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ABSTRACT
Ihe upper Eocene Hoko River Formation is the oldest formation of the 

Twin River Group. Exposures dipping to the northeast and north run across 

the northern Olympic Peninsula. The Hoko River Formation is conposed of 

siltstone, turbidites, channel conglcmerates and debris flows. The 
sandstones are lithic-eirenites and -graywackes and eure carposed of fine to 

very coeirse, moderately well sorted to poorly sorted sand. The daninant 
cement is calcite with minor polycrystalline quartz and zeolite cements. 
The average coiposition of the sandstones is quartz (Q) = 29%+14, feldspar 

(F) = 15%+9, and lithics (L) = 55%+12. Caiparison of these data to the 

tectonic provenance fields of ternary diagrams indicates a mixed tectonic 

source.
The lithic population of the sandstones contains 21%+15 polycrystal­

line quartz (Qp)/ 43%+20 volcanic and metavolcanic lithics (Lvm) and 

36%+14 sedimentary and metasedimentary lithics (Lsm). These lithics occur 

in decreasing order of abundance: metasediments, basalt, chert, polycry­
stalline quartz, felsic and intermediate plutonics, volcanic glass, felsic 
and intermediate volcanics, metavolcanics and gabbro and diabase. A 

slight increase in chert and polycrystalline quartz was found in the Elwah 

River and Morse Creek sections. The Morse Creek section also showed an 
enrichment of volcanic glass fragments.

Of the possible source areas for the Hoko River Formation, southern 
and central Vancouver Island are favored because all of the lithic types 
found in the Hoko River Formation are present. The lack of high pressure, 

low temperature metamorphic mineral assemblages typical of the San Juan 

Islands and the northwest Cascade mountains is the primary basis for 
excluding these areas as sediment sources of the Hoko River Formation. 

Sediment shed frcm the Coast Plutonic Complex would have contained much
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more potassium feldspar than the minor amounts found in the Hoko River 

Fomation (0.5 % + 1). The Olympic Core and Ozette terranes contain 

sufficient metasediment, basalt and polycrystalline quartz, but lack the 
other corponents. In addition, paleocurrent data suggest flow from the 

west and north to the east.
The Hoko River Formation was deposited in a sutmarine fan ccrtplex in 

middle-fan channel, outer middle-fan, and middle-fan depositional lobe 

environments, except at the most western section, Neah Bay, vhere a 

transgression of middle-fan channel deposits over inner-fan channel 
deposits occurs. Subsidence of that portion of the depositional basin is 

indicated.
The Hoko River Formation v»s deposited in the Juan de Fuca basin, 

separate frcm the basin in vAiich the Chuckanut Formation and its distal 

equivalents were deposited. A corparison of petrologic data frcm the 
Chuckanut and Hoko River Formations shows they are cleeurly unrelated. Nor 
is the Hoko River Formation the distal equivalent of the Puget Sequence or 
the upper Eocene rocks of the Olynpic Core. Based on similar depositional 

environments, Escalante Formation of the Caramanah Group may be a proximal 

equivalent of the Hoko River Formation.
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INTRODUCTION
The purpose of this project was to determine the depositional 

environment and probable source areas for the Hoko River Formation. 

Tectonic implications for the northern Olympic Peninsula result fran these 
conclusions. This study was part of an ongoing effort at Western 
Washington University to determine the geologic and tectonic history of 

the northern Olympic Peninsula.

Geologic Setting

The upper Eocene Hoko River Formation is located along the northern 
edge of the Olympic Peninsula (Figure 1). It is the oldest formation of 
the Twin River Group, a thick package of marine sedimentary rocks. The 
Olynpic Peninsula has been divided into the Ozette, Olympic Core, and 

Crescent terranes by Silberling and Jones (1984) (Figure 2).

The Crescent terrane is the least deformed of the three terranes. It 
is composed of continental ly-derived sandstone and conglcxnerate, overlain 
by a thick sequence of basalt pillows, flows, breccias, and basaltic 
sediments, that are succeeded by a thick stack of marine sedimentary rocks 

ranging in age frcan early Eocene to Miocene (Figure 3). This terrane was 

previously referred to as the peripheral rocks (Tabor and Cady, 1978).

The basaltic pillows, flows and breccias of the Crescent Formation were 
deposited on the basal Blue Mountain unit, continental ly-derived subnarine 
fan deposits (Einarsen, 1987)(Figures 1 and 3). The Blue Mountain unit- 

Crescent Formation contact is controversial and has been described as both 
a faulted contact (Einarsen, 1987) and a depositional contact (Tabor and 

Cady 1978; Einarsen, 1987).
The Crescent Formation is overlain by the Aldwell Formation, v^ich is 

ccxnposed of outer fan deposits of siltstone, sandstone, and minor

1



Figure 1. Generalized geologic map of the northern Olyitpic Peninsula. 
After Snavely and others (1983) and Moyer (1985).

Tcb
^ ^ y Blue Mountain unit T|0 Lyre Formation Tp Pysht Formation

Ter V
V V Crescent Formation Hoko River Formation Tcgg Clallam Formation

Ta •• •**.! Aldwell Formation tTI Makah Formation •





Figure 2. Generalized map of the Olympic Peninsula depicting the three
terranes of Silberling and Jones (1984).

Crescent terrane
''J \ Olympic Core terrane

ira Ozette terrane
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conglomerate (Marcott, 1984) (Figure 3). Depositionally above this lie

the sandstone and conglomerate of the Lyre Formation, which represent
portions of cone-fan systems (Ansfield, 1972) (Figure 3). Above this lie

the deep to shallow marine siltstone, sandstone and conglomerate of the
Twin River Group, conprising the Hoko River, Makah, and Pysht Formations

(Snavely and others, 1978) (Figure 3). Lastly, the sequence is topped by
the shallow marine sandstone with minor siltstone of the Clallam Formation
(Anderson, 1985) (Figure 3).

The structures that affect the Hoko River Formation are a regional
tilt down to the north and superiirposed folds (Figiare 1). A number of

folds parallel the strike of the beds, especially in the eastern half of

the stu<ty area vrfiere the major folds are the Clallam syncline and Morse
Creek synclines. In the western half of the study area, another set of
folds has axes trending northeast-southwest and plunging to the northeast.

The northern Olympic Peninsula lies amidst a region of suspect
terranes. Virtually every neighboring region is catposed of numerous
units, fault-bounded and with a geologic history different than that of
the adjacent unit (Figure 4). The exotic terranes surrounding the
northern Olyitpic Peninsula are depicted in Figure 4. Wrangellia, the

Northwest Cascades Systan, and the Coast Plutonic complex were tied

together by the Late Cretaceous Nanaimo Group, an overlap assemblage
(Pacht, 1984). Paleomagnetic evidence from the Mount Stewart Batholith
ties these terranes to local North America at this time (Beck, 1985).

Southern and central Vancouver Island includes the following suspect

terranes; northern extension of the Crescent terrane (Metchosin
Formation), Wrangellia (Hillhouse, 1977; Yole and Irving, 1980), Leech
River Coitplex (Fairchild and Cowan, 1982), Pacific Rim Coitplex (Brandon,
1985) and Pandora Peak unit (Rusmore and Cowan, 1985), (Figure 4). The
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Crescent terrane is separated frcxn the rest of Vancouver Island by the

Leech River fault, a thrust fault that dips northeast under Leech River

Coirplex and the Wrangellia terrane (Clowes and others, 1987). The timing
of movement on this fault has been constrained to after 39-41 Ma
(Fairchild and Cowan, 1982) and before the deposition of the upper

Oligocene Hesquiat Formation (Cameron, personal coimiunication, 1987).

To the northeast lie the terranes of the San Juan Islands; the
Turtleback, Deadman Bay, Garrison, Decateur and Haro terranes and their
associated units, the Constitution Formation and the Lopez Complex
(Brandon and others, 1988) (Figure 4). The Northwest Cascade system of

Brown (1987) comprises the Northwest Cascade Mountains, the San Juan

Islands terranes, the Leech River Complex, Pacific Rim terrane, and the
Pandora Peak unit (Figure 4). Last, the Coast Plutonic Complex (Figure 4)
has been described by Roddick and others (1979) and Roddick (1983) as a
intrusive complex of granodiorite and quartz-diorite. Its allocthonous

nature was recognized by Irving and others (1985).
The timing of accretion of these terranes is complex and most of the

events occurred before the deposition of the Hoko River Formation (Misch,
1966; Fairchild and Cowan, 1982; Pacht, 1984; Irving and others, 1985;

Brown, 1987; Brandon and others, 1988). An in-depth review and summary
of these events can be found in Einarsen (1987, i^pendix 3; Terranes

Peripheral to Siletzia).

Purpose
The depositional history, sedimentary petrology and provenance of the

northern Olympic Peninsula have recently cane under scrutiny. This study
was needed to pin down sedimentation patterns during the late Eocene

within the Crescent terrane.
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The dcxdcing of the Crescent terrene along the Leech River fault
occurred during or just after the late Eocene. Timing of movement on the

Leech River fault is an inportant question. By studying sediments shed

fron southern Vancouver Island, ages of movanent may be determined.

Questions this thesis attempts to resolve are the following:
What lithic and monocrystalline ccnponents comprise the Hoko River
Formation? What is the average composition and are there variations
within the study area ?

What was the depositional environment of the Hoko River Formation?
What was the source area for the Hoko River Formation?
What constraints may be placed on the movement of the Leech River fault by
investigating the depositional environment and source area of the Hoko
River Formation ? Does the Hoko River Formation, in any way, document
movement along this fault ?

Is tlie Hoko River Formation the marine equivalent of the large fluvial
systems that existed during the late Eocene in the Pacific Northwest, such
as the Chuckanut Formation or the Puget Group ?

What was the paleogeography of the region including and surrounding the
Hoko River Formation during the late Eocene ?

8



Previous Work
The previous work on t±ie Hoko River Formation can be divided into four

major portions. The earliest work was general mapping of the Olyitpic

Peninsula by a number of workers at the turn of the century. The work was

taken over by USGS personnel in the 1950s and continued until the 1980s.

Frcxn 1950 to 1975, the University of Washington sent a number of Master's
students to the northern Olympic Peninsula to interpret the biostrati­

graphy of the peripheral rocks. Most recently, Western Washington
University has made a concerted effort to determine the tectonic origin of

the northern Olympic Peninsula. A dozen Masters students have gone to the

field to determine the depositional environment, provenance, tectonic

setting and paleomagnetic character of foimiations of the north, east and
southeast sides of the Olympic Peninsula. This study concentrates on the
depositional environment, provenance and tectonic origin of the Hoko River

Formation.
Arnold (1906) was one of the first workers to attorpt to unravel the

geology of the Olympic Peninsula by studying the coastal exposures (Figure
5a). He divided the stratigraphy into the Eocene basalt flows and tuffs,
named the Crescent Fonmation, which was unconformebly overlain by
Oligocene-Miocene sedimentary rocks named the Clallam Formation. The term

Oligocene-Miocene series resulted.

In 1909, Reagan published an account of his reconnaissance geology
completed during the summers of 1905 to 1909 (Figure 5a). Besides
including colorful historical notes and a summary of the previous work, he
published the first systematic faunal description of the coastal exposures

of the Olympic Peninsula. He followed the stratigraphic nomenclature of
Arnold (1906).

Weaver (1912) designated sedimentary rocks immediately north of Lake

9



Figure 5a to 5d. Correlation chart of changes of nomenclature of the
sedimentary and volcanic rocks of the northern Olynpic Peninsula. See
text for explanation of abbreviations.
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Crescent as the lower Miocene Blakeley Formation (Figure 5a); rocks frcm

Lake Crescent to Cape Flattery were lurrped into undifferentiated lower

Miocene.
Arnold and Hannibal (1913) were the first to subdivide Arnold's (1906)

Clal lam Formation, vhich they broke into the San Lorenzo, Seattle, and
Twin River Formations, the Astoria Series and Clallam Formation (Figure

5a). The San Lorenzo Formation corresponds to the present Lyre, A1 dwell

and Hoko River (part) Formations. The Seattle Formation corresponds to

the Makah and the rest of the Hoko River Formations. Arnold and
Hannibal's Twin River Formation is the present Pysht Formation, and their

Monterey Formation is now the Clallam Fontetion.
Weaver (1916a) published a sunmary of the Tertiary faunal zones of

western Washington (Figure 5a). The most notable change to the

stratigraphy of the northern Olympic Peninsula was a recognized and

defined Oligocene. No Eocene formations were mentioned or described. The
Oligocene was subdivided into three zones; the Molopophorous lincolnensis

Zone, the Turritella pxorterensis Zone and the Acila gettysburgensis Zone.
The Clallam Formation was exp3anded to include all of the Oligocene
sedimentary rocks. The Acila gettysburgensis Zone is equivalent to the
present Cap5e Flattery conglanerate and the Hoko River, Makah and Pysht
Formations.

Weaver (1916b) deleted names of the San Lorenzo, Seattle, Twin River,

and Montesano Formations of Arnold and Hannibal (1913) (Figure 5a). He

stated that faunal horizons would be more appropriate divisions than
formational divisions. Also, the usage of the names San Lorenzo and

Montesano inply correlations to formations in California that he did not
feel were justified.
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Hertlein and Crickmay (1925) attenpted to sort out the previous

stratigraphic nonenclature (Figure 5a). They adopted the Eocene Crescent
Formation for the basalts in the Port Crescent area. They disagreed with
Weaver's (1916a) faunal zones and reinstated Arnold and Hannibal's (1913)

temuLnology. They also disagreed with Weaver's more extensive use of the

Clallam Rjrmation; they restricted its usage to the Miocene Monterey-age
formation on the northern Olyitpic Peninsula.

The oil and gas potential of the Olympic Peninsula was discussed by
Palmer (1927) (Figure 5a). He described the structure and stratigraphy in

a general manner. A ridge of basaltic agglomerate located across the

northern Olympic Peninsula frcm Cape Flattery to Port Angeles was named

the i^glcmerate Ridge, vhich corresponds to the earlier defined Crescent
Formation. Palmer (1927) described it as an anticlinal structure. The
overlying sediments, mostly shale with minor sandstone, were described as
Oligocene and Miocene. The upper Miocene Clallam Formation is the only

formal formation he recognized.

In 1937 Weaver wrote a surtmary report of the stratigraphy of western
Washington and northwest Oregon (Figure 5b). In it, he ccmpletely revised
the stjratigraphic nanenclatiore on the northern Olympic Peninsula. In the

Lake Crescent area, he named the Oligocene the Lincoln Formation. The
sandstones of his Lyre and part of his overlying Lincoln Formations are

equivalent to the present Ifoko River Formation. Farther west, in the

Pysht River - Clallam Bay area, his Oligocene Lincoln Formation
corresponded closely to the present Hoko River Formation.

In 1942 Weaver ccrtpiled a caiprehensive paleontology of the Tertiary

of Oregon and Washington (Figure 5b). Frcm voluminous paleontologic data,
he derived the following stratigraphy for the northern Olynpic Peninsula.
The volcanic rocks were divided into tvo parts, the Metchosin volcanics
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and the Crescent Formation, overlain by the lower Oligocene Lyre

Formation. The middle Oligocene Lincoln Formation unconformably overlay

the Lyre Formation and was conformably overlain by the upper Oligocene

Blakeley Formation. The column was tc^jped by Astoria Formation, equiva­

lent to the present Clallam Formation.
Weaver and others (1944) published a correlation chart of the

Cenozoic formations along the west coast of North America (Figure 5b).

The names on the northern Olynpic peninsula changed again slightly. The

Blakeley Formation was dropped and the Twin River Formation substituted.
IXirham (1944) published a detailed study of the Oligocene of the

Quiirper Peninsula, the Twin Rivers area and the Blakeley Formation type
section on the Kitsap Peninsula (Figure 5b). He divided the Oligocene
into five faunal zones without changing the stratigrahic nanenclature of
Weaver (1937). The six megafaunal zones are "Turicicula columbiana",

Molopophorous stephensoni, Molopophorous gabbi, Turritella olymicensis,
Turitella por~terensis, Echinophoria rex, Echinophoria apta. The first zone
was tentative and was the one to which the conglcmerate of the Lyre
Formation of Weaver (1942) belonged. The Twin River Formation of Weaver
(1944) was the type section for the Echinophoria apta zone, which

corresponds to the present day Pysht Formation.
Robert Loney (1951) was the first University of Washington student to

work on the stratigraphy of the peripheral rocks (Figiore 5b). His prirtary

interest in renaming formations was to define mappable units rather than

faunal zones. His study eurea was bounded on the north by the Straits of
Juan de Fuca between Agate beach and Striped Peak and on the south by Lake

Crescent. Within this area he found the middle Eocene Crescent Formation
and the upper Eocene Lyre and Twin River Formations. His usage differs

16



frcm that of Weaver (1942) in that Weaver's Lyre and Twin River Formations

were Oligocene. The Lyre Formation was unconformably overlain by the Twin

River Formation, v^ich was unconformably overlain by the Clallam

Formation. The age of the Clallam Formation was not determined in this

study.
Brown and others (1956) redefined the Lyre Formation (Figure 5b).

They limited it to the sandstones and conglonerates above the sediments

associated with Crescent Formatiai. They found an unconformity at the top
of the conglomerate beneath the sandstones and siltstones of Eocene and

Oligocene age. This unconformity marked the top of the Lyre Formation
(note; at least two previous studies (cited above) had an unconformity on

top of the Lyre.) Their’s was the first published data that extended the
Eocene to loney's (1951) Twin River Formation. Brown and others (1956)

did not dispute and hence probably adhered to Weaver's (1937) ncmenclature

of the overlying strata, the Lincoln, Blakeley and Clallam Formations.
Brown and Gower (1958) redefined the Twin River Formation of Arnold

and Hannibal (1913) to include a three-^neniber mappable fooration of late
Eocene to early Miocene age (Figure 5b). Their lower member consisted

mostly of interbedded siltstone and sandstone with seme conglomerate near

the base. The middle member contained more siltstone than the lower
member and had many concretionary layers and lenses. Their upper meariber

was mostly siltstone and mudstone with sparse very fine sandstone

interbeds. Ages were defined for each meniber by molluscan and
foraminiferal faunas. The lower memiber was upper Eocene, the middle

menber was upper Eocene to upper Oligocene, and the upper member was upper
Oligocene or lower Miocene. The formation conformably overlies the Lyre
Formation as defined by Brown and others (1956). A type locality. Deep

Creek, and two reference sections, the Lyre River and the Straits of Juan
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de Fuca between the East Twin River and Murdcx:k Creek, were defined.

Brown and Gower's (1958) definition of the Twin River Formation set the
precedent for all futvire workers. They either agree with, disagree with,

or upgrade this work.
In 1958 Drugg ccnpleted a Master's thesis on the biostratigraphy of

the Boko River area (Figvire 5b). He followed Weaver's (1937) usage of the

Crescent, Lyre and Lincoln Formations. He named the Boundary Shale as a
lower member of the Lyre Formation. His upper meniber of the Lyre
Formation veis the conglanerate member of Weaver (1937) and Loney (1951).

Bag ley (1959) worked in the Seiku River Area and determined the

paleontology and paleoecology of the Crescent, Lyre and Twin River Forma­

tions (Figure 5c). He followed Drugg's (1958) terminology and divisions
for the Crescent and Lyre Formations. Bagley thought that the Twin River

Formation was very similar to the Boundary Shale member of the Lyre Forma­
tion and that the two should be a single formation with three members.

Bagley's (1959) paleoecologic interpretation cire quite specific and

interesting (Figure 5c). The Boundary Shale member corresponded to the

Nbdosaria-Cibicides Zonule. It was thought to represent warm water and a
neritic depth. The end of this Tonule represented a slight cooling of the

water and deepening of the basin. The Rhabdairmina-Haplophrgoides Zonule,

the later zonule of the Boundary Shale member, represented deposition in
deep cold water with connection to the open ocean during the later stages.

The Globobulimina-Cassidulina Zonule, in which the upper Lyre and lowest
Twin River Formations fell, contained slightly more mixed genera. Deep,
cold water was indicated by seme faunas, while there was an absence of

deep water Poraminifera. This lack reflected a cold, open ocean
environment that was not as deep as before. The Rhabdantnina-
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Haplophragoides-Cyclamenina Faunule, v^ich was present in the lower 1000
ft of the Twin River Formation, represented a deepening cold basin
connected to the open ocean. He noted the similarity between the Zonule
of the faunule of the Boundciry Shale Formation and the Twin River

Formaticn.
Carroll (1959) studied the Lyre Formation and the overlying Twin

River Formation along the Hoko River (Figure 5c). He began vhere Drugg

(1958) left off in the lower Twin River Formation. He presented a
detailed paleontologic and stratigraphic study of the area. The Twin

River Formation was divided into two members rather than the three members
of Brown and Gower (1958) on the basis of "striking lithologic changes".
The Blue Canyon Gorge meniber was about 6300 ft thick and consisted of
"dark grey concretionary siltstone and fine grained sandstone" as
typically ej^sed at the Blue Canyon Gorge of the Hoko River. His upper

Hoko member was about 7,700 ft of interbeds of medium to dark gray

siltstone and medium gray sandstone exposed frcm a point 2.2 miles south
of the Route 101-112 intersection to Kydaka Point along the Hoko River.
He determined the lower 960 ft of the Blue Canyon menber to be upper
Eocene, with the Narizian-Refugian boundary (upper Eocene to lower

Oligocene) at 960 ft above the base of the Twin River Formation. The Hoko

member was thought to be Oligocene or lower Miocene.
Carroll's (1959) paleoecolcgic data provide a number of interesting

conclusions (Figure 5c). The fauna of the Blue Canyon Gorge member lived
frcm medium to lower bathyal conditions 3000-6000 ft deep in cool water

40-60 degrees F except for the upper third of the Blue Canyon Gorge

member, vhich corresponds to the top of the present Hoko River Formation,
vhich may have existed in neritic to upper bathyal conditions of 0 to 3000
ft. The surface conditions of the lower 2000 ft were thought to represent

19



tropical or subtropical environments. Above this the number of species

dropped, indicating a cooler climate may have prevailed. A connection

with the open ocean was postulated because of the presence of the genus

Globigerina.
Sherman (1960) worked in the northeastern comer of the Olyitpic

Peninsula (Figure 5c). He looked at the Crescent, Lyre, and IVin River
Formations. In his study area, he divided the exposed 17,000 ft of Twin

River Formation into three lithologic units. His lower unit was

dcminantly thin-bedded siltstone with regular very fine sandstone beds.
His middle unit, about 1100 ft thick, ccxitained mostly shales and mudstone
with concretionary beds cind occasional sandstone lenses. His upper unit
vas mostly a series of scindstone beds. His units differed from the three
members of Brcwn and Gower (1958).

Gower (1960) published the first geologic map of the Pysht quadrangle

at a scale of 1:62,500 (Figure 5c). His stratigraphic ncmenclature was
not changed frcm that of Brown and Gower (1958). He mapped three members

in the Twin River Formation; the upper and lower contacts of the three
members were gradational and "scmevihat eurbitrcurily defined, (see

description on reverse side of map, column 4)." The Twin River Formation

was recognized as late Eocene to Oligocene.
Brown and others (1960) mapped the bedrock and Quaternary geology of

the Lake Crescent-Port Angeles area at a scale of 1:62,500, including the
Aldwsll, Lyre and Twin River Formations (Figure 5c). Both the Lyre and

Aldwell Formations underlie the Twin River Formation, due to discontinuous
deposition of the Lyre Formation. The Clallam syncline, a broad east- 

west-trending fold with minor anticlines and synclines on its limbs,
exposes their lower member of the Twin River Formation, vhich consisted of
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bedded sandstone and siltstone with lenticular conglonerate layers. Their

middle member was mostly massive siltstone with minor thin sandstone beds
and a 330m thick conglonerate unit at its base in the middle of the map
area. Brcwn and others (1960) described the conglonerate as
"lithologically similau: to the Lyre Formation (see description on the
reverse side of the map, column 8)." They suggested that it may represent

a revrorking of the Lyre Formation. Mditionally, they note a sedimentary

breccia at the base of mostly volcanic detritus thought to have cone frcm
the Crescent Formation. Their upper member was finer grained, cotposed
chiefly of massive mudstone with minor thin sandstone beds. Their Twin

River Formation ranged fron upper Eocene to lower Miocene. The members
cure the following ages: the lower is late Eocene, the middle is late

Eocene to late Oligocene and the upper is Oligocene or early Miocene.
Lindquist (1961) worked in the area south of Port Angeles and Sequim

and also noted the absence of the upper Eocene Twin River Formation

(Figure 5c).

The biostratigraphy of the Twin Rivers area was studied and
interpreted by Strain (1964)(Figure 5c). He followed the stratigraphy of

his peers at the University of Washington except for changes to the
Boundciry Shale, Lyre and Twin River Formations. He recognized a distinct
Boundary Shale Formation above the upper Crescent member of the Crescent
Formation and conformably underlying the Lyre Formation, vhich was

ccmposed of lower sandstone and upper conglcmerate matbers. The upper
conglonerate member of the Lyre Formation was overlain conformably by the

Twin River Formation. The Twin River Formation was not divided into
either the two members of Drugg (1958) and Carroll (1959) or the three
members of Brcwn and Gower (1958). Strain did recognize lithologic

changes, but he thought they were not definite enough to form members.
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His Twin River Formation generally consisted of well indurated sandstone,

thin to massively bedded, that graded into concretionary siltstone with
minor sand lenses. Possible faulting along the Lyre-lVan River Formation
contact was suggested as an explanation for the lack of the basal

sandstone in seme cases. His lower Twin River Formation is upper Eocene,
upper Narizian of Mallory (1959). Strain (1964) determined that the upper
Twin River Formation was lower Oligocene in age (Figure 5c). The

paleoecology indicates that the water depth became shallcv/er frem the base
of the Twin River Formation to the top, frem bathyal to neritic depths.
Open ocean ccaiditions probably occurred as well. Tenperatures cooled in

the upper portion of the Twin River Formation with the exception of cxie
ancmalous fauna (Strain, 1964).

