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Abstract 

 

Organic molecular crystalline (OMC) films are being investigated for use in a wide range of 

potential applications, from field effect transistors, to light-emitting diodes, and photovoltaic 

cells.  The ultimate utility of OMC materials for such applications will depend on the degree and 

type of molecular order in deposited films, as well as the processing costs for preparing them.  

The goal of this thesis is to develop a method to produce high quality OMC thin films under 

ambient conditions, to characterize those films, and their growth kinetics.  In particular, I will 

investigate OMC film growth by ambient axisymmetric spray method, a technique in which an 

organic semiconductor is sublimated into a carrier gas at ambient pressure and deposited onto a 

substrate coated with a thin liquid layer.   I will examine the growth kinetics and morphologies of 

the resulting films.   The results of this research will be an improved understanding of the growth 

of organic crystals in a thin film of liquid and the production of cheap organic semiconductor 

thin films.    
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 Chapter One 

1.0 Introduction 

For over 60 years inorganic semiconductors have been the dominant material choice 

for semiconductors in the electronics industry.  Recently however, organic 

semiconductors have also begun to receive some attention because of their 

compatibility with low temperature deposition methods enabling the use of flexible 

substrates, their potential for lower cost processing, and their chemical „tuneablitiy‟.1  

This chapter will provide background on uses of organic semiconductors, their 

important physical properties, and a several methods for preparing them in thin film 

form.  This will be followed by a discussion on the basics of growth kinetics and what 

constitutes an ideal organic semiconductor thin film.   

Broadly speaking, there are two main types of organic semiconductors: organic 

molecular crystals (OMC) and conjugated polymers.  OMC‟s such as pentacene, 

which is one of the most widely studied OMCs, and rubrene, which has shown the 

highest mobility,2 are easily sublimed and show electronic performance approaching 

those of amorphous silicon in some cases.  The greatest challenge with OMC‟s is 

their poor solubility.3  This causes problems because solution-based processing 

methods such as spin coating are often among the least expensive ways to deposit thin 

films.  Conjugated polymers such as polythiophene and poly(triarylamine) have 

higher solubilities and are therefore more readily processed in thin film form, but 

have problems achieving high enough charge carrier mobilities for many practical 

applications. 4,5,6,7,8 



2 

 

The current generation of organic semiconductors has the potential to displace 

inorganic semiconductors in relatively low performance devices such as low cost 

solar cells9 and switching circuitry in active matrix flat panel displays.10  Recently, 

organic semiconductors have been demonstrated in organic light emitting diodes 

(OLEDs),11,12 organic solar cells,13,14,15 field effect transistors (OFETs),16 radio 

frequency identification tags(ORFIDs),17 and sensor arrays.18  In 2008 Sony 

introduced the first industry OLED TV which was said at the time “will soon become 

the standard against which all TVs are measured.”19 

The primary advantage of organic semiconductors is their potential lower cost of 

production.  Processing of traditional inorganic semiconductors requires complicated 

high-vacuum equipment and relatively high processing temperatures, all of which 

decreases manufacturing throughput and increases costs.  The potential for lower 

production costs with organic semiconductors stems from the removal of the need for 

high vacuum and compatibility with lower processing temperatures.  In addition, 

because organic semiconductors are molecular materials they are much more 

amenable to chemical modification for the engineering of more favorable electronic 

properties, or to add substituents to aid in processing such as patterning and 

solubility.20,21    

1.1 Electronic Properties of Organic Semiconductors 

In order to produce an effective organic semiconductor, knowledge of a few relevant 

physical properties is important.   In this section, I will discuss charge transport, the 

importance of crystalinity, chemical impurities, anisotropic mobility, macroscopic 

orientation, and crystallite size. 
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Charge transport in inorganic semiconductors can be described by band theory.   

According to band theory filled and empty valence orbitals combine to form two wide 

energy bands, called conduction and valance bands.  The conduction band is 

delocalized throughout the entire crystal, allowing charge carriers in the conduction 

band (electrons or holes) to move relatively freely.  By contrast, charge carriers in the 

valence band are much more closely bound to individual atomic centers, and hence 

immobile.   

 

Figure 1.1  
 A) Valence and conduction bands of a metal.   B) Valence and conduction bands 
of a semiconductor showing a small band gap.   C) Valence and conduction 
bands of an insulator, note the large band gap. 
 

As shown in figure 1.1, in a metal, the conduction and valance bands overlap 

allowing electrons to move relatively freely throughout the solid.   In an insulator, the 

conduction and valance bands are far apart and electrons have a hard time jumping 

the gap of 3-4eV.   In a semiconductor the gap between the conduction and valance 

bands is small, greater than zero but less than 3 or 4 eV22.   For semiconductors and 

insulators this range of energies is called the band gap.   The band gap energy region 

is forbidden and therefore in order for an electron to transition from the occupied 

valence band to the unoccupied conduction band it must be excited by a photon 
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capture, charge injection, or thermal excitation.   When an electron is excited into the 

conduction band by one of these mechanisms it leaves behind a charge deficient 

„hole‟.   In the absence of an external applied field the conduction electron and hole 

undergo random diffusive motion until eventually recombining, releasing energy 

equal to the band gap as shown schematically in figure 1.2 A.   However when an 

electric field is applied, the valance and conduction energy bands are distorted, shown 

in figure 1.2 B, causing electrons and holes to move in opposite directions and 

producing a net flow of current.  One important measure of the quality of 

semiconductor is its field effect charge carrier mobility (μ [cm2V-1s-1]), the ratio of 

the velocity of the charge carrier to the magnitude of the applied electric field. 

 

Figure 1.2 
A) Delocalized band energy levels showing the excitation of an electron from the 
valence band to the conduction band.   B) Movement of hole and electron under 
an applied field. 
 

Unlike the covalent bonding network in an inorganic semiconductor, organic 

semiconductor molecules are often held together by weak van der Waals forces; 

because of this they do not form delocalized orbitals and do not exhibit the same kind 

of band structure.   Charge transport in organic semiconductors occurs via a different 
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mechanism.   There are two main contributors to charge carrier mobility in an organic 

semiconductor, summarized in equation 1 

Equation 1 

 

The total mobility can be expressed as a sum of two factors: a contribution from μtun, 

electron tunneling (coherent electron transfer), and from μhop, the contribution to the 

mobility via a hopping (incoherent electron transfer).23  At low temperatures, μtun 

dominates and organic semiconductors behave more similarly to their inorganic 

counterparts, while at higher temperatures μhop dominates and a hopping mechanism 

better describes charge transfer.   In the latter case an electron transitions, or „hops‟ 

from the highest occupied molecular orbital (HOMO) on one molecule over a 

potential barrier to the lowest unoccupied molecular orbital (LUMO) on a 

neighboring molecule.  The hopping process may be assisted by lattice vibrations 

(„phonon-assisted‟ hopping), or by relaxation of the local electrostatic field („polaron-

assisted‟ hopping). In both cases the π conjugated system is primarily involved 

because of its ability to delocalize an acquired charge.  The amount of π-π overlap 

between neighboring molecules largely determines the energy barrier size that the 

electron has to overcome.21,24  Figure 1.3 A shows hopping events for an organic 

semiconductor under no applied field where charge migration is purely diffusive and 

there is no net current.  Figure 1.3 B shows a similar organic semiconductor under an 

applied field.  In this situation electrons tend to travel in a single direction while holes 

travel in the opposite direction, producing a net flow of current. 
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Figure 1.3 
A) Charge carrier hopping events in an organic semiconductor under no electric 
field.  B) Charge carrier hopping events in an organic semiconductor under an 
applied electric field adapted from [25] 
 

 

Figure 1.4 
X-ray diffractograms of pentacene in various states of crystallographic order 
next to its cartoon representation and bar graph of mobilities of films of 
different crystallographic order.  From [27] 
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Highly ordered molecular crystals with closely interacting conjugated π systems are 

usually associated with higher charge carrier mobilities, and much work has been 

done on introducing structural modifications to small-molecule organic 

semiconductors to improve the crystalline π-π overlap between neighboring 

molecules.26  Due to the need for close π-π overlap between neighboring molecules, a 

well ordered densely packed crystal structure is required for high charge carrier 

mobility.   This is illustrated in Figure 1.4 for the case of pentacene, where the charge 

carrier mobility was found to vary by about six orders of magnitude between 

amorphous, polycrystalline, and single crystal samples.27  Thus in order to achieve the 

best performing devices, a high degree of molecular order is required.   

Charge carrier mobility is also very sensitive to the presence of impurities, which are 

associated with four types of significant problems:  deep traps, shallow traps, lattice 

distortions,28 and scattering sites.   Deep traps and shallow traps affect charge 

transport exactly as their name suggests, by trapping charge carriers and impeding 

them from moving and producing a current.   The distinction between deep and 

shallow traps concerns the depth of the energy well; for deep traps the well depth is 

>> kBT whereas for shallow traps it is on the order of kBT which allows for thermal 

detrapping.   Deep traps reduce the overall population of free charge carriers thus 

reducing mobility.   Shallow traps effectively reduce the speed at which charge 

carriers propagate.   Impurities can be synthetic byproducts, or introduced during 

device fabrication. Usually they do not carry a permanent charge, but become charged 

when trapping an electron or hole.   These point charges create lattice distortions 

which further impede charge mobility by acting as scattering sites for other charge 
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carriers.23   As a result, high purity crystals are required to produce films with high 

charge carrier mobility. 

Another important factor affecting organic semiconductor performance is 

crystallographic orientation.  Figure 1.5 shows a single molecule of rubrene, an OMC 

with one of the highest known mobilities, as well as its crystal structure.   Upon 

examination of the packing in the crystal structure one observes a greater degree of π-

π overlap in the b-axis relative to the a-axis.   Figure 1.6 presents a graph of the 

mobility of a rubrene single crystal measured along different crystallographic 

directions.  As can be seen, the mobility parallel to the a-axis (0° to 90°) is 4.4 

cm2/Vs, while along the b-axis (180° to 360°) it is nearly four times larger at 15.4 

cm2/Vs.29   The difference occurs as a result of the high degree of π-π overlap 

between neighboring molecules along the b-axis and relative lack of π-π interaction 

on the a-axis.   This shows that the relative orientation of the different crystals that 

make up a thin film is important in producing high mobility thin films.  

