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Abstract 

 The Yakima fold belt comprises fault-related folds deforming Miocene basalts and 

younger deposits of the Columbia Plateau in central Washington State. Geodesy implies ~2 

mm/yr of modern, NNE-directed regional shortening; however the distribution of Quaternary 

deformation among individual structures remains unclear. South of Ellensburg, Washington, the 

Yakima River cuts a ~600-m deep canyon across several of the folds, preserving flights of strath 

terraces that record the progressive incision. Graded alluvial basins at the head and mouth of the 

canyon imply that terrace incision also records differential rock uplift. We integrate lidar 

analysis, field observations, and cosmogenic burial dating of eight strath terraces in the canyon to 

quantify Quaternary incision across two folds, Manastash Ridge and Umtanum Ridge.  

Isochron burial ages from in-situ 26Al and 10Be characterize four terrace-forming intervals 

at ≤0.5 Ma, 0.7 -1.3 Ma, 1.5-1.7 Ma, and 2.8-3.0 Ma. Along with the burial ages, we use lidar-

derived strath heights to calculate time-averaged bedrock incision rates of ~10-3 mm/yr through 

synclinal lows, and ~10-2 within the Manastash and Umtanum Ridge anticlines (~0.07 mm/yr 

from 0.2-0.4 Ma and ~0.04 mm/yr from 1.5-1.7 Ma, respectively). Collectively, the results 

demonstrate Quaternary differential bedrock incision and uplift of the Manastash and Umtanum 

Ridge anticlines. Incision rates permit horizontal shortening at ~0.08-0.12 mm/yr across master 

faults (dip 30±10° S) beneath the folds, indicating that other compressional structures in the 

region likely take up the remaining ~1-2 mm/yr of modern regional geodetic shortening. 
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1. Comprehensive introduction 

This thesis manuscript, “Differential uplift and incision of the Yakima River terraces”, 

has also been submitted for review and potential publication in JGR Solid Earth. The authors of 

the submitted paper are (in order): Adrian Bender, Colin Amos, Paul Bierman, Dylan Rood, 

Lydia Staisch, Harvey Kelsey, and Brian Sherrod. Bender, Amos, Rood, Kelsey and Sherrod 

conducted field reconnaissance. Bender conducted field and lidar-based geologic mapping and 

surveying. Bender, Amos, and Rood sampled terrace gravels for burial ages. Bender and 

Bierman prepared samples for accelerator mass spectrometer analysis of 26Al and 10Be. Rood 

conducted accelerator mass spectrometer analysis of sample 26Al and 10Be. Staisch provided the 

MATLAB script used for linear regression analysis. Bender analyzed lidar and cosmogenic data, 

calculated all reported ages, rates, and uncertainties; wrote the manuscript, and prepared all 

tables and figures. Amos, Bierman, Rood, Staisch, Kelsey and Sherrod reviewed and edited the 

manuscript and figures. 

  Our paper presents original data and results from 26Al-10Be geochronology, aerial lidar 

analysis, and geomorphic mapping to assess Quaternary fluvial bedrock incision and uplift in the 

Yakima fold belt, a region of the Cascadia backarc that actively accommodates distributed plate 

boundary strain with modest shortening. We use a suite of fluvial strath terraces along the 

Yakima River to calculate average rates of differential bedrock uplift and incision over the past 

~2.9 m.y. across two anticlines that may link the fold belt to Holocene-active faults in the 

Cascadia forearc. Our results provide the first quantitative estimates of Quaternary bedrock 

incision, uplift and shortening in the Yakima fold belt, and show that a substantial portion of 

regional geodetic shortening remains unaccounted for, with clear implications for Yakima fold 

belt seismic hazard. 
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2. Introduction 

 A comprehensive understanding of upper-plate deformation along active convergent 

margins requires measurements of geologic deformation spanning 100 to 106 yr intervals, and 

over spatial scales sufficient to capture the influence of key tectonic structures. Relatively few 

such locales offer a complete spatial and temporal record of deformation, however, leaving 

knowledge gaps that pose critical issues for seismic hazard analyses (e.g., Petersen et al., 2014). 

The Cascadia convergent margin in the US Pacific Northwest represents a locale where GPS 

geodesy measures regional strain accumulation far inboard of the subduction zone over several 

decades (Figure 1 inset), but cannot resolve strain across individual faults and folds whose 

activity spanning 102 to 106 yr remains largely unknown (McCaffrey et al., 2013) 

 Oblique Pacific-North American plate motion along with Basin and Range extension 

distributed across the Cascadia convergent margin drives clockwise rotation of the western 

Oregon forearc, which in turn drives shortening on both sides of the Cascade volcanic arc in 

Washington (Figure 1) (McCaffrey et al., 2013; Wells and McCaffrey, 2013; Wells et al., 1998). 

East-west and northwest striking-forearc faults between northwestern Oregon and Washington 

reveal Quaternary to Holocene reverse faulting (Blakely et al., 2002; Johnson et al., 1999; 

Johnson et al., 1996; Kelsey et al., 2012; Kelsey et al., 2008; Nelson et al., 2003; Sherrod et al., 

2013; Sherrod et al., 2008; Sherrod et al., 2004) at rates roughly consistent with geodetically 

observed shortening (McCaffrey et al., 2013). McCaffrey et al. (2013) also suggest that the 

faulted anticlines of the Yakima fold belt (Figure 1) accommodate backarc geodetic shortening, 

although the distribution of shortening among specific structures remains unknown.  

Geologic evidence for recent tectonic deformation in the Yakima fold belt is limited. 

Paleoseismic investigations of tectonic scarps, offset landforms and faulted stratigraphy reveal 
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evidence for late Pleistocene to Holocene deformation on several Yakima fold belt structures 

(Blakely et al., 2011; Campbell and Bentley, 1981; Ladinsky, 2012; Reidel, 1984; West et al., 

1996). Repeated late Pleistocene Lake Missoula floods (Bretz, 1969; Waitt, 1980, 1985), limit 

the preservation of landforms and deposits recording earlier Quaternary deformation. The 

resulting lack of geochronologic constraints on Cascade backarc deformation is particularly 

significant given recent studies identifying subsurface geophysical anomalies that may connect 

the Yakima fold belt to Holocene-active forearc faults in the Puget Sound region (Blakely et al., 

2011, 2014).  

The importance of establishing Quaternary geochronologic constraints on the deforming 

Yakima fold belt structures is two-fold. First, knowing geologic deformation rates will establish 

the relative contribution of Quaternary folding and faulting to the tectonic development of the 

Yakima fold belt and the Cascade backarc. For example, some workers postulate structural 

development of the Yakima folds and faults entirely between ~2.9 and 10.5 Ma (e.g., Reidel, 

1984), but the lack of geochronologic constraints on younger deformation leaves this assertion 

untested. Second, while geodesy demonstrates ~2 mm/yr of shortening across the Yakima fold 

belt (McCaffrey et al., 2013), it remains uncertain which structures actively accommodate the 

measured surface deformation. This uncertainty represents a significant gap in the current 

assessment of Pacific Northwest seismic hazards, especially given the ≥ Mw 7 seismic potential 

of Yakima fold-belt faults proximal to the Hanford nuclear site (Figure 1) (Wells and 

Coppersmith, 1994; Blakely et al., 2011). 

This investigation focuses on the Yakima River Canyon, located south of the Kittitas 

Valley, Washington (Figure 1). Here, the Yakima River incises a meandering canyon up to ~600 

m deep and nearly perpendicular to strike across three of the Yakima folds: Manastash Ridge, 
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Umtanum Ridge, and Selah Butte, from north to south (Figure 2a). The presence of alluvial 

basins up- and downstream of the basalt-floored canyon suggests that canyon incision is a direct 

response to folding and uplift of the basaltic block. The canyon contains a suite of predominately 

unpaired strath terraces that consist of both local (basaltic) and Cascade Mountains-derived 

gravels (mixed rock type) overlying straths cut in Miocene basalts. 

We use quartz-bearing clasts in the Yakima terrace gravels to quantify differential 

incision across the Manastash and Umtanum Ridge folds by employing 26Al-10Be isochron burial 

dating (Balco and Rovey, 2008; Çiner et al., 2014; Erlanger et al., 2012; Darling et al., 2012) to 

estimate the age of the terraces. We use lidar and field observations to constrain terrace strath 

height above the modern Yakima River. Comparison of incision rates from dated terrace deposits 

both within and outside the canyon enables measurement of fluvial downcutting driven by uplift 

and deformation of the Yakima folds. We infer rock uplift rates from incision, and relate these 

rates to horizontal shortening on underlying reverse-fault-related anticlines (Casale and Pratt; 

2015; Ladinsky, 2012; Miller, 2014). Together, our results provide the first quantitative estimate 

of late Quaternary deformation rates across these structures and their relative contribution to the 

total modern budget of shortening and potential seismic hazard across the Yakima fold belt. 

 

3. Location and geologic framework 

The Yakima fold belt is a structural province of the western Columbia Plateau in south-

central Washington and north-central Oregon (Figure 1). The deformation belt comprises 14 

anticlines developed in the Miocene flows and intercalated sediments of the Columbia River 

Basalt Group (e.g., Reidel, 1984), as well as in overlying Plio-Pleistocene fluvial and lacustrine 

units (e.g., Bingham and Grolier, 1966; Waitt, 1979; Campbell and Bentley, 1981). Blind 
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thrusting appears to control folding on the anticlines (e.g., Yeats, 2012; Casale and Pratt, 2015), 

which are primarily north-to-northeast directed and trend east-northeast to west-northwest (e.g., 

Reidel, 1984). Topography mimics Yakima fold belt structure, with folds expressed as relatively 

high, narrow anticlinal ridges and broad intervening synclinal valleys. Fold wavelengths range 

from ~5-35 km (Figure 1) (Watters, 1988, 1989). Individual anticlinal ridges commonly exceed 

100 km in length (Figure 1), and typically consist of a steep, north-dipping forelimb thrust over 

an adjacent, gently south-dipping backlimb (e.g., Reidel, 1984). 

