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ABSTRACT 

 

The ability of a symbiotic organism to tolerate and respond to stress is dependent on a 

complex integration of the physiological processes of both host and symbiont. In the 

intertidal zone, where organisms are exposed to numerous environmental stressors, 

physiological tolerance limits of algae and animals are often within 1°C - 3°C of the body 

temperatures they experience there. To understand the association between intertidal sea 

anemones and their photosymbionts, and how these associations may change with increasing 

climatic stress, I examined two spatially dominant species in the genus Anthopleura (A. 

elegantissima and A. xanthogrammica) in symbiotic associations with their relatively 

sensitive chlorophyte photosymbiont, Elliptochloris marina. Anemones hosting E. marina 

were exposed to an increasing thermal regime from 10 - 28°C, under two light treatments, 

over the course of 10 weeks to establish the upper thermal tolerance limit of E. marina in 

each host, while examining the response of the anemones themselves to the thermal stress. Of 

the two hosts, A. xanthogrammica was less tolerant of high temperatures. A contraction 

response was triggered for A. xanthogrammica at temperatures above 18°C, but A. 

elegantissima showed no contraction until temperatures reached 24°C. To determine how the 

E. marina were responding to the temperature increases, I examined the photochemical 

efficiency of PS II by measuring photosynthetic efficiency (Fv/Fm) and photosynthetic 

capacity (rETRmax) of symbionts within each anemone host at each temperature interval. 

Photochemical efficiency was strongly affected by temperature; however, there were no 

apparent host-specific differences. From 10 - 22°C, Fv/Fm remained stable, averaging 0.6 ± 
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0.1 (SD) for both species. At temperatures above 22°C, photochemical efficiency steadily 

declined, indicating photoinhibition and the upper thermal tolerance limit of E. marina. This 

relatively low thermal tolerance may influence the competitive balance of symbionts under 

conditions of increasing global temperatures. Increasing temperatures may cause anemones 

to adaptively expel symbionts to switch to a more tolerant species. In this study, both A. 

elegantissima and A. xanthogrammica expelled symbionts as the temperatures rose. By 28°C, 

both Anthopleura species had expelled the majority of their symbionts; however, A. 

xanthogrammica was able to retain a higher percentage (A. elegantissima: 96.7 ± 4.6 % loss; 

A. xanthogrammica: 84.0 ± 18.1 % loss), indicating that they may have an increased ability 

to buffer temperature changes and maintain algal symbioses during prolonged periods of high 

temperatures. Field measurements of the internal body temperatures of A. xanthogrammica 

indicated that the anemone has a moderate ability to buffer its symbionts from thermal stress, 

as the internal body temperatures of lower intertidal anemones remained 6.2 ± 1.1°C cooler 

than ambient temperatures. This ability to moderate the internal temperature is likely due to 

host-specific morphological traits, such as a large body size and thick host tissues, which 

may ultimately provide a more favorable environment for their symbionts under periods of 

high stress. The relative abilities of A. elegantissima and A. xanthogrammica to buffer their 

symbionts, as well as the physiological tolerances of E. marina, may have important 

ecological implications, controlling the range of zoochlorellae at both latitudinal and 

microhabitat scales. 
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INTRODUCTION 

Coral reefs, some of the most threatened ecosystems on earth, are continuing to 

decline due to a variety of anthropogenic stressors (Hoegh-Guldberg 1999, Weis 2008). 

Currently, a third of all coral species are at risk of extinction (Carpenter et al. 2008). The 

health of corals depends on the obligate association between host and symbiont (referred to 

in whole as the holobiont). Symbionts produce carbon through photosynthesis and translocate 

it to the host as simple organic compounds that are essential to the hosts’ survival in nutrient-

poor tropical waters (Muscatine 1967). In return, the host provides inorganic nutrients in the 

form of respiratory waste (Yellowlees et al. 2008) and shelter that can reduce the risk of 

symbiont photoinhibition related to a variety of environmental stressors (Bhagooli and 

Hidaka 2003). The greatest threat to corals is a malfunction of the symbiotic association, 

which can lead to expulsion of the algae by the host (referred to as bleaching) (Hoegh-

Guldberg 1999, Weis 2008). Bleaching results in decreased growth and reproduction, as well 

as increased disease and mortality (Brown 1997, Hoegh-Guldberg 1999). Symbiont 

expulsion is often triggered by environmental stressors, such as increased temperature or 

light intensity, which compromise the photosynthetic ability of the symbiont. These 

symbiotic associations are extremely sensitive, and increases in seawater temperature as low 

as 1°C above seasonal averages can trigger bleaching (Holden 1995). 

Recent research has shown that certain corals are more resistant to bleaching than 

others, likely due to host traits such as tissue thickness, heterotrophic capacity, and presence 

of heat shock proteins (Baird et al. 2009, Fitt et al. 2009). Symbiont characteristics related to 

their genetics and physiological response to stressors can also increase bleaching resistance 
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(Sampayo et al. 2008). Therefore, a holobiont’s overall ability to tolerate and respond to 

stress is dependent on a complex integration of the physiological processes of both host and 

symbiont (Baird et al. 2009), which makes susceptibility to stress highly variable depending 

on the specific host-symbiont partnership (Coles and Brown 2003). Due to the complex 

nature of symbiotic relationships, the relative contributions of host and symbiont to bleaching 

resistance are poorly understood. 

Recent advancements have allowed researchers to study the relationship between 

specific host and symbionts in relatively non-invasive ways. Previously, most coral research 

was performed in controlled laboratory environments, which required damaging the host 

coral by removing it from its natural environment and stripping the tissues to extract the 

symbionts. In 2007, however, an underwater chlorophyll fluorometer called the Diving-PAM 

was developed. This instrument allows researchers to examine the photophysiology of 

symbionts without damaging the hosts, providing information about the in vivo efficiency of 

electron transfer within photosystem II. The PAM fluorometer measures the proportion of 

absorbed light energy that is actually used for photochemistry, which has become a widely 

accepted indicator of stress in symbiotic cnidarians (Jones et al. 1999, Warner et al. 1999). 

 While the majority of PAM fluorometry research has been focused on tropical host-

photosymbiont relationships, such as corals, it has equally valuable applications in temperate 

environments. Unlike their tropical counterparts, temperate associations occur in nutrient-

rich waters where the host can obtain many of their nutrients and supplementary carbon 

heterotrophically (Dubinsky and Jokiel 1994). This makes the majority of temperate host-
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photosymbiont relationships facultative rather than obligatory. In addition, temperate 

associations are subject to dramatic environmental changes, especially when located in the 

intertidal zone where they are subject to periods of aerial exposure coinciding with high 

levels of irradiance and temperature. This combination of factors makes the study of 

temperate symbioses intriguing, providing a very different opportunity to study and 

understand relationships between symbiont and hosts and the effects of environmental 

change on the partnership.  

There has been substantial research on the thermal tolerance of symbionts within the 

temperate intertidal anemone Anthopleura elegantissima (Brant), an important, spatially 

dominant member of intertidal communities from Alaska to Baja California (Hand 1955, 

Dayton 1971, Sebens 1982). These anemones exhibit an unusual symbiotic relationship, 

hosting two distinct unicellular symbionts within their gastrodermal tissues, allowing for 

comparison of different algal-symbiont partnerships in a single host. Photosymbionts in A. 

elegantissima can include green chlorophytes (Elliptochloris marina, Letsch) referred to as 

zoochlorellae, and brown dinoflagellates (Symbiodinium californium, A. T. Banaszak, R. 

Iglesias-Prieto & R. K. Trench and S. muscatinei, LaJeunesse & R. K. Trench) called 

zooxanthellae. Both of these endosymbiotic partners benefit the host by providing 

photosynthate that supplements heterotrophic feeding by the anemones. The additional 

carbon provided by photosymbionts reduces the weight loss of the anemones hosts during 

periods of starvation (Muscatine 1961) and may allow the host to extend its range to areas it 

could not otherwise inhabit due to low food availability (LaJeunesse and Trench 2000). 