 

Figure 1.5   
A) chemical structure of rubrene.  
 B)crystal structure of rubrene adapted from[29]  
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Figure 1.6  
Mobility of a single crystal of rubrene along different crystallographic 
directions. From Ref. [29]. 
 

A final consideration in producing a high quality thin film devices is crystallite size.   

In figure 1.7, an AFM image of a pentacene thin film is shown.30   As with most 

organic thin films, the one in figure 1.7 is made up of a large number of small 

(micron-sized) crystals.   Each gap between the crystals presents an energy barrier 

impeding charge transport.  Like a large number of resistors in series, the collective 

effect is to retard the flow of charge and lower the overall mobility of the film.    

 

Figure 1.7 
AFM image of pentacene thin film.  From Ref. [30]. 
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1.2 Film Growth Methods 

This section will discuss some of the most common ways of producing organic 

semiconductor thin films.   One method involves preparing a saturated solution of 

organic semiconductor and applying that solution to a substrate by spin or dip 

coating.    The degree of super-saturation is then controlled via cooling the substrate, 

or evaporating the solvent to promote regulated nucleation.31   Another similar 

solution processing method uses a crystal suspension of organic semiconductor 

crystals in a solvent.  Evaporation of the solvent after the suspension has been spun or 

dip coated onto a substrate leaves behind a thin film of the suspended crystals.32   

These methods have proven promising for their ability to grow crystals with tunable 

morphology and high throughput possibilities but tend to produce lower quality 

organic semiconductor thin films because of problems with impurities introduced 

from the solution or from unwanted chemical reactions, as well as poor contact 

between crystals.    

Another group of methods involves deposition via sublimation, done either under 

high vacuum directly on to a dry substrate33 or into a thin liquid layer,34 or under low 

vacuum in the presence of an inert carrier gas,35 or at ambient pressure with an inert 

carrier gas.36  In a method closely related to the work described in this thesis, Voigt et 

al. used a vapor phase deposition method under high vacuum to deposit sublimed 

tetracene into bis(2-ethylhexyl) sebacate continuously saturating the liquid thin film, 

and forcing the nucleation of crystals.  This method produced crystals that were 

significantly larger than those typically grown on bare surfaces, but still required high 

vacuum conditions, which from a technological standpoint slows down throughput 
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and increases cost.  Shrein et al., introduced a significant improvement in which an 

organic source material is evaporated in a three-zone furnace used to establish a 

temperature gradient from the source material to the water cooled substrate.  The 

source material is then carried by an inert gas to the substrate while the chamber is 

under low vacuum at pressures of 0.025-1.3 Torr.  A schematic for this deposition 

method is shown in figure 1.8.35  Sublimation under low vacuum with an inert carrier 

gas is slightly less expensive but still produces small crystals.  Biswas et al.36 

demonstrated an effective method of printing molecular organic semiconductors on to 

a substrate at ambient pressures.   In this method an organic semiconductor source is 

sublimed in to an inert carrier gas and that gas impinges as a collimated jet on to a 

cooled substrate where the organic semiconductor condenses.   To prevent oxidative 

damage to the organic vapor an annular channel was used to create a guard jet of inert 

gas to provide a oxygen free environment for deposition to occur.  A photograph and 

schematic of the nozzle is shown in figure 1.9. 

 
Figure 1.8 
Schematic of low-pressure organic vapor phase deposition. From Ref. [35] 
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For practical applications, films must be patterned to define device elements, 

establish electrical connections, etc.  Several patterning methods specific to organic 

semiconductors have been developed for both solution processing and vapor phase 

deposition.  These include feature definition using self-assembled monolayers 

(SAM), photolithography, and physical masking.  

 

Figure 1.9 
a) Schematic of heated nozzle with an annular guard flow channel to protect the 
organic vapor in the N2 gas stream b) Photograph of nozzle not the small size 
which increases the resolution of patterning. From Ref. [36] 
 

SAMs have been used in both solution and vapor phase deposition techniques.   A 

microcontact printing technique,37 shown in figure 1.10, is used to deposit an array of 

deposited SAMs which is used as a template to either promote or discourage 
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nucleation at specific surface site,38 or to promote or discourage wetting patterns in 

solution processing.39,40   In this microcontact printing technique, a SAM film is 

printed on to a substrate using an elastomeric stamp to define hydrophobic and 

hydrophilic regions, as shown in figure 1.10. 

 

Figure 1.10 
Schematic outline of a microcontact printing technique use to create an array of 
SAMs.  A PDMS stamp is inked with octadecyltriethoxysilane (OTS) ,a type of 
SAM, then the stamp is brought in to physical contact with the substrate and left 
in contact for some time and when removed an array of SAMs has been 
deposited[41] 
 

For films grown by vapor phase deposition, the SAM promotes nucleation and crystal 

growth from vapor phase deposition,41 producing films with highly controlled 

deposition on just the hydrophobic regions. The method allows for spatial control, but 

no alignment control. 

Ober et. al. have developed a dry photolithographic patterning process using 

supercritical carbon dioxide as a solvent.   A general schematic of this process is 

shown in figure 1.11.42   In this method a complete thin film is deposited and covered 

by photoresist.  The pattern that is wanted is then exposed to UV light changing it 

from CO2 philic to CO2 phobic.   The substrate is then treated with super critical CO2 
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and then developed removing the semiconductor thin film layer that is not capped by 

CO2 phobic photoresist. The photoresist is then removed in selected areas by 

exposure to UV light, leaving a patterned semiconductor layer in the unexposed 

regions.   While high resolution is possible with this method, there are many steps 

involved, and the potential for introducing chemical impurities. 

 

Figure 1.11 
Schematic of dry photolithographic patterning adapted from[42] 
 

One of the simplest ways to pattern a substrate is to simply mask off a negative image 

of the pattern you wish to produce with tape or some other solid easily removable 

substance.   The whole substrate then has a thin film deposited on it and the mask is 

removed leaving the reverse pattern behind.43   The advantages of masking are its 

simplicity, the fact that it works with all organic semiconductors, its compatibility 

with flexible substrates, and its ease of production on large area substrates.  However, 

it has limited resolution. 
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As discussed previously in section 1.1, molecular and crystallographic order has a 

large effect on the performance of an organic semiconductor thin film.   For this 

reason many different ways of aligning thin films have been devised including: 

mechanical stretching,44 frictional transfer,45 rubbing,46 zone casting 47 and the use of 

liquid crystals.51   In the mechanical stretching technique an organic thin film on a 

flexible substrate is physically stretched, elongating one axis and encouraging 

polymer chains to orient in one direction adding macroscopic order to the thin film.44   

This simple technique only works with polymer organic semiconductor thin films and 

only on stretchable substrates.   The friction-transfer method involves using a teflon 

rod or other similar material that is dragged across a surface, leaving behind a thin 

oriented polymer layer.   When an organic semiconductor is deposited on this layer, 

growth is promoted along one crystallographic direction.45  In a related method, a 

photosensitive polymer precursor layer is exposed to linearly-polarized UV light, 

causing preferential crosslinking to occur along the polarization direction, increasing 

the probability of polymer main-chains aligned in the direction parallel or 

perpendicular to the polarization direction, depending on the alignment layer used.48   

Previously this technique has been used to align liquid crystalline materials.45,49,50  In 

the zone casting method a solution is spread by means of a nozzle onto a moving 

substrate.   The substrate and nozzle are carefully thermally controlled in order to 

promote specific evaporation rates.   Under these conditions a stationary gradient of 

concentration is formed within the meniscus producing directional crystallization.  A 

schematic of this method is shown in figure 1.12.  
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Figure 1.12 
Zone casting method schematic. From Ref. [47] 
 

This thesis builds on work by previous group members.   It is closely related to 

method developed by Wilkinson et. al. 51 called organic vapor liquid solid (OVLS) 

deposition, which uses vapor-phase deposition into a thin thermotropic liquid crystal 

layer.   In this technique a liquid crystal layer is spin coated on to an orienting 

polyimide surface and an organic vapor generated by sublimation near atmospheric 

pressure is deposited on the substrate.   The main difference between OVLS and 

Shrein et. al.’s method is the liquid crystal layer and use of near-ambient pressures.   

The thesis also builds on the method developed by Bufkin et. al. which is introduced 

a carrier gas to accelerate the rate of vapor deposition.  Because the gas impinges on 

the substrate with an axisymmetric stagnation point flow, it was dubbed ambient 

axisymmetric spray (AAS).25  

1.3 Thesis Goals 

The goals of this thesis are to introduce improvements to the methods of Bufkin and 

Wilkinson leading to better reproducibility and film quality through the use of a 

redesigned experimental apparatus, to characterize the hydrodynamics and gas-phase 

kinetics of particle aggregation and deposition, and to use the improved method in 
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studies of the growth kinetics, structural, chemical, and electronic properties of 

organic semiconductor films on liquid covered and bare substrates.   

