Supporting Information for "Steady ¹⁰Be-derived paleo-erosion rates across the Plio-Pleistocene climate transition, Fish Creek-Vallecito basin, California"

M. E. Oskin,¹ N. E. Longinotti,¹ T. Peryam,² B. Dorsey,² C. DeBoer,³ B.

Housen,³ K. Blisniuk,⁴

Corresponding author: M. E. Oskin, Department of Earth and Planetary Sciences, University of California, Davis, Davis, CA 95616, USA. (meoskin@ucdavis.edu)

¹Department of Earth and Planetary

Sciences, University of California, Davis,

California, USA.

²Department of Geological Sciences,

University of Oregon, Eugene, Oregon,

USA.

³Department of Geology, Western

Washington University, Bellingham,

Washington, USA.

⁴Department of Geology, San Jose State

University, San Jose, California, USA.

Contents of this file

1. Table S1.

Additional Supporting Information (Files uploaded separately)

- 1. Text S2 (R code).
- 2. Large Table S3.
- 3. Data Set S4.
- 4. Data Set S5.

Introduction Supporting information provided here includes R code for analysis of sediment ¹⁰Be concentrations for paleo-erosion rates (Text S2), a table of output steps resulting from this code (Table S1), a large paleomagnetic results data table for sites not previously published (Table S3), and text files of ¹⁰Be analyses and field measurements formatted for ingestion into the R code (Data Sets S4 and S5). Paleomagnetic data collection and analysis methods are described in the main text. Data Set S4 contains information similar to Table 4 in the main text.

Table S1. (following page) Step-by-step 10 Be paleo-erosion rate analysis results, expressed in atoms of 10 Be per gram of quartz.

