2007; Otto-Duessel, Brewer et 

al. 2008), we observed increases in cardiac iron deposition with iron overload and what 
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appears to be a similar reduction in the amount of tissue iron following deferasirox 

treatment (Figure 6).  

To explore the effect of deferasirox on iron overload further, we also examined 

the regulation of ferritin protein levels in the heart. Ferritin is the major iron-storage 

protein at the cellular and organismal level. The ferritin protein is typically increased with 

iron overload (Tran, Eubanks et al. 1997) as this molecule is thought to be responsible 

for the sequestration of potentially harmful, reactive iron (de Valk and Marx 1999). Using 

immunoblotting, we demonstrate that iron-overload was associated with a robust 

induction of ferritin protein in the heart (Figure 7). As predicted from our ICP-AES data, 

we further demonstrate that deferasirox treatment significantly decreased cardiac ferritin 

levels (Figure 7). Taken together, these results are consistent with the notion that oral 

deferasirox administration is capable of reducing cardiac iron.  

Reduced cardiac iron levels are associated with decreases in tissue ROS 

Excess "labile iron" is potentially detrimental to the cell because of its propensity 

to participate in oxidation-reduction reactions that generate harmful free radicals (Deb, 

Johnson et al. 2009). In addition, it is also thought that a chronic elevation in tissue iron 

levels can lead to depletion of antioxidants which, if not restored, can by itself lead to 

further ROS elevation and provide a mechanism for further dysfunction (Eaton and Qian 

2002; Oudit, Trivieri et al. 2004). Whether exogenous antioxidant supplementation can 

be used to prevent such changes remains to be determined. For example, previous 

reports using selenium and vitamin E, but not taurine, failed to show improvement in 

indices of oxidative stress in gerbil (Otto-Duessel, Aguilar et al. 2007).  Although the 

physiological effects of reduced superoxide levels following iron chelation were not 
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investigated in the present study, it has been previously demonstrated that excess 

superoxide can result in the production of iron-catalyzed hydroxyl radicals (Bartfay, 

Dawood et al. 1999; de Valk and Marx 1999) and mitochondrial dysfunction (Afanas'ev 

2005). Whether these events are occurring in the current study and if they are 

diminished by iron chelation is not clear.   

To explore other ROS-related effects of iron overload and iron chelation, we also 

examined protein oxidation by determining the amount of protein carbonylation. Our 

data demonstrate that iron-overload was associated with increased levels of protein 

oxidation in the heart (Figure 9) and importantly, that deferasirox treatment is capable of 

decreasing the amount of oxidized proteins in the iron overloaded gerbil heart. Although 

the physiological effects of protein oxidation in the heart are not entirely elucidated, 

recent work has suggested that protein oxidation can alter protein function and 

conformation (Crowder and Cooke 1984; Hertelendi, Toth et al. 2008).  

Reduced cardiac iron levels are associated with decreases in iron-associated MAPK 

phosphorylation 

Recent data has suggested that increased ROS levels can trigger the activation 

of multiple signaling pathways including mitogen-activated protein kinases (MAPKs) 

(Martindale and Holbrook 2002). In addition, several lines of evidence have indicated 

that the MAPK proteins may be involved in cardiovascular remodeling and that the 

phosphorylation (activation) of these proteins is associated with the development of 

cardiac hypertrophy (Molkentin 2004; Wenzel, Muller et al. 2005). Here, we 

demonstrate that iron overload was associated with increased MAPK phosphorylation 

and that this effect was reversed following deferasirox treatment (Figure 10). These 
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data are consistent with previous work of Dai and colleagues who demonstrated in 

primary hepatocytes that increased intracellular iron was associated with increased 

ERK1/2- and p38-MAPK phosphorylation (Dai, Huang et al. 2004). Whether the 

observed changes in MAPK phosphorylation are directly related to changes in tissue 

iron concentration, indices of tissue ROS or other factors is not known and cannot be 

determined from the present study design. Nonetheless, it is interesting that tissue iron 

levels appeared to affect each of the MAPK proteins differently. For example, 

phosphorylated ERK1/2 levels appeared to be maximal directly after completion of the 

iron loading while conversely, the phosphorylation of the p38- and JNK-MAPK proteins 

was not maximal until one and three months of iron overload, respectively. Furthermore, 

the magnitude of p38-MAPK phosphorylation appears to be greater than that seen for 

either ERK1/2- or JNK-MAPK,  possibly suggesting that p38-MAPK phosphorylation in 

the heart may be more sensitive to increased iron (or stress) than either the ERK1/2 or 

JNK proteins.  

In summary, the present study demonstrates an important in vivo association 

between iron chelation, oxidative stress, and MAPK phosphorylation. Whether the 

observed changes may relate or contribute to complications seen in transfusional iron 

overload is currently unclear.  Further, the effect of alternative treatment regimens is not 

clearly understood. Otte-Duessel et al. (2007) have suggested that twice-daily dosing of 

deferasirox appears to improve cardiac iron elimination compared to that observed 

using single daily dosing protocol. In addition, the administration of deferasirox in 

combination with deferoxamine produced no additive effect on the cardiac iron levels 

above that observed with deferasirox alone (Otto-Duessel, Aguilar et al. 2007). Whether 

this effect is due to limitations in the gerbil model itself (Otto-Duessel, Aguilar et al. 
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2007) or is applicable to other models remains to be determined. As such, clinical 

implications have to be evaluated carefully. Better understanding of the how cardiac iron 

levels may affect tissue ROS and function will no doubt be useful to improving clinical 

guidelines for cardioprotection.  
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Article #2: Corresponds to Specific Aim #2 

To determine if deferasirox is able to reduce hepatic iron content, iron-induced 

ferritin upregulation, and iron related increases in indices of oxidative stress and the 

effect of these changes, if present, on  the incidence of  iron-related changes in cell 

death and apoptotic signaling. 
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Abstract 

Iron overload is associated with an increased risk of developing liver 

complications including fibrosis, cirrhosis, and hepatocellular carcinoma. Deferasirox is 

a novel oral chelator with high iron-binding potency and selectivity. Here, we investigate 

the ability of deferasirox to remove excessive hepatic iron and prevent or reverse iron 

induced hepatic injury.  Adult male Mongolian gerbils were randomly divided into three 

groups: control, iron overload, and iron overload followed by deferasirox treatment. Iron 

overload animals received iron dextran 100 mg/kg i.p /5 d for 10 wks while deferasirox 

was given 100 mg/kg/d p.o for 1 or 3 months. Compared to the non-treated iron 

overload group, deferasirox treatment reduced hepatic iron levels by 43.5% after three 

months of treatment (P < 0.05). Histological analysis detected frequent iron deposition, 

evidence of hepatic damage, and lipid accumulation in hepatic tissue of the iron 

overloaded group. Iron deposition was significantly diminished with deferasirox 

treatment and no evidence of lipid accumulation was observed. Immunoblotting 

demonstrated that iron overload caused about a two fold increase in hepatic ferritin 

expression (P < 0.05), which was reduced by 47.5% following three months of 

deferasirox treatment (P < 0.05). In addition, deferasirox significantly reduced hepatic 

protein oxidation and superoxide abundance. The percentage of TUNEL-positive nuclei 

in the deferasirox treated livers was 41.0% lower than that of the iron overloaded group 

(P < 0.05). Similarly, iron related increase in the expression of Bax/Bcl-2, Bad, and 

caspase-3 were significantly lower following deferasirox treatment. These findings 

suggest that deferasirox may confer protection against iron induced hepatic toxicity. 
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Introduction 

Iron overload is associated with liver, pancreatic, and cardiac dysfunction and is 

potentially deadly if improperly managed (Gordeuk, Bacon et al. 1987). The incidence of 

iron overload appears to be increasing, and it has been estimated that this disorder now 

afflicts over 100 million worldwide (Kontoghiorghes 2006). Most often, iron overload is 

seen in those with hereditary hemochromatosis and in individuals that must undergo 

frequent blood transfusions (Gordeuk, Bacon et al. 1987). The etiology of iron overload 

is thought to be governed by the magnitude of the body iron burden, the rate at which 

the increase in body iron has occurred, and  the distribution of the excess iron within the 

body (Kushner, Porter et al. 2001). The management of iron overload may be achieved 

by pharmacologic chelating agents such as deferoxamine, deferiprone, and Deferasirox 

(Olivieri and Brittenham 1997). Deferoxamine (DesferalR) is presently the standard of 

care for the first-line treatment of transfusional iron overload (Brittenham, Griffith et al. 

1994). Although effective in removing iron, treatment compliance is oftentimes 

compromised given that deferoxamine administration requires overnight subcutaneous 

infusions, 5-7 nights/week (Hershko, Link et al. 2005; Neufeld 2006). In contrast to the 

burden associated with deferoxamine treatment, deferasirox (ExjadeR, ICL670) is given 

orally using a once-daily regimen. Although initial findings have been very promising, 

information regarding the effect of deferasirox on hepatic iron handling is lacking.  

It is thought that the toxic effect of iron is due, at least in part, to the generation of 

reactive oxygen species (ROS) through the Fenton reaction where iron mediates the 

oxidation of free radical intermediates such as superoxide anion (O2•–) or hydrogen 

peroxide (H2O2) to highly toxic free radicals such as hydroxyl radical (HO•) (Storz and 

Imlay 1999). Here, we investigate whether deferasirox is capable of removing excess 
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iron from liver and the effect of iron removal, if present, on hepatic ROS. We 

hypothesized that deferasirox treatment would reduce hepatic iron content and that this 

decrease in iron would be associated with decreases in ROS that will, in turn, be 

strongly associated with the reversal or reduction of iron-induced changes in hepatic 

structure and function. 

