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Unblocking temperatures of viscous remanent magnetism
in displaced granitic boulders, Icicle Creek
glacial moraines (Washington, USA)
Juliet G. Crider1, Danika M. Globokar1,2, Russell F. Burmester3, and Bernard A. Housen3

1Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA, 2Now at Associated Earth
Scientists, Inc., Kirkland, Washington, USA, 3Pacific Northwest Paleomagnetism Laboratory, Geology Department, Western
Washington University, Bellingham, Washington, USA

Abstract Viscous remanent magnetization (VRM) may partially overprint original magnetization in rocks
displaced by geomorphic events. An established theoretical relationship between the time and temperature
of acquisition of VRMand the time and temperature of demagnetization suggests that laboratory demagnetization
(unblocking) of VRM can be used to estimate the displacement age of rocks. We test this hypothesis at four
nested glacial moraines in the Icicle Creek drainage of central Washington, the ages of which were previously
determined by cosmogenic surface exposure dating. The moraines are composed primarily of granodiorite
boulders, andmagnetic remanence is carried dominantly bymagnetite. Both themaximum and average pVRM
demagnetization temperatures (TD) increase with relative age of the moraines. For the three younger moraines,
the average TD yields an age comparable to the cosmogenic age, within uncertainty of pVRM acquisition
temperature. Uncertainty in the acquisition and demagnetization temperatures can limit the utility of pVRM for
absolute dating.

1. Introduction

Most rocks contain an assemblage of ferrimagnetic particles that record the ambient magnetic field present at
the time of the rock’s formation. In the best characterized process of magnetic remanence acquisition, thermal
remanent magnetism (TRM) is acquired as the rock cools through the blocking temperatures of the magnetic
minerals it contains. These blocking temperatures are a function of both intrinsic properties of the remanence
carriers (mineral species, composition, shape, and particle size distribution) and the thermal history (duration
and temperature of thermal events) the rock has experienced. Some of the magnetic grains in an assemblage
of remanence-carrying particles may have low blocking temperatures, and, given time, their magnetization can
change with changes in the magnetic field. The result is a “viscous” remanent magnetization (VRM) acquired by
that subset of particles. If the rock rotates after initial magnetization such that its magneticmoment is no longer
parallel to the ambientmagnetic field, a VRM component can grow in the new field direction. The VRM is recog-
nized as a magnetic component that has partially overprinted the original remanence: a partial VRM (or pVRM,
also known as partial thermal VRM or pTVRM). The relationship between the duration (tA) and temperature (TA)
of acquisition of the overprint and the duration (tD) and temperature (TD) of thermal demagnetization required
to remove (or “unblock”) the overprint in the lab [Enkin and Dunlop, 1988] was established theoretically for
single-domain (SD) particles [Néel, 1949, 1955] and has been evaluated in a variety of rocks [Heller and
Markert, 1973; Pullaiah et al., 1975; Middleton and Schmidt, 1982; Kent, 1985; Tyson Smith and Verosub, 1994;
Borradaile, 1996; Dunlop et al., 1997]. For magnetite, the relationship can be expressed as [Pullaiah et al., 1975]

TDlnCtD
M2

S TDð Þ
¼ TAlnCtA

M2
S TAð Þ

; (1)

where the frequency factor C= 10�10 s�1 andMS is the saturation magnetization, which varies with tempera-
ture. We use MS(T) =MS(T293K)[(TC� T)/(TC� T293K)]

γ, where TC is the Curie temperature for magnetite in
degrees Kelvin, MS(T293K) = 4.8 × 105 A/m [Dunlop et al., 1997], and γ= 0.38 [Tauxe et al., 2014, equation
(3.11)]. This formulation assumes that grain volumes are small (single domain) and the microcoercivity of
magnetite is dominated by shape anisotropy and is equivalent to MS.

