

Western Washington University Western CEDAR

Salish Sea Ecosystem Conference

2014 Salish Sea Ecosystem Conference (Seattle, Wash.)

Apr 30th, 3:30 PM - 5:00 PM

Is hypoxia's influence restricted to the deep? Evaluation of nearshore community composition in Hood Canal, Washington, a seasonally hypoxic estuary

Halley E. Froehlich University of Washington, hefroehl@uw.edu

Timothy Essington University of Washington

Anne Houston Beaudreau University of Alaska

Shannon Hennessey University of Washington

Phillip S. Levin United States. National Oceanic and Atmospheric Administration

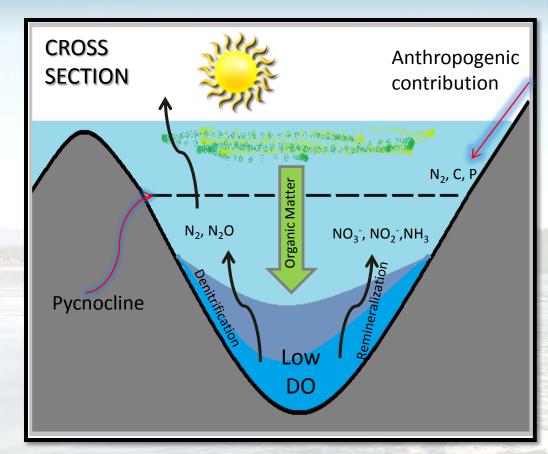
Follow this and additional works at: https://cedar.wwu.edu/ssec

Part of the Terrestrial and Aquatic Ecology Commons

Froehlich, Halley E.; Essington, Timothy; Beaudreau, Anne Houston; Hennessey, Shannon; and Levin, Phillip S., "Is hypoxia's influence restricted to the deep? Evaluation of nearshore community composition in Hood Canal, Washington, a seasonally hypoxic estuary" (2014). *Salish Sea Ecosystem Conference*. 56. https://cedar.wwu.edu/ssec/2014ssec/Day1/56

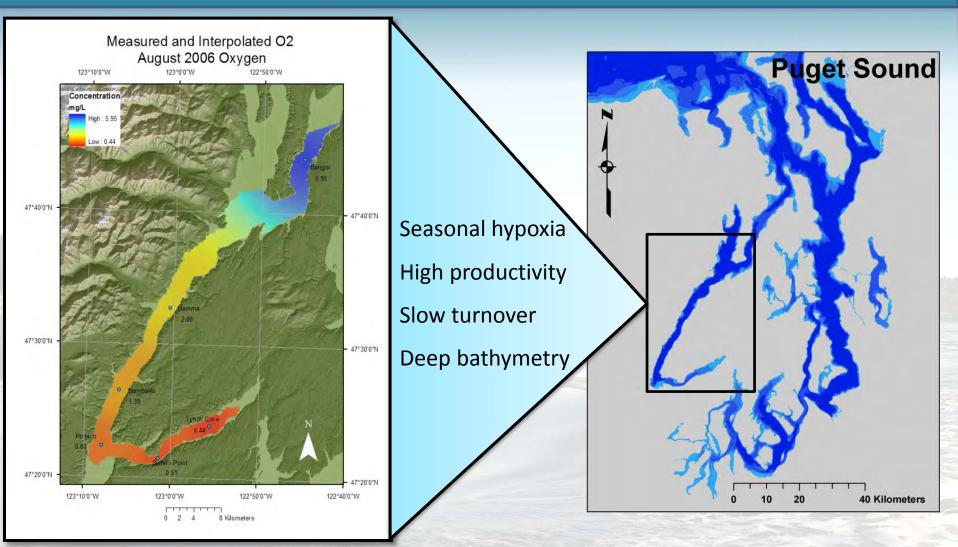
This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.