 

Results 

Characterization of animals 

  Total body and liver weights were obtained and compared .  All animals tolerated 

the iron loading and chelation without any apparent ill effects. The body weights of iron 

overloaded gerbils were similar to controls, indicating that the injection of iron dextran 

did not result in debilitation or weight loss. Liver weights were increased 52% after 10 

weeks of iron overload and remained elevated after one and three months follow up (P 

< 0.05) (Table  5). Deferasirox treatment was effective in reducing iron-associated 

increases in whole liver weight (Table 5). 
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Table 5. Deposition of gerbils in the experimental groups and liver/body weights. 

Interval 
Groups 

n = 10/ group 
Treatment Liver/ body wt (%) 

Baseline 
Ctrl 10wk saline 3.10 ± 0.17 

IO 10wk iron 4.72 ± 0.21* 

 
Ctrl 10 wk saline + 1mo vehicle 3.71 ± 0.14 

1 months IO 10 wk iron + 1 mo vehicle 5.77 ± 0.21* 

 
IO+ DFR 10 wk iron + 1 mo DFR 5.20 ± 0.17*+ 

 
Ctrl 10 wk saline + 3 mo vehicle 3.63 ± 0.08 

3 months IO 10 wk iron + 3 mo vehicle 5.47 ± 0.20* 

 
IO+ DFR 10 wk iron + 3 mo DFR 4.51 ± 0.15*+ 

An asterisk (*) or cross (+) indicates significant difference from age matched control or 
iron overload groups, respectively. 

 

Hepatic iron levels 

Hepatic iron levels were elevated 90 fold compared to age matched controls after 

iron overload injections (P < 0.05). Hepatic iron levels exhibited gradual reduction to  

76.5 and 57.8 fold at one month and three months post overload, respectively (P < 

0.05). Deferasirox treatment decreased hepatic iron level by 43.5% after three months 

of treatment (P < 0.05) (Figure 11). These observations were consistent with hepatic 

Prussian blue staining results in which iron overloaded hepatic tissue exhibited 

frequently elevated iron deposits in all regions of the hepatic plate but especially 

concentrated in the periportal region (Figure 12, C). Interestingly, deferasirox produced 

striking hepatocyte clearing from all regions of hepatic plate (Figure 12, D).In addition, 

we observed an increase in lipid accumulation as vacuoles in the hepatocytes of the 

iron overloaded group (Figure 12, B). These vacuoles were not apparent in hepatic 

tissue from either control or deferasirox treated groups.  
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Figure 11. Average iron levels in mg/g tissue weight in hepatic tissue of gerbils in 
the experimental groups. Ctrl: control, IO: Iron overload, IO+ DFR: Iron overload 
followed by deferasirox treatment, 1m: 1 month interval, 3m: 3 months interval. (*) 
indicates significant difference from control, (†) indicates significant difference from iron 
overload group (P < 0.05).                           

 

 



 
 

-77- 
 

 

Figure 12. Iron deposition in hepatic tissue of Ctrl (A), IO (B,C), and IO+DFR(D)  
gerbils followed for 3 months. Ferric iron was detected by Prussian blue staining. (A) 
demonstrates no apparent iron deposition in the liver of control gerbils (200X). (B) 
depicts iron induced damage and lipid accumulation in hepatocytes as vacuoles (Arrow, 
400X). (C) shows iron accumulation in all areas of hepatic plate, but especially 
concentrated in the periportal region (200X). Large, intensely stained lobular masses 
represent macrophages. (D) demonstrates decreased iron deposition in all areas of 
deferasirox treated hepatic tissue (200X). Iron accumulation manifests as blue 
background staining at this magnification but is discernible as discrete deposits “dots” at 
higher power 
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Ferritin protein expression 

 We investigated whether the elevation in hepatic iron levels with iron overload is 

associated with an increase in hepatic ferritin protein expression using Western blot 

analysis. As expected, ferritin protein expression was 2.4 fold higher after ten weeks of 

iron overload. Ferritin levels decreased slowly over time, and it was 2.2 fold, and 2.1 

fold at one and three months follow up. Interestingly, one and three months of 

deferasirox treatment resulted in 23%, and 47.5% reduction in ferritin protein expression 

compared to that of the age matched iron overload value (Figure 13). 

 

Figure 13. Western blot analysis of ferritin heavy chain (ferH) protein expression 
in hepatic tissue of gerbils in the experimental groups. Effects of iron overload and 
deferasirox treatment on ferritin protein expression were analyzed. Results were 
obtained from six experiments and expressed as a percentage of the corresponding age 
matched control value (upper panel). Representative Western blot (lower panel). 1m: 1 
month interval, 3m: 3 months interval. (*) indicates significant difference from control, (†) 
indicates significant difference from iron overload group (P < 0.05) 
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Superoxide abundance 

   Liver specimens were evaluated for ·O2
- generation within tissue sections 

utilizing HE fluorescence.  Iron overload induced a 167.0% increase in fluorescent 

staining in hepatic tissue three months after iron injections (P < 0.05). This increase was 

reduced by 48.6% with deferasirox treatment in hepatic tissue when compared to age- 

matched control (P < 0.05) (Figure 14). 
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Figure 14. Detection of hepatic superoxide by hydroethidine in Ctrl, IO, and 
IO+DFR. The increase in superoxide involves all regions of the hepatic plate (Upper 
panel). Quantification of hepatic superoxide as determined by intensity of 
fluorescent ethidium bromide-stained nuclei (Lower panel). 3m: 3 months interval. 
An asterisk (*) indicates significant difference from control animals, (†) indicates 
significant difference from iron overload (P < 0.05). 
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Protein oxidation 

 Iron catalyzed oxidation of proteins introduces carbonyl groups at lysine, 

arginine, proline, and threonine residues in a site specific manner. Protein modification 

by oxygen free radicals and other reactive species were analyzed in hepatic cells from 

control, iron overloaded, and deferasirox treated groups utilizing an OxyBlot™ detection 

kit. Interestingly, iron overload induced 1.6 fold increase in protein oxidation at 3 

months. Protein oxidation was reduced by 50.2% after three months of deferasirox 

treatment (P < 0.05) (Figure 15). 

 

 

Figure 15. Effect of iron overload or deferasirox treatment on hepatic protein 
carbonylation. (Left) Representative oxy-blots of hepatic protein isolates from Ctrl, IO, 
and IO+DFR.  (Right) Quantification of oxidatively modified proteins in hepatic protein 
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isolates obtained from the corresponding groups. 3m: 3 months interval. An asterisk (*) 
indicates significant difference from control animals, (†) indicates significant difference 
from iron overloaded animals (P < 0.05). 

 

Cell death  

To investigate whether iron overload induced alterations in oxidative stress are 

related to hepatic cell death, we examined the number of nuclei staining positively for 

DNA fragmentation by TUNEL assay. The apoptotic index in the hepatocytes of iron 

overloaded gerbils increased 7.5 fold compared to age-matched control  3 months post 

iron overload, while deferasirox treatment demonstrated a 41.0% reduction in the 

apoptotic index when compared to this iron overload induced increase (P < 0.05) 

(Figure 16). 



 
 

-83- 
 

 

Figure 16. Representative cross sections showing the changes in nuclei 
exhibiting DNA strand breakage as determined by TUNEL staining in Ctrl, IO, and 
IO +DFR. Bar = 50 µm (upper panel).  Quantification of hepatic apoptotic cells as 
determined by the number of TUNEL positive cells by the number of DAPI positive cells 
per mm2, apoptotic index, (Lower panel). 3m: 3 months interval. An asterisk (*) indicates 
significant difference from control animals, (†) indicates significant difference from iron 
overload (P < 0.05). 
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Bcl-2 apoptotic signaling 

The expression of the anti-apoptotic (Bcl-2) and the pro-apoptotic (Bax and Bad) 

proteins and the ratio of Bax to Bcl-2 were evaluated by western blotting. When Bax is 

in excess, Bcl-2 cannot bind and sequester all the Bax protein, thus allowing Bax to 

oligomerize and act on the mitochondrial membrane to cause release of cytochrome c 

from the inter-membrane space to the cytosolic space. Thus a higher Bax to Bcl-2 ratio 

would potentially increase the susceptibility to mitochondrial permeability. We 

investigated if there were any changes in the anti-apoptotic (Bcl-2) and pro-apoptotic 

(Bax and Bad) proteins in the experimental groups. The expression of Bax/Bcl-2 was 

62.1% higher than control after 10 weeks of iron loading (P < 0.05) (Figure 17). Bax/Bcl-

2 levels remained consistently elevated and were 52% and 121%  higher after 1- and 3-

months follow up compared to respective age matched controls (P < 0.05) (Figure 17). 

We demonstrated decreased levels of  Bax/Bcl-2 expression with deferasirox treatment 

and it was 21.7% and 47% lower after 1- and 3-months of treatment, respectively (P < 

0.05) (Figure 17). 
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Figure 17. Effects of iron overload and deferasirox treatment on Bax/Bcl-2 protein 
level in hepatic tissue of gerbils in the experimental groups. Results were obtained 
from six experiments and expressed as a percentage of the corresponding age matched 
control value (upper panel). Representative Western blot (lower panel). 1 m = 1 month 
interval, 3 m = 3 months interval.  (*) indicates significant difference from control, (†) 
indicates significant difference from iron overload group (P < 0.05). 