sample	N_A	N_X	N_D	N_B	N_E
FCVB-02	$41,284{\pm}4,379$	2,286	52,654	1,448	90,204+15,502/-10,582
FCVB-03	$74,605\pm 5,891$	2,247	59,440	1,954	129,844+14,587/-11,041
FCVB-04	$40,924 \pm 3,206$	2,555	74,542	2,629	110,283+18,396/-10,468
FCVB-05	$62,889 \pm 29,312$	2,555	117,215	2,629	174,921+88,804/-84,239
FCVB-08	$18,712\pm2,589$	2,458	23,702	2,180	37,776+14,324/-7,422
FCVB-09	$28,172\pm3,089$	2,452	37,507	2,180	61,046+14,946/-8,401
FCVB-11	$27,\!186{\pm}3,\!005$	2,574	$35,\!289$	1,448	58,453+15,003/-8,193
FCVB-12	$84,\!659{\pm}4,\!503$	$2,\!458$	120,884	$2,\!629$	200,456+17,843/-11,820
FCVB-13	$39,674{\pm}26,901$	$2,\!580$	55,009	2,097	90,006+69,297/-64,637
FCVB-16	$11,416\pm 2,287$	2,743	34,242	$2,\!497$	40,417+30,485/-14,276
FCVB-17	$11,251\pm 3,432$	2,733	$31,\!179$	$2,\!629$	37,068 + 31,097 / -17,578
FCVB-18	$15,732{\pm}10,215$	$2,\!151$	$40,\!357$	$2,\!497$	51,441+45,959/-39,511
FCVB-23	$38,268 \pm 3,429$	$2,\!625$	$25,\!196$	$1,\!375$	59,465+11,021/-6,424
FCVB-24	$27,218\pm2,493$	1,511	$37,\!487$	$1,\!551$	$61,\!643\!+\!10,\!151/\!-\!6,\!404$
FCVB-25	$30,\!151{\pm}6,\!002$	$1,\!236$	$57,\!031$	$2,\!274$	83,672+20,209/-17,314
FCVB-26	$39,828 \pm 3,287$	$1,\!277$	$65,\!137$	1,505	102,183+11,747/-8,921
FCVB-29	$7,725{\pm}2,639$	1,787	$25,\!891$	2,097	29,733+24,584/-15,016
FCVB-30	$7,\!301{\pm}2,\!627$	1,708	$22,\!641$	1,705	26,529+22,578/-13,972
FCVB-31	$5,962{\pm}2,231$	$1,\!950$	$15,\!545$	$1,\!551$	18,006+22,587/-12,326
FCVB-32	$14,\!481{\pm}5,\!237$	1,724	$44,\!078$	$2,\!379$	$54,\!456\!+\!29,\!168/\!-\!23,\!160$
FCVB-34	$43,\!569{\pm}4,\!255$	1,316	$41,\!953$	1,705	82,501+11,035/-8,613
FCVB-36	$51,225\pm 3,252$	$1,\!192$	$38,\!851$	1,416	87,468 + 7,827/-5,810
FCVB-01	$21,162\pm2,761$	$2,\!091$	$62,\!566$	$2,\!140$	79,496+22,050/-13,072
WWB-01	$37,\!897{\pm}2,\!597$	$1,\!641$	$77,\!599$	$2,\!380$	111,475+13,783/-8,661
WWB-02	$36,859{\pm}2,748$	$1,\!598$	$71,\!663$	$2,\!140$	104,785+13,439/-8,816
WWB-03	$37,954{\pm}4,102$	$1,\!656$	$68,\!405$	2,523	102,180+16,040/-11,761
WWB-04	$46,216\pm5,830$	$1,\!573$	72,467	2,789	114,320+18,322/-14,896
WWB-05	$39,353 \pm 3,736$	$1,\!612$	$65,\!302$	2,315	100,728+14,177/-10,183
TAP-06	$30,934{\pm}2,731$	1,559	$78,\!866$	$1,\!351$	106,889+16,153/-10,771
TAP-07	$33,206 \pm 3,380$	$1,\!600$	78,079	$3,\!297$	106,388+17,161/-11,892
TAP-08	$35,324{\pm}2,897$	1,587	$77,\!635$	$2,\!140$	109,231+14,928/-9,784
LDW-09	$23,979\pm2,228$	1,558	$73,\!080$	2,039	93,462+16,924/-10,262
LDW-10	$38,081 \pm 3,122$	$1,\!624$	112,742	$3,\!068$	146, 131 + 19, 514 / -13, 212
LDW-11	$41,599 \pm 3,660$	$1,\!614$	$115,\!678$	2,523	153,140+19,882/-14,518
WWB-13	$34,594{\pm}4,005$	1,323	$57,\!567$	$2,\!380$	88,458+13,860/-10,806
WWB-14	$32,774\pm3,768$	1,577	$53,\!978$	2,523	82,652+14,349/-10,292
CSN-17	$21,880\pm 2,024$	$1,\!639$	$99,\!655$	1,074	118,821+23,257/-13,343
CSN-18	$17,936\pm 1,643$	1,563	$81,\!587$	1,715	96,246+21,918/-11,504
CSN-19	$17,801\pm1,456$	1,571	86,360	1,878	100,711+22,649/-11,201
CSN-20	$29,969\pm2,034$	1,530	123,996	1,809	150,626+20,325/-12,021
CSN-21	$18,716\pm1,326$	1,555	79,538	1,867	94,832+19,875/-9,552
CSN-22	$17,601\pm1,243$	1,578	73,812	1,821	88,014+19,925/-9,070
CSN-23	$14,419\pm1,134$	1,534	67,755	1,577	79,063+21,743/-9,591
CSN-24	$27,780\pm1,675$	1,445	109,974	1,188	135,121+17,765/-9,846
CSN-25	$22,630\pm1,326$	1,644	127,827	1,666	147,148+25,925/-12,429
CSN-26	$17,490\pm1,174$	1,620	92,252	1,832	106,290+24,965/-11,002
CSN-27	$24,180\pm1,635$	1,532	101,199	1,666	122,181+19,475/-10,379
USN-28	$28,157\pm2,326$	1,584	110,965	1,577	135,901+20,869/-12,862

Uctober 13, 2016, 1:03pm

DRAFT

Text S2. R code for calculating paleo-erosion rates and errors. This code also calculates modern catchment erosion rates, and produces the plot for Figure 10 in the main text.

Table S3. Paleomagnetic site polarity results from the White Wash/Little Devil and Canyon Sin Nombre areas, as well as new data from the North transect. Posted as a separate Excel file. Data columns: site name, UTM easting, UTM northing, height within measured stratigraphic section, site polarity (n = normal, r = reversed), demagnetization class, bedding attitude (dip direction/dip).

Data Set S4. ¹⁰Be concentrations and field measurements from FCVB sedimentary section formatted for input to R analysis code. Data columns: sample name, sample age, sample age error, ¹⁰Be concentration from AMS measurement, ¹⁰Be concentration error, ¹⁰Be production rate at sample site, depth of sample collection from beneath outcrop surface, depth error, paleochannel thickness above sample location, thickness error, longterm sample burial rate, flag for samples from North area.

Data Set S5. ¹⁰Be concentrations from modern stream samples formatted for input to R analysis code. Data columns: sample name, sample location description, ¹⁰Be concentration from AMS measurement, ¹⁰Be concentration error, plotting offset (units of age in Myr) for Figure 10.