Is hypoxia restricted to the deep? Spatial & temporal variation in nearshore community structure in a seasonally hypoxic estuary


Halley E. Froehlich¹, Shannon Hennessey¹, Anne H. Beaudreau¹, Timothy E. Essington¹, Phillip S. Levin²

¹University of Washington, School of Aquatic and Fishery Sciences ²NOAA Northwest Fisheries Science Center

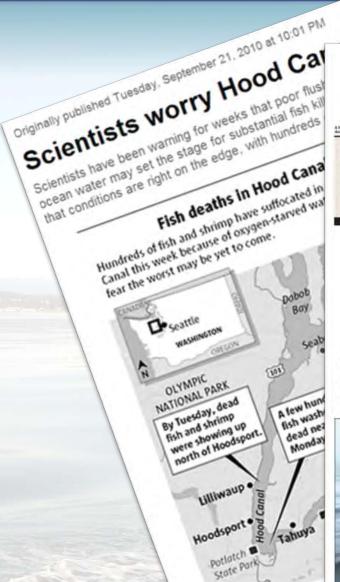
Salish Sea Ecosystem Conference 2014


Hypoxia

- Dissolved oxygen concentration "<2mg L⁻¹"
- Worldwide
- Pulse disturbance
- Anthropogenic

Diaz (2001); Diaz and Rosenberg (2008)

Hood Canal, Washington



Biological Impacts

1. Mortality

2. Sub-lethal effects

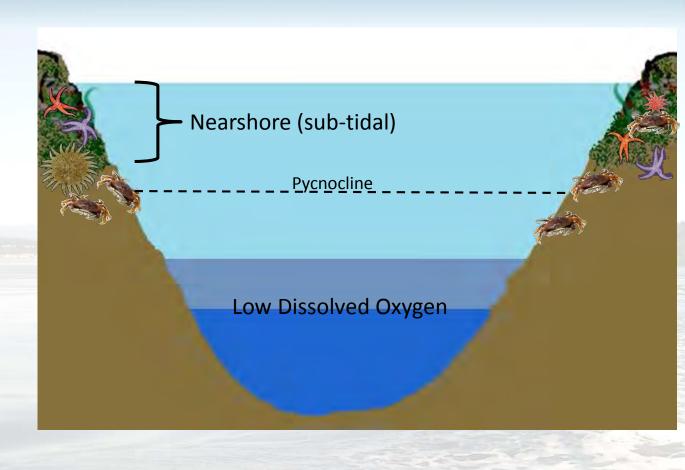
P-I SPECIAL REPORT

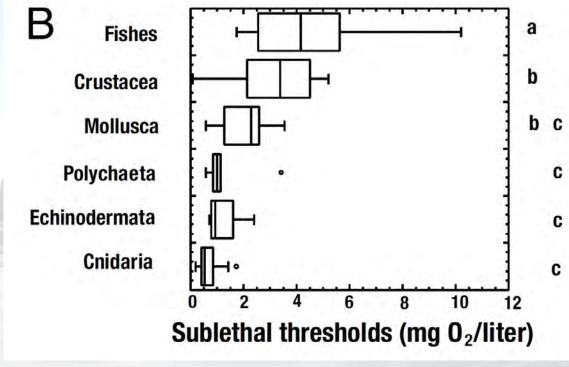
THE SOUND OF BROKEN PROMISES

GRANNY, THE RESPECTED ELDER in her Northwest orca pod, has lived from the dawn of the automobile through the advent of the Internet. In a vispent series starting today, the PI

chronicles her long life in the troubled waters of Paget Sound. Over almost a century, the aged matriarch has been cursed at, ahot at, netted by fortune hunters. Today, Granuw and her pod are strucging to survive

perite urimagined in har youth – the destruction of their food and habits, an ever-entire title of polosion plastics and severge, the diverse of a massive oil split. Elected landers have promised for decades to save the Sound. But weak regulations, spotty enforcement, political foot-dranging and a surge enforcement, adoption of Endangered Species Are protections of series and a proding Species Are protections for series and a proding


plan to restore the Sound Finally change that? Or will Granny and her pod continue swimming in a sea of broken promises?


Hypoxic influence on the nearshore community?

Nearshore

- High productivity
- Nursery habitat
- Closer to human influence

Physiological driven patterns

Vaquer-sunyer and Duarte (2008)

 Are there more hypoxia tolerant invertebrates and fewer fish species in the south?

