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Paths in Graphs

BELA BOLLOBAS and AMITES SARKAR

Institute for Advanced Study
Olden Lane, Princeton NJ 08540

Department of Mathematical Sciences
University of Memphis, Memphis TN 38152

Department of Pure Mathematics and Mathematical Statistics
16, Mill Lane, Cambridge CB2 1SB, England

in REVISED FORM 4 April 2001

We prove that if 10 < (’;) <m < (k;rl) then the number of paths of length three in

a graph G of size m is at most 2m(m — k)(k — 2)/k. Equality is attained iff G is the
union of K} and isolated vertices. We also give asymptotically best possible bounds
for the maximum number of paths of length s, for arbitrary s, in graphs of size m.
Lastly, we discuss the more general problem of maximizing the number of subgraphs
isomorphic to a given graph H in graphs of size m.

1. Introduction

Given a graph G and an integer s > 2, write ps(G) for the number of paths of length s
in G. In this paper we study the behaviour of the function

ps(m) = max{ps;(G) : e(G) = m},

the maximum number of paths of length s in a graph of size m. To simplify the presen-
tation, we shall assume that all our graphs G contain no isolated vertices.

For s = 2 and m > 4 the function ps(m) is rather trivial: p»(m) = ('}) and the star
K1, is the only extremal graph. In other words, if e(G) = m > 4 then py(G) < (’g),
with equality iff G = K ,,. Indeed, suppose that G has order n, size m, and degree
sequence d; > ds > ... > d, > 0. Then

2 (G) = lzn:d»(d' _1< 1§n:(n_ D(ds —1) = 2 (n = 1)2m —n) < (m>
2 2 P A =9 pt T 9 =~ 9 )
with equality in both places iff G = K ,,, proving our claim. (The second inequality
follows by the concavity of the function f(z) = (x — 1)(2m — z).) When m = 3 there are
two extremal graphs, K 3 and K3.
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Also, if we fix the order and not the size of GG, the problem becomes trivial for every
path length: if |G| = n then p,(G) < £ (n)s41 with equality iff G is complete. Ahlswede
and Katona [1], continuing work of Katz [9], determined the maximum number of paths
of length 2 in a graph of order n and size m.

In the third section, we consider the case when s is odd and greater than 2. Here, we
have pgs(m) ~ 235_1m%, and, when m = (g), the complete graph K}, has 2T m S +
O(m?) paths of length s. For s = 3, we have a much more precise result as described in
our first theorem. In the following two sections, we take s to be even and greater than
2. This time, we have ps(m) ~ CS/Qm%'H for some constant C, /5, which we determine
explicitly, and for each s = 2] > 4 and m of a suitable form (divisible by a certain integer
depending on [) we give a complete bipartite graph of size m with Cy/m2! + O(m?)
paths of length s. Both the results and proofs for the odd and even cases are very different
in character.

After a preliminary version of this paper was written, we discovered two papers of
Alon [2], [3] and one of Fiiredi [6] also concerned with maximizing the number N (m, H)
of subgraphs isomorphic to a fixed graph H in a graph of size m. We discuss these in
the next section. Roughly speaking, Alon [2] obtains asymptotically best possible results
when H has a spanning subgraph which is a disjoint union of cycles and isolated edges,
and thus his results match ours for paths of odd length and also deal with cycles of
arbitrary length. However, when H is not of this form, he only determines the order of
magnitude of N(m, H), and thus our results for paths of even length superseed his. In [3]
and [6], the authors take H to be a disjoint union of stars, a case not considered in this
paper. The methods used in [6] to establish a conjecture from [3] somewhat parallel those
we use to prove our Theorem 10, although the arguments are quite different. However,
we include a sketch proof of the main result of [6] since it puts §4 and §5 in perspective.

2. The work of Alon and Firedi

As mentioned in the introduction, Alon [2], [3] and Fiiredi [6] consider the more general
problem of maximizing the number of copies of a fixed graph H in graphs of size m.
They denoted this maximum by N(m, H) (actually Fiiredi’s definition differs from ours
and Alon’s by a factor depending on H, since he labels the edges of both graphs). Thus
ps(m) = N(m, P;). Further, we write N(G, H) for the number of copies of H in G, so
that for example N(K,, K;) = (}) and p,(G) = N(G, P).