In 1964 Rau described the foraminifera on the northern Olyitpic
Peninsula. He followed Brown and Gower's (1958) redefinition of the Twin

River Formation and its three members (Figure 5c). He stated that the

lower member, based on scarce forams, was upper Eocene, mostly the upper
part of the Narizian stage of Mallory (1959). The upper portion of the
lower member was early Oligocene and corresponded to the Refugian of
Schenk and Kleinpell (1936). According to Rau (1964), the fauna of the

Twin River Formation preferred deep, cold, open ocean water. The lower

member included two types of fauna that together indicated water depths of
300 to 1000 ft: lower neritic to uppermost bathyal. The middle member was
deposited in 1000-6000 ft of water. The upper menber was upper neritic.

McWilliams (1965) presented a thesis on the biostratigraphy and

geology of the Lake Crescent area. He studied the Crescent, Boundary

Shale, Lyre and Twin River Formations (Figure 5d). He dropped the

subdivisions within the Crescent Formation. He divided the Twin River
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Formation into four different zonules vdth a fifth overlapping frcm the
underlying Lyre Formation. His lowest portion of the Twin River
Formation included the "impoverished" faunal indicating littoral to

sublittoral depths. The next two zonules, the Haplophragmoides-

Trodiaiiinina Zonule and the Eponides mans fie Id var. oregonsis Zonule, fell
into the Narizian stage (late Eocene) and upper, then lower, bathyal
depths. The L^^r Bathsiphon Zonule restricted the Twin River Formation
to upper bathyal depths and the beginning of the Refugian (early
Oligocene). Last, the Globoberlimina pacifica Zonule represented lower

bathyal depths during the Refugian and Zemorrian stages.
McDougall (1972) correlated all the previous biostratigraphic work of

the University of Washington frcm the northern Olympic Peninsula in her
Masters thesis, vhich dealt with the Narizian-Refugian boundary on the
northern Olynpic Peninsula (Figure 5d). She determined that the Narizian-

Refugian boundary should fall in the upper Eocene, vhich is within the

first 1000 ft to 3000 ft of the Twin River Formation depending on the
exact section location. She determined that the Narizian-Refugian
boundciry should fall 700-725 ft above the Lyre-Twin River formation

contact along the Hoko River. Ihe Aldwell Formation was not recognized by

McDougall. Along the Lyre River, correlative samples occurred in the
upper Lyre Formation, due to the time-transgressive nature of the Lyre-
Twin River Formation contact (McDougall, 1972). In general, she thought

that the Narizian-Refugian boundary fell above the Twin River-Lyre
Formation Boundary by amounts varying frcm 300 to 3500 feet, all within

the Twin River Formation.

The first ccitprehensive geologic map of the Olympic Peninsula was
published in 1978 by Ibbor and Cady. The Twin River Formation was divided
into the three mappable memibers of Brown and Gower's (1958) usage with the
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fol lowing additions (Figure 5d). A conglonerate lens (rc) was mapped

within the lower and middle madDers, v\3iich were mostly thin-bedded

sandstones with minor siltstone and pebbly sandstone at the base. The
middle member contained more sandstone than the lower member. Their upper
member was cotposed of massive to thin-bedded mudstone and siltstone

except for the cirea between Kydaka cind Seiku Points, v»4iich was sandstone
and conglomerate (rs). The Twin Fiver Formation overlay the older Lyre

Formaticxi unconformably in the east and conformably in the west. The

middle Miocene Clallam Formation gradationally overlay the late Eocene
Twin River Formation.

Tabor and Cady (1978) made several changes to the earlier stratigra­

phic nomenclature. They mapped and recognized the Aldwell Formation.

They recognized cin unccjnformity between the Aldwell and the Twin River

Formation in places vhere the Lyre Formation had not been deposited. And,

last, they recognized an intraformational unconformity between the lower
and middle members of the Twin River Formation.

Snavely and others (1978) raised the Twin River Formation to group

rank and named its three members: from oldest to youngest the Hoko River,
Makah and Pysht Formations (Figure 5d). The Hoko River Formation was

upper Eocene; the Makah Formation, ujper Eocene to Oligocene and the Pysht
Formation, Oligocene to lower Miocene. Type sections were described for
each. The Hoko River type locality was designated along the Hoko River

and an adjacent railroad grade and service roads, with reference sections

at Deep Creek and the Straits of Juan de Fuca frcm Midway to Neah Bay.
Snavely and others (1978) described the Hoko River Formation as thin- 

bedded siltstone and quartz-rich, basaltic and phyllitic sandstones with

smaller amounts of pebbly sandstone and conglonerate as lenses and
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channels. Concretions of calcite were noted throughout the formation. A

few sandstcxie dikes cut through the strata. The Bbko River Formation was
alxjut 1600 m thick at the type section and 2300 m at the reference section

along Deep Creek.
In 1980, Snavely and others published a professional paper on the

Makah Formation (Figure 5d). This included the ages of the Hoko River and

Makah Formations, and contact relationship between these two formations.
The Hoko River Formation was described as a dark gray lithic sandstone,
with phyllitic and basaltic fragments that are uncaimon in the Makah

Pormaticai. The Hoko River Formation was described as hackly-fractured

siltstone, distinct frcm the well-bedded siltstone and turbidites of the

Makah Formation.
Snavely and others (1983) contributed descriptions and interpreta­

tions of the peripheral rocks of the Olympic Peninsula (Figure 5d). He
included a ccitposite stratigrapiiic column of these rocks on the northern

Olympic Peninsula. His descriptions of the lithologies and contacts of
the Hoko River Formation were similar to those in Snavely and others
(1978). In a southwest to northeast cross-section frcm the Olympic

Peninsula to southern Vancouver Island, he depicted a basin that thinned
to the north with the youngest units reaching across the basin. A brief
interpretation of the depositional environment of the the Lyre and Ifoko

River Formations stated that material was eroded frcm the fault scarps

along the San Juan and Leech River Faults, to the north on Vancouver
Island, into channels of a deep marginal basin known as the Tofino-Juan de
Fuca basin. Subsequent uplift and erosion along these faults provided the

sediment for the deposition of the Makah Formation.
Moyer and others (1985) ccnpleted a palecmagnetic study of the

Tertiary rocks on the northern Olympic Peninsula (Figure 5d). Samples
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were taken from the Crescent, Hoko River and Makah Formations. Moyer

(1985) discovered there were two structural regimes on the northern

Olynpic Peninsula, forming an eastern and a western danain. The rocks

they studied have a complicated geologic history. The Crescent Formation
was formed in a tectonic setting near its present location according to
Beck and Engebretson (1982). Moyer aixi others (1985) stated that fran

Neah Bay to Port Townsend of the Crescent Formation and the older Tertiary

sedimentary rocks were deflected 70 degrees counterclockwise. This was

recorded as a primary direction of magnetization in several sites at one
locality in the Hoko River Formation (Moyer and others, 1985; Moyer,
1985). Geologic, structural, and paleaiagnetic evidence suggested to him

that the two structural domains were separated after this initial event.

The western danain, fron Neah Bay to the Pysht River, was rotated 40
degrees clockwise. Evidence fron one site indicated that the eastern
portion was relatively unchanged during this second event.

In 1986, Snavely and others presented a geologic map of the northwest
comer of the Olyitpic Peninsula (Figure 5d). In general, mapping was

similar to that of Tabor and Cady (1978) but in more detail. The core

rocks were divided into many different bloclcs or terranes. The Hoko River
Formation was divided into four mappable units; "the Hoko River Formation
[in general] (Th), a thick- to thin-bedded lithofeldspathic turbiditic

sandstone unit (Ths), a thick- to thin-bedded carbonaceous, calcite- 

canented, phyllitic and basaltic sandstone with minor siltstone interbeds
(Thsb), and a unit of cobble and boulder channel deposits (The)" (Snavely

and others, 1986, p.2). The Hoko River Formation (Th) contained the
siltstone and sandstone previously described in Snavely and others (1978).
Additionally, pebbly mudstone, mudflow breccia, sandstone dikes and thin
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ash beds were recognized. The turbiditic sandstones of the Ths unit were
found in the eastern peurt of the map area fron the Hoko to the Clallam
Rivers. The phyllitic and basaltic sandstones of the Thsb unit were foiand

in a belt in the western portion of the formation. Minor siltstone

interbeds occurred within broad channels of this unit. The channel
deposits of the The unit were found at the base of the section just west

of Neah Bay. The cenpositions included basalt, phyllite, meta-plutonic

rocks and conglonerate.
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SEDIMENTARY PETROLOGY

Hie sandstones of the Hoko River Rjrmation eire lithic arenites and
lithic graywackes (classification of Pettijohn and others, 1972). The

grain size varies from fine to very coarse sand (0.125 to 2.0 rrm). Grains

are sv±>rounded to eingular with a mean of subangular. The sandstones eire
moderately well sorted to poorly sorted, the average sorting is mcderate.
The coiponents comprising these sandstones form a distinctive assemblage

that requires catreful study to determine the nature of possible source

areas. This section contains these petrologic details.

Methods
Modal analyses to determine the ccmposition were performed on 50 thin

sections of sandstones representing the range of fine to very coarse
(0.125 to 2.00 nra), poorly to well sorted, and angular to si±»rounded.

One half of each thin section was stained for potassium and plagioclase

feldspar. Sodium cobaltinitrite produced a yellow stain on potassium
feldspar, and amcuranth produced a red stain on calcium-bearing
plagioclase. Whole-rock counts of 300 points were made to determine

proportions of the categories: quartz (Q), plagioclase (P), potassium
feldspar (K), accessory (Acc), chlorite (Chi), anphibole + epidote +
zoisite (Amp/Ep), carbonate cement (CC), matrix (M), total lithic (Lt),

and other (O). The lithic ccnponents were further subdivided in a

separate 200-point count into the following categories: mafic volcanic,
intermediate volcanic, felsic volcanic, glassy volccinic, meta-volcanic,

schist + phyllite, other meta-sediment, chert, polycrystalline quartz,

sedimentary, fossils, amphibole + epidote, felsic plutonic, dioritic
Plutonic, gabbroic plutonic, and others. These categories were ccmibined
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to form the following ternary plots; Q-F-L, Qn-F-Lt, QE>-Lvm-Lsm, Oi>-P-K,
Lm-Ls-Lv. See Tables 1 and 2 for explanation of symbols.

Ihe Gazzi-Dickinson method of point counting as revised by Ingersoll
and others (1984) was used to reduce discrepancies due to grain size in
all cases except that of plutonic lithics. These were treated in the

following manner: if the cross-hairs landed on the boundary between two
crystals of a plutonic lithic, ie., between quartz and plagioclase in a
felsic plutonic grain, that point was counted as a lithic.

Mineral Descriptions
Quartz (On) crystals greater in size than very fine sand were counted

as monocrystalline quartz grains. Plutonic, metamorphic, and vein qucirtz
are cannon. Plutonic or "cannon" quartz can be recognized by its sonevtot

undulose extinction and lack of vacuole trains. Plutonic quartz is also

recognized by its association with antphibole, euhedral plagioclase and
rare potassium feldspar. Metamorphic and vein qucurtz can sonetimes be
recognized by their crenulated crystal boundaries, highly undulose
extinction, and lineated vacix)le trains. Occasionally, recrystallized
metamorphic quartz forms very fine sand-sized aggregates of equant

crystals with interlocking to straight boundaries that are counted in the

Qp category. Quartz crystals that occur as veins in lithic fragments are
often large enough to be counted as single crystals.

Plagioclase (P) is most often found in volcanic lithic clasts with

sane isolated single-crystal occurences in fine to coarse sand. Crystals

are concentrated in two sizes, fine and coarse sand, probably reflecting

volcanic cind plutonic sources, respectively. Both varieties are
recognized by their lath shapes, by albite and carlsbad twins, and by
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Table 1 ABBREVIATIONS USED DURING POINT COUNTS
Whole Rock Count - 300 points

On
P
K
Acc
Ch
Aitp/Ep
CC
M
Other

Monocrystalline qucirtz
Plagioclase feldspar
Potassium feldspar
Accessory minerals - punpellyite, muscovite, biotite, pyroxene,

opaques, serpentine, talc, sulfides, hematite
Chlorite
Anphibole, epidote, and zoisite
Carbonate cement
Matrix - pseudcmatrix and protcmatrix (detrital clays)
Miscellaneous materials of note that were not included elsewhere,

such as zeolite and silica cements and unidentified grains

Lithic Count - 200 points
Volcanic
Ivm
Ivi
Ivf
Ivg

Mafic volcanics, basalt
Intermediate volcanics, dacite, andesite
Felsic volcanics, rhyolite
Volcanic glass

Metamorpaiic
Imv Meta-volcanics
Imsp Schist and phyllite
litis Meta-sediments

Sedimentary and Other
cht Chert and recrystallized chert
QP
Is
fos
airp/ep
other

Polycrystalline quartz
Sedimentary clasts, siltstone and very fine sandstone
Fossils, clams, forams, and brachiopods
Arnphibole- and epidote- or zoisite- rich schist and gneiss
Miscellaneous and unidentifiable lithics

Plutonic
Ipf
Ipd
Ipg

Felsic plutonics; granite, granodiorite
Diorite, quartz-diorite
Gabbro, diabase
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Table 2 SUMMA.TIC»J OF CATEGORIES FOR TERNARy DIAGRAMS

Q-F-L
Q = On + Op +
F = K + P
L = Lt - (Op

Qn-F-Lt
On = On
F = K + P
Lt = Lt

Qn-P-K
cht On = On

P = P
+ cht) K = K

Lv-Ls-Lm
Lv = Ivm + Ivi + Ivf + Ivg
Ls = Is
Im = 1ms + Imsp + linv

Qp-Lvm-Lsm
Op = Op + cht
Lvm = Ivm + Ivi + Ivf +

Ivg + Imv + %lmsp
Lsm = Is + %lmsp + 1ms
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staining. Seme cirystals are zoned, and mainly zoned crystals are altered.

Calcite replacement of plagioclase is cemmon in the mafic volcanic

lithics, especially in concretionary sandstone samples; in these, relict
textures are used to identify the plagioclase. In plutonic lithic

fragments, the plagioclase is ccranonly clouded by sericite alteration that

picks up the yellow sodium-cobaltinitrite stain. Mafic volcanics show
sericitization of feldspar also. Plagioclase cempositions frem samples
throughout the field area are suitinarized in Table 3. The A-normal,

cembined twins, and Michel-Levy methods were used to determine the
cenpositions. Both calcium- and sodium-rich varieties were found. The

cenpositions range fran An 10 to An 37 with the mode from An 20-30. The
relatively sodic cenpositions are not easily explained but may be due to
low temperature diagenesis of the sediments. Generally, the sodic
varieties of plagioclase did not take either the sodium cobaltinitrite or

amaranth stain.
Potassium feldspar (K) is rare in most of the Ifoko River Formation.

Microcline is recognized by cross-hatch twinning, cleavage angles, and
yellow-brown stain along the cleavage planes. Other occnarences of
potassium feldspar are in micrographic intergrowths with quartz in

plutonic rock fragments.
Accessory (Acc) minerals include, in decreasing order of abundance,

biotite, muscovite, pyroxene, opaques, serpentine, and talc. Detrital
biotite is present only in trace amounts but is ccumon in seme metamorphic

lithic fragments. Muscovite is cermon in schists, phyllites, and
polycrystalline quartz aggregates. In these forms it is usually too small

to count as a discrete crystal, but it does occur as reire detrital grains

and in seme plutonic lithics. Clinepyroxene occurs as discrete detrital
fragments and in plagioclase aggregates. Opaques are mostly sulfides
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Table 3 PIAGIOCIASE COMPOSITIONS

This table represents the ccnpositions of plagioclase crystals in
lithic fragments across the study area. The horizontal axis denotes
locations of samples by stratigraphic sections. On the left, Morse Creek
(MC) is the most eastern section vhile Neah Bay (NB) is the western most
section. Elwah River (ER), Crescent Beach (CB), West 7^ate Beach (WAB),
West Twin River Road (WTR), Burnt Mountain Road (BMR), Hoko River (HR)
corprise the abbreviations used.

Ccnposition*

Basalt 33c ll-15m 32m
15n 20m

6-lOm
8m
22m
21-25m
20-30m

Andesite/ 25a
Dacite

WAB WTR BMR
12m 20—22m 15m 8m lan
15m 22-27m 10m 22m

25m 10m 15-21m
16-18m 17-20m 21-25m

20—30m
6-lOm

Granite/ 30m 40a
Granodiorite 27m 42a

12a
Diorite/ 20-27m Oa 24c
Ciuartz-diorite 30c
Gabbro/ 27m 12a
Diabase
Metased/ 37a 23a 37a
Metavolcanic

Arphibolite 17m
*A11 numbers cure given in percentage of anorthite present.
m = Michel-Levy method of plagioclase determination,
a = The A-normal method of plagioclase ccnposition determination
c = Canbined twins (carlsbad and albite twins) method of plagioclase

corpostion determination.
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(pyrite and chalcopyrite) and hematite. Hematite cx:curs as a fringing

cement, as stains on lithics, and as an alteration of the volcanic

lithics. Garnet, serpentine, and talc occur in trace amounts. Uncatmon
pun^llyite has been identified in the metavolcanics and mafic volcanic
lithics. Prehnite was identified in two metavolcanic lithic clasts.

Chlorite (Ch) is a ccranon alteration product in these sediments.

Chlorite occijts as detrital fragments; as an alteration product in

volcanic, metamorphic, and plutonic lithics; and a replacement of
aitphibole, pyroxene, volcanic glass and groundmass in mafic volcanics.
Fresh chlorite is light green pleochroic under plane light and anomalous

blue, slate-gray, and bright green under crossed nicols. Chlorite forms

fibrous bundles, radiating masses, and finely radiating, patchy crystals.
Oxidation produces an orange color, especially around the edges of
chlorite patches.

Aitphiboles (Artp) cure numerous in diorites, quartz diorites, and
amphibole-plagioclase metamorphic lithics. Cummingtonite or grunerite is

present in aitphibole-quartz aggregates. The anphiboles are partially
replaced by calcite and epidote.

E^idote (Ep) and zoisite (and clinozoisite ?) occtir as discrete

tabular cirystals or disseminated patches. Epidote is a cotron alteration

of the mafic ccmponents of many lithics, amphiboles, pyroxene, and mafic
groundmass. Zoisite is relatively rare and usually forms discrete

crystals.
Calcite cement (CC) is the daninant cement. No aragonite or dolomite

was found. The calcite occurs as void filling, blocky spar, and pseudo­

spar. At least two sizes of calcite crystals, very-fine (0.0625 mm) and

medium (0.25 - 0.50 itm) are present. The murky calcite that often

surrounds clasts is recrystallized micrite or priiticiry marine cement. The
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next most cannon cement is fine-grained silica cement. Minor amounts of a
calcium-rich zeolite form a late stage void-filling cement.

Matrix (M) is cotmon as both a silt-sized fracticai in sand-sized

sairples and detrital clays. Often crushed metasediraentary grains resemble
matrix, but they were included with phyllite. Pseudcmatrix, orthcmatrix

and protcmatrix found in various saitples and indicate differing diagenetic

processes.

Lithic Descriptions

Mafic volcanic lithics (Ivm) dcminate the volcanic lithic group.

These clasts are typically dark to opaque under crossed nicols, with
plagioclase lathes, chlorite, epidote, calcite, or purapellyite ccnprising
most of the identifiable minerals (Figures 6 and 7). Microlitic

plagioclase and its alteration products are typical. Although seme

plagioclase is partially replaced by calcite, twinning and original

crystal outlines are usually preserved; thus a determination of mineralogy
could be made. The plagioclase cenposition of the basalts range frem An 6
to 42 with a mode of An 20-30. This is more sodic than found in unaltered
basalt and may be explained by seawater metasematism of basalt during the
formation of spilite.

Intermediate volcanic lithics (Ivi), andesites and dacites, and
felsic volcanic lithics (Ivf) are recognized by the lack of chlorite and
the presence of lath-shaped plagioclase. Euhedral crystals of

plagioclase, infrequently zoned, surrounded by microlitic plagioclase and

a glassy groundmass are cannon. Blades of plagioclase and quartz in a
glassy groundmass are counted as intermediate volcanics and felsic
volcanics. These lithics appear to have undergone low grade metamorphism,
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Figure 6. Photomicrograph of highly altered basalt in silica (primary)
and zeolite (secondary) conents under crossed nicols. Sample WTR-39J.

Figure 7. Photomicrograph of basalt and radiolarian chert under crossed
nicols. Sample MC-41.
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because of the intergrown texture of the crystals. This plagioclase did

not stain red, indicating An less than 5%. The crystals are coarse to
very-fine (0.50 to 0.125 ntn) and bladed. One distinct felsic volcanic

lithic type corprises fine-grained lithics that reseitible chert but stain

red and have sparse, fine plagioclase laths.
Volcanic glass lithics (Ivg) have a distinctive color and texture and

are isotropic or devitrified. They are yellow or green in plane light.

Glass shards cind vacttoles are cannon- Shard-like shapes help to
distinguish devitrified glass fron chlorite. Vacuoles are usually filled

with one of the following: calcite, chlorite, or zeolites.
The metavolcanic lithic category (Imv) includes volcanics that have

been highly altered and are of indeterminant coiposition. The dcminant
minerals are chlorite, plagioclase, and quartz. Minor ccnponents are
purtpellyite and prehnite (two occurrences of this mineral). Seme

conpositions indicate that these were originally felsic or intermediate
volcanics: relict zoned plagioclase, euhedral and ernbayed quartz, and
hexagonal mafic mineral. Broken and sonevhat deformed plagioclase
indicates deformation and metamorphism in lathwork metavolcanics of mafic
origin. Sausseritized or sericitized plagioclase and chloritic patches

are distinct alteration products. Plagioclase corpositions are An 23-37
(Table 3).

Schist-phyllite (Imsp) fragments form a distinct petrologic group

that was counted separately. They are foliated, low to medium grade
metamorphic lithics, including the following assenhlages: well-foliated
graphitic schist and phyllite (Figure 8), chlorite + microcrystalline

quartz + muscovite + biotite + opaques schist, graphite + quartz +
muscovite/sericite schist (Figure 9), plagioclase + epidote + chlorite +
opaque schist and quartz + plagioclase schist. Queirtz and plagioclase
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Figure 8. Photomicrograph of a clast of graphitic phyllite showing some
of the detail of this lithic type under crossed nicols. Sample from the
Neah Bay section.

Figure 9. Photomicrograph of chert, graphitic phyllite (Imsp) and sheared
metasediment (1ms) counterclockwise from the bottom left under crossed
nicols. Saiiple CB-11.
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crystals have been broken, pulled apart, rolled around and squashed, and
thus indicate extensive shearing and strain in the source units

(Figure 8).
A subgroup of schist/phyllite (Imsp) is that of quartz^nica

aggregates. Grains with greater than 5% mica that are lineated or
foliated cure part of the schist/phyllite (Imsp) group. Grains with

greater than 5% mica, but lacking a distinct foliation were counted as

meta-sedimentary lithics (1ms). Fabric is the most important factor of

this subgroup.
All other metasedimentary lithics (1ms) that do not fit in above were

put into this category (one example in Figure 9). They were counted

separately to determine vhether they were derived frcm a source different
than that of the schists and phyHites (Imsp). Seme of these lithics have

undergone shearing that is evident frcm rotated and pulled-apart crystals
in a matrix phyllosilicates. Polycrystalline quartz with greater than 5%
mica or other debris and lacking foliation was included in this category.
Chert with many inclusions of clay and organic debris, greater than 5%,

also falls into this category.
The chert (cht) includes red, black, and clear chert varieties; seme

grains are recrystallized or heavily veined. The interlocking nature of
the quartz crystals of both chert and recrystallized chert is diagnostic.

Radiolcurian ghosts are present in samples throughout the field eurea

(Figures 7 and 9).
i^hanitic polycrystalline quartz (Qp) lithic fragments, except chert,

are included in the polycrystalline quartz category. Foliated metaimorphic
and vein-filling quartz are the tvo most cermon varieties. If less than
5% mica or other inclusions are present, the lithic falls in this
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category.
Lithic siltstone and sandstone (Is) are counted in the sedimentary

lithic category. Siltstone is the dcminant lithology and is cottposed of
quartz and feldspars in micrite, clays, and organic debris. Unmetamor- 

phosed sandstones are usually counted as individual mineral components.

However, if the crosshairs landed on the matrix vdthin one of these
lithics, it vas counted as a sedimentary lithic. Lithics that comprise

this category are unmetamorphosed, although they are compacted to varying

degrees.
Fossils (fos) are rare. Of those found, foraminifera are the most

ccmmon; bivalves are the next most cannon.
Anphibolites (anp) occur in foliated cind non-foliated varieties.

They are a distinctive lithology, ccmposed of plagioclase (An 17),
aitphibole and lesser amounts of quartz (Table 3). The crystals vary in

size frcm 2.0 inn to 0.625 imu Only finer polycrystalline grains were
included here. Coarse crystals were counted as anphibole, plagioclase, or

quartz.
Felsic Plutonic lithics (Ipf) include lithic fragments of siliceous

and calc-alkaline plutonic rocks, ie., granites, and granodiorites.

Aggregates of quartz + epidote replacing anphibole, quartz + anphibole,
quartz + plagoiclase + potassium feldspar + (epidote) + (anphibole)

corprise this groups. Large blocky crystals with straight boundaries form

the aggregates. Micrographic texture is found in one clast. Epidote is
both a replacement and primary vein mineral.