                                                           
1 Shuhong Liu, Wechung Maria Wang, Alejandro L. Briseno, Stefan C. B. 

Mannsfeld, Zhenan Bao, Adv. Mater. 2009, 21, 1-16 

2 J. Takeya, M. Yamagishi, Y. Tominari, R. Hirahara, Y. Nakazawa, T. Nishikawa, T.  

Kawase, T. Shimoda, S. Ogawa, appl. Phys. Let. 2007, 90, 102120 

3 Yanming Sun, Yunqi Liu ,Daoben Zhu J. Mater. Chem. 2005, 15, 53 

4 Günes, S.; Neugebauer, H. Chem. Rev. 2007, 107, 1324 

5 Jenekhe, S.  Macromolecules 2001, 34, 7315 

6 S. Hotta and K. Waragai, J. Mater. Chem., 1991, 1, 835. 

7 F. Garnier, A. Yassa, R. Hajlaoui, G. Horowitz, F. Deloffre, B. Servet, S. Ries and 

P. Alnot, J. Am. Chem. Soc., 1993, 115, 8716 

8 Ahles M. Appl. Phys. Lett., 2004, 84, 428 

9 Chiatzun Goh, Michael D. McGehee, Nat. Acad. Eng. : the bridge 2005 35, 4 

10 Amanda R. Murphy, Jean M. J. Frechet, Chem. Rev. 2007, 107, 1066 

11 H. Burroughes, C. Bradley, R. Brown, N. Marks, K. Mackey, H. Friend, L. Burns, 

B. Holmes, Nature 1990, 347, 539-541 

12 S. Sepeai, M. M. Salleh, M. Yahaya, A. A. Umar, Thin Solid Films 2009, 517, 

4679-4683 

13 P. F. Baude, D. A. Ender, M. A. Haase, T. W. Kelley, D. V. Mures, S. D. Theiss, 

Appl. Phys. Lett. 2003, 82, 3964 



18 

 

                                                                                                                                                                      
14 A. Macros Ramos, M. T. Rispens, J.C. Hummelen,R. A. J. Jansen, Synth. Met. 

2001, 119, 171 

15 J. M. Leger, D. G. Patel, D. B. Rodovsky, G. P. Bartholomew, Adv. Funct. Mat. 

2008, 18, 1212 

16 M. Sonntag, K. Kreger,D. Hanft, P. Strohriegl, Chem. Mater. 2005,17, 3031-3039 

17 R. Rotzoll, S. Mohapatra, V. Olariu, R. Wenz, M. Grigas, K. Dimmler, O. 

Shchekin, A. Dodabalapur, Appl. Phys. Lett. 2006, 88 123502 

18 B. Crone, A. Dodabalapur, A. Gelperin, L. Torsi, H. E. Katz, A. J. Lovinger, and Z. 

Bao, Appl. Phys. Lett. 2001, 78, 2229 

19 http://news.sel.sony.com/en/press_room/consumer/television/release/32499.html 

20 A. Afali, C. D. Dimitrakopoulos, T. O. Graham, Adv. Mater. 2003, 15, 2066 

21 Zhihua Chen, Peter Muller, and Timothy M. Swager, Org. Lett., 2006, 8, 2, 273 

22 Joel I. Gersten, Frederick W. Smith The physics and chemistry of materials, :wiley: 

new York, 2001  

23 Veaceslav Coropceanu, Je´roˆme Cornil, Demetrio A. da Silva Filho, Yoann 

Olivier, Robert Silbey, Jean-Luc Bre´das Chem. Rev. 2007, 107, 926-952 

24 Swenberg, C. E.; Pope, M. Electronic Processes of Organic Crystals and 

Polymers; Oxford University Press: Oxford, NY, 1999. 

25 Kevin Bufkin, MS thesis, Western Washington University, Bellingham, WA, 2010 

26 Zhihua Chen, Peter Muller, and Timothy M. Swager, organic  Lett., 2006, 8, 2, 273 

27 C. D. Dimitrakopoulos and D. J. Mascaro, IBM J. Res. Devel. 2001, 45, 11. 

28 T.P. Nguyen, Mat. Sci. in Sem. Process., 2006, 9, 1-3 



19 

 

                                                                                                                                                                      
29Vikram C. sundar, ,Scince 2004, 303,1644 

30 Gundlach,  Appl.Phys. Lett. 1999 74. 3302 

31 Peter T. Herwig and Klaus Müllen, Adv. Mater. 1999, 11, 6, 480 

32 S. H. Liu, W. C. M. Wang, S. C. B.Mannsfeld, J. Locklin, P. Erk, M. Gomez F. 

Richter, Z. N. Bao, Langmuir 2007, 23, 7428 

33 Sirapat Pratontep , Martin Brinkmann, Frank Nu¨esch , Libero Zuppiroli, PHYS. 

REV. B 2004, 69, 165201  

34 M. Voigt, S. Dorsfeld, A. Volz, M. Sokolowski, phys. Rev. let. 2003, 91, 026103 

35 Max Shtein , Herman F. Gossenberger, Jay B. Benziger, Stephen R. Forrest ,J. 

Appl. Phys., 2001 89, 2, 1470 

36 Shaurjo Biswas, Kevin P. Pipe, Max Shtein, appl. Phy. Lett.  2010, 96,263301 

37 Y. N. Xia, M. Mrksich, E. Kim, G. M. Whitesides, J. Am. Chem. Soc. 1995, 117, 

9576. 

38 A. L. Briseno, J. Aizenberg, Y. J. Han, R. A. Penkala, H. Moon, A. J. Lovinger, C. 

Kloc, Z. A. Bao, J. Am. Chem. Soc. 2005, 127, 12164. 

39 A. L. Briseno, M. Roberts, M. M. Ling, H. Moon, E. J. Nemanick, Z. N. Bao, J. 

Am. Chem. Soc. 2006, 128, 3880. 

40 S. C. B. Mannsfeld, A. Sharei, S. Liu, M. E. Roberts, Z. Bao, Adv. Mater 2008, 20, 

4044. 

41 A. L. Briseno, S. C. B. Mannsfeld, M. M. Ling, S. H. Liu, R. J. Tseng, C. Reese, 

M. E. Roberts, Y. Yang, F. Wudl, Z. N. Bao, Nature 2006, 444, 913 



20 

 

                                                                                                                                                                      
42 Ha Soo Hwang, Alexander A. Zakhidov, Jin-Kyun Lee, Xavier Andre, John A. 

DeFranco,Hon Hang Fong, Andrew B. Holmes, George G. Malliaras, Christopher K. 

Ober, J. Mater. Chem. 2008, 18,3087 

43 Max Shtein, Peter Peumans, Jay B. Benziger, Stephen R. Forrest, J. Appl. 

Phys.,2003. 93, 4005 

44 G. Gustafsson, O. Inganas, H. Stubb, Solid State Commun. 1990, 76,203 

45 J.C. Wittmann, P. Smith, Nature 1991, 352, 414. 

46 M. Prelipceanu, O. G. Tudose, O. S. Prelipceanu, S. Schrader, K. Grytsenko, 

Mater. Sci. Semicond. Proc. 2007, 10, 24 

47 W. pisula, A. Menon, M. Stepputat, I. Lieberwirth, U. Kolb, A. Tracz, H. 

Sirringhaus, T. Pakula, K. Mullen, Adv. Mater. 2005, 17, 684. 

48 M. Nishikawa, B. Taheri, and J. L. West, Appl. Phys. Lett., 1998, 72, 2403 1998 

49 J. H. Kim, Y. Shi, S. Kumar, S. D. Lee, Appl. Phys. Lett. 1997, 71, 3162. 

50 M. Schadt, K. Schmitt, V. Kozinkov, V. Chigrinov, Jpn. J. Appl. Phys. Part 1, 

1992, 31, 2155. 

51 F. Scott Wilkinson, Ronald F. Norwood, Joseph M. McLellan, L. Rhys Lawson, 

and David L. Patrick  J. AM. CHEM. SOC. 2006, 128, 16468-16469 



21 

 

Chapter Two 

2.0 Introduction 

In this chapter a summary of previous Patrick group members work will be presented 

followed by a discussion of some of the advantages and disadvantages of others 

methods compared to the method presented in this thesis. A detailed description of 

the apparatus and experimental conditions will be presented, along with a summary of 

the results of the experiments carried out for this thesis on general film growth 

characterization and hydrodynamics. 

Previous work in the Patrick group on this project was performed by two main 

contributors, F. S. Wilkinson and K. Bufkin.  Wilkinson used an apparatus similar to 

the one described in this thesis as well as an analogous method for the production of a 

uniform liquid layer to control organic semiconductor growth and a method for 

removing the liquid layer after deposition without disturbing the organic 

semiconductor thin film.  Wilkinson’s method utilized a graphite crucible heated 

using a custom-built ceramic enclosure with nichrome wire heating element, 

subliming the organic semiconductor at ambient pressure.  The substrate was then 

held upside-down directly over the graphite crucible and the organic semiconductor 

diffused to the liquid layer on the substrate dissolved, and nucleated large crystals.  

Some examples of this growth in various solvents are shown in figure 2.1.  

Wilkinson’s method resulted in aligned films with large crystal sizes at ambient 
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pressure, but deposition was very slow which is not ideal for high throughput 

applications. 

 
Figure 2.1 
Scale bars are 100µm, tetracene thin films grown with three liquid crystal 
solvents: A) ZLI 3417 B) E7 C) MBBA.  From Ref. [1]. 
 

Bufkin developed a method called ambient axisymmetric spray deposition (AAS).   

The main difference between AAS and Wilkinson’s method is the addition of an inert 

carrier gas.  In Bufkin’s method a graphite crucible was heated to sublime an organic 

semiconductor (tetracene) while an inert carrier gas passed above the crucible 

carrying the vapor toward the substrate.  The flow geometry created an axisymmetric 

stagnation point where the gas impinged on the substrate.  A representative film 

grown by this method is shown in figure 2.2. 
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Figure 2.2 
Representative film grown by Kevin Bufkin’s AAS method.  From Ref. [2]. 
 

Both methods work near ambient pressure, potentially reducing cost and complexity 

while increasing throughput.  Working at ambient temperature enables compatibility 

with most substrates, including plastics.  The liquid layer allows tuning of crystal 

growth, orientation, and has the potential to increase the chemical purity of deposited 

films.  Working at ambient pressure does have its disadvantages however, for 

example vaporized organic semiconductor molecules follow diffusive trajectories, 

leading to the formation of vapor phase aggregates which may not fully dissolve upon 

reaching the liquid-coated substrate.  Another limitation is reduced spatial resolution 
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due to the relatively long diffusion length of solute molecules in the liquid layer 

compared to adsorbates on a bare substrate.  This ultimately limits the minimum size 

scale in devices incorporating patterned thin films. 