Research suggests that zooxanthellae translocate higher amounts of photosynthate to the host 
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than do zoochlorellae (Verde and McCloskey 1996, Bergschneider and Muller-Parker 2008). 

In addition, there may be other ecological consequences of hosting different symbionts, 

including differential predation on hosts (Seavy and Muller-Parker 2002), and differences in 

concentrations of UV-absorbing amino acids (Shick and Dunlap 2002), but the advantages of 

hosting one symbiont over the other are not fully understood. 

Like A. elegantissima, the anemone A. xanthogrammica (Brant) hosts both 

zoochlorellae and zooxanthellae. However, little is known about A. xanthogrammica 

symbiosis, despite its potential as a second model species. A. xanthogrammica and A. 

elegantissima are congeners that live in similar intertidal habitats and are often found 

together, but there are distinct differences between the two species. While A. elegantissima 

grows to only 6 cm in diameter and forms clonal aggregations though longitudinal fission, A. 

xanthogrammica reaches at least 25 cm diameter, does not reproduce asexually and does not 

form aggregations with individuals of the same species (Hand 1955, Dayton 1973).  

Symbionts within these Anthopleura species respond differently to temperature and 

light, suggesting unique physiological tolerances. These tolerances are reflected in the 

distribution of the symbionts, which varies across large scale gradients such as latitude, as 

well as smaller scale light and temperature gradients (LaJeunesse and Trench 2000, Secord 

and Augustine 2000, Secord and Muller-Parker 2005).  In general, Anthopleura spp. host 

zooxanthellae in warmer high-light habitats typical of the upper intertidal zone and lower 

latitudes, while individuals hosting zoochlorellae are most often found in low intertidal zones 

and higher latitudes, where they remain cooler with less light exposure (O’Brien and 
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Wyttenbach 1980). These differential sensitivities to temperature and light control symbiont 

distribution in the intertidal zone (Hoegh-Guldberg 1999, Weis 2008). Host morphological 

traits may also affect the distribution of zoochlorellate Anthopleura, controlling the range of 

zoochlorellae at both latitudinal and microhabitat scales (Saunders and Muller-Parker 1997, 

Bergschneider and Muller-Parker 2008). In the intertidal zone, A. elegantissima hosting 

zoochlorellae are restricted to the cooler low intertidal area, while the larger A. 

xanthogrammica host zoochlorellae much higher in the intertidal zone where temperature 

and light are generally greater. This pattern is also reflected in latitudinal distributions: 

zoochlorellate A. xanthogrammica occur approximately 6 degrees of latitude farther south 

(38°N, California) than do zoochlorellate A. elegantissima (44°N, Oregon) (Secord and 

Augustine 2000). This may indicate that the two organisms, when exposed to the same 

environmental conditions, have different abilities to regulate symbiont stressors. This ability 

to regulate stressors is poorly understood, but is likely dependent on a combination of 

individual physiological tolerances, morphological traits, and behaviors. The morphological 

traits so clearly different in A. elegantissima and A. xanthogrammica may have a direct effect 

on the temperatures experienced by the host in situ, which has important implications for the 

distribution of symbionts within the anemones.  

 In the intertidal zone, a hosts’ ability to regulate temperature is extremely important, 

as the physiological tolerance limits of intertidal organisms are often within 1°C - 3°C of 

body temperatures experienced in situ (Stillman and Somero 1996, Tomanek and Somero 

1999). Intertidal anemones have developed a wide range of physiological and behavioral 

adaptations to cope with the associated stressors of intertidal environments (Dykens and 



 

6 

 

Shick 1984, Shick and Dykens 1984, Zamer and Shick 1989, Shick 1991). Due to their high 

exposure to environmental stressors, it is believed that intertidal organisms will be some of 

the first organisms to be affected by climatic changes (Helmuth et al. 2005, 2006 a, b) and 

may act as bioindicators for future climate effects. It is critical, therefore, to understand the 

association between intertidal cnidarians and their photosymbionts, and how these 

associations may change with increasing climatic stress. 

To understand the relationship between Anthopleura spp. and their symbionts, as well 

as the differences in the symbiosis of these two species, I examined the relationship between 

A. elegantissima and A. xanthogrammica and their relatively sensitive photosymbiont, E. 

marina, to contrast the physiological tolerances of both the host and symbiont under stressful 

environmental conditions. Previous studies have documented the body temperatures of A. 

elegantissima in situ during low tide exposures (Dingman 1998, Bingham et al. 2011), and 

the physiological tolerances of zooxanthellae in both hosts have been well researched 

(Saunders and Muller-Parker 1997, Muller-Parker et al. 2007). However, limited information 

exists regarding the temperatures experienced by A. xanthogrammica in situ or on the 

physiological tolerances of E. marina hosted within either A. elegantissima or A. 

xanthogrammica. My goal was to provide insight into these relationships by: 1) contrasting 

the physiological tolerances of A. xanthogrammica and A. elegantissima under increasing 

temperatures and different light intensities, 2) examining the upper thermal limit for 

photosynthesis of E. marina within A. elegantissima and A. xanthogrammica under these 

conditions, and 3) quantifying the internal body temperatures experienced by A. 

xanthogrammica in situ when aerially exposed during a summertime low tide. 
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MATERIALS AND METHODS 

Collection of specimens 

 

Twenty-two Anthopleura xanthogrammica were collected from Slip Point, WA on 21 

July 2012 (Fig. 1). Since only zoochlorellate individuals were needed, light colored 

anemones were selected (as darker individuals tend to host S. muscatinei). Anemones were 

collected from a single surge channel spanning tidal heights of -0.60 m to +1.33 m MLLW 

(Levine 2010), and from a small tidepool at +0.51 m. Anemones were carefully pried from 

the substrate using a thin metal spatula, taking care not to damage their pedal discs. They 

were placed in individual zip-top bags, and transported on ice to the Shannon Point Marine 

Center in Anacortes, Washington. Zoochlorellate A. elegantisimma were also collected, but 

because no zoochlorellate A. elegantissima could be found at the Slip Point study site, the 

necessary zoochlorellate A. elegantissima were collected in the same way from Cone Island, 

Washington (48° 30' 32” N, 122° 41' 02” W) several days later (1 August 2012). At the 

laboratory, all anemones were cleaned of debris, placed individually in shallow glass dishes 

(120 x 20 mm for A. xanthogrammica, 80 x 20 mm for A. elegantissima) and allowed to 

attach. Anemones in the dishes were submerged in a flow-through seawater table at ambient 

temperature (11.7 ± 1.1 °C) under natural light from north facing windows, and left to 

acclimate for approximately six weeks. After six weeks all anemones were responsive and in 

an expanded state. 
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Figure 1. Collection site for A. xanthogrammica and A. elegantissima. Internal body 

temperatures of A. xanthogrammica were measured at Submarine Rock, near Slip Point, WA 

and specimens were collected there for use in the laboratory experiments. Zoochlorellate A. 

elegantissima were collected from Cone Island, San Juan Islands, WA. 
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To ensure all anemones hosted primarily E. marina, an initial symbiont cell count 

was performed and any anemones containing more than 5% zooxanthellae were removed 

from the experiment. To perform the cell counts, a single tentacle was haphazardly selected 

and excised from each anemone using small scissors. Symbionts were extracted from the 

tentacles by gently squeezing the symbionts from the cut end of the tentacle onto a 

microscope slide. Symbionts, under a compound microscope, were easily distinguishable by 

color and size (zoochlorellae are green and 6-8 μm in diameter while zooxanthellae are 10-15 

μm and brown).  