Diorite and quartz diorite (Ipd) include plutcaiic lithics with

plagioclase + (quartz) + (epidote or zoisite) + (anphibole). Anphibole is

replaced by epidote, zoisite or chlorite. Blocky crystals dcminate rather
than lath-shapsed crystals. The plagioclase coiposition varies frcm An 0-

40



30 with the mode between An 20-30 (Table 3). The plagioclase is more
sodic than would be expected for a diorite or quartz diorite (An 35-60,

according to MacKenzie and others, 1982), probably due to diagenesis or

low grade metamorphism.
The gabbroic plutonic lithic category (Ipg) includes gabbroic

lithics and diabase. Plagioclase + (epidote) + (aiiiphibole) + altered

groundmass is the most catition assariblage. Plagioclase varies in
corposition frctn An 12 to 27. Generally, gabbiros have a plagioclase

carpositiai of labradorite (An 50) or greater according to MacKenzie and

others (1982). The less calcic varieties present have probably been
metascmatised or have beccme enriched in sodium during diagenesis or
metamorphism.
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PROVENANCE
Determining the tectonic provenance of the Hoko River Formation is

cne of the goals of this study. The conposition of a source area is

reflected in the sediments derived fran it. By looking at the petrology
of the Hoko River Formation in detail, doninant lithologies ccnprising the
source area should be apparent. Three methods of analyzing the
petrographic data eire presented, followed by results and interpretations.

Ternary Diagrams
The data fran 50 point counts from nine stratigraphic sections in the

field area were plotted c»i five ternary diagrams in an attempt to
delineate lithofacies (Figure 10 to 17). The sanples were taken fran nine

stratigraphic transects, fran east to west: Morse Creek, Crescent Beach,

west Agate Beach, Field Creek, Elwah River, West Twin River Road, Burnt
Mountain Road, Hoko River, and Neah Bay (Figure 18). The locations

contained the following nuntoer of sanples: Morse Creek-6, Elwah River-6,
Crescent Beach-4, west Agate Beach-3, Field Creek-5, West Twin River Road-
5, Burnt Mountain Road-5, Hoko River-5, Neah Bay-11. Table 4 cctnpiles the

grain sizes of all of the samples used in point counts. The ternary
diagrams plotted are Q-F-L, Qn-F-Lt, Qn-P-K, Qp-Lvm-Lsm, Lm-Lv-Ls (Figures

10 to 17). Figures 10 to 12 contain the formation mean and standard
deviation, while figures 13 to 17 present the mean and standard deviation
for each section location, as well as the formation mean and standard
deviation.

Q-F-L and Qri-F-Lt diagrams were ccmpared to those of Dickinson and
others (1983). A trend of increasing maturity fran Dickinson and Suczek
(1979) was plotted on the On-P-K diagram. The Qp-Lvm-Lsm and Lnv-Lv-Ls
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Table 4 Grain sizes of the saitples used in these analyses.

Sample Number Grain Size Sample Number Grain Size

MC-06 VC TR-01 VC
MC-16 MED-C WTR-39J VC
MC-18 MED-C WTR-43J VC
MC-36 C-VC WTR-44J FINE-MED
MC-41 VC WTR-47J FINE/VF AND C
MC-42 VFINE—MED

BMR-52 C-VC-GRAN
ER-07 C-VC BMR-53 VF-C
ER-08 vc-c BMR-54 MED-VC
ER-20 C-VC BMR-55 GRAN
ER-25 c BMR-58 VC
ER-26 C-VC
ER-27 c HR-08 VC-GRAN

HR-10 FINE-VC
CB-07 VC HRR-02 MED-VC
CB-08 VC HRR-10 FINE-VC
CB-11 C-VC HR-45B VFINE-FINE
CB-12 VC

FSB-04 MED-C
WAB-01 C-VC FSB-11 C
WAB-04 C-VC FSB-16 C-GRAN
WAB-05 MED-C CF-01 GRAN

CFT-01 VC
FC-13 FINE-MED CPr-09 VC
FC-19 FINE-MED CFT-llB C
FC-20 FINE-MED CFT-32 FINE-C
FC-22 FINE-MED CFT-57 VC
FC-27 FINE-MED CET-61 C-VC

CET-62 C
The abbreviations in the table stand for the following;
FINE = fine sand
MED = medium sand
C = cocirse sand
GFAN = granule
V = very
The division between fine and medium sand is 0.25 itin, between medium and
coarse sand is 0.50 itm, between coarse sand and very coarse sand is
1.00 im, and between very coarse sand and granule is 2.00 itrti (Folk, 1974).
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Table 5 Suimation of categories for ternary diagrams

Q-F-L Qn-P-K
Q = On + Qp + cht On = On
F=K+P P=P
L = Lt - (Op + cht) K = K

Lv-Ls-Lm
Lv = Ivm + Ivi + Ivf +lvg
Lb = Is
Lm = 1ms + Imsp + Imv

Qn-F-Lt
On = On
F = K + P
Lt = Lt

Qp-Lvm-Lsm
Op = Qp + cht
Lvm = Ivm + Ivi + Ivf + Ivg + Imv + %lmsp
Lsm = Ism + %lmsp + 1ms

The sunmation of categories for ternary diagrams. See the appendices for
further ej^lanation.
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diagrams were carpared to Suczek and Ingersoll (1985) to determine \idiether

a specific tectcnic provenance is indicated.

Results
The sandstones of the Hoko River Formation are lithic cirenites, and

they plot toward the lithic end of the Q-F-L temeiry diagram Q=29 + 14,
F=15 + 9, 1^55 + 12 (Figure 10a). The Elwah River section contains the

most Q; the Field Creek section, the most F; and both the Hoko River and
West Twin River Road sections have similar high L values (Figure 13).

Because of the overlapping error polygons, in general, the variations
among the sections are not considered significant (Figtare 13). The

formation-mean plots in the transitional-arc field, vhile the standard
deviation overlaps into recycled orogenic, dissected arc, transitional
arc, and undissected arc provenances of Dickinson and others (1983) cn the

Q-F-L plot (Figure 10a).

On the Om-F-Lt diagram (Figure 10b) the data plot even closer to the

lithic pole at OtfI? + 7, F=15 + 9, Lt=68 + 10, because of the significant
amounts of chert and polycrystalline quartz in the sanples, vhich are
included in Lt on this diagram. Morse Creek has the largest amount of Lt,

vhile Field Creek has the highest percentage of F. The Burnt Mountain

Road, Elwah River, and Field Creek sections have slightly more On than the
rest. The overlapping polygons of one standard deviation suggest similar
conpositions between the sections (Figxare 14). The formation-mean plots
between the transitional arc and lithic recycled area of the recycled
orogen provenance of Dickinson and others (1983)(Figure 10b). Some

lo)c:ations extend into the undissecrted arc and transitional recycled
fields.

The On-P-K diagram (Figure 11) shows low amounts of potassium
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feldspar are present in all of the Hoko River Formation sediments (Oti^54 +

20, P=43 + 20, K=2 + 3). The Elvrah River section is the most Qiv-rich, and

the west i^ate Beach section is the most P-rich. The Field Creek section
has a high P value and the highest K value (Figure 15). The shift to the

P and K ends of the diagram for the Field Creek section may be due to the
fine-sand size of the sairples. The fine-sand size fraction may have a
greater percent feldspar than coarser sizes because feldspar tends to

cleave and form smaller particles, vhile quartz has to be abraded or

fractured and, thus, it forms slightly larger particles. A coarser
fraction that might have been more ccmparable to the rest of the samples
was not available.

The Qp-Lvm-Lsm diagram (Figure 12a) shows sartples clustering away
frcm the polycrystalline quartz (Qp) pole, abit closer to the volcanic- 

metavocanic (Lvm) pole than sedimenatary-metasedimentary (Lsm) pole at

Qp=22 + 15, Lvhf42 + 20, Lsitf36 + 14. The Elwah River section contains
the most Qp, the west Agate Beach section, the greatest amount of Lvm, and
the Burnt Mountain Road section, the most Lsm (Figure 16). The Hoko River

Formation sediments are metasedimentary-, itetavolcanic-, and volcanic-rich
sediments. The formation mean falls into the mixed magmatic arc-rifted

continental margin region of the Qp-Lvm-Lsm diagram of Suczek and
Ingersoll (1985) with a minor amount of overlap into their subduction
ccitplex region (Figijre 12a).

On the Lm-Lv-Ls diagram (Figure 12b), the data lie in the region

indicating small values for Ls; Lm=60 + 26, Lv=35 + 22, Ls=5 + 9. Field
Creek contains the highest Lm value, Morse Creek is the most Ls-rich, and
the West Twin River Road and west i^ate Beach sections have similar
amounts of Lv (Figixre 17). The data suggest that the source area was

slightly more metamorphic- than volcanic-rich and that it was depleted in
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sedimentciry lithologies. The mean falls outside of most defined cireas of
Suczek and Ingersoll (1985)(Figure 12b). A few individual sections have
standard deviations that overlap the magmatic arc region.

Discussion
An explanation for the inccnsistencies in the locaticai of the data

within the provenance fields of the ternary plots can be found by
considering the tectonic setting of the Hoko River Formation. The

northern Olyiipic Peninsula is surrounded by amalgamated terranes that
contain ccirplex mixtures of very different lithologies. The diverse

lithologies of the source area are reflected in the sediments of the Hoko
River Formation. The inteirpretations of Dickinson end Suczek (1979),

Dickinson and others (1983), and Suczek and Ingersoll (1985) are best

applied to classic tectonic settings, not the regional setting of the Hoko

River Formation.
The problem of data for a formation falling into a number of fields

has been addressed by Suczek (1987). When the formation lies in two or
more fields on the same diagram, a mixed tectonic provenance is indicated.
If the formation plots in differait provenances on different diagrams, as
in the case of the Hoko River Formaticxi, another interpretation is needed;

the sand may have been derived, at least in part, from a source area not
defined on the diagrams. One exairple of this is the deviation of fields
in the Q-F-L and Citi-F-Lt diagrams (Figiires 10a and 10b). The formation
average covers three fields and touches a foxirth (transitional, dissected,
and undissected arcs and recycled orogen) on the former diagram, v^le on

the latter diagram, the formation average lies in two regions and touches
a third (transitional and undissected arc and recycled orogen

provenances), missing the dissected circ provenance entirely.
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A second exanple is found in the Qp-Lvm-Lsm and Iin-Lv-Ls diagrains
(Figures 12a eind 12b). In the former diagram, the formation average lies

in the magmatic cure and mixed magmatic arc-subduction ccttplex regions,

vhile in the latter diagram, the average lies primarily in an undefined

zone and extends into the magmatic arc region, missing the mixed magmatic
arc and siibduction certplex region. Ternary diagrams are useful vhen
applied to classic tectonic settings, but are not helpful vhen applied to
the Hoko River Formation, vshich is siarrounded by exotic terranes.

One reason to use these ternary diagrams in spite of difficulties is

that they cure good discriminatory plots that should show major
coipositional trends within the formation. Also, data fran key units in
the region, the Aldwell, Lyre, Clallam, cind Chuckanut Formations and the
Nanaimo and Puget Groups, has been plotted on these diagrams and
ccirparisons between these units and the Hoko River Formation are

facilitated by using this method of presenting data. Cotparisons between

the Hoko River Formatiai and other formations and contemporary sedimentary
units in the region are found in the Tectonic section of this thesis.

Geographic Variability of Lithics

Lithofacies variability with location has been documented in the

underlying Aldwell Formation (Meurcott, 1984). He demonstrated that, in

the Aldwell Formation, there is a chert-rich lithofacies in the west and a
basalt-rich lithofacies in the east. Because similar trends were not
iimvediately apparent in the Hoko River Formation, two other methods were

employed.

Location versus Percentage

An alternative method of analyzing the data is to plot the average
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percent of the total grains of various lithic types by location (Figures

19 to 28). These plots are used to evaluate the geographic variabilty of

the lithofacies. Hie lithic types considered cure seme of those discussed

in the Sedimentary Petrology section and they include: basalt,
metasediraent, chert, volcanic glass, polycrystalline quartz, felsic and
intermediate plutonics, felsic and intermediate volanics, metavolcanics,
gabtoro and diabase, and aitphibole— and epidote—rich schists. Within each

section the saitples were normalized (i^jpendix 4) and a mean and standard

deviation calculated (Table 6). One standard deviation is represented by

the vertical error bars (Figures 19 to 28).
Basalt lithics cemprise 8% + 7 of the total grains (Figure 19). The

Crescent Beach section has one very basalt-rich sample. Crescent Beach-12,

that produced a large standard deviation. This sample was probably
derived frem the underlying basalt. The section average and standard
deviation are still within the average for the formation. The geographic

variability of basalt lithics is randan.
The metasedimentary lithics have an average of 22% + 12 (Figure 20).

Randan Vcuriaticai with location was found, along with sane Icurge standeurd
deviations. The Hoko River saitples have a Icurge standard deviation

because they represent two different environments of deposition. The Hoko
River saitples of lew value cure located within a channelized area of the
stratigraphic section, vhile the rest of the samples are fran isolated
sand beds above and below the channelized portion. While there is a large

range of values for the section means and standard deviations, they

overlap.
The percentages of chert lithics among the total number of grains

show a pattern of enrichment in the eastern-most sections, Morse Creek and
Elwah River (Figure 21). The Hoko River Formation, as a \ihole, contains
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TABLE 6 PERCENT OF TOTAL GRAINS OF LITHIC CATEGORIES
Location Lvm Imst Chert Lvgl Qp Lpfi Lvfi Lmv Ipg
MC 8 18 12 14 8 2 5 2 0
+ 5 13 7 19 6 2 3 2 0

ER 4 27 13 1 11 1 5 3 0
+ 4 9 4 1 5 2 4 1 0

CB 8 16 3 1 3 3 3 5 4
+ 10 11 2 1 4 1 2 2 4
WAB 20 11 0 3 2 8 2 4 1
+ 8 4 1 2 1 3 1 2 1
PC 4 30 1 1 4 7 0 1 0
+ 2 4 1 1 2 3 0 1 0

WTR 17 13 0 3 4 4 8 2 1
+ 6 6 1 1 1 2 7 1 1

BMR 4 38 3 2 7 1 2 5 0
+ 1 4 2 1 3 2 2 4 0

HR 14 18 2 3 5 5 2 5 1
+ 8 16 3 3 4 4 2 3 1

NB 5 18 6 0 6 8 3 4 0
+ 4 8 3 1 3 4 1 2 1

TOTAL 8 22 7 3 6 5 3 3 1
+ 7 12 12 8 4 4 3 2 2

An average of the percent of total grains of the major lithic types
and standard deviation frcm each section is presented. Formation averages
and standard deviations for each lithic type are shown under Total. The
abbreviations for these percentages aire the following:

Lvm basalt Lvgl volcanic glass
Qp polycrystalline quartz Ipfi felsic and inter, plutonics
Dnv metavocanics Lpg gabbro and diabase
Imst total metasediments Chert
Lvfi felsic and intermediate volcanics
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7% + 12 chert, the Elwah River section has 13% + 4, and the Morse Creek
section coiprises 12% + 7 chert. The average of the Hoko River Formation,

minus these two secticais, is 2% + 2, v^ch is significantly different frcm

the averages of the Morse Creek and Elwah River sections. A more chert- 
rich source is evident in the eastenunost source areas (Figure 21).

Volcanic glass lithics average 2% + 1, except for the Morse Creek

section, vfliich contains 14% + 19 (Figure 22). The Morse Creek section
contains a tuff bed that was kaolinized in outcrop. Sairples above the
tuff layer show an enrichment of volcanic glass, up to 49% in one saitple.
Samples Icwer and much higher in the stratigraphic section have low levels
of volcanic glass, similar to the formation average. A local volcanic

event in the source area or in the depositional basin of Morse Creek
section is inplied by the isolated increase of volcanic glass.

Randan geographic variability between the sections is found for the
following lithic types: polycrystalline quartz, felsic and intermediate

plutcaiic and volcanics, metavolcanics, gabbro and diabase, and aitphibole- 
and epidote-rich schists. Polycrystalline quartz lithics corpose 6% + 4
of the formation total (Table 6, Figure 23).

The felsic and intermediate plutcxiic fragments of granite, granodio- 
rite, quartz-diorite, and diorite ccnprise less than five percent each at
any sample location (Table 6, Figure 24). Exceptions are the granodiorite

to diorite lithics at Neah Bay, vhich average 8% + 4, and the lithics at
west Agate Beach, vhich average 8% + 2. These averages are within the
limits of the overall formation average of 5%+ 6, but may indicate slight
enrichment.
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The felsic and intermediate volcanics, rhyolite, dacite, and
andesite, corprise 3% + 3 (Table 6) (Figure 25). The large standard

deviation in the West Twin River Road section (8% + 7) results fran one
sanple with 19% felsic and intermediate volcanic lithics. Metavolcanic

lithics form 3% + 2 of the lithic population of the formation (Table 6,
Figure 26). Mafic plutcaiics, gatbro and diabase, (Figure 27) have an
overall average of 1% + 2 with Crescent Beach ccaitaining the most (4% + 4,
Table 6).

Suttinary The percentages of chert and volcanic glass lithics increase
in the eastem-^nost sections (Elwah River and Morse Creek). The rest of
the lithics, including basalt, metasediments, polycrystalline quartz,
felsic and intermediate plutonics and volcanics, metavolcanics, mafic
plutonics, and arphibole- and epidote-rich schists, shew random geographic

variability. More statistical work could be done to determine vhether the

latter groups are truly randan. Distinctive lithic signatures for each
section might be defined and cempared to each other using multi variant
analysis, an area of futiare research.

Grain-size variation was not a factor controlling the size of the

standard deviatiens. The standard deviations of the Field Creek section
(medium sand-size grains) (Table 4) are similar to those of the other

sectiOTis (coarse to very coarse sand). Saitples fran all locations are

well distributed vertically within their sections, suggesting that the
standard deviation is not controlled by stratigraphic position.
Depositional processes do appear to control the standard deviations within

sane sections. A further investigation of changes in lithic populations
in adjacent depositional environments would be helpful.

66



Multivariant Analysis
Ihe simultaneous variation of two or more clast populations was

investigated by plotting the percentage of certain lithic ccitponents
against location on the same diagrams (Figure 29 to 31). These diagrams

document the increase or decrease of two or three lithic ccnponents frcm
one secticn to cinother. Error bars of one standard deviation are emitted

to keep the diagrams simple. The data are the same as those used in the
previous section (Table 6).

The metamorphic lithics were subdivided into three subpopulations by
petrographic chcuracteristics (see Sedimentary Petrology for detailed
descriptiens). The group® are metavolcanics (Mvol = Imv), graphitic
phyllite and graphitic schist (Phyll = Lmsp), and other metasediments

(Msedl = Lms) (Figure 29). The metavolcanics include schists with mafic

assariblages and lithics with relict volcanic textures. The graphitic
schists and graphitic phyllites form a distinctive lithology, recognized
by the presence of graphite. The third subgroup, other metasediments,
contains metamorphic lithics that are not included elsewhere and are

comprised mainly of argillite, mylcnitic lithics, and clay-rich. Clay- 

rich cherts are dramatically high in the Elwah River and Morse Creek
Sections. These will be referred to as nonsp>ecific metasediments.

Graphitic phyllite and schist and nonspecific metasediment show
similar variance frcm the Burnt Mountain Road to the West Agate Beach
sections (3 to 6). At the Hoko River (2), Crescent Beach (7), and Elwah

River (8) sections, the inflection points for these lithic types are
dissimilar. At the Neah Bay (1) and Morse Creek (9) sections the
inflection points are ambiguous because they are end points. The
inflection points of the nonspecific metasediments at Crescent Beach (7),
Elwah River (8), and Morse Creek (9) are similar to the inflection points
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of these sites for Chert and polycrystalline quartz (Qp)(Fig\are 31). An

increase in the number of clay-rich chert grains was noticed at the Elwah
River (8) and Morse Creek (9) sections. The presence of much clay-rich
chert at these locations is the probable cause of the infection points of

nonspecific metasediments resertoling those of the Chert and Qp data rather

than the graphitic phyllite and schist data. The increase in the

nonspecific metasediments at these sections is probably a real effect,
rather than an artifact of this graphing technique.

Metavolcanic data is only weakly covariant with graphitic phyllite
and schist data at the Neah Bay (1), Hoko River (2), Crescent Beach (7),

Elwah River (8), and Morse Creek (9) sections. There is not enough data

to make an accvirate interpretation. The inflection points of metavolcanic
data not follow those of the nonspjecific metasedimenta data, suggesting
that different sources were involved.

Volcanic glass and basalt were plotted against one another (Figure

30). The two lithic grain types show similar inflection points at all
locations except for the Crescent Beach (7) and Elwah River (8) sites.

The amount of basalt found at Crescent Beach is greater, probably due to
the erosion of an underlying basalt at Crescent Beach. The anotialous
concentraticais of volcanic glass at the Morse Creek sections is apparent

in the increase in the percentage of grains ccxnposed of volccinic glass.
Chert and polycrystalline queirtz Vcury similarly (Figure 31) in all

sections given the precision of the data. This relationship suggests that
chert and polycrystalline quartz were derived frcm the same source areas.
The Elwah River and Ntorse Creek sections reflect an increase in chert in
the source area. Polycrystalline quartz also increases at these sites;

however, not as distinctly.
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Sunmary The metavolcanic lithics show only a weak similarity to the
variation erfiibited by the other metamorphic lithic types. The source for
these lithics may not be the same as for the other metamorphic lithic
types. Variation between the graphitic phyllites and schists and the

other metasedimentary lithics is similar suggesting a source area
containing both lithic group®. The Elwah River and Morse Creek sections

cire exceptions, invhich an increase in clay-rich cherts in the source area
may be the ccntrolling factor. Alternately, two separate depx>sitional
systems may have been respcnisible for this variation in lithic

ccirposition, one transporting and depositing sediment to the Morse Creek

and Elwah River secticxi and the other depositing sediment everyvihere else.
Volcanic glass and basalt were probably derived fron the same source

area, except at the Morse Creek section, vhere there was a local influx of
volcanic glass. The data suggests that chert and polycrystalline quartz

frcm the Neah Bay to Crescent Beach sections were derived fron one source,

different fron the source for the Elwah River and Morse Creek sections.
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SOUBCE AREAS FOR THE HOCO RIVER FORMATION

A detailed study of the lithic types and the surrounding regions was

undertaken to ascertain Vvhat the source areas for the Hoko River Formation

were. Five possible source areas for the sediments cure the core terranes
of the Olynpic Peninsula, the Coast Plutonic Carpi ex, the San Juan

Islands, the North Cascades and terranes of southern and central Vancouver
Island (Figure 32). The lithic types camon in the Hoko River Formation

have been thoroughly described in the section on Sedimentary Petrology and

are listed in Table 7. This is followed by a list of the lithologies
found in each possible source area (Table 8). Each area is examined for

its merits eis a source.

The core terranes of the Olynpic Peninsula
The Olynpic Core and Ozette terranes of Silberling and Jones (1984)

ccitprise the major units found in the core rocks of the Olynpic Peninsula
(Figure 33). The ages of the rocks of the Olynpic Core and Ozette

terranes vary from Eocene to Oligocene with small Jurassic and Cretaceous
inliers (Table 8). The Olynpic Core terrane has been subdivided by Tabor

and Cady (1978) into a number of lithic assemblages (Figure 33). The

cotpositions include metasedimentary rocks (argillite, slate, semi­
schists, and minor meta-conglcmerate), meta-basalt, meta-diorite, melange
and associated conglonerate (Table 9). The Olynpic Core and Ozette

terranes are not probable candidates for source areas to the Hoko River

Formation because of the lack of significant quantities of basalt, chert,

polycrystalline quartz, cind felsic and intermediate plutonics and
volcanics.
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Figure 32. Generalized map of the areas surrounding the Olynpic Peninsula
that could have provided sediment to the Hoko River Formation.
I . • IOlynpic Peninsula
^Coast Plutonic Complex

San Juan Islands
North Cascades

Northwest Cascades

fault
thrust fault
SJF San Juan fault
LRF Leech River fault
SMF Survey Mountain fault

Southern and central Vancouver Island
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Icible 7 Lithic types and mineralogies in the Hoko River Formation. The
formation means for lithic types were calculated from raw point count
data. See i^jpendix 3 - Lithic count; Raw Data for these data.

The data for the formation means for \/^le rock and
monocrystalline ccnpcnents are found in i^jpendix 2 - Whole rock data:
percentages. These data are percents of total points counted for each
sample averaged.

Average Carposition of Lithic Types
Metasediment, phyllite/schist 24 %
Basalt 14 %
Chert 8 %
Glass 4 %
Polycrystalline queurtz 9 %
Felsic and intermediate plutonics 9 %
Felsic and intermediate volcanics 5 %
Metavolcanics 14 %
Gattoroic plutmics and diabase 1 %
Airphibole and epidote-rich schists 1 %
Sedimentary lithics 4 %
Fossils 0.5 %

Average Whole Rock cind Monocrystalline Ccmponents

Monocrystalline Quartz 12 % + 6
Plagioclase 10 % + 6
Potassium feldspar 0.5 % + 1
Total lithics 49 % + 13
Chlorite 2 % + 3
Epidote and amphibole 2 % + 3
Accessory minerals 3 % + 3
Calcite cement 14 % + 13
Matrix 5 % + 8
Others 1 % + 2

Characteristics of Monocrystalline Ccmponents
Little potassium feldspar = 0.5 %+l of the bulk composition
More quartz than plagioclase: quairtzf= 12 %j^, plagioclase= 10 %jj6
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TABLE 8 SOURCE AREA VERSUS LITHOLOGY
The lithic types of the Hoko River Formation are listed on the

vertical axis in decreasing order of abundance with the five source areas
on the horizontal axis. The relative amounts of the lithic types present
in the area now are noted in the appropriate boxes. The order of
abundance is 0, TR (trace), FEW, SOME, LOTS, frctn least to most. The
areas and significance will be discussed in the text.

LITHOLOGY SOURCE AREAS

OLYMPIC COAST SAN JUAN NORTH SOUTHERN
CORE PLUTOSIIC ISLANDS WEST VANCOUVER

COMPLEX CASCADES ISLAND

D META­ LOTS FEW LOTS LOTS LOTS
E SEDIMENT
C
R BASALT FEW TR FEW soyiE LOTS
E
A
S CHERT TR TR LOTS SOVE SO®
I
N
G POLYCRY.

