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Abstract: A sandstone outcrop exposed to freshwater seepage supports a diverse assemblage
of photosynthetic microbes. Dominant taxa are two cyanophytes (Oscillatoria sp., Rivularia sp.)
and a unicellular green alga (Palmellococcus sp.). Less abundant taxa include a filamentous green
alga, Microspora, and the desmid Cosmarium. Biologic activity is evidenced by measured levels of
chlorophyll and lipids. Bioassay methods confirm the ability of these microbes to dissolve and
metabolize Fe from ferruginous minerals. Chromatographic analysis reveals citric acid as the likely
chelating agent; this low molecular weight organic acid is detectable in interstitial fluid in the
sandstone, measured as 0.0756 mg/mL. Bioassays using a model organism, Synechoccus elongates
strain UTEX 650, show that Fe availability varies among different ferruginous minerals. In decreasing
order of Fe availability: magnetite > limonite > biotite > siderite > hematite. Biotite was selected for
detailed study because it is the most abundant iron-bearing mineral in the sandstone. SEM images
support the microbiologic evidence, showing weathering of biotite compared to relatively undamaged
grains of other silicate minerals.

Keywords: algae; bioassay; biogenic weathering; biotite; chelation; cyanophyte; epilithic; iron minerals

1. Introduction

Relationships between living organisms and the lithosphere have received considerable attention
from geoscientists because organisms are known to have occurred in association with rocks and
sediments for more than three billion years of the Earth’s history. The lithosphere provides the
basic source of mineral nutrients for all organisms, and some microorganisms have acquired the
ability to dissolve minerals. This report describes observations and laboratory investigations of
surface-dwelling (epilithic) microbes that are able to dissolve iron from ferruginous minerals, and to
metabolize this element. The studies focus on the weathering of biotite, the dominant iron-bearing
mineral in the sandstone bedrock at the study site, located in northwest Washington, USA. At this
locality, the rock surface is saturated with freshwater seepage from overlying unconsolidated sediment,
an environment that provides a habitat for a variety of surface-dwelling microorganisms, resulting in
a nearly continuous biofilm.

This study is significant because it demonstrates the ability of epilithic algae to obtain Fe from
their mineral substrate; chelating abilities of bacteria, lichen, and fungi are well-documented, but few
data have been available for algae. Also, the research demonstrates the value of the bioassay method
for studying bioweathering and iron metabolism.

2. Project Description

This report describes a sandstone outcrop on the shores of Puget Sound, where fresh water
seepage keeps the surface perpetually moist. The rock provides a habitat for a variety of photosynthetic
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organisms. Laboratory investigations were conducted to determine if these microbes are involved in
biogeochemical weathering.

Site Description

Chuckanut Bay is located in Whatcom County, Washington, near the southern city limits of
Bellingham (Figure 1). Bedrock is composed of Eocene arkosic sandstone of the Chuckanut Formation.
The outcrop examined for this study lies at the head of the shallow intertidal embayment. Chuckanut
Bay is an unusual coastal landform for Puget Sound, being protected from wave action by a railway
track bed built in 1901; tidal influx and outflow are limited to a narrow channel (Figure 2). The source of
moisture at the study outcrop is fresh water seeping from the adjacent hillside; the surface is inhabited
by a freshwater microflora, not marine life forms.
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Figure 1. (A). Location map; (B). Lidar view of Chuckanut Bay and adjacent hill slopes. Topography is
strongly related to the highly folded Chuckanut Formation sedimentary rocks; (C). Study site outcrop
photographed at high tide (2.9 m above mean tide line). Ocean surface is partly obscured by floating
plant debris. The rock hammer rests on beach sand; (D). Close-up view of outcrop surface (area shown
in red outline in (C)), showing water saturation and biofilm of endolithic microbes.
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minerals is well documented [4–12]. Lichens may also cause rock deterioration as a result of 
expansion and contraction during wetting and drying cycles [13–15]. Bacteria are also agents of 
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Figure 2. Chuckanut Bay at low tide. Study site is marked with an arrow.

3. Previous Work

The ability of biologically produced compounds to dissolve minerals is known from laboratory
studies and field observation.

Biogenic activity has been of interest because of the roles microorganisms play during large-scale
geologic processes. Kaolin deposits of southern Germany and the Czech Republic have been ascribed
to the alteration of granite by organic acids derived from overlying lignite [1], and bauxite deposits
of Arkansas, USA have been explained as weathering products of nepheline syenite from organic
decomposition related to neighboring lignite beds [2]. High alumina clay in the Negev region in Israel
may have resulted from the selective leaching of basalt by dissolved organic matter from soil [3].

Living organisms are an important force during rock weathering. The solubilization of minerals
by biologically-derived compounds has been recognized for lichen, fungi, bacteria, cyanobacteria,
and degradation products from higher plants. The ability of lichens to secrete compounds that
attack minerals is well documented [4–12]. Lichens may also cause rock deterioration as a result
of expansion and contraction during wetting and drying cycles [13–15]. Bacteria are also agents of
biogenic weathering [16–23], but fungi are perhaps the most important organism [24–29]. Research
interest has been stimulated by the realization that fungi and other microbes can be useful for mitigating
sites polluted with heavy metals, radionuclides, asbestos, and other hazardous materials [26,30–32].
Higher plants can be a cause of biogenic weathering for several reasons. Roots growing along fractures
can cause structural damage to bedrock, and rootlets are commonly associated with mycorrhizal
fungi that release compounds that solubilize nutrient minerals from adjacent soil [33–35]. Perhaps the
greatest factor comes after death, when the degradation of plant tissues produces soil organic matter
that contains powerful chelating agents. The chemical mechanisms involved in these biogenic
weathering processes are described below.

