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Abstract

Records show that thousands of earthquakes have occurred in the northern Puget 

Lowland since 1969. At least fifteen of these events have been greater than magnitude 4, 

and one (Deming mag. 5.2, 1990) was the second largest recorded shallow crustal event in 

Washington for the last hundred years. Despite the evidence that suggests that the 

potential for great earthquakes capable of severe damage in the northern Puget Lowland is 

very real, the seismicity in the area is poorly imderstood. This is in part due to the wide 

scattering and apparently random assortment of recorded events. This thesis attempts to 

create a better imderstanding of the structures along which these earthquakes occur. A 

better imderstanding the active structures can help to better evaluate the full potential for 

destructive earthquakes.

Conclusions in this thesis are based primarily on historical seismic records fi-om the 

Washington Regional Seismic Network, and include earthquake activity fi-om 1969 to 

1995. Focal mechanisms from the Washington Regional Seismic Network and Western 

Canadian Telemetered Network databases are for seismic events that were recorded at 

enough stations to meet quality standards. The records used were limited to events with 

foci within the upper 30 km of the North American crust and lie within the boundaries of 

the northern Puget Lowland.

Depth distributions of earthquake foci were used to determine the extent and 

location of seismic deformation. Results show that events are concentrated within two
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general depth intervals in the crust. This bimodal distribution includes a shallow 

concentration between the surfece and 5 km depth and another concentration at 

approximately 17+/- 3 km. Depth distribution across the region suggests that a wedge- 

shaped body is being deformed seismically. This wedge-shaped body roughly conforms to 

low temperature regions defined by geothermal modeling for the region, suggesting a 

direct correlation between low heat flow and seismic deformation.

This thesis introduces a modified technique of fault classification that can be used 

to analyze focal mechanisms for a region as a group, rather than just an event-by-event 

basis. The plunges of the pressure and tension axes fi'om focal mechanisms were used to 

classify earthquakes by fault type. The results were consistent with the study region being 

in a transpressive regime, with 74% of the events being clearly reverse and strike-slip. 

However, deformation is not uniform. A depth distribution plot shows a change fi'om 

predominantly reverse faulting above 20 km to predominantly strike-slip faulting below 20 

km. This could be the result of a swapping of 02 and due to an increased lithostatic 

load, the result of faulting along preexisting zones of weakness, or the result of spatial 

distribution of both.

Maps of focal mechanisms of a single fault type helped to define possible trends in 

an otherwise seemingly random assortment of focal mechanisms. Right lateral strike-slip 

feulting between 20 and 30 km along the trend of the southern Whidbey Island fault was 

most apparent. Shallower than 20 km, the stresses appear dififiised into the northern part 

of the study region that forms the wedge.



A statistical Chi-square analysis for planar distributions of earthquake foci was 

developed and used over the entire region to investigate possible correlations with maps of 

focal mechanisms. Planar distributions that met statistical criteria that indicated they are 

significant show some interesting patterns. The eastern portion of the Devil's Mountain 

fault had planar distributions that aligned with focal mechanisms shovmg shallow strike 

slip and reverse faulting. Clear reverse faulting around 15 km depth along the trace of the 

Vedder Mountain lineament was also observed.
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CHAPTER 1. INTRODUCTION

Geographic Setting

The northern Puget Lowland is located in the northwest comer of Washington 

(Figure 1 and 2). The Puget Lowland is an elongate topographic and stmctural depression 

that stretches from the Strait of Georgia, in Canada, to just south of Olympia (Easterbrook 

and Rahm, 1970). The study area is bounded to the east by the Cascade volcanic arc, to 

the west by Vancouver Island, to the north by the Canadian mainland, and to the south by 

western Washington and the Puget Lowland. Because most of this region lies outside of 

the confines of major population centers of Vancouver, BC and Seattle, WA, too little 

attention has been given to it's seismicity.

Statement of Purpose

The study region is seismically active, but little is known about specific structures 

on which earthquakes occur. This is due in part to a wide distribution of historical 

earthquakes, which hinder the precise delineation of active faults. However, historical 

records leave little doubt for the possibility of damaging earthquakes in the fixture. 

Therefore, the study of seismicity and crustal structure is important for a better 

imderstanding of the fiill potential for destructive earthquakes in the northern Puget 

Lowland.

The primary intent of this study is to characterize the structural setting of 

earthquakes by linking recorded seismic events to mapped and unmapped faults. This is



Figure 1. Geographical setting of the study region. The study region 
is in the boxed area. Arrow indicates motion of the Juan de Fuca plate relath 
region is the boundary of the Puget Lowland.
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Figure 2. Inset of boxed region in Figure 1. Includes details of shorelines and 
geographic names shown in figures that follow. The study area is primarly north 
of 48° latitude. Focal mechanism maps do, however, extend as far south as 
47.5° latitude.
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accomplished by analyzing available seismic records. Earthquake epicenters and available 

foeal mechanisms are used to ereate a better understanding of the active structures on 

which these events have occurred.

Generalized Geologic History

Mesozoic Geology

Western North America is composed of numerous terranes, some of which are 

exotic (Jones and others, 1983; Figure 3). Most geologists agree that many terranes were 

accreted to western North America by the late Cretaceous (Cowan, 1994). These terranes 

were then transported northward by coast-parallel slip to their present-day positions 

between 80 and 60 Ma (Cowan, 1994). Since then, they have made up the framework of 

the western Washington continental margin. This framework includes structural 

weaknesses that may have accommodated subsequent deformation within and between 

terranes. Present day tectonic stresses may reactivate these inherited weaknesses and 

result in aetive faulting.

Cenozoic Geology

At the beginning of the Eocene, arovmd 57 Ma, this region was covered by a vast 

alluvial floodplain within a lowland semitropical rain forest (McLellan, 1927; Mustoe and 

Gannaway, 1997). A thick sequence of sedimentary rocks, the Chuckanut Formation, was 

deposited within a fruited, down-dropped basin (Johnson, 1983). Sediment compositions 

and paleocurrent directions indicate the source was frr to the east (Johnson, 1983; Mustoe

4



CENOZCHC
SEDIMENTARY COVER

late cretaceous
NANAIMO BASIN

TERRANES ACCRETED
DURING THE CENOZOIC

COAST PLUTONIC COMPLEX
ILT. CHET.-E. TERT.)

SAN JUAN-CASCADES 
NAPPES
WRANGELUA TERRANE 
(PALEOZOIC-MESOZOIC)

Figure 3. Regional tectonic setting of the Puget Lowland showing generalized geology 
and accreted terranes. Geology east of the Straight Creek fault is not shown. Rocks on 
the Olympic Peninsula are buttressed against the adjacent mainland along an 
approximately located boundary labeled B (Taken from Brandon and others, 1987).
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and Gannaway, 1997). This depositional environment ended when dextral displacement on 

the Straight Creek fault altered the drainage, and uplift of the lowland basins effectively 

cut off the sediment source (Engels and others, 1976; Johnson, 1983; Mustoe and 

Gannaway, 1997).