Alon makes the following definition. A graph H is asymptotically extremally complete

(a.e.c. for short) if for all m we have
N(m,H) = (1+O(m™%))N (K, H),

where K, is the largest complete graph of size at most m. Of course, it is the large graph
G which is “asymptotically complete”. He then proves that if H' is a spanning subgraph
of H and H' is a.e.c., then H is a.e.c., and that a disjoint union of a.e.c. graphs is a.e.c..
Therefore, if H has a perfect matching, then H is a.e.c.. This last remark determines the
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asymptotic value of N (m, Py,1) and also shows that

1 27“72 r
N(m, Co,) ~ (1+0(m™#)) ==,

although it is easy to see independently that

N Po,._
N(m, Csy) < %

It also follows that complete graphs are a.e.c., although by the Kruskal-Katona theorem
[8], [10] (see also [4]) we have a much stronger result, namely that if m = (1) +¢' then

o= () ()

Alon then shows that odd length cycles are a.e.c.. We sketch a proof of this for Cjs.
One uses induction on m to show that

5
mz.

)
cn%
™

N(m, 05) S

Suppose that m = (’2”) for notational simplicity. Let G be a graph of size m with no
isolated vertices, and let v be a vertex of degree d < k — 1 (if there is no such vertex
then the result follows immediately). We estimate the number of Cjs through v. There
are (g) choices for the edges incident to v, at most m — d choices for the opposite edge,
and at most two ways to join them together. By induction, there are at most

2v2
5

Cj5s whose vertex sets are disjoint from {v}. Therefore we only need

2V2 2v2 s
-

wlot

(m —d)

T(m—al)% +d(d-1)(m—d) <

which is readily established, since by convexity

2v/2 2v/2
i{m% —(m—d)3} > i§(m —d)=.

) 5 2

The upshot is that if H has a spanning subgraph which is a disjoint union of cycles
and isolated edges, then H is a.e.c.. The converse also holds. Alon first shows that H

having such a spanning subgraph is equivalent to §(H) = 0, where for S C V(H) we set
N(S)={z €V (H):zy € E(H) for some y € S},

and

O(H) = max{|S| — |N(S)|: S € V(H)}.
Then, given an arbitrary graph H he constructs a graph of size m containing at least
cymz(HIHOH) copies of H. (For a path of length four his construction reduces to a
complete graph with about 3 edges together with about 7 independent vertices joined
to two vertices of the complete graph. So, owing to the generality of his construction
and the fact that he is only interested in an order of magnitude estimate, his “extremal”
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example is quite different from ours.) Finally, he shows that any graph of size m cannot
contain more than cym=(H+0(H) copies of H. In doing all this he makes extensive use
of Hall’s theorem.

Fiiredi in [6] discusses the above question when H = H(a) = H(ay,...,a:) is the
vertex disjoint union of stars of aq,...,a; edges. Note that

t
6(H(a)) = ) (a; = 1),
i=1

and so H(a) is about as far as possible from being a.e.c.. Fiiredi calls a graph G mazimal
for H if N(G, H) = N(e(G), H). In this terminology, Alon [3] conjectured that a maximal
graph for a forest of stars H (a) is necessarily a forest of stars. (Alon proved the case t < 2.)

To avoid complications, we will assume that the a; are distinct.

In order to investigate N(m, H(a)) further, Fiiredi defines the polynomial

ay a2 at

pla,x) =plar,...,a; @1, ., &y) = E R F A
1<iy,...,i: <n, all i; distinct
and the following two quantities:

n

p(a,n) =max{p(a, (x1,...,2pn)) 1 @1 > 0,...,2, > O,in =1},
i=1
p(a) = supp(a,n).
n>t

In the notation of §5 and [7], p(a, x) is a scaled Muirhead mean of degree 22:1 a;. (In the
following argument, p(a,x), p(a,n), and p(a) will play similar roles to those of F} ,(x),
0t » and 6; from §5. One difference is that here Fiiredi has ¢! times as many terms in his
sum and he does not require that the z; are decreasing.) From now on, we will suppose
that a; > 2 for all ¢ and that ¢ > 2.

Fiiredi’s main result is the following.

Theorem 1. Suppose that a; > 2 for all i, 22:1 a; = A and
B 1
arlas! ... a!’
Then
N(m, H(a)) = Bp(a)m” + O(m”™1).

Proof. The first stage of the proof, which we omit, consists of showing that for some
no = no(a) one has p(a,n) = p(a, ng) for n > ng - in doing this one must assume that
all a; > 2.