 

Laboratory measurements of temperature tolerance 

To contrast the physiological tolerances of E. marina within A. xanthogrammica and 

A. elegantissima under conditions of increasing temperature at different light intensities, 

anemones were placed in an incubator on a 10:14 hour light:dark cycle and exposed to an 

increasing thermal regime over the course of 10 weeks. Full spectrum fluorescent lights 

suspended from horizontal shelves were used to create two light treatments: “high light” 

(mean PAR = 221.8 ± 92.2 µmol quanta m-2 s-1, measured at the oral disc of the anemones) 

and “low light” (mean PAR = 9.3 ± 14.0 µmol quanta m-2 s-1). Irradiance levels in the 

incubator were monitored weekly using a Biospherical Instruments QSL-100 sensor (San 

Diego, CA, USA). Individual A. xanthogrammica for the experiment were distributed into 2L 

translucent plastic containers (210 x 110 mm), while A. elegantissima were placed in 500 ml 

glass bowls (115 x 65 mm). All containers were filled with 5 µl filtered seawater (salinity =  
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29.0 ± 1.1 ppt; DO = 7.1 ± 0.8 mg O2/L ; pH = 7.8 ± 0.5) then distributed into the two light 

treatments, with six A. xanthogrammica and seven A. elegantissima per light level. To ensure 

both species were receiving similar amounts of light, A. elegantissima individuals were 

placed on raised platforms so that their oral discs were the same distance from the lights as 

the oral discs of the larger A. xanthogrammica. To minimize possible differences in light 

intensity based on placement within the incubator, the anemone positions were rearranged 

once a week. 

After an initial 1-week incubator acclimation to 10°C, the temperature was increased 

2°C per week until a maximum of 28°C was reached after 10 weeks. Temperatures inside the 

incubator were logged every 30 minutes using four Thermochron® iButton temperature 

loggers (San Jose, CA, USA) submerged in seawater held under each light treatment. To 

maintain water quality, all anemone bowls were cleaned weekly and refilled using 5 µl 

filtered sea water held at the appropriate incubator temperatures. Weekly water quality 

measurements were taken on a subset of anemones in each treatment (n = 3) to monitor 

dissolved oxygen (DO) and pH levels. Since the light intensity experienced by different areas 

of the anemone varies based on anemone expansion/contraction, behavior was monitored to 

examine any differences between species or between treatments. Anemones were visually 

scored using a ranking system modified from Shick and Dykens (1984), with fully expanded 

anemones ranked as 2, and fully contracted anemones ranked as 0.  After week five, in 

response to reduced oxygen levels in the treatments and anemone stress, cleanings and water 

changes were increased to once daily. Throughout the experiment, anemones were fed a 

single live mussel (Mytilus spp.) proportional to their body size immediately after their water 
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change.  The smaller A. elegantissima were fed mussels with a shell length ~ 10mm (mean 

wet weight ~ 0.25 g), while A. xanthogrammica were fed mussels with a shell length ~ 40mm 

(mean wet weight ~ 2.5 g). 

 

Algal cell density, mitotic index and protein analysis 

Changes in the density of algal symbionts within an anemone can be used to measure 

the condition of the holobiont, so E. marina density was measured before and after exposure 

to increasing incubator temperature. To measure density of the symbionts, tentacle samples 

were taken from anemones immediately after acclimatization in the incubator at 10°C, and 

again ten weeks later at the end of the 28°C exposure. Tentacles were selected and removed 

using small scissors. The number of tentacles varied depending on anemone species: five A. 

elegantissima tentacles were generally required to achieve a sufficient number of symbionts 

for the measurements, while a single A. xanthogrammica tentacle was adequate. Due to 

bleaching, more tentacles had to be sampled at the end of the experiment:   ~ 10 tentacles 

from each A. elegantissima, and five from each A. xanthogrammica. Once excised, tentacles 

were frozen at -70°C until they could be processed.  

To perform symbiont counts, tentacles were thawed then placed in an Eppendorf tube 

with 2 or 6 ml of 5µm filtered seawater for A. elegantissima and A. xanthogrammica 

respectively. Tissues were homogenized with a Teflon pestle attached to a motorized stirrer 

(Wheaton Science Products, Millville, NJ, USA). The homogenate was vortexed and divided 

into two 1.5 ml microfuge tubes. One sample was later used for protein analysis, and the 
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other for cell counts and mitotic index measurements. Homogenates were frozen at -70°C 

until processing.  

To determine the E. marina cell density, counts were performed on a haemacytometer 

under a compound microscope at 100x. Thawed and vortexed homogenate was loaded into a 

haemacytometer chamber, and at least 100 zoochlorellae were counted. Six replicates were 

counted per sample. For samples with low cell densities (fewer than 100 cells per chamber) 

the number of zoochlorellae within 18 1x1 mm squares was counted. Since anemone body 

size is highly dependent on water retention, common size measurements such as wet weight 

and oral disc diameter are generally variable and inaccurate, so protein content was measured 

and used to standardize the symbiont density measurements. Anemone soluble protein 

content in the homogenate samples was determined using the Lowry method (Lowry et al. 

1951), with bovine serum albumin (BSA) as the standard. Two replicate subsamples were 

measured. Cell counts were normalized to protein content to determine the cell density per 

anemone protein biomass.  

Growth of a symbiont population can also provide a quantitative estimate of stress in 

symbiotic cnidarians (Brown and Zamani 1993). To estimate growth rates of E. marina, the 

percentage of dividing cells in each sample was calculated by examining a sample of 

anemone homogenate under a compound microscope at 400x. One thousand zoochlorellae 

cells were counted for concentrated samples, and any cells with a well-defined cleavage 

furrow were scored as dividing. For bleached samples at the end of the experiment, only 500 
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cells were counted. The mitotic index (MI) was calculated by dividing the number of 

dividing cells by the total number of cells counted.  

 

Measurements of chlorophyll fluorescence in E. marina 

To determine how the symbiotic E. marina were responding to thermal stress, a 

pulse-amplitude modulated (PAM) fluorometer (DIVING-PAM, Heina Walz GmbH, 

Effeltrich, Germany) was used to determine the maximum quantum yield of photosystem II 

(PS II) in the symbionts within each anemone at each temperature interval. This provided an 

accurate measure of photochemical efficiency in the symbionts (Warner et al. 1999) and is an 

accepted indicator of stress in symbiotic cnidarians (Jones et al. 1999).  

After an overnight 14-hour dark acclimation in the incubator (to allow PS II reaction 

centers to reach an open state), anemones were moved in darkness to a dark room to measure 

the maximum quantum yield of the symbionts. The PAM fluorometer’s submersible fiber 

optic probe was held approximately 5 mm from the surface of the anemone’s oral disc, 

adjacent to the innermost row of tentacles. A weak measuring light (0.15 µmol quanta m-2 s-

1) was used to assess minimum fluorescence (F0) of the symbionts while the PS II reaction 

centers were fully open in their dark-adapted state. This was followed by a short saturation 

pulse (>10,000 µmol quanta m-2 s-1 for 8 seconds) to overwhelm all PS II reaction centers 

causing them to close, producing a measurement of maximum fluorescence (Fm). Maximum 

quantum yield (𝐹𝑣/𝐹𝑚) was then calculated as: 
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𝐹𝑣
𝐹𝑚

= (𝐹𝑚 − 𝐹𝑜)/𝐹𝑚 

where: 

𝐹𝑚 = maximum fluorescence 

𝐹𝑜 = minimum fluorescence 

𝐹𝑣 = variable fluorescence = 𝐹𝑚 − 𝐹𝑜 

Another indication of symbiont health is photosynthetic capacity and how the 

photosymbionts respond to short-term changes in light intensity. To examine the relationship 

between irradiance and photosynthetic capacity, the PAM fluorometer was used to perform 

rapid light curves on extracted E. marina to determine the relative (rETR) and maximum 

relative electron transport rates (rETRmax) from a subset of experimental anemones every 

other week, with some resampled. After being exposed to the incubator light for three hours, 

three A. xanthogrammica and three A. elegantissima were arbitrarily chosen from each 

treatment. Tentacles were removed from each anemone using small scissors. The number of 

tentacles varied depending on anemone size, generally five from A. elegantissima and one 

from A. xanthogrammica. Symbionts were squeezed from the cut end of each tentacle onto 

polycarbonate membrane filters on glass slides. The slides were then placed in a 150 x 30 

mm petri dish full of filtered sea water maintained at the corresponding experimental 

temperature. The fluorometer probe was mounted 5 cm above the petri dish, and rapid light 

curve analysis was done by increasing the PAR intensity eight times between 0 and 2700 
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µmol quanta m-2 s-1 for 10 seconds each, with a measurement of 
𝐹𝑣

𝐹𝑚
 at each interval. rETR 

measurements were only performed until 22°C, as tentacles at 26°C were bleached and 

fluorescence of the remaining symbionts was below the detection limit of the instrument.  

