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Abstract 

 

Sortases are cysteine transpeptidases found primarily on the cell surface of Gram-positive 

bacteria. Sortase-mediated ligations have become an attractive option for protein modification 

chemistry, enabling the synthesis of a wide range of non-natural polypeptide derivatives.  Attempts 

at understanding how these enzymes recognize and bind substrates are integral to furthering their 

usefulness in protein engineering and, potentially, treatment of bacterial diseases. However, the 

variable substrate specificity and activity between homologs of these enzymes is not yet fully 

understood. Of specific interest to us is sortase A from Streptococcus pneumoniae (SrtApneu), as it 

demonstrates a broad substrate tolerance not observed in other sortase A homologs. 

Correspondingly, we have made advances towards characterizing a substrate bound structure of 

SrtApneu in an effort to further understand its unique substrate promiscuity, deviating from the 

canonical LPXTG sorting signal. Our strategy initially involved generating a non-cleavable 

peptide analog capable of docking into the active site, however, synthesis of a ketomethylene-

linked dipeptide isostere and its insertion into a peptide via solid phase peptide synthesis proved 

to be more challenging than we anticipated. We revised our approach by designing a substrate 

harboring an LPACG sorting motif. Peptide preparations with a thiopyridine leaving group 

favorably facilitated disulfide bridging between the active site and sorting motif cysteines, 

allowing for elucidation of a SrtApneu structure displaying key interactions that allow the enzyme 

to recognize a wide-variety of substrates. To this end, we have utilized x-ray crystallography and 

solution NMR in an attempt to characterize SrtApneu with a bound substrate analog. Although we 

were unsuccessful, this work has established a foundation for future efforts toward determining 

the substrate-bound structure of SrtApneu.  
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Chapter 1 – Introduction 

1.1 Protein Engineering - Advantages of Chemoenzymatic Modification 

Contemporary pursuits toward endowing proteins with unnatural or non-canonical 

functionalities, known as protein engineering, has garnered significant attention across academic, 

industrial and medical applications.1–4 Protein engineering efforts were historically limited to 

molecular biology techniques to install protein modifications genetically, which were applied 

through single-point mutations as well as frameshift sequence insertions and deletions.5 The 

modern utility of mutagenic techniques, such as directed evolution and unnatural amino acid 

incorporation, have dramatically broadened the variety of protein modifications, however, these 

methods continue to be burdened by substantial time and cost investments.6–10 In contrast, protein 

modification through novel direct chemical ligation strategies is a relatively quick and cost-

effective way of engineering proteins. This bioconjugation technique takes advantage of the 

natural reactivity of sterically unencumbered amino acid side chains (i.e. lysine, cysteine, glutamic 

and aspartic acids), which is optimal for generating proteins with non-natural modifications.11–15 

While these contemporary modification strategies have revolutionized protein engineering, 

continuing to expand the scope and efficacy of direct protein bioconjugation is critical for the 

advancement of several fields, including fundamental biochemistry, the design of protein 

therapeutics, and the generation of new biomaterials.  

 

Chemoenzymatic modification of proteins has provided an attractive alternative to site-

directed mutagenesis and direct chemical modification strategies. This bioconjugation technique 

has been utilized in a variety of instances, including the production of fluorescently labeled 

proteins for live-cell trafficking, antibody-drug conjugates for site-specific payload delivery, and 
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adhering protein to nanoparticles.16–18 In chemoenzymatic modification, a sequence of amino acids 

is recognized by the modification enzyme, which results in the site-specific attachment of the 

desired moiety (Figure 1). If an endogenous protein target does not possess the required 

recognition sequence, which is often the case, then a recognition site must be added, typically 

using site-directed mutagenesis.19 There is a continuously expanding assortment of modifications 

that can be installed using chemoenzymatic modification strategies, along with a growing catalog 

of enzymes able to catalyze these processes. 

A notable example of an enzyme used in chemoenzymatic strategies is formylglycine 

generating enzyme (FGE), which recognizes a CXPXR sequence of amino acids, then modifies 

the cysteine residue to a formylglycine reaction handle commonly utilized for generating stable 

oxime ligation products.20–22 Lipoic acid ligase has seen use through similar bioorthogonal ligation 

approaches, wherein this enzyme canonically functions to adhere lipoic acid to the ε-amine of 

lysine side chains within the primary sequence of its target protein.23 Interestingly, this 

promiscuous enzyme has demonstrated the ability to install a diverse variety of substrates, notably 

azide and alkyne containing click handles, which has significantly broadened the scope of site-

Modification 

Modification Enzyme 

Protein Target Modified Protein 

Figure 3. Generic Schematic of Chemoenzymatic Protein Labeling. A protein (left) harboring a binding 

motif is recognized by the modification enzyme, then the modification is covalently attached to the protein 

target (right). 
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specific modifications that can be installed using lipoic acid ligase.24 Biotin ligase manifests a 

similar behavior, where it covalently attaches a biotin residue to the ε-amine of the lysine side 

chain within its target recognition sequence.25 Biotin-based protein engineering has attracted 

attention due to its robust function as a site-specific tag for binding streptavidin or avidin 

containing biomolecules, including functionalized nano-particles or quantum dots, with 

exceptional specificity and pico-molar affinity.26,27 

 

The sortase enzyme family has also been extensively studied for its utility in protein 

modification. Sortases are endogenous to Gram-positive bacteria, where they function as 

transpeptidases through a catalytic mechanism involving a nucleophilic cysteine within the 

enzyme’s active site.28–30 Sortases are separated into distinct classes (A-F) based on their unique 

contrasting structural and biochemical traits.31,32 Class A sortases (SrtA) have demonstrated the 

most relevance to protein engineering, having been recombinantly expressed with a truncated N-

terminus to remove the transmembrane domain, which has resulted in a soluble derivative of SrtA 

for in vitro ligation reactions. In vivo, SrtA performs an essential “housekeeping” role in 

maintaining the extracellular environment by anchoring a variety of proteins to the cell wall.33–36 

Proteins appended to the extracellular matrix by SrtA are key virulence factors, including collagen 

adhesion proteins as well as fibronectin and immunoglobulin binding proteins, that are responsible 

for bacterial cell colonization and evading host immune detection.37–42 The in vivo function of SrtA 

has been highlighted as a viable drug target in Gram-positive bacteria, as studies have reported a 

dramatically reduced virulence of SrtA knockout Gram-positive bacterial strains.43–47 As the 

catalog of ineffective antibiotic drugs continues to rapidly expand, it has become imperative to 

develop an in-depth understanding of sortase structure and enzymology to further the development 
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of novel therapeutics while simultaneously providing insight into their role in protein 

engineering.48 

Sortase A enzymes share a common mechanism of action involving the recognition of a 

five amino acid sequence, which will hereafter be referred to as a “sorting motif”. The most 

common sorting motif for SrtA enzymes is the LPXTG sequence, where X is any amino acid.31,32 

