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Abstract 
 

Melanoma is the most dangerous form of skin cancer and its incidence has been 

increasing in the United States. Most melanomas are resistant to current chemotherapies; 

therefore, understanding the mechanism of melanomagenesis is beneficial to treatment of 

the diseases. Accumulation of β-catenin has been shown in colon and other cancers, 

including melanomas, but the transcriptional role of β-catenin in melanomas is still 

unclear. All-trans retinoic acid (ATRA) is an anti-tumor agent that has an inhibitory 

effect on β-catenin, but this effect has not been studied in melanomas. It has been shown 

that Microphthalmia-associated transcription factor (MITF), a melanocyte specific 

protein, can redirect the function of β-catenin from cell proliferation to melanocyte-

specific gene expression. In addition, ATRA induced Mitf mRNA expression was 

observed in mouse melanocyte. My objective is to understand the effects of ATRA on the 

β-catenin signal pathway in ATRA-sensitive melanoma cells. I hypothesize that ATRA 

will decrease β-catenin transcriptional activity. Western blotting was used to determine 

the effects of ATRA on β-catenin target genes. Gel Shift assays were used to investigate 

DNA/ protein interactions. Reporter gene assays were used to examine the effects of 

ATRA on the transcriptional activity of β-catenin. Results showed a 20% and 40% 

reduction in c-Myc protein expression after 2 days and 4 days ATRA treatment, 

respectively. Cyclin D-1 protein expression was reduced by 40% after 4 days treatment 

compared to the control. ATRA increased the protein levels of MITF after 2 days 

treatment. Reporter gene assay showed that ATRA reduced transcriptional activity of 

exogenous active β-catenin in human melanoma cells.  Together, ATRA inhibits 
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melanoma progression by reducing β-catenin transcriptional activity, and in part through 

inducing MITF expression to alter the function of β-catenin away from growth regulatory 

pathway.  
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Chapter One 

Introduction 

According to estimates of the American Cancer Society, there will be over 60,000 

new cases of melanoma in the United States each year.  Melanoma is the most dangerous 

form of skin cancer. Although melanoma only represents 5% of all skin cancers, it causes 

71% of all skin cancer deaths (2). Melanoma is a malignant tumor that originates from 

the pigment-producing skin cell, melanocytes. Melanoma, like some other cancers, has a 

good prognosis if recognized and treated early. However, if it is not, melanoma can 

metastasize to lymph nodes and other organs beyond the region of the original tumor. 

The initial treatment of melanoma is usually by surgical excision, generally followed by 

chemotherapy when treating later stage melanoma.  However, the prognosis for survival 

of the late stage melanoma patient is poor.  

 

In order to find an effective treatment against melanoma or any other cancers, we 

have to understand the molecular signaling pathways that govern tumor development and 

survival.  Therefore, we utilize all trans-retinoic acid (ATRA) as our inhibitor of 

melanoma growth. Many studies have shown that ATRA can delay the progression of 

some tumor cells, including melanoma, by inducing cell cycle arrest (32, 42).  Thus, we 

used the retinoid-sensitive B16 mouse melanoma cell line - F1 (low metastatic ability) 

and F10 (high metastatic ability).  Recent studies suggest that ATRA is capable of 

inhibiting activation of β-catenin reporter constructs in vitro (56).  Many studies have 

shown that Wnt/ β-catenin pathway is activated in different types of cancer. In addition, 
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accumulation of β-catenin in the nucleus of colon cancer cells contributes to 

tumorigenesis.  However, ATRA inhibition of β-catenin activity has not been studied in 

melanoma.  Therefore, β-catenin was selected as the molecule of interest, and 

investigated the interaction of ATRA and β-catenin signaling in melanoma.  

 
The role of β-Catenin was first recognized as a membrane-associated protein, 

involved in cell–cell adhesion (21).  Cytoplasmic β-catenin binds to the carboxyl 

terminus of E-cadherin at the plasma membrane, and this complex recruits α-catenin, and 

then further recruits other structural proteins to form the cell-cell junctions (17).  In 

addition to its role as an adhesion protein, β-catenin can also be a transcription 

coactivator.  β-catenin is a key component of downstream signaling in the Wnt/ Wingless 

pathway, which is extremely important to embryonic development. This pathway is also 

involved in disease development if mis-regulation of β-catenin occurs (34).  In 

development, Wnt protein binds to the Frizzled receptor and inhibited the adenomatous 

polyposis coli (APC)/ Glycogen Synthase Kinase (GSK-3 β) complex, which 

phosphorylates β-catenin, targeting it to proteasomal degradation. When β-catenin is 

protected from degradation, it enters the nucleus and associates with the T-cell factor and 

lymphoid enhancer factor (TCF/LEF-1) family of transcription factors.  This association 

activates the transcription of β-catenin target genes, including regulators of cell growth 

and proliferation, modulators of cell death pathways and cell–cell communication (22).  

If Wnt/ β-catenin pathway is activated inappropriately, then it might cause tumorigenesis.  

Thus, this study is to focus on the regulation of the activity of β-catenin and its partner 

TCF/ LEF-1 DNA binding proteins, by ATRA.  
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Objective 
 

Unlike the mouse B16 cells, many human melanomas are resistant to ATRA, 

therefore we hope to use the mouse B16 cells to understand how the ATRA affects the β-

catenin signal transduction pathway in a responsive melanoma model.  I will focus on the 

transcriptional activity of β-catenin and its partner signaling molecules in mouse B16 

melanoma cells.   

Hypothesis 
 

 Previously, we observed that ATRA reduces mouse B16 melanoma cell growth; 

therefore, my hypothesis is the ATRA treated B16 mouse melanoma cells will have a 

lower β-catenin transcriptional activity compared to the untreated B16 cells. 
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Chapter Two 

Review of Literature 

Introduction 

 

This chapter presents a review of the literature relevant to the present study.  The Chapter 

consists of three parts:  

1.) The role of β-catenin and partner protein TCF/LEF in tumorigenesis; 

2.) The β-catenin target genes related to cell proliferation, cell cycle regulation, and 

melanocyte survival;  

3.) The use of the anti-tumor agent, all trans-retinoic acid (ATRA). 

 
 The role of β-catenin and partner protein TCF/LEF protein in tumorigenesis 

 
 Activation of Wnt pathways can modulate cell proliferation, cell survival, cell 

behavior, and cell fate.  The core molecule of this pathway is β-catenin/ armadillo.  A 

series of signaling events occurs before β-catenin can function as a co-activator of gene 

transcription.  Generally, the Wnt pathway begins when secreted Wnt glycoproteins bind 

to cell-surface receptors of the Frizzled family.  This activates Dishevelled (DSH), a key 

component of a membrane-associated Wnt receptor complex, which inhibits a second 

complex of proteins that includes axin, GSK-3, and the protein APC.  In absence of Wnt 

signaling, APC-axin-GSK-3β complex phosphorylates β-catenin, and then ubiquitination 

of β-catenin follows, which leads to proteosomal degradation of ubiquitin-tagged β-

catenin. However, activated DSH deactivates this “β-catenin degradation complex”, 

which leaves a pool of stabilized and active cytoplasmic β-catenin.  High levels of 

cytoplasmic β-catenin are able to rapidly migrate into the nucleus through gated channels.  
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In the nucleus, active β-catenin couples with TCF/LEF family transcription factors to 

promote specific gene expression (22, 34, 57). 