Aroimd 42 Ma, the Cascade arc began forming. Subduction of younger, more 

buoyant plate caused the convergence rates to slow from an average 150 km/Ma to near 

present day rates of 45 km/Ma (Engebretson and others, 1984). This resulted in a shift of 

the volcanic axis westward to its present day position (Wells and others, 1984). Also at 

this time regional tectonics changed from a transtensional regime to a transpressional 

regime, initiating the folding and thrusting of the Chuckanut Formation (England and 

others, 1997). It is likely that previously existing structures in the basement of the 

Chuckanut were reactivated during this time.

Quaternary / Recent Geology

Western Washington had at least six episodes of Cordillerian Ice Sheet advance 

during the Pleistocene (Easterbrook, 1992, 1994). During the last major advance, the 

northern Puget Lowland was under 1,800 meters of ice at its maximum (Easterbrook, 

1963, 1992). The last of the ice sheets retreated from the northern Puget Lowland by 

10,000 years ago (Easterbrook, 1963,1992). Glacial reboimd has taken place at a rate 

approximately equal to eustatic sea level rise throughout most of the Holocene 

(Easterbrook, 1992).
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Strata, the youngest being the Everson glaciomarine drift, -12,000 Ma, record 

tectonic displacements near Deming (Figure 4). This strata consists of the Kulshan 

glaciomarine drift, the Deming sand and the Bellingham glaciomarine drift (Figure 4). 

Change in relief across this sequence of sediments indicates this region underwent about 

200 m of vertical offset more than once, in addition to isostatic rebounding (Easterbrook, 

1963, 1992; Figure 4). Dating of these sediments indicates that this area emerged, 

resubmerged, and reemerged sometime between 10,000 and 12,000 years ago 

(Easterbrook, 1963,1992; Figure 4). The retreat and advance of ice during glaciation 

does not account for this magnitude of vertical offset during that time period. The most 

likely explanation for these of&ets is crustal deformation caused by tectonism.

Tectonic Setting

The study area is located above the Cascadia subduction zone where young 

oceanic lithosphere of the Juan de Fuca plate is descending beneath North America 

(Figure 5). The Juan de Fuca plate is a remnant of the FaraUon plate, which has been 

actively subducting along the North American continental margin since the mid-Mesozoic 

(Engebretson and others, 1985). Present-day relative motions indicate that the Juan de 

Fuca plate is moving northeasterly toward the North American plate at a rate of 

approximately 4.3 cm/yr. (Riddihough, 1977, 1984; Figure 1).

The oblique approach of the Juan de Fuca plate relative to North America causes 

transpressive deformation within the crust of the North American plate (Stanley and 

others, 1996; Wells and others, 1998). Transpressive deformation is occurring in the
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Figure 4. A.) Diagrammatic section of the Everson glaciomarine drift at its type locality 
near Deming. B.) Vertical offset relative to present day elevation each section underwent 
from ten to twelve thousand years ago. Isostatic rebounding cannot account for this 
magnitude of vertical offset. Tectonics is the most likely explanation. (From Easterbrook, 
personal communication).
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A.
w

Figure 5. Cross section of Washington and the Cascadia Subduction Zone. 
The boundaries of the Juan de Fuca and North American plates are defined in 
part using earthquake hypocentral locations. (A.) Shows major topographic 
features and generalized underlying geologic structures of Washington.
Regions labeled I, n, and m are the three source regions for earthquakes 
experienced in the Pacific Northwest. Region I is the intersection of the 
subductii^ Juan de Fuca and the overriding North American plates. Region II 
is the overriding North American plate. Region III is the subducting Juan de 
Fuca plate. (B.) Selected hypocenters of earthquakes that occurred fi-om 1982 
to 1986, fi-om AT to 48“ N. Below sea level the vertical exaggeration is 2 to 1. 
The deeper earthquakes are events that occurred in the subducting plate. The 
shallower earthquakes are events that occurred in the overriding crust (Taken 
firom Noson and others, 1988).
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Cascadia forearc, between the Juan de Fuca plate and the North American plate. Arc- 

parallel transport of the Cascadia forearc is estimated to be as much as .9 cm/year (Wells 

and others, 1998).

Change in the trend of the subduction front, shown in Figure 1, from roughly north 

- south off Oregon to northwest - southeast off Vancouver Island causes fiirther structural

complexities in the study area. The general direction of motion of the Juan de Fuca plate 

and the curved subduction front results in change of relative motions between the two 

plates along the subduction front. A result of these changes in relative motions along the 

subduction front is a buttress that has formed within the North American plate (Beck and 

others, 1993; Figure 3). There basement rocks of the Crescent Formation, part of the 

Cascadia forearc, move northward and encounter the relatively stationary basement rocks 

of Vancouver Island and the North Cascades (Figure 3; Stanley and others, 1995; Wells 

and others, 1998). The northern Puget Lowland lies \vithin the buttress zone just inland 

from the bend on the subduction front. The change in relative plate motion in relation to 

the subduction front and a buttress likely causes deformation unique to the forearc region 

just south of it (Beck and others, 1993; Stanley and others, 1996; Wells and others, 1998).

Regional Seismicity

Earthquake Source Regions

Three source regions for earthquakes in the Pacific Northwest are recognized 

(Rogers and others, 1996; Noson and others, 1988; Figure 5). They lie within the 

boundary zone between the two converging plates, and within the converging plates
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themselves (Rogers and others, 1996; Noson and others, 1988; Figure 5).

The largest and most threatening earthquakes occur in the boundary between the 

converging plates. They result from the subducting slab sticking to the overriding crust 

(Figure 5a, region I; Rogers and others, 1996). Elastic strain rates measured along the 

front of the North American plate margin demonstrate that the subduction zone off the 

Puget Lowland is locked (Figure 6; Dragert and Hyndman, 1995). Locking of the 

subducting slab to the overriding crust is causing the outer plate margin to uplift and 

shorten. This subduction zone extends from Canada to Oregon and has the potential for 

the largest earthquakes. While literally thousands of events have been recorded, not one of 

the recorded events is known to have been the result of deformation at the boundary 

between the two plates (Figure 5a, region I). All recorded seismic events in the Pacific 

Northwest are considered to have occurred within one of the two plates (Figure 5a, 

regions II and III).

Within the overriding crust of the North American plate, crustal deformation is 

shallow and extends into the forearc. This is the result of the trench-parallel component of 

the approaching subducting plate causing transpressive deformation in the forearc (Figure 

5a, region II; Stanley and others, 1996).

Many of the largest earthquakes felt in historical times have taken place within the 

subducted slab of the Juan de Fuca plate. These events are believed to be the result of 

stresses caused by downward gravitational pull of the oceanic crust into the Earth’s mantle 

(Figure 5a, region III; Rogers and others, 1996).