The relationship between time and temperature in acquisition and demagnetization of pVRM suggests
potential use as a geochronometer by estimating tA of the pVRM overprint. Age estimation of pVRM acquired
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in rock over archaeological or geological timescales has seen mixed success, with a few studies reporting
correspondence to Néel theory [e.g., Tyson Smith and Verosub, 1994], while others suggest an alternative
relationship [e.g., Walton, 1980; Middleton and Schmidt, 1982] or an empirical approach to using pVRM for
age estimation [e.g., Borradaile and Almqvist, 2006]. Tyson Smith and Verosub [1994] showed first-order agree-
ment between the TD of pVRM in basalt boulders of a several-hundred-year-old landslide deposit and age
predicted by Néel SD theory and the related Pullaiah et al. [1975] nomograms. Sato et al. [2014] use pVRM
to distinguish emplacement ages of two magnetite-bearing coral boulders moved by tsunamis but do not
replicate the radiocarbon ages. Here we report on pVRM from granitic boulders in nested alpine glacial
moraines of known age and assess the utility of pVRM to estimate rock displacement ages in this setting.

2. Geologic Setting

The study area is in the Icicle Creek drainage in central Washington State, on the east side of the Cascade
Range (Figure 1). The valley experienced multiple pulses of Pleistocene glaciation, recorded in a series of
nested moraines [Page, 1939; Porter, 1969]. The moraines are composed almost entirely of granodiorite
boulders from the southeastern part of the Cretaceous Mount Stuart Batholith (MSB). Grain size of the silicate
minerals in the granodiorite is ~2–4mm, and the composition is 20%–40%mafic minerals. Most boulders are
texturally isotropic, but some have visible foliation, defined by weak segregation and alignment of mafic
minerals. On the basis of thermal demagnetization temperatures of natural remanent magnetization (NRM)
and on multicomponent isothermal remanent magnetization experiments on rocks from the MSB, Housen
et al. [2003] identified magnetite as the magnetic remanence carrier for rocks in the source area of the
Icicle Creek moraines. This finding is consistent with other observations that in felsic and intermediate
plutonic rocks, original and well-defined remanence is typically carried by very small inclusions of magnetite
within feldspars and Fe silicates [Dunlop and Özdemir, 1997].

The age of deposition of the moraines has been determined by 36Cl cosmogenic nuclide surface exposure
dating [Porter and Swanson, 2008]. Mean cosmogenic ages for the moraines are: Rat Creek I and II, 12.5
± 0.5 and 13.5 ± 0.8 ka; Leavenworth I and II, 16.1 ± 1.1 and 19.1 ± 3.0 ka; Mountain Home, 71.9 ± 1.5 ka; and
Peshastin, 105.4 ± 2.2 ka. Boulders in the younger moraines appeared fresh or slightly weathered with some
discoloration, while boulders in the older two sampled moraines were slightly to moderately weathered,
showing some physical decomposition of the rock. A fifth, older moraine (Boundary Butte) is present, but
boulders were too disaggregated to sample.

Figure 1. Icicle Creek drainage near the town of Leavenworth, WA. Bold lines trace the crests of glacial moraines, as mapped
by Porter and Swanson [2008]. Colored symbols show approximate sampling locations; each symbol represents several
boulders. Moraines are labeled: RC = Rat Creek; LWI, LWII = Leavenworth I and II; MH =Mountain Home; PE = Peshastin; and
BB = Boundary Butte. Inset shows the location of the study area in Washington State.
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In an ideal test of pVRM to estimate the emplacement age of boulders in the moraines, a number of condi-
tions would be met: The boulders would be transported only once and would not rotate after deposition;
postdeposition pVRM would be the only process that overprints the original TRM; and all boulders would
acquire a distinct pVRM overprint carried exclusively by SD magnetite. In natural geological settings,
however, these conditions are unlikely. At Icicle Creek, a number of processes could potentially complicate
identification and interpretation of postdepositional pVRM. Moraine degradation is evident in the older
moraines and may have led to postdepositional rotation of the boulders [Porter and Swanson, 2008]. We
sampled only the largest boulders from the crest of each moraine to reduce the possibility that sampled
boulders had rotated since deposition. Natural forest fires are not uncommon and may have occurred
repeatedly in interglacial periods [Porter and Swanson, 2008]; heating by fire could reset pVRM, potentially
introducing a young, high-temperature magnetization. A major fire burned much of the study area in
1993, and there is evidence of fire-related spalling of outer surfaces of some boulders on the Leavenworth
moraines. We endeavored to collect cores that were not visibly affected by the fires. Lightning also regularly
occurs in the field area. Lightning strikes and related ground current could wholly remagnetize a rock or
partially overprint the NRM. We therefore evaluated specimens for the possibility of lightning contamination
(supporting information). Additionally, boulders in younger moraines may have been recycled from older gla-
ciations. In such cases, there could be two or more pVRM components: we identified the lowest-temperature
component (pVRM1). It is also possible that a boulder could be deposited with its NRM nearly parallel or
antiparallel to the ambient magnetic field. Approximating a boulder as a cube, we estimate a two-in-six
chance for this to occur. In such cases, a postdeposition pVRM may be more difficult to recognize, as there
is no change in direction with demagnetization; however, it can be possible to recognize a change in the
intensity of magnetization. Further, it is possible that some rocks do not acquire a stable pVRM, despite
magnetic moment misalignment after deposition, because of the particular distribution of grain size, shape,
or composition of the magnetic carriers. Finally, it is rare that SD magnetite is the exclusive remanence carrier
in natural rocks; therefore, we assessed the magnetic mineralogy and magnetic grain size distribution of the
Icicle Creek boulders.