QUARTZ
TR TR SOME LOTS LOTS

A
B FELSIC & TR LOTS FEW TR LOTS
U INTEI^IEDIATE CRYS.OORE
N PLUTONICS
A FELSIC St TR TR FEW SOME SO®
N INTERMEDIATE
C VOLCANICS
E

METAVOLCANICS TR FEW LOTS LOTS LOTS

AMPHIBOLE
St EPIDCTE
SCHISTS

0 TR TR LOTS SOME

GABBRDIC
PLUTOSnCS St
DIABASE

TR FEW FEW FEW LOTS

VOLCANIC
GLASS

TR SOME TR SOME SOME
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Figure 33. The three major terrenes of the Olympic Peninsula and
southem-^nost Vancouver Island (Silberling and Jones, 1984).

Olynpic Core terrane
Ozette terrane
Crescent terrane

A Area mapped by Snavely and others (1986)
B Area mapped by Tabor and Cady (1978)
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TABLE 9 LITHQLCX5IC DIVISIOB OF THE OLYMPIC PENINSULA
Table 9 The terrane divisions of Silberling and Jones (1984) for the
Olympic Peninsula with the subdivisions of Tabor and Cady (1978) for the
Olynpic Core terrane and the divisions of Snavely and others (1986) for
the Ozette terrane. This surmarizes the major lithologies and ages of
units within the Olympic Core and Ozette terranes.

I. Olympic Core terrane (Silberling and Jones, 1984; subdivisions by
Tabor and Cady, 1978)

Needles-Gray Vfolf lithic assemblage lower and middle Eocene
Sandstone (with detrital muscovite), siltstone, slate, schist
and semischist, basalt.

Grand Valley lithic assemblage lower Eocene
Sandstcxie, siltstone, semischist, basalt, and red limestone.

Elwah lithic assemblage lower to middle Eocene
Sandstone, slate, phyllite, semiischist, basalt.

Western Olympic lithic assemblage middle Eccene to Oligocene
Dotdnantly thick-bedded sandstone with minor pelitic rocks
(potassium feldspar cxrnmonly cxmprises 3 to 10% of sandstcaies).

Hoh lithic assemblage upper Oligocene to lower
and miiddle Miocene

Siltstone, sandstone, cxDnglcmerate and basalt with breccia,
flows, pillows and tuff.

Undifferentiated cx>re rcx:ks upper Eocene and Oligocene
Sandstone, slate, argillite, basalt.

II. Ozette terrane (Silberling and Jones, 1984; subdivisions by Snavely
and others, 1986)

Terrane south of the Crescent Thrust middle to upper Eccene
Fault and north of the Calawah Fault

Lithic and arkosic sandstone, siltstone, conglomerate, mudflow,
basalt pillows, lava and breccia, and tuff

Sooes terrane
Cretaceous and older

Melange, argillite, sandstone, conglomerate, mudflow breccia,
gabbro, and diorite.

lower to upper Eocene
Lithic sandstone, siltstone, conglomerate, mudflows, breccia,
pillow basalt, gabbro or diabase sills, dacite sills, tuff
breccia.

Ozette terrane lower Eocene to Oligocene
Sandstone, siltstone, conglomerate, mudflow conglomerate, and
melange.
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Discussion
The Olyitpic Core terrene is ccrrposed of low- to medium-grade

metasediments with minor basalts and associated basaltic sediments. Ihe
metasediments range fran very low grade (zeolite facies) to muscovite +
(quartz) + (albite) semischist, sericite + (chlorite) + (plagioclase) +
(quartz) slate, graphitic (biotite) + (chlorite) + (sericite) + (albite) +

(quartz) phyllite (Tabor, 1972). The graphitic phyllites are similcir to

those found in the Hoko River Formation. While muscovite, chlorite and

biotite are not abundant in Hoko River Formaticxi lithics, albite +
sericite + graphite + quartz assemblages are, indicating low- to medium- 
metamorphic grade in the source eirea. Therefore, the metasediments of the

Olympic Core could have been a source of sediment to the Hoko River
Formatico. However, it is the opinion of the author that much of Olympic

Core was not a subaerial ly exposed highland during the late Eocene. The
ages of most rocks in the Olympic Core indicate deposition ccncurrent with
the Hoko River Formation (Table 9). See the Chapter on Tectonics for

further discussion of this point.
The chlorite-rich metavolcanics of the Hoko River Formation could

have been derived frcm the Olympic Core terrane. The polycrystalline
quartz of the Hoko River Formation may have been derived frcm the quartz- 
rich layers of the schists or the quartz veins that cut the metasediments

of the Olynpic Core terrane.
Basalts in the Olympic Core and Ozette terranes are not widespread

and generally contain a groundmass extensively altered to chlorite, with
quartz and epidote veins, similcir to the basaltic clasts in the Hoko River
Formation. These basalts are widely scattered and do not represent a
large enough source to supply the quantity of basalt lithics found in the
Hoko River Formation. Sphene + calcite + (chlorite) are present in the
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greenstones of the Olynpic Core terrane (Tabor and Cady, 1978) and are not

found in the basalts of the Hoko River Formation.
Chert, polycrystalline quartz, granite, diorite, rhyolites,

andesites, and dacites are found in small amounts in the conglcmerates of

the Olympic Core and Ozette terranes (Table 9). Because these lithologies

carprise such a small proportion of the Olynpic core, it is unlikely they
are the source of these lithic types in the Hoko River Formation.
Actinolitic amphibolites, a small portion of the Hoko River Formation
lithics, are not found in the Olympic Core and Ozette terranes.

Conclusions

Ihe metavolcanics, metasediments and polycrystalline quartz of the
Hoko River Formation could have been shed frcm the Olympic Core and Ozette
terranes. However, five lithic types cannon in the Hoko River Formation
ccrprise only a minor portion of the Olynpic Core and Ozette terranes;

they are basalt, chert, felsic and intermediate volcanics and plutonics,

and amphibolites. Thus, Olynpic Core and Ozette terranes are not
considered source areas for the Hoko River Formation.

Ihe Coast Plutonic Complex
The Coast Plutonic Caiplex (Figure 32) is ccrposed primarily of t^per

Cretaceous and early Tertiary plutons, gneisses, and migmatites with an

average ccnposition of quartz diorite (Roddick, 1983) (Table 10). Roof

pendants of meta-basalt to meta-andesite and metasedimentary units with
greenschist- to amphibolite- grade metamorphism caiprise a small but
intergral part of the southern Coast Plutcnic Ccitplex (Roddick, 1983). The

flanks of the Coast Plutonic Ccirplex are caiposed of meta-volcanic and

meta-sedimentary rocks of late Paleozoic to Mesozoic age (Table 10). They
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TABLE 10 AGES AND LITHOLOGIES OF THE SOUTHERN COAST PLUTONIC COMPLEX
Ccrrpositions and ages of units found in the Coast Plutonic ccmplex and its
roof pendants and adjacent terranes intruded by the Coast Plutonic
Cotplex. Data cure fron Roddick (1983) for the Coast Plutonic Ccmplex
proper and fron Roddick and others (1979) for the other units.

Chilliwack Batholith granodiorite upper Tertiary

Coast Plutonic Ccmplex Upper Cretaceous and lower Terticuy
quartz diorite, tonalite, diorite, granodiorite, quartz monzonite,
and gattoro, granite, monzonite, and quartz monzonite.

Upper Cretaceous
Scuzzy and Spuzzum Plutons granodiorite

Lighting Creek and Black Creek Plutcxis queurtz diorite

Ganibier Group
Lower Cretaceous

tuff, breccia, argillite

Broken Backhill and Penisula Pormaticxi tuff, agglomerate, sandstone
Helm Formation argillite, queirtzite
Elipetrum, Cheakaraus Formations greywacke, argillite, volcanics

Fire Lake Group pyroclastic greenstone, slate, greywacke,
conglcmerate, limestone

Middle Jurassic
Harrison Lake Volcanics andesitic, rhyolitic flows
Bullhook Creek, mysterious Creek, Echo Island Units

tuff, sandstone, pelite, conglcmerate, sandstone, shale
Cultus Formation Triassic and Jurassic

pelite, sandstone, ccnglcmerate

Cadwallader Group
Noel Formation
Pioneer Formation
Hurly Formation

Upper Triassic
argillite, chert, greenstone, conglcmerate
greenstone, andesite, breccia, tuff, flows
argillite, limestone, tuff, conglcmerate

Bowen Island Group greenstone Triassic

Twin Island Group
Paleozoic

granulite, anphibolite, gneiss, schist

Chilliwack Group graywacke, pelite, andesite, basalt

Custer gneiss Precairibrian

Ikmamed units unknown
gabbro, diorite, amphibolite grade migmatites, grano- and quartz-diorites
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are similar to the lithologies found in the northwest Cascade Mountains

(Fiugre 32) of Washington and in some cases are the northern extensions of

these units.

Discussion and Conclusion

Sediments derived fran the southern Coast Plutonic Cotrplex would

consist mostly of quartz, plagioclase, potassium feldspar, minor amphibole

and mica, and lithic fragments of granodiorite, quartz diorite and the
associated metasedimentary and metavolcanic units. The Hoko River
Formation does not contain this assemblage (Table 7). The Coast Plutonic

Corplex contains about 10% potassium feldspar in general, while the Hoko

River Formation has only 0.5 % +1. While quartz diorite and granodiorite
clasts are found in the Hoko River Formation, sources other than the Coast
Plutonic Ccxtplex are closer, and therefore are more likely sources of this

sediment. Also, the lack of basalt and the minor amount of chert in the
Coast Plutonic Catplex is significant. Because of these differences, it

is probable that the Coast Plutonic Coitplex and its associated units were

not the primary source of sediment for the Hoko River Formation.

The San Juan Islands
The San Juan Islands contain a sequence of Mesozoic thrusts,

juxtaposing terranes, that have been divided into the internal units,

external units, and an overlap assemblage (Brandon and others, 1988) (Table
11). The internal units are those that were directly involved in the
thrusting event and have retained a high pressure-low temperature
metamorphic signature of lawsonite-prehnite-aragonite. The external units

were not involved in this thrusting event and do not contain the

distinctive metamorphic assanblages. The overlap assemblage overlies and
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TABLE 11 MAJOR ROCK UNITS WITHIN THE SAN JUAN ISLANDS TERRANES
The divisions, names, carpositicos, and ages within the thrust

sheets, the external units and overlap assemblages of the San Juan
Islands. The data eure fran Brandon and others (1988) except vhere
noted.

NAME OF UNIT AGE
External units of the San Juan Islands

Haro Terrane
Haro Fonration Upper Triassic

Siltstone, volcanic-lithic sandstone, ccxiglctnerate, and breecia.

Spieden Group Uf^r Jurassic- Lower Cretaceous
Volcaniclastic sandstone, conglcmerate, and mudstone.

Nanaimo Group Upper Cretaceous
Lithic-cirenite and arkosic-eirenite, conglcmerate, and shale.
Pacht (1984).

Pcileozoic and lower Mesozoic rocks of the internal units

Turtleback Terreine
Turtleback Ccirplex Devonian and older

Meta-plutonic gabbroic to dioritic to trondjemitic plutons.
Meta, ass.: greenschist of lower aitpihibolite and lawsonite and
prehnite bearing overprints.

Eastsound Group Devon., Penn, and Lower Permian
Andesitic to dacitic (no potassium feldspar) pyroclastic rocks,
flows, and pillows with interbedded limestones (aragonitic) and
sediments. Meta, ass.: lawsonite and prehnite beeiring
assemblages.

Deadman Bay Terreine
Deadman Bay Volcanics Lower Permian to Triassic

Meta-pillows, -breccias of mafic and intermediate compositions,
and minor limestones (aragonitic marble) and chert. Meta. ass.
in basalts: lawsonite-prehnite-chlorite-(epidote)-(punpellyite).

Qrcas Chert Triassic to Lower Jurassic
Deformed chert and basaltic volcanic rocks. Meta. ass. in
basalts; lawsonite-prehnite-chlorite- (epidote) - (purrpellyite).

Garrison Terrane
Garriscxi Schist Permian to Lower Triassic

Mafic schist and amphibolite. Meta, ass.: albite-epidote-
(chlorite)-(actinolite) schist and albite-epidote amphibolite
(barrositic).
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Upper Mesozoic rocks of the internal units
Constitution En. Jurassic to Lower Cretaceous

Massive volcaniclastic sandstone, interbedded itoidstone, and
ndnor conglcmerate, and pebbly mudstone, pillow basalt, tuff,
ribbon chert, Meta, ass.: prehnite-lawsonite-aragonite.

Lopez Ccnplex Jurassic to mid-Cretaceous
Sandstone, pebbly mudstone, conglomerate, chert, basaltic
pillows and breccias. Meta, ass.: lawsonite-aragonite in the
sandstones; aragonite-pumpellyite-chlorite in the gabbro.

Decateur Terrane
Fidalgo ccmplex Middle to Upper Jurassic

Dunite, pyroxenite, layers of gabbro, and mafic to intermediate
volcanic flows, pillows and tuff, and quartzdiorite, diorite and
quartz albitite dikes (no potassium feldspar), and aragonitic
limestone. Meta, ass.: acitinolitic amphibolites.

Lunmi Formation Upper Jurassic to Lower Cretaceous
Lithic sandstone miKSstone, conglcmerate (containing chert and
volcanic clasts). Meta, ass.: calcite-prehnite-lawsonite-
(puitpellyite).

Overlap Assariblage
Chuckanut Formation lower to upper Eocene

Fluvial deposits of atrkosic sandstone, conglcmerate, shale, and
coal Johnson (1982).
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postdates the thrust sheets. Overall, the San Juan Islands are a meta- 
volcanic, meta-sedimentary, and meta-plutonic carposite of late Paleozoic
to Mesozoic terranes overlain by Tertiary sediments (Table 11).

Discussion
The rocks of the San Juan Islands (Table 8) and the lithic types in

the Hoko River Formaticai differ in a number of ways. The internal units
have undergone high-pressure metamorphism producing lawsonite-, prehnite-,
and aragonite-bearing assemblages, especially within the epiclastic,

volcaniclastic, pyroclastic, and volcanic units (Brandon and others,

1988). Lawsonite and aragonite are not found in any of the Hoko River

FormatiCTi lithics, including the metasediment, basalt, felsic and
intermediate volcanics, or metavolcanic categories. Prehnite has been
recognized in isolated (2) metavolcanic lithics of the Hoko River

Formaticn. It is probable, that if the Hoko River Formation sediments had
been derived frcm the San Juan Islands, lawsonite-prehnite-(aragonite)

vsould have been recognized.
While many metsedimentary units are present in the San Juan Islands

(Ihble 11), the graphite-quartz-(inuscovite-sericite)-(chlorite)-(biotite)

schists and phyHites of the Hoko River Formation do not occur there,
making the San Juan Islands an unlikely source for these metasediments.
The amphibolites of the Hoko River Formation are actinolitic, dissimilar
to the barrositic amphibolites in the Garrison Schist, but similar to the
amphibolites of the Fidalgo terrane (Table 11).

Because the quartz-rich lithologies of the San Jucin Islands do not

contain high-pressure assenblages, it is possible that similar lithologies
found in the Ifoko River Formation were derived from the San Juan Islands.
There is a slight increase in the amount of chert in the Hoko River
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Formation's most eastern exposures, v^ich nught be esq^lained by transport

of San Juan Islands chert into the Hoko River Formation depositional

basin. Because other sources for these lithologies are present on
southern Vancouver Island and the northwest Cascades, the presence of
quartz-rich lithologies alone is inconclusive.

Conclusion
In sxnmary, the metasediments, basalts, and metavolcanics of the Hoko

River Formation were probably not derived frcm the San Juan Islands based
on lack of seme high-pressure minerals in such lithics in the Hoko River
Formation. Looking at all the lithologies present in the Hoko River
Formation (Table 7) and ccirparing them to the lithologies found in the San
Juan Islands (Tables 8 cind 11) shows that the total assemblage in the Hoko

River Formation is unlikely to have ceme frcm the San Juan Islands. The
terranes of the San Juan Islands were not the sole or primary source of
sediment for the Hoko River Formation.
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The Northwest and North-Central Cascade Mountains
The rock units in the northwest and north-central Cascade ranges

contain probable source material for sediment now the Hoko River

Formation. However, there are enough differences in ccaiposition so that
the northern Cascade ranges are not considered the primary source of
sediment. The pre-Tertiary rocks of the Northwest Cascades are a group of

metasedimentary and metavolcanic rocks of oceanic affinity and are

intruded by subordinate plutons, dikes and sills of felsic to mafic

catpositions and wide-ranging ages. These have been metamorphosed to

blue-schist facies and structurally complicated (Misch 1966, Brown, 1986).
The result is an extensive area of great catpositional and structural
variation.

Discussion

Metasediments There are many metasedimentary units similar to the
graphitic schists and phyllites of the Hoko River Formation (Table 12).
The Darrington Phyllite and the phyllitic rocks of Samish Island resemble

the metasediments in the Hoko River Formation in ccanposition. The

portions of these units that are not extensively deformed are possible

sources of metasediment to the Hoko River Formation. The Chilliwack and
Nooksack Groups, the Skagit Metamorphic Suite, and the Cultus Formation
are catpositionally very different from the graphitic phyllites and
schists of the Hoko River Formation and are not probable sources of this

sediment.

Basalt Low grade or unmetamorphosed basalts older than the Hoko
River Formation are a subordinate part of the northwest and north-central

Cascades. A minor portion of the Chilliwack volcanics coiprises
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Table 12 Ages and CctrixDsitions of liiits Gcirprising the North Cascades
Compilation of the major lithologic units, their ages and ccitpositicais
ccitprising the Northwest Cascades mostly east of the Straight Creek fault,
taken Icurgely fran Brown (1986), Brcwn and others (1986), and Brown
(1987). The ages are protolith ages in all cases except vhen the age is
followed by a lower case "m" vhich denotes a metaitorphic age (Brown and
other, 1986). Also, all metaitorphic assemblages have the additional
ccrponents qucirtz-chlorite-albite.
Formations/Units/Groups Age

Greinitic rocks of the northwest Cascade Mts eind the Crystalline Core
(north central Cascades) Tertiary
Granodiorite and quartz diorite.

Chuckanut Rn. and other sedimentary units. Tertiary
Sandstone, shale, coal, and conglonerate.

Skagit Metamrphic Suite Cretaceous?Hn
Phyllite, schist, migmatitic para-gneisses and tonalitic orthogneiss
Meta, ass.: muscovite-chlorite-albite-epidote-calcite-graphite-rare
actinolite to biotite to gamet-homblende, also staurolite-kyanite.
(Brown and others, 1981). Chlorite-albite-actinolite-biotite- 
magnetite (Cary, personal cannunication, 1988).

Shuksan Metaitorphic Suite
Barrington Phyllite Cretaceous? m/ Jurassic

Quartzose-graphitic phyyllite and minor interbedded schists.
Meta, ass.; quartz-chlorite^muscovite-graphite-sphene-albite,
sulfides and paragcaiite (Haugerud, 1980; Haugerud and others,
1981).

Shuksan Greenschist same as above
Greenschist grade metabasalt and blueschist. Meta, ass.:
calcite-punpellyite-epidote-actinolite-lawsonite, also crossite- 
barroisite-homblende-gamet-paragonite-albite (Brown and
others, 1981).

Barrosite schist Jurassic^n
Blueschist

Baker Lake Blueschist Cretaceous-m
Meta-basaltic blue- & green-schist. Meta, ass.; lawsonite- 
crossite (Brown and others, 1981).

Nboksack Group Jurassic/ Cretaceous
Volcanic sandstone, siltstone, and argillite. Meta, ass.: prehnite- 
pumpellyite no lawscaiite, aragonite or anphibole, also lawsonite- 
aragonite no actinolite, punpellyite (Brown and others, 1981), also
punpellyite-(epidote)-(prehnite) and calcite-(actinolite)-(hematite)
(Sondergaard, 1979).

Wells Creek Volcanics Jurassic
Andesite, dacite, and basalt slightly metamorphosed.
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Porma-tions/Units/Groups Age
Elbow Lake Formation upper Paleozoic-Cretaceous

Meta-ribbon chert, basalt, volcanic sandstone.

Cultus Formation
Sandstone Triassic-lower Jurassic
Volcanic sandstone and siltstone. Meta, ass.: lawsonite-aragonite- 
pumpellyite-Fe-oxide. (Brown and others, 1981).

Keratophyre same as above
Vedder Carplex upper PaleozoicHn

Arphibolite, blueschist, muscovite schist. Meta, ass.: prehnite-
pumpellyite, also epidote-actinolite-Fe-oxide, also crossite- 
barrosite-homblende-geimet-epidote-albite-inuscovite-paragonite- 
chlorite (Brown eind others, 1981).

Deer Peak Metavolcanics upper Paleozoic
Meta-andesite to dacite pyroclastic deposits. Meta, ass.: calcite/
aragcaiite-pumpellyite-Ca-aiTpihibole, alsopunpellyite-epidote- Ca- 
anphibole, also actinolite-albite-quartz with 1) chlorite- 
pumpellyite-epidote-actinolite 2) pumpellyite-calcite 3) epidote- 
calcite, and stilpnonelane, vhite mica, sphene, and opaques (Reller,
1986).

Chilliwack Group
Sediments mid to upper Paleozoic
Slightly metamorphosed volcanic sandstone, siltstone, shale, minor
limestone and chert. Meta, ass: lawsonite-aragonite-punp>ellyite
(Brcwn and others, 1981) and chlorite-(lawsonite)-(purTpellyite)-
(epidote) (Blackwell, 1983; Shiith, 1986).

Volcanics same as above
Slightly metamorphosed andesitic and basaltic pyroclastic rocks.
Meta, ass.: lawsonite-aragonite-punpellyite (Brown and others, 1981,
Blackwell, 1983; Christenson, 1981; anith, 1986).

Yellow Aster Conplex upper Precambrian to lower Paleozoic
Amphibolites, meta-diorites. Meta, ass.: epidote-actinolite-Fe-
oxide, also prehite-pumpellyite, also diopsidic clinqpyroxene- 
gamet-plagioclase (albite-sericite)-epidote-sphene-Fe-oxide (Brown
and others, 1981).

Phyllites of Samish Island pre-Tertiary
Greenstone, slate and phyllite. Meta, ass.: punpellyite-actinolite,
also aragonite-lawsonite, also epidote-actinolite. (Brown and others
1981).

Ultramafics Ihknown
Twin Sisters Dunite: olivine, chrcndte.
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essentially unmetanorphosed basalt (Zeigler, 1984). The Wells Creek

Volcanics (contains minor basalt that could have been source material for

the Hoko River Formation. Both the Chilliwack Volcanics and the Wells
Creek Formation are possible sources of basalt sediment to the Hoko River
Formatica:!.

Felsic and Intermediate Volcanics Three probable sources of f el sic

and intermediate volcanic lithics are the Wells Creek Volcanics, the
volcanic section of the Chilliwack Group, and the Deer Peak metavolcanics
(Table 12).. However, based on inccnpatible mineralogy and degree of

defonmtion, the Chilliwack Group and the Deer Peak metavolcanics are not

probable sources of sediment. The Wells Creek volcanic series is a more

likely source because it is corpositional ly and textural ly similar to the

Hoko River Formation's felsic and intermediate volcanic lithics.

Metavolcanics The metavolcanic fragments of the Hoko River Formaticxi
are generally mafic. The units in the North Cascades containing

significant amounts of greenstone are the Shuksan greenschist, the mafic

volcanics of the Chilliwack Group, the Skagit Metamorphic Suite, the Elbow
Lake Formation and the Baker Lake Blueschist (Table 12). True blueschist,
those rocks ccntaining mesiibers of the glaucqphane-riebeckite series and
lawsonite, are not found in the Hoko River Formation metavolcanics. All

of the above units contain high pressure-low teirperature assemblages

except the Skagit Metamorphic Suite, suggesting that these were not

sources of sediment for the Hoko River Formation. Seme of the
metavolcanics may have been derived frem the Skagit Metamorphic Suite.
However, because the Skagit Metamorphic Suite lies inland of the other

metavolcanic units, if it was a source area, one would expect to find

fragments of the other metavolcanic units as well. On the basis of
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generally inconpatible mineralogy, it is unlikely that the metavolcanic

sediments in the Hoko River Formation were derived fron the northwest

Cascades.

Amphibolites and Epidote-rich Schists
The aiiphibolites of the Hoko River Formation are actinolitic in

nature. Actinolite-bearing assemblages occur in the Shuksan greenschist,

Vedder Ccstplex, Deer Peak metavolcanics and Yellow Aster Coitplex (Table
12). All of these units, except the Deer Peak metavolcanics, also contain
blueschist-facies assonblages that are not found in the Hoko River

Formation, v^ich suggests these units were not source rocks for the Hoko

River Foimiation. Epidote usually replaces the pre-existing minerals

forming the epidote-rich schists. The above units, with the addition of
the Chilliwack Group, also contain epidote-rich schists. However,
inconpatible mineralogies suggest these units are not source rocks for the
Hoko River Formation with the possible exception of the Deer Peak

Metavolcanics.

Conclusions
Blueschist facies assemblages are found in the metavolcanics of the

northwest and north-central Cascades. These distinct lithologies are
absent frcxn the lithic fragments of the Hoko River Formation, v^ich

provides a strong case against derivation of the Hoko River Formation from

this area. Other lithologies found in the Hoko River Formation are
represented in the Cascade ranges. They are basalt, graphitic phyllites
and schists, polycrystalline quartz, felsic and intermediate plutonics and
volcanics, and amphibole and epidote-rich schists. These lithologies are

found on southern Vancouver Island; they are not restricted to the Cascade
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ranges. The source of these lithologies is inconclusive. The lack of

blueschist mineralogies strongly suggests that the northwest and north- 
central Cascade ranges were not a primary source of sediment.
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Southern and Central Vancouver Island

Southern and central Vancouver Island is the most probable source
area for the Hoko River Formation sediment. An exact match betv«en the
Hoko River Formation sediment and a source area has not been found, but

the rock units and formations of southern and central Vancouver Island are

similar in caiposition to Hoko River grains; all of the main lithic types
found in the Hoko River Formation are found there. Vancouver Island is
ccitposed of a number of Paleozoic to Mesozoic terranes of oceanic basalts
and sediments intruded by Jurassic to Eocene plutons and overlain by a

Jurassic and Cretaceous sedimentary sequence. The major rock units and
formations of southern and central Vancouver Island, their ages and

ccnpositions are listed in Table 13. Table 14 summarizes the correlations
between the Hoko River Formation sediment and the rock units of southern

Vancouver Island.