2.1 Chamber Design 

Building from the method and chamber design of Wilkinson and Bufkin the author 

introduced a modified deposition apparatus, shown in figure 2.3.  The apparatus 

consists of four main regions: a heated crucible where sublimation occurs, a small 

mixing region where sublimate is diluted with a large volume of carrier gas, a needle 

directing gas flow to the substrate, and the substrate itself, where deposition occurs.   

 
Figure 2.3 
A photograph of the deposition apparatus and schematic showing the principle 
regions. 
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A schematic of the crucible along with a photograph of the source cell is shown in 

figure 2.4.  The aluminum source cell is sealed with a Kalrez© O-ring and has a small 

opening with a diameter of 0.343 mm out of which vapor can escape.  The 

temperature of the heating element used to sublime the tetracene is monitored and 

regulated via a built in thermocouple.  The fluence of vapor through the opening 

depends on the partial pressure of sublimate in the crucible and the size of the 

opening. 

  
Figure 2.4 
Schematic and photo of source cell/sublimation region 
 

If the opening is very small and the sublimation rate is high enough, then the partial 

pressure within the crucible is not significantly affected by the loss of mass through 

the opening and a constant, time-independent fluence can be achieved.  In this limit, 

such a source behaves as a Knudsen cell with the fluence depending only on 

temperature and not on the amount of solid material remaining in the crucible.  
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Although the size of the opening used in the source cell was much larger than the 

mean free path of molecules in the vapor phase, we found that the sublimation rate 

was indeed approximately independent of the mass loading for masses larger than 15 

mg, as shown in figure 2.5.  As a result, the cell could be used to deliver a constant 

concentration of gas phase tetracene which remained steady over a period of many 

hours. 

 
Figure 2.5 
Deposition rate for various different masses of tetracene in source cell during 
deposition.  Note that deposition rate is relatively independent of mass of 
tetracene added to the source cell 
 

To find the dependence of deposition rate on the temperature of the crucible a series 

of experiments was conducted.  To determine deposition rate as a function of 

temperature, thin films of tetracene were deposited on bare 1cm2 ITO glass slides.   
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Figure 2.6 
Deposition rate vs. crucible temperature.  The runs used to produce this plot 
used a needle with an inner radius of 0.419 mm and a flow rate of 128ml/min 
 

After deposition the slides were immersed in a known amount of hexanes and 

sonicated for one hour.  UV-Vis spectra were then taken of the resulting hexanes 

mixture and the amount of tetracene was quantified from the absorbance at λ=274nm.  

The resulting dependence of deposition rate on crucible temperature is shown in 

figure 2.6.  Directly above the source cell is a region where heated argon gas is 

introduced (figure 2.7). 

The gas circulates over the top of the source cell, carrying sublimed material into the 

needle.  The gas is not heated in this region and so the temperature begins to 

gradually decrease outside the crucible.  To characterize the temperature profile, a 

series of measurements were made at different positions.  Some of this data is shown 
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in figure 2.8.  Under typical operating conditions, the temperature of the gas stream 

averaged about 100 °C. 

 
Figure 2.7 

Schematic of the mixing region showing gas flowing over the source cell and up 
through the Luer Lok fitting and the needle 
 

 
Figure 2.8 
Temperature of different regions in the chamber measured with a secondary 
thermocouple plotted against the built in heating element thermocouple reading 
used to monitor and regulate heating element temperature. 
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2.2 Flow Calculations 

[Portions of this section are based on a manuscript in preparation by Shaw, D., 

Bufkin, K., Lund, C., Baranov, A., and Patrick D.L.] 

 

The flow of gas in the chamber was calculated in the following manner.  First, the 

flow out of the chamber was measured with a He flow meter at various readings on 

the ball flow meter at the end of the chamber assembly, shown in figure 2.9.  Then the 

He flow meter was calibrated at various flow rates by timing how long it took to 

displace 2L of water from a graduated cylinder at a given flow, shown in figure 2.10.  

A plot of the final calibration correlating the ball flow meters read out to the actual 

flow of gas out the exit of the chamber.   

 
Figure 2.9 
Ar flow out the exit of the chamber calibrated with a He flow meter. 
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Figure 2.10 
He flow meter calibration with displacement of 2L of water out of a graduated 
cylinder 
 

 
Figure 2.11 
Flow calibration for ball flow meter vs. actual ml/min.  Ball flow meter values 
have no units they are an arbitrary number taken off of a ball flow meter 
connected to the end of the apparatus. 
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Based on conservation of mass, the gas velocity at the base of the nozzle  can be 

computed as follows: Since the volumetric flow of gas out the end of the chamber,  

 has been measured, and the pressure at the end of the chamber is , 

the mass of Ar per unit time flowing through the apparatus (and hence through the 

needle) can be found: , where  is the density of Ar at 1 atm.  By 

conservation of mass, , where  is the needle radius, and 

 is the density of Ar at the needle inlet pressure  and temperature .  We take the 

pressure  to equal the pressure at the regulator (5 psi above atmospheric pressure).  

The density of Ar at the base of the needle is given by . As noted in 

figure 2.8 there is a small temperature gradient between the mixing chamber and the 

tip of the needle.  To simplify the calculation, here we use the average temperature. 

Combining these equations gives:  

 

Where: 

1.01x105 N m-2 is atmospheric pressure 

1 atm + 5 PSI = 1.39 x 105 Nm-2  

373 K is the gas temperature in the needle 

 300 K is the gas temperature at the end of the apparatus 
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Figure 2.12 shows the gas velocity at the base of the needle for the two needle 

diameters used in most experiments.  Under typical experimental conditions the 

velocity was about 1 m s-1.    

 
Figure 2.12 
Relationship between the jet velocity and the volumetric flow rate for two needle 
sizes.  
Approximating gas flow in the needle as compressible and isothermal, Poiseuille's 

equation for the pressure drop for fluid flowing in a frictionless pipe is 

 , where  is the length of the needle.  From conservation 

of mass .  For an ideal gas, ρx~Px, so this equation can be re-written 

in terms of pressures as νoPo=νiPi, assuming isothermal conditions.  This gives two 
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equations and two unknowns.  Solving simultaneously yields:  .  

For the values of the variables used in the experiment we find , in other words, 

there is no significant pressure drop along the length of the needle.  Having computed 

the needle outlet pressure the radially averaged needle outlet gas velocity can be 

found from .  Since , we have .  The Reynolds 

number at the outlet of the needle is , where  is the gas velocity,  is the 

needle radius,  is the gas density at the pressure and temperature of the needle outlet 

and  is the gas dynamic viscosity.  For the range of experimentally-used flow rates 

and needle diameters, this works out to be Re = 20 ~ 400.  Since this is much less 

than the onset value for turbulent flow in a pipe ( 2000), thus flow inside the 

needle is laminar.  In the deposition region, the flux of sublimate to the substrate is 

determined by hydrodynamics.  The laminar flow of gas on to a plate forms a static 

boundary layer3.  This static boundary layer is a layer of gas right next to the substrate 

with zero velocity in the z direction towards the substrate.  This provides a filtering 

effect where any material has to diffuse across this static boundary layer in order to 

be deposited on the substrate.  A schematic of the deposition region is shown in figure 

2.13.  The hydrodynamics and static boundary layer in the system will be discussed 

more in depth in chapter 3. 
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Figure 2.13 
Schematic of the deposition region and static boundary layer 
 

2.3 Substrate Preparation 

Five different substrates were investigated, glass with a thin film of 2,2’ 

thiodiethanol, indium tin oxide coated glass(ITO), ITO with a 2µm thin film of bis (2-

ethylhexyl)sebecate, and ITO with a 100µm polyimide layer covered with two 

different liquid crystals ZLI-3417 and E7.  Both glass and ITO coated glass were 

cleaned by sonication in acetone, isopropanol, then with nanopure water.  In the case 

of the bis (2-ethylhexyl)sebecate on ITO coated glass, the bis (2-ethylhexyl)sebecate 

is then spun on to the ITO coated glass at spin parameters of 500 rpm for 5 seconds 

then 3000 rpm for 30-120 seconds to produce various thicknesses.  The thickness of 

the most common spin parameters of 500 rpm for 5 seconds then 3000 rpm for 60 

seconds was found using interferometric measurements.  A representative spectrum 

that the thickness of the bis (2-ethylhexyl)sebecate layer was calculated from is 

shown in figure 2.14.   
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Figure 2.14 
Interferometric UV-Vis spectrum of bis (2-ethylhexyl) on ITO coated glass 
sebecate used to calculate thickness of thin film 
 

Three slides were spun at the same parameters and UV-Vis spectra were taken of 

each slide with a JASCO D-670 spectrophotometer.  In the case of a thin film on the 

surface of another material both of the interfaces between the thin film and the film 

and the air reflect light.  The constructive and destructive interference of the 

reflection from these two surfaces depends upon the optical path lengths of the two 

reflections.  The interference pattern shown in figure 2.14 can be used to determine 

the thickness of the film by using the equation4 
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Where: 

film thickness 

number of fringes in region used 

angle of incidence 

size of region used 

JASCO spectra manager software was used with a refractive index of 1.45 and a 

range of 342.5-1430nm to calculate the thicknesses shown in table 2.1.   

 

Table 2.1 Bis (2-ethylhexyl)sebecate thin film thicknesses 

  
Thickness 
(µm) 

slide 1 1.624 
slide 2 1.751 
slide 3 2.181 
average 1.852 
standard deviation 0.291913 

 

In the case of the polyimide coated ITO glass a polyimide mixture is spun on to the 

ITO glass slide at parameters of 4000 rpm for 30 sec to form an approximately 100 

µm thick layer.  The polyimide coated ITO glass slide is then heated to 130 °C and 

held for 15 minutes then heated at 5 °C per minute to 250 °C and held for 30 minutes 

to cure the polyimide.  After curing, the polyimide slide is rubbed with optical 

cleaning paper unidirectionally to establish the in-plane orientation of the liquid 

crystal.   
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2.4 Determining Extinction Coefficient 

To determine the extinction coefficient of tetracene in hexanes a series of solutions of 

varying concentration was made.  UV-Vis spectra were then taken of the resulting 

solutions, a representative spectrum is shown in figure 2.15. 