As in the case of paths, that

N(m, H(a)) > Bp(a)m” + O(m"~)

is essentially instant. For if
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then
N(m, H(a)) > N(H(|z1m), .., [zam]), H(a)) = Bp(a)m + O(mA~1).

The difficulty lies in establishing the upper bound. (At this stage in our proof for paths,
we will use the observation that a vertex of degree at most m3 is contained in very few
paths of fixed even length. This will enable us to focus our attention on a few vertices of
high degree.) Fiiredi shows, by an edge-switching argument, that in any graph G maximal
for H(a), any edge must be incident with a vertex of degree at least Cm.

Let G be a graph of size m maximal for H(a), where a is as in the statement of the
theorem. For an edge e € E(G), write M (e) for the number of copies of H(a) in G which
contain e. Set Myax = maxecp(g) M(e) and let uv be an edge with M (uv) = Mpax. As
p(a) > t1t~4 we certainly have

Momax > C/mA—l
if m is sufficiently large.

Let pg € E(G) be an arbitrary edge which may or may not be incident with uv, and
suppose that M (pq) < %Mmax. At least %Mmax copies of H(a) contain uv but not pg, of
which at least %Mmax have u (say) as the centre of a star. Write G’ for G with the edge pgq
removed and replaced by uw, where w is a new vertex. Then N(G', H(a)) > N(G, H(a)),
a contradiction. As a result, for all pg € E(G),

1
M (pq) > gC'mA_l-

However, if an edge is contained in many copies of H(a), then one of its endvertices
must be of high degree. For we have

' (d,—1 Lofd, -1
M) < 3 (07 e 30 (Bt
a; im1 a;

=1
max{d,,d,} ) min a; —1

< 2tmax{d,,d,}m? ! < -

IN

2t max{d,,d, }m" 2

Therefore,

!
max{d,,d,} > C6_tm
Consequently, there is a set W = {wy,...,w,} C V(G) of less than C" = 12tC’

vertices, each of degree more than C’E;_tm’ which together intersect every edge of G. Let G

be the bipartite graph obtained from G by deleting all edges inside W. Then

NG, H(a)) < N(G”,H(a))+<6;’>mA1

IN

duw dy -
Bp<a, Lo, ")mA+O(mA h
m m
< Bp(a) +O(m”1).
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Figure 1 G1

O

Fiiredi’s follow-up argument is that if for all i, a; > log,(t + 1), then p(a) = p(a,t), and
so an H (a)-maximal graph is in this case a disjoint union of ¢ stars.

Much remains to be done. In particular, for most graphs H with §(H) # 0, the asymp-
totic behaviour of N(m, H) has yet to be determined. Once this has been done, there is
still the problem of obtaining the H-maximal graphs themselves.

3. Paths of odd length

First let us consider the case s = 3. Here we restrict attention to graphs G of size m > 6
and we show that if m = (’2“) (for some k > 4) then p3(G) is largest when G is complete,
although for k = 4 there are two extremal graphs, each with 12 P5’s: one is K, and the
other one, Gy, is drawn in Figure 1. The method of proof is similar to that of Theorem
4 in [5].

Theorem 2. Let G be a graph of size m containing no isolated vertices, with 6 < (’2“) <
m < (IHQ'I) Then ps(G) < 2m(m — k)(k — 2)/k. Equality holds if and only if either
m = (’2“) and G = Ky orm =6 and G = G,.

Proof. Let V(G) = {z1,...,2,}, and for each i, set

di = d(z),
¢i = e(Gl(z))),
F(z;) = V(G) —D(z) U{wi},
fi = e(G[F(zy)]),
e = m—c—d;— fi.

Note that F(z;) is the set of vertices at distance at least 2 from z;, and that e; is just
the number of edges from I'(z;) to F(z;). Further, we have ¢; < (%) for each i. Summing
over paths whose middle edges are incident with z;, we have

PG = 3 S~ e+ 2d: —~ 2)cr)

d;i>2
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dizgz{(di—1)ei+2(di—2)min{<zi>,m—ei—di}}.