Discussion

Metasediments Graphitic phyllite and schist comprise a distinctive
metasedimentary lithic type in the Hoko River Formation and in the
metasedimientary portion of the Leech River Ccnplex (Table 14). Quartz-
{graphite)-(chlorite)-(biotite)-(muscovite/sericite)-{plagioclase)-

(epidote) schists ccnprise the assemblages found in the Hoko River

Formation (see Sedimentary Petrology for the further descriptions).

Graphitic phyHites and schists ccnpose p>art of the metasediraentary unit
of the Leech River Ccnplex (Ibble 13). All of the metamorphic lithic

types found in the Bfoko River Formation can be accounted for in the Leech

River Ccnplex in low^rade portions the metasedimentary portions.
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Tfeible 13 MAJOR ROCK UNITS OF SOUTHERN AND CENTRAL VANCOUVER ISLAND
A suTTiTvation of the lithologies, compositions and ages of rock units on
southern and central Vancouver Island. The numbers in parentheses refer
to the following references:
1. Muller (1977)
2. Roddick and others (1979)
3. Muller and others (1981)
4. Fairchild and Cowan (1982)
5. Muller (1982)
6. Muller (1983)

7. Brandon (1984)
8. Pacht (1984)
9. Brandon and Massey (1985)
10. Russitiore and Cowan (1985)
11. Massey (1986)
12. Bream (1987)

Name Age
Carmanah Group

Sooke Formation lower Oligocene
Conglomerate, sandstcxie and shale of near shore origin (12,5,3).

Ifesquiat Formaticn upper Eocene
Siltstone, shale, sandstone and caiglanerate (5,3).

Escalante Formation middle to upper Eocene
Sandstone and conglcmerate (5,3).

Metchosin Volcanics (11,5) lower to middle Eocene
Basalt flows, pillows, breccias, sheeted dikes, diabase sills &
high-level gabbros, amygdules of chlorite, qucirtz, and epidote
(1). Meta ass: low^ and medium grade to epidote amphibolite (5).

Meta-Metchosin (5) lower Eocene ?
Volcanic breccia and tuff breccia, basaltic clasts in a
recrystallized subschistose chloritic matrix, (9,5) amphibolitic
or chloritic metavolcanics (6).

Catface Intrusion Eocene
Granite, granodiorite, tonalite, hornblende feldspar porphyry
(3), also qucirtz diorite plutois, dikes, and sills (6).

Sooke Gabbro Eocene and older ?
Coarse-grained gattoro with ophitic pyroxene, plagioclase,
olivine; tonalite & trondjemite (9,1), also minor quartz
diorite, byotownite anorthisite, basalt and diabase dikes (5).

Nanaimo Group Upper Cretaceous
Marine and nonmarine siltstone, sandstone, conglcmerate and
sedimentary breccia derived from Vancouver Island, Northwest
Cascades, San Juan Islands, and the Coast Plutonic Complex (8).

Continued
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l^le 13 Continued

Name Age
Leech River Carplex Upper Jurassic-Cretaceous

Low pressxare greenschist-anphibolite grade meta-pelite, sandstone,
minor volcanics, chert, and conglonerate (11)
Metasedimentary unit

Thinly bedded graywacke and argillite, phyllitic slate,
slate, quartz-biotite schist; meta-graywacke and meta-eirkose
(5). Meta, ass.: graphitic quartz-sericite-(chlorite) phyllite
to staurolite-andalusite- geumet-biotite, and quartz-feldspar-
(gamet)-biotite schist. Also: quartz-plagioclase-biotite-
(chlorite) seniischist or schist (4).

Metavolcanic emd metasedimentary unit
Ribbon chert (radiolarian), cherty argillite, metarhyolite,
metabasalt, chlorite schist (5). Meta, ass.: aphanitic
volcanic flows with relict plagioclase-epidote-chlorite- 
actinolite, also chlorite-qucirtz-clinozoisite-(actinolite)
schist, also dark green hornblende schist with quart-epidote- 
subordinate plagioclase (4).

Pandora Peak Unit Uj^r Jurassic to Lower Cretaceous
Black mudstone, graywacke, radiolarian ribbon chert, green tuff,
metabasaltic greenstone, minor pebbly mudstone, and limestone;
Meta, ass.: pervasive lawsonite-(prehnite)-(calcite)-(albite-
quartz-chlorite-v^hite mica) (10), also: plagioclase-
clinopyroxene-chlorite-calcite-pumpellyite-epidote-sphene (10).

Pacific Rim Cccnplex Uj^r Jurassic to Cretaceous
Volcanics, tuff, ribbon chert, siltstone, sandstone, mudstone,
ccanglcmerate, pillow lava. Meta, ass.: lawscxiite-prehnite- 
calcite (7,3).

Bcaianza Group Lower to Middle Jurassic
Basalt, andesite, dacite, & rhyolite flows, ruffs, breccias,
sills & dikes; greywacke, siltstone, & pebble conglonerate (3).

Island Intrusions Lower Jurassic
Quartz monozonite, homblende-granodiorite, biotite- 
quartzdiorite (3,1). Tonalite to gabbro (10,2).

West Coast Crystalline Conplex Lower Jurassic
Amphibolite, metasediments, quartzdiorite, tonalite, agmatites
(3). Diorite (5). Meta, ass.: actinolitic schist-, hornblende
plagioclase gneiss (3), also amphibolitic gneisse and quartz- 
plagioclase schist (10).

Ccaitinued
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Table 13 Ccxitinued

Name Age
Wark-Colquitz Cccnplex ?

Dioritic gneiss and schist (3). Quartzo-feldspathic and calc- 
silicate gneiss and foliated anphibolite. Also, schistose
aitfiiibolite (blue-green hornblende, plagioclase-quartz) and
felsic dikes (10).

Vancouver Group
Karmutsen Formation Middle to Upper Triassic

Pillowed & layered basalt, pillow breccia, tuff metamorphosed
frcm prehnite-pumpellyite to airphibolite / homfels facies.
Meta, ass.; prehnite-piurrpellyite to albite-actinolite to
homblende-plagioclase (An 65-80, sericitized)(6), also quartz- 
epidote-prehnite-purrpellyite, also, quartz-carbonate-chlorite- 
prehnite-punpellyite (5).

Quatsino Limestcoe
Limestone, marble (3), blueish-gray micritic limestone (5).

Parson Bay Formaticai
Calcareous siltstone, shale, limestone, graywacke, breccia (3),
also, coquina, biosparite, chert, corals, and algal balls (5).

Sicker Group Paleozoic
Meta-basalt to -andesite to -rhyolite up to amphibolite facies;
silty limestone, argillite, breccia, greywacke, metadiabase
sills. Meta. Ass.: epidote-albite-actinolite-(quartz)(3).
Limestone, graywacke, chert, eirgillite (5).
Radiolarian chert, diabasic sills (5). Penn, to Miss.
Silicic tuff and breccia, rhyodacitic flows, quartz-sericite
schist and massive sulfides (5).
Augite porphyry pillows and breccia (uralitized), mafic tuff,
also, chlorite-actinolite schist (5).

Saltspring Intrusions
Meta-quartzdiorite (6).

Paleozoic
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TABLE 14 CORRELATIONS OF LITHOLOGIES
A sunmation of the rock units from southern Vancouver Island that probably
supplied sediment to the Hoko River Formation.

Lithic Type Unit or Formation

1. Metasediment Leech River Ccmplex

2. Bascilt Metchosin Volcanics or Keirtnutsen
Formaticn

3. Chert Leech River Ccnplex, Sicker Group,
and N^aimo Group

4. Polycrystalline Quairtz Sicker Group, Leech River Ccnplex,
Bonanza Group, Metchosin Volcanics

5. Felsic and Intermediate Plutcaiics Island Intrusions, Catface
Intrusions

6. Felsic and Intermediate Volcanics Bonanza Group
7. Metavolcanics Meta-Metchosin, Leech River

Ccnplex
8. Amphibolite and epidote-rich

schist and aggregates
Meta-Metchosin, West Coast
Crystalline Ccnplex, Karmutsen
Formation, Metchosin Volcanics,
Leech River Ccnplex, Sicker
Group
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Deformation of these portions of the Leech River Ccrplex has produced a
pervasive slaty cleavage (SI) and a secondary crenulation or slaty

cleavage (S2) (Fairchild and Cowan, 1982). S2 transposes SI in sctne

cases.
These styles of deformation are foimd in the Hoko River Formation

graphitic metasediments, although S2 crenulaticns are not always present.
The higher-grade portions of the Leech River Ccmplex are not represented
in the Hoko River Formation, particularly staurolite-andalusite-gamet- 

biotite schists and other garnet-bearing assemblages. Because the uplift
age of the Leech River Ccrplex is very simileir to the age of deposticn of
the Hoko River Formation, it is possible that the higher temperature and
pressure portions of the Leech River Ccmplex were not yet exposed. The

Leech River carpi ex is the probable source of metasediment to the Hoko

River Formaticai.

Basalt The Metchosin Volcanics and Karmutsen Formation, comprised
of mainly tholeiitic basalts (Tables 13 and 14), are both possible sources

of basalt lithics for the Hoko River Formation. The Karmutsen Formaticn
has experienced prehnite-punpel lyite-grade metamorfhism producing

punpellyite-prehnite-calcite fillings between pillows and quartz-calcite- 
chlorite-prehnite-pumpellyite within the basalts (Muller, 1982). These

minerals have been found in several clasts in the Hoko River Formaticai
sediments, suggesting that the Karmutsen Formation is a possible candidate
as a source for basaltic sediment. The Metchosin Volcanics generally

contain chlorite-quartz-epidote and puitpellyite fillings in veins and

amygdules with a few local occurances of prehnite in the tuffs and
associated pelitic sediments (Snavely and others, 1983). The two

formations are very similar petrographical ly. Basalt clasts with minor
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punpellyite and prehnite amygdule fillings and qucirtz-epidote veins in the

Hoko River Formation suggest that the Metchosin Volcanics and the
Kannutsen Formations are probable sources of sediment to the Hoko River

Format icn.

Chert Chert caiprises a portiai of following units on southern

Vancouver Island: the Pandora Peak Unit, the Pacific Rim Ccttplex, the

Sicker Group, the Leech River Carpi ex, and conglcmerate clasts in the
Naniaroo Group (Tables 13). Ihe Pandora Peak Unit and the Pacific Rim
Ccirplex have experienced a high pressure-lew temperature metamorphism that
overprints primary mineralogies with lawscnite-calcite but in general does

not disturb the siliceous cherts. The non-siliceous sediments in these
units CCTitain lawsonite-calcite, minerals absent froti the Hoko River

Formaticn. Therefore, these two units are not considered soiarces of Hoko
River Formation chert.

The Sicker Group crops out in the southeastern portion of southern

Vancouver Island, placing it in a relatively proximal location to the Hoko

River Formation depositional system. The Sicker Group is a probable
source of chert to the Hoko River Formation based on proximity and mineral
associatiens. The Leech River Cctiplex contains ribbon chert and cherty
argillite in the metavolcanic and metasedimentary unit (Table 13). This

unit crops out across southern Vancouver Island and is thought to have

contributed metasediments and could have contributed chert fraginents, as
well. The Nanaimo Group contains a chert-rich lithic-arenite petrofacies
(Pacht, 1984) that may also be a source of chert to the Hoko River

Formation. All of these units are probable sources for the chert
sediments in the Hoko River Formation. A detailed study of the radiolaria

may allow better correlations.
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Polycrystalline Quartz The varieties of polycrystalline quartz found
CXI scxathem Vancouver Island are the same as those found in the nortlrwest
Cascades: recrystallized chert, vein cjuartz, and cjueurtzose layers in

metasediments. Units cxxitaining these lithologies are the Sicker Group,

Leech River Ccitplex, Pacific Rim Ccxtplex, Pandora Peak Unit, Bonanza

Group, and Metchosin Volcanics (Table 13 and 14). The Pacific Rim Coirplex
and Pandora Peak unit are excluded on the basis of a lack of lawsonite- 
prehnite-calcite- bearing assemblages in the Hoko River Formation. The
rest of the units contain pervasive secx3ndary cguartz veins, with various

amounts of recrystallized chert and quartz-rich metasediment in the Sicker

Group and Leech River Ccmplex. Polycrystalline cjuartz is ccxmon within
these lithologic units of southern Vancouver Island and also in the
northwest Cascade Mountains. The source of Hoko River Formaticxi
polycrystalline cjuartz is in<x>nclusive.

Felsic and Intermediate Plutonics Three plutonic units and cxie mixed

metamorphic and igneous unit are possible sources of granite,
grancxliorite, cjuartz diorite, and diorite to the Hoko River Formation:
Jurassic Island Intrusions, the Eocene Catface Intrusions, the Saltspring
Intrusions, and portions of the West Coast Crystalline Ccmplex (Table 13).

The Island Intrusions are the most probable source, because they cxsntain

felsic to intermediate lithologies similar to those found in the Hoko

River Formaticxi and their emplacement predates the late Eocene. The West
Coast Crystalline Ccmplex is cxmposed of more mafic lithologies, including
seme that are not foiand in the Hoko River Formation (the plagiorlase- 
homblende gneisses), suggesting that it made only a minor cx>ntribution,

if any. The Saltspring Intrusions are restrierted to a small area in the
eastern portion of southern Vancxiuver Island. The Island Intrusions are
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far more extensive and are, therefore, more likely sources of sediment.
The Catface Intrusions are also a very small unit but, in part, intrude

the Metchosin Volcanics, vhich are already considered source rocks. The

Catface Intrusions may have provided a small local influx of felsic and
intermediate plutonics to the Hoko River Formaticai. The Island and
Catface Intrusions are the most probable sources of felsic and
intermediate plutonics (Table 14).

Felsic and Intermediate Volcanics The Bonan2a Group cotprises
andesite, dacite, rhyolite tuffs, flows and breccias, fragments of vhich
are found in the Hoko River Formation sediments (Table 13). The Bonanza

Group is widespread, of pre-late Eocene age, and has ccitpositions and
textures similar to those of the felsic Hoko River Formation lithics. It

is the most probable source of felsic and intermediate volcanic sediments
on southern Vancouver Island (Table 14).

Metavolcanics The Metchosin and meta-Metchosin Volcanics both
contain assemblages similar to the metavolcanics of the Hoko River
Formation (Tables 13). In general, the metavolcanics of the Hoko River

Formation are highly altered, almost opaque basalts and semischists of
chlorite, plagioclase, quartz, and rare prehnite. The Metchosin Volcanics
contain chlorite, epidote, and quartz fillings in the araydules in fairly
fresh basalt that are more similcir to the Hoko River Formation basalt
lithics than to the metavolcanic lithics. The chlorite-rich metavolcanics

and the subschistose matrix of the meta-Metchosin volcanics ccnprise

mineral assemblages similar to the Hoko River Formation lithic fragments,
suggesting that they are' probable source rocks. A portion of the Leech
River Ccitplex contains mafic volcanic flows with relict textures and
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plagioclase-{epidote)-(chlorite)-(actinolit.e) asseniblages. Meta-Metchosin

volcanics and the parts of the Leech River Ccmplex resemble the Hoko River

Formation metavolcanics and are considered sources for this sediment type
(Table 13).

Ai^Aiibolites and Epidote-rich Schists Actinolitic amphibolites and
aggregates are locally abundant (Table 13). The meta-Metchosin volcanics,

the Karmutsen Formation and the West Coast Ccitplex ccaitain actinolite- 

plagioclase aggregates and schists like those of the Hoko River Formaticai
(Table 14). Epidote-rich aggregates appear both as schist fragments and

amygdule fillings in the Metchosin and meta-Metchosin Volcanics, a portion
of the Leech River Ccnplex, and the Sicker Group. All of these units are

thought to contribute other varieties of sediment, therefore, it is

probable that they also provided epidote-rich sediment to the Hoko River
Formation (Table 14).

Conclusions

The following units probably contributed one or more lithic types to
the Hoko River Pormatican: Leech River Ccitplex; Metchosin and Meta-

Metchosin Volcanics; Karmutsen Formaticai; Sicker Group; Bonanza Group;

Islard, and Cat face Intrusions; West Coast Crystalline Complex; and
Nanaimo Group. All of the lithic types in the Hoko River Formation can be
derived frcm southern Vancouver Island. Prehnite and punpellyite are

pervasive in scxne of the units southern Vancouver Island, and these

minerals are present sporadically in the Hoko River Formation. Lawscxiite

has not been found in the Ifoko River Formation sediments, excluding the
Pacific Rim Ccnplex and the Pandora Peak Unit frcm ccxisideration as source
rocks. Southern Vancxjuver Island is the most probable source of sediment
to the Hoko River Formation and the one favored by the author.
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Paleocurrent Data

The paleociarrent data from the Hoko River Formation are taken from

pebble and cobble imbrication, groove casts, and parting lineations at the

locations shown in Figure 34. The western sites have been rotated 40

degrees clockwise frcm their original orientation (Moyer, 1985). There­
fore, the results for those sites are presented both in geographic
coordinates and in back-rotated coordinates.

Methods •
Pebble imbrication studies were conducted by locating a suitable bed

of conglanerate with pebble-, cobble-, and boulder-sized clasts. The
strike and dip of the bed were taken. Flat, disk-shaped clasts were
located, and the strike and dip of each clast were taken. Disks are
defined as those clasts with the long (a) axis approxiamately equal to the

intermediate (b) axis, and the short (c) axis very much shorter than the

a- or b-axes. This type of clast is most useful for imbrication studies
of conglcmerates (Rust, 1975). At each site, 15 to 20 orientations were

gathered. Sites frcm the same channel were combined, the ccxnbined sites
give a more reliable direction than individual sites vAien the sample
number at each site is less than 35-40 saitples (Rust, 1975).

The data were corrected by flattening the strike and dip of the beds
back to horizontal and plotting the corrected readings on stereo nets.
All readings that had dips of less than 10 degrees or greater than 80
degrees in the corrected coordinates were excluded, as these are not
reliable current indicators (Rust, 1975). Paleocurrent rose diagrams were

plotted by passing a thirty degree window over the stereonet and tallying
the number of readings (N) contained in each division. The number of
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readings was plotted directly onto the paleocurrent roses.
Lineation data were handled in a similar fashion. Strike and dip of

the bed were recorded, and trend and plunge of each lineation. The
bedding attitude was corrected back to a horizontal orientation. The
thirty-degree window was passed over these data, and tallied to form
paleociarrent roses. The number of samples (N) reflects the number of

lineations found.

Results
The paleocurrent data frcm the Neah Bay sites show a general

direction of transport from the northwest (Table 15) (Figure 35). Three

large channels were sampled to determine if paleocurrents changed
direction up-section. The difference in current directions found at the

NB-02-03 and NB-04-05 sites and the NB-01 site may be caused by actual

changes in the direction of the channel flow or may be scatter due to
normal variations of flow within a channel. Various channel morphologies,
straight, braided, or meandering, produce diverse current directions
(Bouma and Nilsen, 1978).

A northwest-southeast orientation of twa groove casts was imeasured
along the Hoko River Road (Table 15)(Figure 34). Parting lineation and
groove cast orientations were measured from outcrops along West Twin River
Road. The eleven lineations suggest transport in a northwest-southeast
orientation (Table 15)(Figure 34). Pebble imtorication data frcm the Agate
Beach sites ccme frcm a channel exposed along the wave-cut platform (AB-

01-02). The data indicate transport frcm the southwest to the northeast
with seme scatter (Table 15) (Figure 34).

104



Paleocurrent Reconstruction
The results from the paleanagnetic study of Moyer (1985) indicate

that the western portion of the northern Olynpic Peninsula, west of the
West Twin River Road, has been rotated 40 degrees clockwise since the

deposition of the Hoko River Formation. Data frcm the Neah Bay and Hcko

River sites were back-rotated to find the orientation of the flow at the
time of deposition. At the time of deposition, the Neah Bay sites record
flow patterns frcm the east-southeast (NB-01), the west-northwest and
north-northwest (NB-02-03 and NB-04-05) (Table 15)(Figure 35). The Hoko

River sites shift to a more westerly direction, frcm the west and west- 

northwest (Table 15)(Figure 35).

In general, the results indicate flow frcm the north and west at the
Neah Bay, Hoko River, and West Twin River Road sites. These data suggest
a depositional system originating in the northwest and flowing to the

southeast.
The Agate Beach site suggests flow frcm the southwest, and the West

Warmhouse Beach site records flow from the east-southeast. The variations
in direction between the sites may result frcm large-scale changes of the
depositional system, but it is more probable that shifts in the submarine

fan channel due to meandering or braiding are the cause. Because results

are so variable frcm site to site, paleocurrent data do not clearly

support any of the possible sources.

Limitations of Interpretations
Problems with these methods lie in the diverging opinions of how to

interpret pebble inribrication in resedimented conglomerates (Walker, 1975;

Rust, 1975; and Walker, 1984) and in the bedding and structural
corrections. It was assumed that flattening the beds back to horizontal
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Table 15 Sunmary of paleocurrent directions in the Hako River Formation

BACK-ROTATED LOCATIONS
Present day
(f ran the )

Rotation corrected
(from the__)

TYPE OF DATA

NB-01 SSE (160) ESE (120) 13 pebble irtib.

NB-02-03 NW & NNE (315 - 20) WNW St NNW (275 - 340) 36 pebble imb.

NB-04-05 MW & NNE (315 - 20) WNW St NNW (275 - 340) 31 pebble imb.

HR NW (310 - 330) W Sc WNW (270 -■ 290) 2 groove casts

LOCATIOSrS NOT ROTATED
Present day
(f ran the ...)

TYPE OF DATA

WTR-01 NW (310 - 330) 11 groove casts
AB-01-02 SSW Sc WNW (190 -■ 280) 33 pebble imb.

The Neah Bay and Hoko River locations have been backrotated to account for
the 40 degree clockwise rotation found by Moyer (1985).
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would remove later strutural events, wiien removing a plunge and then a

strike and dip may have been more correct. Poor structural control of the
northern Olympic Peninsula may have allowed an oversimplification of

bedding corrections. There may be local small-scale rotations about

vertical poles that just have not been recognized.
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General Conclusions M)out Source Areas
The five major regions surrounding the Hoko River Formation are the

Olynpic Core and Ozette terranes of the Olympic Peninsula, the Coast

Plutonic Ccirplex, the San Juan Islands terranes, the northwest and north- 
central Cascades, and southern and central Vancouver Islcind (Table 8).

The Olympic Core and Ozette terranes contain metasedimentary rocks,

basalt, and polycrystalline quartz; however, all the other lithic types of
the Hoko River Formation eire lacking, suggesting that the Olympic
Peninsula is not a probable source area. The Coast Plutonic Corplex
contains mostly felsic to intermediate plutonics with lesser amounts of

metasediments end metavolcanics; basalt and chert are subordinate.
Sediment derived frcim the Coast Plutonic Ccnplex would contain more felsic
and intermediate plutonics and monocrystalline potassium feldspar by
percentage than the Hoko River Formation does. Other sources of these
lithic types can be found closer to the probable basin of deposition of

the Hoko River Formation and eire more likely sources. The San Juan
Islcinds contain abundant metavolcanics and chert but are lacking the low- 
grade basalts of the Hoko River Formatico. Lawscnite-bearing assemiblages
common in the San Juan Island metasediments and metavolcnaics are not
found in the Hoko River Formation. This suggests that the San Juan
Islands are probably not a primary source area. An increase in chert in

the eastern portion of the Hoko River Formation may be due to a local
influx of chert-rich sediment frcm the San Juan Islands.

The northwest Cascade Mountains ccnprise all of the lithic types found

in the Hoko River Formation. However, the high pressure-low temperature
assemiblages found in many of the metavolcanic and metasedimentary rocks of

the northwest Cascade Mountains cire absent frcm the Hoko River Formation.
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This lack forms the basis for selection of southern Vancouver Island over
the northwest Cascade Ranges. Southern and central Vancouver Island
contain all of the lithologies found in the Hoko River Formation.
Vancouver Island is also proximal to the probable depositional basin of

the Hoko River Formation suggesting that it is the most likely source

area.
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DEPOSITIONAL ENVIRONMENT OF THE HOKO RIVER FORMATION

The late Eocene Hoko River Formation formed in marine water of
bathyal depths (greater than 200m), according to the paleontologic studies
of Rau (1964). The rocks were deposited on a sutmarine fan, with inner

fan deposition at the Neah Bay section and middle fan deposition

everywhere else in the study area. Overall, the Hoko River Formation was
deposited in progressively quieter, deeper water, with deepening caused by
subsidence or by an increase in sea-level. A cessation of tectonic
uplift, plus erosion reducing the relief of the source area, may have

accompanied either of these effects.

Descriptions of the facies associated with different submarine fan
environments follow, beginning with slope and inner-fan deposits and
moving basinward through the channeled middle-fan, depositional lobes of
the middle-fan, and outer-fan deposits (Figure 36). Studies of both
ancient and modem fans define these facies associations (Mutti and Ricci-

Lucchi, 1972; Walker and Mutti, 1973; Ricci-Lucchi, 1975; Bouma and
Nilsen, 1978; and Walker, 1984). The lithologies that comprise facies
within these environments are compiled in Table 16 and include the
following: conglcxnerates, pebbly sandstones, pebbly mudstones, massive

sandstones, proximal and distal turbidites, overbank deposits, chaotic
deposits, and honipelagic sediments, compiled frcxn Mutti and Ricci-Lucchi

(1972), Walker and Mutti (1973), Suczek (1978), and Bouma and Nilsen
(1978).