Based on geophysical evidence, Saltus (1993) and Pratt (2012) suggest that initial 

development of the Yakima folds and faults may have started prior to the emplacement of the 

Columbia River Basalts. Since early descriptions and mapping of the Yakima fold belt structures 

by Russell (1893) and Smith (1903), workers proposed various mechanisms for their origin, 

including wrinkle ridges analogous to those identified on Mars (Watters, 1988, 1989) and splay 

faults related to pre-Miocene dextral shear on the Olympic Wallowa Lineament (OWL) (Hooper 

and Conrey, 1989; Pratt, 2012; Raisz, 1945). The OWL (Raisz, 1945) (Figure 1) represents a 

swath of aligned topographic features, including several Yakima folds, extending across the 

Cascade volcanic arc, from the Wallowa Mountains in Oregon to the Olympic Peninsula in 

Washington. GPS measurements resolve contemporary shortening across the Yakima fold belt 

and the OWL (McCaffrey et al., 2013), and Wells and McCaffrey (2013) attribute the 

deformation to distributed Cascade margin strain consistent with regional geology spanning the 

past 16 m.y. 

Yakima fold belt structures record ~25 km of north-south shortening since the youngest 

deformed member of the Columbia River Basalts erupted at 10.5 Ma (Reidel, 1984). The average 

shortening rate since 10.5 Ma (~2.4 mm/yr) is similar to the geodetic rate (1.9 ± 0.5 mm/yr NNE) 
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(McCaffrey et al., 2013), but does not resolve the rate and distribution of geologically recent 

deformation on individual Yakima fold belt structures. The geodetic shortening, along with 

contemporary seismicity (Blakely et al., 2012; Gomberg et al., 2012; Wicks et al., 2011) and 

paleoseismic evidence (Campbell and Bentley, 1981; Reidel, 1984; West et al., 1996; Blakely et 

al., 2011; Ladinsky, 2012) collectively suggest continuing tectonic development of the Yakima 

fold belt through the Quaternary. 

Despite nearly 50 years of investigation, geochronologic data constraining Quaternary 

deformation across the Yakima fold belt remain relatively sparse. Tectonically offset geomorphic 

surfaces documented in the Kittitas Valley (Waitt, 1979), on Toppenish Ridge in the southern 

Yakima fold belt (Campbell and Bentley, 1981), on the Saddle Mountains (West et al., 1996), 

and at numerous disparate locations across the Yakima fold belt (Reidel, 1984) provide some 

evidence for Late Quaternary and Holocene deformation.  

In light of potential structural links between the Yakima fold belt and Holocene-active 

faults in the Puget Sound (Blakely et al., 2011; 2014), renewed efforts to constrain the timing of 

Quaternary Yakima fold belt deformation have focused on structures within and adjacent to the 

OWL. Blakely et al. (2011) trenched two scarps on Umtanum Ridge, revealing up to three 

episodes of bending-moment-faulting above a hypothesized blind thrust. All three ruptures offset 

a 47 ka tephra, with the youngest inferred event cutting all Quaternary stratigraphy except the 

uppermost (modern?) soil.  

The Yakima River Canyon (Figure 2) provides several opportunities for characterizing 

Quaternary deformation. The canyon occupies a unique physiographic location south of the 

furthest Yakima glacial advance (Porter, 1976), and remained isolated from inundation and scour 

by the Lake Missoula outburst floods (Bretz, 1969; Waitt, 1980, 1985). The Yakima River 
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traverses graded alluvial basins to the north and south of the bedrock canyon. Given 

comparatively modest incision in these bounding basins, cutting of the ~600 m deep canyon 

requires a significant component of differential rock uplift. The uniform durability of the 

Miocene Columbia River Basalts flooring the canyon suggests that variations in channel 

substrate do not substantially affect fluvial downcutting in the canyon (e.g., Duvall et al., 2004). 

The unpaired strath terraces and associated gravel deposits flanking Manastash and Umtanum 

Ridges should therefore provide a relatively complete record of Quaternary bedrock incision and 

uplift across these structures (Figure 2).  

 

4. Methods 

4.1 Surficial mapping  

We mapped the surficial geology of the Yakima River Canyon using field observations 

and analysis of GeoEarthScope airborne lidar data accessed through the Open Topography portal 

(www.opentopography.org). We mapped the canyon between the Selah Valley to the south and 

Potato Hill in the Kittitas Valley to the north (Figure 2). We adopt bedrock mapping from the 

Washington DNR 1:100,000-scale geologic map database (Schuster, 1994; Walsh, 1986). We 

group the Grand Ronde and Wanapum flows of the Columbia River Basalts, along with the 

comparatively thin (tens of m thick) Vantage sedimentary horizon of the Ellensburg Formation, 

as undifferentiated Tertiary bedrock. Using lidar derivatives (e.g., hillshades, slope maps, 

contours) we mapped Quaternary landforms and deposits including terraces, landslides, alluvial 

fans, loess, and colluvium at a scale of 1:20,000. We mapped remnant strath terraces from field 

observations at a scale of 1:5,000 (Figure 2). We also mapped Selah Butte, the southernmost of 

the three anticlines incised by the Yakima River Canyon (Figure 2a), but our field investigation 
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revealed no exposed strath terraces above the modern channel. We speculate that the lack of 

exposed strath terraces across Selah Butte reflects the abundance of large landslides into the 

canyon across this fold (Figure 2a). 

None of the 14 mapped strath terraces include a paired remnant on the opposite side of 

the river (see the supplementary materials for a complete description of terrace deposits and 

stratigraphy). Accordingly, correlation of terraces downstream relies on overlapping numerical 

ages, and extrapolation between dated sites relies on geomorphic relationships determined from 

mapping and lidar analysis. We selected eight strath-capping gravel deposits occupying a range 

of structural positions and heights above the active channel to sample for 26Al-10Be isochron 

burial dating. 

 

4.2 26Al-10Be isochron burial dating and sampling 

We employ the cosmogenic 26Al-10Be isochron burial dating method (Balco and Rovey, 

2008; Erlanger et al., 2012) to determine burial ages for strath-capping terrace gravels and 

establish bounds on the timing of terrace formation. The 26Al-10Be isochron burial method 

provides several key advantages for dating the Yakima River terrace gravels in comparison to 

other Quaternary methods. First, the isochron burial method works well for deposits between 0.2 

and 4.0 Ma (Balco and Rovey, 2008). Given the 3.64 ± 0.37 (1σ) Ma age of the highest surface 

incised by the Yakima River in the northern Kittitas Valley (Waitt, 1979), we expected the 

terrace gravels in the canyon downstream to fall within this range. Also, the method does not 

require explicit knowledge of post-burial exposure, erosion, and shielding. Furthermore, terrace 

gravels contain quartz-bearing clasts that are, exotic to the basalt-floored canyon, and likely 

Cascade Mountains-derived. The Cascade Mountain source requires ~100 km of transport by the 
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Yakima River to place the exotic gravels in the basalt canyon, and therefore permits associating 

the strath terrace deposits with the main Yakima River channel. Finally, the quartz in the 

Cascade-derived clasts provides an inventory of in-situ 26Al and 10Be concentrations that record 

the timing of deposition. 

Like most other cosmogenic burial dating techniques (e.g., Granger, 2006), the isochron 

method leverages the fixed ratio of in-situ 26Al and 10Be production in quartz exposed at the 

surface, Rinit (6.75 26Al:10Be atoms), and the differential rates of isotope decay after surface 

production stops. The decay constantsλ26 (9.83 ± 0.25 x 10-7 atoms/yr) andλ10 (5.10 ± 0.26 x 

10-7 atoms/yr) define rates of nuclide decay corresponding with half-lives of 0.705 m.y. for 26Al 

(Nishiizumi, 2004) and 1.36 m.y. for 10Be (Chmeleff et al., 2010; Nishiizumi et al., 2007).  

Unlike other cosmogenic burial dating techniques, the isochron burial method does not 

require information about the depth, exposure duration, or post-burial nuclide production of the 

samples (Balco and Rovey, 2008). Instead, the isochron method requires sampling clasts with a 

wide range of isotope concentrations that record varying (but unknown) pre-burial exposure 

histories, but common post-burial production and decay. Sampling multiple clasts from the same 

depth horizon in a given deposit generally achieves these requirements, which are important for 

dating the Yakima River gravels because (1) the deposits tend to be relatively thin (≤5 m) and 

may therefore be susceptible to post-burial nuclide production, and (2) we lack information about 

the pre-burial exposure history and thus nuclide inheritance of the samples we collected.  

The slope (RM) of a line fit to measured nuclide concentrations from clasts collected at 

each deposit plotted as 10Be versus 26Al reflects the deviation from the surface production ratio 

(Rinit) (Figure S1a-c). Because this deviation is dependent on isotope half-life and duration of 

decay, burial age (tb) is then calculated as: 
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(1) tb = -ln(Rm/Rinit) / (λ26 - λ10) 

 

We collected 15 quartz-bearing cobbles, plus several kg of sand and pebbles from within 

a 20-30 cm-thick horizon at least 2 m below the top of each strath-capping gravel deposit (Table 

1). In order to ensure that our ages best represent the timing of terrace formation, we sampled 

from directly above the strath whenever possible. All samples were prepared at the University of 

Vermont Cosmogenic Isotope Laboratory facilities following standard lab protocols (e.g., 

Corbett et al., 2011). Sample 26Al/27Al and 10Be/9Be ratios were measured on the Scottish 

Universities Environmental Research Centre accelerator mass spectrometer (AMS) in East 

Kilbride, Scotland (Xu et al., 2015). The supplemental material provides a detailed description of 

sample preparation, AMS measurement, and blank correction. 