3. Sample Collection and Laboratory Methods

We collected samples from 34 granodiorite boulders greater than 2m in diameter [Globokar, 2014]. We com-
bined samples from composite moraines (Rat Creek I and II and Leavenworth I and II), to evaluate four deposi-
tional events: Rat Creek, Leavenworth, Mountain Home, and Peshastin. For the mean age of the composite
moraines, we assign the grand mean of the mean cosmogenic age of each moraine and use the larger uncer-
tainty: Rat Creek composite mean age= 13.0 ± 0.8 ka and Leavenworth mean age= 17.6 ± 1.1 ka. Sampling of
the older moraines was limited by the lower abundance of intact boulders: The Leavenworthmoraines have a
surface boulder density of nearly 100 per 100m2, while Peshastin has a surface boulder density less than 1
per 100m2 [Porter and Swanson, 2008]. We used a gas-powered drill to obtain oriented, 2.4 cm diameter core
samples. At more than half the boulders, we drilled a core on two or more different faces of the boulder; at
the others only one core was drilled. Samples were stored in a cool dark place until lab preparation to mini-
mize further VRM acquisition and were processed within 2weeks of collection. A nonmagnetic rock saw was
used to cut samples into 2.2 cm specimens, and subsamples were created from any core longer than 4.4 cm,
yielding 95 specimens from 62 core samples. After sample preparation, the specimens were stored and
analyzed in a room temperature (~22°C), field-free room.

The NRM of all samples was measured at room temperature using a 2-G 755 DC-SQUID magnetometer. After
initial measurement, samples were treated with liquid nitrogen in 20min low-temperature demagnetization
(LTD) cycles andmeasured after warming to room temperature, until no significant changes were observed in
remanence. LTD cycling is designed to preferentially erase the remanence carried by multidomain (MD)
magnetite grains and leave SD remanence unaffected [Dunlop et al., 1997; Housen et al., 2003]. The samples
were then progressively demagnetized by heating, in temperature steps of 5°C to 20°C from 70°C to 250°C
and in larger steps from 250°C to 450°C. At each step, the temperature was held constant for 30min after
which samples were allowed to cool for 10–15min, and then remanent magnetization was measured.
Oven temperature was monitored by digital displays connected to thermocouples at two locations within
the oven and by three to five, irreversible, self-adhesive temperature labels spread across the 46 cm
(18 inches) sample tray. With these observations, we modeled a 1-D temperature gradient in the oven,
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interpolating linearly between observations. We assigned the interpolated temperature to each sample at
each step with respect to its position in the oven.

To understand magnetic mineralogy, we measured hysteresis and backfield demagnetization of selected
samples with a Princeton Instruments vibrating sample magnetometer. Because hysteresis loops for most
whole rock chips were dominated by paramagnetic susceptibility of the mafic minerals (Figure S1a), we ma-
nually separated felsic components from four crushed chips and evaluated them separately (Figure S1b).
Ratios of saturation remanence (Mr) to saturation magnetization (MS) and coercivity of remanence (Hcr) to
coercivity (Hc) on a Day plot [Dunlop, 2002] reveal a range of apparent magnetite grain sizes within and
between boulders from different moraines (Figure S2). In general, felsic concentrates tended to yield more
SD-like results, but all samples tested show evidence that the primary magnetic carrier is pseudosingle
domain (PSD) magnetite or SD-MD admixtures [Dunlop, 2002].