 

In addition, Bad expression was 73%, 52%, and 77% higher in the IO, 1 month-

IO and 3 months-IO, respectively (P < 0.05). With three months of deferasirox treatment 

Bad expression was reduced by 33% compared to age matched iron overload group (P 

< 0.05) (Figure 18).  
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Figure 18. Effects of iron overload and deferasirox treatment on Bad protein level 
in hepatic tissue of gerbils in the experimental groups. Results are obtained from 
six experiments in each group and expressed as a percentage of the corresponding age 
matched control value (upper panel). Representative Western blot (lower panel). 1 m = 
1 month interval, 3 m = 3 months interval.  (*) indicates significant difference from 
control, (†) indicates significant difference from iron overload group (P < 0.05). 

 

Caspase-3 activation 

One critical step in the execution of the apoptotic program that elicits DNA 

fragmentation is cleavage of caspase-3 into 19- and 17-kDa fragments. Caspases are 

cysteine dependent aspartate specific proteases which activate endonucleases integral 

in the final execution of nuclei and cell death. Cleaved caspase-3 is downstream of the 

Bcl-2 family apoptotic cascade and integrates apoptotic signaling from the cytokine/Fas 

and Ca2+/ER pathways as well. Caspase-3 activation, as measured by cleaved 
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caspase-3 fragment level, was markedly higher in the iron overload liver (86%, and 

102% after 1 and 3 month of follow up, respectively) as compared to age matched 

control liver (P < 0.05) (Figure 19). We demonstrated a significant reduction of cleaved 

caspase-3 by 21% in the 3 months deferasirox treatment group (P < 0.05) (Figure 9). 

No significant difference in the expression of the full length caspase-3 was observed 

between groups. 

 

 

Figure 19. Effects of iron overload and deferasirox treatment on full length and 
cleaved caspase-3 in hepatic tissue of gerbils in the experimental groups. Results 
were obtained from six experiments and expressed as a percentage of the 
corresponding age matched control value (upper panel). Representative Western blot 
(lower panel). 1 m = 1 month interval, 3 m = 3 months interval.  (*) indicates significant 
difference from control, (†) indicates significant difference from iron overload group (P < 
0.05). 
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Table 6. Regression analysis of the relationship between expression levels of 
specific proteins and TUNEL, HE staining intensity, liver weight, and hepatic iron 
levels obtained from experimental groups 

 
 Liver wt Iron Ferritin Oxyblot HE TUNEL 

Independent 

variables 
      

Liver wt N.T. 0.693† 0.703†† 0.513† 0.511† 0.562† 

Iron 0.693† N.T. 0.957††† 0.911††† 0.919††† 0.949††† 

Ferritin 0.703†† 0.957††† N.T. 0.922††† 0.935††† 0.927††† 

Oxyblot 0.513† 0.911††† 0.922††† N.T. 0.922††† 0.852†† 

HE 0.511† 0.919††† 0.935††† 0.922††† N.T. 0.869†† 

TUNEL 0.562† 0.949††† 0.927††† 0.852†† 0.869†† N.T. 

Apoptotic 

regulators 
      

Bax 0.427* 0.661† 0.696† 0.550† 0.535† 0.341* 

Bcl-2 0.135 0.299 0.321* 0.329* 0.272 0.111 

Bad 0.127 0.127 0.138 0.583† 0.575† 0.362* 

Caspase-3 

(cleaved) 
0.424* 0.637† 0.659† 0.846†† 0.824†† 0.689† 

(†††) indicates very high correlation, (††) indicates high correlation, (†) indicates moderate correlation, 
(*)indicates low correlation, N.T. = not tested. 

 

 

Discussion 

The iron overloaded gerbil, a well accepted animal model of iron overload, is 

thought to closely resemble many of the effects of iron overload seen in humans 

(Carthew, Dorman et al. 1993; Yang, Brittenham et al. 2003). Using the gerbil model of 
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iron overload, we have previously demonstrated that deferasirox treatment removes 

cardiac iron and reduces the iron associated increase in oxidative stress and ferritin 

expression (Al-Rousan, Paturi et al. 2009). Similar to our finding in the heart, here we 

demonstrate that iron overload caused hepatic iron deposition and lipid accumulation 

and resulted in a dramatic increase in hepatic iron content. This elevated level of iron 

deposition was also associated with increased ferritin protein expression, elevated 

levels of ROS, and cell death signals. Iron chelation by deferasirox reduced iron 

deposition and the induction of ferritin and Bax proteins, whose gene expression is 

thought to be linked to oxidative stress, suppressed iron overload-induced superoxide 

formation and protein oxidation, and reduced the incidence of hepatocyte death. These 

data collectively suggest that deferasirox may afford hepatic protection against iron-

induced pathogenesis. 

 

Deferasirox decreases hepatic iron and ferritin levels in the iron-overloaded gerbil 

We found that hepatic iron levels after three months of follow up were 

significantly lower than observed in the 10-week iron overload animals (P < 0.05). 

These observations are consistent with the findings by Wood et al. (Wood, Otto-Duessel 

et al. 2006) that body iron levels exhibit spontaneous (non chelator-mediated) 

redistribution and elimination. These levels, however, remained elevated and potentially 

harmful to hepatic tissue. Three months of deferasirox treatment significantly reduced 

hepatic iron content by 43.5% compared to that of the age-matched iron overloaded 

group (P < 0.05) (Figure 11). As expected from its predominantly biliary elimination 

clearance  (Hershko, Konijn et al. 2001), these iron removal data suggest that 

deferasirox appears to be particularly efficient for hepatocyte clearance. Similar to our 
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biochemical assessment, the findings from our histological data suggest that deferasirox 

is efficacious in removing liver iron. In addition, we also observed evidence of lipid 

accumulation in the iron-overloaded liver (Figure 12, B arrows). Elevated free iron has 

been shown to be hepatotoxic, possibly exerting its effects by interfering with 

mitochondrial or microsomal function which disrupts lipoprotein transport and fatty acids 

homeostasis (Baptista-Gonzalez, Chavez-Tapia et al. 2008; Duncan 2008; Raszeja-

Wyszomirska, Lawniczak et al. 2008). Interestingly, with deferasirox treatment we failed 

to find any evidence of fatty acid accumulation suggesting perhaps that this agent is 

efficacious in preventing iron-induced liver damage. More research to specifically 

address hepatic mitochondrial function in these groups will no doubt be useful in 

furthering our understanding the effect of deferasirox on liver physiology. 

It is well accepted that ferritin is the principal storage protein for iron (Arosio and 

Levi 2002). The increase in ferritin expression in response to iron overload is thought to 

provide a cytoprotective mechanism against iron induced toxicity (Balla, Jacob et al. 

1992; de Valk and Marx 1999). Nonetheless, it should be noted that although ferritin 

and hemosiderin have traditionally been regarded as ‘safe’ storage forms of iron, this 

does not mean that the iron contained in these molecules cannot potentiate the 

development of oxidative stress under certain conditions. Indeed, it has been recently 

demonstrated that the superoxide radical is capable of mobilizing iron from ferritin and 

that this can result in the production of iron-catalyzed hydroxyl radicals (Bartfay, 

Dawood et al. 1999).  

The synthesis of ferritin is tightly regulated and is dependent on intracellular iron 

levels. When iron is low, binding of the iron-regulatory proteins (IRP-1) to iron-

responsive elements (IRE) inhibits translation of ferritin. Conversely, when cellular iron 
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is high, the opposite regulation takes place (Ferrara and Taylor 2005). In the present 

study, we demonstrated a significant increase in ferritin levels with iron loading and 

more importantly, that these elevations were significantly suppressed with deferasirox 

treatment (Figure 13). These results are in agreement with previous findings that 

chelation therapy with deferoxamine reduced iron-induced ferritin upregulation in rat 

aorta (Ishizaka, Saito et al. 2005). To our knowledge, the present study is the first 

description of the effect of iron overload and deferasirox treatment on hepatic ferritin 

expression. 

It is thought that deferasirox does not chelate tightly bound iron stores (eg, 

hemoglobin or the cytochromes), but instead extracts iron from storage proteins such as 

ferritin with relatively weak bonds (Evens, Mehta et al. 2004). On the other hand, in vitro 

studies have shown that deferasirox is able to access the intracellular labile iron pool 

(LIP) (Glickstein, El et al. 2005; Glickstein, El et al. 2006). It is important to note here 

that ferritin-bound iron is in an equilibrium state with the free iron in the LIP (Crichton 

and Ward 2003).  Thus, it is plausible to postulate that deferasirox may indirectly reduce 

ferritin bound iron by shifting the equilibrium in favor of the more accessible iron in the 

LIP. 

 

Reduced hepatic iron levels are associated with decreases in tissue ROS  

Because humans have no physiologic means of eliminating excess iron, any 

persistent increase in intake may eventually result in iron overload. When the extent of 

iron accumulation exceeds the body's ability to safely sequester the surplus iron, free 

iron builds up in the LIP (Breuer, Epsztejn et al. 1996). Normally, the LIP represents 

only 3–5% of the total cellular iron (Arosio and Levi 2002). Iron overload can induce 
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about a three-fold increase in the iron level in hepatic LIP, which triggers oxidative 

stress and cell injury (Arosio and Levi 2002).   