The main sources of analytic uncertainty contributing to 26Al-10Be isochron burial ages 

are errors on the nuclide decay constants (~3%), and uncertainties related to AMS measurements 

(Balco and Rovey, 2008). Decay constant uncertainties contribute uniformly to each burial age, 

but measurement uncertainties vary. Hence, 26Al-10Be isochron analyses require a linear 

regression technique that weighs the measurement uncertainties related to each plotted 

concentration. Previous 26Al-10Be isochron burial age studies (e.g., Balco and Rovey, 2008; 

Çiner et al., 2015; Darling et al., 2012; Erlanger et al., 2012) use the regression method of York 

(1966) to address this issue, but we employ a Bayesian approach to linear regression, developed 

by D’Agostini (2003, 2005) and first applied to 26Al-10Be isochron burial dating isochrons by 

Muzikar (2011). 
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The Bayesian approach varies from the York method in two ways. First, rather than 

assuming uncorrelated slope and errors in fitting a single optimum line to data, Bayesian linear 

regression tests the likelihood of many slope and intercept value combinations fitting data with x 

and y errors, and resolves correlation between the modeled parameters. Normalized relative 

probability distributions of modeled slope and intercept estimate confidence around the most 

likely estimate of each parameter, and may or may not be Gaussian. The normalized relative 

probability distributions in this study do tend to be Gaussian, so we consider the 68% confidence 

interval as the 1σ uncertainty. Second, the Bayesian method allows investigators to constrain 

modeled regression parameter output based on a priori geologic information. For example, the 

age of a gravel deposit cannot be less than zero; therefore, the slope of a line fit to an isochron 

plot of 26Al and 10Be concentrations cannot be greater than Rinit (the slope corresponding to the 

surface production ratio of 26Al/10Be, nominally 6.75). Hence, 6.75 is a suitable upper limit for 

modeled slope output.  

We use a MATLAB script implementing Bayesian linear regression statistics to construct 

26Al-10Be burial isochrons. The script runs a Monte Carlo simulation algorithm to fit a chosen 

number of lines to bivariate data with associated errors within optionally specified windows of 

slope and intercept, and calculates likelihood of fit for each line. The parameters with the highest 

calculated likelihood are the most likely estimated values (D’Agostini, 2003). Using this 

methodology, we test the likelihood of 100,000 lines having slopes between 0 and 6.75 fit to 26Al 

and 10Be concentration data from each of the eight sampled terrace gravel deposits. We use the 

mode of the a posteriori slope values as the measured slope variable RM in Equation 1 to 

calculate burial ages. We calculate burial age uncertainty at the 1σ range from the posterior 
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probability density functions for the regression slope, and analyze each result as RM in Equation 

1. 

On each isochron we plot all 26Al and 10Be concentration data corresponding to the given 

site (Figure 3). We omit samples from regression analysis that have an 26Al or 10Be concentration 

or have an 26Al/10Be ratio that is one standard deviation greater or less than the mean of the 

respective parameter for the sample suite. We attribute outliers in the 26Al or 10Be concentration 

data to laboratory uncertainty (e.g., Ehrlanger et al., 2012) related to misestimation of 9Be or 

27Al, or error in the AMS measurement of 10Be or 26Al. Outlier 26Al/10Be ratios occur for clasts 

with 26Al concentrations depleted relative to 10Be, reflecting previous cycles of burial and 

reworking, and resulting in a separate, much lower isotope concentration that skews the 

otherwise linear fit and violates the methodological assumption of an initial 10Be/26Al ratio 

resulting only from surface exposure. 

 

4.3 Terrace Incision 

We combine burial ages with lidar elevation data to calculate rates of incision on the 

Yakima River terraces. Terrace gravel burial ages provide a minimum age for the underlying 

strath, and correspond to a maximum incision rate (Bull, 1991; Burbank and Anderson, 2011; 

Hancock and Anderson, 2002). We assume that the Yakima River’s modern graded channel 

profile matches the long-term equilibrium profile such that differencing the modern and paleo 

strath elevations provides a point measure of incision (e.g., Pazzaglia and Brandon, 2001).  

We estimate strath height using a 1.5 m vertical resolution DEM derived from the 2008 

GeoEarthScope Yakima lidar data (Figure 5). For a given terrace gravel, we extract point 

elevations along the mapped strath contact. We then subtract the modern river elevations at 
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corresponding profile distances to determine strath height. This difference provides strath height 

above the modern Yakima River water level. Since we are ultimately interested in bedrock 

incision, we also need to consider the thickness of the water and alluvium over the bedrock in the 

active channel. We account for these additional values by adding the corresponding measured 

terrace gravel thickness and the average estimated representative Yakima River channel depth of 

1 m to each strath height, and use this approach to estimate total incision at each site (Figure S2). 

We calculate mean terrace incision and 1σ incision uncertainty based on the range of strath 

heights at each site, and determine time-averaged incision rates by normalizing mean strath 

height to the corresponding gravel burial age. We calculate incision rate uncertainty by 

propagating the 1σ strath height and burial age uncertainties in quadrature.  

This approach to calculating time-averaged incision rates integrates all of the terrace-

forming cycles that have occurred since the development of a given strath. Terraces across 

Manastash and Umtanum Ridge, also offer the opportunity to calculate interval rates between 

successive strath levels. Such rates span the interval between two geomorphically inset strath 

terraces, and reflect a period of vertical incision in response to some perturbation of base level, 

discharge, or sediment load. Because rivers spend a significant but often unknown period of time 

laterally eroding to create straths in between successive periods of incision (e.g., Bull, 1991; 

Hancock and Anderson, 2002), such interval rates may not be appropriately integrated over the 

entire cycle of lateral and vertical erosion during terrace formation. We calculate interval 

incision rates where geomorphically permissible by normalizing the difference between strath 

heights to the difference between corresponding burial ages, and propagating the 1σ uncertainties 

accordingly.  
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5. Yakima River terrace sample sites 

5.1 Kittitas Valley 

Miocene Columbia River Basalt Group and overlying Miocene upper Ellensburg 

Formation volcaniclastic rocks floor the broad Kittitas Valley (Figures 1, 2a-b, 4a). Pliocene 

Thorp Gravel caps this underlying bedrock, and is discontinuously overlain by Quaternary loess 

of the Palouse Formation (Porter, 1976; Waitt, 1979). Waitt (1979) interpreted the Thorp Gravel 

as outwash transported by the main stream of the ancestral Yakima River, forming the 

paleosurface of Kittitas Valley, and reports a fission track age of 3.64 ± 0.37 (1σ) Ma for a tephra 

in the Thorp Gravel at a site 25-30 km to the northwest of Potato Hill (see Table 1, Figures 1, 2, 

and 5 of Waitt, 1979). Bentley (1977) correlated the uppermost gravel at Potato Hill to the Thorp 

as mapped in the northwest part of the Kittitas Valley. 

In the southern Kittitas Valley, Potato Hill (Figures 2b, 4b, S3) exposes stratigraphic 

relationships between the units in a ~10-m-deep gravel quarry cut into the side of a prominent, 

north sloping geomorphic surface (Figure 4b). This outcrop comprises a 1-2 m thick loess mantle 

over a 2-3-m-thick package of weakly cemented Thorp Gravel truncating north-dipping beds in 

the underlying Ellensburg Formation (Figures 4b, 5a). Underlying Ellensburg Formation beds 

dip up to ~10° to the north, while the surface of Potato Hill and the capping Thorp Gravel have 

lesser northward slopes of ~3-5°. The geometric relationship between Ellensburg and Thorp 

bedding is consistent with syntectonic deposition of the Thorp Gravel, and indicates progressive 

northward tilting in the basin north of Manastash Ridge starting before, or sometime after the 

deposition of the Ellensburg Formation (Bentley, 1977). We sampled the base of Bentley’s 

(1977) inferred Thorp Gravel at Potato Hill (Figure S3) to assess a local burial age using the 

cosmogenic isochron method. 
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5.2 Manastash Ridge 

The Manastash Ridge range front forms the southern boundary of the Kittitas Valley 

(Figures 2a-b, 4a), and is underlain by southwest-dipping range front reverse faults (Ladinsky, 

2012) adjoined by the Thrall anticline (Figures 2a-b) (Bentley, 1977). A sequence of at least 

three strath terraces occupies the Manastash Ridge reach of the Yakima River canyon, each of 

which we sampled for isochron burial dating. We briefly describe each of the three sites below, 

two of which successfully yielded isochron burial ages.  

On the east side of the Yakima River canyon entrance, the Manastash Ridge range front 

preserves the highest (~150 m above the channel) and most extensive strath terrace associated 

with the canyon. The terrace comprises a thick loess deposit mantling rounded basaltic cobbles 

that overly a basalt strath surface, all of which are exposed as float on the south flank of the 

terrace (Qg0, Figure 2b). We recovered Qg0 cobbles in a ~0.6 m thick deposit of angular to well-

rounded, pebble to small cobble sized basalt clasts directly overlying basaltic bedrock at the base 

1.2 m deep backhoe pit in the terrace. Unfortunately, the <2 m thickness of the deposit and the 

lack of quartz in the basaltic clasts did not permit isochron burial dating of the deposit.  

The Yakima River exposes the core of the Manastash anticline in an abandoned meander 

mantled by colluvium, loess, and fan deposits (Figure 2b), where Ladinsky (2012) mapped six 

terrace levels and determined IRSL ages for loess above one Yakima River terrace gravel 

deposit. We mapped five strath terrace levels at this location, including three sites mapped and 

one site sampled by Ladinsky (2012), termed Toth Road and Rattlesnake Dance terrace, where 

we sampled the gravel deposits. 

 The Toth Road site exposes a 4-5 m thick gravel deposit (Qg2) overlain by fan deposits 

above the folded Columbia River basalt of the Thrall anticline 54-58 m above the active channel 
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(Figures 2b, 5b, S4). We mapped the strath contact as the upper extent of angular basalt clasts in 

rounded gravel, several m above the strath and ~3 m below the gravel terrace tread (Table 1) 

(Figure). Rattlesnake Dance terrace comprises a ~3 m thick gravel deposit (Qg3, Figures 2a-b, 

S5) overlain by ~3 m of loess and capping a basalt strath, positioned 19-21 m above the active 

channel, in the core of the Manastash anticline (Figures 2b, 5c). The modern Yakima River 

terrace (Qg4, Figure 2a-b) sits roughly 18 m below the Rattlesnake Dance terrace (Figure 5c). 