Chemical Mechanisms

Iron-chelating compounds secreted by organisms are sometimes referred to as siderophores [36–39].
Although iron is abundant in many natural environments, the element is commonly present as oxides that
have a very low solubility, and it is thus unavailable for metabolic use. The secretion of siderophores allows
microorganisms to obtain iron from ferric minerals by the formation of soluble Fe3+ organometal complexes.

The chemical composition of siderophores is highly variable, including peptides, chatecolates
(phenolates), hydroxamates, and carboxylates. These compounds typically have an ability to form
stable octahedral complexes with Fe3+ ions. The most important structural characteristic of these
complexing agents is their tendency to dissociate in aqueous solution to donate two protons (diprotic
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acids) or three protons (triprotic acids), allowing the formation of complexes with multivalent
metals (Figure 3). Bacteria and fungi produce a diverse variety of catecholate and hydroxamate
siderophores [40–42]. In algae and higher plants, carboxylic acid siderophores predominate [43].
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Figure 3. Dissociation of hydroxyl functional groups produces sites that can bond to Fe3+ ions.
Stereochemistry is an important factor; organometal complexes may have structures very different
from simple molecular diagrams. Citric acid is a carboxylate; ferriochrome, a siderophore involved
in iron transport for fungi and bacteria, is a hydroxamate. For a given siderephore, Fe complexes
generally consist of multiple structural variants that share a basic formula. In solution, these isomers
can coexist in equilibrium [44,45].

For organic acids, three principal reaction pathways may be responsible for mineral
decomposition: these involve attack by hydronium ions, low molecular weight organic acids (LMWOR),
and high molecular weight organic acids (HMWOR).

Hydrogen ions may be involved in biogenic weathering when organic acids are present in
concentrations sufficient to produce low pH conditions. However, as noted later, the effectiveness of
organic acids for rock weathering primarily comes from their ability to form organometal complexes
where multivalent metals form ligands with carboxyl functional groups, not from hydronium ion
activity [46]. Hydronium ion attack may occur when carbonic acid is present as a result of the
dissociation of biologically-produced CO2. This gas is produced during the metabolic process of
respiration, but in plants exposed to light, CO2 is utilized as a substrate for photosynthesis, along with
additional CO2 obtained from the surrounding atmosphere. Biochemical processes vary between times
of darkness and light, but on net balance, photosynthetic organisms consume CO2 and produce O2.
For this reason, carbonic acid attack on minerals is not likely to be a major force on surfaces inhabited
by algae or cyanophytes.
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Hydronium ion attack may occur from the release of oxalic acid, derived from calcium oxalate
present in the cells of many plants. In addition, oxalic acid may also serve as a chelating agent [45].
Calcium oxalate occurs in the cells of many plants, from microscopic algae to giant gymnosperms,
and in cyanophytes and fungi [47–49]. Formed from glucose by an enzymatic process, calcium oxalate
may accumulate to form considerable quantities of crystals within individual cells, a phenomenon that
may provide physical protection against predation [50]. Metabolically, calcium oxalate is a mechanism
for regulating calcium levels in tissues and organs [51,52]. Oxalic acid release by lichens and fungi
can be important for biogenic weathering, and this compound is known to occur in some microscopic
algae [53–55]. However, oxalic acid production is not well documented for microscopic algae and
cyanophytes; for these microbes, the potential benefits of oxalate production are probably very different
compared to larger life forms. For microbes that release organic acids as chelating agents to obtain
nutrient elements, the most likely agents are carboxylic acids, as discussed below.

In general, the dominant chemical process for biogenic weathering is chelation, a process where
organic molecules react with multi-valent ions on mineral surfaces, solubilizing these elements to
produce organometal complexes. The principal chelating agents are organic acids belonging to two
groups: high molecular weight (HMWOA) and low molecular weight (LMWOA).

High molecular weight organic acids (HMWOA) are primarily degradation products of dead
plant matter, producing humic and fulvic acids that are present in soils, peat, and water. Because
they are degradation products, these organic acids are exceptions to a definition of biochemicals as
compounds that are produced by living organisms. They are mentioned here because they originate
from true biochemical precursors, and because they potentially provide a source of soluble nutrients
for living cells.

Humic acids have an aromatic hydrocarbon framework with associated phenolic and carboxylic
functional groups that can react with divalent and trivalent metals to produce chelate complexes.
Fulvic acids have structural similarities to humic acids, but they are lower in molecular weight, and are
more biologically reactive [56]. These compounds are important for the breakdown of minerals in
soils [57,58].

Low molecular weight organic acids (LMWOA) include members of two groups: carboxylic acids
produced during the citric acid cycle (Krebs cycle), and phenolic acids (lichenic acids). Lichenic acids
are phenolic compounds formed as secondary metabolic products.

In this report, the study site is a sandstone outcrop saturated with groundwater. Fresh-water
algae inhabit the exposed surface. In this environment, biogenic weathering is most likely caused by
the chelating effects of LMWOA generated during the citric acid cycle (Krebs cycle). This reaction
sequence is a fundamental process for carbohydrate oxidation for all aerobic organisms. Pyruvate
produced from glucose during anaerobic glycolysis is utilized during the aerobic Krebs cycle,
where intermediate metabolites are citrate, isocitrate, oxalyosuccinate, ketoglutarate, succinate,
fumarate, malate, and oxalyacetate. These tricarboxylic acids all have the potential to be effective
chelating agents for multivalent metals because of their multiple carboxyl functional groups.