For the final assessment of rETR at 22°C, measurements were performed on symbionts 

extracted from tentacles, as well as symbionts freshly expelled by each anemone. This was 

done to determine whether anemones were selectively expelling damaged symbionts. Pellets 

containing expelled zoochlorellae were collected from water dishes and an assessment of 

rETR was immediately performed. 

The rETR (relative electron transport rate) was calculated as: 

 

𝑟𝐸𝑇𝑅 =
𝐹𝑣
𝐹𝑚

× 𝑃𝐴𝑅 

where: 

𝐹𝑚 = maximum fluorescence 

𝐹𝑣 = variable fluorescence = 𝐹𝑚 − 𝐹𝑜 

PAR = intensity of saturation pulse (µmol quanta m-2 s-1) 
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Field temperature measurements 

To determine whether E. marina hosted by A. xanthogrammica naturally experience 

environmental conditions sufficiently stressful to reduce their photosynthetic capacity, as 

well as how the thermal environments inside the A. xanthogrammica vary during low tide, 

field measurements were made at Slip Point, WA (Fig. 1). Sampling was performed on 

Submarine Rock (48° 15’ 50” N, 124° 14’ 143” W), a rocky outcrop approximately 75 m 

long x 75 m wide at its widest point and subject to strong tidal exchanges (Levine 2010). At 

Submarine Rock there is an abundance of A. xanthogrammica, occuring in tidepools, surge 

channels, and along the vertical slopes of the outcrop, with anemones outside the tidepools 

being regularly immersed at low tide. These anemones were found nestled within thick beds 

of the California mussel, Mytilus californianus, which is one of their primary food sources. 

Other members of the community included the gooseneck barnacle Pollicipes polymerus, the 

thatched barnacle Semibalanus cariosus, and the sea star Pisaster ochraceus. 

To examine the thermal environment A. xanthogrammica and its symbionts 

experience in situ, the internal body temperatures of 14 individuals were measured over a 

single low tide. A surge channel towards the south end of Submarine Rock was selected for 

analysis, as all anemones within this channel were aerially exposed at low tide, submerged at 

high tide, and experienced similar irradiance and exposure. The surge channel spanned a 

distance of approximately 25 m over tidal heights of -0.60 m to +1.33 m MLLW (Levine 

2010) and provided a semi-shaded environment for the anemones. Anemones were selected 

from within this channel at tidal heights of -0.60 m to +0.36 m (lower intertidal n = 8), and at 
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+0.36 m to +1.33m (upper intertidal n = 6). A Thermochron® iButton temperature logger 

(San Jose, CA, USA), set to record temperature at 10-minute intervals, was attached to a 

monofilament line using plastic zip-ties and inserted into the body cavity of each anemone 

through the mouth, using a curved needle to “thread” the monofilament through the body 

wall. The iButton was then pulled snug against the inner wall of the gastrovascular cavity, 

and secured by a clamp on the outer body wall. Anemones were also individually marked and 

numbered using plastic tags attached to the pedal disc with monofilament line. To document 

ambient temperatures, two external iButton temperature loggers were secured with plastic zip 

ties to a stainless steel eyebolt attached to the substrate with ZSPAR slash zone epoxy (RPM 

Inc., Medina, OH, USA) at approximately +0.36 m, in a shaded crevice out of direct sunlight. 

All temperature loggers were left in place for just over 24 hours, from 9:10AM on 5 August 

2013 to 10:05AM on 6 August 2013. This allowed for the comparison of internal body 

temperatures of the anemones to the ambient temperature over an entire tidal cycle.  

 

Statistical analysis 

All statistical analyses of data collected from the laboratory experiment were 

performed using SPSS v.20 (SPSS Inc., Chicago IL). Since each anemone received all 

temperature treatments, maximum photosynthetic yield data were analyzed with a 3-way 

repeated measures ANOVA with species and light as the between factors and time as the 

within factor. The rETRmax of the anemones was measured only once at each temperature 

interval, so those data were analyzed with a 3-way ANOVA using light, temperature, and 
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species as the factors. A 3-way ANOVA was also used to analyse water pH and dissolved 

oxygen in the treatments. A 2-way ANOVA was used to compare changes in symbiont 

density as well as mitotic index as a function of species and light treatment. Data were 

converted to percent change to account for differences in initial symbiont densities and 

growth rates. A significance criterion of α ≤ 0.05 was used for all comparisons. Prior to each 

analysis, all data were tested to ensure they met the assumptions of ANOVAR or ANOVA as 

necessary. If the ANOVAR sphericity assumption was violated (as indicated by Mauchley’s 

test of sphericity), a Huynh-Feldt correction was used.  

Due to small sample sizes and a lack of replication in one of the treatments, statistical 

analyses were not used to compare the rETRmax between symbionts in hospite and expelled. 

Therefore, only general trends were examined. It was also not possible to statistically 

compare the internal body temperatures of A. xanthogrammica in situ to the ambient external 

temperature, due to the failure of one of two external iButton loggers. Therefore, only trends 

between temperatures, not statistical differences, were evaluated. Since expansion behavior 

data was ranked, it was not possible to perform a standard parametric test on the data. Again, 

only trends were evaluated. A Pearson's product-moment correlation analysis was done to 

test for correlations between anemone body size, tidal height, and internal temperature. 
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RESULTS 

Laboratory measurements of temperature tolerance 

 

Temperatures within the incubator remained near the intended temperatures 

throughout the duration of the experiment. In the low light treatment, average water 

temperature was within 0.16 ± 0.22°C of the desired temperature. The high light treatment 

experienced some additional warming due to radiant heat from the overhead lights; however 

average temperatures were within 0.88 ± 0.25°C of the desired temperature.  The pH 

remained constant throughout the experiment, averaging 7.5 ± 0.1, and did not differ between 

species or light treatment (α > 0.05). The concentration of dissolved oxygen was not as 

stable, as indicated by a three-way interaction between temperature, species, and light (p = < 

0.001 with ε = 0.29) (Fig. 2), but averaged 4.2 ± 0.4 mg O2/L for A. elegantissima and  4.0 ± 

0.5 mg O2/L for A. xanthogrammica.  