The formation of highly toxic hydroxyl radical via Fenton and Haber-Weiss 

reactions, followed by the subsequent formation of lipid peroxidation products, is 

postulated to be an underlying mechanism of iron mediated liver injury (Britton and 

Bacon 1994; Staubli and Boelsterli 1998). In the liver, iron overload is thought to 

damage the hepatocytes and dysregulate a variety of metabolic pathways, which if 

allowed to proceed unchecked could eventually result in liver fibrosis, cirrhosis, or other 

liver diseases (Ramm and Ruddell 2005; Tsukada, Parsons et al. 2006). Iron chelators 

decrease the redox activity of iron through their ability to form complexes with Fe (III), 

preventing the reduction of Fe(III) by superoxide to the reactive Fe(II) state. 

  In the present study, we showed that ROS levels as superoxide anion (O2•– ) 

were increased in the iron-overloaded hepatic tissue as determined by hydroethidium 

staining (Figure 14). These findings are consistent with earlier data which have 

suggested that increased iron levels are associated with increases in liver ROS 

(Glickstein, El et al. 2006; Pardo Andreu, Inada et al. 2008). Possible sources of 

increased ROS with iron loading are not fully elucidated but could include the iron 

catalyzed Fenton-Haber Weiss reaction, redox cycling, and possibly iron associated 

changes in NADPH oxidoreductases and mitochondrial function (MacCarthy, Grieve et 

al. 2001; Galaris and Pantopoulos 2008; Kim, Kim et al. 2008; Pardo Andreu, Inada et 

al. 2008). Whether these changes in ROS are directly related to the improvements in 

histological appearance we observe with deferasirox treatment are not fully elucidated.  

Our data suggested that iron overload was associated with increased levels of 

protein oxidation in the liver (Figure 15) and importantly, that deferasirox treatment is 
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capable of decreasing the amount of oxidized proteins in the iron overloaded liver. 

Although the physiological effects of protein oxidation in the liver are not entirely 

elucidated, recent work has suggested that protein oxidation can alter hepatic enzyme 

activity. For example, the increased oxidative levels have been shown to alter the 

activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCoAR), the rate 

limiting enzyme in the production of cholesterol (Pallottini, Martini et al. 2005). Whether 

the proteins identified in our analysis are related to hepatic metabolism is unknown and 

will necessitate further experimentation. Nonetheless, the decreases we see in the 

quantity of modified proteins and liver ROS levels are highly correlated with deferasirox-

associated improvements in liver iron levels and liver histology (Table 6). Taken 

together, these data suggest that deferasirox may be efficacious in preventing iron 

accumulation, ROS accumulation and iron-overload induced liver pathology.  

 

Reduced hepatic iron levels are associated with decreases in iron-associated cell death 

A link between oxidative stress and cell death has been reported in several 

conditions including hemochromatosis (Cooksey, Jouihan et al. 2004), alcoholic liver 

disease (Zima and Kalousova 2005), hepatitis, and liver cirrhosis (Kaplowitz 2000). 

However, the mechanism by which free radicals can induce cell death is not well 

understood. Here, we demonstrated that iron overload was associated with increased 

hepatic cell death as determined by increased incidence of TUNEL reactive nuclei 

(Figure 16). Interestingly, the number of TUNEL positive nuclei was significantly 

reduced with deferasirox treatment.  

To investigate the mechanism of iron overload-related DNA strand breakage that 

we observed in our TUNEL studies, we examined the expression of Bcl-2 family 
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proteins. It is thought that the ratio of Bax to Bcl-2 plays an important role in regulating 

the release of cytochrome-c from the mitochondria into the cytosol. This latter effect is 

favored as the balance shifts toward Bax leading to cell death (Oltvai, Milliman et al. 

1993). In iron overloaded animals, we found that Bax expression was elevated and that 

these levels were reduced with deferasirox treatment (Figure 17). To expand upon this 

finding we also examined the regulation of Bad, a pro-apoptotic member of the Bcl-2 

family that can displace Bax binding from Bcl-2 and Bcl-XL, resulting in cell death 

(Hengartner 2000). Similar to our findings with Bax, deferasirox treatment significantly 

decreased the expression of Bad (Figure 18). 

Caspase-3 is a key effector of mitochondrial-mediated apoptosis  (Cai, Yang et 

al. 1998; Porter and Janicke 1999; Goldspink 2003) that is normally activated by 

proteolytic cleavage (Cohen 1997). To investigate whether alterations in the regulation 

of caspase-3 may be involved, here we examined the expression of caspase-3 with iron 

overload and deferasirox treatment. With iron overload, we observed increases in the 

amount of cleaved caspase-3 (Figure 19). Further, we demonstrated that deferasirox 

administration decreased caspase-3 cleavage. These data, in conjunction with our 

findings that deferasirox alters the regulation of Bcl-2, Bax and Bad, suggest that 

deferasirox may decrease iron-induced apoptosis by affecting the regulation of the 

mitochondrial apoptotic cascade. This is in agreement with the results of other recent 

investigations that have implicated increased iron levels as causing mitochondrial 

dysfunction and apoptosis (Eaton and Qian 2002; Walter, Knutson et al. 2002). Whether 

the activation of the mitochondrial apoptotic pathway is dependent upon iron-associated 

increases in ROS per se, or ROS acting in concert with other factors, is worthy of 

detailed studies. 
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Conclusions 

In conclusion, our data suggest that iron overload is associated with increases in 

hepatic iron levels, indices of ROS, and increased hepatic apoptosis and that 

deferasirox is efficacious in attenuating these parameters. Given that iron overload is 

associated with an increased risk of developing liver fibrosis, decreased hepatic 

function, and hepatic cancer (Bonkovsky and Lambrecht 2000; Fattovich, Stroffolini et 

al. 2004) it is likely that deferasirox treatment may find a use for the treatment and / or 

prevention of several hepatic disorders.  
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Article #3: Corresponds to Specific Aim #3 

To determine the long term cardiovascular complications associated with iron 

overload and to determine if chronic deferasirox administration is able to 

prevent/reduce these complications, including those related to cardiac 

remodeling and functional abnormalities. 
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Abstract 

Iron-induced cardiovascular disease is the leading cause of death in iron-

overload patients.  Deferasirox is a novel tridentate oral chelator that exhibits a half-life 

suitable for once-daily dosing; however, little is known regarding the effectiveness of 

this agent in preventing iron-induced cardiovascular dysfunction. Adult male Mongolian 

Gerbils were randomly divided into three groups: control, iron overload, and iron 

overload followed by deferasirox treatment. Iron overload animals received iron-dextran 

100 mg/kg i.p /5 d for 10 wks while deferasirox was given 100 mg/kg/d p.o for 9 months 

post iron loading. Cardiac and aortic iron levels were determined by inductively coupled 

plasma atomic emission spectrometry.  Gerbil EKG (standard leads I, II, & III) and 

echocardiograms (Philips Sonos 5500) were obtained in anesthetized animals at regular 

intervals. Compared to control animals, iron concentration was 3.3 and 2.4 fold higher in 

iron overloaded heart and aorta respectively (P < 0.05). Deferasirox treatment reduced 

cardiac and aortic iron levels by 31.6%, and 34.6%, respectively (P < 0.05). These 

results were consistent with the decrease in cellular iron deposition observed with 

Prussian blue iron staining. Cardiac mass/body wt ratio was increased by 34% in the 

iron overloaded group and was 24% lower with deferasirox treatment. Iron overloaded 

gerbils were found to exhibit frequent arrhythmias including premature ventricular 

tachycardia (6/10), supraventricular tachycardia (3/10), recurrent ventricular tachycardia 

(4/10), and increased mortality (3/10) with the latter occurring most likely due to fatal 

arrhythmias. Echocardiographic assessment demonstrated iron-induced increases in 

LVPWd, LVIDd, and LVSd by 48.6%, 26.2%, and 42.4%, respectively (P < 0.05). 

Similarly, ejection fraction and fractional shortening were reduced by 29.6% and 22.9% 

compared to controls (P < 0.05). Deferasirox reduced the incidence of iron-induced 
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arrhythmia and either prevented or significantly decreased iron-induced changes in 

cardiac structure (LVIDd: 23.6%; P < 0.05), LVPWd (21.5%; P < 0.05), LVSd (27.2%; P 

< 0.05) and function (EF: 29.8%; P < 0.05), (FS: 27.8%; P < 0.05). Taken together, 

these data suggest that once daily oral deferasirox treatment appears to be effective in 

preventing or reducing iron-induced cardiovascular abnormalities. 

Introduction 
 

Despite dramatic improvements in care, iron induced cardiac disease remains 

the most frequent cause of death in thalassemia major and a major life-limiting 

complication of other transfusion-dependent patients, hereditary hemochromatosis, and 

other forms of iron overload (Neufeld 2006). The most common form of cardiac 

hemosiderotic injury is dilated cardiomyopathy, generally manifesting as systolic or 

diastolic dysfunction (Liu and Olivieri 1994). Signs of myocardial damage due to iron 

overload include arrhythmia, angina, cardiomegaly, heart failure, and pericarditis. Iron 

overload can also produce conduction defects secondary to iron deposition in the 

Bundle of His and the Purkinje system (Schwartz, Li et al. 2002). Sudden death due to 

arrhythmia can therefore occur among patients with advanced iron overload (Klintschar 

and Stiller 2004). Although prophylactic therapy with angiotensin converting enzyme 

inhibitors and β-blockers can help reduce cardiac morbidity and mortality (Trad, 

Hamdan et al. 2009), the mainstay of therapy for cardiac iron overload remains iron 

chelating agents. The goal of chelation therapy is primarily the prevention of iron 

overload in order to preserve organ function and improve patient survivability. To date, 

only deferoxamine is globally available for the first-line treatment of transfusion-related 

iron overload. Effective chelation with deferoxamine has been shown to increase 
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survival rate and prolong length and quality of life for transfusion patients (Obejero-Paz, 

Yang et al. 2003). However, deferoxamine chelation therapy is associated with a 

cumbersome treatment regimen and toxic side effects resulting in low patient 

adherence. In addition, treatment with deferoxamine has limited clinical outcomes and 

some patients still die of iron-induced cardiac disease despite apparently adequate liver 

iron chelation.  