The release of metabolic intermediates would seem to be detrimental to efficient metabolism;
the benefit may be that that the release of LMWOA gives an organism the ability to obtain nutritional
elements from nearby mineral surfaces. However, the energetic efficiency of metabolism may be very
different for organisms that live directly on bare rock or unweathered soil, compared to organisms
that are epiphytic or parasitic, or plants rooted in fertile soils. In the latter instances, mineral nutrients
are obtained either from a host, or from organic chelates formed by reactions of minerals with dead
organic matter (HMWOA). In contrast, organisms dwelling in barren environments need to obtain
essential elements from a primary source, e.g., rock-forming minerals.

The most abundant tricarboxylic cycle acid to be released outside cells is usually citric acid
(C6H8O7). Indeed, the commercial production of citric acid typically relies on the fermentation of
various sugars by the fungus Aspergillus niger [59–61]. Experiments involving the effectiveness of
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fungal culture in mineral dissolution indicate that solubilization can be caused by the production of
citric acid by the organisms [24].

For LMWOA, the nature of the chemical reaction varies with the chemical composition of the
minerals and the organic acids. In sulfides and oxides, solubilization occurs when metal cations are
removed from the lattice. For silicates, the decomposition sequence encountered under inorganic
conditions may be quite different from the sequence that occurs in the presence of organic acids.
The alteration of biotite provides an example. A common inorganic pathway for the weathering of
biotite involves the transformation to vermiculate when hydrated cations cause interlayer expansion.
In the presence of organic acids, metal ions in the octahedral layer are removed, leaving behind a fragile
matrix of amorphous silica. This relict silicate lattice will disintegrate upon mechanical disturbance of
the mineral grain [62].

Studies of dissolution of iron from ferruginous minerals and from granodiorite show that
organic acids of biologic origin can dissolve iron from the lattices of certain minerals within
minutes [63]. The amount of solubilization bears no direct correlation to the pH of the aqueous
solutions, evidence that the dissolution of metal cations is the result of chelation, not the action of
hydronium ions produced by the dissociation of these organic acids [46].

Solubilization of minerals in the presence of organic chelating agents may be enhanced relative
to solubility under inorganic conditions. Most minerals show small but measurable solubility in
pure water, but equilibrium is normally reached before significant lattice damage occurs. However,
organic compounds present in solution may react with ions as they are released from the mineral,
producing soluble organic complexes. Such reactions would push the equilibrium toward the release
of additional ions, so that the mineral could continue to dissolve indefinitely without reaching a
saturation point.

The bioavailability of Fe commonly involves chelation effects, but this is not the only mechanism.
In aquatic and marine environments, phytoplankton may obtain this micronutrient from unchelated
Fe [64,65]. Iron bioavailability may also be facilitated by the reduction effects of organic ligands [66,67].
This is a reminder that although the present study provides data for understanding iron bioavailability
for microbes growing on rock surfaces, it is not a model for global Fe uptake.

4. Site Geology

This report focuses on the microbial solubilization of iron from biotite because this mineral is
the most abundant ferruginous material in Chuckanut Formation arkose, constituting up to 6% by
volume of the total rock [68]. Also, the clastic grains are set in a matrix of micaceous material, so the
dissolution of biotite is an important step during weathering. The typical composition of the rock is
shown in Table 1.

Table 1. Major element composition (wt.%) of arkosic sandstone at the Chuckanut Bay site, determined
by atomic absorption spectrophotometry. Average of four analyses, data adapted from Mustoe [69].

SiO2 Al2O3 TiO2 Fe2O3 * MgO Na2O K2O CaO MnO

72.79 13.30 0.38 3.26 2.04 3.21 1.74 1.92 0.06

* Total iron calculated as Fe2O3.

5. Microbiology

Samples were collected as scrapings from the rock surface, collected in springtime (early May).
The most abundant microrganisms (Figure 4) were identified as filamentous cyanophytes Oscillatoria
sp. and Rivularia sp., and unicellular Palmellococcus sp. (Chlorophtya). Less abundant taxa included
filamantous Microspora sp. (Chlorophyta) and the desmid Cosmarium sp. Identifications were made
based on morphology using the information in [70–74].
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presence of living photosynthetic organisms, because once released from living cells, this pigment 
degrades rapidly [75]; Total lipids likewise represent biologic activity, galactolipids and 
phospholipids being important structural components of cell membranes [76]. Because of their 
greater chemical stability, total lipid values may represent contributions from both living cells and 
accumulated degradation products. This may explain the weak positive correlation of chlorophyll 
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is that they provide numerical evidence for recognizing microbial activity at the rock surface.  
  

Figure 4. Microorganisms from the rock surface at the Chuckanut Bay outcrop. (A), Oscillatoria sp.
(Cyanophyta) and Palmellococcus sp. (Chlorophyta); (B), Palmellococcus sp.; (C,D), Rivularia sp. (Cyanophyta);
(E), Rivularia sp. trichomes; (F) filamentous Microspora sp. (Chlorophyta), and three desmid cells,
Cosmarium sp. (Charophyta).

5.1. Chlorophyll and Total Lipid Analysis

Evaluating biologic activity began with the determination of chlorophyll and total lipids (Table 2)
in small rock chips collected in a horizontal line across the face of the outcrop using the methods
described in Appendix A. Chlorophyll analysis provides a useful method for recognizing the presence
of living photosynthetic organisms, because once released from living cells, this pigment degrades
rapidly [75]; Total lipids likewise represent biologic activity, galactolipids and phospholipids being
important structural components of cell membranes [76]. Because of their greater chemical stability,
total lipid values may represent contributions from both living cells and accumulated degradation
products. This may explain the weak positive correlation of chlorophyll and total lipids (Figure 5).
However, the chlorophyll-lipid ratio may show wide variation among different taxa, because the
thicknesses of lipid-rich cell walls may vary. The significance of these data is that they provide
numerical evidence for recognizing microbial activity at the rock surface.
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Table 2. Analysis of chlorophyll and lipid biomarkers in the near-surface horizon of Eocene arkosic
sandstone saturated with fresh water seepage.