11



Figure 6. Map of the northern Cascadia margin showing the plate tectonic 
setting and the position of the locked and transition zones for the subduction 
thrust (from Dragert and others, 1994a; Hyndman and Wang, 1995). Solid 
squares indicate GPS tracking sites. The arrows and their 95% confidence 
ellipses at HOLE and ALBH indicate horizontal motion relative to DRAG. 
Notice that the present motion of HOLE is consistent with translation of the 
forearc northwestward, whereas ALEH suggests much larger easterly 
convergence across the Puget Lowland (Taken from Dragert and others, 1995).
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Large Holocene Earthquakes

Geologic records indicate that several large earthquakes (magnitude 8 or greater) 

have occurred along the Cascadia subduction zone within the past 3000 years (Figure 5, 

region I; Atwater, 1987). The most recent event, about 300 years ago, may have involved 

rupture along most of the Juan de Fuca - North American margin (Figure 6; Adams,

1992). Evidence for this event and its timing comes mainly from tree ring dating of 

submerged and damaged trees in coastal marshes, radiocarbon dating of tsunami deposits, 

and Japanese tsunami records from January 1700 (Yamaguchi and others, 1997). Dating 

of other deposits resulting from earlier large subduction events suggests a recurrence 

^ interval of 300 to 1200 years (Atwater, 1996).

A large earthquake (estimated to be magnitude 7.5) occurred in the shallow crust 

immediately beneath Seattle less than 1,100 years ago (Figure 5, region II; Adams, 1992). 

Durii^ this event, a marine terrace along southern Bainbridge Island was uplifted 21 feet 

(Buckman and others, 1992). Other evidence of this event consists of tsunami deposits 

(Atwater and Moore, 1992), tree ring cross dating data linked to the abrupt deaths of trees 

(Jacoby and others, 1992), landslides and turbidite deposits within lake sediments (Karlin 

and Abella, 1992), and rock avalanche deposits (Schuster and others, 1992). The entire 

Puget Soimd region apparently has faults and the potential for earthquakes similar to this 

shallow crustal one, but most of these faults are poorly understood (Rogers and others, 

1996).

Some of the first direct evidence of moderate to large prehistoric earthquakes in 

the northern Puget Lowland may be liquefaction features found at she sites just south of

13



Vancouver BC within 20 km of the study region (Figure 1; Clague and Naesgaard, 1992). 

Upper limiting ages of 3,500 years and 2,400 years were found for these events, but 

because sand dikes intrude older peat layers, liquefaction features are believed to be much 

younger. Liquefaction features have also been found just south of Doming along the 

South Fork of the Nooksack River (Figure 6; Kovanen, 1996). A seismic cause is likely 

considered, based on the size of the feature (Kovanen, 1997, personal communication).

Recorded Historical Seismicity

Earthquakes as large as magnitude 7.4 have occurred in the Pacific Northwest 

during the region’s recorded history. Records of earthquakes date back to 1846 in 

Canada and 1872 in Washington (Mulder, 1995; Madole and others, 1995). These 

records show that large earthquakes occurred within the crust and subducting-slab (Figure 

5, regions II and III), but not along the Cascadia subduction zone (Figure 5, region I; 

Heaton and Kanamori, 1984; Rogers and others, 1996). Recorded seismicity within the 

study area reveals active shallow crustal deformation (Figure 7). Fifteen events larger 

than magnitude 4 have occurred in the study region since 1969 and Canadian records 

show at least 20 events of magnitude 4.5 or greater occurred in this portion of the North 

American plate between 1846 and 1975 (Mulder, 1995). The largest and oldest event 

recorded in the Pacific Northwest was a magnitude 7.4 event in 1872 (Figure 7; Madole 

and others, 1995). It is the only large (> 6.0 magnitude) shallow crustal earthquake in 

historical records and is estimated to have occurred in the easternmost part of the study 

region (Figure 7; Madole and others, 1995). The magnitude 5.2 1990 Deming earthquake

14
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was the second largest crustal earthquake in WA since 1920, the largest being the 1996 

magnitude 5.3 Duvall earthquake that occurred just north of Seattle.

Crustal Faults and Lineaments

Active deformation in the northern Puget Lowland has received little attention.

One reason for this is that active feults are difiScult to delineate because this area is highly 

vegetated, undergoes rapid erosion, and much of it is heavily glaciated and covered with 

thick Quaternary deposits. However, several faults to the south and east have been 

documented (Figure 8; Gower and others, 1985, Cheney, 1987, Johnson and others, 1996; 

Pratt and others, 1997). Evidence has been found for Quaternary movement on the 

southern Whidbey Island fault (Figure 8; Johnson and others, 1996). In the study region, 

the Devils Movmtain fault and an extension of the Mount Vernon fault into Bellingham 

Bay and were found to have Eocene displacement. Evidence for this is based on surveys 

and cross cutting relationships, but whether recent displacement has occurred is less 

certain (Figure 8; Cheney, 1987). The 5.2 Deming earthquake occurred along the 

Macaulay Creek Thrust, although no surface rupture was found (Figure 9; Dragovich and 

others, 1997). Several potentially active feults and lineaments have been documented in 

the northern portion of the region based on earthquake and potential field studies (Figure 

9; Mulder, 1995).
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Figure 9. A.) Location map of cross section A - A' through Deming. Deming is 
located on Figure 2. B.) Cross section A - A'. Thrust R between 1.5 and 3.5 km 
depth, the hypocenters (circles; size proportional to magnitude), and backthrust 
(S) from Amadi (1992). Hypocenters shown are best-located aftershocks. The
intersection of the conjugate planes at location P trends N70E (Amadi, 1992).
(Taken from Dragovich and others, 1997)
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Summary

Our knowledge of plate tectonics, geologic history and local historical seismicity 

indicates that the Puget Lowland is seismically active. Evidence is consistent with a high 

probability for destructive earthquakes within the study region. Mitigation of earthquake 

hazards requires that the geologic structures, kinematics, and dynamics of the area be 

better imderstood. The rest of this thesis uses seismicity of the northern Puget Lowland to 

locate and characterize active structures for the purpose of better understanding 

associated earthquake hazards. Locations of earthquakes, their focal mechanisms, and 

their planar distributions are examined in the next sections.
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CHAPTER 2 SEISMIC STUDY

Highly accurate location of earthquakes has been possible since the installation of a 

seismic station telemetry network by the Washington Regional Seismic Network (WRSN) 

and the University of Washington (UW) in 1969 (Crosson, 1972). Coverage of southern 

Vancouver Island and the adjacent mainland has improved since 1975 when the Western 

Canadian Telemetered Network (WCTN) and the University of British Columbia (UBC) 

installed their first four digital seismograph stations on the west coast with expansion to 

twenty two stations by 1984 (Mulder, 1995).

Depth Distribution Analysis

Seismicity recorded by the expanded seismic network has fostered a better 

understanding of regional deformation. Two distinctive concentrations of earthquakes 

occur (Figure 10). In Washington, earthquakes shallower than ~30 km are considered to 

be crustal, occurring within the North American plate (Figure 5, region II; Crosson and 

Owens, 1987; Weaver and Baker, 1988; Stanley and others, 1996). None of the recorded 

events is believed to be associated with deformation at the boundary between the North 

American plate and the subducting slab, also referred to as the "locked zone" (Figure 5, 

region I and Figure 6; Crosson and Owens, 1987; Weaver and Baker, 1988; Stanley and 

others, 1996).