 

5.3 Manastash-Umtanum syncline 

The Yakima River incises a cutoff meander in the syncline between the Manastash and 

Umtanum Ridge anticlines (Figures 2c, S6). At this site, described here as Meander Terrace, we 

mapped three geomorphically related gravel deposits (Qg1c-d) capping basalt straths at two 

distinct levels, nearly continuously covered by several meters of loess and basaltic colluvium 

shed from the steep abandoned meander walls (Figure 2c). We sampled the lowest gravel deposit 

at this site directly above the strath and ~2 m below the top of the gravel (Figure S6). 

 

5.4 Umtanum Ridge 

Four levels of unpaired strath terraces occur where the Yakima River incises across 

Umtanum Ridge (Figures 2, 3). We sampled for 26Al-10Be isochron burial dating at four sites 

spanning this reach. The two highest strath terrace sites that we sampled in the canyon are among 

the four along this reach, informally named the Lower and Higher Island terraces (Figures 2c, 3, 

S6). The Island terraces are positioned on the forelimb of Umtanum Ridge near the location of 

several mapped, north-dipping thrust splays (Figure 2a, c), and therefore occupy a structural high 

despite their location several km upstream of the anticlinal axis.  
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The site that we term Lower Island terrace comprises a ≤4 m thick gravel deposit (Qg1b) 

capping a well-exposed basalt strath positioned 56-60 m above the active channel (Figures 2c, 

5e, S8a-b, S9). We sampled the gravel ~1 m above the strath and 2-3 m below the top of the 

gravel. A highway road cut through the Lower Island terrace exposes the gravel-over-basalt 

strath relationship, as well as a thick (3-4 m) package of horizontally bedded, fine-grained, 

white- to brown- colored sediment overlying the gravel (Figure S8a-b). This sedimentary 

package also includes possible paleosols and lacustrine diatomites interfingered with colluvium 

stringers that pinch out to the south. Given this sequence, and the spatial regularity of landsliding 

in the Canyon (Figure 2a), we speculate that this package may represent deposition over the 

previously developed strath terrace in a landslide-dammed lake. The entire exposure is uniformly 

capped by a thick (~50 cm) brown soil that follows the topographic surface.  

The Lower Island terrace is directly inset ~20-30 below the site we term Higher Island 

terrace. The Higher Island site comprises a 4-5 m thick gravel deposit (Qg1a) capping a well-

exposed strath positioned 92-98 m above the active channel, and preserves a broad, intact tread 

(Figures 2c, 5e, S10). We sampled the gravel in a hand-dug pit directly over the strath, 3-5 m 

below the deposit tread, but only 1.9 to 1.7 m below the sloping surface of the gravel riser. 

The site that we term Death Chute terrace corresponds with the deepest section of the 

Yakima River Canyon in the core of the Umtanum Ridge anticline. At this site, a prominent road 

cut exposes a ≤5 m thick gravel deposit (Qg2) capping a well-exposed basalt strath positioned 

29-31 m above the active channel (Figures 2a, 2d, 5f, S11). The basalt strath in this location is 

strongly fractured (Figure S7a), likely related to its location between two exposed thrust faults 

(Figure 2d). We sampled the gravel directly over the strath and ~4 m below the top of the gravel. 
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The geomorphically lowest deposit we sampled, termed the Big Pines terrace, occurs ~5-

8 m above the Yakima River on the backlimb of Umtanum Ridge (Figures 2d, 5g, S12). The Big 

Pines terrace comprises a 6 m thick gravel deposit (Qg3) capping a basalt strath positioned ≤3 m 

above the active channel (Figure 5g), and features an intact tread mantled by a thin (10-20 cm) 

rocky light brown soil truncating prominent massive south-dipping internal beds (Figure S6b). 

We sampled the gravel ~2 m above the strath and 4 m below the deposit tread for 26Al-10Be 

isochron burial ages. 

 

6. Results  

 In this section, we report 26Al-10Be isochron burial ages summarized in Table 2 and 

calculated based on cosmogenic isotope data reported in Table S1. Of the 40 samples we analyze 

to determine burial ages, 10 were sampled and measured by Coppersmith et al. (2014) (Table 

S1). We also report total strath incision, and time-averaged incision rates for each site based on 

the gravel burial ages and strath incision estimates. In general, terrace gravel burial ages range 

from zero to ~2.9 m.y., strath incision ranges from ~3 to ~98 m, and incision rates are up to 

~0.07 mm/yr. We also report interval incision rates between geomorphically inset sites that 

generally agree with time-averaged rates. All quoted uncertainties are 1σ. 

6.1 Potato Hill, Kittitas Valley 

Potato Hill samples (n = 3) fit a line (slope = 1.67 ± 0.09, R2 = 0.98) that implies a burial 

age of 2.9 ± 0.1 Ma for the Thorp Gravel (Figure 3a). Despite being ~0.7 m.y. younger, the 

burial age is consistent with Waitt’s (1979) zircon fission track age of 3.64 ± 0.37 (1σ) Ma for 

tephras in the Thorp Gravel for several reasons. Potato Hill is ~25-35 km downstream of Waitt’s 

(1979) sample sites, and hence permissibly younger. Also, the absence of tephras in the Thorp 
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Gravel at Potato Hill suggests local strath formation and gravel deposition after emplacement of 

the dated tephras. Based on gravel thickness (~3 m) and strath height (15-19 m), the burial age 

corresponds to an incision rate of <0.01 mm/yr for the past 2.8-3.0 m.y. in the southern Kittitas 

Valley. 

 

6.2 Manastash Ridge 

Toth Road samples (n = 5) yield an isochron (slope = 4.15 ± 0.44, R2 = 0.95) burial age 

of 1.1 ± 0.1 Ma for the gravel (Figure 3b). Based on gravel thickness (~5 m) and strath height 

(54-58 m), the burial age corresponds to an average incision rate of 0.05 ± 0.005 mm/yr for the 

past 1.0-1.2 m.y. 

Isochron analysis of the Rattlesnake Dance terrace samples (n = 5, slope = 5.83 ± 0.45, 

R2 = 0.91) implies a burial age of 0.3 ± 0.1 Ma for the gravel (Figure 3c), stratigraphically 

consistent with Ladinsky’s (2012) IRSL age of 84.2-93.3 ka for the overlying loess, and very 

near the nominal ~0.2 Ma lower age limit of the isochron burial method (Balco and Rovey, 

2008). Based on gravel thickness (~3 m) and strath height (19-21 m), the burial age corresponds 

to fluvial downcutting at an average incision rate of 0.07 ± 0.02 mm/yr over the past ~200-400 

ky. Rattlesnake Dance terrace is inset 36 ± 2 m lower than the ~1.1 Ma Toth Road terrace 

(Figure 2b), suggesting interval incision rates of 0.04 ± 0.01 mm/yr over the 0.8 ± 0.2 m.y. 

period between formation of these surfaces. 

 

6.3 Manastash-Umtanum syncline 

Meander Terrace samples (n = 5) have a linear fit (slope = 5.83 ± 0.34, R2 = 0.91) that 

corresponds with a burial age of 1.6 ± 0.1 Ma for the gravel (Figure 3d). Based on gravel 
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thickness (~2 m) and strath height (10-12 m), the burial age corresponds to an average incision 

rate of 0.007 mm/yr for the past 1.5-1.7 m.y. 

 

6.4 Umtanum Ridge 

Isochron analysis of Lower Island samples (n = 4, slope = 3.21 ± 0.40, R2 = 0.98) implies 

a burial age of 1.6 ± 0.1 Ma for the gravel (Figure 3f). Based on gravel thickness (~4 m) and 

strath height (56-60 m), the burial age corresponds to an average incision rate of 0.04 ± 0.003 

mm/yr for the past 1.5-1.7 m.y.  

Higher Island samples (n = 6, slope = 6.96 ± 1.14, R2 = 0.67) yield an isochron burial age 

of zero for the gravel (Figure 3e). The zero age is incompatible with the age limit imposed by the 

~1.6 Ma Lower Island terrace that is directly inset 37 ± 4 m below the Higher Island terrace 

(Figure 5e). We attribute the zero age to the narrow range of 10Be concentrations measured in 

these samples ( 6.10 x 104 ± 2.93 x 103 to 7.17 x 104 ± 2.93 x 103 atoms/g), which most likely 

reflects a large amounts of post-burial production of the cosmogenic nuclide. Such an 

explanation is consistent with the shallow depth of the samples (1.9 m below the surface) and the 

age of the deposit (>1.6 Ma). 

 Isochron analysis of Death Chute samples (n=5) yields a slope well below the production 

ratio (slope = 4.30 ± 0.43, R2 = 0.84) and implies a burial age of 0.9 ± 0.1 Ma for the gravel 

(Figure 3g). Based on gravel thickness (~5 m) and strath height (29-31 m), the burial age 

corresponds to an average incision rate of 0.03 ± 0.004 mm/yr for the past 0.8-1.0 m.y. The 

Death Chute terrace is geomorphically inset 29 ± 4 m to the Lower Island terrace several km 

downstream (Figures 2a, c-d), permitting incision during the 0.7 ± 0.2 m.y. interval between the 

terraces at 0.04 ± 0.01 mm/yr. 
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Big Pines samples (n = 3, slope = 6.75 ± 0.13, R2 = 0.85) imply an isochron burial age of 

0.0 ± 0.2 Ma for the gravel (Figure 3h). The deposit age cannot be less than zero, so we truncate 

the negative error. We consider the upper limit burial age (0.2 Ma) for calculating a minimum 

incision rate. Based on gravel thickness (6 m) and strath height (≤3 m), the maximum burial age 

permits a minimum incision rate of 0.01 ± 0.01 mm/yr for the past 0.2 m.y. 