Sample Chlorophyll µg/g Total Lipids µg/g

1 9.0 156
2 10.0 244
3 5.5 266
4 7.0 128
5 7.7 228
6 5.5 129
7 8.5 44
8 20.0 442
9 6.0 140

Microorganisms 2018, 6, 8  8 of 22 

 

Table 2. Analysis of chlorophyll and lipid biomarkers in the near-surface horizon of Eocene arkosic 
sandstone saturated with fresh water seepage. 

Sample Chlorophyll µg/g Total Lipids µg/g
1 9.0 156 
2 10.0 244 
3 5.5 266 
4 7.0 128 
5 7.7 228 
6 5.5 129 
7 8.5 44 
8 20.0 442 
9 6.0 140 

 
Figure 5. Chlorophyll-lipid ratios show a weak positive correlation. R2 = correlation coefficient 
based on the sum of the squares of regression residuals. 

5.2. Organic Acid Analysis 

Thin layer chromatography was used to analyze low LMWOR at the outcrop surface zone. To 
obtain a sufficient sample size, a total of 80 g of rock chips were collected from a horizontal line across 
the face of the outcrop in the zone where the rock was visibly covered by epilithic organisms. Citric 
acid was the only LMWOR detected. Quantitative analysis (Appendix A) revealed a citric acid 
content of 0.575 mg, representing the total amount of this compound in the moist rock sample. After 
drying at 110 °C, a duplicate 80 g rock sample was observed to have a weight loss of 7.6 g, indicating 
the original amount of interstitial fluid. From this information, the original citric acid concentration 
was calculated to be 75 mg/7.6 mL, equivalent to 0.0756 mg/mL. This value was used in subsequent 
laboratory experiments. 

6. Experimental Evidence 

Several experiments were conducted to investigate possible biogenic weathering at the study site. 
Procedure details for all methods used in this study appear in Appendix A. The first experiment 
measured the dissolution of Fe from biotite exposed to citric acid at the concentration measured from 
interstitial water. Iron was selected because ferruginous minerals, particularly biotite, are major 
components of the intergranular cement that lithifies the arkosic sandstone. Also, Fe is an essential 
nutrient for microbes, because this element is a cofactor for many enzymes. Indeed, low Fe availability 

Figure 5. Chlorophyll-lipid ratios show a weak positive correlation. R2 = correlation coefficient based
on the sum of the squares of regression residuals.

5.2. Organic Acid Analysis

Thin layer chromatography was used to analyze low LMWOR at the outcrop surface zone.
To obtain a sufficient sample size, a total of 80 g of rock chips were collected from a horizontal line
across the face of the outcrop in the zone where the rock was visibly covered by epilithic organisms.
Citric acid was the only LMWOR detected. Quantitative analysis (Appendix A) revealed a citric
acid content of 0.575 mg, representing the total amount of this compound in the moist rock sample.
After drying at 110 ◦C, a duplicate 80 g rock sample was observed to have a weight loss of 7.6 g,
indicating the original amount of interstitial fluid. From this information, the original citric acid
concentration was calculated to be 75 mg/7.6 mL, equivalent to 0.0756 mg/mL. This value was used
in subsequent laboratory experiments.

6. Experimental Evidence

Several experiments were conducted to investigate possible biogenic weathering at the study
site. Procedure details for all methods used in this study appear in Appendix A. The first experiment
measured the dissolution of Fe from biotite exposed to citric acid at the concentration measured
from interstitial water. Iron was selected because ferruginous minerals, particularly biotite, are major
components of the intergranular cement that lithifies the arkosic sandstone. Also, Fe is an essential
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nutrient for microbes, because this element is a cofactor for many enzymes. Indeed, low Fe availability
is commonly the limiting factor for phytoplankton [77,78]. The experimental results demonstrate that
Fe is solubilized in the presence of this organic acid, but not by distilled water (Table 3).

Table 3. Citric acid solubilization of iron from biotite. A total of 0.5 g of powdered (<63 µm) biotite was
incubated for 14 days in 50 mL of aqueous citric acid solution (0.0756 mg/mL. or in an equal volume of
distilled water.

Flask Solution Iron Content (ppm)

1 Distilled water 0.01
2 Distilled water <0.01
3 Citric acid 0.38
4 Citric acid 0.52

6.1. Bioassay Methods

Bioassay methods have long been a mainstay of microbiology research, where the growth
parameters of microbial cultures are used to assess the activity of various chemical agents.
Many investigators have isolated microorganisms from rocks and soils, but laboratory investigations
have typically involved analyses of substances produced by the organisms and their effect on geological
materials. True bioassays have been performed by only a few geoscientists, e.g., [22,79]. This study
shows the usefulness of bioassays for quantitatively studying the abilities of microorganisms to
dissolve and metabolize nutrient elements from minerals.

For this study, two strategies were used to investigate the abilities of algae and cyanophytes
to dissolve Fe from biotite and other ferruginous minerals. The isolation of pure cultures from
the epilithic microbial assemblage proved to be challenging, because the gelatinous envelopes of
filamentous organisms acted as carriers for other microbes. Although it was possible to obtain a pure
culture of the single-celled green algae, Palmellococcus, attempts to obtain isolates of the other genera
were unsuccessful. As discussed later, these mixed cultures were useful for study, but initially, a pure
culture of a cyanophyte, Synechococcus leopoliensis, was used to investigate the biogenic release of
Fe from biotite. The taxon chosen is a unicellular cyanophyte that grows rapidly under laboratory
conditions, and which has been subject to considerable study following its original description [80],
which used the now-obsolete name Anacystis nidulans. The microbes used in this study came from
cultures maintained at Western Washington University, originally obtained from the Indiana University
Culture Collection; that collection is now being maintained at the University of Texas in Austin, USA.
The organism is designated Synechococcus leopoliensis UTEX 625 [81].