All A. xanthogrammica and A. elegantissima placed in the incubator at 10°C 

appeared healthy and were fully expanded. At the start of the experiment, A. 

xanthogrammica (n = 10) had a mean wet weight of 133.5 ± 55.7 g, while A. elegantissima 

(n = 14) had a mean wet weight of 13.2 ± 7.6 g. Symbiont cell counts confirmed that A. 

elegantissima were 99.98 ± 0.05% zoochlorellate, while A. xanthogrammica were 99.86 ± 

0.22%. Appearance and feeding behavior of the anemones stayed consistent as the incubator 

temperature was gradually increased to 16°C. At 16°C, feeding became irregular in both 

species, and slowly decreased through the remainder of the experiment. Initial signs of  
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Figure 2. DO and pH (mean ± SE) of anemone holding water. DO and pH were recorded 

prior to weekly cleanings. At 20°C, in response to reduced oxygen levels and anemone stress, 

cleanings and water changes (DO = 7.1 ± 0.8 mg O2/L ; pH = 7.8 ± 0.5) were increased to 

once daily (represented by dotted line). Subsequent DO and pH readings were taken at the 

end of each temperature acclimation period. 
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symbiont expulsion (i.e., reduced pigmentation and presence of symbiont filled boluses in the 

water dishes) varied between species and light treatment. For A. elegantissima in the high 

light treatment and A. xanthogrammica in the low light treatment, signs of expulsion were 

noted at 16°C. Anemones in these treatments had visibly bleached tentacles by 18°C, and by 

22°C A. elegantissima in the high light treatment appeared fully bleached (both tentacles and 

oral disc). Expulsion by A. elegantissima in the low light treatment, and by A. 

xanthogrammica in the high light treatment, began to occur at 20°C. By 24°C all anemones 

were expelling large boluses of symbionts. 

In addition to symbiont expulsion, A. xanthogrammica started to show other signs of 

stress at 18°C, evident by high levels of mucus production and slowed reaction times. In 

contrast, A. elegantissima did not exhibit any of these signs of stress during the experiment. 

At 26°C two non-responsive A. xanthogrammica were removed from the experiment; data 

from these anemones were not used in any analyses. At the conclusion of the experiment, all 

remaining anemones were returned to ambient temperatures in a flow-through sea water 

table. Within a few days they resumed feeding and appeared healthy, although largely 

bleached. 

Expansion behavior of the anemones differed between species, temperatures, and 

light treatments during the experiment. At temperatures below 16°C there was no difference 

in host response or treatment. Above that threshold, A. elegantissima contracted less in 

response to light and temperature stress than did A. xanthogrammica, and showed much less 

variability (Fig. 3). In the high light treatment, A. elegantissima remained fully open for the 
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duration of the experiment, while A. xanthogrammica in the same treatment only remained 

fully expanded until 22°C, and then partially contracted above that temperature. In the low 

light treatment, A. elegantissima remained expanded until 24°C, and then exhibited sporadic 

contraction behavior until 28°C when all anemones returned to a fully expanded state. In 

contrast, A. xanthogrammica in the low light treatment showed a contraction response at 

18°C, then highly variable individual responses, but largely contracted, for the remainder of 

the experiment.  

 

Algal cell density and mitotic index 

Both anemone species showed a significant loss of symbionts (bleaching) during the 

experiment (Fig. 4). Prior to exposure, A. xanthogrammica had a higher symbiont density 

than A. elegantissima. There was a significant difference between species in the percent loss 

of symbionts; A. elegantissima lost a higher percentage of its symbionts as temperature 

increased (Fig. 4) (96.7 ± 4.6 % loss for A. elegantissima; 84.0 ± 18.1 % loss for A. 

xanthogrammica). Light, however, did not significantly affect symbiont loss. A. 

elegantissima appeared to bleach completely regardless of light treatment, but A. 

xanthogrammica retained some of its symbiont population, especially in the low light 

treatment.  

The percent of dividing zoochlorellae cells, a measure of symbiont growth and an 

index of overall symbiont health, was significantly influenced by light treatment but not 

species (Fig. 4, Table 1).  Over the course of the experiment, the mitotic index of  
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Figure 3. Expansion behavior (mean ± standard error) of A. elegantissima and A. 

xanthogrammica from 10 to 28°C. Incubator temperature was increased 2°C per week. The 

ranking system of expansion/contraction behavior was modified from Shick and Dykens 

(1984) with fully expanded anemones ranked as 2, and fully contracted anemones as 0. 
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Figure 4. Percent change in density of zoochlorellae per mg tentacle protein and the mitotic 

index of zoochlorellae (% cells with a visible cleavage furrow) in tentacles removed from A. 

elegantissima and A. xanthogrammica (mean ± SE) before exposure at 10°C and after 

exposure from 10°C - 28°C.  
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zoochlorellae decreased in both A. elegantissima and A. xanthogrammica (Fig. 4). Symbionts 

in the low light treatment were more strongly affected than symbionts in the high light 

treatment. 

 

Measurements of chlorophyll fluorescence in E. marina 

Over the course of the experiment, the dark adapted maximum quantum yield of E. 

marina in the oral discs of both species was affected by both temperature and light (Fig. 5). 

Mauchly's test of sphericity for the maximum quantum yield measurements indicated that the 

assumption of sphericity was violated (χ2
44 = 63.3, p = 0.04). Therefore, a Huynh-Feldt 

correction was used to adjust the degrees of freedom for the tests of significance. There was a 

statistically significant three-way interaction between species, temperature, and light, 

indicating that the maximum quantum yield showed different patterns depending on a 

combination of the 3 factors (Table 3). In general, light appeared to have the greatest effect 

on the photosynthetic efficiency of the E. marina as indicated by an effect size of η2
p  = 0.90 

(Table 3). Symbionts in both A. elegantissima and A. xanthogrammica had a higher quantum 

yield in the low light treatment than in the high light treatment regardless of temperature 

(Figure 4). Maximum quantum yield of E. marina remained stable until 22°C, averaging 0.6 

± 0.1 for both species. After 22°C, maximum yield steadily declined in both species and both 

light treatments except for A. elegantissima in the low light treatment, which remained 

relatively stable.   
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Table 1. ANOVA table for the effects of temperature and light treatment on the concentration 

of zoochlorellae per mg tentacle protein in A. elegantissima and A. xanthogrammica. 

Significant p-values (lower than α = 0.05) are in bold. Partial η2 values (η2
p) are effect size 

measurements that give the proportion of the effects explained by each individual factors or 

interaction. 

 

Source 

 

 

SS 

 

 

df 

 

 

F 

 

 

P 

 

 

η2
p 

 

 

Density 
     

     Species 819.95 1 6.74 0.018 0.27 

     Light 369.14 1 3.03 0.099 0.14 

     Species x Light 46.4 1 0.38 0.545 0.02 

     Anemone 2190.34 18 

   

     Corrected Total 3382.1 21 

   

MI 

          Species 39.07 1 0.12 0.734 0.01 

     Light 2713.81 1 8.22 0.01 0.29 

     Species x Light 4.66 1 0.01 0.907 <0.01 

     Anemone 330.16 20 

   

     Corrected Total 3087.7 23 
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Table 2. ANOVAR for the effects of temperature and light treatment on maximum yield of 

symbionts in A. elegantissima and A. xanthogrammica. Degrees of freedom were adjusted 

using a Huynh-Feldt correction to account for violation of the sphericity assumption. 

Significant p-values (lower than α = 0.05) are in bold. Partial η2 values (η2
p) are effect size 

measurements that give the proportion of the maximum yield variation explained by each 

factor or interaction. 

 

Source 

 

SS 

 

df 

 

F 

 

p 

 

η2
p 

 

 

Between-subject factors 
     

    Species 0.18 1 9.57 0.006 0.32 

    Light 3.33 1 181.45 < 0.001 0.90 

    Species x Light 0.01 1 0.57 0.46 0.03 

    Anemone 0.37 20 

   

Within-subject factors 

     

    Temperature 5.26 7.77 100.83 < 0.001 0.83 

    Temperature x Species 0.33 7.77 6.26 < 0.001 0.24 

    Temperature x Light 0.45 7.77 8.54 < 0.001 0.30 

    Temperature x Species x Light 0.61 7.77 11.64 < 0.001 0.37 

    Temperature x Anemone 1.04 155.31 

   

Total 11.58 209.39       
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The maximum electron transport rates (rETRmax) calculated from rapid light curves, 

showed different patterns at each temperature depending on the light treatment (Fig. 6). This 

was verified by a significant temperature x light interaction (Table 4). In general, light 

treatment appeared to have the greatest effect on the rETRmax of the E. marina (Fig. 5). 