The WRSN’s earthquake records fi'om 1969 to 1995, provided by Steve Malone 

of the WRSN, were used for depth distribution analysis of the crustal region falling
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Figure 10. A.) Epicenters of earthquakes in the Washington Regional Seismic Network 
catalog from 1970 through 1986 lying west of 121° W, that were considered the best 
located events as defined by Crosson and others, 1987. N - S lines labeled A - D are 
locations of cross sections not included here. B.) E - W cross-section showing all 
hypocenters of all earthquakes plotted above. No vertical exaggeration, grid ticks are at 
10 km intervals, with 123 W longitude at the center of the plot. Subcrustal earthquakes 
defining the Benioff zone are assumed to be within the subducted Juan de Fuca slab. 
(Taken from Crosson and others, 1987)
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between 48°to 49° N latitude and 124° to 121° W longitude (Figure 11). All events 

chosen were 30 km depth or shallower and are considered to have occurred within the 

North American crust. The 1,230 events that fell within the boundaries of the region were 

used for analysis of the structures on which they occurred.

Regional Data and Results

From Figure 11 and 12 a transition from deeper earthquakes in the west to 

shallower earthquakes in the east is apparent. The number of earthquakes that occurred in 

each depth range within the bounds defined earlier were plotted (Figure 13). In addition 

to the transition mentioned above, a general bimodal distribution of all earthquakes is 

apparent with one concentration at very shallow (< 4 km) depth and another between 12 

to 20 km depth (Figure 13). Similar plots were made for a more detailed study of how

depth distribution changes from west to east (Figure 14). On this we can see that the 

majority of events occur between 123.5° and 121.5° west longitude (Figure 14). Virtually 

all recorded events west of 122.5° W were deeper than 10 km, while east of 122° W most 

recorded events were shallower than 10 km (Figure 14). The transition, from "deep" 

crustal to "shallow" crustal earthquakes appears to lie between 122.5° and 122° W 

longitude (Figure 14). This distribution of the occurrence of earthquakes within the crust 

is a function of the crustal rheology.
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Figure 11. A.) Map showing epicentral locations of earthquakes occurring within the 
bounds of the depth distribution analysis. These events are all considered to be due to 
North American crustal deformatioa B.) Hypocentral locations of earthquakes projected 
N - S along an E - W cross-section within the boimds of the depth distribution analysis. 
(No vertical exaggeration)

23



49

Figure 12. Epicentral locations of events were plotted as a function of the 
depth range into which they fell. Events shallower than 10 km primarly 
occurred in the eastern half of the study region. Between 10 and 20 km, 
events are scattered through the center of the study region. And events 
between 20 and 30 km are found primarily in the western half of the study
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Figure 13. The number of events that occur within each depth interval 
in the depth distribrution analysis on Figure 11. A bimodal distribrution 
of events can be seen, with peaks in the 0 - 4 km depth and 12 - 20 km 
depth ranges.
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Discussion

The distribution of events at depth appears to define a wedge-shaped body being 

deformed seismically. This could be interpreted as deformation within a cold crustal 

wedge (Lewis and others, 1992). Crustal temperatures are an important parameter of 

crustal rheology and thus influence the depth extent of faults and most other deformational 

structures (Sibson, 1983). Temperature distribution within the crust is due to the 

influence of the cold subducting slab and the magmatic arc (Figure 15). The brittle-ductile 

transition occurs around 350° C and the onset of substantial crustal melting begins around 

450° C (Lewis and others, 1992). Earthquakes tend to initiate a short distance above the 

onset of weakening where the crust is strongest (Pratt and others, 1997). The earthquakes 

may be located along a detachment or deformation zone that marks the boundary between 

the relatively cold wedge and the imderlying thermally weakened crust (Figure 16; Pratt 

and others, 1997). This interpretation is supported by the results shown on Figure 16 

where the depth analysis of Figure 14 is superimposed on the geothermal modeling of 

Figure 15. Temperature control of rheology and present strain rate would imply seismic 

risk in the west due to deeper sources and seismic risk in the east fi’om shallower sources.
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Figure 15. a.) Location map for cross-section A - B. b.) Heat flux and computed crustal 
temperatures along cross-section A - B. Vertical exaggeration is 4 to 1. Blackwell (1990) 
studied heat flux in Washington and Oregon and suggested that the heat flux in northern 
Washington is similar to that in British Columbia. The brittle ductile transition begins 
around 350° C and the onset of substantial melting begins around 450° C. The shape of 
the geotherms is the result of heat generation along the Cascade Volcanic Arc to the 
northeast in contrast to the cold slab to the southwest. HNA - Hot North American; 
OCAT - Old Cold Accreted Terrane; YJDF - Young Juan De Fuca. (Taken from Lewis 
and others, 1992)
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Focal Mechanism Analysis

Knowing the locations and orientations of possible fault planes is one step in 

understanding seismic risk. It would be better to know the sense of faulting as well. This 

is assessed in this section by using previously published focal mechanisms for the region of 

interest. These come from two independent sources, Qamar (1992) and Mulder (1995).

Focal mechanisms for more southerly earthquakes were determined by Qamar 

(1992) for all events having 10 or more picked first motions using the WRSN’s database 

from earthquakes that occurred between 1970 and 1991. Of the 2303 such events, 22 

were rejected by Qamar because their magnitude was less than 1.0, and 472 because they 

had ambiguous focal mechanisms. The WCTN’s database was used by Mulder (1995) to 

analyze focal mechanisms for events to the north occurring between 1981 and 1991. For 

each event, the three acceptable criteria are: 1) magnitude greater than 1.0, 2) 

determined to lie within the North American plate, and 3) had data at four or more 

stations with depth errors less than 7 km (Mulder, 1995). This dataset had 111 events 

with focal mechanisms from southwest British Columbia and surrounding area (Mulder, 

1995). Events from both datasets that feU within the bounds of the study region were 

used in this study (Figure 17).

Anderson’s Theory of Faulting

Anderson (1942) provided a theoretical explanation for the three main types of 

faulting: normal, thrust, and strike slip (Figure 18). The theory states that if a
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c.

Figure 18. Anderson's theory of faulting, showing relationship between the principal 
stress axes orientation and the different ideal feult types. Length of principal stress arrows 
is proportional to the magnitude of the principal stresses, a.) Normal fault with maximum 
compressive stress vertical, b.) Reverse feult with minimum compressive stress vertical, 
c.) Strike-slip feult with intermediate compressive stress vertical, al, a2, and a3 are 
assumed to coincide with the Pressure, B and Tension axes in focal mechanisms 
respectively. 32
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homogenous, unfractured rock is subjected to triaxial stresses (crl, c2, a3), it will fail by 

slip on one of two possible planes of maximum shear stress. These planes intersect along 

the intermediate stress axis and have poles that subtend angles less than 45 degrees to the 

greatest principal stress axis. Ideally, the type of fault that develops depends on which of 

the three principal stress axes is nearest to vertical (Davis, 1984; Twiss and Moores,

1992). Normal faults occur when al is vertical; reverse faults occur when a3 is vertical; 

and strike slip faults occur when a2 is vertical (Figure 18).