We also reanalyzed data of 53 specimens from six sites of in situ Mount Stuart granodiorite along Icicle Creek,
originally reported in Housen et al. [2003]. These specimens were demagnetized at ~50°C steps from 20 to
500°C and subsequently at 10°C steps through 600°C.

4. Data Analysis
4.1. In Situ Rocks

We reexamined earlier data from in situ Mount Stuart granodiorites near the Icicle creek moraines to evaluate
the magnetic response of nontransported rocks to other environmental factors. Most show a high-
temperature component that unblocked over the range 500–575°C, interpreted to be the direction of initial
TRM. Line fits through moderate-temperature (270°–400°C) demagnetization paths for half the sites give
scattered directions but for the other three sites showmeans in the direction of the present axial dipole field.
We interpret this to suggest that some in situ rocks have acquired a pVRM, and this pVRM may extend to
moderate temperatures.

4.2. Moraine Boulders

Half of all specimens collected from the Icicle Creek moraines responded to thermal demagnetization. We
identified specimens that retain more than one direction of magnetization, as defined by linear segments
on orthogonal demagnetization diagrams [Zijderveld, 1967, Figure 2a]. Assuming that the boulders have not
rotated since deposition, we expect that the first component removed during thermal demagnetization is
the most recent component acquired and that this component is the magnetic overprint accumulated since
deposition in the moraines (pVRM1). For this analysis we accept an estimate of the pVRM1 direction as valid
if the line fit to the linear segment using principal component analysis has a maximum angular deviation
(MAD) [Kirschvink, 1980] of 15° or less. We further expect that pVRM acquired since final emplacement in
the moraines will be in the direction of the average magnetic field since deposition, which we estimate to
be approximately the present axial dipole field (PADF). For this analysis, we accept as valid all pVRM1 directions
within 40° of the PADF at the study site (declination=000°, inclination= 65.5°). We use this large radius to
account for the expected magnitude of Pleistocene and Holocene paleosecular variation [e.g., Hagstrum and
Champion, 2002; Korte et al., 2005], as well as uncertainties in vector direction and sample orientation.

Twenty-four specimens meet these criteria. Figure 2b shows the directions of the accepted pVRM1 compo-
nents. The mean direction for these pVRM1 components is declination = 013°, inclination = 67°, with 8° semi-
angle of 95% cone of confidence, and concentration factor k=15.5. This is indistinguishable from the present
field direction (declination = 016°, inclination = 69°). Higher-temperature components for specimens from
this set that have line fits with MAD< 15° are scattered (k= 1.6; Figure 2c).

To test the hypothesis that TD correlates with time elapsed since the boulders were moved, we identify the
demagnetization (or unblocking) temperature of pVRM1. Experiments on magnetite separates have shown
that PSD grains do not have a single TD but unblock over a range of temperatures [Dunlop and Özdemir,
2000, 2001]. We evaluate two approaches to select a value for TD: In the first approach we select the lowest
temperature at which there is an abrupt change in the direction or intensity of magnetization. This is the
temperature at which pVRM1 has been erased and thus is the maximum TD for the suite of particles in the

specimen Tmax
D

� �
. Second, we evaluate the distribution of temperatures for demagnetization of pVRM1,
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f(TD) [Dunlop and Özdemir, 2001]. We fit a smoothed spline to the demagnetization data and numerically
differentiate the resulting model f(TD). We take the extreme value in that derivative to represent the aver-
age TD of pVRM1 of the population of remanence-carrying grains in that specimen (Figure 2d). Dunlop and
Özdemir [2001] suggest that identification of TaveD permits application of Néel SD theory to PSD magnetite.