  

In normal differentiated cells, β-catenin either associates with cadherins to form 

cell-adhesive structures or is phosphorylated by the APC-axin-GSK-3β complex that 

leads to its degradation by the ubiquitin-proteasome system (1, 40).  It is known that the 

Wnt/ β-catenin signaling pathway can cause tumorigenesis in colon cancer (44).  

Tumorigenesis is thought to be initiated by mis-regulation or by mutations of β-catenin, 

which disable regulatory phosphorylation.  The ultimate goal of Wnt pathways are to 

protect free and activate β-catenin and then activate gene transcription.  A recent study 

has shown that in mouse B16 cells, β-catenin mostly accumulates in cytoplasm and some 

accumulation occurs in the nucleus.  In contrast in human melanoma cells (501mel and 

SK-MEL-5), β-catenin exhibits high levels of nuclear accumulation (49).  This suggests 

that the degree of β-catenin accumulation varies among melanoma cells.  Alterations 

other than dysregulation of Wnt signaling may also result in tumorigenesis.  Stabilizing 

mutations of β-catenin can also promote cancer development.  Rimm et al. (1999) 

showed that 6 of 27 melanoma cell lines were found to have β-catenin exon 3 mutations 

affecting the N-terminal phosphorylation sites (37).  In other studies, mutations of β-

catenin in melanoma cell lines are rare; therefore, possibly other mechanisms of β-catenin 

misregulation contribute to melanogensis.    

 

β-catenin acts as a transcriptional coactivator for gene expression by forming a 

complex with T-Cell Factor (TCF) proteins and regulating gene transcription.  The TCF 
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transcription factor family is a group of high mobility DNA binding proteins.  In 

mammals, there are four proteins in the family referred to as TCF/ LEF transcription 

factors (LEF-1, TCF-1, TCF-3 and TCF- 4).  These factors play a crucial role in 

WNT/Wingless signaling, a signal transduction cascade that directs cell proliferation, 

differentiation and survival.  Mann et al. (1999) was able to show the direct interaction 

between β-catenin and TCF/ LEF complex with the promoter region of c-jun and fra-1 in 

a gel shift assay.  Lymphoid Enhancer Factor -1 (LEF-1) is a protein that is expressed 

during development in many different differentiating tissues and its function is sometime 

redundant with TCF transcriptional factor.  Interestingly, studies in melanoma suggested 

that LEF-1 and β-catenin synergistically play a role in cancer progression.  In the study of 

Shtutman et al. (1999), they had found that in colon cancer cells, β-catenin couples with 

LEF-1 and binds to the LEF-1 DNA binding site in the cyclin D1 promoter.  In addition, 

they showed that wild-type APC can prevent the coupling of β-catenin and LEF-1.  They 

concluded that the elevation of cyclin D1 in colorectal cancer promotes uncontrolled 

proliferation and thus contributes to the neoplastic transformation of cells (38).  LEF-1 is 

thought to be the partner of β-catenin and the transcription factor that is involved in 

melanoma progression (16, 37).  Our previous data also suggest that B16 cells do not 

express TCF-4.   

 

Cyclin D1 

 
To date, the transcriptional role of β-catenin in melanoma is still unclear, but 

some studies have identified several genes that are β-catenin target genes.  One of which 

is cyclin D1, a key regulator of progression through the G1 phase during the cell cycle.  
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Cyclin D1 is one of the three D-type cyclins, which are essential for progression from G1 

to S-phase.  These D cyclins bind to and activate both cyclin-dependent kinases (CDK4 

and CDK6).  The CDK are then activated due to phosphorylation by CDK-activating 

kinase (CAK).  The activated CDKs phosphorylate the retinoblastoma (Rb) protein, 

which leads to release of the E2F (family of transcription factors (TF) in higher 

eukaryotes) transcription factors and cells can then proceed to S phase (52).  Due to 

abnormal regulation of β-catenin in cancer cells, β-catenin accumulates inside the 

nucleus, which results in the binding of β-catenin and LEF-1.  This complex then binds to 

the Lef-1 DNA binding site in the target genes’ promoter and initiates transcription. 

Shtutman et al. (1999)have shown that β-catenin couples with LEF-1 protein and binds to 

a LEF-1 binding site in the cyclin D1 promoter; thereby the cyclin D1 gene is a direct 

gene expression target for β-catenin/LEF-1 in human colon cancer cells (43, 44, and 48).  

Studies have also indicated that the cyclin D1-gene (CCND1) acts as an oncogene in 

human hepatocellular carcinoma and esophageal cancer (20, 53).  In addition, aberrant 

expression of cyclin D1 is commonly displayed in human cancers (5, 45, and 47); 

therefore, cyclin D1 would be a marker for cell proliferation. 

 
c-Myc 

 
c-Myc is a transcription factor in the basic Helix Loop Helix-Leucine Zipper 

(bHLH-LZ) family.  There are three members in Myc family: n-Myc, L-Myc and c-Myc. 

They all possess the ability to induce cell proliferation, differentiation and tumorigensis.  

Aberrant expression of the c-Myc gene has been found in several types of human tumors, 

and the n-Myc gene is expressed/ overexpressed in tumors or cells that derived from 
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neuroblastomas (31).  Abnormal expression of the L-Myc gene has been found in human 

small cell lung carcinomas (30).  C-Myc plays a key role in up-regulation of the 

transcription of growth-related genes.  The mechanism of Myc transcriptional regulation 

is thought to be by coupling with the Max protein to form a heterodimeric complex and 

binding to target DNA binding sites to enhance transcription.  Phosphorylation of c-Myc 

by the p44/42 MAP kinase at Ser62 and Thr58 and Ser62 can resulted in activation (12).  

Activation of c-Myc requires mitogenic signals such as Wnt, Sonic hedgehog homolog 

(Shh), and epidermal growth factor (EGF).  Therefore, Wnt/ β-catenin signaling can 

induce c-Myc expression level.  In addition, c- Myc is similar to cyclin-D1, in what it is 

involved in cell proliferation, differentiation and apoptosis.  It also has been shown that c-

Myc is one of the target genes of Wnt/ β-catenin in colorectal cancers (13).  Therefore, 

we chose c-Myc and cyclin D1 as molecules of interest. 