Unlike deferoxamine, deferasirox is an orally effective once daily iron chelating 

agent with favorable patient satisfaction (Neufeld 2006; Cappellini and Pattoneri 2009).  

Deferasirox was recently approved by the Food and Drug Administration (FDA) and is 

the first oral medication approved in the United States for this purpose (Lindsey and 

Olin 2007; Stumpf 2007). As deferasirox is well tolerated, it is expected to greatly 

enhance the acceptance of iron chelation therapy and offer a new alternative to 

burdensome continuous infusion therapy (Stumpf 2007). Whether deferasirox is 

efficacious in preventing the cardiovascular complications associated with iron overload 

is not yet clear. To address this gap in our understanding, we examined if the chronic 

administration of deferasirox is capable of removing excess iron from heart and other 

tissues, and whether it is capable of preventing or reducing the severity of iron-induced 

cardiac complications in the iron overloaded gerbil, a well accepted animal model of iron 

overload that is thought to closely resemble the effects of iron overload seen in humans 

(Carthew, Dorman et al. 1993).  Our data suggest that once daily oral deferasirox 

treatment appears to be effective in preventing or reducing iron-induced cardiovascular 

abnormalities. 
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Results 

Characterization of animals 

Total body and heart weights were obtained and compared. All animals tolerated 

the iron loading and chelation without any apparent ill effects. The body weights of iron 

overloaded gerbils were similar to controls, indicating that the injection of iron dextran 

did not result in debilitation or weight loss. Cardiac, hepatic and kidney weights were 

increased 34%, 41.4% and 30.9% (P < 0.05), respectively, in the iron overloaded group, 

and deferasirox treatment was effective in reducing iron-associated increases in whole 

tissue weight by 23.9%, 16.3%, 23.7% (Table 7). 

 

Table 7. Average heart, liver, and Kidney weights of gerbils in the experimental 
groups followed for 9 months 

Group 
n = 10/ group Heart/body wt (%)  Liver/body wt (%)  Kidney/body wt (%) 

Ctrl 0.39 ± 0.01 4.1 ± 0.31 0.81 ± 0.02 

IO 0.52 ± 0.02* 5.8 ± 0.30* 1.05 ± 0.03* 

IO + DFR 0.40 ± 0.01† 4.9 ± 0.34† 0.8 ± 0.02† 
    An asterisk (*) or cross (+) indicates significant difference  from age matched control and  iron overloaded 

groups, respectively. 

 

Cardiac, aortic, and hepatic iron levels 

Compared to hearts obtained from control animals, iron concentration was 3.3 

fold higher in iron overloaded hearts (P < 0.05). Deferasirox treatment for 9 months 

resulted in a 31.6% decrease in cardiac iron level (P < 0.05) (Figure 20, A). Aortic iron 

concentration was 2.4 fold higher in the iron overloaded group compared to controls (P 

< 0.05). Nine months of deferasirox treatment decreased aortic iron level by 34.6% (P < 

0.05) (Figure 20, B). Similarly, hepatic iron concentration was 49.5 fold higher than that 
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of control after nine months of follow up after iron overload. Hepatic iron concentration 

was 47.4% lower after 9 months of deferasirox treatment compared to that observed in 

the untreated iron overloaded animals. Prussian Blue iron staining of the left ventricle 

from the iron overloaded group indicates an increase in iron deposition and tissue 

damage compared to that of control. In sections of the left ventricular sections obtained 

from deferasirox treated animals, a lower iron deposition and preservation of tissue 

morphology was observed (Figure 21). 

 

 

 

Figure 20. Average iron levels in mg/g tissue weight in cardiac (A), aortic (B), and 
hepatic (C) tissue of gerbils in the experimental groups followed for 9 months. 
Ctrl: control, IO: Iron overload, IO+ DFR: Iron overload followed by deferasirox 
treatment. (*) indicates significant difference from control, (†) indicates significant 
difference from iron overload group. 
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Figure 21. Histological analysis of cardiac tissue of Ctrl (A), IO (B), and IO+DFR 
(C) gerbils followed for 9 months. Ferric iron was detected by Prussian blue staining. 
No apparent iron deposition was observed in control gerbils. Iron overload resulted in 
morphological alteration and iron accumulation in the interstitium and in cardiac 
myocytes. Deferasirox treatment preserved tissue morphology and diminished iron 
deposition. Bar represents 100 µm; images were taken at 400X original magnification. 
 

Electrocardiographic evaluation 

Electrocardiographic measurements suggested an increased incidence of 

arrhythmias with iron overload (Figure 22). Iron overloaded gerbils were found to exhibit 

frequent premature ventricular tachycardia, (PVC) (6/10), supraventricular tachycardia, 

(SVT) (3/10), recurrent sustained and non sustained ventricular tachycardia, (VT) 

(4/10), and increased incidence of death (3/10) with the latter occurring most likely due 

to fatal arrhythmias (Figure 23). In addition, we observed an increased incidence of 

bundle branch block, (BBB) (6/10), negative P wave (8/10), and T wave flattening (5/10) 

(Figure 23).  
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Figure 22. Representative ECGs (standard leads I, II, III) from control, iron 
overload, and deferasirox (DFR) treated groups followed for 9 months. EKG trace 

from iron overloaded animal (middle) exhibits ventricular tachycardia, EKG trace from 

control (left) and deferasirox treated animal (right) exhibit normal rhythm. 
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Figure 23. Frequency of electrocardiographic abnormalities observed in Ctrl, IO, 
and IO+ DFR followed for 9 months. PVC = premature ventricular tachycardia, SVT = 
supraventricular tachycardia, VT = ventricular tachycardia, BBB = bundle branch block, 
p = p wave, T = T wave. 

 

Echocardiographic evaluation (cardiac structure) 

Alterations in cardiac structure were evaluated by echocardiographic 

measurements. Our data demonstrated that LVPWd increased by 39.1% and 48.6% in 

the iron overloaded group after 6 and 9 months of follow up, respectively (P < 0.05) 

(Figure 24). LVPWd was 21.4% and 21.5% lower after 6, and 9 months of follow up, 

respectively, with deferasirox treatment (P < 0.05) (Figures 24, 25). Similarly, LVIDd 

increased by 18.5%, and 26.2% in the iron overloaded animals after 6, and 9 months of 

follow up, respectively (P < 0.05) (Figure 24). In the deferasirox treatment group, LVIDd 

was 16.5% and 23.6% lower after 6 and 9 months of follow up, respectively than that 

observed with iron overload (P < 0.05). In addition, LVSd was 31.5% and 42.4% higher 
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in the iron overloaded group after 6 and 9 months of follow up, respectively compared to 

control (P < 0.05). These levels were lower by 23.4% and 27.2% with 6 and 9 months of 

deferasirox treatment, respectively (P < 0.05) (Figure 24).  

Alterations in cardiac structure were evaluated by echocardiographic 

measurements. Our data demonstrated that LVPWd was increased by 39.1% and 

48.6% in the iron overloaded group after 6 and 9 months of follow up, respectively (P< 

0.05) (Figure 24). LVPWd was 21.4% and 21.5% lower after 6, and 9 months of follow 

up, respectively, with deferasirox treatment (P < 0.05) (Figures 24, 25). Similarly, LVSd 

was 31.5% and 42.4% higher in the iron overloaded group after 6 and 9 months of 

follow up, respectively compared to control (P < 0.05). These levels were lower by 

23.4% and 27.2% with 6 and 9 months of deferasirox treatment, respectively (P < 0.05) 

(Figure 24).  
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Figure 24. Effect of iron overload and deferasirox treatment on left ventricular 
dimension. Ctrl: control, IO: Iron overload, IO+ DFR: Iron overload followed by 
deferasirox treatment. BL = baseline (before iron loading), mo = months of follow up. 
LVPWd = left ventricular posterior wall dimension during diastole, LVIDd = left 
ventricular internal wall dimension during diastole, LVSd =  left ventricular septal 
dimension during diastole 
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Figure 25. Representative M-mode echocardiograms from Ctrl (A), IO (B), and IO+ 
DFR (C) groups followed for 9 months. Arrows indicate left ventricular posterior wall 
dimension (LVPW) and is 0.127 cm, 0.153 cm, and 0.136 cm in A, B, and C 
respectively. 
 

Echocardiographic evaluation (cardiac function) 

Cardiac systolic and diastolic function was evaluated by echocardiographic 

measurements. Compared to control, ejection fraction was reduced by 22%, and 29.6% 

in the iron overloaded group after 6, and 9 months of follow up, respectively (P < 0.05) 

(Figure 26). Similarly, fractional shortening was 12.9% and 29.9% lower than control 

after 6, and 9 months of follow up, respectively (P < 0.05) (Figure 26). 