However, it is now known that different SrtA homologs can recognize a number of variations of 

the standard LPXTG sequence. Sortase A from Staphylococcus aureus (SrtAstaph) recognizes a 

protein substrate harboring an LPXTG sorting motif (Figure 2).36 Next, the active site cysteine 

cleaves the amide bond between threonine and glycine, which releases the excised C-terminal 

fragment from the substrate. A transient acyl enzyme intermediate is formed through this process, 

and the scissile thioester linkage is subsequently intercepted by nucleophilic attack of the N-

terminal amine of a pentaglycine peptide of lipid II anchored to the peptidoglycan matrix. 

Reconstitution of the amide bond linkage fuses the protein to the peptidoglycan, at which point the 

protein substrate is released from the active site and the enzymatic potency of SrtAstaph is restored 

for additional catalytic cycles. 

Figure 4. Overview of SrtA in vivo mechanism on surface of Staphylococcus aureus. 
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In vitro, SrtA enzymes have been utilized extensively in protein engineering chemistry due to their 

ability to catalyze site-specific modifications at the sorting motif. Recent efforts that have used 

this approach include conjugating proteins and peptides to fluorophores, nanoparticle solid-

supports, synthetic peptides, surfaces of live cells and other proteins (Figure 3).49–53    

This by no means encapsulates the full breadth of modifications that can be achieved using 

sortase-mediated ligation (SML), and we refer the reader to other excellent reviews for more 

comprehensive discussions of SML applications.54–58 One of the key factors in the versatility of 

SML is the ability of users to control which reaction partner is functioning as the LPXTG-substrate 

and which is serving as the reaction nucleophile.59–61 In doing so, one is able to use SML for 

appending modifications to exposed C- and N-termini, and in some cases sterically unencumbered 

secondary structures. To date, the majority of these SML studies have utilized wild-type SrtAstaph. 

However, over the past decade a number of efforts to improve the properties of SrtAstaph have 

Figure 3. Protein modification using model SML. 
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resulted in evolved mutants demonstrating improved reaction rates, non-canonical substrate 

tolerances, and Ca2+ cofactor independence.62–65 These evolved variants now provide a range of 

sortase derivatives that can be selected for specific applications.  

 

1.2 Expanded Substrate Tolerance of Sortase Homologs 

As noted above, there exists a diverse archive of published protein engineering applications 

utilizing sortase-mediated ligation, which is continually expanding along with contemporary 

efforts to circumvent limitations historically associated with this technique. Notably, issues 

associated with SML include the slow reactions rates of ligations using SrtAstaph, reaction 

reversibility, strict substrate specificity, and a narrow scope of compatible amine nucleophiles.66–

68 Of relevance to this thesis, there have now been reported multiple studies on expanding the 

substrate scope of SML using either SrtAstaph mutants or other naturally occurring sortase 

homologs.63,64,69–71 

 

Bioinformatic investigations of SrtA homolog specificities through the CW-PRED2 

genome alignment algorithm has revealed a universal preference for LPXTG motifs.65,72 In vitro 

analysis of SrtA preferences with computationally derived peptide substrates have revealed 

        Table 2. Substrate specificity of Sortase A mutants and wild-type homologs. 
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discrepancies between actual and predicted SML compatible sorting sequences (Table 1). Notably, 

Kruger et al. have experimentally demonstrated that SrtAstaph tolerates LPXXG substrates, and 

exhibits a preference for glycine in the 6th position, outside of the canonical LPXTG sorting 

motif.73 Phage and yeast display directed evolution studies have generated evolved variants of 

SrtAstaph with alternative substrate preferences.64,69 These SrtAstaph mutants have exhibited a 

relaxed substrate tolerance for residues in 1st, 2nd and 4th position.  

 

Randomization of the β6/β7 loop among SrtAstaph mutants revealed evolved variants 

selective for FPXTG or APXTG motifs.64 Rather than genetically modifying the substrate 

preferences of SrtAstaph, others have taken the approach of exploiting the natural reactivity and 

specificity of different SrtA homologs.70,71 The model enzyme for SML has historically been wild-

type SrtAstaph, however, a notable endogenous SrtA homolog from streptococcus pyogenes 

(SrtApyogenes) has revealed advantages beyond the utility of SrtAstaph. SrtApyogenes is capable of 

recognizing a diverse catalog of substrates, which has enabled a multifaceted approach to site-

specifically modify different regions within a single protein target.19 Furthermore, SrtApyogenes is 

capable of generating isopeptide bonds by accepting ε-amine of lysine, as well as processing the 

N-terminal amines of glycine, serine, and even D-asparagine residues.74 In general, streptococcal 

sortases have exhibited promiscuous substrate preferences, and an unprecedented tolerance for 

LPXLG motifs, which may be useful for SML reactions.71 To date, sortase A homologs employed 

for SML reactions represent only a fraction of the thousands of sortase genes encoded by genomes 

across the bacterial kingdom.75,76 Therefore, there exists an untapped potential for harnessing the 

reactivity of sortase A homologs to broaden the scope of applicable SML substrates. Our lab has 

highlighted this concept by determining the substrate preferences of eight naturally occurring SrtA 
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homologs, each exhibiting a preference for residues across each position along the sorting motif.70 

Positions 4 and 5 displayed significant deviation from the canonical LPXTG sorting motif, where 

many SrtA homologs preferred substrates with several different amino acids in the 5th position. 

Notably, sortase A from Streptococcus pneumoniae (SrtApneu) demonstrated the broadest substrate 

tolerance of non-canonical amino acids in the 5th position (Figure 4). 