 

MITF 

 
Microphthalmia-associated transcription factor (MITF) is a basic helix-loop-

helix-leucine zipper (bHLH-LZ) protein encoded by the mouse microphthalmia locus.  It 

plays a vital role in differentiation and survival of melanocytes (14, 15).  MITF is a down 

stream target of β-catenin (8).  Surprisingly, the bHLH-LZ region of MITF is shown to 

bind to LEF-1 as a coactivator in its own transcriptional activation (41).  In addition, the 

interaction between LEF-1, not TCF-1, and MITF is detected in melanocytes.  MITF was 

also shown to up-regulate BCL2 (anti-BCL2 apoptotic protein) expression in pigment 

cells (26), which could also be happening in melanoma cells.  It is noteworthy that 

GSK3-β, an inhibitor of β-catenin, can be activated by cAMP and then phosphorylates 
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MITF, and therefore activates MITF (27).  One hypothesis is that GSK3-β may play a 

role to maintain functional MITF-M levels in melanocytes (41).  It would be interesting 

to know whether ATRA affects the level of GSK3-β, because ATRA can induce melanin 

production in vitro (33).   MITF then cooperates with LEF-1 and β-catenin to activate 

gene transcription by binding to the dopachrome tautomerase (DCT) gene promoter, an 

early melanoblast marker (51).  Watabe et al. showed that Mitf mRNA levels increased 

after 72 hrs ATRA treatment. (66)  In a recent study, MITF have been shown to interact 

with β-catenin to modulate melanocyte-specific gene transcription (67).  

 
Anti-tumor agent – all trans-retinoic acid (ATRA) 

 
ATRA is a derivative form of Vitamin A (retinol).  The major source of ATRA in 

the body is conversion of dietary β-carotene to retinal, and then it further oxidizes to 

retinoic acid (RA), also called vitamin A acid (3, 55).  It is known to be important to 

embryonic inner ear development (36).  In addition, it is involved in formation of visual 

purple in the rod cells, which function to allow sight in dim light.  It is also involved in 

the formation of the three color pigments (red, green, and violet) in the cone cells, which 

function in bright light to provide color vision (28).  There are isoforms of retinoid 

receptors, which belong to the family of nuclear receptors mediating the activity of 

steroid and thyroid hormones vitamin D, prostaglandins, and certain drugs.  Retinoids 

have also been shown to have a role in prevention of cancer (32).  Recent study has 

shown that all trans-retinoic acid (ATRA) mediates the G1/ S arrest, and inhibition of 

retinoic acid receptor (RAR) results in high percent S phase in normal human mammary 

epithelial cells and lower G1 phase cells (42).  This suggests that ATRA and RAR are 
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vital regulators of the G1 to S phase cell cycle transition.  After ATRA translocates by 

cellular retinoic acid binding protein II (CRABP-II), a carrier protein (6), to the nucleus, 

it binds to retinoid receptors and activates its target genes, including CRABP-II gene 

expression (18).  Some of the ATRA/RAR target genes that have been identified to be 

up-regulated by RA/RAR pathway are activator protein-1 (AP-1), protein kinase calpha 

(PKC), and T-box binding protein type 2 (Tbx-2) (33).  ATRA promotes melanoma cell 

differentiation by inducing PKCα and MITF mRNA level (66).  Many studies have 

shown that ATRA synergistically suppresses tumor development by induction of tumor 

suppressor gene proteins, such as p53 and p105 (Rb or retinoblastoma protein), which are 

strong inhibitors of cell proliferation (24, 29, 50).  An interesting finding showed that 

RAR, but not RXR (another isoform of retinoic acid receptor), is a competitor of TCF for 

binding to β-catenin (56).  This interaction was accelerated under the treatment of retinoic 

acid.  This study also showed that retinoic acid inhibits activation of β-catenin reporter 

constructs (56).  Interestingly, retinoic acid seems to have no effect on the cytoplasmic 

regulation of β-catenin, suggesting it does not influence β-catenin degradation.  

 
Retinoids have also been shown to regulate other genes that are involved in 

normal cellular architecture, cellular adhesion, and cell-cell communication (11, 23).  

ATRA also increased ICAM-1, a type of intracellular adhesion molecule, which may 

involved in interaction between immune cells and melanoma (60).  Adhesion modulated 

by ATRA can be seen in our previous immunohistochemistry data (Fig. 1), which 

showed that ATRA promotes localization of active β-catenin at the membrane for cellular 

adhesion, as opposed to intracellular sites and restoring a more normal cellular 

distribution of β-catenin.  Therefore, RA may indirectly prevent β-catenin from inducing 

 16

Fung Chan 5/2/2007



gene expression in the nucleus that leads to cell proliferation.  In fact, our previous 

Western Blot data showed that ATRA did not reduce the level of β-catenin but instead it 

relocated and converted the active form of β-catenin to cell adhesion. (Henry & Delidow, 

personal communication) 

Vehicle 

Retinoic Acid 

Nuclear

A B

C D

ß-Catenin 

 
Figure 1. Control and ATRA-treated B-16 mouse melanoma cells treated with anti-active-β-catenin (A-D) 
primary antibodies.  [A & C] Vehicle (DMSO) and RA-treated B-16 cells were stained with anti-active β-
catenin and detected with Alexa-488 anti-mouse secondary antibody (green).  Nuclei of vehicle and RA-
treated B-16 cells were counter-stained with Propidium Iodide nuclear stain (red).  Treatment with RA 
reduced the number of cells.  In vehicle-treated cells, active β-catenin is more evenly distributed throughout 
the whole cell and especially in the nucleus of the vehicle-treated cells.  In the RA-treated cells Active β-
catenin is more clearly relocated to the membrane (see arrows, panel C). – Cara Henry 
  

 
The effect of ATRA on β-catenin transcriptional activity in melanoma is still not 

well understood. C-Myc and cyclin D1 protein expression are excellent markers for cell 

proliferation; therefore, I will examine these β-catenin target genes proteins expression 

under the treatment of ATRA in B16 cells.  It is noteworthy that neither c-Myc nor cyclin 
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D1 is a direct ATRA target, thus, regulation of these genes in the presence of ATRA 

suggests ATRA is able to interfere with a direct regulator, such as β-catenin.  Previously, 

we observed that ATRA reduces mouse B16 melanoma cell growth. Thus, we expected 

the ATRA treated B16 mouse melanoma cells will have a lower c-Myc and cyclin D1 

protein expression.  We also need to investigate the transcriptional activity of β-catenin 

under the treatment of ATRA by using a reporter gene assay.  The reporter gene assay 

can provide us direct evidence of transcriptional activity of β-catenin.  Therefore, we 

expected to see the β-catenin transcriptional activity is reduced by the ATRA treatment.  
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Chapter Three 

Materials and methods  
 
Cell line 

 
B16 mouse melanoma cells (F1 and F10) were obtained from American Type 

Culture Collection (ATCC).  Cells were grown in RPMI Medium 1640 (Gibco) This 

medium contained 10% fetal bovine serum (Gibco Co.), and 1% penicillin-streptomycin 

(Gibco).  Cells were cultured in a humidified incubator with 5% CO2 at 37 °C. 