6.2. Bioassay of Fe Availability for Synechococcus leopoliensis Incubated with Biotite

Cultures of S. leopoliensis grown in iron-free culture medium show growth that is limited by the
ability of the microbes to obtain this nutrient metal from an external source. For this experiment,
Fe was available from varying amounts of powdered biotite. Control cultures contained either no Fe
source, or water-soluble ferric citrate. The results (Table 4) show that the growth of this cyanophyte is
related to its ability to obtain Fe dissolved from biotite. All three measurement parameters (cell weight,
chlorophyll content, and 550 nm optical density of cell suspensions) give very similar results (Figure 6).



Microorganisms 2018, 6, 8 10 of 22

Table 4. Metabolism of iron from biotite by Synechococcus leopoliensis. Cultures were grown in 100 mL of
iron-free medium for nine days under constant illumination at 25 ◦C in air-CO2 atmosphere (95:5 v/v).

Flask Iron Source Cell Weight/g Chlorophyll/mg Optical Density at 550 nm

1 Fe citrate 0.0006 g 0.53 0.74 0.668
2 Biotite 0.040 g 0.48 0.67 0.456
3 Biotite 0.020 g 0.18 0.118 0.118
4 Biotite 0.10 g 0.07 0.032 0.053
5 Biotite 0.005 g 0 0 0
6 No iron 0 0 0Microorganisms 2018, 6, 8  10 of 22 
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Figure 6. Synechococcus leopoliensis growth is directly related to the amount of biotite as an iron source.
The exponential curve is consistent with the exponential nature of algal reproduction, which primarily
results from asexual cell division.

6.3. Synechococcus leopoliensis: Bioavailability of Fe from Ferruginous Minerals

The bioassay method was extended to include a variety of ferruginous minerals as potential
sources of dissolved iron. As in the previous experiment, control cultures contained either no Fe
source, or water-soluble ferric citrate. The results (Table 5, Figure 7) show that the availability
of dissolved Fe is variable for different minerals: magnetite [Fe3O4], limonite [FeO(OH).nH2O],
biotite [K(Mg,Fe)3(Al,Si)3O10)(Fe,OH)2], siderite [FeCO3], and hematite [Fe2O3]. Each mineral was
present as a 0.020 g addition to the iron-free culture medium.

Table 5. Bioavailability of Fe from various ferruginous minerals.

Flask Iron Source Cell Weight Grams Chlorophyll mg Optical Density at 550 nm

1 Fe citrate 0.0006 g 0.44 0.310 0.600
2 magnetite 0.36 0.215 0.362
3 limonite 0.33 0.162 0.330
4 biotite 0.38 0.128 0.206
5 siderite 0.10 0.50 0.136
6 hematite 0.06 0 0
7 No iron 0.02 0 0
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6.4. Production of Citric Acid by Epilithic Microbes Isolated from Outcrop

As mentioned previously, thin-layer chromatography revealed citric acid as the only LMWOR;
quantitative analysis indicated a concentration of 0.0756 mg/mL (though this concentration is probably
variable according to precipitation, ambient temperature, and exposure to sunlight, all of which may
affect the activity of photosynthetic organisms) Citric acid production by microbes cultured from the
outcrop was measured under laboratory conditions (Table 6, Figure 8).

Table 6. Release of citric acid by epilithic microbes. Cultures were grown for eight days under the same
conditions as cultures used for Table 4.

Organism(s) Cell Weight Grams Citric Acid mg/mL Citric Acid/Cell Weight Final pH

Palmellococcus 0.49 0.00531 0.01084 6.49
Oscillatoria + Palmellococcus 0.18 0.00825 0.04583 6.62
Rivularia + Palmellococcus 0.11 0.00950 0.0864 6.84

Microspora + Palmellococcus+ Cosmarium 0.36 0.00935 0.03569 7.02Microorganisms 2018, 6, 8  12 of 22 
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6.5. Bioassays: Mixed Cultures

The bioassay method used with the model microbe Synechococcus leopoliensis (Table 4) was
employed to measure the ability of site-derived microbe cultures to obtain Fe from biotite, compared
to control samples that contained no iron source, or water-soluble ferric citrate (Table 7).

Table 7. Bioassay results for organisms isolated from the study site biofilm.

Organism(s) and Iron Source Cell Weight Grams Chlorophyll mg Optical Density at 550 nm

Palmellococcus
Fe citrate 0.46 0.057 0.322

biotite 0.57 0.048 0.404
No iron 0.29 0.012 0.157

Oscillatoria + Palmellococcus
Fe citrate 0.40 0.015 0.178

biotite 0.39 0.015 0.080
No iron 0.26 0.003 0.002

Rivularia + Palmellococcus
Fe citrate 0.58 0.194 0.840

biotite 0.54 0.180 0.850
No iron 0.29 0.055 0.282

Microspora + Palmellococcus + Cosmarium
Fe citrate 0.91 0.055 0.432

biotite 0.75 0.038 0.352
No iron 0.28 0.006 0.008

7. Scanning Electron Microscopy

Specimens of rock collected from the outcrop surface were analyzed by SEM/EDS to observe
possible evidence of biogenic weathering. The electron photomicrographs show biofilm-forming
microorganisms that inhabit the surface zone of the porous arkose (Figure 9A,B), and evidence of rock
weathering (Figure 9C,D).
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Figure 9. Microscopic features of Chuckanut Bay outcrop surface rock. (A). Sandstone is coated with
microbial biofilm; (B). Cyanophyte trichome (marked with arrow) penetrating sand grains ~2 mm
below the rock surface; (C). Subsurface sandstone consists of moderately well-sorted grains of silicate
minerals set in a granular micaceous matrix; (D). High magnification view of near-surface sandstone
shows an abundance of fine-grained weathering debris.