Although SrtApneu recognizes a variety of sorting motifs, high performance liquid 

chromatography (HPLC) and mass spectrometry (MS) analyses of product conversion from model 

SML reactions revealed a strong preference for an LPATA substrate in vitro, which is strikingly 

different than the LPETG preference for SrtAstaph. The SrtA reactivity and specificity trials we’ve 

published may persuade the reader to believe that SrtA is not appropriate for SML applications 

based on the suboptimal product conversion of various substrates. However, the data presented is 

reflective of unoptimized reactions, where even the lowest substrate conversion can be drastically 

Figure 4. Comparison of substrate preferences for the 5th position of the sorting motif among SrtA 

homologs.70 These values represent % conversion of substrate to excised fragment. No cleavage was 

observed for X = P, T, I, D, E, R, K, H. 
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improved by redesigning the reaction conditions. The utility of SrtApneu has provided an 

opportunity to bolster the applicability of SML protein engineering by broadening the scope of 

substrate targets. As a result, SrtApneu has potentially reduced the necessity to mutagenically 

implement a sorting motif into protein targets, which improves the compatibility of SML for 

endogenous proteins. The unique substrate promiscuity of SrtApneu has potentiated an interest 

toward elucidating active site residues responsible for dictating the mechanism of recognition. A 

deep understanding of these interactions on a molecular level would likely provide insight to this 

phenomenon, which will advance our understanding of sortase enzymology and sortase-mediated 

chemistry. The structure of SrtApneu has not been published, which has compelled our efforts 

toward an in-depth analysis of SrtApneu substrate recognition through structural characterization.  

 

1.3 Substrate Binding and Structural Characteristics of SrtA Homologs 

Multiple structures of various SrtA homologs have been published over the last decade, 

which were either characterized by X-ray crystallography or solution nuclear magnetic resonance 

(NMR) spectroscopy. Published structures of SrtAstaph have aided in developing an improved 

understanding of enzyme-substrate binding interactions with residues in the sorting motif, and 

insight into the reverse protonation mechanism instigating transpeptidation reactions.77,78 

Published structures of SrtA homologs manifest an 8-stranded β-barrel fold, which is a conserved 

feature across SrtA enzymes.30 Strands comprising the β-barrel are flanked by a series of alpha 

and 310 helices, as well as disordered loops varying in size and position among homologs.31,33,79–82 

In general, SrtA enzymes share an evolutionarily conserved active site housing three catalytic 

residues; a cysteine to establish a transient thio-acyl linkage, a histidine to facilitate thiolate 

formation, and an arginine thought to provide hydrogen bonding to stabilize active site residues 
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essential for catalysis.33,83 In the case of SrtAstaph, the floor of the active site, or binding groove, is 

formed by β4 and β7 loops and the adjacent walls are composed conjoining loops, and helices. The 

binding pocket adopts the appearance of a bent “L” shape, which may justify the necessity for 

proline in the 2nd position of the sorting motif as it situates the amide bond linking 4th and 5th 

position residues towards the active site cysteine.78 The non-polar carbon fork of the 1st position 

leucine establishes hydrophobic contacts with residues in the β6/β7 loops, and the 2nd position 

proline is buried within a hydrophobic cleft formed by residues in β4 and β7 strands. The 3rd 

position alanine maintains distant hydrophobic interactions with the H1 helix, which may provide 

a rationale for the indiscriminate preference for residues in this position as there exists ample space 

for cumbersome side chains. The 4th position threonine pushes a nearby tryptophan residue 

(Trp194) out of the active site, which situates the active site cysteine in proximity to the scissile 

peptide bond. Preservation of threonine is critical for this mechanism, as substrates substituting 

glycine in the 4th position are unreactive. The 5th position glycine is predicted to associate with the 

β7/β8 loop, which hypothetically undergoes a distinct transition to a structurally ordered 

conformation upon substrate docking.78,84–86 Preferential recognition of the 5th position residue is 

anticipated to be partially dependent on the length of the β7/β8 loop. SrtAstaph has a relatively large 

β7/β8 loop compared to other homologs, which may condone the stringent selectivity for glycine 

in the 5th position of the sorting motif. After substrate docking is facilitated, nucleophilic attack 

of the scissile peptide bond by the active site cysteine repositions the β7/β8 loop further from the 

binding pocket, revealing a sterically unencumbered site for incoming nucleophiles.78 
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The substrate bound SrtAstaph complex published by Suree et al. has constructed a 

framework for interpreting the role of each residue positioned along the LPAT substrate analog 

and deciphering crucial interactions with residues housed within the active site (Figure 5).78   

Figure 5. (A) Solution NMR structure of SrtAstaph. Arginine (cyan), cysteine (magenta), and histidine 

(blue) stick structures represent catalytic residues in the enzyme active site. (B) Predicted structure of 

SrtApneu based on a one-to-one threading model of SrtApyogenes (PDB ID: 3NF7) from the Phyre2 

structural prediction server. (C) Solution NMR structure of the SrtAstaph active site with a bound LPAT* 

substrate analog (PDB ID: 2KID). Side chains of residues comprised within the active site are shown 

as stick structures, highlighting several hydrophobic interactions stabilizing the substrate-bound state. 
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Unfortunately, this systematic model fails to provide a holistic depiction of SrtA substrate 

recognition and binding since the substrate analog only contains the first four amino acids (LPAT) 

in the sorting sequence. As a result, identifying active site residues that interact with the 5th position 

residue of a target sorting motif is challenging based on this model. However, Suree and coworkers 

illuminated regions in SrtAstaph thought to be responsible for recognizing the 5th position residue 

in the sorting motif as well as coordinating entry of the incoming nucleophile. 

Three regions in SrtAstaph displayed significant alterations in their backbone resonances in 

the presence of a triglycine nucleophile, which was monitored using 15N heteronuclear single 

quantum coherence (HSQC) NMR (Figure 6).87 Residues harbored within these regions are likely 

Figure 6. Sequence alignment of selected SrtA homologs. The regions of greatest difference (boxed) 

correspond to the regions highlighted in the structure (right), indicating the least sequence homology 

on the structural features predicted to interact with the 5th position of the sorting sequence. The structure 

(right) is a surface representation of SrtAstaph bound to a substrate analog LPAT* (PDB ID: 2KID). 

Residues highlighted in magenta were determined to interact with the incoming nucleophile by analysis 

of peak perturbation during an 15N-HSQC monitored titration of SrtAstaph with triglycine. These residues 

are primarily situated around the region of the binding pocket and are predicted to interact with the C-

terminus of the sorting signal.   
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contacting the 5th position residue of the sorting motif, which suggests that they are critical for 

substrate recognition. Sequence alignments of SrtA homologs indicated distinct differences in 

primary structure within these regions, which provides a rationale for the diverse tolerance of 

various residues in the 5th position. This evidence coincides with our experimental findings, where 

SrtA homologs demonstrated a variety of preferences for the 5th position residue. Supplementary 

assessments are necessary to establish a more thorough understanding of SrtA substrate 

recognition. 