 

Retinoic Acid  

 
 Vitamin-A-acid (all-trans-Retinoic acid, or ATRA) (Fluka) was purchased from 

Sigma-Aldrich Co.  A concentrated stock solution of ATRA (10 mM) was prepared in 

dimethyl sulfoxide (DMSO) under subdued light environment to prevent photo-oxidation 

of the retinoid.  Fresh stock was prepared every 2 weeks.  The final working 

concentration (10-20 μM) was obtained by diluting the stock solution in tissue culture 

medium.  

 
Collection of cells 

 
 Cells were seeded at 2 × 105/100-mm tissue culture dish. The following day the 

medium was replaced and cells were treated with 10-20 µM RA or an equal volume of 

vehicle (DMSO).  Cells were treated every 2 days and collected after 2 or 4 days of RA 

treatment.  Cells were collected by scraping and transferring into a 15-ml centrifuge tube.  
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Cells were then spun down and the medium was decanted.  The cell pellet was washed 

with phosphate-buffered saline (PBS).  The cells and the PBS were then transferred to a 

micro-centrifuge tube and spun down.  Cells were incubated in lysis buffer - (10 mM of 

HEPES pH 7.5, 150 mM NaCl, 1.5 mM EDTA, 1% NP-40, and 2% (v/v) protease 

inhibitor) for 5 min.  After 5 min incubation, samples were spun down and the 

supernatant (protein) were transferred to a fresh micro-centrifuge tube. The protein 

concentration of each sample was determined by using the BCA protein assay kit from 

Pierce.  Protein samples (20 µg) were mixed with equal volume of gel loading dye and 

denatured by boiling for 10 min.  

 
Cell fractionation 

 
 Cells were collected as mentioned above. The cell pellet was re-suspended in an 

appropriate amount of cell fractionation buffer (CFB) (20 mM of HEPES – pH 7.5, 10 

mM KOAc pH 7.5, 1.5 mM MgCl2, and 2 % (v/v) the protease inhibitor) and incubated 

on ice for 15 min.  The cells were transferred to small dounce homogenizer and 

homogenized using approximately 10 strokes.  The cells were transferred back to the 

original microtube and spun down at 5000 rpm at 4°C for 2 min.  The supernatant 

(cytoplasmic and membrane protein) was transferred to a new tube.  The cell pellet was 

washed 2 times in the CFB.  The cell pellet containing nuclear protein was re-suspended 

in PBS-NP40 (1X PBS, 1% NP-40, and 2% (v/v) protease inhibitor) and incubated on ice 

for 15 min.  The sample was spun down at 13,200 rpm for 1 min at 4°C and the 

supernatant was collected into a new tube as nuclear protein.  
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Plasmids, Transient transfection, and Reporter Gene Assay  

 
 Transient transfection was performed by using Lipofectamine 2000 (Invitrogen) 

according to the manufacturer’s instructions.  The cells were seeded the day before the 

transfection at a density of 1 × 105 cells per well in 6 well plates.  The following plasmids 

were used in this assay: luciferase reporter constructs TOP flash (TCF reporter plasmid), 

FOP flash (mutant TCF binding sites) (Upstate Biotechnology, Lake Placid, NY), point 

mutated β catenin gene (ABC) (generous gift from Dr. Mayion Park) and thymidine 

kinase (TK) renilla luciferase reporter vector (Promega) as a transfection control.  The 

following day, cells were transfected according to the manufacturer’s protocol: 10 ng of 

TOP flash, FOP flash or ABC and 2 ng of control vectors were diluted in Opti-MEM I 

medium (without serum and penicillin) (Invitrogen) in a 2 ml eppendorf tube. In another 

2 ml eppendorf tube, 5 μl of Lipofectamine was diluted in Opti-MEM I medium (without 

serum and penicillin) and incubated at room temperature for 5 min.  After 5 min 

incubation, the DNA-medium was mixed into the Lipofectamine 2000 (Promega) –

medium tube, and incubated for 20 min at room temperature.  The growth medium was 

replaced with Opti-MEM I medium (without serum and penicillin) and the DNA-

Lipofectamine 2000 complex was then add into the medium (1.5 ml).  The cells were 

transfected at 37°C in a CO2 incubator for 24 hrs.  The growth medium was replaced and 

the cells were grown for 24 more hrs or until they were ready to assay for luciferase 

expression.  After the cells were transfected, growth media was removed from the 

cultured cells.  Cultured cells were rinsed with in PBS, and then disrupted in 250 μl (for 6 

well plate) of passive lysis buffer (provide by the Promega Dual-Luciferase Reporter 

gene assay kits) by gentle rocking for 15 min at room temperature.  To measure luciferase 
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enzyme activity, 20 μl of lysates were transferred to a siliconized polypropylene tube. 

One hundred μl of Luciferase assay reagent was added and mixed with the lysates, and 

then the tube was placed in the luminometer and the flash signal was measured; after that 

100 μl of Stop and Glow reagent was added and the glow signal (Renilla control) was 

measured and recorded.  

 
Western blotting  

 
Cellular proteins denatured in SDS-loading buffer were loaded into wells of a 

SDS gel (10% separating and 3% stacking) for electrophoresis.  A BioRad Criterion cell 

was used to run the gel electrophoresis at 100 V for 1 hr 45 min.  Proteins were then 

transferred at 100 V for 1 hr to nitrocellulose membranes (Osmonics Inc.) by using a 

BioRad transfer cell.  The membrane was incubated in blocking solution (Tris-buffered 

saline containing 0.2% Tween 20 and 3% nonfat dry milk, TBST) for 1 hr.  Blots were 

then incubated with 1:1000 dilution of either rabbit polyclonal anti-c-Myc antibody (Cell 

Signaling Technology Inc.) overnight at 4°C, or with 1 µg/ml mouse monoclonal anti-

Cyclin D1 antibody (Upstate Inc.) for 1 hr at room temperature.  They were then washed 

two times in TBST for 5 min and incubated with 1:3000 dilution of secondary antibody 

(horseradish peroxidase-conjugated anti-rabbit/ mouse IgG, Amersham Corp., according 

to the source of the primary antibody) for 1 hr.  The membranes were then washed three 

times in 1X TBST, and signals were detected by use of the ECL kit from Amersham 

Corp.  
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Densitometry 

 
Signals from the ECL and horseradish peroxidase were captured with Fuji X-ray 

films. A Bio-Rad ChemiDOC was used to scan the proteins bands and the image was 

then analyzed using Quantity One software.  