Symbionts in both A. elegantissima and A. xanthogrammica in the high light treatment had a 

lower rETRmax at every temperature interval than anemones in the low light treatment. 

rETRmax showed a general trend of increasing with temperature in the low light treatment, 

and decreasing with temperature in the high light treatment. Measurements could only be 

performed until 22°C, as anemones at 26°C were bleached and fluorescence of the remaining 

symbionts was below the detection limit of the instrument. 

In the comparison of symbionts in hospite vs. symbionts that had been expelled, only 

light appeared to affect the rETRmax of symbionts. For both anemone species, symbionts in 

the high light treatment had a similar rETRmax both in hospite and expelled. In the low light 

treatment, rETRmax was higher in hospite than in expelled E. marina (Fig. 7).  
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Figure 5. Maximum quantum yield (mean ± standard error) of E. marina in the oral discs of 

A. elegantissima and A. xanthogrammica. Maximum quantum yield was measured with a 

PAM fluorometer at each temperature interval after one week of acclimation. 
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Table 3. ANOVA table for the effects of temperature and light treatment on the rETRmax of 

symbionts in A. elegantissima and A. xanthogrammica. Significant p-values (lower than α = 

0.05) are in bold. Partial η2 values (η2
p) are effect size measurements that give the proportion 

of the maximum yield variation explained by each individual factors or interaction. 

 

 

Source 

 

 

SS 

 

 

df 

 

 

F 

 

 

P 

 

 

η2
p 

 

 

Temperature 

 

112.16 

 

3 

 

0.997 

 

0.409 

 

0.100 

Species 14.65 1 0.391 0.537 0.014 

Light 7353.02 1 196.129 <0.001 0.879 

Temperature x Species 184.37 3 1.639 0.204 0.154 
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Corrected Total 11966.02 42       
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Figure 6. Maximum relative electron transport rate (rETRmax mean ± standard error) of A. 

elegantissima and A. xanthogrammica at 4 temperature intervals over the course of the 

experiment. Measurements were only performed until 22°C, as anemones at 26°C were 

bleached and fluorescence of the remaining symbionts was below the detection limit of the 

instrument. 

 

 

Temperature (°C)

10 14 18 22

rE
T

R
m

a
x
  

(µ
m

o
l 
e
le

c
tr

o
n
s
 m

-2
s

-1
)

0

10

20

30

40

50

60

70

80

Low light (9.33 ± 3.14 µmol quanta m
-2

 s
-1

)

High light (221.83 ± 20.62 µmol quanta m
-2

 s
-1

)

A. elegantissima

A. xanthogrammica

A. elegantissima

A. xanthogrammica

(n = 3)

(n = 3)

(n = 3)

(n = 3)



 

32 

 

 

 

 

 

 

Figure 7. Maximum relative electron transport rate (rETRmax mean ± standard error) of in 

hospite and expelled E. marina from A. elegantissima and A. xanthogrammica at 22°C. 
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Field temperature measurements 

Daylight PAR at the Slip Point study site averaged 573.3 ± 495.5 µm m-2 sec-1, during 

the period of 5-6 August with a range of 14.7-1500.0 µm m-2 sec-1. The relatively low 

average irradiance was due to heavy cloud cover in the morning and thick fog throughout the 

day. Tides ranged from -0.22 m to +2.32 m MLLW. Average body column diameter, 

measured at the base of the A. xanthogrammica sampled during the low tide, was 12.7 ± 2.7 

cm when fully contracted, with a range of 9.0 - 17.0 cm. All anemones retained the iButtons 

that had been inserted into their gastrovascular cavities, and showed no signs of expulsion. 

The anemones appeared healthy, and many were in an expanded state prior to iButton 

removal.  

The iButton temperature data (Fig. 8) showed that the internal body temperatures of 

A. xanthogrammica (n = 14) were more stable than ambient temperatures (n = 1), and less 

likely to reach temperature extremes. At its peak, the ambient temperature reached 19.5°C, 

while the internal body temperatures of the  anemones remained 3.8 ± 1.5°C and 6.2 ± 1.1°C 

cooler on average for upper and lower intertidal individuals respectively. A Pearson's 

product-moment correlation analysis showed no correlation between anemone body size and 

tidal height (Fig. 9). However, when measured at the peak ambient temperature, body 

temperature showed a positive correlation with tidal height. Surprisingly, at the peak ambient 

temperature, internal anemones body temperature was not correlated with body size (Fig. 9). 

Temperatures of lower intertidal anemones showed less fluctuation and more 

moderate temperatures than those of upper intertidal anemones that were exposed for longer 
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periods of low tide. The low intertidal anemones also showed lower variability among 

individuals. Ambient temperatures ranged from 9.0 - 19.5°C, but anemones in the lower 

intertidal zone remained between 10.0 – 15.5°C. In contrast, anemones in the upper intertidal 

zone showed a range closer to that of ambient temperatures, ranging from 8.9 – 18.0°C. Body 

temperatures of all anemones dropped and remained stable once the anemones were 

submerged at flood tide, then steadily increased as they were exposed by the ebbing tide. 
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Figure 8. Ambient and internal body temperatures (mean ± standard error) of lower intertidal 

(-0.60 m to +0.36 m) and upper intertidal (+0.36 m to +1.33m) A. xanthogrammica at Slip 

Point, WA. Grey area highlights the period between sunset and sunrise. Lower plot shows 

tidal heights (meters relative to MLLW) obtained from the NOAA National Data Buoy 

Center (Station Id: 9443361 at Sekiu, Clallam Bay, WA). 
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Figure 9. Correlations between: body size (diameter, cm) and tidal height, body temperature 

and tidal height, and body size and body temperature for A. xanthogrammica at Slip Point, 

WA.  Solid points represent lower intertidal anemones (-0.60 m to +0.36 m, n = 8), while 

open points represent upper intertidal anemones (+0.36 m to +1.33m, n = 6). Internal 

temperatures were taken at the maximum ambient temperature reached (19.5°C). 
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DISCUSSION 

Overview 

To understand what regulates the distribution of E. marina in A. elegantissima and A. 

xanthogrammica, I examined traits of both the hosts and the symbiont, as each exhibit unique 

physiological responses that affect the overall response of the holobiont to environmental 

stressors. A gradual temperature increase of 2°C over the course of 10 weeks was used to 

establish the upper thermal tolerance limit of E. marina in each host, while examining the 

response of the anemones themselves to the thermal stress. The two light treatments allowed 

examination of the combined effects of temperature and light stressors.  

 

Host response  

Of the two hosts, A. xanthogrammica was less tolerant of prolonged high 

temperatures, exhibiting a stress response indicated by high levels of mucus production and 

slowed reaction times when temperatures reached 18°C. By 26°C, two individuals were 

completely non-responsive, had to be removed from the experiment, and did not recover. In 

contrast, A. elegantissima remained responsive throughout the entire experiment, indicating 

that they can tolerate sustained temperatures of at least 28°C. This high thermal tolerance of 

A. elegantissima is consistent with previous reports. Muller-Parker et al. (2007) found that 

zooxanthellate A. elegantissima exposed to temperatures from 12 - 28°C appeared healthy 

even at the highest temperature.  This differential sensitivity of these two species to 

temperature may reflect adaptation to their respective habitats. A. xanthogrammica were 
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collected from the Strait of Juan de Fuca, while A. elegantissima were collected from the San 

Juan Islands. Intertidal organisms on the outer coast of Washington and in the Strait of Juan 

de Fuca generally experience lower levels of heat and irradiance than do anemones in the San 

Juans (Dayton 1971, Harley and Helmuth 2003). 