 

7. Discussion 

The distribution and age of terrace gravels (~0.3 to ~2.9 Ma) between the southern 

Kittitas Valley and Umtanum Ridge (Figures 6a-c) constrains the history of fluvial incision of 

the Yakima River and therefore differential rock uplift since the Middle Pleistocene (Figures 7a-

b). Equating strath terrace incision with rates of rock uplift relies on the assumption that the 

modern river channel represents an equilibrium profile that is stable over geologic time (e.g., 

Lavé and Avouac, 2001; Pazzaglia and Brandon, 2001). We make this assumption based on the 

observation that the Yakima River maintains a graded channel free of prominent knickpoints 

from the alluvial Kittitas Valley through the basalt-floored Yakima River Canyon (Figure 6b).  

In order to calculate rock uplift in the canyon, we need to consider the background rate of 

base level lowering from calculated incision rates. Similar incision rates in both the Kittitas 

Valley (~0.01 mm/yr) and the Umtanum-Manastash syncline (~0.01 mm/yr) within the canyon 

suggest that the background base level rate is similar within and outside the canyon over the past 

~2.9 m.y. We therefore equate the full incision rate at each terrace to time-averaged rock uplift 

resulting from the vertical component of the underlying faulting and folding. 

The distribution of terrace gravels and ages in the Yakima River Canyon also provides 

insight into the spatial pattern of Quaternary deformation across the Manastash and Umtanum 
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Ridges. Profile comparisons of topography and bedrock structure (Figure 6a) with the location of 

remnant terrace gravels (Figure 6b), and ages (Figure 6c) show that the Manastash and Umtanum 

Ridge anticlines preserve substantially more terrace remnants and levels than the intervening 

syncline (Figure 6a-b), likely as a result of the attendant differential rock uplift in the anticlines 

relative to the synclines. For example, the synclinal Qg1 deposit at Meander terrace is positioned 

only 12-14 m above the channel, whereas Qg1 deposits occur up to ~98 m above the channel at 

Higher Island terrace in the Umtanum Ridge anticline (Figure 6b). Accordingly, the fastest time-

averaged canyon incision rates come from strath terraces in the Manastash and Umtanum 

anticlines (0.04 ± 0.1 mm/yr), and the lowest rate from Meander terrace in the Manastash-

Umtanum syncline (<0.01 mm/yr) (Figure 7a-b).  

Spatial variations in bedrock incision rate and channel narrowing are consistent with 

expectations of fluvial response to differential rock uplift on the Yakima River across the 

Manastash and Umtanum Ridge structures. Incision rates along the Yakima River Canyon 

correspond spatially with changes in channel width (Figure 7b). The Yakima River channel 

maintains relatively constant slope through the canyon (Figure 6b), but narrows across 

Manastash and Umtanum anticlines (Fisher et al., 2013) in conjunction with the high incision 

rates and also with the daylighting reverse fault at the mouth of the canyon (Figure 7b). The 

zones of channel narrowing do not correspond to large debris flows or other point sources of 

coarse sediment in the canyon. Several studies demonstrate that channel width changes can occur 

across zones of active differential uplift without concomitant channel steepening or preservation 

of knickpoints (e.g., Lave and Avouac, 2001; Amos and Burbank, 2007). Based on the spatial 

overlap between modern channel narrowing and relatively high bedrock incision rates over ~1-2 
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m.y., we infer that both the Yakima River channel geometry and the spatial incision rate 

distribution represent long-term features of Yakima River channel response to tectonic forcing.  

Comparing time-averaged incision rates for each terrace with incision rates between inset 

terrace levels, the time-averaged rates range up to 0.06 and 0.09 mm/yr on Manastash and 

Umtanum Ridge anticlines, respectively, while corresponding interval rates between Toth and 

Rattlesnake Dance terraces, and between the Lower Island and Death Chute terraces range up to 

0.05 mm/yr. The general agreement between time-averaged and interval incision rates suggests 

that, where the Yakima River cuts across the Manastash and Umtanum Ridge anticlines, 

differential rock uplift and incision rates have been stable within a factor of <2 since ~1.6 Ma. 

Whether faulting or folding primarily drives differential rock uplift on the Manastash and 

Umtanum Ridge structures and Yakima fold belt deformation in general remains unknown. 

Deformed terraces have been used to infer the geometric and kinematics of thrust- related folds 

in a variety of regions (e.g., Rockwell et al., 1988; Lave and Avouac. 2001; Amos et al., 2007). 

Such inferences, however, require intact and relatively continuous treads, not the relatively 

sparse treads preserved on the Yakima River terraces. Instead, we explore the deformation rates 

implied by our incision rate data using a simple geometric model of folding and rock uplift in the 

Yakima fold belt controlled by slip on underlying master thrust faults (e.g., Blakely et al., 2011; 

Reidel, 1984, West et al., 1996) general enough to be consistent with either the fault-propagation 

(Suppe and Medwedeff, 1990) or fault-bend model (Casale and Pratt, 2015; Suppe, 1983).  

 We evoke a simple 2D model to relate time-averaged rock uplift rates on Manastash and 

Umtanum Ridge to rates of shortening associated with reverse slip on master fault planes 

underlying each fold (Figure 8). We use the average calculated strath terrace incision rates 

corresponding with zones of channel narrowing (Figure 7b) to assign rock uplift rates across 
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Manastash (average of Toth Road and Rattlesnake Dance terrace, 0.06 ± 0.02 mm/yr) and 

Umtanum Ridge (Lower Island terrace, 0.04 ± 0.003 mm/yr). We use the geometric relationships 

between rock uplift rate and master faults that dip ~30° south (Ladinsky, 2012; Miller, 2014), 

adding conservative fault dip uncertainties of ±10°, to calculate a range of hypothetical 

shortening rates (Figure 8). 

 This simple model estimates average horizontal shortening at rates of 0.12 ± 0.08 and 

0.08 ± 0.03 mm/yr respectively spanning up to 0.4 and 1.6 m.y. on faults beneath Manastash and 

Umtanum Ridge. The combined Manastash and Umtanum Ridge shortening rates account for a 

relatively small fraction of the modern, geodetically inferred shortening across the fold belt (1.9 

± 0.5 mm/yr, McCaffrey et al., 2013). It is possible that both the modern geodetic rates and the 

Manastash and Umtanum shortening rates apply to longer-term (~10.5 m.y.) geologic 

deformation across the fold belt. If true, then active deformation on other Yakima fold belt 

structures occurs over the long term at rates equivalent to or faster than the Manastash and 

Umtanum Ridge anticlines. 

Given the comparative lack of information on Yakima folds and faults other than 

Manastash and Umtanum, it remains unclear which structures take up the remaining active 

contraction. Nonetheless, the Manastash and Umtanum Ridge anticlines and underlying reverse 

faults are actively deforming at modest rates, and pose a seismic hazard given the Mw>7 seismic 

potential of the related faults (Blakeley et al., 2011; Wells and Coppersmith, 1994). The relative 

lack of information about the remaining potentially active structures, which include 12 fault-

related folds (e.g., Reidel, 1984) and a number of right lateral strike-slip faults (Anderson et al., 

2013), results in considerable uncertainty surrounding the seismic hazard of individual structures 

within the Yakima fold belt. 
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 Measured incision rates also place constraints on the age of the Yakima River Canyon 

(Figure 2). We extrapolate the time-averaged rate of downcutting to consider the timespan 

necessary to erode the total canyon depth across reconstructed (pre-erosion) structural-

topographic highs at Manastash and Umtanum Ridge anticlines. Ladinsky’s (2012) structural 

reconstruction places the Manastash anticline crest, developed in the ~14.1 Ma Wanapum basalt 

horizon, roughly 730 m above the modern Yakima River channel. Incising this depth at a steady 

average rate of ~0.07 mm/yr, as determined for the ~0.3 Ma Rattlesnake Dance terrace, requires 

~10.4 m.y. The relatively young Rattlesnake Dance terrace represents only a small fraction of the 

total canyon depth, so the corresponding young age likely represents a short interval of the total 

incision duration. As such, extrapolating a longer temporal record of canyon incision should 

better reflect the total time required to cut the canyon. 

The ~1.6 Ma Lower Island terrace gravel on the Umtanum Ridge forelimb provides the 

longest record of time-averaged canyon incision, at a rate of ~0.04 mm/yr. Miller’s (2014) 

structural reconstruction places the crest of the Umtanum anticline, developed in ~15.7 Ma 

Grand Ronde basalt, roughly 640 m above the modern Yakima River channel. Incising this depth 

at a steady average rate of ~0.04 mm/yr requires ~16.0 m.y. Given the consistency between these 

comparatively long- and short-term time-averaged incision rates, modern canyon morphology 

reflects downcutting that started well prior to the Quaternary. 

 

8. Conclusions 

We mapped and dated strath terraces in the Yakima River Canyon, and calculated 

bedrock incision rates spanning Manastash and Umtanum Ridge structures. Bayesian regression 

and cosmogenic 26Al-10Be isochron analysis provided burial ages of Cascade-derived, strath-
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capping gravels in the Yakima River Canyon, characterizing four intervals of terrace formation 

spanning 0.2-0.4 Ma (Qg3), 0.8-1.2 Ma (Qg2), 1.5-1.9 Ma (Qg1), and 2.8-3.0 Ma (Thorp). In 

combination with our mapping, lidar data indicate that strath elevations range up to ~150 m 

above the active channel with the highest strath terraces exposed in anticlinal forelimbs and 

lower terraces within synclines. Time-averaged bedrock incision rates, derived from 26Al-10Be 

isochron burial ages and strath heights, are <0.01 mm/yr outside the canyon and in the 

Manastash-Umtanum syncline, while anticlinal incision rates are an order of magnitude higher 

(~0.02 – 0.07 mm/yr), with the highest rates corresponding to zones of channel narrowing. 

Interval incision rates calculated between geomorphically inset terraces compare well with the 

time-averaged rates. Extrapolating these rates suggests the canyon has been a feature on the 

landscape since well before Quaternary time. 

Collectively these results demonstrate that differential bedrock incision continued at 

relatively steady average rates through the Quaternary. The spatial distribution of differential 

uplift and the relatively uniform basaltic bedrock allow us to equate bedrock incision to uplift. 

We estimate horizontal shortening on the Manastash and Umtanum Ridges based on the 

assumption that both folds verge in the direction of faulting at depth (dipping ~20 to 40° south). 