1. Are there more hypoxia tolerant invertebrates and fewer fish species in the south?

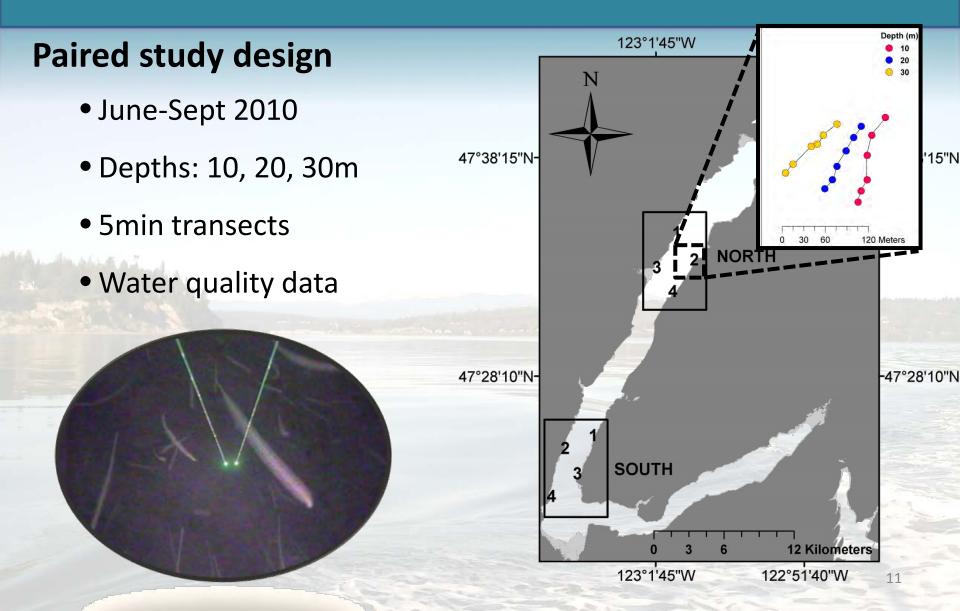
2. Does the southern community change temporally with the onset of hypoxia?

1. Are there more hypoxia tolerant invertebrates and fewer fish species in the south?

2. Does the southern community change temporally with the onset of hypoxia?

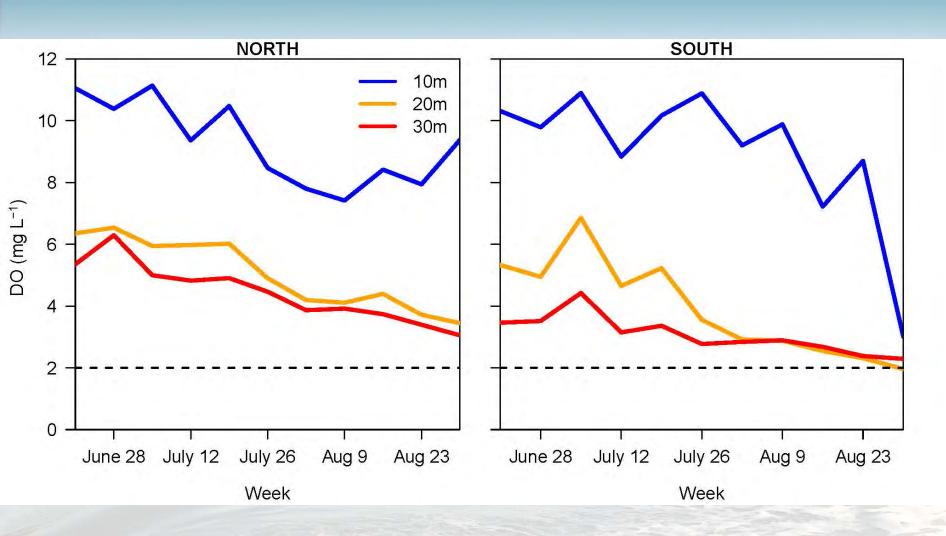
3. Is dissolved oxygen (DO) a main predictor for species presence and absence?