Brief descriptions of the rock types found in each measured section
and then interpretations of the depositional environments follow. Some

conventions are used throughout the descriptions. Bed thicknesses are

described using the definitions of Ingram (1954): very thinly bedded (1-3
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Feeder
Channel

Basin
Plain

Figure 36. Proposed model of a submarine fan after walker (1978) and
Walker (1984). The letter-number abbreviations refer to the depositional
facies of Table 16.
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can), thinly bedded (3-10 cm), medium bedded (10-30 can), thick bedded (30-

100 can), very thickly bedded (greater than 1 meter). The Bouma secjuence

is represented with the following notation, T-a = massive or graded

sandstone, T-b = laminated sandstone, T-c = rippled or convoluted
sandstone, T-d = laminated mudstone (siltstone with or without mudstone),

and T-e = massive mudstone (siltstcxie with or without mudstone). A
ccirplete Bouma sequence is referred to as T-a-e, vhereas a partial

se<guence vould be expressed as T-abc, or T-ae.

Submarine eind Slope Facies Asscoiations Model
Secjuence analysis is a proninant diagnostic tool for interpreting

depositional environments and changes with time in the specific
environment of a si±marine fan. The technicjue has been described by

various authors (Mutti and Ricci-Lucchi, 1972; Walker and Mutti, 1973;

Bouma and Nilsen, 1978; and Walker, 1984). Positive megasecjuences are
defined by beds that thin and fine successively upward. Negative
megasecjuences are those that thicken and cxarsen up>-secticffi. Positive
sequences are generally thought to represent channel fillings, vhile

negative secjuences are indicative of lobe progradation or gradual channel
migration (Walker, 1984) (Figure 37). Secjuence analyses ccmbined with

facies determinations are the basis for interpretation of position within

a submarine fan environment.
Slope deposits consist of mostly pelagic and hemipelagic sediment

(Ebcies G) cut by channels of cxaiglcxnerate (Facies A) (Figure 36) (Table

16). Sand- to cobble-sized material usually bypasses the slop* area in

channels or in incised submarine canycans. Sluitps (Facies F) move

previously-deposited sediment downslope and into the channels and canyons
(Figure 36).
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Facies
Inteirpretation

Inner fan
Channel
Fill

Channelled
portion of
the middle fan
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Channelled
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middle fan (0
Tl
•H
COa
wQ

Outer fan

Figure 37. Generalized hypothetical sequence of progradation in a
suimarine fan after Walker (1978) and walker (1984). The letter-number
abbreviations refer to the depositional facies of Table 16.
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Inner-fan deposits are similar to slope deposits in that they are
cxaiposed of sandstone (Facies B) and conglanerate (Facies A) confined to
channels cut into surrounding fine silt and sand (Facies E, D2, and D3)

and hemipelagic sediments (Facies G) (Figure 36) (Table 16). The channels
may be straight, braided, or meandering (Bouma and Nil sen, 1978; BOS,

1987). Slumps are less ccnnon cai the inner fan then in slope environments
(Facies F) (Table 16). Gravel is the most cannon sediment in the active

channels. When channels are abandoned, they may be abandoned slowly or
virtually instantly. A thinning- and fining-up sequence results vhen the
channel is slowly abandoned (Figure 37). Rapid abandonment results in a
drape of fine sediment over a thickening-up/veird sequence (Walker, 1984).

Middle-fan deposits can be divided into two groups, inner^niddle fan

channelized deposits and outer-middle fan depositional lobe deposits
(Walker, 1984) (Table 16) (Figures 36 and 37). The channeled middle fan is

characterized by thinning- and fining-upwcird sequences of conglanerate
(Facies A1 and A2) and pebbly sandstone (Fhcies A3 and A4) overlain by
classic proximal turbidites (Facies C) and sane distal turbidites (Facies

Dl)(Table 16)(Figures 36 and 37). Levees cire a distinctive part of the
middle fan channels and are ccnposed of overbank deposits (Facies E) and
base-cut-out turbidites (Facies D2 and D3) that inter finger with
interchannel hemipelagic sediments (Facies G) (Table 16) (Figures 36 and

37). Most interchannel deposits are overbank deposits interbedded with

distal turbidites and hemipelagic sediments.

The depositional lobes of the middle fan, also known as suprafan
lobes (Nbrmark, 1978; Bouma and Nilsen, 1978; Walker, 1984), are corposed
of classic proximal turbidites (Facies Cl and C2) overlying distal
turbidites (Facies Dl) (Table 16) (Figures 36 and 37). These in turn are
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overlain by distributary-channel-nouth deposits of channelized irassive

sandstone (E^cies B2), that have prograded across the top of the
depositional lobe (Figure 37) forming thickening- and coarsaning-upward
sequences (Walker and Mutti, 1973; Bouma and Nilsen, 1978; and Walker,

1984).
Outer-fan deposits are not channelized eind are the most laterally

extensive facies. Ihickening-up sequences of distal turbidites (Facies

Dl- D3) dcminate the outer-fan (Table 16) (Figures 36 and 37) (Walker,

1984). The further frcm the active middle-fan depositional lobe, the
finer and thinner these deposits becote; grading basinvrard fran Facies Dl
(T-bcde) to D2 (T-cde) to D3 (T-de)(Bouma and Nilsen, 1978). Outer fan

deposits interfinger with hemipelagic and pelagic sediment (Facies G)

(Table 16) (Figure 36).

Paleoecology
The Hoko River Formation was deposited in upper bathyal to lower

neritic depths (1000 to 300 ft) with isolated deposits occiaring in water

greater than 1000 feet (Rau, 1964)(Thble 17). Rau also found foraminifera
that occur in cold, open ocean water. Studies by Loney (1951), Drugg
(1958), Bagley (1959), Carroll (1959), Strain (1964) and McWilliams (1965)

also suggest neritic to upper bathyal depths of deposition with seme

variation (Table 17). Most studies indicate a change frcm shallow to

deeper water upwards in the section. Cool water connected to the open

ocean is indicated. Variations in the water depths indicated by fauna may
be due to redeposition of faunas. Shallow water foraminifera may have
been brought in by turbidites. Deeper water foraminifera could have been
reworked frcm the underlying Aldwell Formation (Rau, 1964). The Hoko

River Formation ves connected to a cold or cool, open ocean.
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Table 17 Sunriary of paleoecology for the Hoko River Formation (HRF)
frcm previous studies.

Author Water Water Open Location
Depth Temp. Ocean (?) of Study

Loiey (1959) deeper neritic to
upper bathyal

cold marine Crescent Bay

Drugg (1958) uj^r bathyal cool - Hoko River

Bagley (1959)
lower HRF deep cold yes Sekiu River
upper HRF deep cold yes

Carroll (1959)
tvro faunas
present in

mid- to lower
bathyal

cool yes Hoko River

the HRF neritic to
upper bathyal

warmer

Strain (1964) bathyal to neritic
up section

McWilliams (1965)

cooled yes
up section

Twin Rivers

lower HRF littoral to
sublittoral * Lake Crescent

upper HRF upper and
lower bathyal

yes

118



Depositional Environments within the Hoko River Formation

tfeah Bay
Ihe section at Neah Bay was measured along the wave-cut platform,

sea-cliffs, and headlands just west of the town of Neah Bay. The section

begins at the boundary between sections 5 and 6 of T 33 N, R 15 W and ends

at the edge of the wave-cut platform in section 3, T 33 N, R 15 W,
offshore of Kbitlah Point (Figure 18, page 5l). This section is contained
in the fifteen-^ranute quadrangle of Cape Flattery, Washington. It is a

reference section for the Hoko River Formation, as defined by Snavely and

others (1978).
The top and bottcm contacts were not described, because they are

covered and inaccessible, respectively. They have been described as
gradational by Snavely and others (1986). Inner-fan conglomerates, debris
flows and siltsones that are succeeded by middle-fan channel deposits are
found at the Neah Bay exposures (Table 18). This interpretation is
consistant with the water depths of at least mid-bathyal (200 m to 2000m)

from Ansfield (written cannunication, 1987). Table 18 lists the facies

that predcminate in this section (Plate 1).
The sediment found in this section is gravel and silt with fine sand.

The conglcmerates (Facies Al, A2, and F) are confined to large channels
and isolated medium to thick beds (Facies Al and A2) within a thick stack

of laminated silt with wispy sand stringers. The siltstone with wispy
sandstone is best described as distal base-cut-out turbidites (Facies D3)

and hemipelagic sediment (Facies G). The siltstone and very fine
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Table 18 Facies contained in measured sections,

FACIES
Neah Bay

A1
A2
B2
Cl
D1 & D2
D3
F
G

TYPE OF DEPOSIT
disorganized conglanerate
organized conglanerate
massive sandstone without dish structures
proximal turbidites (T-ae)
distal turbdites
base-cut-out turbdites
debris flows / slumps / redeposited material
hemipelagic sediment

Hoko River and Hoko River Road
A1 disorganized conglanerate
A2 organized conglanerate
A4 organized pebbly sandstone
Cl classic proximal turbidites (T-ae)
D1 distal turbdites
D3 distal base-cut-out turbidites
E crevass splay
G hemipelagic sediment

West Twin River Road
A1 disorganized conglanerate
A2 organized conglanerate
B2 massive sandstone without dish structiares
Cl classic proximal tvirbidites (T-ae, T-ace)
C2 classic proximal turbidites (T-acde)
D3 distal base-cut-out turbdites
E overbank deposits

Elwah River Sections
Old Elwah River Road

A1 disorganized conglanerate
A2 organized conglanerate
A4 pettoly sandstone

Elwah River Rappel
B1 sandstone with dish structures
Cl classic proximal turbidites (T-ae, T-ace)
C2 classic proximal tiorbidites (T-abce, T-acde)
D1 distal base-cut-out turbidites
D3 distal base-cut-out turbidites
G hemipelagic sediment

Morse Creek
A1
A2
B1
D3
F
G

disorganized conglanerate
organized conglanerate
massive sandstone without dish structures
distal base-cut-out turbidites
debris flows / slumps
hemipelagic sediment
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sandstone have been extensively burrowed and are cxansidered interchannel

deposits.
The cong lamerates are varied and can be divided by grain size,

presence or lack of raud, vhether they are matrix-supported or clast- 
supported, and whether they have internal stratification or not. Most of

the isolated ccxiglonerate beds are less than one meter thick, graded or

structureless, composed of granules and pebbles, and clast-supported
(Facies A1 and A2)(Tables 16). These are considered spill-over deposits

fron a near- by channel. Channel deposits may be either matrix-sufported

or clast-supported, are composed of cobbles and boulders, and are
structureless (Facies F and Al) (Tables 16). These eire debris flows, and

mudflows that have filled channels within the inner sutrmarine fan. Slumps

containing preserved internal stratigraphy comprise a minor portion of the
channel fill deposits. The conglomerates in this section are probably

inner-fan channel deposits (Figure 38).
The uppermost channel is composed of mediunv-grained sandstones

(Facies B2 and minor A4) (Tables 16) with concretions weathering-out in

cannonball-like spheres. It is overlain by interchannel sediments (Facies

D3 and G) (Tables 16) that form a fining- and thinning-upward sequence.

Hpko River
The Hoko River section is one of the two type sections. It was

measured along the bed of the Hoko River and the Hoko River Road. The

section is located on the Lake Pleasant Quadrangle of the fifteen-minute
map series. The section begins downstream of the pools and canyon formed
by the resistant Lyre Formation in the SE 1/4 of the SE 1/4 of section 6

of T 31 N, R 13 W. The top of the section is located at the tributary
stream that enters the Hoko River from the west in the SE 1/4 of the SE
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Figure 38. Inner fan channel filled with conglomerate, d^ris flows and
slunps at east Warmhouse Beach point in the Neah Bay section. The channel
is cut into interchannel siltstones and sandstones (Facies D3 and G).
Arrow points to a log approximately 3 meters long for scale.
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1/4 of section 29 of T 32 N, R13 W. This was the Hoko River Formaticai -

Makah Formation boundary as described by Ibbor and Cady (1978), vAiich has
since been moved about 500 meters downstream by Snavely and others (1986).

The basal contact is gradational with the underlying Lyre Formation,

vhich is primarily organized pebbly conglcmerate. The Hoko River

Formaticai is marked by a decrease in grain size fran pebbly and granule

sandstCTie to alternating beds of sandstone, siltstone, and conglcmerate.
The type secticn is daninated by massive spheroidal- or hackly-fractured
massive to laminated siltstone (Figure 39) deposited as base-cutout
turbidites (Facies D3) and hemipelagic sediments (Facies G) (Tables 16 and

18) (Plate 2). Individual medium- or thick-bedded strutureless sandstones

sporadically break the fine-grained sediment (Facies Cl). At the 550
meter mark, a lens of sandstone and conglcmerate with minor siltstone
interr^yts the section. The sandstone is medium- to thick-bedded, with
very thin silt partings between beds (Facies B2) (Table 16). Thin- to

medium-bedded, graded or massive sandstcne are proximal turbidites
(Facies Cl) and are associated with the sandstones (Fhcies B2)(Table 16).

The conglcmerate is medium- to thick-bedded but otherwise structureless,
of granules and pebbles, with a slightly lenticular bed gecmetry (Facies
A2)(Table 16). Medium to thick-bedded organized pebbly sandstone (Facies

A4) (Table 16) is interbedded with the conglcmerates.
This section represents middle-fan interchannel and channel deposits.

Most of the silt (Facies D3 and G) is interchannel sediment with
occasional spill-overs frcm channels represented by the isolated T-ae
sandstone beds. The conglcmerates, pebbly sandstones, and proximal
tinrbidites are bed load and channel-fill of the middle-fan. The overall

succession is distal interchannel over proximal channel deposits.
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Figure 39. Spneroidally weathering siltstone, the dominant lithology in
the Hoko River section. Facies D3 and G.
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West Twin River Road
The section is reached by travelling west on state route 101, then

north and east on the West Twin River Road, and then turning north onto

the Twin Loop road. The base of the measured section lies about a quarter
mile up the road frcm the intersection of the West Twin River Road and the
Twin Loop Road. The section is located on the Pysht, Washington 15 minute
quadrangle in T 30 N, R 10 W (incompletely surveyed), beginning in the
center of sectico 7, and ending in the SE 1/4 of section 6. The lower and

upper contacts of the Hoko River Formation are not exposed.

The Hoko River Formation along the West Twin River Road ccmprises
packages of proximal turbidites (Ebcies Cl and C2) and distal turbidites
(Facies D1 and D2) (Figure 40) set in thin-bedded, massive to laminated

siltstone (Fhcies D3 and G)(Tables 16 and 18). Well-rounded, well- 

sorted, poorly cemented granule and pebble conglcmerate beds (Fbcies A1
and A2) are present in approximately one third of the packages (Plate 3).

The granule and pebble conglcmerates are thin- to mediimi-bedded,
graded or structureless with flat to wavy bottcms and gradational tops
(Facies A1 and A2)(Table 16). Ccrmonly, beds of one meter or less are

internally stratified or graded with pcirallel top and bottom contacts.
The conglcmerates cire associated with thick-bedded proximal turbidites
(Facies Cl)(Table 16).

Large-scale cross bedding is fomd in seme of the thick-bedded
sandstones (the cross-beds are 20-50cm high in outcrop). These are

bounded above and below by proximal turbidites (Facies Cl and C2) or

ccnglcmerates (Facies A1 and A2). The cross-bedded units may be part of a
bar within a middle fan distributary channel (Figure 37).

The thin- to medium-bedded sandstone and thin-bedded siltstone
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Figure 40. Proxiiial (Facies C) and distal (Facies D) turbidites along the
West Twin River Road. A lower thickening-up sequence is overlain by three
thinning-up sequences. These mark middle-fan lobe deposition and
subsequent increases and decreases of activity.
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packages cire middle-fan channel fill, and channel lag deposits. The
channels are characterized by thick-bedded proximal turbidites (Facies Cl
and C2)(Table 16). Lag deposits in these channels are represented by
conglomerates (Facies A2) and are overlain by proximal turbidites (Facies

Cl and C2). The bars that form and shift within these channels create the

cross-bedded sandstones.
E)etailed observations lead to the conclusion that this portion of the

Hoko River Formation was deposited in middle-fan channels, interchannel
areas, and proximal depositional lobes. The lower portion of the section
is dominantly a proximal middle-fan lobe. The middle part is composed of

middle-fan channel deposits. Near the top are active channel, channel- 
fill and lobe deposits with the uppermost rocks marking abandonment of a
channel. Together the sequences show progradation of the active middle- 

fan channel over its lobe deposits, and subsequent abandonment.

Elwah River
Two sections were studied along the Elwah River. The lower section

was not measured, but is located along the Old Elwah River Road on the
east side of the river, from the bridge southeast and up the road to the

last outcrop. This site is on the north limb of a large east-west­
trending syncline, which explains the south-dipping strata. This site

will be referred to as the Old Elwah River Road section. The second
location is along state route 112 on the west side of the new bridge on
the south side of the road. The section was measured in two rappels and
will be referred to as the Elwah River Rappel (Plate 4). The second
section lies stratagraphical ly above the first section an unknown distance
and is not adjacent to the upper or lower fornation contacts. Both
locations are located on the Elwah, Washington, 7 1/2 minute quadrangle.
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The Old Elwah River Road is in the NE 1/4 of the NE 1/4 of section 10, T
30 N, R 7 W. The Elwah River Rappel is in the SW corner of the SE 1/4 of

section 10, T 30 N, R 7 W.

Old Elwah River Road Section The Old Elwah River Road Section is a
short section of (100 m) organized and disorganized conglomerate (Facies
A2 and A1) and pebbly sandstone (Facies A4)(Figure 41). These sandstones
and conglanerates are middle- or inner-fan channel deposits (Figure 36).

Strata are medium to thickly bedded with crude interanl lamination. The

preponderance of conglomerate suggests high energy- deposition. Scoured
bottan contacts that mark channel bottons and the lack of fine sediment
are further evidence for a high energy of deposition. The most
distinctive feature at this location is the off-white calcite cement

surrounding well-sorted, wsl 1-rounded, spherical granules and pebbles.

Seme layers ccaiprise well-rounded, spherical pebbles and cobbles as well
as the typical smaller sediment size. This type of sorting and rounding
suggests long transport. It is probable that a middle-fan channel is the

environment of deposition.

Elwah River Rappel The Elwah River Rappel consists of thin-, medium- 

and thick-bedded medium-grained sandstone (Facies B1, Cl, C2, and D1) with
interbeds of laminated thin-bedded siltstone (Facies D3, and G)(Table 16).
The sandstone units contain Bouma divisions T-ae, T-abc, T-ab, T-abce, T- 
bde and T-bcde (Facies Cl, C2, D1)(Table 16). Dish structures have also

been preserved in seme beds (Facies B1). The siltstones vary from well- 

laminated to structureless and are probably distal, base-cutout turbdites

(Facies D3) and hemipelagic sedimentation (Facies G) (Figure 42).
The basal portion forms a thickening- and coarsening-upward

sequence of proximal and distal turbidites (Facies Cl and D1). The
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Figure 41. Granule conglomerate of the Old Elwah River Road section
showing bedding planes. Facies A1, A2 and A4. Sign is 1.75 meters high.

Figure 42. The Elwah River Rappel section containing thick-bedded
sandstone (Facies Cl, C2 and B1) with thin-bedded sandstone-siItstone
(Facies D1 and D3) interbeds. See Plate 5 for details.

129



section then fines upward to the middle of the section, indicating waning

deposition on the suprafan lobe. The two meters of mudstone and very fine

sandstone (Facies D3 and G) at meters 14 to 16 are considered interchannel
d^x)sits. Two very thickly bedded proximal turbidites occur (T-ab) at the

base of the next fining-up sequence and suggest active deposition
switching back into the outcrop area. The rest of the section is

doninated by very regular, thin to medium bedded turbidites.

The presence of proximal and distal turbidites (Facies Cl, C2, D1,
D2, and D3) and the lack of conglcraerate in the Elwah River Rappel section
constrains deposition to a middle fan depositional lobe. A decrease in

proximal turbidites and the increase of distal-base-cut-out turbidites up- 

section indicates deposition farther from the feeder channels on the

suprafan lobe. In general, distal deposits are overlain by proximal,
suggesting that deposition was shifting to another portion of the lobe.

Morse Creek
The Morse Creek section was measured in the stream bed of Morse Creek

on the Morse Creek 7 1/2 minute quadragle. The section begins about 40

meters above the Port Angeles Dam in the NE 1/4 of the SW 1/4 of section
5, T 29 N, R 5 W and ends in the NW 1/4 of the NE 1/4 of section 5, T 29
N, R 5 W (at the border of section 5, T 29 N, R 5 W and section 32, T 30
N, R 5 W). The section is 810 meters from the basal contact with the

Aldwell Formation to the contact with the above Makah Formation (Plate 5).

The basal contact of the Hoko River Formation at Morse Creek is
conformable against the underlying Aldwell Formation. The contact can be
recognized by the abrupt change from the laminated, massive-to-thinly
bedded silt and very fine sand of the Aldwell Formation to a disorganized
pebble to cobble conglomerate, the basal portion of the Hoko River

130



Formation. The upper contact between the Hoko River Formation and the

overlying Makah Formation is gradational. This contact can be recognized
by the change from laminated silt with fine wispy sand stringers of the
Hoko River Formation to a medium-bedded granule conglomerate of the Makah

Formation.

Facies associated with this section are disorganized conglomerate
(Facies A), sand-rich units (Facies B2), slumped units (Facies F),
isolated classic proximal turbidites (Facies Cl), and distal base-cut-out
turbidites (Facies D2 and D3) associated with hemipelagic sediment (Facies
G)(Table 18). These are most often found in middle-fan channels and

interchannel. The top of the section is marked by the abrupt influx of

coarse sediment, the basal conglomerates of the Makah Formation.
One kaolinized tuff or ash layer and two medium-bedded organized

conglomerate units occur at 97, 480, and 720 meters, respectively. One
sandstone dike was located at 540 meters. Concretionary layers are
present in numerous locations, more coitinonly in the middle and upper

portions of the section.

The basal 140 meters of this section v^e probably deposited in or
near a middle fan channel. Facies A2, A4 and B2 are conmon within middle- 
fan-channel environments (Figures 36 and 37). Moderately well-rounded

pebbles and cobbles are more coitmon in middle fan channels than inner fan

channel. The thick stack of proximal medium- to thick-bedded sandstone is

more characteristic of a middle-fan-channel environment. The slumps found
in this section are relatively small (5 meters thick) and involve mostly

pebbly mudstones. These could occur in either inner fan or middle fan
channels.

The next 790 meters of mostly distal base-cut-out turbidites were
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deposited in the interchannel area of the middle fan (Figure 36). The
wispy nature of these mudstone and sandstone turbidites is due to
bioturbation. Burrowed sediment is well preserved in the concretions
within this section. The wispy sandstone beds (T-c) are often further

disrupted by loading from overlying sediment. The few conglomerates that

were deposited higher 15) in the section are probably crevass splays or
runouts from subaqueous mudflows or debris flows (Figure 43).

In sumtary, the Morse Creek section comprises thickly bedded, coarse
proximal deposits overlain by thinly bedded fine distal deposits. This

sequence was formed by middle fan channel deposition and subsequent

abandonment.

Agate Beach and Crescent Beach
The Agate and Crescent Beach sections were not measured but

observations were made about the lithologies present. Vfe 11-rounded, well- 

sorted conglomerates directly overlie the Crescent Formation and are
probably channel deposits. They are associated thick-bedded structureless
sandstones, similar to those of the Elwah River Rappel. A middle-fan
channel and lobe are the probable depositonal environments. The Crescent-
Hoko River Formation contact, an angular unconformity, is located on the

western cliff face of Little Agate Beach.

Agate Beach Vfel 1-rounded, well-sorted conglonerates (Facies A2) are
exposed in the wave-cut platform along the east cliff-face of Agate Beach.
The clasts are granules to cobbles. The conglonerates are well- bedded,
imbricated and contain low-angle cross stratification; they are channel

conglomerates of the middle fan. On the west cliff-face of Agate Beach
lies a 50 meter cliff of thick-bedded sandstones. They are overlain by

conglomerates (Facies A2 and F) that truncate sane of the upper
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Figure 43. Concretionary layers of siltstone with wispy very fine
sandstone interbeds, typical of the Morse Creek section. Facies D3 and G.
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sandstones. Sane of the conglomerates are well bedded and some are
chaotically deposited, suggesting slurtping of the nonlithified material.

Thick-bedded sandstones associated with conglomerates occur in middle-fan

channels (Figure 36). Proximal middle-fan channels are the probable
depositional environments of the strata at East and West Agate Beaches.

Crescent Beach The east cliffs of Crescent Beach are Crescent
Formation basalts overlain by siltstone. Isolated outcrops of granule

conglomerates are located in cliffs that parallel the beach. The

conglonerates are clast supported, but too poorly exposed for bedding
characteristics to be discussed. These conglonerates may be lateral
equivalents to those of Agate Beach.

Conclusions
The Hoko River Formation was deposited in inner and middle fan

environments. The Neah Bay section represents inner fan followed by
middle fan deposition. The Hoko River section records shifts from middle- 
fan channel to interchannel, then back to channel and to interchannel
deposition. The West Twin River Road section contains middle fan lobe and

channel deposits. The Old Elwah River Road section cotprises middle fan

channel deposits. The Elwah River Rappel corprises middle fan lobe
deposits. The Morse Creek section is a middle fan channel that grades
into interchannel deposits. The Agate and Crescent Beach sections are

probably middle fan channel deposits. Overall, the Hoko River Formation

was deposited in gradual ly deeper water, placing relatively distal strata

over proximal strata. A gradually subsiding basin, a decrease in the

volume of sediment influx or a sea level transgression can produce this
relationship.