We estimate time-averaged shortening at ~0.12 to ~0.08 mm/yr across Manastash and Umtanum 

Ridge, respectively, suggesting that these structures take up only a fraction of the contemporary 

geodetic shortening rate (1.9 ± 0.5 mm/yr, McCaffrey et al., 2013). These results provide the first 

quantitative estimates of active Quaternary deformation in the Yakima fold belt, and suggest that 

other structures in the region actively accommodate the remaining geodetic strain. It remains 

unclear which of the other Yakima folds and faults are active, highlighting the need for further 
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geologic investigations of the tectonic structures and associated seismic hazard across central 

Washington.  
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Tables: 
 
 
Table 1. Sample location data 

*UTM coordinates 
**from 2008 GeoEarthscope lidar dataset, references the ellipsoid vertical datum 
***sample interval measured from top of exposure or pit	
  
****equal to mean of strath elevations minus corresponding Yakima River water surface elevation. Uncertainties 
represent 1 standard deviation about the mean height. 
	
  
 
 
 
Table 2. Site deposit ages 

 
 
 
 
 
 
 
 
 
 
 
 

*YK- denotes site initially sampled by Coppersmith et al. (2014), and re-sampled  
in this study. YKX- denotes site first mapped and sampled in this study. 
**This study, burial ages of gravel deposits. 
***Ladinsky (2012), age of loess over gravel (therefore minimum limit for terrace age) 
  

 

Site Latitude* Longitude* Elevation 
(m)* 

Sample 
interval (m)** 

Sample height 
above strath (m) 

Strath height 
(m)*** 

Potato Hill 46.9122 -120.4954 437 2.7-3.1 0.0-0.3 17 ± 2 
Toth Road 46.9094 -120.4975 465 2.1-2.3 ~2-3 56 ± 2 
Mathews 46.8999 -120.4937 427 4.7-4.9 ~1 20 ± 1 
Meander 46.8539 -120.4649 400 6.6-6.8 0.2-0.4 11 ± 1 

Higher Island 46.8342 -120.4589 474 1.7-1.9 0.0-0.2 95 ± 3 
Lower Island 46.8339 -120.4563 441 2.0-2.3 ~1 58 ± 2 
Death Chute 46.8090 -120.4411 405 4.3-4.6 0.7-1.0 30 ± 1 

Big Pines 46.8015 -120.4618 365 5.3-5.6 ~2 3 ± 1 

Site name Site ID* 26Al-10Be ages (Ma)** IRSL ages (ka)*** 
Potato Hill YK-01 2.94 ± 0.10 -- 
Toth Road YK-05 1.13 ± 0.20 -- 

Rattlesnake Dance YKX-02 0.30 ± 0.10 84.2-93.3 
Lower Island YKX-06 1.60 ± 0.10 -- 
Death Chute YKX-03 0.90 ± 0.10 -- 

Big Pines YK-03 0.00 ± 0.20 -- 
Meander YK-04 1.60 ± 0.10 -- 
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Figure 1. Structural and topographic map of the Yakima fold and thrust belt in central Washington. Map 
depicts study area in the Yakima River Canyon across Manastash (MR) and Umtanum Ridge (UR) 
structures south of Kittitas Valley (KV) and west of the Hanford Nuclear Reservation. Grey lines 
represent known or suspected Quaternary-active faults from Washington Department of Natural 
Resources (WA DNR) (http://www.dnr.wa.gov/ResearchScience/Topics/GeosciencesData/ 
Pages/gis_data.aspx). Inset shows the relationship between the Pacific plate (PAC), Juan de Fuca plate 
(JDF), Cascadia subduction zone (CSZ), Yakima fold belt (YFB) structures (e.g., Wells et al., 1998), and 
the Olympic-Wallowa Lineament (OWL) (Raisz, 1945). Inset also depicts contemporary NNE shortening 
across the Cascade forearc and backarc regions implied by geodesy (McCaffrey et al., 2013). Base 
hillshade and topographic maps derived from Washington 10 m DEM 
(http://gis.ess.washington.edu/data/raster/tenmeter/byquad/). 
  



 35 

 
Figure 2. Caption on page 36 
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Figure 3. Caption on page 36 
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Figure 2. Quaternary geologic map of the Yakima River Canyon, depicting strath terrace gravels and 
cosmogenic sample sites. Lettered boxes in (A) correspond to detail maps (B), (C), and (D). Lines of 
section in detail maps correspond to Figure 5 interpretive cross sections. Geologic mapping overlies 2008 
GeoEarthScope lidar data (accessed through www.opentopography.org). Geologic and structural mapping 
in area of (B) is modified from (Ladinsky, 2012). Swath topography box indicates area profiled in Figures 
6a and 7a. Source for base hillshade and structural data same as Figure 1. 

 
Figure 3. Cosmogenic 26Al-10Be isochron plots for samples collected at each site, constructed using a 
Bayesian linear regression algorithm modeling the likelihood of 100,000 lines fit to the isotope data. Thin 
red crosses represent outliers omitted from isochron analysis. See text for discussion. 

 

 
Figure 4. (A) View northwest from Manastash Ridge over Kittitas Valley (KV) and Manastash Ridge 
sample sites. (B) Potato Hill sample site depicting stratigraphic relationships observed in the field and 
described by Bentley (1977). Inset shows a simplified interpretation of the stratigraphy identified in the 
photo. Dashed lines represent internal bedding, possibly growth strata, in the Tertiary Upper Ellensburg 
(Teu) formation. The suspected growth strata dip 5-10° north and are truncated and capped by 2-3 m-
thick ~2.9 Ma Thorp Gravel dipping up to 5° north. The Potato Hill surface dips in agreement with the 
Thorp Gravel (Tth), and is variably capped by thick caliche under loess. The white signboard marks the 
cosmogenic sample location, and the stadia rod is 2 m tall. 
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Figure 5. Interpretive cross sections through strath terrace sites sampled for 26Al-10Be isochron burial 
dating, based on geologic mapping in Figure 2. Symbology and geologic units explained in Figure 2. 
Profiles are shown by lettered lines in Figures 2B, 2C, and 2D, and topographic data are from 2008 
GeoEarthScope lidar. Arrows indicate estimated Yakima River (YR) incision into the basalt strath at each 
sample site. 
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Figure 6. Profiles projected to the swath topography profile line (location shown in Figure 2A) 
comparing topography, structure, mapping results and cosmogenic burial age distribution. (A) 2.5 km-
wide swath topographic profile (Figure 2A) from the 10 m DEM. The thick black profile line represents 
mean elevation and the grey envelope represents maximum and minimum elevations along the swath on 
Figure 2A. Structures are projected to line at approximate surface location, and represent the primary 
faults and folds associated with each ridge. (B) Cosmogenic sample sites, mean elevations of mapped 
strath terrace gravels, Yakima River long profile, and WA DNR structures projected below the river-
surface intersection. (C) Cosmogenic 26Al-10Be isochron burial ages for each site plotted by height above 
the river (mean strath elevation minus river elevation) over profile distance. 
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Figure 7. Profiles projected to the swath topography profile line (location shown in Figure 2A) 
comparing topography, structure, channel width, and incision rates. (A) Same as Figure 6A (B) Channel 
width (Fisher et al., 2013) and incision rates derived from cosmogenic 26Al-10Be isochron burial ages 
normalized to strath incision (this study). Grey bars show the interpreted correlation between narrow 
channel reaches, structures, and calculated incision rates. 
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Figure 8. Simple 2d model estimating time-averaged shortening rates across south-dipping master reverse 
faults beneath Manastash and Umtanum Ridges. We equate rock uplift to the average bedrock incision 
rates across each fold. Topographic profile uses the same data as Figures 6A and 7A, and Yakima River 
profile is the same as in Figure 6B. 
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Appendix A: Sample processing 
All samples were prepared for accelerator mass spectrometer analysis at the University of 

Vermont (UVM) Cosmogenic Isotope Laboratory facilities, following protocols described by 
Corbett et al. (2011). We washed, jaw-crushed, disc-milled, and sieved cobble and pebble 
samples to retain the medium to coarse sand (250-850 mm) fraction. We also sieved sand samples 
to retain the medium to coarse fraction, and separated magnetic grains from all samples. We 
subdivided non-magnetic 250-850 mm samples by modal estimation of quartz content, archiving 
samples with relatively low quartz content and purifying higher quartz content samples by a 
variation of the Kohl and Nishiizumi (1992) method.  

Purification of higher quartz content samples consisted of successive acid etches varying 
in duration and acid strength, conducted in heated ultrasonic basins with intervening deionized 
water rinses. We etched samples twice (24 hours each) in 6N HCl to dissolve CaCO3, Fe- and Al- 
oxide and hydroxide coatings, and remove adhered atmospheric 10Be. We then etched each 
sample three times (24 hours each) in a 0.5% HF/HNO3 mixture to dissolve most minerals except 
quartz, and dried, rinsed and visually inspected for dark (mafic) mineral grains. Where required, 
we removed mafic mineral grains from quartz by Lithium polytungstate density separation. We 
etched each sample in a 0.25% HF/ HNO3 mixture, first for 72 hours, then again for one week 
before testing the purity of the resulting quartz separate. 

We tested the purity of the isolated quartz by analyzing solutions of each sample on a JY 
Horiba inductively coupled plasma optical emission mass spectrometer (ICP-OES) to determine 
major element composition. We made solutions for ICP-OES major element analysis by 
dissolving ~250 mg of each sample in a mixture of concentrated HF and 0.5% H2SO4, 
evaporating, and bringing up the remaining bead of H2SO4 in 18 mega-ohm water. We etched the 
purified quartz a final time in the UVM cosmogenic clean laboratory for 8 hours in a mixture of 
0.5% HF/HNO3 and 18 mega-ohm water. We selected 30 quartz samples for Al and Be extraction 
based on purity and mass, and extracted the cosmogenic isotopes 26Al and 10Be in the UVM 
cosmogenic clean laboratory by column chromatography. 