 
Electrophoretic Mobility Shift Assay (EMSA)  

 
The cells were collected using the same method as mentioned in “Collection of 

cells”.  The cells were then incubated in cell fractionation buffer (10 mM NaOH-HEPES 

pH 7.9, 1.5 mM MgCl2, 10 mM KCl, and 0.5% NP-40) for 15 min on ice.  The 

fractionated cells were then spun down at 800 x g (3000 rpm) for 5 min at 4°C.  The 

supernatants were discarded by aspiration.  The nuclear pellets were then washed once 

with washing buffer (10 mM NaOH-HEPES pH 7.9, 1.5 mM MgCl2, and 10 mM KCl) 

and centrifuged, as above.  The nuclear pellets were incubated in hypotonic salt buffer 

(20 mM NaOH-HEPES pH 7.9, 420 mM NaCl, 1.5 mM EDTA, and 10% glycerol) for 30 

min on ice and spun down at 10,000 x g (10,300 rpm) for 5 min at 4°C.  The supernatants 

were collected as nuclear proteins.  Biotin labeled oligonucleotides containing the 

following consensus sequences were purchased from Panomics, Inc.:  

TCF/LEF sequence (5-CCTTTGATCTTCCTTTGATCTT-3),  

LEF1 sequence (5-CCCATTTCCATGACGTCATGGTTA-3),  

RAR (DR5) sequence (5-TCGAGGGTAGGGTTCACCGAAAGTTCACTCG-3). 

Nuclear extracts from control and ATRA treated B16 cells (5 µg of protein) were 

incubated with binding reagents from electrophoretic mobility shift assay (EMSA) kits 

(Panomics, Inc.):  2.0 µl 5X binding buffer, 1.0 µg poly d (I-dC), 10 ng transcription 
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factor (TF) probe, in a total reaction volume of 10 µl.  The nuclear extracts were 

incubated with poly d (I-C) for 5 min at room temperature before adding the transcription 

factor probe.  The binding reaction was allowed to incubate for 30 min at room 

temperature.  To detect preformed complexes, the samples were run on 6% non-

denaturing polyacrylamide gels in 0.5×Tris/borate/EDTA pH 8.0 buffer at 120 V for 1 hr 

30 min 4°C by using a BioRad Criterion Cell. Protein and DNA were then transferred to 

a nylon membrane (Osmonics Inc.) at 300 mA for 30-45 min by using a BioRad transfer 

cell. Oligonucleotides were covalently attached to the membrane by UV-crosslinking.  

The DNA–protein complexes were detected on the membranes by the 

chemiluminescence detection method (EMSA Kits User Manual, Panomics, Inc.) 

followed by autography using a Fuji X-ray film for 2-10 min. 

 

Data Analysis 

 

 Graphs are presented as mean ± standard error. Multiple group comparisons were 

performed by one way ANOVA. Significance of correlation, p-Value, was analyzed by 

one way ANOVA. 
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Results 
 
ATRA effects on β-catenin target gene expression: c-Myc and cyclin D1 
 

The transcriptional function of the β-catenin in melanoma cells is still unclear. It 

is known that cyclin D1 and c-Myc are target genes in the canonical Wnt pathway, 

because of their role in regulation of the cell cycle and cell proliferation.  Cyclin D1 is a 

key regulator of progression through G1 phase during the cell cycle (52).  C-Myc is a 

transcription factor, which possess the ability to induce cell proliferation, differentiation 

and tumorigenesis (12, 30, 31). Wnt signaling free and protect β-catenin and causes 

accumulation of β-catenin inside the nucleus. The ultimate task of intracellular β-catenin 

is to regulate the expression of genes, such as cyclin D1 and c-Myc.  Therefore, we 

expected there will be a high level of cyclin D1 and c-Myc protein expression in 

melanoma cells.  In contrast, reduction of these protein expressions is expected in ATRA-

treated cells.  

Western Blot analysis was used to examine the effect of ATRA on the protein 

expression of the c-Myc and cyclin D1 in B16 F1 and F10 mouse melanoma cells.  

Results showed that c-Myc protein levels were reduced by 15.5 % (p-value = 0.022) after 

2 days treatment, and by 58.0% (p-value = 0.00006) after 4 days ATRA treatment in F1 

cells compared to control. In F10 cells, c-Myc protein levels were reduced by 18.4% (p-

value = 0.0001) after 2 days treatment, and by 35.8% (p-value = 0.0049) after 4 days 

ATRA treatment compared to control (Figure 2-1).  Similarly, cyclin-D1 protein 

expression also decreased after ATRA treatment. There was only a slight decreased in 

cyclin D1 protein levels after 2 days ATRA treatments and it was reduced by 17.1% (p-

value = 0.004) in F1 cells and 5% (p-value = 0.79) in F10 cells.  After 4 days of ATRA 
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treatment, cyclin D1 protein levels were reduced by 31.1 % (p-value = 0.32) in F1 cells 

and by 79.3% (p-value = 0.0037) in F10 cells (Figure 2-2). 
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Figure 2-1.  ATRA effects on β-catenin target genes protein expression Three independent duplicate 
experiments were performed for statistical analysis, n=6. We found that c-Myc protein levels were reduced 
by 20 % after day 2 and by 40% in both cell lines after day 4 of RA treatment compare to control.  An 
asterisk (*) indicates significant difference from the control, p < 0.05 or less. Bars represented mean ± 
standard error. C= control, DMSO; RA= 20 μM ATRA. 
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Figure 2-2. ATRA effects on β-catenin target genes protein expression. Three independent duplicate 
experiments were performed for statistical analysis, n=6. We found that cyclin D1 protein levels were 
reduced by 40% in both cell lines after day 4 of RA treatment compare to control. An asterisk (*) indicates 
significant difference from the control, p < 0.05 or less. Bars represented mean ± standard error. C= control, 
DMSO; RA= 20 μM ATRA. 
 
 
 
MITF protein expression after treatment of ATRA 

MITF is vital for the differentiation and survival of melanocytes.  (14, 15) Watabe 

et al. (2002) showed that 72 hrs of ATRA treatment increased the mRNA levels of PKCα 

and MITF (66).  Therefore, we investigated whether ATRA treatment could induce MITF 

protein levels in B16 F1 and F10 mouse melanoma cells.  Western Blot data showed that 
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MITF protein level was increased 4 folds after ATRA treatment compared to the control 

in B16 F1 cells, but not after 4 days.  In B16 F10 cells, the MITF protein level was 

increased 2 fold after 2 days ATRA treatment, and increased 4 fold after 4 days.  (Figure 

2-3) 
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Figure 2-3. ATRA effects on β-catenin target genes protein expression- MITF.  Two independent 
duplicate experiments were performed for statistical analysis, n=4 for day 2 and n=2 for day 4. We found 
that MITF protein level was increased 4 fold in F1cells after day 2 of ATRA treatment compare to control. 
In F10 cells, MITF protein level was increased 2 fold. An asterisk (*) indicates significant difference from 
the control. Bars represented mean ± standard error. 
 