In addition to the stress responses described above, a contraction response was 

triggered for A. xanthogrammica at temperatures above 18°C, with individuals showing 

highly variable responses as temperatures continued to increase beyond 18°C. In comparison, 

A. elegantissima only exhibited a brief contraction response between 24 - 26°C, and only in 

the dark treatment. At 28°C all individuals were fully open and responsive. Contraction is a 

typical response in anemones to unfavorable stimuli (Pearse 1974) and may have been in 

direct response to temperature, or to a decrease in available O2, as Anthopleura spp. have 

been shown to contract when oxygen levels are low (Pearse 1974). Dissolved oxygen varied 

throughout the experiment depending on a combination of treatment, species, and 

temperature. These fluctuations likely reflected a combination of anemone and symbiont 

respiration, as well as symbiont O2 production. Any microbial populations within the water 

may have also affected the concentration of dissolved oxygen, as well as any algae, either 

expelled directly from the anemones, or algae small enough to bypass filtration. There was a 

higher build-up of algae on the sides of the containers in the high light treatment. These were 

removed during cleanings, but may have affected O2 concentrations in that treatment. After 

20°C, water changes were increased to reduce anemone stress and algal build up. However, 

O2 continued to decrease in the A. xanthogrammica water, likely reflecting increased host 

stress and respiration at higher temperatures. O2 for A. elegantissima remained relatively 
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stable all the way to 28°C. Although O2 fluctuated, it is unlikely that they were the primary 

cause of the contraction response, as the response was elicited before O2 levels dropped.  

Contraction may also be a method to conserve energy under stressful conditions, as 

contracting reduces metabolic processes in both host and symbiont (Pearse 1974, Shick and 

Dykens 1984). The contraction responses exhibited by anemones indicate that A. 

xanthogrammica experienced stress at lower temperatures than did A. elegantissima. The 

visible expulsion of symbionts from 16 - 18°C suggests that A. xanthogrammica were 

responding to the stress by attempting to regulate their symbiont density through expulsion 

(Muscatine and Pool 1979, McCloskey et al. 1996, Baghdasarian and Muscatine 2000, Verde 

and McCloskey 2002). Expulsion may be an adaptive mechanism, allowing anemones to 

control the density of symbionts within their tissues. This may be beneficial when symbionts 

are damaged and are no longer contributing photosynthetic carbon to the host (Muller-Parker 

et al. 2007). It may also be used as an adaptive measure to reduce productivity of the algae, 

and the subsequent formation of reactive oxygen species (ROS) which can be highly 

damaging to both host and symbiont (Pearse 1974, Shick and Dykens 1984).  

 

Symbiont response 

To determine how the E. marina were responding to thermal stress, the 

photochemical efficiency of PS II was examined by measuring photosynthetic efficiency 

(Fv/Fm) and photosynthetic capacity (rETRmax) of symbionts within A. elegantissima and A. 

xanthogrammica. The maximum quantum yield of E. marina remained stable until 22°C, 
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regardless of species or light treatment. After 22°C, however, maximum yield steadily 

declined in both species and both light treatments except for A. elegantissima in the low light 

treatment, which remained relatively stable. The reduction of photochemical efficiency at 

22°C indicates compromised photosynthesis in the symbionts. High light and temperature 

result in the degradation of D1, a protein essential to the reaction center of PS II (Warner et 

al. 1999), and damage the thylakoid membrane (Tchernov et al. 2004) and the chloroplast 

(Weis 2008). Chloroplast damage was apparent after exposure to 28°C, as algae exhibited 

reduced pigmentation, appearing nearly clear under light microscopy (personal obs.). 

From 10 - 22°C, there did not appear to be any host-specific differences in the 

photophysiology of symbionts, as inhibition occurred at 22°C regardless of species. A similar 

pattern was reflected in measurements of rETRmax. After 22°C, only symbionts within A. 

elegantissima in the low light treatment were able to maintain a moderate maximum yield. 

This indicates that when shaded, symbionts in A. elegantissima remain photosynthetically 

functional until at least 28°C, however, even shaded symbionts in A. xanthogrammica 

experience photoinhibition at 22°C. This suggests different physiological tolerances of 

symbionts in the two species. Although irradiance was low, the light treatment was sufficient 

to induce photostress of the symbionts within both species of anemones, indicated by the 

lower Fv/Fm and rETRmax of symbionts in the high light treatment. Symbionts in both species 

exhibited similar responses to light, even though the tissues in A. xanthogrammica attenuate 

the light more (Dimond et al. 2012). This may suggest production of photoprotective animal 

pigments in Anthopleura, or reduction of photochemical efficiency through non-

photochemical quenching (Dykens and Shick 1984, Shick and Dykens 1984).  
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By 28°C, both Anthopleura species had expelled the majority of their symbionts, 

regardless of light treatment. Overall, A. elegantissima lost a higher percentage of its 

symbionts as temperature increased, while A. xanthogrammica retained more symbionts, 

especially in the low light treatment. This may reflect initial differences in symbionts density, 

as A. xanthogrammica hosts nearly 2.5x more symbionts than A. elegantissima. It may also 

reflect different relative abilities of the hosts to control their symbiont densities. Symbionts 

are held in symbiosomes within the gastrodermal tissue. Since A. xanthogrammica has 

tissues that are 1.8x thicker than those of A. elegantissima (Dimond et al. 2012) they may be 

less able to actively expel symbionts.   

To determine if anemones were preferentially expelling damaged symbionts, the 

photochemical capacity of E. marina in intact anemone tissues was compared to E. marina 

expelled from the same host at the same time. There was no difference in the maximum 

rETR between expelled and intact E. marina from either host species. Since symbionts were 

still functioning photosynthetically at the time of expulsion (measurements were taken at 

22°C), it is likely the expulsion seen in both Anthopleura species was a host stress response, 

or a means of regulating symbionts density. 

 

Experimental treatment 

Temperatures within the incubator remained stable and reflected the desired levels, 

however, some warming did occur in the higher light treatment. While the temperature 

increase was less than 1°C, it is important to note the temperature discrepancy while 



 

42 

 

interpreting the results of this experiment. Average light intensity in the high light treatment 

was 221.8 ± 92.2 µmol quanta m-2 s-1, which was below the average daytime irradiance 

measured at Slip Point, WA (~ 570 µmol quanta m–2 s–1) on a foggy day in June.  It was also 

below the average summer daytime irradiance reported for field sites in the San Juan Islands, 

WA (450 µmol quanta m–2 s–1, Muller Parker and Davy 2001). Therefore, anemones in the 

experiment were subjected to relatively low light and should not have experienced light 

stress. Exposing the anemones to a moderate light level allowed us to examine the effects of 

temperature and different light intensities without causing excessive photostress to the 

anemones or their symbionts. 

 

Field temperature measurements 

Internal body temperatures of A. elegantissima have been previously measured 

(Dingman et al. 1998, Bingham et al. 2011). No such measurements had been reported for A. 

xanthogrammica. To examine whether temperatures experienced in situ are enough to tax the 

physiological performance of symbionts within A. xanthogrammica, it was necessary to 

measure the anemones’ internal body temperatures. While air and water temperature data 

alone can provide valuable information, they often do not accurately reflect the temperatures 

experienced by intertidal organisms in situ (Helmuth 1998, 2006b). Body temperatures are 

also difficult to model, due to multiple synergistic factors including wave height, timing of 

tides, wind speed, and irradiance (Helmuth et al. 2011). Therefore, measurements of actual 

body temperatures taken in situ are much better indicators of thermal stress (Helmuth 2002).  
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Internal temperatures of A. xanthogrammica in the field remained cooler than ambient 

temperatures, and remained more stable for the duration of the tidal cycle. Anemones in the 

lower intertidal zone showed slower rates of warming then anemones in the upper intertidal, 

and were able to maintain lower body temperatures during periods of increased ambient 

temperatures. At the peak ambient temperature (19.5°C), the internal body temperatures of 

lower intertidal anemones remained 6.2 ± 1.1°C cooler than ambient, well below 

temperatures that impacted E. marina in the lab. Anemones in the higher intertidal reached 

higher temperatures, but were still 3.8 ± 1.5°C below ambient. The maximum temperature 

experienced by any individual A. xanthogrammica was 18°C.  