We prepared purified quartz aliquots for column chromatography in batches of 12, 
consisting of 10 samples and two process blanks. We massed and spiked each quartz sample with 
Al carrier sufficient to provide ~3000 mg per sample for analysis, and ~250 mg Be. Process 
blanks contained only Al and Be carrier, but we treated them like the other samples. We dissolved 
each sample in concentrated HF, split this solution, and spiked twos split from each sample with 
an internal standard containing Ga and Y, to make aliquots for determining total Al content by 
ICP-OES. We dried down the remaining solution with 2 ml HClO4 four times to remove 
fluorides, leaving the sample as a cake, which we then dried down twice with 2 ml HCl to convert 
perchlorates to chlorides. We brought the chloride cakes back up in HCl, centrifuged the HCl 
solution to remove Ti oxides and other insoluble material, and passed the solution through anion 
resin columns to remove Fe. 

After anion chromatography, we dried down each sample with H2SO4 and H2O2, brought 
each sample back up in 18 mega-ohm water, and passed each sample through cation resin 
columns to remove Ti, and isolate Al and Be. We evaporated the column acids from the Al and 
Be fractions, re-dissolved the samples in weak HNO3, and took a small (respectively, 200 ml and 
50 ml for Al and Be) aliquot to test yield purity of the resulting Al and Be separates by ICP-OES 
analysis. We added NH4OH to each sample sufficient to precipitate Al and Be as hydroxides, 
washed the resulting hydroxide jells with 18 mega-ohm water, dried the jells slowly over low heat 
to produce pellets which we transferred into quartz crucibles, and oxidized over a natural gas 
flame in a fume hood.   

We mixed and homogenized the resulting oxide powders with Ag and Nb (respectively 
for Al and Be) at a 1:1 molar ratio, packed each into a copper cathode, and shipped the cathodes 
to the SUERC accelerator mass spectrometer (AMS) facility in East Kilbride, Scotland for AMS 
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analysis of 26Al and 10Be (Xu et al., 2015). We normalized AMS measurements of 26Al and 10Be 
respectively to standards Z92-0222 (nominal 26Al/27Al ratio = 4.11 x 10-11; Nishiizumi, 2004), and 
NIST (nominal 10Be/9Be ratio = 2.71 x 10-11; Nishiizumi et al., 2007). We subtracted the isotopic 
ratios measured in the process blanks from the measured ratio of each sample as a blank 
correction, and calculated cosmogenic nuclide concentrations and related errors (atoms/g) by 
normalizing these blank-corrected values to sample quartz mass. We used the cosmogenic 
isochron burial method (Figure S1a-c) to determine burial ages from these concentrations.  
 
Appendix B: Deposit descriptions 

In the field we characterized each Quaternary strath terrace gravel by measuring deposit 
thickness and counting gravel clasts for rock type (basalt, Cascade volcanic, non-volcanic). 

The Thorp gravel at Potato Hill is moderately cemented and consists of very poorly sorted, 
matrix supported, predominately well-rounded, sand to large cobble sized clasts Clasts (n = 50) in 
the Thorp gravel at Potato Hill are predominately basalt (60%), and Cascade volcanic (18%) 
(Figure S3).  

The Toth Road gravel (Figure S4a-b) consists of very poorly sorted, matrix supported, 
predominately well-rounded, sand to large cobble sized clasts. Gravel clasts (n = 50) are 
predominately basalt (34%), and Cascade volcanic (34%).  

The Mathews Terrace gravel (Figure S5a-b) is very poorly sorted, clast supported, and 
contains mostly well rounded, sand to medium cobble sized clasts. Gravel clasts (n = 50) are 
predominately basalt (58%), and Cascade volcanic (22%).  

The Meander Terrace gravel (Figure S6a-b) is very poorly sorted, clast-supported, and 
contains mostly well-rounded, sand to large cobble sized clasts, with common cross-bedded 
coarse sand lenses. Gravel clasts (n = 50) in the Meander Terrace gravel are predominately basalt 
(58%), and non-volcanic (28%).  

The Lower and Higher Island terrace gravels (Figures S7a-c) are very poorly sorted, clast 
supported, and contains mostly well rounded, sand to small boulder sized clasts. Gravel clasts (n 
= 52) in the Lower Island terrace gravel (Figures S8a-b, 9a-b) are predominately Cascade 
volcanic (29%), and non-volcanic (52%). Gravel clasts (n = 48) in the Higher Island gravel 
(Figures S10a-b) are predominately basalt (35%), and non-volcanic (44%).  

The Death Chute terrace (Figure S11a-b) gravel is very poorly sorted, clast supported, 
and contains mostly well rounded, sand to small boulder sized clasts. Gravel clasts (n = 45) are 
predominately Cascade volcanic (27%), and non-volcanic (53%). 

The Big Pines terrace (Figure S12a-b) gravel is very poorly sorted, clast-supported, and 
contains mostly well-rounded, sand to large cobble sized clasts. Big Pines gravel clasts (n = 50) 
are predominately basalt (64%), and Cascade volcanic (20%). 
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Table S1. Cosmogenic isotope data 

        
Measured Measured ***Blank corrected  ****Blank corrected  26Al/10Be 

Site Sample ID UVM ID 
SUERC Be 

# 
SUERC Al 

# Quartz (g) 9Be (ug) 
27Al 
(ug) 

10/9 Be 
ratio  ± 1σ 

26/27 Al 
ratio   ± 1σ 10Be atoms/g  ± 1σ 26Al atoms/g  ± 1σ ratio  ± 1σ 

Potato Hill YK-01A V564A b9266 a2394 12.29 257.48 3060 1.12E-13 4.59E-15 1.44E-13 6.47E-15 1.45E+05 6.62E+03 7.93E+05 3.60E+04 5.49 0.35 

 
YK-01D V564B b9267 a2395 23.85 256.53 2818 2.80E-13 7.67E-15 3.46E-13 1.05E-14 1.95E+05 5.57E+03 9.10E+05 2.77E+04 4.66 0.19 

 
YK-01E V564C b9270 a2396 19.86 256.63 3988 3.88E-13 9.46E-15 2.46E-13 1.03E-14 3.27E+05 8.22E+03 1.10E+06 4.60E+04 3.35 0.16 

 
YKX-01RF V564L b9280 a2408 39.94 255.90 4881 3.59E-13 8.34E-15 2.59E-13 9.12E-15 1.50E+05 3.60E+03 7.05E+05 2.49E+04 4.70 0.20 

                  Toth Road YK-05RC V564D b9271 a2397 39.06 257.27 1863 1.51E-13 4.47E-15 3.59E-13 1.09E-14 6.29E+04 2.03E+03 3.81E+05 1.16E+04 6.06 0.27 

 
YK05A* V521I b7103 a1808 18.07 249.88 2948 6.03E-14 2.80E-15 9.38E-14 5.30E-15 5.34E+04 2.60E+03 3.38E+05 1.93E+04 6.33 0.47 

 
YK05B* V521J b7104 a1809 19.43 248.03 2880 9.37E-14 3.90E-15 1.37E-13 7.00E-15 7.79E+04 3.20E+03 4.51E+05 2.32E+04 5.79 0.38 

 
YK05C* V521K b7105 a1810 21.11 247.99 2939 9.60E-14 3.30E-15 1.36E-13 6.10E-15 7.34E+04 2.60E+03 4.21E+05 1.90E+04 5.74 0.33 

 
YK05F* V521L b7107 a1812 20.22 251.70 2849 9.99E-14 3.70E-15 1.40E-13 6.60E-15 8.10E+04 3.10E+03 4.37E+05 2.07E+04 5.40 0.33 

 
YK-5RE V568H b9260 a2419 15.14 257.17 2830 5.15E-14 2.64E-15 1.05E-13 4.59E-15 5.47E+04 3.06E+03 4.36E+05 1.92E+04 7.97 0.57 

                  Rattlesnake  YKX-02C V564H b9276 a2403 25.20 256.02 9521 1.72E-13 5.25E-15 9.24E-14 4.36E-15 1.11E+05 3.65E+03 7.72E+05 3.68E+04 6.97 0.40 

 
YKX-02E V562A b9235 a2378 37.56 256.60 5746 2.63E-13 6.68E-15 2.47E-13 1.11E-14 1.18E+05 3.19E+03 8.39E+05 3.77E+04 7.09 0.37 

 
YKX-02F V564I b9277 a2404 13.22 256.90 2741 8.03E-14 3.76E-15 1.68E-13 1.01E-14 9.34E+04 5.10E+03 7.75E+05 4.69E+04 8.31 0.68 

 
YKX-02G V562B b9237 a2380 39.97 254.92 4097 2.53E-13 6.80E-15 3.16E-13 1.01E-14 1.06E+05 3.03E+03 7.21E+05 2.31E+04 6.80 0.29 

 
YKX-02M V564E b9272 a2400 37.06 256.96 3594 2.23E-13 6.05E-15 3.31E-13 1.21E-14 9.93E+04 2.85E+03 7.14E+05 2.61E+04 7.19 0.33 

 
YKX-02O V568G b9259 a2417 12.08 245.97 2575 1.06E-13 5.63E-15 1.93E-13 1.01E-14 1.40E+05 7.70E+03 9.13E+05 4.79E+04 6.50 0.49 

                  Meander YK-04RF V568I b9261 a2420 20.17 256.08 4979 3.54E-14 2.56E-15 2.83E-14 1.98E-15 2.72E+04 2.22E+03 1.51E+05 1.09E+04 5.55 0.61 

 
YK04A* V521E b7096 a1802 21.81 249.10 2957 4.99E-14 2.40E-15 6.42E-14 3.8E-15 3.63E+04 1.80E+04 1.92E+05 1.13E+04 5.29 2.64 

 
YK04B* V521F b7097 a1803 20.97 248.81 3062 2.68E-14 1.70E-15 4.30E-14 2.9E-15 1.94E+04 1.30E+03 1.37E+05 9.40E+04 7.06 4.87 

 
YK04D* V521G b7101 a1806 22.41 248.21 6656 3.57E-14 2.20E-15 2.33E-14 2.2E-15 2.46E+04 1.60E+03 1.49E+05 1.45E+04 6.06 0.71 