More realistically, rocks are not homogenous and unfractured. When subject to 

stress, they react in a manner similar to Anderson’s theory, but slip tends to occur on 

preexisting zones of weakness due to the lower shear stresses needed to initiate 

movement. Thus, focal mechanisms are not always reliable indicators of the orientation of 

the principal axes. They are, however, more reliable for the orientation of the actual 

displacement during an earthquake.

Premise of Focal Mechanisms

Focal mechanisms are lower hemisphere spherical projections of seismic rays from 

an earthquake. Distribution of contrasting first motions can be used to deduce possible 

fault planes and stress conditions for the earthquake (Figures 19 and 20). Focal 

mechanisms have two perpendicular nodal planes. One of these is the fault plane. Which 

of the two planes is the fault plane cannot be determined solely from the first arrival data. 

Additional information is necessary. Focal mechanisms also have three principal axes; 

Pressure, B, and Tension. These are assumed to coincide with the three principal stress
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Figure 19. a.) Map view of a strike-slip &ult. The first P-waves recorded at stations in 
sections A & C will be compressional (positive, up); the first P-waves recorded in sections 
B & D will be dilatational (negative, down), b.) Positive and negative first recorded P- 
waves. c.) Compressional and dilatational first motions for each seismograph that 
recorded the event plotted on a lower focal hemisphere. Azimuth of point plotted is that 
fi-om event to seismic station, points plotted closer to the center are for recording stations 
farther away, d.) The corresponding focal mechanism.
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Pressure

Figure 20. Two nodal planes separate the four quadrants into conqjressional and 
dialational. The pressure axis always bisects the dialational quadrant, while the 
tension axis always bisects the compressional quadrant. The B axis is always the 
intersection of the two planes.
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axes (Figure 18 and 20):

Pressure <=> al greatest principal stress

B o2 <=> intermediate principal stress

Tension <=> a3 least principal stress

Principal stresses that induced mo non along the fault plane are determined from 

the nodal planes and the type of motion that occurred (Figure 20). The three principal 

stress axes are mutually perpendicular and the B axis is parallel to the intersection of the 

two nodal planes. The pressure axis lies 45° from the two nodal planes in the dilatational 

region (Figure 20). The tension axis lies 45° from the two nodal planes in the 

compressional region (Figure 20). From the focal mechanism, we can determine the type 

of motion that occurred (i.e. dip-slip, strike-slip, or oblique motion), and two possible 

nodal planes along which slip occurred (Figure 21).

Focal mechanisms are made by plotting observed earthquake first motions from 

seismograph stations located at various azmuths that encircle the earthquake focus at 

different distances (Figure 19). For any given focal mechanism, the earthquake focus is 

represented as the center of the lower focal hemisphere. Compressional and dilational first 

motions are plotted as a vector with a certain trend and plunge. The azimuth is the 

direction a P-wave would take to reach a seismic station. The plunge of the vector 

correlates with the angle downward from horizontal that the P-wave traveled in order to 

reach the seismic station. If enough stations that record the event are appropriately
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Figure 21. A few examples of common earthquake focal mechanisms, a.) North striking 
reverse faults, b.) North striking normal faults, c.) North striking left-lateral strike-slip 
fault or east striking right-lateral strike-slip fault, d.) Northwest striking left-lateral 
reverse fault or northeast striking right-lateral reverse fault.
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distributed around the earthquake, two perpendicular planes that separate the dilatational 

from compressional arrivals can be found (Figure 19c). Ideally, the distribution of 

compressional and dilatational first motions plotted will represent both the slip motion that 

occurred on the fault plane and a plane perpendicular to the fault plane (Figure 21).

Seismic networks made possible the use of focal mechanisms to study the stresses 

that induce deformation. The overall orientation of the pressure axes for focal 

mechanisms of shallow earthquakes changes along the Cascadia coast (Figure 22).

Pressure axes orientations do not parallel the direction of convergence of the subduction 

of the Juan de Fuca Plate. Instead, they parallel the strike of the subduction zone, 

changing from a NE-SW orientation in southwestern Washington to a NW-SE orientation 

in northwestern Washington (Qamar and Ludvrin, 1992; Mulder, 1995). Deformation is 

likely the product of transpressive deformation due to the oblique convergence along the 

subduction front (Stanley and others, 1996). The pressure axes cluster almost horizontal 

NNW in the study region and N in the Puget Sound region (Figure 23; Mulder, 1995).

The tension axes are distributed in a girdle whose pole coincides with the pressure axes. 

This relative consistency of pressure axes suggests that whatever controls the P axes 

controls the deformation.

Description of the Focal Mechanism Dataset

All events with epicenters that fell between 47.5° and 49° north latitude, 124° and 

121° west longitude and were 30 km or shallower in depth were used for the focal 

mechanism study (Figure 17). All WRSN events were used, except for ambiguous ones. I
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Figure 22. Rose diagrams showing the distribution of P and T azimuth. Black petals 
show P azimuth; white petals show T azimuth. Pressure directions show a rotation from 
northwest in the northern part of the region to northeast in the southern part of the region 
parallel to the trend of the subduction front. This indicates that faulting is the result of 
transpressive deformation from the parallel component of subduction, as opposed to 
compressive deformation from the perpendicular component of subduction. This was 
generated from focal mechanisms in the WRSN’s database.
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P-Axes T-Axes

N N

N N

Figure 23. Plotted P and T axes on a lower focal hemisphere projection, a.) Events for 
southern British Columbia and northwestern Washington, b.) Events for west central 
Washington. Note the change in orientation of the axes. The tension axes have a girdled 
distribution indicating that the pressure orientation is the dominating factor in 
deformation. (Taken from Mulder, 1996)
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added all events in the WCTN database that we did not already have focal mechanisms 

for. The result was 130 events from WRSN's database and 64 from WCTN's database.

Fault Classification Diagrams

The geometry of the stress axes and the fault and nodal planes that make up a focal 

mechanism is unique (Figure 20). This geometry allows any focal mechanism to be 

represented by the plunges of the three stress axes. Frolich (1993) created a ternary 

diagram that represented this relationship. For this study, Frolich's ternary diagram was 

modified to simplify presentation of this relationship. A fault classification diagram is a 

plot of the plunges of P, T, and B such that each of the three comers represent a different 

fault type and any position of the three axes can be plotted on it. The plunges of any two 

axes will determine the plunge of the third since all three axes are perpendicular. Because 

of this, an XY graph was developed for this study that uses the plimges of P and T along 

the X and Y axes. A constant plunge of B then defines a curved contour (Figure 24). For 

each possible P and T plunge combination there is a corresponding B plunge that can be 

found by taking the cross product of the P and T axes (Frolich and Davis, 1993). The 

plunge of B (Bp), as a fimction of the plimges of the P and T axes (Pp and Tp)is:

Bp = asin ( 1 - sin2Pp - sin2Tp )°-5

All possible focal mechanisms can be plotted as a fimction of the plunge of P and T. The 

resultant graph appears as a triangular region with P, T, and B axes in each of the 

diagrams three vertices (Figure 24). At each of the three vertices is a “pure” fault motion:
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Fault Classification Diagram