The question ranains, was the Hoko River Formation deposited by one
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large submarine fan or by a series of smaller submarine fans. A submarine

fan the size of the Astoria fan or even smaller could have produced a
single fan large enough to cover the study area (Figure 44). The area of
southern and central Vancouver Island is large enough to contain a river
of sufficient size. A river or a number of smaller streams could have
transported sediment out to the shelf, frcxn vdiich it was later swept

offshore into a submarine channel.
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Figure 44. Coirparison of relative sizes of the Astoria fan located
offshore of the mouth of the Columbia River at the Or^on-Washington
border and the area of the present day northern Olympic Peninsula.
B = Bellingham, S = Seattle
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EOCENE PALEOGEOGRAPHY
The rocks of the Crescent terrane on the northern Olyitpic Peninusla

provide infontation on changes that occurred in their depositional basin.
When near-by coeval units are compared to the rocks of the Crescent
terrane, specifically the Hoko River Formation, a regional picture becomes

apparent. The regional paleogeography will be discussed, then the

structural events specific to the Crescent terrane will presented and
finally the paleogeographic iiiplications of the Hoko River Formation will
be discussed.

Coeval Units
Other sedimentary units deposited during the late Eocene (late

Narizian) in the Pacific Northwest are parts of the Chuckanut Formation,

the Escalante and Hesquiat Formations of the Carmanah Group, the Puget
sequence of central western Washington, and rocks of the Olympic Core
terrane, including the Western Olynpic Assemblage and the undifferentiated
rocks of the Olympic Core (Figures 45, 46, and 47).

Chuckanut Formation
This comparison with Chuckanut Formation compositions adds weight to

my conclusion (see Source Area chapter) that the Hoko River Formation was
not derived fran the North Cascades. Sediment from that source would have

to have passed through the Chuckanut fluvial system before reaching the

Hoko River depositional basin, but the differences in composition rule out

that transport pattern. Therefore, the Northwest Cascade Mountains must

not have been a source for the Hoko River Formation.
The Chuckanut Formation spans most of the Eocene; its upper Eocene

members are the Maple Falls, Warnick, and Bald Mountain Members. Point-
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Figure 45. Base nap showing the present c3ay (0 Ma) regional geology
surrounding the Olyicpic Peninsula modified from Brown (1987). Use this as
a coirparison for figures 46 and 47. Same as Figure 4.

CZ Cenozoic sediments aind volcanics
CPC Coast Plutonic Complex
LRC Leech River Complex
NK Nooksack terrane
NWCS Northwest Cascades System
PR Pacific Rim Complex
SJ San Juan Islands
HLF Harrison Lake fault
FR-SCF Fraser River-Straight Creek fault
RLF Ross Lake fault
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Figure 46. Paleogeographic reconstruction of the Juan de Fuca basin and
its surrounding regions, showing depositional systems and subaerial
regions (source areas) at afproximately 40 Ma.

The Carmanah Group was being deposited just offshore of southern
Vancouver Island (Muller and others, 1981).

The Chuckanut fluvial system lies to the north and east of the Juan
de Fu^ basin. A barrier separates the Oiuckanut and Juan de Fuca basins,
the distal portions of the Chuckanut Formation may have been transported
south and west of the Juan de Fuca basin. These sediments may have formed
part of the present day Vfestem Olyirpic Assemblage and undifferentiated
rocks of the Olympic Core (Heller, personal carmunication, 1987).

The Puget Sequence was active as both cindesitic volcanic centers and
a fluival-deltaic system during the late Eocene. There was no connection
between this system and the Juan de Fuca basin. See text for supporting
discussion.

Later movement across the Leech River and San Juan faults narrowed
the exposure of Leech River Complex (Fairchild and Cowan, 1982, and Yorath
and others, 1985).

□
□

D

Carmanah Group

Chuckanut Fomation

Western Olynpic Assemblage cmd undifferentiated
rocks of the Olyirpic core
Puget Sequence
Hoko River Formation

li^C = Leedn River Complex

ISF = Leech River fault
SJF = San Juan fault
Subaerially exposed areas (highleuxis)

Submarine ridge dividing the Juan de Fuca basin from other late
Eocene basins.
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Figure 47. Paleogeographic reconstruction of the Juan de Fuca basin and
the surrounding regions. The purpose is to depict the areas of fluvial- 
deltaic, shallow marine and deep marine deposition. The subaerial regions
have been shaded differently. Also note there are two basins south and
west of southern Vancouver Island, or one basin with two distinct regions.

Ccmpare with Figure 45 for bedrock geology and Figure 46 for
active fluvial systems.

I; .'I Fluvial or fluvial-deltaic
I I Shallow marine
QJj] Deep marine

Highlands
SJF = San Juan fault
ISF = Leech River fault
LRC = Leech River Complex
Ridge dividing Juan d© Fuca basin from other late Eocene
sedimentary basins, origin unknown.
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count data from these three members (Johnson, 1982) were plotted on

ternary diagrams to compare their sedimentary petrology and provenance to
that of the Hoko River Formation. On the Q-F-L diagram (Figure 48), the
three Chuckanut Formation members plot well away fron the Hoko River
Formation average. The Qi:i-F-Lt and Qm-P-K triangular diagrams (Figures

49 and 50) show that two of the upper Eocene members of the Chuckanut
Formation lie within one standard deviation of the Hoko River Formation.

The differences between the Hoko River Formation and the upper Eocene
manbers of the Chuckanut Formation are most pronounced on the lithic
ternary diagram (Figure 51). The Hoko River Formation contains fewer

polycrystalline quartz grains and more volcanic, metavolcanic,

sedimentary, and metasedimentary lithic grains than the Chuckanut

Formation members. Polycrystalline quartz grains are very resistant
lithic types and would be expected to increase in concentration downflow.
Also the number of rapidly weathered grains, such as volcanic,

metavolcanic, sedimentary and metasedimentary grains, would be expected to

decrease downflow rather than increase. The actual relationship is the
reverse, so the Hoko River Formation is probably not the marine equivalent

of the upper Eocene Chuckanut Formation.

Carmanah Group
The Carmanah Group, exposed along the west-central edge of Vancouver

Island, contains two formations that are, in part. Eocene, the upper
Eocene or Oligocene Escalante Formation and the upper Eocene or Oligocene
Hesquiat Formation (Muller and others, 1981)(Figure 46 and 47). The
Hesquiat Formation has been correlated with the Makah Formation based on
similar "lithology, age, and depositional environment" (Snavely and
others, 1980, p. 19) and it will be excluded from further consideration.
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The Escalante Formation (Refugian) comprises sandstone and minor

conglomerate unconformably overlying crystalline basanent. It formed as
shallow marine deposits that evolved into a deep marine (outer neritic or

upper bathayl) systan (Muller and others, 1981). This evolution may

reflect the change from upper bathyal to bathyal deposition found between

the Lyre and Hoko River Formations. Based on similar depositional
environments, the upper portion of the Escalante Formation is the part
most likely to correlate with the Hoko River Formation. Further study of

the petrology of the sandstones and conglanerates of the Escalante
Formation may lead to clearer correlation with the Hoko River Formation

with vvtiich it may have formed part of a single depositional system.

Puget Sequence
The Eocene Puget sequence is located south and east of the northern

Olympic Peninsula (Figure 45). Upper Eocene sedimentary members of the
Puget sequence are the Renton, Spiketon, and Skookumchuck Formations and

the Puget Group proper. The three formations are Puget Group-correlatives
and combined with the Puget Group will be referred to as the Puget deltaic
sequence (Buckovic, 1979). The Puget deltaic sequence combined with the
associated terrestrial volcanics, the Tukwila and Northcraft Formations,

will be referred to as the Puget sequence. The Puget deltaic sequence
comprises fluvial-deltaic deposits originating in a granitic highland in

the east and extending westward into a marine embayment and offshore onto
the continental shelf (Buckovic, 1979). The Tukwila and Northcraft

Formations are andesitic terrestrial volcanic systems that lasted from the

middle Eocene to the early late Eocene (Buckovic, 1979). They are part of
the Puget sequence and interfinger with the Puget deltaic sequence. They
consist of proximal flows, agglomerate, breccia; alluvial fan deposits of
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debris and sheet-flows; and, most distal ly, andesitic volcaniclastics

(Buckovic, 1979).

Deep water equivalents of the Puget system were presumably being
deposited offshore, somewhere to the west. The Hoko River Formation did
not comprise these sediments (Figures 46 and 47). Intermediate volcanic
fragments are only a small portion of the lithic population of the Hoko
River Formation, so it cannot have been fed through the deltas of the

Puget systan. Sediments of the Hoko River Formation are not considered

the deep marine equivalents of the Puget system.

Upper Eocene Units of the Olympic Core Terrane
The middle Eocene to Oligocene Western Olympic Assemblage includes

most of the upper Eocene rocks of the Olympic Core terrane (Figure 45).

It is composed of thick-bedded sandstones, occasional turbidites,

siltstones (less than 40%) and granule conglomerates (Tabor and Cady,
1978). The sandstones are angular, poorly sorted, lithic to feldspathic
arenites. They contain 3% to 10% potassium feldspar (Tabor and Cady,
1978). The conglomerates contains chert, quartzite, volcanic, limestone,

and sedimentary clasts (Tabor and Cady, 1978). The assar±)lage is now

metamorphosed in its eastern exposures to slate, argillite, phyllite and
semischist. The metamorphic minerals are laumontite, epidote, chlorite,
and pumpellyite, indicating low pressure and temperature facies (Tabor and
Cady, 1978).

The upper Eocene (?) and Oligocene (?) undifferentiated rocks of the

Olympic Core are similar to the Western Olympic Assemblage and are located
in the south-central Olympic Core terrane. The sandstones are micaceous,
volcanic-lithic to feldspathic, angular, and poorly sorted (Tabor and
Cady, 1978). The potassium feldspar content is variable, frcm essentially
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zero to up to 3 to 10%. (Tabor and Cady, 1978). They are thick-bedded and

contain much cross-bedding and graded bedding. Turbiditic sandstones are

unccmmon everywhere, but they are more abundant to the south. Argillite,
slate, siltstone, and conglomerate comprise 40% of this unit (Tabor and
Cady, 1978).

These units were probably al 1 marine. The turbidites suggest

possible suhnarine fan deposition but are not exclusive for that

environment. The main differences between these units and the Hoko River
Formation are the amounts of feldspar. The potassium feldspar content of
the Western Olynpic Assanblage and of the undifferentiated rocks of the

Olympic Core terrane ranges from 3 to 10%, v^ich is much more than the

0.5% + 1 found in the Hoko River Formation. Hel ler (personal

coirmunication, 1987) has suggested that the core rocks are the deep-marine
equivalents of the Chuckanut Formation. Two separate basins must have
existed during the late Eocene, one just south of southern Vancouver
Island in which the Hoko River Formation was deposited and another south

and west of the present Olympic Core terrane in v^ich the Western Olynpic

Assemblage and undifferentiated rocks of the Olympic Core were deposited
(Figures 46 and 47).
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structural Events

Local Tectonics
Before the deposition of the Lyre Formation, a congressional

structural event gently folded the rocks of the Crescent terrane about

northeast-southwest-trending axes (Tabor and Cady, 1978)(Figure 52). The

Lyre Formation appears to have been deposited in the valleys of these

early-stage folds. The Lyre Formation also is folded, although more
gently than the underlying units. Folding is less pronounced in the Hoko

River Formation and is even more gentle in the overlying upper Eocene to
Oligocene Makah Formation. Folding was an event of long duration, from

the middle Eocene to the early Oligocene.
Locally inportant thrusting occurred after the deposition of the

Hoko River Formation and before the deposition of the Makah Formation.
These faults do not reach the overlying Makah Formation or the underlying
Lyre Formation (Figure 53)(Snavely and others, 1986). There is a local

angular unconformity between the Hoko River Formation and the Makah

Formation in the Seiku area.
A final structural event, described by Moyer (1985), was the bending

about a vertical axis of the western portion of the northern Olympic
Peninsula (frcxn Cape Flattery to Pysht), which produced the 40 degrees of

cloclcwise rotation that was recorded in the magnetization of the Hoko

River Formation and Makah Formation sediments (Figure 54). Folds and
faulting possibly associated with this event are found in the Clallam

Formation, suggesting that this defo2rmation occurred after the deposition
of the Miocene Clallam Formation (Moyer, 1985).

149



Figiare 52. Bedrock geology of a portion of the Crescent terrane, the
northwestern Olympic Peninsula fran Snavely and otners (1980). Note the
discontinuous outcrop pattern of the Lyre Formation. It is probable that
this formation was deposited on an undulating surface formed by prior
folding of the Crescent and Aldwell Formations. Area enclosed by
rectangle is the region shown in figure 53.

Tp Pysht Formation
Ttn Makah Formation
th Hoko River Formation
T1 Lyre Formation
Ta Aldwell Formation
Ter Crescent Formation

. thrust fault

North and east of the
Crescent thrust fault

fault - movement unknown

0
fault - upthrown (U) and downthrown (D) sides labelled
left lateral strike-slip fault
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Figure 53. Sketcii map of the bedrock geology in the Sekiu area, northern 
Olynpic Peninsula (Snavely and others, 1986). The purpose is to show the 
location of the thrust faults contained in the Hoko River Formation.
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Figure 54a and b. Paleomagnetic reconstruction fran Moyer (1985) 
depicting the 40 degrees of clockwise rotation of the western half of the 
northern Olynpic Peninsula that occurred between 20 Ma and the present. 
Figure 54a represents geology in a pre-rotational setting and figure 54b 
presents the geology after this rotation occurred.
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Depositional History of the Hoko River Formation

The upper Eocene Hoko River Formation formed in marine waters of
bathyal depths (Rau, 1964; Snavely and others, 1978; Ansfield, 1987). The

rocks were deposited in inner fan followed by middle fan depositional
environments at the Neah Bay section and middle fan depositional
environments elsewhere (Figure 18, p. 52). The Hoko River Formation was
deposited in progressively quieter, deeper water, indicating either

subsidence of the basin or a rise in sea-level during deposition.

A proximal source is indicated for the Neah Bay exposures because of

very large (greater than 2 m) angular clasts. These are concentrated in
debris flows, indicative of slumping and mobilization of previously
deposited sediments (Ansfield, 1987). The Agate Beach and Elwah River
conglomerates are well-rounded and we 11-sorted, suggesting longer

transport before reaching the sutxnarine fan comlex. The variations in

percentages of two lithic types suggest that two sutxnarine fan complexes
were actively depositing sediment. One was contributing sediment to the
Elwah River and Morse Creek areas, and the other was actively depositing

everywhere else.

The composition of sand grains suggests that southern Vancouver

Island was the source of the Hoko River Formation. But, because there are
no lithic types in the Hoko River Formation that definitively tie the Hoko
River Formation to southern Vancouver Island, other sources are possible.

Southern Vancouver Island is favored because it provides a good match
petrological ly, it is proximal to the Hoko River Formation, and no contra­
indications in clast type were found. In addition, current indicators

show the dominant direction of flow was from the north and west to the
south and east. Vancouver Island lies to the north and northwest of the
present-day Olyrtpic Peninsula.

153



1

Sea Level Changes

The sea level curves of Vail and others (1977) indicate that during 

the deposition of the Hoko River Formation (Bartonian) sea level was 

rising very slowly (Figxire 55). Sea-level changes of larger magnitude 

occurred during the deposition of the upper Eocene to middle Oligocene 

(Bartonian to Chattian) Makah Formation. These are not tied to 

depositional changes in the Makah Formation; it was deposited entirely 

within a deep marine environment (Snavely and others, 1980). Because 

relatively large sea level changes caused no apparent change in the 

depositional environment of the Makah Formation, the lesser sea-level 

change during deposition of the Hoko River Formation was probably not an 

inportant cause of changes in depositional style. This conclusion agrees 

with the conclusions that Armentrout (1988) drew for south-western 

Washington; he concluded that the transgressive and regressive cycles 

present in the Tertiary of south-west Washington v^e not controlled by 

global climatic changes.

The depositional environment of the Hoko River Formation at the 

Neah Bay site changed fran inner to middle fan, which indicates a local 

deepening of the basin. As a sea level change does not appear responsible 

for this change, subsidence of the basin is indicated.

Depositional History of the Crescent Terrane 

The Hoko River Formation and other formations of the Crescent terrane 

represent the middle Eocene to early Miocene geologic history of the 

northern Olympic Peninsula. The lowest member of the Crescent terrane is 

the lower to middle Eocene Blue Mountain unit. It is a continental ly- 

derived middle fan sequence (Cady, 1975). The Coast Plutonic Complex and 

San Juan Islands were sources of sediment to the Blue Mountain unit
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Global Cycles ol Sea Level Changes

Figure 55. Global cycles of sea level change from Vail and others (1977). 
The time of deposition of the Hoko River Formationf late Eocene^ is 
shaded.
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(Einarsen, 1987). Two distinct petrofacies (one plagioclase-rich and the

other chert-rich) were found along with a third facies (composed of equal
amounts of the previous two) (Einarsen, 1987). These petrofacies implie
that sediment fran at least two transport and depositional systems was
being mixed in the Juan de Fuca basin during the middle Eocene (Einarsen,

1987). The two petrofacies are heterogenous ly mixed both
stratigraphically and by saitple location (Einarsen, 1987). The Blue
Mountain unit underlies and interfingers with the basalts of the Crescent
Formation (Einarsen, 1987; Tabor and Cady, 1978).

The lower to middle Eocene Crescent Formation marks a time of general
shoaling from basalt pillows with interbedded limestone to subaerial

basaltic flows (Tabor and Cady, 1978). The emplacement of the basalts of

the Crescent Formation disrupted sedimentation patterns in the basin. The
origin of the Crescent Formation is under much dispute, see Snavely and

others (1983), Wells and others (1984), Einarsen (1987), Einarsen and

Engebretson (1987), Armentrout (1988), and Clark (1989). A marginal

basin, possibly associated with the passage of the Kula-Faral Ion Ridge is

the model preferred by Wells and others (1984), Einarsen and Engebretson
(1987), and Clark (1989) for the formation of the Crescent Formation.

The Juan de Fuca basin is an informal name used here to refer to the
basin into which the sedimentary units of the Crescent terrane were
deposited with the Crescent Formation as the basanent. This basin is
similar to the Tofino-Juan de Fuca basin of Snavely and others (1983) but
differs in its extent and sedimentation patterns (see Figure 56 for
coiparison of the two). The Tofino-Juan de Fuca basin extends frcan the

Brooks Peninsula, Vancouver Island, to the Lyre River, on the Olyitpic

Peninsula. The Juan de Fuca basin extends from Sequim Bay on the Olynpic
Peninsula westward along the coast of Vancouver Island a distance of
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approximately 150 km (Figure 56). The Tofino-Juan de Fuca basin of
Snavely and others (1983) refers to the latest Eocene and early Oligocene,
while Juan de Fuca basin covers the middle late Eocene to the early

Miocene. Lastly, the Tofino-Juan de Fuca basin is correlated to a number

of deep marginal basins along the coast of western North Amercia and such
correlations are not sought by the author of this projcet. Therefore, the
term Juan de Fuca basin will be used.

The lower to middle Eocene Aldwell Formation overlies and
interfingers with the Crescent Formation. Its western half is a chert- 

rich lithic arenite derived from southern Vancouver Island, and its

eastern half is a basaltic lithic arenite derived from the rocks presently
found near Striped Peak (Marcott, 1984). No sites contain both

petrofacies. The western petrofacies of Marcott (1984) is the chert- 
rich petrofacies, which is the opposite of the results for the Hoko River

Formation. The Juan de Fuca basin may have had a geographic high dividing
it into eastern and western halves during deposition of the Aldwell
Formation. The Aldwell Formation was deposited as outer fan and basin
plain deposits on the fringes of a submarine fan (Marcott, 1984). Bathyal

depths are indicated by the associated foraminifera (Rau, 1964). The fine
sediment size in most of the Aldwell Formation suggests a distal source

area. Tectonism in the Striped Peak area produced debris flows in the
eastern field area, indicating a local uplift.

The upper Eocene Lyre Formation was derived from southern Vancouver
Island (Ansfield, 1972). Its lateral equivalent, the upper Eocene

Flattery breccia, was derived from southern Vancouver Island (Ansfield,
1972; A.B. Shilhanek, personal corrmunication, 1989). Both were deposited
in much shallower water than the Aldwell Formation, on the apron of a fan-

158



delta (Ansfield, 1972; A.B. Shilhanek, personal communication, 1988),

respectively. Shallowing of the basin may have occurred before the

deposition of the Lyre Formation. Alternately, an increase in the

sedimentation rate may have produced a shal low system through rapid
progradation of the fan-delta. Because the Lyre Formation and the
Flattery breccia are comprised of coarse sediment, dramatic uplift in the
source area and subsequent erosion were probably significant processes

during the late Eocene.

The upper Eocene Hoko River Formation also was derived from southern
Vancouver Island and was deposited at outer neritic to bathyal depths in
middle-fan channels, inner-fan channels and depositional lobes (Figure
57). Distal facies overlie proximal facies indicating channel switching,
subsidence or tectonic downwarping, since sea level rose only slightly

during deposition. The Hoko River Formation was deposited in deeper water

than the Lyre Formation and Flattery breccia, although not as deep as the
Aldwell Formation (Rau, 1964).

The Hoko River Formation is composed of siltstone, sandstone and

conglomerate, a change from the coarser sediment of the upper Lyre

Formation. The gradational nature of this change is apparent at the Neah

Bay, Hoko River, Burnt Mountain Road, and Old Elwah River sections (Figure
18, p.52). At these locations coarse sedimentation gradually waned and
fine sedimentation took over (see Depositional Environments Chapter).
The Juan de Fuca basin was receiving sediment from Vancouver Island as

recorded by the petrology of the Hoko River Formation sediments.

The late Eocene and Oligocene Makah Formation marks continued bathyal
deposition on middle-fan depositional lobes and channels (Snavely and
others, 1980) in the Juan de Fuca basin. Its contact with the Hoko River
Formation is gradational and mainly conformable, except locally (see
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Figure 57. PaleogeograjAiic reconstruction of deposition of the Hoko River 
Formation into the Juan de Fuca basin at 40 Ma +1.

The present day coastline is dashed in for reference.

The Hoko River Formation was deposited in the Juan de Fuca basin as 
middle fan and inner fan deposits on a submarine fan ccxrplex. Sediment 
was derived from southern Vcuicouver Island. The strandline and shelf- 
slope break are drawn in for reference.

Relative velocity vector for North America (NA), the Pacific (PA), 
and the Farallon (FA) plates were added to help descriise the tectonic 
regime (Eng^aretson and others, 1985). The location of the PA-FA-NA 
triple junction is not known.
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Depositional Environments Chapter). The Carpenter Creek member, a tuff,

marks silicic volcanic activity. Southern Vancouver Island is also the
probable source of sediment to the Makah Formation (Snavely and others,

1980).
The upper Oligocene Pysht Formation was deposited in a deep marine

environment (Snavely and others, 1983) that shoaled upward to shallow

marine at the top (Anderson, 1985). Snavely and others (1983) concluded

that the Pysht was derived from southern Vancouver Island and that the
shal low marine fauna and rip-up clasts were transported down a submarine

channel system into the deep marine environment.
Gradational ly overlying the Pysht Formation is the lower Miocene

Clallam Formation. This formation contains a number of shoaling-upward

sequences within a prograding deltaic environment (Anderson, 1985). The
formation was deposited within shallow marine and deltaic distributary- 
mouth environments (Anderson, 1985). The sources for sediment include

southern Vancouver Island, the San Juan Islands, and the Cascade Range
(Anderson, 1985). Anderson (1985) recognized a continuum of deposition

from the upper Pysht Formation into the Clallam Formation; they are both
part of a shal low marine sequence.
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CONCLUSIONS
Ilie Hoko River Formation is a thick sequence of marine sedimentary

rocks located on the northern Olympic Peninsula. It is ccartposed of

massive siltstone, turbidites, conglomerate channels, and debris flows.
Depositional facies found in the Hoko River Formation are middle fan
channels, middle fan depositional lobes, interchannel deposits on the
middle fan, and inner fan channel debris flows and slumping. The
formation records subsidence of the western-most depositional basin.

The most contnon current indicators used are pebble and cobble
imbrications from inner-fan channels and debris flows. Rare lineations
frcm the bottoms of sandstone beds are the other source of current
indicators. Overall, the ciorrent seems to have flowed from the north and

west to the south and east.
The Hoko River Formation is a medium- to very coarse-grained lithic

arenite (Q = 29 + 14 %, F = 15 + 9 %, L = 55 + 12 %). Dominant lithic
components are basalt, metasediraentary lithics, chert, polycrystalline
quartz, metavolcanic fragments, and felsic and intermediate plutonic and

volcanic fragments. Lithic conpositions do not vary frcm east-to-west

except that a significantly greater percent of chert was found frcm the
Elwah River eastwards. The grains range frcm spherical and very well- 
rounded, to elongate and well-rounded to moderately spherical and angular.
This range of textures suggests a mixing of sources.

Petrologic data allow constraints on possible source areas for the

Hoko River Formation, although no unique determination can be made. The

Kbko River Formation could have been derived from an exotic source;
however, a local source seems more likely, given the paleocurrent data and

the variety of source areas near at hand.
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The Olympic Core terrene cannot tje a source because of age
incompatabilities and the lack of basalt, chert, polycrystalline quartz,

metavolcanics and metasediments in the Core during the late Eocene. The
Hoko River Formation contains too few potassium feldspar grains to have
been derived frcm the Coast Plutonic Ccmplex. The San Juan Islands can be

ruled out on the basis of their distinctive lawsonite-prehnite-aragonite
assemblage. While prehnite has been recognized in rare Hoko River

samples, lawsonite and aragonite have not been recognized in the Hoko
River Formation. Also, graphitic phyllites and schists and slightly
metamojrphosed basalts, ccninon in the Hoko River Formation, are not found

in the San Juan Islands.