 
 

 28

Fung Chan 5/2/2007



Electrophoretic Mobility-Shift Assay 

 
EMSA were performed to determine whether B16 nuclear extracts contain protein 

complexes capable of binding DNA consensus elements for LEF-1 or TCF.  Comparison 

was made using equal amounts of nuclear extracts harvested from B16 cells treated with 

or without ATRA (Figure 3). The binding of the proteins and biotinylated TCF/ LEF 

DNA binding site is indicating by the arrow (Figure 3-1) (64).  Unlabeled DNA probe 

(cold probe) was added to validate specific binding. There is no specific pattern of the 

band intensity.  Anti-active β-catenin antibody was added in Figure 3-1 (lane 12), but 

there was no super shift occurred.  In Figure 3-2, specific bands indicated the binding of 

B16 nuclear proteins to the LEF-1 probe.  In Figure 3-3, RAR protein binding to the RAR 

(D5) binding site occurred.  The intensity of the bands was reduced after ATRA 

treatment (lane 5&6), suggesting that RAR protein might be used and degraded after the 

binding of ATRA.  Together, these studies suggest B16 cells do have proteins that bind to 

TCF/ LEF and the LEF-1 DNA binding site and there is regulation of binding by ATRA.  

 

 29

Fung Chan 5/2/2007



ABC
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Figure 3-1. EMSA. Nuclear extracts of the Hela cells (lane 2), the B16 F1 
cells (lanes 3-6) and B16 F10 cells (lanes 7-11) were incubated with a 
biotinylated probe (lanes 1-12). C= control and R= ATRA treated. Unlabeled 
Cold probe was added as a specific competitor (lanes 11). Supershift was 
performed using anti-active β-catenin antibody (upstate) (lane 12).
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Figure 3-2. EMSA. Nuclear extracts of the Hela cells (lanes 2) ), 
the B16 F1 cells (lanes 3-6) and B16 F10 cells (lanes 7-11) were 
incubated with a biotinylated probe (lanes 1-11). C= control and 
R= ATRA treated Unlabeled Cold probe was added as a specific 
competitor (lanes 11). 
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Figure 3-3. EMSA. Nuclear extracts of the Hela cells (lanes 2), the 
B16 F1 cells (lanes 3-6) and B16 F10 cells (lanes 7-11) were 
incubated with a biotinylated probe (lanes 1-11). C= control and 
R= ATRA treatedUnlabeled Cold probe was added as a specific 
competitor (lanes 11). 
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Luciferase reporter gene assay 

 

 In order to investigate whether the β-catenin signaling pathway is active in tumor 

cell lines, we chose to use a reporter gene assay, one of the methods to determine 

transcriptional activity of specific transcription factors in vitro.  The Western Blot 

analysis can only show the presence of signaling pathway components, which cannot be 

used as direct evidence for the transcriptional activity.  We investigated the Wnt/ β-

catenin pathway in B16 mouse melanoma cells by using reporter genes, TOP-flash (wild 

type TCF/ LEF binding sites) and FOP-flash (mutated TCF/ LEF binding sites).  In 

transcriptional activation, active β-catenin binds to TCF/ LEF protein, and then this 

protein complex binds to a TCF/ LEF DNA binding site, enhancing transcription of the 
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luciferase gene.  TOP-flash and FOP-flash were first used to identify activation of the 

Wnt/ β-catenin signaling pathway in human colon cancer cell lines (62).  Therefore, we 

employed Caco cells (human colon cancer cell line) to determine the optimal amount of 

the reporter plasmids that we need to use and the efficacy of our transfection.  First, we 

investigated whether we could successfully transfect Caco cells using Lipofectamine ™ 

2000 reagent; the plasmids that we we used for transfection were TOP- or FOP-flash 

(negative control) and pRL-TK renilla (a transfection control driving constitutive 

expression of renilla luciferase).  We found that the Caco cells express considerable 

luciferase 48 hr after transfection, regardless of the amount of reporter plasmids that we 

used (Figure 4-1).  Having established successful transfection in Caco cells, we used the 

same technique in B16 mouse melanoma cells.   

Reporter (TOP/FOP)/ TK renilla ratio in Caco cells 
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Figure 4-1.  The reporter/ TK renilla ratio in Caco cells  Caco cells were transfected with TOP-flash or 
FOP-flash plasmid (control) and pRL-TK vector (transfection control) with the amount of plasmids 
consisting at 1 μg, 2 μg, or 4 μg. Luciferase expression was assessed by a luminometer after 48 hrs of 
transfection; n=4.  Bar represented standard error. 
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Activity of the Wnt/ β-catenin pathway in B16 mouse melanoma cells 

We utilized the luciferase reporter plasmid TOP-flash to examine if the Wnt/ β-

catenin signaling pathway is active in B16 cells.  First, we transfected B16 F1 and F10 

cells using the same method with two different ratios of TOP-flash or FOP-flash vs. pRL-

TK vector (2 or 4 μg of reporter plasmid: 2 μg of pRL-TK) (Figure 4-2).  After choosing 

the ratio (4 μg of reporter plasmid: 2 μg of pRL-TK), we transfected B16 cells along with 

Caco cells as a positive control (Figure 4-3).  We found that the TOP-flash luciferase 

activities of both B16 cell levels were lower than their FOP-flash activity, while Caco 

cells have much higher TOP-flash activity compared to their FOP-flash activity.  These 

results were unexpected; therefore, we tried to induce the level of β-catenin by inhibiting 

its inhibitor, GSK3-β, using lithium chloride (LiCl) (63).   We treated B16 cells with 10 

μM LiCl after 24 hrs of transfection.  Previously, we did not detect TCF-4 protein in B16 

cells (unpublished observation), which suggested that B16 cells may not contain 

complexes binding to a TCF consensus element. Therefore, we used a plasmid that 

contains the LEF-1 binding site in the MITF promoter, Pmic (generous gift from Dr. L. 