Strike-Slip

10 20 30 .40 50 60 70 80
Plunge of P axis

Normal

Odd

Figure 24. A Fault Classification Diagram, developed in this work, for the determination 
of feult types using focal mechanisms. The plunge of the P and T axes are plotted on this 
XY style graph. The plimge of the B axis can be found along the curved contours. In 
each of the three vertices is a principal axis with a plimge of 90. A reverse fault with the 
fault and nodal planes dipping 45 occurs when the plunge of the T axis is 90. All 
mechanisms with a T axis plunging greater than 45 are considered reverse. A normal fault 
with the fault and nodal planes dipping 45 occurs when the plunge of the P axis is 90. All 
mechanisms with the plunge of the P axis greater than 45 are considered normal. A strike- 
slip fault with the fault and nodal planes dipping 90 occurs when the plunge of the B axis 
is 90 or the plunges of P and T axes are 0. All mechanisms with the B axis plunging 
greater than 45 are considered strike-slip. Mechanisms with the P, T, and B axes plunging 
less than or equal to 45 are considered to be odd. Odd events are not predominantly 
reverse, normal or strike-slip.
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normal, reverse and strike-slip, oblique slip faults fall in between. The type of motion that 

occurred along the fault can be defined by the plunge of P and T. To generalize, all events 

with their pressure axes plunging greater than 45° are considered normal, all events with 

their tension axes plunging greater than 45° are considered reverse, and all events with 

their B axes plunging greater than 45° are considered strike - slip (Figure 24). Events that 

don’t fall into any of these categories are termed odd (Figure 24; Frolich and Davis,

1993).

Distribution of Faulting Style

A fault classification diagram for the region between 48° to 49° N and 124° to 121 

° W shows that all types of feulting have occurred (Figure 25). Table 1 gives the 

percentages of the types of earthquakes that have occurred at various depth ranges using 

the diagram explained above. Figure 26 shows the percentages of different types of events 

at different depths. From Figure 26 it is obvious that reverse faulting is most common 

near the 15 km depth range, with the second most common being reverse feulting at 

shallower levels. In contrast, strike slip faulting is more common than reverse faulting at 

an average 25 km depth. Normal events show a steady decline with increasing depth.

Odd events are evenly distributed at all depths.
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Fault Classification Diagram

Figure 25. Fault classification diagram for all focal mechanisms from events in the study 
region between 48° - 49° N latitude and 124° -121° W longitude. Events are scaled to 
magnitude and depth. R is in the region of reverse faulting focal mechanisms. S is in the 
region of strike-slip focal mechanisms. O is in the region of odd focal mechanisms. N is 
in the region of normal focal mechanisms.
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Table 1. Percentages of the events in each specific depth and fault type.

Depth 
Fault Type

0- 10km 10 - 20 km 20 - 30 km Total %

reverse 17% 24% 5% 46%

strike-slip 12% 8% 8% 28%

normal 9% 5% 1% 15%

odd 4% 4% 3% 11%

Total % 42% 41% 17% 100%

The buttress for the traveling forearc, undergoing transpressive deformation, is 

generally considered to be along the southern edge of the study region. But, reverse and 

strike-slip events make up 74 percent of the focal mechanisms, which would be expected 

in a transpressive regime assuming the forearc is traveling parallel to the Cascade volcanic 

arc, towards the buttress in Canada. In this case, the majority of events expected are 

reverse with an overall north-south shortening of the forearc and strike slip faulting would 

be expected parallel to the Cascades. The results here suggest that the northern Puget 

Lowland is itself part of the traveling forearc, and not the relatively stable buttress.

Some generalh^ations can be made about the different levels in the crust by looking 

at the how fault types are distributed. The majority of the shallow crustal earthquakes (0 

to 10 km) occur at a depth of less than 4 km. Crust at this level is likely to be brittle and 

heterogeneous. These conditions and preexisting zones of weakness can account for
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events of all types. The domination of reverse events at 10 to 20 km indicates that a sub

horizontal pressure conqjonent is controlling deformation and it is consistent with a 

transpressive regime (Figure 24). Transpressive deformation is the result of traction 

between the subducting Juan de Fuca plate and the overriding North American plate. The 

transition to predominately strike-slip faulting at deeper levels is one of the more notable 

trends. Based on consistent NW-SE orientations of the P-axes, we can assume the forearc 

is deforming under fairly uniform stress conditions, although we can see from the girdle 

pattern on Figure 23 that the second and third principal stresses are probably close in 

value and somewhat interchangeable. Changes in the predominant type of faulting at- 

depth could be the result of swapping of 02 and due to a higher Uthostatic load or a

change in the preferred orientations of preexisting zones of weakness

Discussion

Using the fault classification method described earlier, twelve maps were made that 

show focal mechanisms of each fault type (reverse, strike-slip, normal, and odd) plotted by 

depth (0 to 10 km, 10 to 20 km and,20 to 30 km) (Figures 27 - 38). From each map, 

patterns in each of the different types of faulting are noted below. The maps extend south 

of the study region primarily to show the southern continuation of the southern Whidbey 

Island fault.

That earthquakes within Puget Soimd are the result of transpressive deformation in 

the Cascadia forearc caused by oblique subduction is generally accepted. This is partially 

supported by focal mechanisms which shows reverse faulting is the predominant type of
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Figure 27. All focal mechanisms that were classified as reverse and fell between 0 and 10 
km were plotted next to the epicenter. Next to each focal mechanism is the depth at 
which the event occurred. The major faults and lineaments fi’om Figure 9 are plotted as 
well.

48



Figure 28. All focal mechanisms that were classified as reverse and fell between 10 and 
20 km were plotted next to the epicenter. Next to each focal mechanism is the depth at 
which the event occurred. The major faults and lineaments from Figure 9 are plotted as 
well
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Figure 29. All focal mechanisms that were classified as reverse and fell between 20 and 
30 km were plotted next to the epicenter. Next to each focal mechanism is the depth at 
which the event occurred. The major faults and lineaments fi-om Figure 9 are plotted as 
well.
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Figure 30. All focal mechanisms that were classified as strike-slip and fell between 0 and
10 km were plotted next to the epicenter. Next to each focal mechanism is the depth at
which the event occurred. The major &ults and lineaments fi'om Figure 9 are plotted as
well.
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Figure 31. All focal mechanisms that were classified as strike-slip and fell between 10 and 
20 km were plotted next to the epicenter. Next to each focal mechanism is the depth at 
which the event occurred. The major faults and lineaments from Figure 9 are plotted as 
well.
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Figure 32. All focal mechanisms that were classified as strike-slip and fell between 20 and
30 km were plotted next to the epicenter. Next to each focal mechanism is the depth at
which the event occurred. The major faults and lineaments from Figure 9 are plotted as
well.
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Figure 33. All focal mechanisms that were classified as normal and fell between 0 and 10
km were plotted next to the epicenter. Next to each focal mechanism is the depth at
which the event occurred. The major &ults and lineaments fi"om Figure 9 are plotted as
well.
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well.