 
Figure 2.15 
Representative UV-Vis spectra of tetracene in hexanes note the peak in the 
visible at 470 nm corresponding to the 1La band and the peak in the UV region at 
274 nm corresponding to the 1Bb which will use to quantify concentration of 
solutions because of its large extinction coefficient 
 

The baseline correction method used for all UV-Vis measurements involved 

subtracting the absorbance at 350nm from the entire spectrum.  The extinction 

coefficient was determined to be 320,000 M-1 in hexanes, which is slightly higher 
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than the reported literature value5 of 270,000 M-1 in pentane.  The calibration curve 

shown in figure 2.16. 

 
Figure 2.16 
Plot of peak absorbance at λ=274 nm used to calculate a extinction coefficient of 
~320000L mol-1 cm-1 
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CHAPTER 3 

3.0 Introduction 

 

In this chapter film growth will be discussed in detail, starting with a qualitative 

description of the deposition and growth process of crystals on a surface.  The author 

will also discuss the effect of crystal growth in various liquid thin films and compare 

the method presented in this thesis to other similar methods.  Additionally a model for 

gas phase aggregation and hydrodynamic deposition will be presented as well as a 

discussion on crystal growth kinetics. 

 

3.1 The Growth Process 

 

As described in greater detail in chapter 2, tetracene is placed in an aluminum 

crucible, heated to its sublimation point, the sublimate is carried by argon gas and the 

gas carrying the tetracene impinges upon the substrate creating an axisymmetric 

stagnation point at the substrate.  Tetracene molecules diffuse across the static 

boundary layer and land on the surface of the substrate which has a thin liquid layer, 

deposited via spin coating on its surface.  As tetracene molecules are deposited they 

dissolve in the liquid layer.  This continues until the liquid layer becomes saturated, 

saturation can take less than a minute to several hours depending upon the liquid 

thickness, its saturation concentration, and the flux rate.  At a certain critical 

concentration above the saturation concentration crystals begin to nucleate.  Figure 

3.1A shows a sample at this stage of growth, when new crystals are in the process of 
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forming.  The image was taken using polarized optical microscopy of a sample in the 

deposition chamber as film growth was occurring.  For this sample saturation of the 

liquid layer of bis(2-ethylhexyl)sebecate was achieved in less than 5.3 minutes.  The 

first crystals to nucleate are fairly well dispersed and small.  As deposition proceeds 

new crystals nucleate and previously nucleated crystals grow until the crystals have 

grown/nucleated so close together that further nucleation essentially ceases.  This 

stage of growth, the steady-state regime, is shown in figures 3.1B and C.  After 

approximately 10 minutes existing crystals begin incorporating dissolved tetracene at 

the same rate that new tetracene is being introduced to the system.  As a result of the 

nucleated crystals being so densely distributed newly dissolved tetracene is unlikely 

to find enough material to nucleate a new crystal before it is incorporated into an 

already formed crystal.  During the steady-state regime crystals gradually grow in 

size until they coalesce.  Note the large increase in crystal nucleation density when 

comparing frames A and B in figure 3.1.  This stage is when crystals are first starting 

to nucleate and in contrast there is very little change in density when comparing 

frames B to C in figure 3.1.   

The composition of the thin liquid is an important parameter to optimize.  The 

semiconductor (in this case tetracene) has to be soluble enough in the liquid to 

dissolve but not so soluble that it takes a great deal of material to reach the saturation 

point.  To explore this parameter several different liquids were investigated.   
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Figure 3.1 
Tetracene thin film growing in bis (2-ethylhexyl)sebecate. Images taken in situ at 
different times during deposition with a long working distance cross polarized 
optical microscope A) 5.3 minutes B) 10.3 minutes C) 20.3 minutes of deposition  

A 

B 

C 
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Figure 3.2 
Images taken with cross polarized optical microscopy of tetracene films grown in 
different liquid thin films A) 2,2’-thiodiethanol B) liquid crystal E7 C) bis(2-
ethylhexyl)sebecate D) liquid crystal ZLI 3417 
 

A selection of films grown with different liquid layers, two liquid crystals (E7 & ZLI 

3417) and two isotropic liquids (2,2‟-thidiethanol and bis (2-ethylhexyl)sebecate), are 

shown in figure 3.2.  Note that both 2,2‟-thidiethanol and E7 produced poor films 

with very small crystals and a very high nucleation density while bis (2-

ethylhexyl)sebecate and ZLI 3417 produced larger crystals with lower nucleation 

density. Also note in figure 3.4D that the light passing through all the crystals is of a 

similar brightness, this qualitatively indicates a degree of macroscopic order between 

crystals.  Thus most promising is ZLI 3417, not only did ZLI 3417 produce large 

crystals, but the crystals show a degree of alignment. 

A B 

C D 
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In contrast to growth in a liquid layer, as discussed above, dry based growth, growth 

with no liquid layer produces crystals an order of magnitude smaller than the crystals 

grown in a liquid layer. Scanning electron microscopy (SEM) images of a tetracene 

thin film grown on ITO coated glass are shown in figure 3.3.  Note the very small size 

of the crystallites, as well as the persistent problem of more than one form of crystal.  

As discussed in chapter 1, if this film were to be made into a device it would have 

very poor performance because of its small crystal size creating many energy barriers 

to retard the motion of charge carriers.  The small size of the crystallites is evidence 

of an important deposition parameter, the ratio of flux to diffusion rate: if the flux is 

high and the diffusion length is short material cannot travel far before encountering 

either a nucleated crystal or enough monomers to nucleate a new crystal.   

 

Figure 3.3 
Two SEM images of a thin film of tetracene grown on ITO coated glass showing 
two general crystal shapes and crystallite sizes of <10µm 
 

The relationship between deposition rate and nucleation density is readily observed in 

figure 3.4. Both 3.4A and B are tetracene thin films grown in an approximately 2µm 
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thick layer of bis(2-ethylhexyl)sebecate.  3.4A had a deposition rate of 6.523×10-6 

mol m-2 min-1 while that shown in 3.4B had a rate between 1.6×10-7 mol m-2 min-1 

and 3.7×10-6 mol m-2 min-1.  The increased deposition rate of the former leads to the 

greater nucleation density observed. 

 
Figure 3.4 
A)  Cross polarized optical microscopy image of tetracene thin film grown in 
bis(2-ethylhexyl)sebecate at a deposition rate of 6.523×10-6 mol m-2 min.  B) 
Cross polarized optical microscopy image of tetracene thin film grown in bis(2-
ethylhexyl)sebecate at a deposition rate between 1.6×10-7 mol m-2 min-1 and 
3.7×10-6 mol m-2min-1. 
 

3.2 Film Characterization 

 

Shown in figure 3.5A is a UV-Vis spectrum of a thin film of tetracene grown on ITO 

coated glass.  Note the red shift of the peaks and the Davydov splitting around 525 

nm arising from electronic interaction of neighboring tetracene molecules indicating 

the film is somewhat crystalline in contrast to the spectrum taken of tetracene in a 

solution of hexanes shown in figure 3.5B where tetracene molecules are isolated from 

one another by the solvating hexane molecules.   

A B 
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Figure 3.5 
A)UV-Vis spectrum of tetracene thin film grown on ITO coated glass exhibiting 
Davydov splitting of the peak at 529 nm and the red shift compared to B)the 
spectrum taken in hexanes. 
 

Figure 3.6 shows an image taken by atomic force microscopy (AFM) of a tetracene 

crystal grown in bis(2-ethylhexyl)sebecate during the steady-state stage.  Note that 

there are no smaller crystals apparent in the AFM image which leads one to the 

conclusion that large optically visible crystals are the only crystals present at this 

stage of growth.  Several images of different crystals from the same sample were 

taken by AFM and the average height vs. crystal area is plotted shown in figure 3.7.  

Note that the 2D area the crystal occupies seems to have no correlation with the 

thickness of the crystal.  It is important to note that this lack of correlation of 

thickness to 2D area was only from one sample with one deposition time and rate.  

Further experiments such as finding the average thickness of crystals at varying total 

coverage e.g., when crystals are still nucleating or when coalescence is just beginning 
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are necessary to fully understand the dependence of crystal thickness upon 2D area of 

crystals.   

 
Figure 3.6 
AFM image of tetracene crystal grown in bis(2-ethylhexyl)sebecate on ITO 
coated glass  
 

 
Figure 3.7 
2D area occupied by crystal vs. average thickness of that crystal, determined via 
AFM. Note the similar thickness of crystals with vastly different 2D areas. 
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To illustrate that the deposited crystals are tetracene and show highly crystalline 

behavior an x-ray diffractogram was taken, shown in figure 3.8 is a diffractogram of a 

thin film of tetracene grown in bis(2-ethylhexyl)sebecate.  Peaks at 7.21°, 14.47°, 

21.83°, 29.25°, 36.85°, and 44.45° agree with the literature1 corresponding to the 

Bragg indices (001), (002), (003), (004), (005), and (006) for tetracene. 

 

Figure 3.8 
Diffractogram of tetracene thin film grown in ~2µm bis(2-ethylhexyl)sebecate 
layer.  Sample had a run time >1000 minutes and a high coverage. An expansion 
of the (002) peak of tetracene can be seen in the inset. The 5,12-
napthacenequinone shoulder on the tetracene (002) peak is readily apparent in 
this expansion. 
 