At higher magnifications, SEM images show that most silicate grains are relatively unweathered.
The exception is biotite, which shows surface pitting and delamination along the cleavage planes
(Figure 10). The severity of structural damage at cleavage edges is consistent with experimental
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evidence that shows biotite edges are 45–120 times more susceptible to dissolution than surface
planes [82].
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Figure 10. Textural characteristics of sediment grains in weathered surface zone. (A), quartz;
(B), orthoclase feldspar; (C), hornblende; (D), plagioclase feldspar; (E,F), biotite mica. Biotite grains
show evidence of weathering, in the form of surface etching (E) and delamination along platy cleavage
planes (F). Other silicate minerals are relatively free of weathering effects.

8. Discussion

Field observations, microscopic observations, and the analysis of biochemicals confirm the
abundant presence of photosynthetic microbes at the Chuckanut Bay site. The presence of citric
acid at the moist sandstone surface suggests the possibility that the microorganisms may benefit
from nutritional elements released from the mineral substrate. A laboratory experiment investigated
the ability of a model organism, Synecoccus elongates UTEX 650, to obtain Fe from biotite and other
ferruginous minerals; taxonomically mixed cultures of microbes from the rock surface were also
studied. The results of these experiments are discussed below.

8.1. Table 4, Figure 4. Metabolism of Iron from Biotite by Synechococcus leopoliensis

These data clearly indicate that this unicellular cyanophyte is capable of dissolving Fe from biotite
and metabolizing this element. Despite the rapid growth typical of this species, microbial growth
did not reach a plateau point, suggesting that the dissolution of Fe occurs at a gradual rate. As a
corollary, Fe does not reach a saturation point, because the element is continually being removed from
solution by the expanding microbial population. This phenomenon is evidenced by data from cultures
incubated with a variety of ferruginous minerals, as discussed below.

8.2. Table 5, Figure 5. Synechococcus leopoliensis: Bioavailability of Fe from Ferruginous Minerals

The bioavailability of Fe varies greatly among various iron-bearing minerals. Factors affecting
Fe solubility may include oxidation state, lattice structure, and solubility [83]. Hematite was the only
mineral that was ineffective as a nutrient source, perhaps because for this mineral, iron is present in a
ferric (Fe3+) state, in contrast to ferrous iron (Fe2+) present in magnetite, biotite, and siderite. Limonite
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is a hydrous oxide-hydroxide where iron is present in an oxidized (Fe3+) state, but this mineral is
anomalous because of its amorphous structure, which may facilitate solubility. The bioavailability of Fe
is not limited to particular structural groups, since microbial growth occurred with oxide (magnetite),
aluminosilicate (biotite), and carbonate (siderite) minerals. Bioassay results indicate that Fe in solution
did not reach a saturation point, perhaps simply as a result of slow dissolution rates, but more likely
a result of the removal of soluble iron complexes during microbial metabolism; under inorganic
conditions, Fe saturation would eventually be reached regardless of the mineral source.

Optical density: cell weight ratios are somewhat variable among the cultures, but generally
follow the same trends. The exception is the sample incubated with siderite, where chlorophyll values
are very high. This phenomenon suggests that in this culture, cells contained a significantly higher
chloroplast density compared to the organisms grown in the presence of other iron sources. The reason
for this difference is not known, but it perhaps relates to the FeCO3 structure of siderite, which gives
the mineral a higher solubility under acidic conditions than iron oxide and aluminosilicate minerals;
siderite is susceptible to both chelation and hydronium ion attack. Why elevated Fe levels would
favor increased chlorophyll production rather than simply allowing more rapid cell proliferation
is unknown.

8.3. Table 6, Figure 6. Release of Citric Acid by Epilithic Microbes

The pH remained near neutral for all cultures, suggesting that citric acid released by microbes was
being removed, presumably by the metabolism of Fe-citrate complexes. Chlorophyll level is higher in
S. leopolensis cultures than in cultures of organisms isolated from the sandstone outcrop, which can
probably be explained by the rapid growth rate typical of Synechococcus [68]. Citric acid levels in
laboratory cultures were much lower than the concentration measured for the near-surface fluids of
the sandstone outcrop. This is perhaps a result of much greater microbe population densities at the
rock surface; however, the natural occurrence of microbes is subject to the influence of many physical
and ecological variables not present in the simple conditions typical of laboratory cultures.

When citrate production is adjusted for cell mass, the highest citric acid levels were measured in
cultures containing cyanophytes Oscillatoria and Rivularia, and lower values occurred with the green
alga Palmellococcus. pH remained near neutral, regardless of citric acid concentration. Palmellococcus
cultures had a relatively high cell weight, but low citric acid, a phenomenon that could be an indication
of the efficient absorption of Fe-citrate chelate.

8.4. Table 7. Mixed Cultures & Biotite

The greatest growth was observed in the culture that contained Rivularia + Palmellococcus. Cultures
that contained Palmellococcus alone, or in combination with Oscillatoria, Microspora, or Cosmarium,
all had a much lower growth. This evidence suggests that Rivularia is the most active microbe for
dissolving iron from biotite. However, under natural conditions, it is probable that Fe dissolved as a
result of a chelating agent produced by one organism can be metabolized by other microbes living in
the same environment. Also, metabolic processes may release elements and compounds that become
available to co-inhabitants; the death of cells results in the release of useful nutrients.