Figure 34. AU focal mechanisms that were classified as normal and feU between 10 and
20 km were plotted next to the epicenter. Next to each focal mechanism is the depth at
which the event occurred. The major faults and lineaments fi-om Figure 9 are plotted as
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Figure 35. All focal mechanisms that were classified as normal and fell between 20 and
30 km were plotted next to the epicenter. Next to each focal mechanism is the depth at
which the event occurred. The major faults and lineaments fi'om Figure 9 are plotted as
well.
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Figure 36. All focal mechanisms that were classified as odd and fell between 0 and 10
km were plotted next to the epicenter. Next to each focal mechanism is the depth at
which the event occurred. The major faults and lineaments from Figure 9 are plotted as
well.
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Figure 37. All focal mechanisms that were classified as odd and fell between 10 and 20
km were plotted next to the epicenter. Next to each focal mechanism is the depth at
which the event occurred. The major faults and lineaments from Figure 9 are plotted as
well.
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Figure 38. All focal mechanisms that were classified as odd and fell between 20 and 30 
km were plotted next to the epicenter. Next to each focal mechanism is the depth at 
which the event occurred. The major faults and lineaments fi-om Figure 9 are plotted as 
well.
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event. South of 48° N and at depths greater than 10 km, reverse faults show a general 

east/west strike; north of 48° the majority of reverse faults show a general 

northeast/southwest strike (Figures 22, 27 - 29). Change in the orientation of reverse 

faulting is consistent with a change in the regional pressure direction, likely the result of 

the change in trend of the subduction front (Figure 1).

Of the shallow strike-slip events, half occur in the Deming area (Figure 30). The 

rest of the events north of 48° show a northwest/southeast right lateral strike slip or a 

northeast/southwest left lateral strike slip motion (Figures 30 - 32). This also is consistent 

with transpressive deformation as a result of the trench-parallel component of subduction. 

Many of the deeper (20 to 30 km depth) strike-slip events occur within the region of the 

Southern Whidbey Island fault zone, which is a segment of the boundary between two 

major crustal blocks (Johnson and others, 1996; Figure 32).

Normal events comprise only 15 percent of focal mechanisms in the region (Table 

1; Figures 33 - 35). A cluster of shallow events occurs in the Deming region (Figure 33). 

The gmflll percentage of normal events is also consistent with a transpressional regime 

(Figures 36 - 38).

Notable Fault Trends

1. A distinct trend of right lateral, transpressional strike-slip faulting, around 23 to 26 km

depth, was found along the southern Whidbey Island fault (Figure 32). This zone

stretches from 47.6° N along a northwest trend to 48.5° N and merges into southern

Vancouver Island. On Figure 32, the right lateral strike - slip trace is visible. On
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Figure 29, we ean see that a eomponent of transpressional motion aeeompanies the 

translational motion. While the events don’t he directly along the trend of the near

surface expression of the fault, they could have oceurred on the same fault. Based on 

the location of these events and the northern traee of the southern Whidbey Island 

fault, they eould have been on that fault if it dipped approximately 60° - 70° to the 

north. Farther southeast, the feult may be steeper beeause epicentral locations He 

closer to the fault traee

2. On eloser examination of the region of the traee of the Devils Mountain fault.

a. The easternmost section of the Devils Mountain fault traee is beUeved to trend

northwest. Figure 30 shows focal mechanisms that are consistent with this.

b. To the west along the Devils Mountain fault traee the trend appears to change

to east - west. Based on fijeal mechamsms, motion is mainly reverse faulting at

around 12 to 18 km depth (Figure 28).

3. In the northern part of the study region is a northeast - southwest trending zone of

reverse faulting at approximately 17 to 20 km depth (Figure 28). The zone of reverse

Suiting may continue to Oreas Island (Figure 2) where there are events with similar

motions and orientations (Figure 28). This zone coineides with a lineament found

using earthquake epieenters and magnetics data (Figure 9; Mulder, 1995).

The Deming events and events southwest of the southern Whidbey Island fault 

were not discussed in the analysis of the focal mechanism maps. The Deming area has 

many types of mechanisms all within a small cluster. Many could have originated on the 

Macaulay Creek fault sinee more than half of the recorded events in this area occurred
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within a year before and after the 1990 magnitude 5.2 event (Figure 8 ; Dragovich and 

others, 1997). Events southwest of the southern Whidbey Island fault could have 

occurred on the Seattle fault and the Kingston Arch in an area that has been studied 

extensively.
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Localized Analysis of Planar Seismicity

Trying to make sense of the clusters and elongate distributions of epicenters we 

see in Figure 11 is one of the keys in defining active structures and earthquake potential. 

Knowing if the local concentrations of events fall along a planar surface that might be a 

major fault, or if they are more widely distributed, apparently unrelated events that align 

along unrelated surfaces would be valuable. If they do the fall along planar surfaces, the 

orientation and inclination of those surfaces would be usefiil in describing the active 

structures. Knowing potentially active structures is useful in determining which of the two 

nodal planes in a focal mechanism is the fault plane. A determination of a likely sense of 

motion along potentially active structures can then be found using focal mechanisms of 

events that occurred in the vicinity of an active structure.

To see if earthquakes occurred along planar surfaces, events within small sampling 

volumes were analyzed using a Chi-square method (Bevington, 1969; Figure 39). The 

statistical analysis employed a program written by Dr. David C. Engebretson. The 

assumption is that events occurring along a feult surface would fall along a plane . Using 

Chi-square best-fit approach, we can then attach probabilistic meaning to "significant" or 

"unlikely" fault planes (Figure 39).

Chi-square is used to test the appropriateness of different probabilistic models. 

Chi-square is essentially the sum of the squares of the "misfit" to any given "model" and it 

measures the "closeness" of earthquake foci to a corresponding expected "model". For 

our purposes Chi-square for a data set having N foci is:
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2N

where 5i is the distance in km from the ith focus to the modeled plane, ai is the standard 

deviation in km for the quality in location of the event. 5i is found through the dot 

product of the 3 dimensional position vector of the focus with the normal to a given 

(model) plane, ai is the root-mean-square error estimate given in the WRSN archives for 

each earthquake. The best-fit process involved a search in parameter space for all possible 

planes at 1 degree strike and 1 degree dip increments. All events are assumed to have 

equal "weight". That is, no weighting according to magnitude was applied. All model 

planes were forced to include the centroid of the foci dataset (center of gravity for a 

collection of unit masses representing the earthquake foci). Thus the fit involved two 

parameters (strike and dip). The lowest Chi-square value is associated with the best-fit

plane.

Chi-square gives little indication if a best fit plane from one model is a better fit 

than another plane for a different modeled region. This is because it does not account for 

the size of the dataset used to calculate Chi-square values. Therefore, datasets with many 

events will tend to have larger Chi-square values than those with smaller datasets given a 

similar fit. Reduced Chi-square is used to remove the dependence of data set size. The 

reduced Chi-square values can be used to compare the "goodness of fit" relative to other 

best fit planes elsewhere in the study region. For our purposes reduced Chi-square is.
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Xv^ = (/ V )

Where v is the number of events minus the number of parameters plus one (in this case 

totaling three) calculated from the data to describe the distribution. An approximation for 

the standard deviation of the events in km from the best fit plane can then be derived by 

taking the square root of reduced Chi-square.