Larue) in B16 cells (Figure 4-4).  Although treatment with LiCl increased the TOP-flash 

and Pmic activity, FOP-flash activity was also increased by LiCl even more than the wild 

type reporter genes.  Because FOP-flash activity was a paradox, we transfected the B16 

cells using the same method, and treating the B16 cells with 10 µM of ATRA or an equal 

amount of DMSO after 24 hrs of transfection (Figure 4-5). We observed that the TOP-

flash activity in both B16 cell lines was slightly decreased by ATRA, but FOP-flash 

activity in F10 cells was decreased after 24 hrs of ATRA treatment, and increased in F1 

cells.  
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Transfection in B16 F1 and F10 cells with various reporter/ TK renilla ratios 

0

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1

R
el

at
iv

e 
lu

ci
fe

ra
se

 a
ct

iv
ity

 

F1 TOP 2:2
F1 FOP 2:2
F1 TOP 4:2
F1 FOP 4:2
F10 TOP 2:2
F10 FOP 2:2
F10 TOP 4:2
F10 FOP 4:2

 
Figure 4-2. Transfection of B16 cells by Lipofectamine ™ 2000 reagent.  B16 cells were transfected 
with TOP-flash or FOP-flash plasmid (control) and pRL-TK vector (transfection control), with the plasmid 
ratios of 2 or 4 μg of reporter plasmid and 2 μg of pRL-TK.  Luciferase expression was assessed by a 
luminometer after 48 hrs of transfection; n=4. Bar represented standard error. 
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Figure 4-3. Transfection of B16 cells and Caco cells by Lipofectamine ™ 2000 reagent.  B16 and Caco 
cells were transfected with TOP-flash or FOP-flash plasmid (control) and pRL-TK vector (transfection 
control), with the plasmid ratios of 4 μg of reporter plasmid and 2 μg of pRL-TK.  Luciferase expression 
was assessed by luminometer after 48 hrs of transfection; n=4. Bar represented standard error. 
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TOP, Fop & Pmic + LiCl treatment
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Figure 4-4. LiCl treatment after 24 hrs of transfection in B16 cells.  B16 cells were transfected in 6-well 
plates with TOP-flash or FOP-flash plasmids (control) or Pmic and pRL-TK vector (transfection control), 
with the plasmid ratios of 0.5 μg of reporter plasmid and 0.2 μg of pRL-TK.  Luciferase expression was 
assessed by luminometer after 48 hrs of transfection and LiCl treatment; n=1.  
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Figure 4-5. ATRA treatment after 24 hrs of transfection in B16 cells.  B16 cells were transfected in 6-
well plates with TOP-flash or FOP-flash plasmids (control) or Pmic and pRL-TK vector (transfection 
control), with the plasmid ratios of 0.5 μg of reporter plasmid and 0.2 μg of pRL-TK.  Luciferase 
expression was assessed by luminometer after 48 hrs of transfection and ATRA treatment; n=2.  Bars 
represented mean. 
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These results were unexpected, leading us to test whether the ratio of reporter to 

control plasmids might be a cause of poor detection of specific transcriptional activity. 

Therefore, we tested ratios of reporter plasmids to the pRL-TK vector.  A broader range 

of pRL-TK: reporter plasmid ratios (1:2.5, 1:5, 1:10 and 1:100) were examined in B16 

F10 cells (Figure 4-6).  We noticed that when we transfected at 1:100 ratio of reporter 

plasmid: pRL-TK renilla, the FOP-flash activity was much higher than the TOP-flash 

activity. Thus, we selected the 1:10 ratio to be optimal.  
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Figure 4-6.  Ratio test of reporter plasmids vs. pRL-TK renilla vector in B16F10 cells.  F10 cells were 
transfected in 6-well plates with TOP-flash or FOP-flash plasmids (control) or Pmic and pRL-TK vectors 
(transfection control), with the plasmid ratios of 0.5 μg of reporter plasmid and 0.2 μg, 0.1 μg, 0.05 μg and 
0.005 μg of pRL-TK.  Luciferase expression was assessed by a luminometer after 48 hrs of transfection; 
n=2.  

As a means of increasing the available proteins to transactivate the reporters, we 

overexpressed active β-catenin to determine whether the B16 cells utilize the Wnt/ β-

catenin signaling pathway.  We obtained a point mutated active β-catenin (ABC) gene 
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and Wnt-8 gene from Dr. Mayion Park.  We expected to see TOP-flash activity increase 

with the overexpression of ABC. We were not certain that Wnt-8 would induce the 

downstream signaling cascade in B16 melanoma cells because these cells might not 

express Frizzled 8a receptor (68) that binds to Wnt-8 protein.  We received the human 

melanoma cell line, FO-1, from Dr. L. Larue.  We overexpressed ABC or Wnt-8 in F1, 

F10 and FO-1 cell lines (Figure 4-7).  Expression of FOP-flash activity was high in F10 

cells, but it became even higher after overexpression of ABC.  There was only a slight 

increase of TOP-flash activity in F10 cells with the overexpressed ABC vector compared 

to the control. In F1 cells, the pattern is similar to F10 cells, but the activity was not as 

high. These results are consistent with what we observed above.  

Overexpression of ABC & Wnt 8 in B16s and FO-1 cells 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Top Top+ABC Top+Wnt8 Fop Fop+ABC Fop+Wnt8

F10
F1
FO-1

R
el

at
iv

e 
lu

ci
fe

ra
se

 a
ct

iv
ity

 
Figure 4-7.  Overexpression of ABC and Wnt 8 in B16 and FO-1 cells.  Experiment was performed in 
duplicate. B16 cells were transfected in 6-well plates with TOP flash or FOP flash plasmids (control) or 
Pmic and pRL-TK vectors (transfection control), with the plasmids ratios of 10 ng of reporter plasmid, 10 
ng of ABC or 10 ng of Wnt-8 and 2 ng of pRL-TK.  Luciferase expression was assessed by a luminometer 
after 48 hrs of transfection, n=2.  
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Because FO-1 human melanoma cells exhibited an increased in TOP flash 

activity, but not in FOP flash activity, when ABC was expressed, FO-1 cells were used as 

a model to study the ATRA sensitivity of β-catenin transcriptional activity.  FO-1 cells 

have been studied in the field of immunology (61), but ATRA-sensitivity has not been 

demonstrated. FO-1 cells (1X105) were plated in 6-well plates the day before 

transfection.  Then, transfected with TOP- or FOP-flash plasmids, in addition we 

overexpressed ABC in the cells.  After 24 hrs of transfection, the cells were treated with 

10 µM of ATRA or the same amount of vehicle (Figure 4-8).  The luciferase activity in 

the ATRA treated cells decreased 30 % compared to the DMSO treated cells.  In 

addition, there was no difference when comparing ATRA treated cells to the untreated 

cells.   
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Figure 4-8. ATRA treatment after 24 hrs of transfection in FO-1 cells. FO-1 cells were transfected in 6-well 
plates with 10ng of TOP flash or FOP flash plasmids (control) and 2 ng of pRL-TK vector (transfection 
control), and overexpressed with 10 ng of ABC. Luciferase expression was assessed by luminometer after 
48 hrs of transfection and 24 hrs of ATRA treatment, n=2.  
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 To validate the data, we repeated the experiment using the same method.  We 

performed the experiment in triplicate with 48 hrs of transfection and after 24 hrs of 

ATRA treatment (Figure 4-9).  These results showed that 10 µM of ATRA decreased the 