A 3D domain swapped structure of SrtApneu has been deposited in the Protein Data Bank 

(PDB ID: 4O8L), but monomeric enzyme with (or without) bound substrate has not yet been 

characterized (Figure 7). A structure of monomeric SrtApneu bound to a substrate may distinguish 

Figure 7. (A) The 3D domain swapped dimer of SrtApneu (PDB ID: 4O8L). (B) A domain swapped 

monomer from the dimeric structure of SrtApneu. (C) Predicted structure of SrtApneu based on a one-to-

one threading model of SrtApyogenes (PDB ID: 3FN7) from the Phyre288 structural prediction server. In 

both (B) and (C) structures, the red colored regions resemble the domain swapped portion of the 

structure shown in (A). 
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novel features that are responsible for its unique substrate tolerance, similar to aforementioned 

efforts toward determining which active site residues contribute to substrate recognition in 

SrtAstaph. Phyre2 structural prediction algorithms have served as a preliminary means of 

determining which residues perpetuate the promiscuous substrate tolerance of SrtApneu.
88 Structure 

predictions suggest that SrtApneu to has a smaller β7/β8 loop than SrtAstaph, which may confer a 

broader substrate tolerance, as this loop region is thought to be important for recognizing the 5th 

position residue of the sorting motif.  

 

1.4 SrtApneu Enzyme Activity as a Function of Oligomeric State 

The structure of monomeric SrtApneu has yet to be determined, however, the dimeric form 

of the enzyme has piqued our interests toward understanding the mechanism of assembly in vivo 

and in vitro, as well as its role on enzyme activity. In previous SrtApneu studies, we sought to 

evaluate the catalytic activity of both dimeric and monomeric forms of the enzyme.70 These 

multimers were identified in an IMAC elution of purified SrtApneu by native-PAGE, where 

numerous distinct bands were observed, as opposed to SDS-PAGE analysis displaying a single 

band. In model SML studies, we hypothesized that monomeric SrtApneu was an active form of the 

enzyme, whereas multimeric forms were thought to be an inactive form, based on their activity in 

the presence of an Abz-LPATAG-K(Dnp) peptide substrate and a potent hydroxylamine (NH2OH) 

nucleophile (Figure 8). Model SML reactions utilizing multimeric SrtApneu rapidly plateaued with 

minimal product formation (21% product conversion). Conversely, identical reactions involving 

monomeric SrtApneu achieved significantly higher product formation (95% product conversion). 

To confirm our suspicions, size exclusion fast protein liquid chromatography (SE-FPLC) was 

utilized to confirm the presence of all SrtApneu assemblies. The spectra revealed multiple species 
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varying in molecular weight, and native-PAGE bands of respective fractions travelled identical to 

native-PAGE bands of a SrtApneu heterogeneous mixture. 

Bacterial expression of a truncated SrtApneu clone (Δ80) generated substantial amounts of 

inactive enzyme, thus it became imperative to explore options allowing us to regenerate fully 

active monomeric SrtApneu.
70 We initially proposed the idea of subjecting SrtApneu to conditions 

eliciting the disassembly of all SrtApneu multimers, followed by the refolding of denatured SrtApneu 

to monomeric enzyme. Our original hypothesis speculated that SrtApneu dimerization is an 

equilibrium driven process, where acute concentrations of enzyme may shift the equilibrium 

toward an energetically favorable dimeric fold. Attempts to incubate serial diluted samples at room 

temperature sought to evaluate this possibility. Contrary to our rationale, the intensity of a dimeric 

Figure 8. RP-HPLC analysis of model SML reactions demonstrating the difference in activity 

between monomeric (top) and multimeric (bottom) SrtApneu preparations.70 
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SrtApneu band in a native-PAGE gel remained unaffected. We proposed the possibility that SrtApneu 

dimerization is co-translational phenomenon, where artificially elevated concentrations in-vivo 

may instigate a dimeric fold. If true, we anticipated that dismantling SrtApneu assemblies during 

purification, followed by refolding under native conditions, may provide an opportunity for 

SrtApneu to reassemble into monomeric enzyme. A denaturing agent capable of disrupting any 

intermolecular interactions, namely domain swapping contacts, was implemented in our IMAC 

purification buffers. Specifically, we employed an initial denaturing IMAC purification using 8 M 

urea, where E. coli cells were lysed under denaturing conditions, the protein was purified from 

clarified lysate in denaturing buffer via IMAC, followed by a rapid dilution of denaturing eluate 

in non-denaturing buffer to refold monomeric enzyme. The non-denatured diluted protein was 

reconcentrated by a non-denaturing IMAC purification, and eluted fractions were further purified 

by SE-FPLC to isolate residual dimers from reassembled monomeric enzyme. We also added 

tris(carboxyethyl)phosphine (TCEP), a non-sulfurous reducing agent, to our IMAC purification 

buffers to disfavor cysteine disulfide bridging between monomers and preserve the reduced form 

of the thiol. Overall, our enzyme refolding protocol in tandem with SE-FPLC enrichment 

significantly improved SrtApneu monomer recovery (Figure 9). Furthermore, the regenerated 

SrtApneu monomer performed identical to previous model SML reactions, where 95% conversion 

was observed for the refolded enzyme.  



17 

Supplementary investigations have revealed the presence of both monomeric and dimeric 

forms of SrtAstaph in vivo and in vitro.89–91 The in vitro catalytic activity of monomeric SrtAstaph 

has been evaluated by Lu and coworkers, where ligation reactions with homodimeric preparations 

demonstrated superior product conversion compared to monomeric enzyme. In contrast, the 

insertion of a non-dimerizing SrtAstaph mutant in a knockout strain of S. aureus by Zhu et al. 

resulted in an increased presence of sortase-catalyzed surface anchored proteins in vivo, which 

provides evidence in support of a catalytically active SrtAstaph monomer. In vivo observations of 

SrAstaph activity as a function of oligomerized state are in clear contrast to in vitro studies, but 

coincide our evidence indicating monomeric SrtApneu is the catalytically active form in vitro. The 

pervasive dimerization among SrtA homologs has raised questions regarding the biological 

significance of these dimers, as they are anticipated to serve as a means of regulating enzyme 

deactivation when extracellular protein appendage is unnecessary.89,91 This proposed mechanism 

of regulation is not unfounded, as there exists many enzymes (i.e. phospholipase) that are governed 

in this fashion.92 Although interplay between monomeric and dimeric forms of SrtAstaph and 

Figure 9. A comparison of standard vs. refolded SrtApneu preparations via SE-FPLC (left). Native-

PAGE analysis of isolated monomeric (M) fractions and dimeric (D) fractions by SE-FPLC (right). 
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SrtApneu has been evaluated, similar investigations have not been geared toward other SrtA 

homologs. 