Hence, 2p3(G) is at most

<

DN | =

i — e 4 i —3)ei
Zdimin{(di—l)(di—2)+u,?m——m—M—Qdi—wl}
d; d; d;
d;i>2
i — e 4 2d; i —3)ei
= Zdimin{(di—1)(di—2)+u,2m—u+4—(d 3)6}
d; d; d;
d;i>2
. (dl — l)ei 4m + 2k2 (dl — 3)el
< Zdlmm{(dz 1)(d; —2) + P ,2m T 7
d;i>2
i — e 2 i —3)ei
= Zdlmln{(d,—1)(dz—2)+¥,g(m—k)(k—2)—%},

d;i>2
where we have used the convexity of 27"‘ + z to obtain the inequality. When d; > 3,

%W%%Mk—%—(1—§>QS%OH—@®—2%

i

and when d; = 2,

(di—l)(di—2)+(1—l>ei=ﬁsm_2s%(m—k)(k—m,

d; 2 2
provided k > 4, with the last inequality being strict for m > 7. Therefore,
1 2d;
p3(G) < 5 Z T(m—k)(k—Q)
1<i<n,d; >2

> Fom - k) -2)
2_m(m —k)(k —2)
k )

IN

as claimed.

If m > 7, then for equality we need 2d_T+di = 2Tm%-k: for every i. When (g) <m< (k;'l),
this means that each vertex must have degree k, an impossibility. When m = (’2“) we
require that each vertex has degree k or kK — 1. However, since in this case all degrees
must sum to k(k — 1), G is necessarily Kj,.

Finally, suppose G % K4 has 6(G) > 1, e(G) = 6 and p3(G) = 12. From the above
proof we need 6(G) = 2 (0(G) = 3 would give G = K4, while 6(G) = 1 would give strict
inequality in the final step). Moreover, supposing d; = 2, we require e; = m — 2 = 4 so
that ¢; = f; = 0. This forces |G| =5 and G = G. U

It is an almost trivial matter to get fairly good bounds on ps(m) when s is odd, say
s = 2r + 1. For suppose G is a graph of size m. Let A, be the set of all paths of length
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2r + 1 in G with a distinguished “initial” vertex. For simplicity, we call a path with a
distinguished initial vertex a directed path. As a path can be directed in two different
ways, |Ar| = 2p2r+1(G). Let B, be the set of all ordered (r + 1)-tuples of vertex disjoint
directed edges (that is, paths of length 1) in G. Then |B,| < 2"t'(m),41. There is
an injection from A, into B,, mapping a path vivs...v2,.42 € A, to an (r + 1)-tuple
(v1V2,vU30V4, - . ., Uapr1V2p12) € By. Therefore

1 1
p2r11(G) = §|Ar| < §|BT| <27 (m)pg1 ~ 2"

When m = (’2“), we have e(K}j) = m and

1
Part1 (Ki) = §(k)2r+2 =m(k —2)ar ~ 2"m" ",

so that our bound gives the correct highest order term. Instead of glueing together
directed edges, we can use (r + 1) paths of length 3 or 1 edge and r paths of length 3 to
obtain the following slightly improved result.

Theorem 3. Let r be a positive integer, and let m = (’2”) for some k > 4r + 4. Then

S (s < parsa (m) < 2m(ps(m)), = SkCk = (),
and
5 R)irst < parsa(m) < 2 (s (m)ess = 3((K)a)ra,

Proof. Let G be a graph of size m = (%). Let C, be the set of all directed paths of
length 47 + 1 in G and let D, be the set of all directed paths of length 4r + 3 in G. Let
E. be the set of all ordered pairs (z,y), where x is an ordered r-tuple of vertex disjoint
directed paths of length 3 in G and y is a directed edge, disjoint from all the paths in x.
Finally, let F. be the set of all (r + 1)-tuples of vertex disjoint directed paths of length
3 in G. We have injections

i1:CT—>E'r

in: D, —s F,

given by
i1(v11}2 .- -U4r+2) = ((U1U2U3U4, Us0V6UTUS, - - - ,U4r—3v4r—2v4r—1v4r), U4r+1v4r+2)
and
i2(V1V2 .. Vapya) = (V1V203V4, VsV6UTVS, - « o, Vir 4 1V4r42V4r43Vdr44)-
Therefore
Pira(G) = 51051 < S1B,| < 2'm(ps (), < 2'm(pa(m),
and

1 1
Par43(G) = §|D,,| < §|Fr| < 2"(p3(@)) 41 < 2"(p3(M)) g1
The lower bounds arise from the graph Kj. [
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Figure 2

Any exact result for paths of length 2r + 1, where r > 2, would lead to an improvement
in the upper bounds for ps;y1, for all t > r, following the method used in the proof of
Theorem 3. Alon [2] uses a variant of the above argument in maximizing the number of
copies of H in a graph of size m when H has a perfect matching.