Iron-induced decreases in ejection fraction were 17.7% and 29.8% higher than 

iron overload group after 6 and 9 months of deferasirox treatment, respectively (P < 

0.05) (Figure 26). Likewise, iron induced alteration in fractional shortening were 10% 

and 27.8% higher than iron overload group after 6 and 9 months of deferasirox 

treatment (P < 0.05) (Figure 26). In addition, gerbils in the iron overloaded group 

exhibited a higher frequency of regurgitation of all three cardiac valves (mitral 6/10, 

tricuspid 6/10, and aortic 3/10) (Figure 27).  
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Figure 26. Effect of iron overload and deferasirox treatment on left ventricular 
ejection fraction (EF), and fractional shortening (FS) in gerbils from experimental 
groups. Ctrl: control, IO: Iron overload, IO+ DFR: Iron overload followed by deferasirox 
treatment. BL = baseline (before iron loading), mo = months of follow up.  
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Figure 27. Frequency of cardiac valvular regurgitations observed in Ctrl, IO, 
IO+ DFR followed for 9 months. MR = mitral valve regurgitation, TR = tricuspid 
valve regurgitation, AR = Aortic valve regurgitation. 
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Figure 28. Correlation between cardiac iron concentration and heart/body wt, or 
echocardiographic parameters. LVPWd = left ventricular posterior wall dimension 
during diastole, LVIDd = left ventricular internal wall dimension during diastole, LVSd =  
left ventricular septal dimension during diastole, EF = ejection fraction, FS = fractional 
shortening. R = correlation coefficient. 
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Discussion 

Here, we examine the efficacy of chronic deferasirox administration in preventing 

iron induced cardiac complications in the gerbil model of iron overload. Our data are 

consistent with the notion that deferasirox treatment removes cardiac iron and reduces 

cardiac damage, remodeling, arrhythmias, and declines in indices of cardiac function 

that are typically associated with iron overload. 

Deferasirox removes cardiac, aortic, and hepatic iron  

  Iron distribution in the hearts of iron overloaded gerbils is thought to be similar to 

that reported in iron overloaded human hearts (Carthew, Dorman et al. 1993). Our 

findings demonstrated that cardiac and aortic iron concentrations nine months post iron 

loading were 3.3- and 2.4- fold higher than that of control. Hepatic iron levels were 

strikingly higher than that of heart and aorta and were 49.5 fold higher than that of 

corresponding control. Chronic deferasirox administration significantly reduced iron 

concentrations from these tissues and were 31.6%, 34.6%, and 47.4% lower than iron 

overload group in heart, aorta, and liver, respectively (Figures 20, 21). These results are 

consistent with previous studies suggesting that deferasirox is effective in cardiac and 

hepatic iron removal (Wood, Otto-Duessel et al. 2006; Otto-Duessel, Brewer et al. 

2008). Whether the disparity in iron levels that we see among tissues is related to 

relative differences in the rate or the mechanism of iron uptake or clearance is not clear. 

It has been previously suggested that the liver has especially high efficiency of iron 

clearance that is related to membrane potential (de Silva, Askwith et al. 1996). In 

addition, it is thought that the rate of iron clearance from the myocardium is six times 

slower than that of liver (Oudit, Sun et al. 2004). Nonetheless, as similar findings have 
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been observed with deferoxamine treatment (Anderson, Westwood et al. 2004), it is 

less likely that these differences are chelator-dependent. Specific mechanisms remain 

to be established. 

Deferasirox treatment preserves cardiac structure and prevents ventricular remodeling 

Iron induced cardiac hypertrophy and ventricular remodeling is a serious long 

term complication associated with iron overload (Hahalis, Alexopoulos et al. 2005). 

Previous findings have suggested that chelation therapy with deferoxamine helps 

prevent iron induced cardiac hypertrophy and failure in the clinic (Pennell, Sutcharitchan 

et al. 2008) and in animal studies (Yang, Brittenham et al. 2003).  Whether deferasirox 

produces a similar effect is not clear. Our findings suggest that iron overload was 

associated with increased cardiac mass, and a progressive increase in left ventricular 

wall dimensions, which reached significance at six- and nine- months following iron 

loading. With chronic deferasirox treatment, both cardiac mass and left ventricular 

dimensions tended to be preserved with values similar to that found in the control 

animals (Table 7, Figure 24). This is in agreement with recent case reports that have 

demonstrated that deferasirox treatment restored cardiac left ventricular diameter, left 

ventricular septum thickness, and left ventricular posterior wall dimension (Kiguchi, Ito 

et al. 2009) and reversed dilated cardiomyopathy (Kiguchi, Ito et al. 2009; Trad, 

Hamdan et al. 2009) in  patients with iron overload. The mechanism by which chelation 

therapy with deferasirox confers such cardioprotection is not known. We have 

previously demonstrated that deferasirox treatment reduced iron induced oxidative 

stress and MAPK phosphorylation (Al-Rousan, Paturi et al. 2009), both of which are 

thought to be implicated in cardiac hypertrophy. Nevertheless, a causal link between 
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oxidative stress, MAPK phosphorylation, and cardiac remodeling, along with the effect 

that we see with deferasirox treatment, cannot be established from the current evidence 

and will necessitate further experimentation.  

Deferasirox treatment preserves cardiac function and reduces incidence of arrhythmia 

  Without adequate control of iron overload, ongoing cardiac iron accumulation 

results in iron deposition in cardiac myocytes and the conduction system, which is 

thought to predispose the heart to recurrent arrhythmias and heart failure (Klintschar 

and Stiller 2004; Demant, Schmiedel et al. 2007). The mechanism of iron induced 

cardiac arrhythmias is not entirely elucidated, but it has been suggested that labile “free” 

iron can directly interact and interfere with a variety of ion channels within 

cardiomyocytes including L-type calcium channel, the ryonidine sensitive calcium 

channel, voltage gated sodium channel, and delayed rectifier potassium channel (Oudit, 

Sun et al. 2003; Wood, Enriquez et al. 2005; Oudit, Trivieri et al. 2006). Similar to 

findings from previous studies, we demonstrate that iron overload was associated with 

increased incidence of arrhythmias including premature ventricular contractions, 

supraventricular- and ventricular tachycardia, and frequent bundle branch blocks (Yang, 

Dong et al. 2002; Laurita, Chuck et al. 2003). As predicted, chronic deferasirox 

treatment was associated with lower incidence of EKG changes, and no evidence of 

ventricular tachycardia was observed in treated animals (Figure 23). This is consistent 

with previous findings that suggested that deferoxamine treatment prevents EKG 

abnormalities in the iron overloaded gerbil (Obejero-Paz, Yang et al. 2003).  How 

chelation therapy may produce these effects is not clear. It is thought that iron 

accumulation in the bundle of His and Purkinje fibers results in delay or blockage of 
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myocardial electrical conduction (Schwartz, Li et al. 2002). Thus, it is likely that 

chelating agents, by removing iron accumulated in the conduction system, may improve 

electrical conduction and thus reduce the incidence of EKG abnormalities associated 

with iron overload. Future experiments designed to directly test this possibility will no 

doubt be useful in increasing our understanding of how deferasirox exerts its effects. 

Iron overload was also associated with progressive decline in left ventricular 

ejection fraction and fractional shortening accompanied with an increase in the 

frequency of cardiac valve regurgitation. Deferasirox treatment tended to preserve 

cardiac function and only a slight decline in ejection fraction was observed (Figure 26). 

Similar findings have been demonstrated by Kiguchi and collegues (Kiguchi, Ito et al. 

2009) where deferasirox treatment restored ejection fraction and cardiac functions in a 

patient with cardiac iron overload. Whether the abnormalities in cardiac structure and 

function we observed are directly related to iron induced toxicity is unknown and will 

necessitate further experimentation. Nonetheless, the changes that we see in heart 

mass, left ventricular dimension, ejection fraction, and fractional shortening are highly 

correlated with cardiac iron concentration (Figures 27, 28).  Taken together, these data 

suggest that deferasirox may be efficacious in the treatment and / or prevention of iron-

overload induced cardiac complications.  
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IRON LEVELS IN OTHER TISSUES 
 
 

Pancreatic iron level 

We examined the effect of deferasirox treatment at one and three months on 

pancreatic iron concentration in the Mongolian gerbil. Compared to control, iron 

concentration was significantly higher in the overloaded animals. Our results 

demonstrated 37.9% reduction in pancreatic iron after three months of deferasirox 

treatment compared to age matched-untreated group (P < 0.05) (Figure 29). Similar 

results have been observed with Prussian Blue iron staining were iron deposition was 

increased in the pancreatic tissue of the iron overloaded animals especially in the 

parenchyma. Tissue sections from animals treated with deferasirox for three months 

exhibited an observable clearance of iron deposits and no apparent iron deposition was 

observed in control tissues (Figure 30). 
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Figure 29. Average iron levels in mg/g tissue weight in pancreatic tissue of 
gerbils in the experimental groups. Ctrl: control, IO: Iron overload, IO+ DFR: Iron 
overload followed by deferasirox treatment, 1 m: 1 month interval, 3 m: 3 months 
interval. (*) indicates significant difference from control, (†) indicates significant 
difference from iron overload group (P < 0.05).   
 

 

 

 
 

Figure 30. Histological analysis of pancreatic tissue of control, iron overload, and 
deferasirox treated groups followed for 3 months. Ferric iron was detected by 
Prussian blue staining. No apparent iron deposition was observed in control gerbils. Iron 
overload resulted in iron accumulation in parenchymal cells and to a lesser extent in 
pancreatic β-cells. Deferasirox treatment diminished iron deposition from all regions of 
pancreatic tissue. Images were taken at 400X original magnification. 
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Kidney iron level 

Kidney samples from animals in the experimental groups have been examined 

for iron level using ICP-AES technique. Compared to that of the corresponding age 

matched control group iron concentration in the iron overloaded groups were 97-, 51-, 

and 57- fold higher in IO, 1 month-IO, and 3 months-IO, respectively, (P < 0.05) (Figure 

31). No significant reduction in kidney iron levels were observed after 1, or 3 months of 

deferasirox treatment. 