8.5. Implications for Rock Weathering

SEM images show that the sandstone surface is covered with a continuous biofilm (Figure 9A),
with microbial filaments extending several mm into the porous rock (Figure 9B). The near-surface zone
shows evidence of chemical weathering. The arkosic sandstone clasts predominantly consist of quartz
and feldspar, which have been relatively free of weathering damage. Hornblende, a minor constituent,
is likewise well-preserved. In contrast, biotite grains show severe damage. This petrographic evidence
is consistent with laboratory experiments that suggest that microorganisms are able to dissolve biotite
as a source of nutrient iron. Because biotite is an important component of intergranular cement,
degradation of this mineral results in the disaggregation of the sandstone.
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From a regional perspective, the Chuckanut Bay study site is an anomalous coastal exposure,
exposed to freshwater saturation and protected from waves, salt spray, and other marine effects
because of the protection provided by the railroad causeway (Figure 2). The same Chuckanut
Formation sandstone forms outcrops along a 15 km length of nearby Salish Sea coast. At other
sites, outcrops contain spectacular examples of honeycomb weathering. These features result from
a combination of the destructive effects of salt weathering in balance with the protective effect of
microbial biofilms [69,84].

8.6. Possibilities for Future Research

This study provides a preliminary look at biogenic weathering processes related to mineral
solubilizaton by surface-dwelling photosynthetic organisms, but many issues remain unclear.
This study provides only a brief snapshot view of microbial activity during the long daylight
hours and mild temperatures of the spring season; organisms may be different in other seasons.
In addition, other coastal sites contain areas where the rock surface is moistened by freshwater seepage,
though these sites lack the protection provided by the railroad causeway that exists at Chuckanut Bay.
Weathering processes at these sites may be quite different, particularly because of the importance of
salt crystallization as an agent of erosion. Evidence presented in this study provides only cursory
information regarding biogenic effects, but the laboratory methods described here may be useful for
future studies in other areas. In particular, the bioassay method can provide information as to how
organisms may benefit from elements released via mineral dissolution.
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Appendix A. Methods and Materials

This study is a preliminary investigation, and the results are reported from experiments that
were performed without replication. As described below, the analytical methods are based on
well-documented sources, and have been used in our laboratory for many years.

Appendix A.1. Bioassay Methods

Appendix A.1.1. Source of Microorganisms

Synechococcus leopoliensis strain 625 cultures are available from UTEX culture collection, University
of Texas at Austin (https://utex.org).

Appendix A.1.2. Microbial Culture Medium

Adapted from Gorham et al. [85]. This culture medium contains inorganic chemicals as a source
of nutrients. In the original formulation, iron is supplied in the form of ferric citrate. Because the
medium consists of inorganic components, there is no likelihood of Fe being inadvertently introduced,
as might happen for media prepared using organic extracts as nutrient sources. For the bioassays used
in this study, ferric citrate was omitted from the recipe. For control samples, ferric citrate was prepared
in aqueous solution at a concentration of 0.006 g in 100 mL distilled water. After autoclave sterilization,
10 mL of this solution was added for every 90 mL of culture medium. Prior to use, the pH of the culture
medium was adjusted to 8.0 by addition of 6 N NaOH solution. The design of the individual 100 mL
culture flasks is shown in Figure A1. A compressed air: CO2 gas mixture (95:5 v/v) was bubbled at
rate of a few cm3/min through the culture medium. Commercial grade gas was used, custom blended
for our lab by a local vendor. Our past lab experiences growing axenic algal cultures have confirmed
the sterility of this product. Culture flasks were exposed to constant illumination from broad spectrum

https://utex.org
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fluorescent lights. All mineral powders used in solubilization experiments were screened through a
62 µm bronze sieve.

Appendix A.1.3. Inoculation Procedure

For experiments using Synechococcus, flasks of sterile medium were inoculated by adding 1.0 mL
of solution from a stock culture; the numbers of cells being transferred were not determined, but in a
given experiment, each flask received the same volume of inoculum. The quantity of cells and volume
of medium was low enough to minimize the amount of Fe that was transferred to flasks of iron-free
medium used in bioassays.

Appendix A.2. Analytical Methods

Appendix A.2.1. Cell Weight

Cell weight = weight of wet cells after centrifuging culture liquid for 7 min at 2000 g and decanting
to remove supernatant.
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Appendix A.2.2. Optical Density

Optical density is a measurement of the opacity of the culture medium caused by light absorption
in solutions prepared by suspending the centrifuged cells in 400 mL distilled water, and determining
the optical density at 550 nm for an aliquot transferred to the measurement cell of a Beckman Spectronic
20 spectrophotometer.

Appendix A.2.3. Chlorophyll Analysis

Sample collection: Rock chips were removed along a 2 m horizontal line across the outcrop using
a hammer and chisel. These samples were returned to the laboratory and immediately analyzed.
For each sample, 25 g of chips were pulverized by hand in a porcelain mortar, and transferred to
a 125 mL Erlenmeyer flask. Chips were extracted for 60 min. in 25 mL of chloroform-methanol
(2:1 v/v). The mixture was gravity filtered through medium flow filter paper (60 mL/min, Grade 613),
saving the supernatant liquid. The remaining rock chips were extracted for an additional 60 min.
using 25 mL of fresh solvent, and the filtered liquid was combined with the liquid from the
first extraction. The absorbance of this extract was measured using a Spectronic 20 UV/VIS
spectrophotometer (ThermoFisher Sciientific, Waltham, MA USA, www.thermofisher.com) at 625 µm
(chlorophyll-b). For chlorophyll-a, a 675 nm wavelength can be used. Chlorophyll content was

www.thermofisher.com
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determined using a standard curve constructed by measuring the absorbance of chlorophyll extracts
of a known concentration, obtained from a chloroplast suspension obtained from fresh spinach
leaves [86]. For microbial cultures, chlorophyll was determined by extracting the centrifuged cells
in chloroform-methanol, using two stages of extraction as described above to obtain a filtered
solution that was used for spectrophotometric analysis. For both methods, during processing,
samples were kept in glassware that was wrapped in aluminum foil to exclude light that could
hasten chlorophyll degradation.