 
YK04E* V521H b7102 a1807 22.40 248.60 2896 3.57E-14 1.50E-15 5.23E-14 4.0E-15 2.10E+04 1.10E+03 1.48E+05 1.14E+04 7.05 0.66 

 
YK-04S V568J b9263 a2421 13.90 258.00 4040 2.50E-14 1.76E-15 2.02E-14 1.58E-15 2.69E+04 2.30E+03 1.25E+05 1.03E+04 4.66 0.55 

                  Higher Island YKX-05H V562F b9241 a2384 30.60 256.87 3509 1.13E-13 4.81E-15 1.44E-13 5.65E-15 6.10E+04 2.93E+03 3.66E+05 1.45E+04 5.99 0.37 

 
YKX-05L V562G b9244 a2387 39.84 256.66 6010 1.64E-13 6.35E-15 1.34E-13 5.77E-15 6.90E+04 2.87E+03 4.48E+05 1.95E+04 6.49 0.39 

 
YKX-05N V562I b9246 a2389 25.57 256.63 2544 9.67E-14 4.77E-15 1.84E-13 6.39E-15 6.24E+04 3.48E+03 4.07E+05 1.42E+04 6.53 0.43 

 
YKX-05O V562J b9247 a2390 38.06 256.81 5060 1.43E-13 5.07E-15 1.32E-13 5.76E-15 6.29E+04 2.46E+03 3.89E+05 1.71E+04 6.19 0.36 

 
YKX-05P V568E b9257 a2415 17.15 257.20 3204 6.92E-14 3.13E-15 9.79E-14 4.62E-15 6.60E+04 3.19E+03 4.05E+05 1.93E+04 6.13 0.42 

 
YKX-05Q V562K b9248 a2391 26.12 256.11 3278 1.13E-13 4.17E-15 1.53E-13 5.80E-15 7.17E+04 3.04E+03 4.27E+05 1.63E+04 5.96 0.34 

                  Lower Island YKX-06H V568B b9252 a2410 40.02 257.33 3661 1.46E-13 5.14E-15 1.92E-13 7.03E-15 6.12E+04 2.22E+03 3.90E+05 1.44E+04 6.36 0.33 

 
YKX-06J V568K b9264 a2422 8.46 255.38 2467 4.10E-14 2.18E-15 6.92E-14 3.85E-15 7.60E+04 4.54E+03 4.45E+05 2.51E+04 5.86 0.48 

 
YKX-06K V568C b9253 a2413 20.27 256.05 2668 9.64E-14 3.72E-15 1.53E-13 5.83E-15 7.85E+04 3.18E+03 4.46E+05 1.71E+04 5.68 0.32 

 
YKX-06P V568D b9254 a2414 15.17 255.10 2925 5.62E-14 2.80E-15 8.11E-14 3.50E-15 5.95E+04 3.21E+03 3.45E+05 1.51E+04 5.80 0.40 

 
YKX-06R V562L b9250 a2393 26.85 255.35 3539 8.51E-14 3.62E-15 1.26E-13 5.47E-15 5.17E+04 2.64E+03 3.68E+05 1.61E+04 7.13 0.48 

                  Death Chute YKX-03C V568F b9258 a2416 11.39 272.57 2623 1.27E-14 1.54E-15 2.10E-14 1.63E-15 1.51E+04 2.62E+03 1.03E+05 8.44E+03 6.86 1.32 

 
YKX-03F V564K b9279 a2407 14.43 256.38 2566 2.10E-14 1.51E-15 2.93E-14 2.04E-15 1.50E+04 2.24E+03 1.13E+05 8.15E+03 7.55 1.25 

 
YKX-03K V562D b9239 a2382 34.76 256.81 4382 4.54E-14 2.88E-15 4.87E-14 2.65E-15 2.06E+04 1.74E+03 1.35E+05 7.48E+03 6.55 0.66 

 
YKX-03M V562C b9238 a2381 33.80 256.75 4359 3.80E-14 2.37E-15 3.39E-14 2.30E-15 1.74E+04 1.59E+03 9.50E+04 6.65E+03 5.46 0.63 

 
YKX-03O V564J b9278 a2406 33.18 257.17 5396 7.17E-14 2.99E-15 4.74E-14 2.59E-15 3.27E+04 1.66E+03 1.69E+05 9.43E+03 5.16 0.39 

                  Big Pines YK03B* V521A b7091 a1797 22.09 248.10 4809 4.88E-14 2.50E-15 4.48E-14 3.21E-15 3.48E+04 1.90E+03 2.14E+05 1.52E+04 6.15 0.55 

 
YK03E* V521B b7093 a1799 24.79 249.63 2996 6.95E-14 2.80E-15 1.30E-13 5.10E-15 4.51E+04 1.90E+03 3.47E+05 1.36E+04 7.69 0.44 

 
YK03C* V521D b7095 a1801 10.08 249.38 2820 1.86E-14 1.80E-15 3.10E-14 2.70E-15 2.67E+04 2.70E+03 1.88E+05 1.65E+04 7.04 0.94 

                  **Blanks V521* V521C b7094 a1800 0.00 248.95 2940 2.39E-15 6.60E-16 8.38E-16 4.20E-16 
      

 
V562 V562E b9240 a2383 0.00 256.7 2497 2.32E-15 8.19E-16 6.28E-16 4.44E-16 

      
 

V568 V568A b9251 a2409 0.00 257.6 2502 2.91E-15 8.77E-16 1.12E-15 5.58E-16 
      

 
V564 V564F b9273 a2401 0.00 257.3 2496 7.62E-15 9.53E-16 1.08E-15 7.67E-16 

      
 

V562X V562H b9245 a2388 0.00 256.0 2502 5.20E-15 1.08E-15 9.82E-16 5.67E-16 
      

 
V568X V568L b9265 a2423 0.00 256.5 2473 3.72E-15 9.02E-16 6.91E-16 3.99E-16 

      
 

V564X V564G b9274 a2402 0.00 256.7 2493 9.22E-15 1.18E-15 7.54E-16 4.35E-16 
      Samples measured at SUERC AMS. 

*Sampled and measured by (Coppersmith et al., 2014) 
**Batch specific blank used for correction, UVM ID indicates corresponding corrected batch #. Uncertainties (1σ) were propagated in quadrature. 
***For 10Be, NIST standard was used with a nominal 10Be/9Be ratio of 2.71e-11. 
****For 26Al, standard Z92 0222 was used for normalization with nominal 26Al/27Al ratio of 4.11e-11. 
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Figure S1. Conceptual diagram depicting the cosmogenic burial dating method applied to the 
Yakima River terrace gravels. (A) Accumulation of 26Al and 10Be in quartz within clasts at the 
surface of varying ages (for illustrative purposes the ages increase from left to right). The green 
crosses represent isotope concentrations, and the green best-fit line has a nominal slope of 6.75, 
reflecting the surface production ratio of 26Al to 10Be. (B) Clasts are transported and buried too 
shallow (<2 m) to shield from post-burial nuclide production (≥2 m) in a gravel deposit cut into a 
basalt strath. The post-burial production of cosmogenic 26Al and 10Be is such that the slope of a 
line (blue) fit to the measured post-burial isotope concentrations (blue crosses) roughly matches 
the surface production ratio. (C) Clasts are transported and buried sufficiently to shield from 
significant post burial nuclide inheritance (≥2 m) in a gravel deposit cut into a basalt strath. The 
subsequent decay of cosmogenic 26Al and 10Be at different rates drives the isotope concentrations 
down predictably such that the slope of a line (blue) fit to the measured post-burial isotope 
concentrations (blue crosses) reflects time-dependent deviation from the surface production ratio, 
and incorporates long term muonogenic production of 26Al and 10Be. For detailed discussion of 
muonogenic production of 26Al and 10Be in buried sediments, see (Granger and Smith, 2000). 
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Figure S2. Schematic depiction of our approach to estimating total bedrock incision at each site 
(given unknown thickness of the modern gravel) as the sum of Quaternary terrace gravel (Qg) 
thickness, strath height, and a nominal 1 m Yakima River depth. 
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Figure S3. Potato Hill stratigraphy, field photo, and Thorp gravel rock type histogram. Orange triangle marks cosmogenic sample location.
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Figure S4. (A) Toth Road gravel description and field photo. Orange triangle marks cosmogenic 
sample location. (B) Toth Road gravel rock type histogram.  
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Figure S5. (A) Rattlesnake Dance terrace stratigraphy and field photo. Orange triangle marks 
cosmogenic sample location. (B) Mathews terrace gravel rock type histogram. 
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Figure S6. (A) Meander terrace stratigraphy and field photo. Orange triangle marks cosmogenic 
sample location. (B) Toth Road gravel rock type histogram. 
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Figure S7. (A) Looking west at Island terrace sites. (B) Detail photo of Lower Island terrace 
sample site, location indicated on figure (A). (C) Detail photo of Higher Island terrace sample 
site, location indicated on figure (A). Orange triangles mark specific cosmogenic sample 
locations. 
 
 
 

 
Figure S8. Lower Island terrace deposit photo (A) un-interpreted and (B) interpreted. Numbered 
units in (B) refer to interpreted depositional order (e.g., c1 deposited before c2, f1 deposited 
before f2, etc.) within the deposit, and correspond to descriptions in Figure S8 A. 
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Figure S9. (A) Lower Island terrace stratigraphy and sample site photo. Orange triangles mark 
cosmogenic sample location. (B) Lower Island gravel rock type histogram. 
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Figure S10. (A) Higher Island terrace deposit stratigraphy and sample location photo. Orange 
triangles mark cosmogenic sample location. (B) Higher Island gravel rock type histogram. 
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Figure S11. (A) Death Chute terrace deposit stratigraphy and sample location photo. Orange 
triangles mark cosmogenic sample location. (B) Death Chute gravel rock type histogram. 
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Figure S12. (A) Big Pines terrace deposit stratigraphy and sample location photo. Orange 
triangles mark cosmogenic sample location. (B) Big Pines gravel rock type histogram. 
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