A peak at 10° was confirmed to be the main impurity 5,12-napthacenequinone via a 

x-ray diffractogram of a reference sample of 5,12-napthacenequinone, shown in 

figure 3.9.  Note the major peak at 10° that also present on thin films of tetracene 

grown in bis(2-ethylhexyl)sebecate.  The 5,12-napthacenequinone peak at 
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approximately 14° is evident as a shoulder on the (002) peak of tetracene in the inset 

of figure 3.8.  Peaks at 16.1° and 20.3° line up with peaks from the literature that are 

associated with ITO.1   

 

Figure 3.9 
Diffractogram of 5,12-napthacenequinone taken as a reference from a powder 
sample.  The two highest intensity peaks at ~10° and ~14.5° these were the two 
peaks used to identify the impurity in the tetracene films 
 

The multiple well formed peaks show that films grown in bis(2-ethylhexyl)sebecate 

are highly crystalline.  In contrast an x-ray diffractogram of dry based growth of 

tetracene on ITO coated glass is shown in figure 3.10 and shows a much less 

crystalline film.  Note the persistence of the impurity peak at 10°.   
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Figure 3.10 
Diffractogram of tetracene thin film grown on ITO coated glass, showing the 
peak (A) at 10° associated with 5,12-napthacenequinone and the (001) peak 
associated with tetracene at 7.2° 
 

3.3 Impurity Characterization 

One source of concern has been the presence of more than one type of crystal.  The 

crystal type that is more advantageous for the growth of high quality of organic 

semiconductor thin films is planar and grows as or into compact shapes like shown in 

figure 3.11A.  The other type of crystal that has persistently shown up in deposition is 

more needle or wire like and is shown in figure 3.11B 
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Figure 3.11 
Images of tetracene grown in bis(2-ethylhexyl)sebecate.  Insert A) shows the 
desired compact shapes of nucleate crystals while insert B) shows the presence 
and character of the needle impurities highlighted with arrows.  
 

These needle crystals cause problems when determining crystal density during 

analysis of the growth of thin films. Crystal density is a useful tool for analyzing this 

growth and is defined as the number of crystals per unit area.  Crystal density is 

determined by observing the number of discrete crystals in a given frame. If two 

crystals coalesce, even with differing crystal lattices they are observed to be a single 

crystal.  This assumption works when the crystals are compact but if a needle crystal 

grows through multiple compact crystals all of those crystals are now erroneously 

assumed to be one crystal when measuring crystal density. Additionally, if these 

needle-like crystals are made of the same material as the more advantageous crystal 

type, they are taking up material that would have been used to expand existing 

compact crystals.  

The following observations suggest that the needles are formed of an impurity rather 

than tetracene. First, there is no other crystal morphology of tetracene reported in the 

literature.  Secondly, the needles do not appear until after the nucleation of the 

compact shaped crystals.  Thirdly, the needle shaped crystals seem to appear even 

A B 
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when utilizing different liquid layers or no liquid layer at all.  All of these facts point 

towards the idea that these needle shaped crystals are not a different polymorph of 

tetracene and rather an impurity. Images of needle crystals grown in multiple solvents 

are shown if figure 3.12.   

 

Figure 3.12 
A) tetracene grown in bis(2-ethylhexyl)sebecate B) SEM image of tetracene 
grown on ITO coated glass C) tetracene grown in 2,2’-thiodiethanol D) tetracene 
grown in ZLI 3417.  Images A, C, and D captured by cross polarized optical 
microscopy.  Note the presence of needle like crystals in all images. 
 

As previously shown by XRD (in figures 3.8 and 3.9) 5,12-napthacenequinone is the 

major impurity in both the dry based film growth and film growth in bis(2-

ethylhexyl)sebecate.  This can also be seen in the FTIR spectrum shown in figure 

3.13 with the presence of a peak at 1675 cm-1 in an infrared spectrum, using K. 

A B 

C D 
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Bufkin‟s calibration curve2 the tetracene thin film is approximately 23% 5,12-

napthacenequinone.  

23% is an extremely high concentration for an impurity several factors may have 

contributed to an increase in impurity concentration. First, the argon flowed through 

the apparatus was not UHP and it was not run through an oxygen scrubber before 

entering the apparatus. Second, the apparatus itself may not have been perfectly leak 

free. Third, a more extensive purging could have been performed before deposition 

but this would have added a prohibitively long amount of time to each deposition and 

was deemed unnecessary by the author at that time. If oxygen was introduced by a 

minute leak or via the argon into the apparatus during deposition the tetracene vapor 

may have oxidized into 5,12-napthacenequinone. Further, the samples used to  

 

Figure 3.13 
FT-IR spectrum of tetracene thin film grown in bis(2-ethylhexyl)sebecate 
highlighting the 5,12-napthacenequinone peak at 1675cm-1. 
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determine 5,12-napthacenequinone concentration were allowed to sit on the bench top 

for several weeks before being  probed overnight by XRD and imaged by SEM. 

These factors may have contributed to an especially high concentration of impurity in 

the samples used to determine impurity concentration. 

 

3.4 Gas Phase Aggregation and the Hydrodynamics of Deposition. 

[Portions of this section are based on a manuscript in preparation by Shaw, D., 

Bufkin, K., Lund, C., Baranov, A., and Patrick D.L.] 

 

After the gas flow exits the nozzle it behaves like a semi-confined jet.  Numerous 

studies have examined the behavior of confined and free jets, which occur in a wide 

range of contexts, from rockets3 to flames,4 volcanoes,5 and effluent discharges at 

factories and power plants.6,7  Qualitatively, it is found that for moderately large 

Reynolds numbers, but below the onset of instability (~100 < Re < ~2000), a circular 

jet injected into a stagnant fluid of the same density develops into a steady slender 

flow.  As the jet entrains fluid from the surroundings it gradually expands and the 

centerline velocity decreases.  For very large distances the flow eventually becomes 

unsteady.8,9  Figure 3.14 illustrates free jet behavior for a range of different Reynolds 

numbers.  The conditions used in our experiments were typically between the first 

and second panels, with 50  500.  It can be seen that the jet remains laminar 

for many times its initial diameter, and that the angular rate of spreading is very 

small. 
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Figure 3.14 Instantaneous images of the evolution of a round non-buoyant jet 
with increasing Reynolds number. From Ref. 10.  
 

Depending on the velocity profile at the nozzle exit (flat or Poiseuille profile), the 

hydrodynamics in the near-field region of jet establishment ( ) can differ 

significantly from the situation farther downstream.  The confining effects of the 

substrate and shape of the nozzle exterior also affect the flow. Due to the large aspect 

ratio of the needle (  13), the initial velocity profile of the jet can be expected to 

be approximately parabolic (Poiseuille profile), diffusing toward a flat profile as it 

travels to the substrate.  To produce a relatively flat profile while retaining laminar 

flow, and also to minimize confinement effects resulting from the exterior shape of 

the needle, a blunt needle was used separated from the substrate by a scaled distance 

 8.  However these steps are probably insufficient to entirely eliminate the 

aforementioned complexities, and there are further complicating effects resulting 

from confinement and circulating gases within the deposition chamber, so we do not 

attempt here to make an accurate treatment of the full hydrodynamics.  Instead we 

adopt a very simple model, assuming a flat velocity profile over a circular area equal 
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to the size of the nozzle opening with laminar flow normal to substrate, Similar to the 

image shown in figure 3.15. 

 

Figure 3.15 
From: “Heat transfer by impingement of circular free-surface liquid jets”, 
Lienhard V, J. H., 18th National & 7th ISHMT-ASME Heat and Mass Transfer 
Conference, Jan 4 – 6, 2006, Guwahati, India. 
 

The impinging jet can be modeled as three-dimensional axisymmetric stagnation 

point flow, a classical problem in fluid mechanics.11  Because the liquid layer coating 

the substrate was very thin, we treat the flow as impinging on a flat, incompressible 

surface (experiments showed that the deposition rates on dry and liquid-coated 

surfaces did not differ substantially, indicating the presence of the liquid did not 

affect mass transport).  Along the z-direction the flow field can be divided into two 

regions: (i) a stagnation boundary layer immediately adjacent to the substrate, and (ii) 

an outer flow region.  In the outer flow region the streamlines are hyperbolic with the 

velocity components of the gas approximately given by:12 

 

 (1a) 
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 (1b) 

 

where  is a constant and  is the radial distance from the center of the impinging jet.  

Near the substrate a static boundary layer develops due to the no-slip condition at the 

surface.  For uniform laminar flow, near the center of the impinging jet (that is, for 

) the thickness of the boundary layer  is nearly constant and is given by13 

 

 (2) 

 

where the Reynolds number ,  is the distance between the nozzle 

and substrate,  is the jet velocity far from the substrate,  is the gas dynamic 

viscosity and  is the gas density.  Since the typical Reynolds numbers used in the 

experiment were in the range 50 ~ 500, well below the onset of turbulence, the flow 

conditions are assumed to be laminar. 

 

Note from Eq. 1b that the vertical component of the gas velocity is independent of 

radial position, and hence the amount of time required for a fluid parcel exiting the 

nozzle to reach a given height z depends only on z, and not on its radial position. 

Therefore in a system where gas-phase particles undergo continuous growth through 

aggregation, there is no radial variation in particle size.  Also note that according to 

equation 2 the thickness of the boundary layer is uniform near the stagnation point, 
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and hence the deposition rate in the region directly above the nozzle should also be 

nearly uniform.  These properties of axisymmetric stagnation-point flow make it 

particularly suitable for depositing highly uniform films. 

 

The flux of particles reaching the surface under conditions of axisymmetric 

stagnation point flow has been treated by several groups.  Forrest and coworkers14 

calculated the diffusive flux of particles across the boundary layer by assuming the 

substrate acts as a perfect sink (unity sticking coefficient) and applying conservation 

of mass to arrive at: 

 

 (3) 

 

where  (m-2 s-1) is the flux to the substrate,  is the particle concentration at a 

distance  from the substrate,  is the jet velocity far from the substrate, and  is the 

particle diffusion coefficient.  However these authors used an incorrect expression for 

the boundary layer thickness, which can lead to a considerable error in the calculation 

of the flux rate near the stagnation point. 