4. Paths of length four

The situation for paths of length four, and indeed paths of even length, is somewhat
different. Suppose we are trying to maximize ps(G) over graphs G of size m. For simplicity,
we assume that m = (%) (for some k) and also that m is even (so that k = 0,1(4)). While
Ky has £(k—1)(k—2)(k—3)(k—4) ~ 2v/2m3 paths of length four, K (%,2), the complete

bipartite graph with class sizes % and 2, has (% — 1)(% — 2) ~ %3 such paths, since
any ordered triple (wy, w2, ws) of vertices from the large class determines a unique path

wviwavsws in the graph. Similarly, when m = () and [ divides m, we have
m
(K (1) = elE) = m,

m I'/m T
(KT 0) =5 ()~ f5em'™
I+1
and
1 1
pa(Ky) = §(k)21+1 ~ 2N 2ml s

For paths of length four, Theorem 5 will show that K (3, 2) is essentially best possible.
The proof of this result is completely different from that of Theorem 2. We require a
preliminary lemma which gives a bound in terms of the degree sequence.

Lemma 4. Let G be a graph with degree sequence dy > dy > ... > d,, > 0. Then

I
le(G) S Z di1 di2 . dil—ldlzl -

11 <12<...<4]

Proof. Let V(G) = {v1,vs,...,v,}, where d(v;) = d;. Any path in G of length 2I

specifies a unique I-tuple (i1, i2,...,4;), with i; <iy < ... <14, where v;,,v;,,...,v; are,

in some order, the vertices at an odd distance from either end of the path (see Figure 2).
It is easy to see that there are at most

I l!
§dil (d” — 1)(dil_1 — ].) Ce (du — ].) < §dzzldil—1dil—2 Ce dizdil

paths corresponding to the I-tuple (i1,i2,...,%). ]
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Theorem 5. For all m,
3
m
pa(m) = +O0(m

wloo

).

dl

Proof. By virtue of the example K (%,2), we need only show that

m3

8
Let G be a graph of size m. As in the proof of Lemma 4, let V(G) = {v1,v2,...,0,},
where d(v;) = d;, and suppose that d; > dy > ... > d,, > 0. Write

pa(m) < +O(m%).

S = {i€n]:di >m*},
T = {i€n]:d; <m"},
W = {Ui 11 E S},

for some % < a < 1, so that W

Lemma 4,

—-

s the set of vertices of large degree. Now, applying

pa(G) <Y dids

1<i<j<n

= Y aks Y ad
1<i<j<n,j€S 1<i<j<n,jeT

n

< Y wErYaYd
1<i<j<n,j€S i=1 jeT

< > didi+2mdym®
1<i<j<n,j€S JET

< > did) +4mte

1<i<j<n,j€S

There are less than 2m'~? vertices in W, and so they span less than 2m2—22

Therefore

edges.

Zdi <m + 2m? %,

i€S
Writing 8 = 1 + 2m' 2%, we have
2 24«
pa(G) < S did? +4m
1<i<j<n,jes
]' 2 24«
< 5 > did? +4m

1,JE€S,i#]

(e d - d ) vamee

i€S  jeS JES
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1
< Homy g -wa) same
jes jes
1
= 3 > d(Bm — dj) + 4m> T
JjES
1
= 3 Z d; {d;j(Bm —d;)} + 4m>Te
jes
1 psm 2
< Sl d (T) + 4m>te
JES
m 3
()
2
m3
— ?(1 + 6m1720{ + 12m274a + 8m376a) +4m2+a-
Taking a = 2, we obtain the desired result. O

The main idea in the proof of Theorem 5 is that there are very few paths vy vsv3v4v5 where
either d(vz) or d(vs) are small, and so when using the bound ps(G) < 31, ;<p did3,
we need only consider terms for which d; and d; are both large. Since there can only
be a few vertices of large degree, the sum of their degrees is roughly m, not 2m: this is
why the truncated bound is at most approximately st. Had we not ignored the terms
with d; small, we would have obtained the bound m?, the same as that resulting from
counting the number of ways of glueing together a directed path of length two with a
directed edge.