1. Are there more hypoxia tolerant invertebrates and fewer fish species in the south?


2. Does the southern community change temporally with the onset of hypoxia?

3. Is dissolved oxygen (DO) a main predictor for species presence and absence?

4. Do we detect distinct DO thresholds for 'sensitive' and 'tolerant' species?

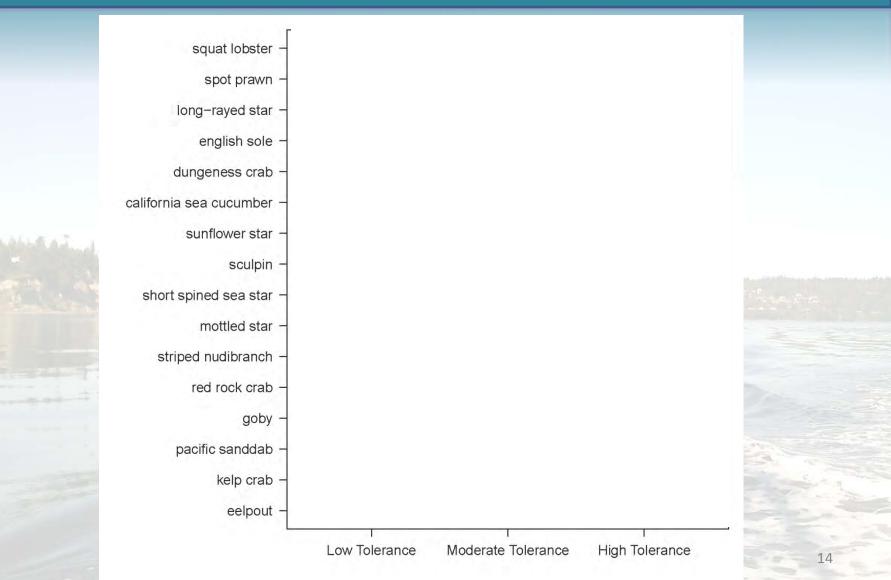

Methods

Drop-camera



Results

Water quality



South composed of more hypoxia tolerant invertebrates and fewer fish species compared to the north?

South composed of more hypoxia tolerant invertebrates and fewer fish species compared to the north?

Southern community changes temporally with the onset of hypoxia?

NORTH 1.0 10m Sensitive 10m Tolerant 20m Sensitive 0.8 **Probablity of Presence** 20m Tolerant 30m Sensitive 30m Tolerant 0.6 0.4 0.2 0.0 June 28 July 12 July 26 Aug 9 Aug 23 Week

DO a main predictor for species presence-absence?

Rank predictor importance for each species (N=16):

	No. of time	S	No. times		
Predictor	rank 1	Mean rank	within top 5		
Depth					
Region					
Temp					
Sample site					
DO					
Habitat					
Salinity					
Week					
Slope					
Side					

DO a main predictor for species presence-absence?

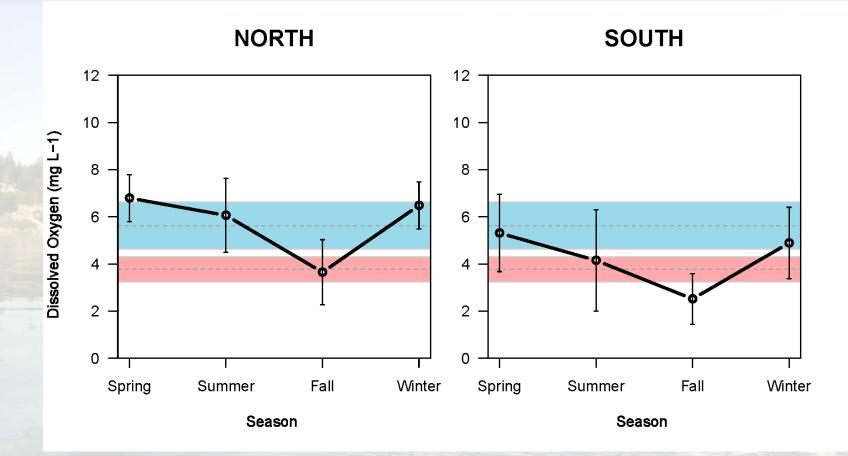
Rank predictor importance for each species (N=16):

	No. times		
Predictor	rank 1	Mean rank	within top 5
Depth	6	3.5	13
Region	3	3.8	11
Temp	2	3.8	13
Sample site	2	4.9	9
DO	2	5.1	9
Habitat	1	5.9	8
Salinity	0	5.6	8
Week	0	7.1	5
Slope	0	7.4	2
Side	0	8.0	2

Detect distinct DO thresholds for 'sensitive' and 'tolerant' species?