 

1.5 Overview of Project Goals 

The modern utility of sortases as a tool for protein engineering has broadened the 

accessibility of site-directed ligation chemistry, which is substantiated by previous efforts toward 

understanding substrate tolerance among sortase homologs and the circumvention of limitations 

historically plaguing sortase-mediated ligation techniques. The continued development of this 

system is hinges upon our ability to develop a structure-function relationship among sortases in an 

effort to improve our knowledge of substrate recognition among homologs with diverse substrate 

tolerances. To this end, the long-term goal of this project is to determine the structure of SrtApneu 

covalently docked with a peptide inhibitor as a means to identify novel interactions with active-

site residues prompting a unique promiscuous substrate tolerance. As described in this thesis, 

preliminary investigations of monomeric SrtApneu structure involved protein crystallography 

followed by X-ray diffraction. Concurrently, we have attempted to construct a non-cleavable 

ketomethylene-based sorting motif analogs in an effort to prolong occupancy within the SrtApneu 

active site. Sorting motif substitution of 4th and 5th position residues with ketomethylene dipeptide 

was anticipated to mimic the performance of canonical SrtApneu substrates. Unfortunately, the 

challenging synthesis of a solid-phase ready ketomethylene dipeptide and the rapid degradation of 

ketomethylene-based substrates depreciated effectiveness of this approach. Correspondingly, 

we’ve redesigned our canonical SrtApneu substrate sorting motif with a cysteine residue in the 4th 

position. We believe this substrate analog will establish a disulfide linkage with the active site 

cysteine, allowing for elucidation of key interactions between the enzyme and residues positioned 
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along the sorting motif. Identification of substrate bound SrtA complex via LC-ESI-MS has 

propelled our efforts toward determining the structure using HSQC NMR.  

 

Chapter 2 – Screening Studies for X-ray Crystallography of SrtApneu 

2.1 Preparation of SrtApneu for Crystallization  

Prior to screening crystallization conditions, it was first necessary to generate suitable 

preparations of the SrtApneu enzyme that were monomeric. To this end, an expression vector 

encoding a truncated version of SrtApneu lacking the first 80 residues (hereafter referred to as 

simply SrtApneu) and fused to an N-terminal His6 tag was obtained. In this construct, the 

hydrophobic transmembrane domain was removed to increase the in vitro solubility of SrtApneu in 

aqueous buffers. A glycerol stock of transformed E. coli BL21 (DE3) was used to express SrtApneu 

using standard molecular biology techniques. After denaturing cell lysis using 8 M urea, the 

enzyme was separated from the cellular debris via centrifugation, then isolated from the 

supernatant using immobilized metal affinity chromatography (IMAC) under denaturing 

conditions (Figure 10, lanes 2-6). The denatured protein eluate from IMAC was then diluted ten-

fold into a non-denaturing buffer (50 mM Tris pH 7.5, 150 mM NaCl, 1 mM TCEP) to refold 

SrtApneu, then repurified via IMAC under non-denaturing conditions to isolate soluble SrtApneu 

(Figure 10, lanes 7-10). The sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-

PAGE) analysis of the refolded SrtApneu eluate revealed an intense band near 26 kDa, which was 

consistent with the calculated 20.1 kDa molecular weight of SrtApneu. This SDS-PAGE gel also 

showed the presence of a ~50 kDa SrtApneu dimer that persisted in the sample despite reducing and 

denaturing preparations.  
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In order to separate monomeric SrtApneu from higher order aggregates, the refolded protein 

solution was subjected to size exclusion chromatography (SEC). Monomeric fractions were 

collected and pooled, and analysis by analytical SEC revealed that final the protein preparation 

consisted of >85% monomer (Figure 11). Electrospray ionization mass spectrometry (ESI-MS) of 

the final monomer preparation reported a mass of 20,144 Da, in excellent agreement with the 

calculated molecular weight of 20,145 Da for SrtApneu (Figure 11). Taken together, SEC and ESI-

MS analyses provided evidence for a predominantly monomeric batch of SrtApneu, which was 

subsequently concentrated to ~6 mg/mL for protein crystallization trials.  

 

 

 

 

Figure 10. SDS-PAGE analysis of a SrtApneu IMAC/refolding purification scheme: (1) Protein 

molecular weight ladder, (2) cell lysate supernatant, (3) flow-through fraction of IMAC column under 

denaturing conditions, (4) denaturing wash, (5) 1st denaturing elution fraction, (6) 2nd denaturing elution 

fraction, (7) flow-through fraction of IMAC column following dilution of SrtApneu in non-denaturing 

buffer, (8) non-denaturing wash, (9) 1st non-denaturing elution fraction, (10) 2nd non-denaturing elution 

fraction.  
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Figure 11. SEC traces of IMAC purified, refolded SrtApneu (A) and collected monomeric fractions (B). 

A deconvolved mass spectrum (C) of SrtApneu generated from the (D) raw ESI-MS spectrum of the 

purified enzyme.  

 



22 

2.2 Summary of Crystal Screening Efforts 

With a monomeric batch of SrtApneu in hand, we turned our attention to screening 

conditions for crystallization of this enzyme. Initially, this involved utilizing vapor-drop diffusion 

methods for generating crystals. The concentrated stock of 6 mg/mL monomeric SrtApneu was 

screened against PEG/Ion2 and Index screening condition kits, each containing 48 and 96 different 

conditions, respectively. Four room temperature conditions from the Index screening kit produced 

a variety of crystal morphologies including wafer, rod, and asymmetric crystals (Table 2, Figure 

12).  

 

These crystallization conditions shared numerous similarities, which suggested that Bis-

Tris, pH 5.5, and polyethylene glycol (PEG) 3350 were promising components for inducing 

SrtApneu crystallization at room temperature. Based on this analysis, we sought to optimize these 

conditions by determining SrtApneu nucleation dependence as a function of pH and PEG 3350 

concentration (Figure 13).  

Figure 12. Crystals formed by 

screening conditions in Table 2. 

 

Table 2. Preliminary screening conditions resulting in 

crystal formation (pH 5.5, 25% PEG 3350, RT). 
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After two weeks, we observed the presence of crystals in conditions with low pH (4.5-5.5) 

and relatively high PEG 3350 concentration (24-26%). Microscopic investigation of crystals 

formed in the presence of these conditions revealed relatively small crystals that did not appear to 

have the defined 3D structure (i.e. hexagonal prism) of diffractable protein crystals.          