Our measurements of temperatures experienced in situ by A. xanthogrammica are 

likely conservative, as ambient temperatures only reached 19.5°C during the sampling 

period. Temperatures at Slip Point, WA can exceed 30°C during the summer (Levine 2010). 

Irradiance was also relatively low on the sample dates (5 - 6 August 2013) due to fog and 

heavy cloud cover. This reduced the impact of solar heating, which has substantial impacts 

on the body heating of intertidal organisms (Helmuth et al. 2011). Gilman (2006) suggested 

that the body temperatures of intertidal ectotherms may be closer to the air temperature on 

days when there is little solar radiation, as was the case during the field study. This indicates 

that A. xanthogrammica could experience much higher body temperatures.   

Bingham et al. (2011) measured body temperatures of A. elegantissima in the field 

and found that they frequently exceeded 24°C, but generally remained under the ambient 

temperature. Dingman (1998) also examined internal body temperatures of anemones in the 
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San Juans, and found that A. elegantissima experience temperatures up to 28°C during aerial 

exposure at low tide. Dayton (1971) recorded a high of 33.6°C in A. elegantissima from San 

Juan Island. The large variation in maximum recorded body temperatures shows that 

temperatures experienced in situ are highly variable, and that intertidal animals likely exist 

over “thermal mosaics” (Helmuth et al. 2011). 

There was evidence of such thermal mosaics, as body temperature was positively 

correlated with position in the intertidal zone. This is likely due to the duration of aerial 

exposure, which explains why anemones in the lower intertidal zone are able to remain 

cooler than upper intertidal anemones. In the lower intertidal zone, anemones can be exposed 

for a few minutes up to several hours. However, at +2 m above tidal datum, anemones can be 

exposed to air 90% of the time (Ricketts 1934). In the upper intertidal, anemones are also less 

likely to experience wave splash, which can reduce desiccation and promote cooling.  

Unlike patterns reported for A. elegantissima, body size did not affect the warming 

rates of A. xanthogrammica. During daytime low tides, A. elegantissima with a larger body 

size maintain lower internal body temperatures than smaller individuals (Dingman 1998). 

This effect can be multiplied through aggregation of individuals, as is common in A. 

elegantissima (Bingham et al. 2001). Bingham et al. (2011) found that aggregations of 

anemones respond to thermal changes like a single larger individual, remaining below 

ambient temperatures and not exhibiting the same temperature extremes as isolated 

individuals. Since Anthopleura spp. are dependent on evaporative cooling when aerially 

exposed, their rate of warming is highly dependent on water content. Once desiccated, 
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anemones heat quickly (Bingham et al. 2011). Anemones with a larger body size are able to 

retain more water, and ultimately reduce the risk of desiccation while evaporatively cooling. 

In this study, body size of A. xanthogrammica was not correlated with body temperature. 

This was likely because A. xanthogrammica, with their much larger body sizes, were able to 

maintain a high water content throughout their aerial exposure. This reduced desiccation, and 

enhanced their ability to maintain temperature below ambient levels.  

 Work with A. xanthogrammica, and previous studies on A. elegantissima, indicate 

that both species experience periods of hyperthermic stress in situ. The temperatures 

experienced by A. elegantissima and A. xanthogrammica may regularly exceed the 22°C 

threshold for stable photosynthetic efficiency in E. marina, indicating that zoochlorellate 

anemones may experience temperatures high enough to stress the symbiotic association for 

short periods of time. However, the symbiotic association between zoochlorellae and their 

hosts appears to be resilient to short-term temperature stressors that are associated with low 

tide. In the Pacific Northwest, densities of zoochlorellae tend to remain constant seasonally 

(Dingman 1998, Bergschneider and Muller-Parker 2008, Dimond et al. 2011), suggesting 

that the holobiont can rebound from brief temperature stress events. 

 

Broader implications 

Temperature and light stress have profound effects on the photophysiological 

performance of E. marina, and sustained temperatures above 22°C resulted in symbiont 

photoinhibition. Maximum yield measurements are generally a strong indicator of the general 
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fitness of photosynthetic organisms (Maxwell and Johnson 2000). A decreased maximum 

yield could influence the competitive balance between zoochlorellae and zooxanthellae in 

Anthopleura spp. that host both (LaJeunesse and Trench 2000). With increasing global 

temperatures, species of symbionts better adapted for warmer environments will out-compete 

those less adapted (Saunders and Muller-Parker 1997, Rowan et al. 1997). Both species of 

zooxanthellae (S. muscatinei and S. californium) are able to maintain higher levels of 

photophysiological performance than E. marina under similar conditions (Verde and 

McCloskey 2001, Verde and McCloskey 2002). While E. marina appears to have a thermal 

limit of 22°C, S. muscatinei maintain constant rates of photosynthesis until 26°C (Muller-

Parker et al. 2007). The thermal limit of S. californium is even higher, persisting until over 

30°C (Muller-Parker et al. 2007). Due to these differences in thermal tolerances, an increase 

in temperature would likely lead to a shift in the distribution of zoochlorellae and 

zooxanthellae at a local (microhabitat) scale, and at a latitudinal scale.  

Under thermal stress, Anthopleura may adaptively bleach and switch their symbiont 

complement, shifting towards more temperature tolerant symbionts (Bates 2000, Secord and 

Muller-Parker 2005).  Symbiont compliment shifts are generally due to resident populations 

of zooxanthellae inside the anemones, which are able to outcompete and outgrow the native 

zoochlorellae population (Weis and Levine 1996). This switch from zoochlorellate to 

zooxanthellate complement has been termed “browning”, and has been documented in the 

field with transplantation studies (Saunders and Muller-Parker 1997, Bates 2000). This 

switch in symbiont complement, from the relatively sensitive zoochlorellae to the more 

tolerant zooxanthellae, has potential implications for community biodiversity in intertidal 
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areas, as A. elegantissima and A. xanthogrammica are the only anemones that host E. marina 

(Muller-Parker and Davy 2001).  

The physiological tolerances of the host play an important role in the function of a 

symbiosis and may ultimately be what limits the distribution of the symbionts. I found that A. 

xanthogrammica was less tolerant of sustained high temperatures than A. elegantissima. 

However, even with the lower heat tolerance, A. xanthogrammica are able to maintain higher 

percentages of symbionts (A. elegantissima: 96.7 ± 4.6 % loss; A. xanthogrammica: 84.0 ± 

18.1 % loss), even during periods of prolonged high temperatures. In the field, A. 

xanthogrammica is able to buffer their symbionts due to their large body size and thicker 

host tissues (Dimond et al. 2012). These morphological features may explain why 

zoochlorellate A. xanthogrammica are able to persist higher in the intertidal zone than 

zoochlorellate A. elegantissima, as they provide a more favorable environment to the 

sensitive E. marina. This supports the idea that temperature and light stressors are the 

primary factors limiting the distribution of anemones hosting zoochlorellae to higher 

latitudes and cooler microhabitats (Saunders and Muller-Parker 1997, Bergschneider and 

Muller-Parker 2008), and indicates that A. xanthogrammica may be a more favorable host 

than A. elegantissima in the context of a changing global climate. 
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