TOP flash activity by 13%.  With 20 µM of ATRA, TOP flash activity was reduced by 

23%.   This is an interesting trend, but the differences between the control and the ATRA 

cells were not statistically significant.   
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Figure 4-9.  ATRA treatment after 24 hrs of transfection in FO-1 cells.  FO-1 cells were transfected in 
6-well plates with 10 ng of TOP-flash or FOP-flash plasmids (control) and 2 ng of pRL-TK vector 
(transfection control), and overexpressed with 10 ng of ABC.  Luciferase expression was assessed by a 
luminometer after 48 hrs of transfection and 24 hrs of ATRA treatment, n=6.  Mean ± SEM.  
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Discussion 

The Wnt/ β-Catenin signaling pathway plays a pivotal role in embryonic 

development among different species.  It can also contribute to cancer formation, which 

has been extensively studied in human colon cancer (44).  The central molecule in the 

Wnt signaling pathway is β-Catenin. It has been found that 30% of melanomas have β-

catenin in their nuclei (65). Although there is evidence that β-Catenin is involved in 

tumor formation, the transcriptional activity of β-Catenin in melanoma is still unclear.   

  

 Our previous results showed that ATRA relocated the β-catenin distribution from 

nucleus to membrane in B16 cells (Henry and Delidow, personal communication). In 

addition, other studies showed that disruption of β-catenin adhesion function can lead to 

nuclear accumulation in melanoma (35).  Our previous work showed that ATRA was able 

to decrease the protein level of active β-catenin and LEF-1 in B16 cells (Kern and 

Delidow, personal communication). We investigated whether the levels of the c-Myc and 

cyclin D1 protein were reduced, in response to inhibition of β-catenin. Our Western Blot 

data showed that the levels of c-Myc and cyclin D1 were reduced after 2 days and 4 days 

ATRA treatment in B16 cells. Because these genes are not direct targets of ATRA, it 

suggests they maybe reduced as a result of down regulated active β-catenin.  Both c-Myc 

and cyclin D1 can modulate cell proliferation and cell cycle (5, 13, 45, 47). Thus, the 

reduction in c-Myc and cyclin D1 expression correlates well with the known effect of 

ATRA on B16 cell proliferation (33).   
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Not only were cell proliferation markers levels reduced, our previous result 

showed that the β-Catenin partner and target protein, LEF-1, was also reduced after 

ATRA treatment. In order to activate growth regulatory gene, β-Catenin is required to 

couple with LEF-1 (21, 44, 48, 51). The reduction in LEF-1 expression suggests it is 

more difficult for β-Catenin to co-activate gene transcription.   On the other hand, MITF, 

an important molecule that modulate melanocyte cell differentiation and survival, also 

been shown to associate with LEF-1 and β-Catenin to regulate gene transcription (41).  

MITF can associate with β-catenin in absence of LEF-1 to regulate melanocyte-specific 

gene transcription that will redirect β-Catenin nuclear function from cell proliferation to 

melanocyte-specific gene expression (67).  In this study, ATRA induced MITF protein 

level and other have shown that showed ATRA induces MITF mRNA expression (66). In 

addition, ATRA was able to reduce LEF-1 expression and to promote differentiation (33).  

Thus, ATRA inhibits melanoma progression by redirecting the B16 cells to differentiate, 

in part through inducing MITF expression.  However, these results are only down-stream 

evidences of effects of ATRA on β-catenin, a direct evidence of β-catenin transcriptional 

activity will be required. 

 
 We examined presence of β-catenin transcriptional complexes in B16 cells by 

performing a gel shift assay. The gel shift assay results suggested that there are 

transcription factors in B16 cells that bind to specific DNA elements (TCF/LEF and LEF-

1) consistent with transcriptional activity of β-catenin. Reporter gene assays were 

performed to assess the transcriptional activity of β-catenin and its partner proteins TCF/ 

LEF. The TOP-flash activity was low compared to the negative control (FOP-flash) in 

B16 cells.  These results may suggest that B16 cells are not compatible with using FOP-
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flash as the negative control because of the possibility of binding to the mutant TCF 

binding sites in the FOP-flash vector.  On the other hand, we examined the transcriptional 

activity of β-catenin in FO-1 cells (human melanoma cell lines). We noticed that this cell 

line provides us with a consistently low response of the FOP flash activity, which means 

that there is no non-specific binding of proteins to the mutated TCF binding sites in FO-1 

cells.  The results of reporter gene assays in FO-1 cells showed that TOP-flash does have 

activity, which is induced in the presence of active β-catenin.  In human colon cancer 

cell, the transcription of TOP-flash construct was reduced by ATRA treatment. (69) 

Similarly, we observed a reduction in TOP flash activity with presence of exogenous 

ABC in FO-1 cells after treated with ATRA. 

 
 In conclusion, this study shows that ATRA reduces the expression of active β-

catenin and its target genes (LEF-1, c-Myc, and cyclin D1) and increases MITF 

expression in B16 cells. In addition, ATRA reduces the exogenous β-catenin 

transcriptional activity in FO-1 cells. Thus, ATRA may inhibit melanoma cell growth by 

decreasing active nuclear β-catenin protein levels and its nuclear activity, which 

decreases the transcription of cyclin D1 and c-myc and ultimately resulting in slowed 

cell-cycle progression.  
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Chapter Four 

Future Directions 

 
Future directions for research based on this study should focus on the mechanism 

by which ATRA affects β-catenin transcriptional activity in melanoma cells.  In this 

study, effects of ATRA on β-catenin transcriptional activity were demonstrated in FO-1 

human melanoma cells, but expression of β-catenin target genes and proteins were not 

examined. Therefore, Western Blot will be required to determine effects of ATRA on 

protein expression of MITF, c-Myc, cyclin D1, LEF-1, and active β-catenin.   

As mentioned in this study, MITF is an important molecule in melanocyte 

development, survival, and may possess the ability to alter β-catenin nuclear function. 

Therefore, study of whether MITF can improve or change the behavior of melanoma cells 

to a more normal phenotype will be required.  Alternatively, expression of LEF-1, a 

partner of β-catenin, can be repressed using small interfering RNA (siRNA) and with/ 

without ATRA treatment to determine whether melanoma cells will continue to 

proliferate in the absence of LEF-1 protein.  In addition, RAR siRNA can be used to 

determine whether siRNA reduced the ability of ATRA to decrease the nuclear activity of 

β-catenin. 

 
Different melanoma cell types may response to ATRA differently because of each 

cell line does not have exact same signaling cascade that modulate their behavior.  Thus, 

investigation using mouse melanoma cell line may be not accurately depicting the 

mechanism that occurs in human melanoma cell line.  In future research, different human 
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melanoma cell lines should be used and different pathway that response to ATRA should 

also be examine.   
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