Uncertainties in the best fit planes were found using the F distribution which uses 

the ratio of for neighboring planes to Xv^ for the best-fit plane. F distribution is:

f~ (neighboring)/ X''^(best)

/values were calculated for planes at two degree increments from the best fit strike and 

dip. Variance in strike and dip of the best fit plane was determined to be where/reached 

two. This provided strike and dip uncertainties with a minimum of 75 percent confidence.

Subsets of seismic events were selected for analysis by passing a window of 0.15° 

latitude by 0.226° longitude over the study area at 0.05° increments. Chi-square and 

reduced Chi-square values were calculated for each subset. The results were written out 

to files and plotted according to set criteria (Figures 40-41). Figures 40 and 41 show 

best-fit planes that meet the specified criteria. Figure 40 shows planes that were 

determined under more stringent constraints than those in Figure 41, but both show the 

statistically significant clusters within the dataset. Due to depth distributions, each 

window was roughly cubic in shape, the exception is between 122.5° and 122 west 

longitude where a full range of depths was used (Figure 14).
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Discussion

Clusters that met reduced Chi-square criteria were deemed significant (Figures 40 

and 41). These significant trends are probably the result of earthquakes occurring along 

planar surfaces. These planar surfaces likely are preexisting zones of weakness, and 

faulting is the result of regional stresses. While these clusters can be deemed significant, 

there may be subsets with planar distributions of events that did not meet the selected 

criteria. A clear lack of results between 122.5° and 122° is most likely due to the bimodal 

depth distribution that merges events at two different depths giving poor Chi-square 

values. In retrospect, each mode should have been analyzed seperately. Clusters labeled 1 

through 9 on Figure 40 are the most significant trends found using the Chi-square analysis.

Now that we have foimd trends that could likely be deemed fault planes, we can 

use our focal mechanisms (Figures 27 to 38) and find out the probable feult planes and 

thus, the sense of motion:

Cluster 1. A north-northwest strike of left lateral strike-slip and oblique- 

slip motion can be seen on a very steep to east dipping fault surfece between 10 

and 20 km (Figures 28 and 31).

Cluster 2. Correlates with a lineament found using earthquakes and 

magnetics data (Mulder, 1995). The focal mechanisms show possibly reverse or 

strike-slip events occurring along this zone, sense of motion cannot be determined 

(Figures 28 and 31).

Cluster 3. The center of the cluster is around 15 km. Based on this it 

might possibly be related to a reverse event on Figure 28.
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Cluster's 4 & 6. There are no focal mechanisms in the vicinity of these 

planar clusters. Sense of motion cannot be determined.

Cluster 5. East-west striking steeply dipping reverse faulting around 15 

km can be seen (Figure 28). This also falls just south of the trace of the Devil's 

Mountain fault.

Cluster 7. Clear shallow (< 4 km) southwest-northeast striking, southeast 

dipping reverse faulting can be seen (Figure 27). The strike-slip focal mechanisms 

follow both planar orientations, but are steep dipping with a clear sense of strike 

slip motion parallel to the Devil's Mountain fault (Figure 30). Based on this, I 

would say that there is northwest-southeast striking, right lateral strike-slip faulting 

at shallow (< 4 km) depths along this fault trace.

Cluster 8. Shallow reverse faulting can be seen along this cluster's 

orientation in Figure 27.

Cluster 9. This planar cluster shows up on Figure 42. It is noteworthy 

because it aligns with the Vedder Mountain trace seen clearly as a reverse fault in 

the focal mechanisms and correlates with a lineament found using earthquakes and 

magnetics (Mxilder, 1995; Figure 28).
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CHAPTER 3 SUMMARY AND CONCLUSIONS

Based on a depth distribution analysis, we see a clear transition from earthquakes 

that are deeper in the western part of the study region and shallower to the east (Figures 

11, 12 and 14). The distribution of earthquakes and geotherms indicate that the brittle 

material being deformed is wedge-shaped (Figure 16). Crustal temperature distribution 

seems to control the depth extent of earthquakes (Figure 16). Because the crust is 

strongest at the base of the cool crust, this is the likely location where earthquakes will be 

initiated. Aseismic deformation likely propagates upward to become seismic deformation 

in the lower boundary of the cold crustal wedge where the brittle-ductile transition occurs 

(Figure 15 and 16). The result is that seismic risk in the eastern part of the study region 

comes from shallow earthquakes and in the western part from deeper earthquakes.

Using a new technique modified from Frolich (1993) for this study, a focal 

mechanism analysis shows deformation typical for a region exposed to both congressional 

and translational stresses due to the oblique approach of the Juan de Fuca plate (Figures 1 

and 6). Compressional deformation was dominant overall, with translational events the 

next most abundant (Figure 25 and 26). This suggests that the study region is undergoing 

deformation as a result of the same regional stresses that induce deformation to the south.

A change from predominately reverse faulting at depths shallower than 20 km to 

predominantly strike - slip faulting at depths greater than 20 km could be the result of <72 

and Oj changing places due to a higher lithostatic load or represent a change in the
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preferred orientations of preexisting zones of weaknesses at depth. The majority of these 

events occur near a major structural boundary along the trace of the southern Whidbey 

Island fault, which juxtaposes different terranes against one another.

Results of the Chi-square statistical analysis and focal mechanism plots were used 

to locate potentially hazardous, active fault zones. Both orientation and sense of motion 

were possible to determine using these methods. Three fault zones that stood out the

most were:

1. The southern Whidbey Island fault zone shows a clear sense of northwest

trending right-lateral strike-slip motion around 23 to 26 km depth (Figure 32).

This zone can be followed for more than 100 km and therefore may be able to 

provide a large slip surface. Slip surface area is directly related to earthquake 

magnitude potential and, therefore, the southern Whidbey Island fault should be 

considered capable of producing large destructive earthquakes.

2. The eastern section of the Devh’s Mountain fault shows two planar orientations

on Figure 41 cluster 7. These correspond with strike-slip and reverse focal 

mechanisms on Figures 27 and 30 and are likely two faults that may int^r^ct. 

Although the trace here isn't clearly extensive, the events are shallow. A shallow 

event can result in more damage for a localized area than for a deeper one of the 

same size. Westward the Devil's Mountain fault may continue at greater depths 

with reverse motion.

3. The Vedder Mountain trace, clearly seen as a northeast striking reverse fault on

Figure 28, can also be seen on Figure 41, and directly correlates with documented
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lineaments on Figure 8. Focal mechanism suggest that this lineament may extend 

westward as far as Orcas Island, which would make this a major fault zone and 

therefore capable of producing damaging earthquakes.

Because a great deal of research has not been dedicated to better understanding 

active shallow structures within the northern Puget Lowland, this work serves as an 

introduction to some of the potentially active shallow structures. In addition to structures 

that were mentioned in this thesis that may provide zones of large magnitude or shallow 

destructive earthquakes, I believe other approaches to studying active structures may 

provide evidence for additional areas of concern. Large magnitude earthquakes do occur 

in and around the study region from both shallow and deeper focused earthquakes that can 

have destructive results. This is known from historical seismic records. Because a real 

threat from earthquakes does exist, precautions should be taken to prepare for such an 

event in an effort to reduce possible injury and property damage when it does occur.
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