5. Interpretation

There is an increase in Tmax
D of pVRM1 as a function of moraine position (Figure 3, grey symbols), corresponding

to the relative age of the moraine. The geomorphically youngest moraine (farthest upvalley) has the lowest
mean Tmax

D . The geomorphically oldest moraine has the highest mean Tmax
D and contains the boulder with

the highest absoluteTmax
D . Assuming thatTmax

D increases with time of acquisition as predicted by Néel SD theory,
then this technique has correctly identified the relative ages of the moraines. The sample size is small, and the
variance is large; we cannot confidently reject the null hypothesis that pVRM1 from all the moraines has the
same Tmax

D . However, probability is only 1 in 12 (or 0.083) that the correct order of all four moraines would be
predicted by chance.

The average demagnetization temperature Tave
D

� �
from the derivative of f(TD) also reproduces the known

relative ages of the moraines (Figure 3, colored symbols). The geomorphically youngest moraine has the

Figure 2. (a) Representative output of thermal demagnetization experiments: Specimen MH02A1 from the Mountain Home moraine. Zijderveld diagram
shows changes in direction between lower temperature component (red, the pVRM1) and higher-temperature component, with blue showing line fit to pVRM1.
LTD = liquid nitrogen treatment (low-temperature demagnetization). N,U = North, Up. S,D = South, Down. (b) Lower hemisphere equal area projections of directions
of pVRM1 recorded in boulders of the Icicle Creek moraines. Filled color symbols represent pVRM directions within 40° of present axial dipole field direction (PADF,
dec. = 000°, inc. = 65.5°) and line fit MAD< 15°. Small circle shows cone of 95% confidence around themean of those directions (star); k = 15.5. (c) Higher-temperature
(>300°C) components excluding those with MAD> 15°; k = 1.6 (upper and lower hemisphere). (d) Magnetization versus temperature for specimen MH02A1. Tmax

D is
the temperature at the change in direction and demagnetization rate.TaveD is the temperature at the maxima in the derivative of the smoothed demagnetization path
(see also Figure S3).
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lowest mean TaveD and contains the
boulder with the lowest absolute Tave

D .
The geomorphically oldest moraine
has the highest mean TaveD and contains
the boulder with the highest absolute
TaveD . The absolute value of demagneti-
zation temperature determined this
way is 75°C–100°C lower than the Tmax

D

for each moraine. Furthermore, the sta-
tistics are somewhat improved: the
standard deviation of the mean TaveD is
half that of the mean Tmax

D for three of
the four moraines (Table S1).

We assess the potential to determine
absolute age of displacement from
pVRM comparing moraine ages esti-
mated using equation (1) to those
determined by cosmogenic isotopes.
As expected for specimens containing
PSD or MD magnetite [e.g., Dunlop and
Özdemir, 2000], using Tmax

D yields unrea-
listically old ages for all moraines
(1010 years and older). Using TaveD in
equation (1), the pVRM age estimates
for the three younger moraines give

geologically reasonable ages (Figure 4). The specific age estimates are sensitive to the choice of acquisition
temperature (TA), which is not well constrained. If we assign TA=20°C, pVRM age estimates for three younger
moraines are Rat Creek, 2 ka; Leavenworth, 13 ka; and Mountain Home, 134 ka. These are within ±90% of
the cosmogenic surface exposure ages (Table S2). The same approach yields an unreasonable age estimate

of 80Ma for the Peshastin moraine; the
age of the oldest moraine is not pre-
dicted from Tave

D with any reasonable TA.

6. Discussion

Extracting the demagnetization tem-
perature of pVRM from these rocks is a
challenge. A small fraction of the ana-
lyzed specimens yielded relevant infor-
mation. Most of the rest of the
samples either did not demagnetize in
the temperature range applied or dis-
played only single-component decay.
This success rate is similar to that
achieved in paleointensity studies [e.g.,
Tauxe et al., 2013]. We note that grano-
diorite is not the most natural choice
of lithology in which to test age estima-
tion with pVRM, as this rock type does
not typically have remanence carried
exclusively by SD particles. Given this
extra complexity, our first-order success
in relative age determination suggests

Figure 3. Unblocking temperatures (TD) of pVRM1 in boulders from the
Icicle Creek moraines. Symbols as in Figure 2b. Smaller grey symbols
show Tmax

D versus moraine; color symbols show TaveD versus moraine. Filled
symbols are TD for individual samples; open symbols give mean TD, with
error bar showing one standard deviation (Table S1). Outliers in TaveD
indicated by crosses are not used in subsequent analyses.