5. Paths of even length

When s is even and greater than four, essentially the same argument goes through, with
one or two additional complications. For n > ¢t > 1, we define the function F} , and the
constant 6; , by the formulae:

_ 2
Fin(z1,...,2,) = E Tiy Tiy - - Tiy_, T,
1< <i2<...<t: <n

n
Or.n = max{Fi n(T1,...,Zp) X1 > T2 > ... > Ty > O,Zmi =1}.

i=1
The 0;, increase with n for fixed ¢ and they are all bounded above by 1. We write
0, = sup,>; 0:n- Use of Lemma 4 in bounding po;(m) from above leads one to consider
maximizing F} ,, over the unit simplex. The main difficulty in determining po;(m) for
| > 3 is that while it is easy to show that 6> = 63, = F3 n(3,3,0,0,...,0) = £ for n > 2
(this was essentially done in the proof of Theorem 5), evaluation of 6, for [ > 3 is slightly
harder. Set ¢ = $t16;.
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First, we will give an upper bound for po;(m) in terms of ¢;. We then turn our attention
to the problem of calculating ¢; in terms of I. However, as regards lower bounds for py;(m),
the nature of the point P, ,, on the unit simplex at which the maximum of F; ,, is attained
(for n large compared to [) is of crucial significance. In particular, an inspection of the
proof of Lemma 4 shows the following: we cannot construct bipartite graphs which have
asymptotically the same number of paths of length 2 as that given by the upper bound
in Lemma 6 unless, for sufficiently large n, P, = (%, %, e %,0, 0,...,0) for some N
depending on [. Fortunately, as Lemma 7 will show, P, is always of the above form,
allowing us to show that our upper bounds are asymptotically best possible.

Lemma 6. Forl > 2,
par(m) < gm'™*! + O(m!*3).

Proof. Let G be a graph of size m with V(G) = {v1,va,...,vn}, d(v;) = d;, di > ds >
...>dy >0 and set

S = {ieln]:d; >m3},
T = {i€n]:d <mi},
W = {Ui 11 € S},
B = 1+4+2m %.
We proceed as before:
I
pa(G) < 5 > didi, ...d;,_,d2
1<ii<iz<...<4y<n
I
= 3 Z diydi, ... d;,_,d3
1<ii<io<...<y1<n,i1 €S
I
+ = > diydiy ... d;,_,d3
1<ii<io<...<y1<n,y; €T
I
< 3 > diydiy ... d;,_,d
1<ii<in<...<i1<n,i1 €S
I
+ 3 Z di1di2'-'diz_1zd?
1<i1<ie<...<4j—1<n €T
I
< 5 > diydi, ... d;,_,d3

1<i1<ie<...<1<n, {1 €S
I
oSl dy o dn) Y dim
ieT

' 2
k Z didi, - .. dilﬂd%l +ol=1plts

1<i1<i2<...<i;<n,j; €S

ol

IN
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gﬂl+1ml+191 4 ol=tpyl+s

IN

— ¢[Bl+1ml+1 + 2l—1l!ml+§
= om!Tt 4+ O(m”g).

For the final inequality, we again used the fact that the sum of the degrees of the vertices
in W is at most Sm. ]

Our next goal is to determine 6; (and so ¢;) for all ¢, and to show that for sufficiently
large n, depending on t, 8; ,,, the maximum of F} ,, over the unit simplex, is attained at

the point (%,%,...,%,0,0,...,0) for some N depending on t. For t > 2, N > t, n > t,
T >t write
11 1 n 1
Atn = Ft,n(gaga--'aﬁ>:<t>ﬁa
e,y = max{ag,:t<n< N},
¢t = max{asy,:n >t}
z\ 1 z(z—1)...(x—t+1) 1
flz) = (t>$t+1: a ptH1’
t—1
1 t+1
=0
=
0 = 1=

Observe that i'(z) < 0 on [t,00), so that h(z) and g(z) = 2 (h(z)— 1) are both decreasing

n [t,00). We have f'(z) = f(z)g(x) and g(z) = 0 precisely when h(z) = 1. Now
h(t) >t — 1, while h(z) — 0 as z — oo, and so f has a unique maximum in [¢,00). The
upshot of this is that for fixed t the a;, increase up to a point and then decrease: we
define Ny = min{n : a; , = ¢;} (the minimum is taken over at most two values).

Lemma 7. Forn>1t> 2,
et,n = Ct,n-
In particular,

t‘)t = Ct.