 

Earlier, Chin and Tsang15 proposed an asymptotic solution for the flux expanded in 

terms of the Schmidt number, : 
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 (4) 

 

where  and  is 

the radius of the substrate. 

 

Here we follow the treatment of Cooper and coworkers, who expressed the particle 

flux rate in terms of the Sherwood number:16   

 

 (5) 

 

where  is the particle radius, and  is the Sherwood number, defined as the 

dimensionless concentration gradient at the substrate: 

 

 (6) 

 

All three approaches predict  for monodisperse particles, and flux rates that 

agree to within 50% of each other.  Note that inertial effects are not significant for the 

very small particles considered here, i.e. those with Stokes numbers 

.17   
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If no aggregation occurs among gas phase molecules in transit to the liquid layer, then 

 is just the diffusion coefficient of a monomer, and , where  1/2.  This was 

the situation in the experimental system employed in Ref. 18, where a high 

temperature gas flow was used to prevent gas-phase aggregation and the predicted 

value  1/2 was confirmed.  However at lower gas temperatures such as those used 

the present work, some coalescence of monomers can be expected to occur, resulting 

in a time-dependent distribution of aggregate sizes whose diffusion coefficients  

depend on the number of monomers  in the aggregate.  The effect of this is illustrated 

in figure 3.16, which plots the deposition efficiency, , defined as the fraction of 

particles incident on the static boundary which reach the liquid, against particle size.  

As can be seen, mass transport across the boundary layer strongly favors small 

particles.  To provide some context for this result, the estimated size of the critical 

nucleus for tetracene in bis(2-ethylhexyl)sebecate (please refer to Section 3.6) is also 

shown in the figure 3.16.  The deposition efficiency of particles the size of the critical 

nucleus is over 100 times smaller than it is for monomers.  This may help explain 

why, even though some aggregation occurs in the gas phase, very few particles large 

enough to serve as nuclei for new crystals actually reach the liquid layer (see below). 
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Figure 3.16   
The deposition efficiency, defined as the fraction of particles incident on the 
static boundary layer that reach the liquid layer, depends on particle size.  The 
data was calculated using Eq. 5 with U=1 ms-1, T= 373 K, and P=1.36x105 Pa. 
 

Because the flux of material to the liquid layer is dominated by very small particles 

(with  where the Knudsen number  is the ratio of the mean free path of 

the gas molecules to the radius of the particle), we use the Epstein equation to 

compute the diffusion coefficient,19 
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where  is the particle mass,  is the temperature,  0.91 is the accommodation 

coefficient, and  is the particle mobility radius.  For solid spherical particles,  is 

just the particle radius ( ).  However it is well established from studies of soot 

formation in hydrocarbon flames that the aggregation of gas-phase polycyclic 

aromatic hydrocarbons (PAH) leads to fractal-like, rather than compact 

particles.20,21,22,23,24  Sorensen and coworkers25 have shown that Equation 7 continues 

to provide a good description of diffusivity in the free molecular regime for fractal 

particles if the mobility radius is expressed in the form  , where  is the 

radius of a monomer and  is the mass-mobility exponent.  The exponent  has a 

fairly well established value for PAH aerosols26,27,28 (  0.46), corresponding to 

particles with a fractal dimension 1.8.  Equation 7 may therefore be rewritten as 

 

       (8) 

 

where  is a constant. 

 

In addition to their fractal-like morphology, aggregating PAH aerosols develop size 

distributions which exhibit dynamic scaling,29 where the shape of the size distribution 

becomes time invariant and the average aggregate size increases in time  as 

.  The exponent  depends on the details of the aggregation process.  To treat the 

effect aggregation on particle deposition efficiency, we approximate the particle size 

distribution as a -function centered at the average particle size and consider the 
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diffusive transport of that species across the static boundary layer.  Since the amount 

of time particles have to aggregate before reaching the liquid layer is , 

where  is the distance from the crucible to the substrate, Equations 5, 6, and 8 can be 

combined and written in terms of flow rate as: 

 

 (5) 

 

where  is a constant and .   

 

Figure 3.17 shows a log-log plot of the experimentally measured deposition rate vs. 

jet velocity, where the slope is found to be  0.89.  It can be seen that the 

deposition rate exhibits the expected power-law dependence on jet velocity, but that 

the slope is significantly larger than would be expected in the absence of aggregation 

(dashed line,  1/2).  This suggests that some aggregation does take place in the 

gas phase.  Based on a value of the mobility exponent  0.46, we find  1.4.  

This compares to a value of  1 resulting from solving the Smoluchowski equation 

for particle aggregation using the constant kernel model.30  
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Figure 3.17 
The deposition rate,  increases with flow rate as J~Uβ , with β=0.89 (solid line), 
providing evidence for some aggregation of tetracene in the gas phase in transit 
to the substrate.  In the absence of aggregation, the predicted exponent is   β=0.5 
(dashed line).  Solid points are experimentally-measured deposition rates on 1 
cm2 bis(2-ethylhexyl)sebecate coated ITO glass substrates determined using UV-
Vis spectroscopy with samples deposited using T=373 K, P=1.36x105 Pa, z*=13 
mm, needle radius a=1.91 mm. 
 

3.5 Thermodynamic Analysis of Crystal Nucleation in Bis(2-ethylhexyl)sebecate 

[Portions of this section are based on a manuscript in preparation by Shaw, D., 

Bufkin, K., Lund, C., Baranov, A., and Patrick D.L.] 

 

As discussed below, the observed film growth kinetics are largely consistent with a 

diffusion-limited aggregation mechanism in which nuclei form in the liquid layer as a 

result of collisions between dissolved solute molecules and/or larger aggregates.  For 
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heterogeneous crystallization of organic films at solid-vacuum and solid-gas 

interfaces the size of the critical nucleus  is typically small, in the range  1 – 10 

molecules.  In a liquid solvent however, solvation effects often lead to much larger 

values for .  This has a pronounced effect on growth kinetics by suppressing the 

nucleation rate, leading to fewer, but larger crystals.  In the present system, where 

some aggregation of the tetracene aerosol appears to occur during transport in the 

vapor phase, knowledge of  is also important because any crystalline aggregates 

reaching the liquid layer that exceed this size may serve as new nuclei, offering a 

competing mechanism for crystal formation.  In this section we analyze solubility 

measurements in terms of classical nucleation theory to provide an estimate for . 

 

From classical nucleation theory, the radius of a (spherical) critical nucleus is 

, where  is the surface energy of the crystal-solvent interface,  is the 

molecular volume of the crystal, and  is the difference in the chemical potential of 

a monomer in the crystal and one in solution.  The surface energy can be estimated 

from , where  is the heat of dissolution per molecule and  is 

the surface area of one molecule.   can be estimated from , 

where  is the concentration of tetracene in solution under the supersaturation 

conditions occurring during crystal nucleation, and  is the equilibrium (saturation) 

concentration at the temperature of the substrate (20 °C). 
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We determined  from the induction time, that is, the length of time after deposition 

began before the first crystals appeared: , where  is the flux 

rate,  is the induction time, and  is the solvent layer thickness.  The 

equilibrium concentration appears in this expression because the induction time was 

measured with samples coated by a bis(2-ethylhexyl)sebecate layer that had been pre-

saturated with tetracene, in order to reduce the time required to perform the 

experiment.  From a set of three samples prepared under similar conditions we found 

 2800 ± 1100 s for a flux rate  (1.7 ± 0.5) x 10-9 mol m-2 s-1 and an average 

film thickness  1.9 ± 0.3 µm.  The latter was measured by interferometry as 

described in Chapter 2.   was determined to be (7 ± 1) x 10-4 M (see below).  

Using these values we find  (6 ± 1) x 10-21 J molecule-1.   

 

 was calculated from a series of temperature-dependent solubility 

measurements using the van‟t Hoff equation , where 

 is the concentration at saturation measured as mole fraction of tetracene in bis(2-

ethylhexyl)sebacate, and  is the entropy of dissolution.  These data are shown in 

Fig. 3.18.  From the slope of the plot,  (2.2 ± 0.9) x 10-20 J molecule-1.  

Using the approximation  we estimate surface energy to be  46 mJ 

m-2.  

 

Finally, based on these measurements we arrive at an estimate for the critical nucleus 

size  4.3 nm, or ~1000 molecules.   
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Figure 3.18  
van’t Hoff plot of the saturation concentration of tetracene in bis(2-
ethylhexyl)sebecate vs. 1/kT.  The slope equals the heat of dissolution.  
Concentration was measured by UV-Vis absorbance on a series of solutions 
equilibrated at range of temperatures between -8.5 °C and 100 °C. 
 

In concluding this section, we note that the calculations assume the concentration of 

tetracene is uniform throughout the thickness of the solvent layer.  However since the 

impinging tetracene arrives on the outer surface of the liquid, a certain concentration 

gradient is expected, with the highest concentration occurring at the vapor – liquid 

interface.  To judge the significance of this effect, we compare the characteristic 

mixing time, , equal to the time required for a tetracene molecule to diffuse the 

thickness of the solvent layer, to the induction time,  103 s.  The mixing time can 

be found by rearranging Einstein‟s diffusion equation in 3-dimensions: 
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 10-2 s, where the diffusion coefficient is found from the Stokes-Einstein 

relation ,  23 x 10-3 N m-2 sec is the solvent viscosity,  is the 

molecular shape factor (  4  for an elongated molecule like tetracene31), and  is 

the radius of a tetracene molecule.  This gives  3.5 x 10-11 m2 s-1.  Since  

the liquid layer can be taken as essentially uniformly mixed and we neglect the 

(consequently small) concentration gradient.  If the system is fully mixed, it follows 

that deposition of new material can be thought of as occurring throughout the 

thickness of the liquid layer, as if new monomers were just as likely to materialize 

inside the fluid as at its surface.  Hence the effective deposition rate depends on the 

thickness of the solvent layer, as originally pointed out by Sokolowski. 