 

Figure 31. Average iron levels in mg/g tissue weight in kidney tissue of gerbils in 
the experimental groups. Ctrl: control, IO: Iron overload, IO+ DFR: Iron overload 
followed by deferasirox treatment, 1 m: 1 month interval, 3 m: 3 months interval. (*) 
indicates significant difference from control. (P < 0.05)  
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CHAPTER V 

GENERAL DISCUSSION 

 

The primary purpose of the present study was to investigate the effect of 

deferasirox treatment on iron overload-related complications with special emphasis on 

the heart. To address this purpose, iron overload associated alterations in cardiac and 

hepatic mass, iron content, histology, oxidative stress, protein expression, and cardiac 

structure and function were assessed in iron overloaded or deferasirox treated gerbils in 

comparison to control. 

More than a decade ago, Carthew and his colleagues (Carthew, Dorman et al. 

1993) introduced the Mongolian gerbil model of iron overload. It duplicated, for the first 

time, the structural cardiomyopathy and hepatic dysfunction found clinically in patients 

with chronic iron excess. In a series of studies by others (Schwartz, Li et al. 2002; Yang, 

Dong et al. 2002) and in our own laboratory (Walker, Epling et al. 2007), the gerbil has 

been found to provide an animal model that reproduces many of the essential functional 

and structural features of iron-induced liver and heart disease in patients. Tissue iron 

levels, however, vary among studies based on the dosing regimen of iron-dextran 

administration (Kaiser, Davis et al. 2004). Cardiac and hepatic iron levels measured in 

the present study fall within the range of iron levels detailed in other studies that have 

used a similar dosing regimen (Wood, Otto-Duessel et al. 2006; Otto-Duessel, Aguilar 

et al. 2007). Iron chelation with deferasirox was given at 100mg/kg/day. This dose was 

chosen based on an earlier study evaluating the dose-response of deferasirox in the 

gerbil model (Wood at al. 2004). The highest dose, 100 mg/kg daily, was shown to 

significantly reduce hepatic iron content, while lower doses were not effective. Gerbils 
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have a 7.8-fold higher surface area to mass ratio, and corresponding metabolic rate, 

than humans. The gerbil deferasirox dose of 100 mg/kg translates to only two-thirds of 

the standard human dose (20 mg/kg) when normalized according to body surface area 

(Otto-Duessel, Aguilar et al. 2007); this is appropriate given that there is not ongoing 

transfusional iron accumulation.  

 

Effect of iron overload and deferasirox treatment on tissue iron concentration  

Results from previous studies and from the present investigation indicate that 

iron accumulates primarily in the liver and to lower extent in the heart and other tissues. 

For example, hepatic iron concentration measured in the present study was 

approximately 58 fold higher whereas cardiac iron concentration was only 7.4 fold 

higher than age matched control animals after 3 months of follow up. On the other hand, 

deferasirox treatment for three months resulted in 43.5% reduction in hepatic iron 

whereas cardiac iron was reduced by only 23.5%. It is thought that the mechanisms of 

iron uptake and clearance differ in heart and liver tissue, resulting in differing iron 

transport kinetics (Schwartz, Li et al. 2002). Previous studies have suggested that 

cardiac iron is cleared six-times more slowly than liver iron (Oudit, Sun et al. 2004). 

Although not directly examined, this phenomenon may explain why many iron overload 

patients develop cardiac dysfunction even though their liver iron levels appear to be 

only slightly elevated. As such, there is a need for more research to determine how 

elevated liver iron concentrations may correspond to elevations in cardiac iron levels 

and an increased risk of possibility of cardiac damage.  
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Effect of iron overload and deferasirox treatment on tissue iron distribution 

It has been suggested that tissue iron deposition occurs in a non-homogenous 

fashion. Similar to previous studies, histological examination of cardiac sections from 

iron overloaded gerbils demonstrated that excess iron accumulates primarily in the 

cardiomyocytes, cardiac macrophages, and in interstitial spaces of the heart. In patients 

with iron overload, it has been reported that iron deposition tends to be more extensive 

in the epicardial third of the ventricle, followed by the subendocardium and papillary 

muscle, and least in the middle third of the ventricular wall (Walker, Black et al. 2004). 

Iron accumulations in the cardiac conduction system, coronary arteries, and valves are 

usually limited, but involvement of the conduction system is associated with cardiac 

arrhythmias. In the liver, iron deposition tends to be more localized to the periportal 

region as opposed to the centrilobular region. Given the high oxygen concentration and 

mitochondrial volume in the periportal zone, it has been suggested that iron can be 

especially toxic to this particular region of the hepatic plate. Indeed, periportal necrosis 

has been described in both humans (Deugnier, Loreal et al. 1992; Hubscher 2003) and 

experimental animals (Whittaker, Hines et al. 1996) suffering from hepatic toxicity due to 

iron overload. Histological examination of cardiac and hepatic tissue sections from 

deferasirox treated gerbils suggest that deferasirox removes iron from cardiomyocytes 

and hepatocytes, and perhaps from macrophages, albeit at a much lower rate.  

 

Effect of iron overload and deferasirox treatment on ferritin protein expression 

  Changes in tissue iron concentration were paralleled by changes in ferritin 

protein expression. We demonstrated that ferritin heavy chain levels were 1.6 fold and 

2.1 fold higher than control in the iron overloaded heart and liver, respectively, after 
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three months of follow up. Similar to our observation with tissue iron clearance, 

deferasirox treatment reduced cardiac and hepatic ferritin by 38% and 47.5%, 

respectively. The effect of iron chelation therapy on serum ferritin expression is well 

documented in the literature as serum ferritin is a common diagnostic tool of body iron 

(Perifanis, Christoforidis et al. 2007; Walter, Macklin et al. 2008). However, there is a 

limited body of evidence on the effect of iron overload or chelation therapy on ferritin 

expression in intact tissue. Only one study has addressed the effect of iron overload on 

cellular ferritin expression in vitro (Tran, Eubanks et al. 1997) while one other study 

demonstrated that chelation therapy with deferoxamine is associated with reduced iron-

induced ferritin upregulation in rat aorta (Ishizaka, Saito et al. 2005). To our knowledge, 

the present study is the first description of the effect of iron overload and deferasirox 

treatment on cardiac and hepatic ferritin expression. 

It is thought that the increase in ferritin expression in response to iron overload 

provides a cytoprotective mechanism against iron induced toxicity (de Valk and Marx 

1999). Nonetheless, it should be noted that although ferritin and hemosiderin have 

traditionally been regarded as ‘safe’ storage forms of iron, this does not mean that the 

iron contained in these molecules cannot potentiate the development of oxidative stress 

under certain conditions. Indeed, it has been recently demonstrated that the superoxide 

radical is capable of mobilizing iron from ferritin and that this can result in the production 

of iron-catalyzed hydroxyl radicals (Bartfay, Dawood et al. 1999).  
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Effect of iron overload and deferasirox treatment on oxidative stress indices and 

apoptosis 

While no single mechanism is likely to account for the complex pathophysiology 

of iron-induced organ damage, it is believed that iron mediated formation of harmful free 

radicals  plays a major role (Kell 2009). Indeed, several different investigations have 

reported an increase in ROS generation in response to iron overload. For example, 

previous studies have demonstrated an increase in aldehyde-derived peroxidation 

products in both murine (Bartfay, Dawood et al. 1999), and gerbil models (Otto-Duessel, 

Aguilar et al. 2007) of iron overload. In addition, using an oxidative fluorescent dye, Day 

and collegues (Day, Duquaine et al. 2003) have suggested an increase in aortic 

oxidative stress in the iron overloaded mouse. Here, we demonstrated that iron 

overload was associated with an increase in superoxide generation and protein 

oxidation in heart and liver. It is thought that metal catalyzed oxidation of proteins 

introduces carbonyl groups (aldehydes and ketones) at lysine, arginine, proline or 

threonine residues in a site-specific manner (Stadtman 1993). This oxidative 

modification can modulate essential biochemical characteristics of proteins such as 

enzymatic activity (Oliver, 1987), the DNA binding activity of transcription factors 

(Pognonec, Kato et al. 1992), or the susceptibility of proteins to proteolytic degradation 

(Wolff and Dean 1986).  Although similar findings of reduced ROS with deferasirox have 

been found in vitro using cardiac myocytes (Glickstein, El et al. 2006), to our knowledge 

this is the first report to demonstrate that deferasirox is capable of reducing ROS in the 

intact tissue. 

In the present study, the origin of iron-induced increases in superoxide anion was 

not investigated. Previous studies have shown that the mitochondria play a primary role 
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within the cell both in the handling of iron and in energy production by oxidative 

phosphorylation process. Indeed, it is well accepted that mitochondria represent a 

primary target of oxidative injury, and thus are the main source for ROS. It has been 

shown that ROS are produced through the respiratory chain at a rate which is 

dependent on the metabolic state of the mitochondria (Pietrangelo, Montosi et al. 2002). 

In the presence of iron ions, ROS give rise to highly-reactive oxidizing species like the 

hydroxyl radical (HO•) (Burkitt and Mason 1991; Nunoshiba, Obata et al. 1999). This 

increase in oxidizing species in turn may destabilize one or more components of the 

electron transport chain that could lead to further ROS accumulation (Bacon, O'Neill et 

al. 1993). Experiments designed to assess mitochondrial function with iron overload and 

the effects of deferasirox on mitochondrial function will no doubt be useful in examining 

this possibility. 