Proof. For fixed t, we proceed by induction on n > t. Throughout, we suppose that
Ty > xy > ... >z, > 0and that > | z; = 1. Firstly,

t—1
1-2z
_ 2 t 2
Ft’t(l'l,l'Q,...,Z’t) = 21T ... Tt_1Ty S (t—l Ty.

As a(z) = 2 (1 — z)'~" is increasing on [0, 7%7] and z; < § < 27, the function Fy is

maximized at 1 =22 = ... = x; = % Therefore 8 + = ¢t ;.
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For the induction step, some more notation will be convenient. For o > 2 — 1, ¢t > 2,
x > 0, write

Ag(a,z) = (1—2)" +az?(1—2),
Bi(a,z) = (14+a)(1+t)z> —2(1+a+t)z+ (1+1),
1 t 1 1 « a— (2 -1)
t) = —
Buet) = P Y i iTva t+il+ta a
1 t 1 1 a a—(t2-1)
t) = .
Bolot) = T Y i iTva T irilva a

Note that Ri(«,t) and Ra(a,t) are the zeros of By(«, z), and that B(«,z) divides the
derivative of A;(a, z).
Now,

Ft,n(mlym%"';xn) - Ft,nfl(xlax%"':mnfl)

2
+ z, E TiyTiy - Tjy_,
1< <ida...<i—1<n—1
n—1
(i)

t+1 2 t—1

< bOrna(l—2n)™ +2,(1 —20) (n—1)-1
t+1 2 t—1 (?:11)

= Ct7n_1(1 - mn) + .’I}n(l — .’L'n) W

(nil)
= _ A —t71 .
Ct,n—14¢ (Ct,nl(n 1yt ,a:n)

Here, the first inequality holds by the definition of # and by the inequality between the
arithmetic and geometric means. We know that z,, < %, so our objective is to maximize

(7))

dAi(a, x)
dx
For a > t? — 1, the derivative is zero when z = 1, Ry (a,t) or Ry(a,t), while if « < t2 — 1
then A;(a,t) is decreasing on [0,1]. Also, by the definition of Ry and Ra, if a > t? — 1
then

over [0, 2]. We have

=—(1-2)"2Bi(a,z).

0 < Ri(a,t) < Ry(a,t) < 1

and

1
R t _ >
2(a7)> +1=

, increasing on [Ry(a,t), Ra(a,t)] and de-

~
S|

so that A:(a, ) is decreasing on [0, Ry (a,t)
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creasing on [Ra(a,t), 1]. Thus,

(:-1)
At <—Ct,n1(n — 1)t—1 ,.7;>

is maximized over [0, 1] at either 0 or L.
If n —1< Vg, then ¢t 1 = atp—1,

() o (— ) G)
N (ﬁ”) - (< T ,0> -1

and
n—1 n—1
A, N 0 R A O A, G 1y e
Ctn—1(n—1)1"n atn-1(n — 1)t n (n;l) (n—})“rl
Hence,
11 1 ny 1
at,n = Ft,n <E; E) ey E) - <t> nttl

if n S Nt and

1 1 1 n-—1 1
an:Fn ’ PR ) = R
b b (n—l n—1 n—10> < t >(n—1)t+1

If n —1 > N, then by the induction hypothesis, 6,1 = ¢t n—1 = at,n, = ¢ and we
claim that 6; ,, = c; also holds. To see this, we have to show that

(1)) (o) 1
As (ct(n —1)t-t ’0> > A (ct(n — 1)t n)

(o) e () (-2

for n > N; 4+ 2. We can rewrite this inequality as

1 /n-1
t+1 _1t+1__ 0
a0 —1) Ct(t_1)> |

2] {7

Therefore we are done if we can show that

or that

that is

increases on [Ny + 1,00). Since
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we have
N

(%)
- (Ol )
- w51

which is increasing on [N; + 1,00) because f(z) is decreasing on [N + 1, 00). Therefore
1. = ¢t as required. O]

G(z) = !