 

3.6 Preliminary Analysis of Crystal Growth Data 

This section presents some preliminary analysis of crystal growth characteristics and 

behavior.  Crystal growth data were collected with in situ cross polarizing optical 

microscopy.  The images taken were analyzed using photoshop CS4 extended edition 

to calculate X and Y coordinates found at the onset of nucleation, crystal density, and 

the area of each crystal.  Figure 3.19 shows a plot of crystal density vs. deposition 

time, i.e., time since deposition has started in minutes, as well as three important 

stages of time during deposition.  The first is the saturation stage, in this stage no 

nucleation occurs, material is deposited onto the liquid layer and dissolved therein.  

Soon this liquid layer, in this case bis(2-ethylhexyl)sebecate, becomes supersaturated 

and reaches a critical point where crystals begin to nucleate; the nucleation stage.   
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Figure 3.19 
Plot of nucleation density in number of tetracene crystals per square millimeter 
in a thin film of bis(2-ethylhexyl)sebecate showing three stages during the 
growth of a film saturation, transient regime, and steady-state regime. 
 

As can be seen from figures 3.19 and 3.20 during the nucleation stage crystal nucleate 

and grow quickly, this is because the supersaturated liquid surrounding the crystals 

rapidly adds material to existing crystals.  Figure 3.20 shows the derivative of crystal 

density plotted against coverage, θ, (the fractional measurement of area covered by 

crystals /total area) highlighting the rapid nucleation of crystals to a coverage of 

0.006.  When the solution is no longer supersaturated the steady-state stage begins as 

shown in figure 3.19.   
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Figure 3.20 
Crystal nucleation rate vs. coverage θ, defined as fractional surface area covered 
by crystals.  After a critical concentration nucleation begins rapidly and after 
coverage θ=0.006 is reached nucleation rate declines to zero. 
 

In this stage crystals are rarely nucleating, instead material is adding to already 

established crystals.  It has been observed that in the nucleation stage the growth rate 

of crystals is higher than in the steady-state regime which follows it.  This can be seen 

in figure 3.21 where a plot of coverage vs. deposition time is shown and there are two 

apparent growth rates that can be drawn from the data.  Using the average height of a 

crystal calculated from AFM data presented in figure 3.7 the growth rates were 

calculated.   
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Figure 3.21 
Coverage as crystal area/total area observed vs. deposition time in minutes.  
Film was grown in bis(2-ethylhexyl)sebecate showing the two different growth 
rates with one constant deposition rate.  Lines in figure are not mathematically 
derived and are only present to emphasize the appearance of two rates. 
 

Note, the AFM data presented was obtained from the same sample as figure 3.20 but 

the data from figure 3.19 is not from the same set as 3.20.  The initial growth rate was 

found to be 3.64×10-8 mol/(sec m2) and the secondary rate was found to be 1.26 × 10-

8 mol/(sec m2).  The secondary growth rate is on the order of a reasonable flux rate 

but further work must be done to confirm.   An interesting phenomenon is shown in 

figure 3.22, where both coverage and crystal density scale as approximately θ~N~t13 

in the initial nucleation stage and then nucleation ceases and coverage scales linearly 

with time.  Strictly 2D growth is predicted when coverage scales as  this agrees 

with the AFM data shown earlier showing no dependence of crystal thickness on 

crystal area as well as fairly thin crystal growth at ~75nm.   
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Figure 3.22 
Plot of ln(coverage) vs. ln(time) showing two different dependences of coverage 
on time for two different stages θ~t13and θ~t1 corresponding to the nucleation 
and steady-state stages.  Shown in the inset is ln(number of crystals) vs. ln(time) 
note the initial dependence of θ~t13during the nucleation stage. 
 

X Y coordinates were used by a computer program to calculate the Voronoi 

tessellation shown in figure 3.23.  Cells represent the area closest to a specific crystal 

associated with that cell instead of the neighboring crystals.  The colors in figure 3.23 

have no meaning other than to differentiate the cells from one another. The circles 

represent the relative size and positions of the crystals associated with each cell.  

Filled in circles represent crystals that are withheld from the analysis because the cell 

surrounding that crystal has an incompletely defined cell size because it intersects the 

outer boundary of analysis.  The data obtained from the Voronoi cell tessellation can 

be analyzed in several different ways the first of which is a cell size distribution 

shown in figure 3.24. 
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Figure 3.23 
Voronoi tessellation circles show relative size (not to scale) and position of 
crystals.  Cells with filled in circles intersected boundary and are excluded from 
analysis. 
 

Figure 3.24 shows the cell size/average cell size plotted against a normalized 

probability as well as the semiempirical function  

32plotted for two values of β (9.9 and 3.61).  The solid line in figure 3.24 represents a 

β value of 9.9 which is the best fit for the experimental data and the dashed line 

represents a β value of 3.61 corresponding to a completely random cell size 

distribution.33  Judging by the sufficient difference in β values and the difference in 

peak shapes from a broad short peak for the random distribution (β=3.61) to a much 

sharper and taller peak for the best fit experimental distribution (β=9.9), it is evident 

that the distribution of cells is not completely random.   
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Figure 3.24 
Voronoi cell size distribution, solid line is best fit to the data using the 
semiemperical function shown in text corresponding to a β value of 9.9.  Dashed 
line is the distribution resulting from the tessellation of a collection of randomly 
positioned points, corresponding to a β value of 3.61 
 

Other evidence to support the fact that the distribution of crystals is not completely 

random is shown is figure 3.25 as a radial distribution function of probability that a 

crystal will have a neighbor some distance away in µm.  As can be seen in figure 3.25 

crystals tend to not nucleate closer than 100 µm.  This is consistent with the idea that 

crystals are using material from the surrounding liquid to nucleate and grow.  If the 

solution around a crystal becomes locally depleted of organic semiconductor, lower 

than the critical concentration needed to nucleate new crystals, one should see a 

dependence on separation of nucleation sites similar to that shown in figure 3.25.  The 

rate of crystal growth was found to depend on the size of the Voronoi cell, a plot of 

cell size vs. crystal growth rate is shown in figure 3.26. 
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Figure 3.25 
Radial distribution of crystal separation, probability that a crystal will have 
neighbor a given distance away, calculated with same program used to calculate 
Voronoi tessellation  
 

The dependence of the crystal growth rate on Voronoi cell area is an important 

finding because it is evidence that the Voronoi cell area can be considered a capture 

zone.  Capture zone being defined as an area in which flux landing in this area have a 

much higher probability of being incorporated into the crystal associated with that 

capture zone than any of its surrounding neighbors.  Thus if a crystal had a very large 

capture zone and the incoming flux was uniformly depositing it would incorporate 

material from a very large area leading to a very large growth rate.  All data used in 

figure 3.26 was taken during the steady state stage when the total change in coverage 

is approximately equal to the rate of deposition and growth is strictly 2D as shown by 
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figure 3.21 and 22.  The growth rate of crystals is dependent on the size of its capture 

zone and therefore crystal sizes should follow a similar size distribution function. 

 

Figure 3.26 
Relationship between crystal growth rate and Voronoi cell area, solid circles are 
a 3-point moving average after nucleation of new crystals had effectively ceased. 
 

A histogram of crystal area at various times is shown in figure 3.27.  Red and green 

dots represent data points collected at 10.5 and 18.5 minutes after deposition was 

started.  Red and green dashed lines represent the best fit line to their respective red 

and green data points using the function  

which as you can see is very similar to the function used for the Voronoi cell size 

distribution, this is consistent with the idea that the size distribution of crystals should 

have a similar distribution as the capture zone sizes.  It can also be seen that during 
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the nucleation stage the size distribution does not fit the same function but does fit 

exponential decay quite well; this is shown in figure 3.27 with the blue dots  

 

Figure 3. 27 
Crystal size distributions at three different times.  Points are experimental 
values.  Blue line is a simple exponential.  Red and green lines are best-fits to a 
semiempirical function similar to the one utilized in figure 3.26. inset shows that 
the initial size distribution is an almost perfect exponential.  Inset data are for t 
= 8.0 min. 
 

representing data points collected at 8.0 minutes after deposition was started during 

the nucleation stage, the inset is a plot of ln(number of crystals) vs. the crystal area 

for data collected at 8.0 minutes after deposition.  This is consistent with 

supersaturation and an initial explosion of nucleation when crystals are at a size 

where they can be counted but their size cannot yet accurately be judged via the 

detection method used.  
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3.7 Conclusions and Future Work 

In summary it has been found that for the method described sublimed tetracene vapor 

aggregates before reaching the static boundary layer, but the sizes of aggregates that 

deposit onto the liquid layer are below the critical nucleation size.  The aggregates 

that arrive at the liquid layer are dissolved, eventually forming a supersaturated 

solution during the saturation stage.  Once this supersaturated solution reaches a 

critical concentration nucleation and crystal growth begin rapidly during the 

nucleation stage.  After the liquid layer‟s concentration of tetracene has been reduced 

to its equilibrium concentration the steady-state stage starts, where nucleation ceases 

and the rate of growth of crystals is approximately equal to the rate of deposition.  

Growth continues in this manner until crystals begin to grow into each other and 

coalesce.  

This thesis delineates the refinement of a method and theory to describe the processes 

utilized for the deposition of quality organic semiconductor thin films.  Growth of 

these thin films was improved with the use of a liquid layer.  The basic 

characterization of the thin films produced by this method has been established and 

agrees with the theory presented in this thesis.  A kinetic basis for the stages of 

growth was found combining elements of classical crystallization and diffusion 

limited aggregation theory. 

Future work will include modification of the method, e.g., employment of different 

liquid layers, i.e., novel oriented liquid crystals, different substrate temperatures and 

alteration to the chamber to reduce the amount of 5,12-napthacenequinone produced 

during sublimation and deposition.  Quality films will be rinsed with cold hexanes to 
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remove the liquid layer and electrodes will be patterned on to the film to test the 

electronic properties of the thin films.  Several different organic semiconductors will 

be used to make thin films with the same method such as pentacene, rubrene, and 

C60.   
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