                                                                                     

Crystal screening was continued by maintaining 25% PEG 3350 and pH 4.5 or 5.5, 

however this time adjusting the concentrations of Bis-Tris (0.05-0.30 M) and other tuning salts 

(0.05-0.40 M). Hits were detected that produced crystals after two weeks, which essentially 

replicated the appearance of crystals grown in the previous pH/PEG optimization trial. Unlike the 

pH/PEG optimization trial, there was not a noticeable pattern indicating which salt/buffer 

concentrations favored crystal formation. This suggested that crystal growth and morphology was 

neither dependent on Bis-Tris nor tuning salt concentrations. It should be noted that each 

optimization trial was designed to replicate the initial screening conditions (#1-4) as a control, 

however, the reproducibility of crystals generated by these conditions was inconsistent. Although 

p
H

 

4.5 

5.5 

7.5 

6.5 

 % PEG  

18 20 24 22 26 28 

Figure 13. Crystal optimization as a function of pH and PEG 3350. The arrow represents the observed 

pattern of crystal formation, appearing more frequently as pH decreases and PEG 3350 increases.  
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the crystals we had generated were far from ideal for 

structure determination, we attempted to diffract our top 

candidates to determine whether we were generating salt 

or protein crystals (Table 3). Every crystal subjected to 

X-ray diffraction analysis displayed a prominent “ice 

ring” pattern, which occurs when the protein crystal is 

thawed and refrozen during transfer to the goniometer 

head of the diffractometer. Beyond this artifact, we 

didn’t observe any indication of a diffraction pattern corresponding to a proteinaceous crystal.  

 

We next tried crystallization conditions that were not included in either the PEG/Ion2 or 

Index crystal screening kits. Our previous screening efforts suggested that chloride-containing 

salts may promote crystal formation. Therefore, additional trials with potassium chloride (KCl), 

ammonium chloride (NH4Cl), or calcium chloride (CaCl2) tuning salts (0.05-0.40 M) in addition 

to Bis-Tris (0.05-0.30 M) were prepared. However, these did not demonstrate any capacity to grow 

diffractable crystals. We also attempted to modulate the standard 1:1 (2 µL drop) ratio of enzyme 

loading to mother liquor. Since we had observed some protein aggregation during pH/PEG 

optimization trials, we anticipated that a lower enzyme loading relative to mother liquor would 

slow nucleation and allow for improved crystal packing. Unfortunately, no crystals were observed 

using diluted SrtApneu preparations even months after plating. 

 

Finally, several months after our initial pH/PEG optimization trials, we did observe the 

presence of well-defined opalescent crystals in a well containing a replicate of the #4 screening 

Table 3. Diffracted crystals formed by 

conditions A-E (pH 5.5, 25% PEG 3350, 

RT). 
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condition (0.1 M BT, pH 5.5, 0.2 M MgCl2, 25% PEG 3350, RT). We attempted to loop these 

crystals, however, they had formed contacts with neighboring crystals and we were unable to 

effectively loop a single crystal without fracturing their structural integrity. In consideration of this 

promising result, we focused on optimizing condition #4 to recreate, and possibly improve, the 

iridescent crystals observed previously. Through the advice of our collaborators, we decided to 

optimize condition #4 by modulating PEG 3350 concentration as well as enzyme to mother liquor 

loading ratio. Several weeks after, we observed protein aggregation across over half of the 

preparations, and no sign of crystal formation.  

 

In summary, while we have been able to generate a monomeric preparation of SrtApneu, we 

have yet to identify conditions that produce crystals suitable for structure determination. Given the 

fact that multiple sortases have been successfully characterized using X-ray crystallography, we 

anticipate that monomeric SrtApneu will ultimately be amenable to X-ray characterization, however 

additional crystallization condition screening is required. In addition, it may be necessary to 

redesign the protein construct itself, as the 80 residue truncation or the presence of the N-terminal 

His6 tag may not be optimal for crystal formation. 

 

Chapter 3 – Preparation and NMR Characterization of 15N-labeled SrtApneu  

3.1 Preparation of unlabeled TEV-SrtApneu and 1D 1H-NMR Analysis  

In parallel with our efforts to generate X-ray quality crystals of SrtApneu, we also began 

studies aimed on elucidating the enzyme’s 3D structure using solution NMR. To this end, we first 

generated a new stock of SrtApneu in order to monitor its stability using one dimensional 1H-NMR. 

Anticipating that we may need to remove the N-terminal His6 tag, a new clone of SrtApneu (TEV-
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SrtApneu) was obtained, which included a TEV cleavage site between the His6 tag and the catalytic 

domain. Although numerous publications have demonstrated that His6 tags typically to do not 

perturb protein folding and function, we had contemplated that our inability to effectively 

crystallize SrtApneu may be a repercussion of the flexible His6 tag and thus the TEV cleavage site 

was included as an option.   

Interestingly, and in contrast to the SrtApneu clone used for crystallization trials, we found 

that TEV-SrtApneu yielded sufficient quantities of active monomer without the need for refolding. 

As shown in Figure 14, a band with an appropriate molecular weight was observed following 

simple, non-denaturing IMAC purification, and native-PAGE analysis of the same purification 

revealed significant quantities of both a monomer and dimer. An SDS-PAGE analysis of the 

elution fraction revealed a high intensity band at ~26 kDa of SrtApneu as well as residual higher 

molecular weight polypeptides structures (Figure 14, lane 5). Additionally, we noticed a signature 

pair of bands representing monomeric (bottom) and dimeric (top) enzyme in a native-PAGE gel.  

Figure 14. (Left) SDS-PAGE analysis of non-denaturing IMAC purification of TEV-SrtApneu: (1) 

Protein molecular weight ladder, (2) cell lysate supernatant, (3) flow-through fraction of IMAC column 

under non-denaturing conditions, (4) wash, (5) 1st non-denaturing elution fraction, (6) 2nd non-

denaturing elution fraction. (Right) Native-PAGE analysis of non-denaturing IMAC purification of 

TEV-SrtApneu: (A) cell lysate supernatant, (B) flow-through fraction of IMAC column under non-

denaturing conditions, (C) wash, (D) 1st non-denaturing elution fraction, (E) 2nd non-denaturing elution 

fraction. 
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As noted above, a denaturing IMAC/refolding purification procedure was not applied to 

this protein expression, which provides a rationale for the relatively large band of dimer relative 

to monomer. In order to isolate the desired monomer of TEV-SrtApneu, we relied on a newly 

Figure 15. SEC traces of IMAC purified TEV-SrtApneu (A) and collected monomeric fractions (B). A 

deconvolved mass spectrum (C) of TEV-SrtApneu generated from the corresponding raw ESI-MS 

spectrum (D).  
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acquired HiPrep 16/60 Sephacryl 200-HR size exclusion column, which provided excellent 

separation of the TEV-SrtApneu monomer from higher order assemblies (Figure 15A,B). Mass 

spectrometry also confirmed that the isolated protein had the expected molecular weight (Figure 

15C,D). 