Broken-line analysis (GLM)

'Sensitive species' (n=7)


• Breakpoint = 5.62mg L⁻¹ (SE ± 0.51)

'Tolerant species' (n=9)

Breakpoint = 3.77 mg L⁻¹ (SE ± 0.27)

Long-term implications?

6 years of shallow, cruise data

Northwest Association of the Networked Ocean Observing Systems (NANOOS) Hood Canal Dissolved Oxygen Program (HCDOP; http://nvs.nanoos.org/CruiseHcdop)

Summary

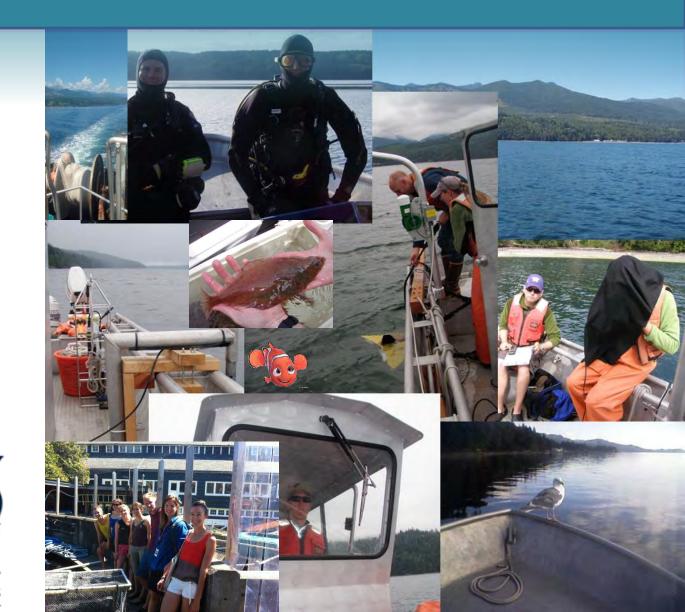
I. Hypoxia influencing the nearshore community

• Synergistic/additive effects?

II. More 'universal' hypoxia response level (3-4 mg L⁻¹)

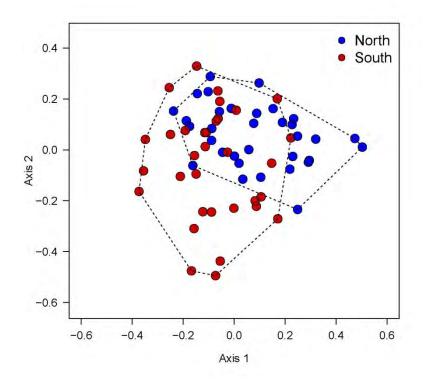
III. More persistent low DO state in the south

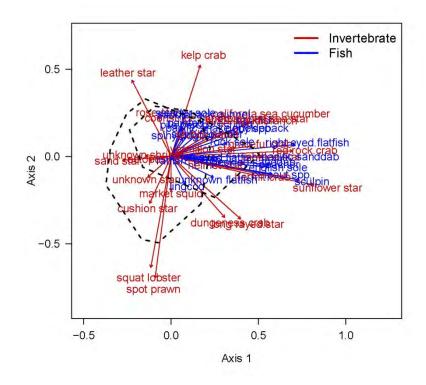
More vulnerable? Ecosystem function?