The F;,, closely resemble the family A; ,,, defined by

1 2
A = G DI =Dy 2 )T - Tr(r
TESH
(The factor m is included to ensure that each term appears with multiplicity
one.) The Ay, are examples of (scaled) Muirhead means of degree t + 1 (see e.g. [7]).
The extreme n-variable Muirhead means of degree ¢ + 1 are

1
Bun = G D == 1)1 2z “r0Tr) - Trtee

TES,

and

n
__E t+1,
Ct,n - xi )
i=1

A, Band C areof type (2,1,1,...,1,0,0,...,0),(1,1,...,1,0,0,...,0) and (¢+1,0,0,...,0)
respectively. On the simplex S(n) = {(z1,22,...,2n) 1 @; > 0,> ;" x; = 1}, B is maxi-
mized by setting all the z; equal and C' is maximized by setting one of the z; equal to 1
and the rest equal to 0. For large n, the form of A; ,, approaches that of B; ,, with increas-
ing ¢, and accordingly it is plausible that the extreme points of 4, , on S(n) approach
the centre of the simplex which is the unique extreme point of By .

Muirhead [11] gave necessary and sufficient conditions for two appropriately scaled
n-variable Muirhead means of the same degree to be comparable - the type-sequence of
one must be majorized by the type-sequence of the other.

Returning to the problem about paths, in view of Lemma 7, we can construct graphs
that show that the bound in Lemma 6 is essentially best possible.

Theorem 8. Forl > 2,

2

1
pau(m) = §l!czml+1 + O(m!*3).

Proof. Let Gy, be the vertex disjoint union of the complete bipartite graph with class
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sizes N; and L%J and m — N; [%J isolated edges. Then

pa(Gim) = (]\;l)lQ%J)Hl

1
= §l!clm”rl + O(mh).

Therefore
1
pa(m) > 5“sz1+1 + O(mh).

For the other direction, apply Lemmas 6 and 7. ]

It is easy to give an explicit form for N; and ¢;; however, as the calculations are cumber-
some, we give a detailed proof.

Lemma 9. Forl > 2,

2
N, = {MJ _
18

Proof. It is easy to check that No =2, N3 =5, Ny =8 and N5 = 13. For n > 3] > 18
we have

n+1 1 A
Tin = Hntt _ (" )("H)Hl = <1+- : > (1_ : >l+1
o ag,n (1) e n—1+1 n+1
and
o0 o0
B (i (1 +1)
log”v"—‘; (n—l+1 2:: (n + 1)/

We already know that, for fixed [, the sequence a;, is strictly increasing for n < N
and strictly decreasing for n > N;y;. We defined IV; so that a;n, > ay N, , although
it is still possible that a; v, = a; n,,,. This much follows from the discussion preceding
Lemma 7. The following more detailed analysis will show that in fact we always have
apN, > arn,,,, since the function logr;, (considered as a continuous function of n)
changes sign (strictly) between n = N;_; and N;. In addition, we derive a formula for
N;. In order to do this, we need to focus attention on the values of n lying in an interval
of length L. Specifically, take n + 1 = g + L+ a, where || < L, so that

12
—1+1>—
n + 23

and

? 1
n+1>5> =(l+1)
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giving
1)717 1 & & I (I4+1)
1 n < = it
8" +Z ot T T | S SR G P I
]=1 Jj=5 Jj=3
ISR ()
5 4 l 3 4 12
J=5 Jj=3
108
< Vi

It is easily checked that, again with n + 1 = g + % + a,

4 P14 2
(=1)30 (1+1)  2(5-18a)| 42
;j(n—l+1)j+;j(n+l)j+ ar |~

Therefore,
5 — 18«
logr, 2iiia % +E(,«)
where
150
E(l,a) < l_5

For integral [, the expression % + é + % is never an integer, and it differs from the nearest
integer by at least <. So, for I > 675, we have

logrl{%+é+%J >0
and
logrl Ll2+é+%J+1 <0,
which implies that a;, increases from n = % + + EJ —1lton = [% + é + %J

and decreases thereafter. For smaller values of [, the assertion is readily checked on a
computer. ]

Putting the pieces together, we have the following result.

Theorem 10. Forl > 2,

pau(m) = Cym! Tt + O(ml+%),

(=)

I+1"
2([*=58))

where

C =

Proof. This is immediate from Theorem 8 and Lemma 9. ]
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It may be of interest to have an asymptotic formula for C itself. This is again easy to
obtain, for we have

172\ /2 1 2
o ~3(z) (3),-70(-%)

-1

1 912 - 1 -~
= gl a+ou) = peia+o ) ~ =

, el?’
=1

We suspect that the complete graphs (in the case of odd s), and the bipartite graphs
K (N3, NLM) (in the case of even s) are the extremal graphs with exactly ps(m) paths
of length s for m with suitable divisibility properties. However, obtaining exact rather
than just asymptotic results seems to require a much more detailed analysis.
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