To confirm that monomeric TEV-SrtApneu was active, our preparation was subjected to a 

model sortase-mediated ligation (SML) reaction using an Abz-LPATGG-K(Dnp) peptide substrate 

and a strong H2NOH nucleophile to assess in vitro catalytic activity. Previous work from our lab 

revealed that monomeric SrtApneu was catalytically active while dimer was inactive, so we 

anticipated our enzyme stock to behave accordingly. The reactions were analyzed by reverse phase 

liquid chromatography (RP-HPLC) every 30 minutes during a 150-minute incubation period at 

room temperature. The UV/Vis chromatogram for the TEV-SrtApneu monomer revealed a ~65% 

conversion of substrate to modified product, which we deemed as sufficiently active compared to 

the minimal (<5%) product formation of inactive dimer even after a 24-hour incubation (Figure 

Figure 16. RP-HPLC analysis of model SML reaction using TEV-SrtApneu at 0 hr (Black) and after 150 

minutes (Blue). (A) Abz-LPATGG-K(Dnp) substrate. (B) Abz-LPATG-NHOH product. (C) GG-

K(Dnp) excised fragment.  
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16). Overall, these analyses provided evidence that the monomeric form of TEV-SrtApneu was 

indeed an active form of the enzyme, and the form of the enzyme that would be of interest for 

further structural characterization. 

A stock of SrtApneu was concentrated to 450 µM, then used to prepare a 1H-NMR sample 

including deuterated water (D2O, 10% v/v), ethylenediaminetetraacetic acid (EDTA) and sodium  

azide (NaN3). This sample was subjected to several rounds of 1H-NMR analysis (512 scans) over 

the course of eight days (4 °C) to monitor conformational stability and report signs of degradation 

(Figure 17). The spectral consistency observed among all acquisitions, in particular within the 

amide N-H region (6-10 ppm) and the aliphatic side chain region (1-3 ppm) suggested that the 

TEV-SrtApneu monomer was stable over lengthy periods of time, and presumably not degrading or 

aggregating into higher order structures.  

 

Figure 17. 1D 1H-NMR analysis of monomeric SrtApneu-TEV over the course of several days.  
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3.2 Expression and Purification of 15N-labeled TEV-SrtApneu 

 

Having established that TEV-SrtApneu remained sufficiently stable in solution, we then 

began generating a stock of isotopically labelled (15N) enzyme for two-dimensional NMR 

characterization. A glycerol stock of transformed E. coli BL21 (DE3) was used to express 15N 

TEV-SrtApneu using a minimal media expression protocol in order to incorporate the 15N label. 

Briefly, this procedure involves using an overnight seed culture grown in standard LB to initiate a 

large-scale growth, which should be gently centrifuged after an OD600 of 0.5 is reached. The 

pelleted cells are then resuspended in a wash solution to remove residual nutrient rich media, which 

must be performed in a timely manner to avoid significant cellular arrest. The cells are then 

resuspended in minimal media containing 1.5 g of 15N labeled ammonium chloride (15NH4Cl). In 

our hands, initial attempts at expressing 15N-TEV-SrtApneu revealed poor protein yield, which we 

speculate was a consequence of inducing expression too late at an OD600 of ~0.8 or above. By 

inducing expression in the OD600 range of 0.4-0.6 and incubating for 5 hrs at 37 °C, we were able 

to significantly improve protein yields (Figure 18). 

Figure 18. An SDS-PAGE analysis of 15N TEV-SrtApneu: (L) Protein molecular weight ladder. *Band 

corresponding to 15N TEV-SrtApneu. 
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For optimal production of monomeric 15N-TEV-SrtApneu, we once again found that a 

denaturing/refolding protocol was preferred. Thus, as described in section 2.1, cells were first lysed 

under denaturing conditions (8 M urea). This was followed by denaturing IMAC purification, 

refolding, and non-denaturing IMAC purification. As shown in below, an SDS-PAGE analysis of 

the refolded 15N TEV-SrtApneu following non-denaturing IMAC purification revealed an intense 

band between the 20 and 26 kDa molecular weight markers, consistent with the formation of the 

desired 15N-labeled enzyme (Figure 19). This SDS gel displayed a significant monomer 

concentration relative to the residual dimer above. The signature presence of bands representing 

monomer (bottom) and dimer (top) were also observed on a native-PAGE gel, where the monomer 

band intensity was significantly more prominent than all other polypeptides present.  

As a final means of purification, the refolded 15N TEV-SrtApneu was subjected to SEC to 

isolate the monomer. The chromatograms from these SEC separations displayed a monomer peak 

Figure 19. An SDS-PAGE analysis of 15N SrtApneu-TEV refolding IMAC purification scheme (Left): 

(1) Protein ladder. (2) Denatured supernatant. (3) Denatured supernatant flow-through. (4) Denaturing 

wash flow-through. (5) 1st denaturing elution fraction. (6) 2nd denaturing elution fraction. (7) Rapid 

dilution flow-through. (8) Native wash flow-through. (9) 1st native elution fraction. (10) 2nd native 

elution fraction. A native-PAGE analysis of 15N SrtApneu-TEV refolding IMAC purification scheme 

(Right): (A) Denatured supernatant. (B) Denatured supernatant flow-through. (C) Denaturing wash 

flow-through. (D) 1st denaturing elution fraction. (E) 2nd denaturing elution fraction. (F) Rapid dilution 

flow-through. (G) Native wash flow-through. (H) 1st native elution fraction. (I) 2nd native elution 

fraction. 
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significantly larger than dimer (left) and higher molecular weight oligomer (leftmost) peaks. 

Fractions encompassing the right-half of the monomer peak were collected to avoid dimer 

contamination, then concentrated. These fractions were characterized by ESI-MS to confirm the 

identity of the protein, as well as to assess the level of 15N incorporation (Figure 20).  