Appendix A.2.4. Lipid Analysis

The extract used for chlorophyll determination was evaporated to dryness using a rotary flash
evaporator. The resulting residue was dissolved in a ~3 mL of diethyl ether, and transferred to
a pre-weighed 10 mL Erlenmeyer flask. The solvent was removed using an evacuated dessicator
chamber. The flask and dry reside were weighed using an analytical balance to determine the weight
of total lipids.

Appendix A.2.5. Organic Acid Analysis

Samples consisted of rock chips collected as described above. The following analytical method
was adapted from [87,88], using thin-layer chromatography instead of paper chromatography. The use
of thin-layer chromatography for organic acid separations is briefly discussed in Swain [86], including
a list of retardation factor (Rf) values for various carboxylic acids.

A total of 80 g of rock chips was transferred to a 250 mL Erlenmeyer flask and extracted for
60 min. using 100 mL of 95% ethanol. The mixture is filtered through Whatman #613 filter paper,
saving the supernatant liquid. The sample was extracted for an additional 60 min in 50 mL of fresh
solvent, then filtered. The supernatant was combined with the liquid obtained from the first extraction,
and evaporated to dryness using a rotary flash evaporator. Rock chips remaining from the ethanol
extraction received a second cycle of extraction, using aqueous 10% isopropanol, again employing
rotary flash evaporation. Vacuum dried residues from the extraction steps were dissolved in 2 mL
of the original solvent, before application on 20 × 20 × 0.4 cm glass plates coated with Silica Gel
G. Carboxylic acid solutions (0.2 mg/mL, dissolved in pure ethanol or 10% aqueous isopropanol)
were applied to each plate to provide reference standards. Reagent grade Krebs cycle organic acids
Sigma-Aldrich, St, Louis, MO, USA, www.Sigma-Aldrich.com) included isocitric acid, citric acid,
malic acid, fumaric acid, pyruvic acid, succinic acid, and oxalacetic acid.

Chromatography plates were developed in glass tanks containing 20 mL of
ethanol-ammonia-water solvent (80:4:16 v/v). After development was complete (90–120 min.),
the plate was removed and briefly allowed to air dry, before transfer to a 110 ◦C oven. Organic acids
were detected using two reagents. The first step used the spray application of a pH indicator,
0.1% bromcresol green in 50% aqueous ethanol, adjusting pH to 10 with dilute aqueous NaOH.
This treatment reveals organic acids as light colored spots on a blue background. The second
detection step requires spraying the plate with p-dimethylaminobenzaldehyde in acetic anhydride
(5% v/v), diluted 1:4 v/v with acetone for spray application. After heating at 110 ◦C, organic acids
appear as pastel colored spots, which can be intensified by spraying the plate with bromcresol green
indicator solution. This method provides good separation of the reference standards, with two
exceptions. Oxalacetic acid was not detected by either spray reagent, while isocitric and citric acids
are indistinguishable.

Appendix A.2.6. Quantitative Determination of Citric Acid

The procedure was adapted from Snell and Snell [89]. This colorimetric method uses a
deproteinized sample with warm acetic anhydride and pyridine under anhydrous conditions,
citric acid yields a carmine red color, aconitic acid yields violet red, and tartaric acid yields emerald
green. Procedure: dissolve deproteinized sample containing 0.015–0.04 mg citric acid in 1 mL of

www.Sigma-Aldrich.com
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5% aqueous trichloracetic acid. Transfer sample to a glass vial, add 8 mL acetic anhydride, and seal
vial with a rubber stopper. Heat in a 60 ◦C water bath for 10 min. Temperature should remain
constant within ±1 ◦C. Add 1 mL pyridine, restopper, and heat vial in a water bath for an additional
40 min. Transfer to an ice bath for 5 min. Read absorbance at 420 µm using a Beckman Spectronic
20 Spectrophotometer. Consult standard curves prepared from laboratory grade citric acid to determine
the concentration of unknown samples.

Appendix A.2.7. Determination of Dissolved Iron

Many wet chemical and instrumental methods can be used to determine values for dissolved iron.
If available, atomic absorption spectrophotometery and ICP spectrophotometery are common methods.
Colorimeteric analysis was used in this study, using 1, 10-phenanthroline (orthophenanthroline) to
produce a bright colored Fe(II) complex. The method is rapid, requires minimal laboratory facilities,
and has detection sensitivities in the <1 ppm range [89–91].

Procedure: 25 mL of the liquid sample is mixed with 0.25 mL of 10% aqueous hydroxlamine
hydrochloride to convert Fe3+ to Fe3+. Add 5 mL of 0.1% aqueous 1,10-phenanthroline. Absorbance is
determined at 508 µm using a Spectronic 20 spectrophotometer, calculating Fe concentrations based on
a standard curve prepared from solutions with a known iron concentration, prepared using reagent
grade ferric citrate dissolved in distilled H2O.

Appendix A.2.8. Scanning Electron Microscopy

Photomicrographs (Figures 9 and 10) were obtained using a Tescan VEGA SEM (Tescan, Brno,
Czech Republic, www:tescan.com) at Western Washington University. Specimens were prepared
as rock chips attached to aluminum stubs with epoxy adhesive, and sputter coated with palladium
to provide electrical conductivity. Samples were dried at 110 ◦C prior to analysis. Mineral phases
were identified based on EDS spectra, using an EDAX nondispersive X-ray detector running Genesis
software (EDAX, Mahwah, NJ, USA, www:edax.com). Scale bars were added using Adobe Illustrator.
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