Ibe Northwest Cascades conprise a diverse suite of rocks that seem to
provide all of the lithic varieties described for the Hoko River

Formation. However, the Hoko River Formation lacks the distinctive high- 
pressure, low-temperature, blue-schist assemblages found in the Northwest
Cascades. Also, the Chuckanut fluvial system was active and draining the

Northwest Cascades during the late Eocene. Sediment ccming from the

Northwest Cascades must have passed through this system Petrographic

data frcm the Chuckanut and Hoko River Formations do not overlap v\hen
plotted on the same discrimnatory ternary diagrams. This dissimilarity is
strong evidence that the Hoko River Formation was not derived frcm the

Northwest Cascades.
Southern and central Vancouver Island could have provided all of the

lithologies found in the Hoko River Formation in approximately the correct
proportions. Formations and units that probably contributed sediment to

the Hoko River Formation are the following: Metchosin and meta-Metchosin
volcanics; Karmutsen Formation; the Leech River Ccmplex; Island and

Catface Intrusions; Bonanza Group; West Coast Crystalline Ccmplex; the
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Nanaimo Group; and the Sicker Group.
Earliest evidence for deposition into the Juan de Fuca basin began

with the Blue Mountain unit. This unit was derived from the Coast
Plutonic Complex and the San Juan Islands (Einarsen, 1987). The

deposition of the Crescent Formation interupted sedimentation patterns

within the basin. After this, the Juan de Fuca basin existed as a

persistant gecmorphic feature to the south of southern and central
Vancouver Island. Sedimentation into the Juan de Fuca basin from late

Eocene through Oligocene was derived frcm southern Vancouver Island. The
Juan de Fuca basin was isolated frcm the basin receiving distal sediments
of the Chuckanut fluvial system from the late Eocene (Lyre Formation)

through the late Oligocene (Pysht Formation) time. The Miocene Clallam
Formation may have been derived frcan the North Cascades (Anderson, 1985),

vhich would indicate a change in sedimentation patterns.

The late Eocene Escalante Formation of the Carmanah Group may be a
lateral or distal equivalent of the Hoko River Formation. A petrologic

comparison of the Hoko River Formation and the Carmanah Group would test

this hypothesis.
The Hoko River Formation is cctrposed of sedimentary rocks deposited

in the middle- and inner-fan environments of one or two submarine fans.

Sandstone composition shows that the source areas for the Hoko River

Formation were terranes of southern and central Vancouver Island.
Petrologic differences between the Hoko River Formation and coeval
sandstone units indicate that rivers draining the North Cascades did not

supply the Hoko River Formation with sediment and probably drained to the

south of the Juan de Fuca basin.
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APPENDIX 1 WHOLE ROCK COUNT DATA: RAW DATA
Sample Number On K P Acc C M 0 E-Am
MC-06 5 0 7 9 5 32 16 225 1 0MC-16 35 0 24 4 1 0 10 224 1 1MC-18 12 0 9 3 1 66 3 197 9 0MC-36 32 0 3 0 0 48 8 208 1 0MC-41 40 2 21 0 0 0 38 198 0 1MC-42 30 0 29 2 6 0 47 180 0 6
ER-07 65 0 23 6 1 71 0 132 0 2ER-08 48 1 13 1 7 80 0 150 0 0ER-20 43 1 5 1 0 138 0 112 0 0ER-25 46 2 15 3 1 72 0 161 0 0ER-26 52 2 4 1 4 74 1 152 0 1ER-27 40 3 6 0 6 0 33 210 2 0
PC-13 34 9 49 20 3 0 24 138 17 6FC-19 20 3 32 0 1 119 3 116 2 4
FC-20 30 8 51 18 7 0 41 126 17 2PC-22 22 15 62 3 8 0 31 148 4 6PC-27 30 6 62 15 7 0 60 91 23 6
Sanple Number Qt K P Acc C M Lt 0 E-Am]
CB-07 66 0 28 2 4 82 3 108 1 16
CB-08 71 2 21 0 0 66 6 113 12 9
CB-11 48 4 38 1 10 82 1 108 3 12CB-12 9 1 50 5 21 76 0 113 0 30
WAB-01 34 1 30 9 15 69 9 112 0 21WAB-04 23 3 56 11 24 65 0 98 0 20WAB-05 10 2 31 7 20 85 0 134 1 10
TR-01 57 0 35 3 12 0 25 168 18 0WTR-39J 34 1 34 3 0 4 0 171 29 23
WTR-43J 23 1 26 35 7 51 7 145 5 0WTR-44 19 1 30 1 8 42 0 188 0 11WTR-47 21 1 80 14 20 1 0 133 19 11
BMR-52 69 0 31 3 6 0 5 154 4 27
BMR-53 79 1 15 4 5 0 3 179 2 12BMR-54 56 1 9 0 6 0 2 204 17 5
BMR-55 70 2 25 10 5 0 0 180 3 5
BMR-58 47 0 23 3 1 0 1 171 3 2
HR-08 63 1 14 5 7 0 2 192 12 4
HR-10 35 1 18 2 15 1 24 190 1 13
HRR-02 10 1 31 16 3 65 10 153 1 10HRR-10 12 0 27 10 13 0 151 96 1 40
HR-45B 32 2 28 8 9 58 8 145 1 9
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300
300
300
300
300
300
300
300
300
300
291
300
300
300
300
300
300

Total
310
300
307
305

300
300
300
318
299
300
300
300

300
300
300
300
300
300
300
300
350
300



APPENDIX 1 CONTINUED; WHOLE ROCK COUNT DATA: RAW DATA
Sample Nianber On K P Acc C M Lt 0 Amp-E Total

FSB-04 36 1 50 22 10 59 1 119 0 2 298
FSB-11 30 0 27 8 11 56 35 134 0 0 301
FSB-16 31 2 29 8 10 83 0 135 0 2 300
CF-01 50 0 70 3 12 28 0 121 0 15 300
CFT-Ol 28 2 41 22 6 75 2 124 0 0 300
CFT-09 39 0 41 21 40 43 38 78 0 0 300
CFT-llB 27 0 33 8 12 77 24 119 0 1 300
CFT-32 31 0 38 5 4 37 25 160 0 0 300
CFT-57 29 2 21 19 13 36 58 122 0 0 300
CFT-61 31 1 28 10 5 111 0 109 0 5 300
CFT-62 44 2 32 2 13 54 24 129 1 6 307

Qn = Monocyrstalline quartz
K = Ft)tassium feldspar
P = Plagioclase feldspar
Ch = Chlorite
Acc = Accessory minerals except vdiere counted separately
CC = Calcite cement
M = Matrix
Lt = Total Lithics
O = Other Lithics
Anp-e = Anphitxjle and epidote
Total = Total number of points in the w^ole rock count
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APPENDIX 2 WHOLE ROCK COUNT DATA: PERCENTAGES
Sample Number On K p Acc M 0 E-Amp Total

MC-06 2 0 2 3 2 11 5 75 0 0 100
MC-16 12 0 8 1 0 0 3 75 0 0 99
MC-18 4 0 3 1 0 22 1 66 3 0 100
MC-36 11 0 1 0 0 16 3 69 0 0 100
MC-41 13 1 7 0 0 0 13 66 0 0 100
MC-42 10 0 10 1 2 0 16 60 0 2 101

MEAN 10 0 5 1 1 8 7 68 1 0
STD.DEV. 4 0 4 1 1 10 6 6 1 1
ER-07 22 0 8 2 0 24 0 44 0 1 101
ER-08 16 0 4 0 2 27 0 50 0 0 99
ER-20 14 0 2 0 0 46 0 37 0 0 99
ER-25 15 1 5 1 0 24 0 54 0 0 100
ER-26 18 1 1 0 1 25 0 52 0 0 98
ER-27 13 1 2 0 2 0 11 70 1 0 100
MEAN 16 1 4 1 1 24 2 51 0 0
STD.DEV. 3 1 3 1 1 15 4 11 0 0
FC-13 11 3 16 7 1 0 8 46 6 3 98
FC-19 7 1 11 0 0 40 1 39 1 1 101
FC-20 10 3 17 6 2 0 14 42 6 1 101
FC-22 7 3 21 1 3 0 10 49 1 2 97
FC-27 10 2 21 5 2 0 20 30 8 2 100
MEAN 9 2 17 4 6 8 7 41 4 2
STD.DEV. 2 1 4 3 2 18 6 8 3 1
CB-07 21 0 9 1 1 26 1 35 0 5 99
CB-08 24 1 7 0 0 22 2 38 4 3 101
CB-11 16 1 13 0 3 27 0 36 1 4 101

MEAN 14 1 12 1 3 25 1 37 1 6
STD.DEV. 11 1 4 1 3 2 1 2 2 3
WAB-01 11 0 10 3 5 23 3 37 0 7 99
WAB-04 8 1 19 4 8 22 0 33 0 7 102
WAB-05 3 1 10 2 7 28 0 45 0 3 99

MEAN 7 1 13 3 7 24 1 38 0 6
STD.DEV. 4 1 5 1 4 3 2 4 0 2

TR-01 18 0 11 1 4 0 8 53 6 0 101
WTR-39J 11 0 11 1 0 1 0 57 10 8 99
WTR-43J 8 0 9 12 2 17 2 48 2 0 100
WTR-44 6 0 10 0 3 14 0 63 0 4 100
WTR-47 7 0 27 5 7 0 0 44 6 4 100

MEAN 10 0 14 4 3 6 2 53 5 3
STD.DEV. 5 0 7 5 3 8 3 7 4 3
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APPENDIX 2 CCOTINUED; WHOLE ROCK COUNT DATA; PERCENTAGES
Sample Number On K p Cn Acc M Lt 0 E-Amp
BMR-52 23 0 10 1 2 0 2 51 1 9 100
BMR-53 26 0 5 1 2 0 1 60 1 4 100
BMR-54 19 0 3 0 2 0 1 68 6 2 101
BMR-55 23 1 8 3 2 17 0 60 1 2 100
BMR-58 16 0 8 1 0 0 0 57 1 1 101

MEAN 21 0 7 1 2 3 1 59 2 4
STD.DEV. 4 0 3 1 1 7 8 6 2 3

HR-08 21 0 5 2 2 0 1 64 4 1 100
HR-10 3 0 8 3 4 0 43 27 0 11 99
HRR-02 3 0 10 5 1 22 3 51 0 3 98
HRR-10 3 0 8 3 4 0 43 27 0 11 99
HR-45B 11 1 9 3 3 19 3 48 0 3 100
MEAN 8 0 8 3 3 8 19 43 1 6
STD.DEV. 8 0 2 1 1 11 20 14 2 4
FSB-04 12 0 17 7 3 20 0 40 0 1 100
FSB-11 10 0 9 3 4 19 12 45 0 0 102
FSB-16 10 1 10 3 3 28 0 45 0 1 101
CF-01 17 0 23 1 4 9 0 40 0 5 99
CFT-01 9 1 14 7 2 25 1 41 0 0 101
CFT-09 13 0 14 7 14 14 13 26 0 0 101
CFT-llB 9 0 11 3 4 26 8 40 0 0 101
CFT-32 10 0 13 2 1 12 8 53 0 0 99
CFT-57 10 1 7 6 4 12 19 41 0 0 100
CET-61 10 0 10 3 2 37 0 36 0 2 100
CET-62 14 1 10 1 4 18 8 42 0 2 100
MEAN 10 0 13 4 4 20 6 41 0 1 100
STD.DEV. 2 1 4 2 3 8 7 7 0 2

HOKO RIVER FORMATiaSI TOTAL
On K P Ch Acc Cc M Lt 0 E-Amp

2MEAN 12 .5 10 2 3 14 5 49 1
STD.DEV. 6 1 6 3 3 13 8 13 2 3
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APPENDIX 4 PERCENTAGES FOR LITHIC VARIATION ANALYSIS

Sample Lvm Lvgl Lvfi Lmsp Lms Linst Linv Cht Qp Lpfi Lpg Am-i

MC-06 17 24 5 3 1 4 0 6 2 0 0 0
MC-16 5 0 6 12 17 29 2 21 12 1 0 0
MC-18 10 49 1 0 0 0 1 2 1 0 0 0
MC-36 11 6 3 15 16 31 1 12 5 0 0 0
MC-41 4 1 9 1 19 20 6 12 11 4 0 0
MC-42 2 4 3 7 17 24 1 19 16 5 0 3

MEAN 8 14 5 6 12 18 2 12 8 2 0 0
STD.DEV 5 19 3 6 9 13 2 7 6 2 0 1

ER-07 2 1 3 14 11 25 1 11 10 2 0 0
ER-08 3 0 4 12 20 32 1 11 12 2 0 1
ER-20 1 0 1 10 22 32 4 14 6 0 0 0
ER-25 8 2 2 9 22 31 2 12 12 0 0 0
ER-26 3 1 6 9 24 33 3 10 7 4 0 0
ER-27 10 2 12 5 4 9 4 21 19 0 0 0

MEAN 4 1 5 10 17 27 3 13 11 1 0 0
STD.DEV 4 1 4 3 8 9 1 4 5 2 1 0

CB-07 2 1 2 14 9 23 6 3 4 2 4 0
CB-08 2 1 1 16 8 24 5 2 8 2 4 0
CB-11 6 1 5 15 0 15 3 6 6 5 0 1
CB-12 24 2 3 1 0 1 7 0 0 2 9 0

MEAN 8 1 3 12 4 16 5 3 3 3 4 0
STD.DEV 10 1 2 7 5 11 2 2 4 1 4 0

WAB-01 17 2 2 8 2 10 3 1 2 11 0 1
WAB-04 14 2 1 7 0 7 3 0 2 7 2 2
WAB-05 29 5 2 11 3 14 6 0 1 6 0 0

MEAN 20 3 2 9 2 10 4 0 2 8 1 1
STD.DEV 8 2 1 2 2 4 2 1 1 3 1 1

FC-13 5 0 0 18 10 28 2 0 1 9 0 1
FC-19 6 1 1 19 16 35 1 3 2 9 0 3
FC-20 2 3 0 20 10 30 1 1 3 8 0 1
FC-22 4 0 0 22 15 37 0 2 7 4 0 2
PC-27 1 1 0 12 11 33 1 1 5 4 0 1

MEAN 4 1 0 18 12 33 1 1 4 7 0 2
STD. DEV 2 1 - 4 3 4 1 1 2 3 1
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APPENDIX 4 ((XOTINUED)

Sanple Lvm Lvgl Lvfi Imsp Ims Imst Imv Cht Qp Lpfi Lpg Am-ep

TR-01 17 24 5 3 1 21 0 6 2 0 0 0
WTR-39J 25 1 8 8 4 12 1 0 4 2 2 1
WTR-43J 20 5 19 2 2 4 1 0 5 2 2 0
WTR-44J 12 3 5 8 16 24 3 1 3 6 0 0
WTR-47J 16 3 7 3 1 4 2 0 2 5 2 0
MEAN 17 3 8 7 6 13 2 0 4 4 1 1
STD.DEV 6 1 7 4 6 9 1 1 1 2 1 1
BMR-52 5 1 4 20 13 33 2 2 3 1 0 1
BMR-53 4 1 4 30 9 39 3 2 5 2 0 1
BMR-54 2 4 1 28 15 43 11 1 6 0 0 1
BMR-55 4 1 0 26 7 33 6 5 8 0 0 2
BMR-58 5 1 0 25 15 40 1 4 11 4 0 2
MEAN 4 2 2 26 12 38 5 3 7 1 0 1
STD.DEV 1 1 2 4 4 4 4 2 3 2 - 1
HR-08 9 1 0 14 13 27 8 6 8 2 0 1
HR-10 11 1 3 28 11 39 3 0 8 2 0 1
HRR-02 25 9 5 2 2 4 2 0 1 8 0 1
HRR-10 19 3 3 0 0 0 9 0 1 4 3 1
HR-45B 7 1 1 12 9 21 2 3 8 11 0 1
MEAN 14 3 2 11 7 18 5 2 5 5 1 1
STD.DEV 8 3 2 11 6 16 3 3 4 4 1 0
FSB-16 2 0 2 11 13 24 2 12 10 7 0 0
FSB-04 0 0 2 12 13 25 5 2 8 7 0 0
FSB-11 4 0 4 17 10 27 5 7 8 6 1 1
CFT-01 8 0 4 4 7 11 5 6 11 5 3 0
CF-01 7 0 4 3 5 8 1 8 6 9 0 0
CFT-09 4 0 3 1 4 5 1 3 3 17 0 0
CFT-llB 3 0 1 15 14 29 3 7 4 8 0 0
CET-32 9 2 4 12 10 22 6 1 5 10 0 0
CET-57 11 1 6 9 3 12 2 10 8 4 1 0
CET-61 4 1 3 16 8 24 6 7 3 7 0 1
CET-62 0 0 3 14 6 20 3 5 4 12 0 5

MEAN 5 0 3 10 8 19 4 6 6 8 0 1
STD.DEV 4 1 1 5 4 8 2 3 3 4 1 1
HCKO RIVER POimTION AVERAGES

Lvm Lvgl Lvfi Imsp 1ms Imst Imv Qit Qp Lpfi lpg Am-ep
MEAN 8 3 3 12 9 22 3 7 6 5 1 2
STD.DEV 7 8 3 8 7 12 2 12 4 4 2 7
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APPENDIX 4 (CONTINUED)
LITHIC TYPES AND ABBREVIATIONS:

POINT COUNT CATEGORIES-nuitibers converted to ANALYSIS CATEGORIES-percents

Ivm = Lvm = mafic volcanic (Basalt)
Ivg = Lvg = volcanic glass
Ivf + Ivi = Lvfi = felsic and intermediate volcanics 
Imsp = Ijnsp= graphitic schist and phyllite (Phyll)
1ms = Imsl= metasedimentary lithics (Msedi)
1ms + Imsp = linst = total metasedimentary lithics (Metaseds)
Imv = Iiriv = metavolcanics (Mvol)
Ipf + Ipi = Lpfi = felsic and intermediate plutonics
Ipg = Ipg = gabbro and diabase
chert = Cht = chert
Qp = = polycrystalline quartz
Aitp/ep= am-epi = amphibolite and epidote-rich schist

All of the numbers presented here are normalized based on the % of

Itihic grains in the whole rock count, the total number of points in both

the whole rock and lithic counts, and the number of points in the whole

rock count that were neither cement nor matrix. Only sane of the lithic

types counted were used in this analysis. For the raw data from the

lithic counts refer to Appendix 3.

The results of these analyses were used in two sets of diagrams: 1)

lithic type (including standard deviation) versus west to east location

and 2) 2 or 3 related lithic types versus west to east location.

N = Number of points in vdiole rock count
M = Number of points in the lithic count
C9 = Number of points of cement in whole rock count
C10= Number of points of matrix in viiole rock count
C6 = Number of lithic in the whole rock count
Li = Number of points in the lithic count of the type you are 

interested in.
J = Intermediate factor

C6 1
j =------------------------------- X--------

N - (C9 + CIO) M

J X Li X 100 = Li % of total grains

= percent of the lithic type one is interested 
in of the total grains
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APPENDIX 5 MODAL PERCENTAGES FOR TERNARY PLOTS

Sample Number Q F L Oil F Lt On P K Qp Lvm Lsm Lm Lv Ls
MC-06 12 3 85 2 3 95 42 58 0 10 53 37 5 57 38
MC-16 46 9 45 12 8 79 59 41 0 44 21 35 73 27 0
MC-18 9 4 87 6 4 90 57 43 0 4 74 22 2 76 22
MC-36 31 1 68 13 1 86 91 9 0 20 29 51 48 30 22
MC-41 34 9 57 15 9 76 6433 3 60 19 21 43 40 17
MC-42 46 12 42 13 12 75 51 49 0 50 16 34 73 26 1

MEAN 30 6 64 10 6 84 61 39 1 31 36 33 40 17 43
STD.DEV. 16 4 9 5 4 8 17 17 1 23 23 11 31 14 20
ER-07 51 10 38 30 10 60 74 26 0 39 17 43 80 18 2
ER-08 57 3 40 23 6 71 77 21 2 36 16 48 81 19 0
ER-20 47 2 51 27 4 69 88 10 2 42 17 41 72 26 2
ER-25 45 8 47 21 8 71 73 24 3 34 22 44 73 25 2
ER-26 43 3 54 25 3 72 90 7 3 34 22 44 78 18 4
ER-27 57 3 40 15 4 81 82 12 6 52 37 11 33 66 1

MEAN 50 5 45 23 6 71 81 17 3 38 42 20 70 2 28
STD.DEV. 6 3 7 5 3 7 7 8 2 7 2 8 8 1 19

FC-13 20 25 55 15 25 60 37 53 10 10 50 40 84 16 0
FC-19 17 20 63 12 20 68 36 58 6 10 41 49 78 18 4
FC-20 19 27 54 14 27 59 34 57 9 10 44 46 87 13 0
FC-22 19 31 50 9 31 60 22 63 15 18 29 53 91 9 0
FC-27 23 36 41 16 36 48 31 63 6 18 53 49 91 9 0

MEAN 20 28 52 13 28 59 32 59 9 13 39 48 86 1 13
STD.DEV. 2 6 8 3 6 7 6 4 4 4 8 5 5 2 4
CB-07 41 14 45 33 14 53 70 30 0 18 36 46 84 14 1
CB-08 44 11 45 34 11 55 76 22 2 22 32 46 88 12 0
CB-11 37 21 42 24 21 55 53 42 4 27 47 26 58 42 0
CB-12 6 29 65 5 30 65 15 83 2 1 96 3 22 78 0

MEAN 32 19 49 24 19 57 54 44 2 17 53 30 63 37 0
STD.DEV. 18 8 11 13 8 5 27 27 2 11 30 20 31 31 0
WAB-01 22 18 60 19 18 63 52 46 2 9 72 22 37 63 0
WAB-04 15 33 52 13 33 54 28 68 4 6 74 19 39 61 0
WAB-05 6 19 75 6 18 76 23 72 5 1 78 21 37 63 0

MEAN 14 23 62 13 23 64 34 62 4 4 75 21 38 62 0
STD.DEV. 8 8 12 7 9 11 15 14 2 3 3 2 1 1 0
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APPENDIX 5 (COOTINUED) MODAL PERCENTAGES FOR TERNARY PLOTS
Sanple Nurriber Q F L On F Lt On P K Op Lvm Lsm Lm Lv Ls

TR-01 28 13 59 22 13 65 62 38 0 12 52 36 67 33 0
WTR-39J 19 15 66 14 15 71 49 49 2 7 74 19 26 70 4
WTR-43 18 14 68 12 14 74 46 52 2 9 83 8 10 87 3
WTR-44 13 13 74 8 13 79 38 60 2 7 45 48 51 36 13
WTR-47 11 35 54 9 34 57 20 78 1 5 82 13 18 76 6

MEAN 18 18 64 14 16 70 43 55 1 8 67 25 35 60 5
STD.DEV. 7 10 8 6 9 8 15 15 1 3 18 17 24 24 5

BMR-52 34 12 54 27 12 61 69 31 0 11 37 52 79 21 0
BMR-53 37 6 57 29 6 65 83 16 1 14 36 51 83 17 0
BMR-54 29 4 67 21 4 75 85 14 1 17 27 56 90 10 0
BMR-55 40 10 50 25 10 65 72 26 2 35 26 39 75 25 0
BMR-58 35 10 55 19 10 71 67 33 0 23 26 51 87 12 1

MEAN 35 8 57 24 8 68 75 24 1 20 30 50 83 17 0
STD.DEV. 4 3 6 4 3 6 8 9 1 9 6 6 6 6 -

HR-08 40 5 55 23 6 71 81 18 1 24 39 37 67 33 0
HR-10 23 8 69 14 8 78 65 33 2 18 40 42 72 28 0
HRR-02 6 17 77 5 17 78 24 74 2 1 80 19 15 51 34
HRR-10 10 20 70 9 20 71 31 69 0 1 55 44 12 76 12
HR-45B 30 16 54 16 14 75 52 45 3 25 33 42 67 26 7

MEAN 22 13 65 13 13 74 50 48 2 13 50 37 47 42 11
STD.DEV. 14 6 10 7 6 4 24 24 1 12 19 10 30 21 14

FSB-04 29 24 47 17 25 57 41 58 1 23 30 47 92 8 0
FSB-11 33 14 53 16 15 69 53 47 0 27 36 37 80 19 1
FSB-16 39 16 45 16 16 68 50 47 3 36 40 24 60 33 7
CF-01 37 20 34 21 29 50 42 58 0 40 39 21 43 55 2
CFT-01 34 22 44 14 22 64 39 58 3 36 40 24 51 42 7
CFT-09 33 26 41 25 26 49 49 51 0 30 45 25 50 50 0
CFT-llB 28 18 54 15 19 66 45 55 0 22 31 46 87 13 0
CPr-32 20 16 64 14 16 70 45 55 0 11 44 45 54 29 17
CFT-57 38 13 49 17 13 70 56 40 4 34 44 22 43 48 9
CET-61 30 17 53 16 15 69 53 47 0 32 37 31 69 29 2
CET-62 31 17 52 21 17 62 56 41 3 21 28 51 69 9 22

MEAN 32 19 49 18 20 62 48 51 1 25 36 39 65 28 7
STD.DEV. 5 5 8 3 5 8 6 7 2 11 11 6 17 16 8

HOKO RIVER FORMATION TOTAL

Q F L On F Lt On P K QP Lvm Lsm Lm Lv Ls
MEAN 29 15 55 17 15 68 55 43 2 21 36 43 60 35 5
STD.DEV. 14 9 12 7 9 10 20 20 3 15 14 20 26 22 9
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Map 4 Location map of petrographic saitples of the Hoko River Formation
froti the Hoko River section. Also shown are the botton (B) and the 
top (T) of the measured stratigraphic section.
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COUNTY. 7.5 MDSUTE SERIES

Map 5 Lcx:ation map of petrographic sanples of the Hoko River Formation 
fran the Burnt Mountain Road section.
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1 ___________5 0 1 kilometer

Map 7 Location map of petrographic samples of the Hoko River Formation 
from the Field Creek section.
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WASHINGTON—CLALLAM CO.
7.5 MINUTE SERIES (TOPOGRAPHIC)

SE/4 JOYCE 15' OUADRANGLE

9 location map of petrographic saitples of the Hoko River Formation 
fran the Old Elwah River Road section. Also shown is the location 
of the Elwah River Rappel section a letter R.
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the top (T) of the measured stratigraphic section.
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