How increased iron (or ROS) levels may negatively influence the structure and 

function of target tissue is not well understood but recent data suggests that excessive 

iron and iron mediated ROS elicit a wide spectrum of responses. These responses 

depend upon the severity of the damage, which is further influenced by the cell type, the 

magnitude of the dose, and the duration of the exposure. Nonetheless, there are 

controversial reports regarding the ultimate physiological outcome of these triggered 

responses, ranging from cell survival and adaptation (hypertrophy) to cell death 

(apoptosis) (Martindale and Holbrook 2002). In the present investigation, we 

demonstrated that iron overload was associated with increased phosphorylation of the 

three subfamilies of MAPK: ERK1/2, p38, and JNK. Interestingly, the maximum 

phosphorylation signal for p38 and JNK was higher than that observed for ERK1/2. This 

result could be justified in the context of p38-MAPK and JNKs being the two principal 
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MAPK subfamilies mediating cellular stress signals, whereas the ERKs are primarily 

associated with cell growth and proliferation. These results are in agreement with 

previous work that suggested increased MAPK phosphorylation associated with ROS 

alone (Bhat and Zhang 1999; Park, Yoo et al. 2005)  or ROS together with iron overload 

(Dai, Huang et al. 2004). In the present report we show that deferasirox treatment 

diminishes the extent of iron overload-dependent MAPK phosphorylation. Whether the 

induction of MAPK phosphorylation is dependent upon iron excess, ROS,  or these 

acting in concert with other factors is worthy of detailed studies. 

It is thought that the magnitude of ROS plays a role in influencing the particular 

course taken by a cell. For example, it has been suggested that intermediate levels of 

ROS result in growth arrest whereas severe oxidative stress causes cell death via either 

apoptotic or necrotic mechanisms (Martindale and Holbrook 2002). Here we 

demonstrated that the increase in hepatic iron concentration together with ROS 

accumulation was associated with increased cell death. These results are consistent 

with previous findings that suggested that iron overload induced apoptotic cell death in 

isolated rat hepatocytes which is thought to be mediated by reactive oxygen species 

(Allameh et al. 2008). The increase in cell death as determined by TUNEL was also 

associated with an increase in the ratio of Bax/Bcl-2 and Bad expression as well as 

caspase-3 cleavage, suggesting the involvement of apoptosis. Although similar findings 

have been demonstrated in vitro (Yajun, Hongshan et al. 2005), this is the first report 

that describes the effect of iron overload on the apoptotic cascade in intact liver.  As 

expected, deferasirox treatment was associated with lower cell death signal, Bax/Bcl-2 

ratio, Bad expression, and caspase-3 cleavage. These results suggest that apoptosis 

may be involved in iron overload induced hepatic toxicity and most importantly, that 
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deferasirox may confer protection against these effects. Nonetheless, given the 

important role of iron overload in cardiovascular and hepatic disorders, further studies 

are required to fully investigate the diversity and multiplicity of interactions between the 

signaling cascades involved in their pathogenesis. 

 

Effect of iron overload and deferasirox treatment on cardiac structure and 

function 

Iron overload is toxic to the heart, and in the syndromes of chronic iron overload 

the majority of deaths are due to cardiac failure and sudden death, with the latter 

probably due to arrhythmia. In animal studies, a dose relationship between iron load 

and the development of cardiac impairment is seen (Carthew, Dorman et al. 1993; 

Bartfay, Dawood et al. 1999; Yang, Dong et al. 2002). This wealth of evidence supports 

the hypothesis that cardiac complications in iron overload have a direct relationship with 

the amount of iron in the heart. Therefore, effective removal of cardiac iron is likely to 

reduce the incidence of cardiac complications associated with iron overload. In the 

present investigation, cardiac iron levels in the iron overloaded animals were 3.3 fold 

that of the control animals and were associated with structural and functional 

abnormalities including increased cardiac mass, ventricular remodeling, arrhythmia, 

valvular regurgitation, systolic dysfunction, and reduced survival. Chronic deferasirox 

administration reduced cardiac iron by 31.6% and this was associated with preserved 

cardiac structure and function along with improved survival. These results are in 

agreement with previous reports suggesting beneficial effects of chelation therapy with 

deferoxamine (Obejero-Paz, Yang et al. 2003; Yang, Brittenham et al. 2003) or 
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deferasirox (Kiguchi, Ito et al. 2009; Trad, Hamdan et al. 2009) in preventing/ reversing 

iron induced cardiac alterations.  

Although cardiac iron deposition, ROS accumulation, and biochemical changes 

were evident within a few weeks after iron loading, no significant changes in cardiac 

structure or function were observed until 6 and 9 months of follow up.  These 

observations resemble the time course of the disorder as described in humans. It has 

been reported that cardiac iron toxicity begins to occur after a total of 10 blood 

transfusions or approximately 5 g of iron; however, patients may remain asymptomatic 

for years. The symptoms of cardiac iron overload normally occur long after the probable 

initiation of cardiac iron accumulation with the mean survival falling to a few months 

once these complications have arisen (Wood, Enriquez et al. 2005). Intensive iron 

chelation therapy may help restore cardiac rhythm and function, which could increase 

survival. 

It is important to note here that iron deposition is not necessarily the sole cause 

of cardiac disease in iron overload conditions. It is well accepted that chronic anemia 

itself plays a role in the development of cardiovascular abnormalities regardless of 

cardiac iron status (Hahalis, Alexopoulos et al. 2005). For example, thalassemia is 

oftentimes associated with elevated cardiac output and stroke volume with the 

possibility of systolic dysfunction or severe pulmonary hypertension in advanced stages 

of the disease (Bosi, Crepaz et al. 2003). In the present investigation, the effect of the 

underlying condition on cardiac health was not examined and cannot be addressed from 

the present study design. The development of animal models that better resemble iron 

overload in these conditions will no doubt be useful in furthering our understanding of 

cardiac pathology in these diseases.  
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In conclusion, the work presented here strongly suggests a protective role of 

deferasirox against iron induced complications. Evidence from the clinical setting is 

needed to confirm these interesting findings and will no doubt be useful in developing 

better therapeutic regimens to control iron overload. 
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CONCLUSIONS 
 

1. Deferasirox treatment was found to remove iron from target tissues including 

heart, liver, and pancreas. Deferasirox treatment to a similar extent did not 

reduce iron accumulated in the kidney or aorta to a significant level.  

 

2. Iron overload was found to increase the relative expression of ferritin in both 

cardiac and hepatic tissue. Deferasirox treatment reduced iron-related 

increase in ferritin expression from both tissues. 

 

3. Deferasirox treatment was found to attenuate oxidative stress indices 

observed with iron overload from both cardiac and hepatic tissue. This 

includes the ability to reduce cumulative protein oxidation, superoxide 

overproduction, and MAPK phosphorylation. 

 

4. Deferasirox treatment was found to reduce iron overload-related cell death as 

well as the relative expression of members of the apoptotic cascade including 

Bax/Bcl-2, Bad, and caspase-3. 

 

5. Long term deferasirox treatment was found to further reduce accumulated 

tissue iron from heart, liver, and aorta. 

 

6. Iron overload was found to profoundly impact cardiac structure and function. 

Iron overload was associated with increase heart/body wt, left ventricular 
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interior and posterior dimensions, left ventricular septal thickness, frequency 

of arrhythmia and valvular regurgitation whereas ejection fraction and 

fractional shortening were decreased. Long term deferasirox treatment was 

found to preserve both cardiac structure and function. 
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FUTURE DIRECTIONS 

 

The present study focused on examining the efficacy of deferasirox treatment in 

preventing cardiac complications associated with iron overload. Future investigations 

should focus on examining whether deferasirox treatment is protective against other 

complications associated with iron overload including, among others, hepatic fibrosis, 

hepatocellular carcinoma, and diabetes mellitus.  

A critical target of future investigation would also be the assessment of the 

efficacy of combination therapy with other chelating agents or antioxidants. Previous 

research by Hershko and collegues (2001) have illustrated that the administration of 

DFO in combination with deferiprone provides a “shuttling effect” where the smaller and 

hydrophilic chelator deferiprone mobilized intracellular iron stores, subsequently 

transferring it to intra-  or extracellular DFO. Such a strategy was found to enhance iron 

excretion and reduce the side effects associated with monotherapy. Whether a 

combination therapy of DFO with deferasirox can induce a similar effect is worth 

investigating. 

Given the fact that oxidative stress is the major contributor to iron-induced 

toxicity, it is logical to propose that antioxidants might provide a protective effect. 

Recently, Duessel and collegues (Otto-Duessel, Aguilar et al. 2007) have demonstrated 

that the administration of the antioxidant taurine improved cardiac indices of oxidative 

stress in the iron overloaded gerbil. However, the effect of a combination therapy of 

antioxidants with iron chelation therapy is not known. Based on our understanding of the 

mechanisms involved in iron-induced toxicity and on previous research suggesting that 
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chelating agents improve the efficacy of antioxidants, we propose that the 

administration of deferasirox with antioxidants would provide a synergistic effect. 

Mitochondria and lysosomes are the major cellular targets of iron mediated 

damage. In vitro studies have suggested that deferasirox is able to cross the plasma 

membrane and access the cytoplasm. Whether deferasirox possesses accessibility to 

subcellular compartments is not known and is worth investigation. 
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