Acknowledgements

THANK YOU:

- P. Sean McDonald
- **Charles Simenstad**
- Nolan Grose
- Frank Stevick
- **Kelly Andrews**
- Drew Froehlich
- Eric Nelson
- **NOAA NWFSC**
- **HCDOP**
- NANOOS
- **Essington lab**





					Relative	
					Abundance	Ordination
				Overall	(north;	Correlation
Common name	Scientific name	DO Range	DO Tolerance	Tolerance	south)	Significance
Long-rayed star	Stylasterias forreri	0.5-6.6 ml/L ¹²	*more tolerant than fish & crustaceans ¹⁴	High?	1.3%; 3.1%	p < 0.01
Spot prawn	Pandalus platyceros	0.9-6.9 ml/L ¹²	minimum lethal ~1 ml/L ⁷ ; 3.5 to 4.0 mg/l (below this metabolism declines) ¹⁵	High	16.2%; 15%	p < 0.001
Squat lobster	Munida quadrispina	0.8-4.6 ml/L ¹²	0.1 to 0.15 ml/L, well adapted to hypoxia ⁴ ; exposed to < 0.5 mg/L ⁵ ; no association between density & DO ¹⁰	High	15%; 55.1%	p < 0.001
Dungeness crab	Metacarcinas /Cancer magister	4.9-6.6 mg/L ² ;2.6- 7.5 ml/L ¹²	>3.3 mg/L ¹ ; 1.2 mg/L> DO > 0.6 mg/L ²	Moderate to high	3.2%; 3.4%	p < 0.01
Giant California sea cucumber	Parastichopus californicus	0.32 - 6.7 ml/L ¹²	*more tolerant than fish & crustaceans ¹⁴ ; > 3.2 mg/L ¹⁵ ; < 2.5 mg/L mortality ¹⁶	Moderate to high	3.1%; 4.0%	p < 0.001
English sole	Parophrys vetulus	1.1-6.6 ml/L ¹²	moderate degree of hypoxia tolerance (1.09 ml/L) ³ ; condition not sig. different btw 0.4-1.0 ml/L ⁸	Moderate to high	4.5%; 0.4%	p < 0.01
Sunflower star	Pycnopodia helianthoides	2.6-6.8 ml/L ¹²	more abundant >1 ml/L ⁸ ; least abundant < 0.5 ml/L ⁸ ; > 0.5 ml/L ¹³ ; present in hypoxic conditions ¹³	Moderate	9.8%; 5.3%	p < 0.001
Shortspined sea star	Pisaster brevispinus	3.9-6.6 ml/L ¹²	present in hypoxic conditions ⁶ ; *more tolerant than fish & crustaceans ¹⁴	Moderate	1.6%; 0.9%	p < 0.01
Sculpin spp.	Malacocottus kincaidi; Enophrys bison	1.0-6.6 ml/L ¹²	more abundant ≥1.3 ml/L ⁸ ; absent 0.6 ml/L ⁸	Low to moderate	4.5%; 0.6%	p < 0.001
Mottled star	Evasterias troschelii	3.0-7.3 ml/L ¹²	*more tolerant than fish & crustaceans ¹⁴	Low to moderate?	2.8%; 3.0%	p < 0.01
Striped nudibranch	Armina californica	2.4-6.5 ml/L ¹²	absent ≤ 0.8 ml/L ⁸	Low	3.6%; 0%	p < 0.01
Pacific sanddab	Citharichthys sordidus	2.6-5.5 ml/L ¹²	condition sig. better in DO > 1ml/L ⁸ ; can move off the bottom ⁹	Low	3.9%; 0.2%	p < 0.001
Eelpout spp.	Lycodopsis pacifica	2.3-5.5 ml/L ¹²		Low?	1.2%; 0.2%	p < 0.001
Goby spp.	Rhinogobiops nicholsii	3.3 - 6.4 ml/L ¹²		Low?	3.1%; 0.4%	p < 0.05
Kelp crab	Pugettia producta; Pugettia richii	6.6 ml/L ¹²		Low?	1.1%; 1.0%	p < 0.001 22
Red rock crab	Cancer productus	3.2-6.6 ml/L ¹²	Emersion (<12hrs) ¹¹	Low?	8.2%; 1.7%	p < 0.001

Habitat Type

cobble/sand/algae cobble/sand/algae/seapens cobble/sand/rock/algae cobble/sand/rock/seawhips cobble/sand/seawhips/algae cobble/sand/seawhips/algae