Figure 4. Time-temperature nomograph for thermal demagnetization of
magnetite (equation (1)) [Pullaiah et al., 1975]. Time and temperature for
acquisition (upper left) and demagnetization (lower right) for Icicle Creek
moraines are shown in solid symbols; bars show uncertainty in TA and
standard deviation in mean TaveD . Cosmogenic surface exposure ages
[Porter and Swanson, 2008] are taken as the acquisition time (tA). Color
curves trace the nomographs for the mean TaveD of each moraine; the
curves predict the cosmogenic age within the uncertainty in acquisition
temperature for the three younger moraines (Table S2).
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further promise for pVRM age estimation for displaced rocks with finer-grainedmagnetite. Even in more ideal
rocks, however, the challenges of identifying TD suggest that many samples are required to confidently
distinguish geomorphic features of unknown relative age. For the observed distribution of mean Tave

D , to
distinguish among the four moraines at 90% confidence, it would be necessary to triple the number of
successful measurements and reduce the standard deviation of the means by two thirds.

Modeling the distribution of unblocking temperatures f(TD) of pVRM1 to determine TaveD of the population of
magnetic grains improved resolution of relative age compared to using Tmax

D . Furthermore, for the three
younger moraines TaveD gave reasonable estimates of displacement ages using equation (1). Our analysis thus
suggests that rocks with PSDmagnetite remagnetized over geologic timescales may have similar behavior to
the PSD magnetite separates remagnetized at laboratory timescales reported by Dunlop and Özdemir [2001].

Calculating an absolute age relies on making an educated estimate of ambient temperature over the period
of acquisition (TA). Many studies assume acquisition temperatures of 20°C [e.g., Tyson Smith and Verosub,
1994; Borradaile and Almqvist, 2006]; others have used modern mean annual temperatures [e.g., Sato et al.,
2014]. In the Icicle Creek study area, modern mean annual temperature is about 10°C. It is possible, however, that
pVRM is acquired during the warmer summer months when the diurnal heating is also longer each day. Mean
summer temperature in the study area is close to 30°C. Furthermore, modern temperatures may not be good
TA estimates for glacial-aged events. Age estimates from pVRM are sensitive to these choices: uncertainty in TA
of 10°C leads to an order-of-magnitude uncertainty in age (Figure 4).

Even after accounting for f(TD), the average demagnetization temperature for the oldest moraine in this study
remains anomalously high compared to expected values if equation (1) applies. The high TD persists even
after repeated LTD treatment, consistent with dislocation pinning of domain walls in non-SD grains.
Further progress could be made with additional alternating-field pretreatment of specimens prior to thermal
demagnetization [e.g., Dunlop and Özdemir, 2001]. The failure of TaveD to yield a reasonable age for the oldest
moraine also suggests that approximation of PSD behavior with TaveD does not fully describe the magnetic
process in these specimens. This problem of age estimation for older events is further compounded because
time resolution decreases logarithmically with increased tA (equation (1)), so loss of precision in input leads to
large uncertainties. Moreover, older deposits also are exposed to more geologic processes that complicate
the magnetic overprints, including weathering, multiple displacements, or lightning and fires.

In summary, our data from the nested Icicle Creek glacial moraines illustrate that measurements of TD of pVRM
can determine the relative ages of rock displacement, even in the case where remanence is carried by non-SD
magnetite. This approach could be valuable where geomorphic evidence for relative age is absent or ambigu-
ous, for example, in evaluating the relative ages of moraines in separate valleys, nonoverlapping landslide
deposits, boulders displaced by tsunami [e.g., Sato et al., 2014], and rock fall or toppled rocks related to earth-
quakes. In addition, using the average demagnetization temperature from amodeled distribution of TD gives an
estimate of the absolute age of rock displacement, within better than an order of magnitude for the Holocene
and latest Pleistocene moraines. Our findings bolster the possibility that pVRM could be a useful alternative or
complement to other Quaternary dating tools for determining the age of geomorphic events.
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