Figure 20. SEC-FPLC traces of IMAC purified 15N SrtApneu-TEV (A) and collected monomeric 

fractions (B). A deconvolved mass spectrum (C) of 15N SrtApneu-TEV generated from the corresponding 

raw ESI-MS spectrum (D).  
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This result indicated an ~84% isotope incorporation for the lighter mass peak, but the 

heavier mass peak is implying an impossible percent incorporation. Mass readouts by our ESI-MS 

instrument have historically been prone to error when processing biological samples larger than 

peptides, so the observed discrepancy in mass was disregarded and the 20,950.5 Da mass was 

assumed to resemble ~100% isotope incorporation of SrtApneu-TEV. Although the ESI-MS 

readouts didn’t reliably report the extent of SrtApneu-TEV isotopic labelling, we anticipated this 

enzyme stock to be sufficient for HSQC NMR. 

To ensure that the monomeric 15N TEV-SrtApneu preparation was active, it was subjected 

to a model sortase-mediated ligation reaction using an Abz-LPATG-GK(Dnp) peptide substrate 

and a strong H2NOH nucleophile. The reaction was analyzed via RP-HPLC after an overnight 

incubation at room temperature and compared to a control immediately acquired after additional 

of the enzyme (i.e. time = 0 h). The UV/Vis chromatogram reported an ~82% conversion of 

substrate to modified product, which is in excellent agreement with previous model reactions using 

Figure 21. RP-HPLC analysis of model SML reaction using 15N SrtApneu-TEV at 0-hr (Black), at 1-hr 

(Cyan), and after 24-hrs (Marine). (A) Abz-LPATGG-K(Dnp) substrate. (B) Abz-LPATG-NH2OH 

product. (C) GG-K(Dnp) excised fragment.  
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unlabeled SrtApneu (Figure 21). Based on these results, we were able to determine that 

incorporating 15N isotopes into TEV-SrtApneu did not adversely affect its catalytic activity, which 

also suggested that its structure was relatively unperturbed.  

 

3.3 2D-HSQC NMR analysis of 15N-labeled TEV-SrtApneu  

With a purified sample of monomeric 15N TEV-SrtApneu in hand, we turned our attention 

to the acquisition 15N-HSQC spectra. For our initial sample, 15N TEV-SrtApneu was concentrated 

to 98 µM, and then combined with D2O (10% v/v), EDTA (0.5 mM) and NaN3 (0.02% w/v) prior 

to NMR analysis. The acquired spectrum displayed a number of resonances within the expected 

chemical shift range along the 15N axis (100-130 ppm), however the resolution of many signals, 

particularly within a central cluster of peaks was poor (Figure 22). While the lack of resolution 

made it difficult to discern every signal, we detected ~125 unique resonances, which unfortunately 

was well below the more than 200 unique cross peaks we had anticipated for the full-length protein. 

Based on this result, we hypothesized that the resolution of 1H-15N couplings could be improved 

by modulating the acquisition temperature. Therefore, 15N-HSQC spectra were acquired at 15 and 

45 °C. Unfortunately, neither temperature improved the quality of the spectra.  Lowering the 

temperature reduced the resolution of peaks centered within the cluster, and raising the temperature 

caused the enzyme to precipitate. 
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Figure 22. 2D HSQC NMR acquisitions of 15N SrtApneu-TEV (98 µM) at RT (Red) and 15 °C (Blue). 
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Next, we attempted to improve the resolution of the 15N-HSQC spectrum by adjusting the 

enzyme concentration. This idea was based on the possibility that the enzyme may exist in solution 

as an equilibrium between monomeric and higher order aggregates, and therefore adjusting the 

concentration may alter the ratio between those species. First, we prepared a 5x diluted sample 

derived from our original 98 µM enzyme stock. In this case, the NMR was unable to detect any 

1H-15N signatures, likely due to the lower overall concentration and corresponding reduction in 

signal-to-noise. We then proceeded to generate a more concentrated (225 µM) stock of 15N TEV-

SrtApneu and were encouraged to see a 15N-HSQC spectrum with smooth and well-defined contours 

outlining the perimeter of peaks (Figure 23). However, peaks in the center of the cluster remained 

largely undefined, and therefore unsuitable for resonance assignment and structure determination.  

Figure 23. 2D HSQC NMR acquisition of 15N SrtApneu-TEV (225 µM) at RT. 
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Given that increasing the enzyme concentration did not entirely alleviate the resolution 

issues with our spectrum, we speculated that the poorly defined central cluster of peaks may be 

the result of conformationally labile portions of the enzyme, for example at the N-terminus where 

a TEV cleavage site and His6 tag were present. To begin to probe this, we first generated a 15N-

labeled version of SrtApneu lacking the TEV cleavage site, but retaining the His6 tag. This protein 

was prepared and characterized following the same protocol for 15N TEV-SrtApneu. A concentrated 

stock (171 µM) of SrtApneu without a TEV cleavage site was generated, and an NMR sample was 

prepared with standard conditions. 

The acquired 15N-HSQC spectrum did yield some improvement and unique ~175 peaks 

were observed, including the appearance of new peaks around the exterior of the peak cluster a 

more resolved interior peak cluster as compared to 15N TEV-SrtApneu (Figure 24). While this slight 

improvement in resolution was encouraging, this sample SrtApneu lacking a TEV cleavage site still 

Figure 24. 2D HSQC NMR acquisition of 15N SrtApneu (171 µM) at RT. 
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did not provide sufficient resolution for determining the structure of SrtApneu as there remained a 

significant margin of error for discerning individual peaks within the central cluster. 

 

As a final means of probing the impact of the enzyme N-terminus, we also used TEV 

protease to generate a sample of 15N SrtApneu (80.5 µM) lacking both the TEV cleavage site and 

the His6 tag. While TEV cleavage was successful, as indicated by ESI-MS, the resulting the 15N-

HSQC spectrum did not provide significant improvements in signal resolution (Figure 25).  

Overall, while we have successfully generated a sample of 15N-labeled enzyme that is 

active and appears to be monomeric, we have yet to acquire two-dimensional data that is suitable 

for full resonance assignment and subsequent structure determination. The reasons for this are not 

entirely clear, however we speculate that portions of SrtApneu may be conformationally labile in 

solution, leading to poorly defined regions in the 15N-HSQC spectrum. Consistent with this 

Figure 25. 2D HSQC NMR acquisition of TEV-cleaved 15N SrtApneu (80.5 µM) at RT. 
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interpretation, we note that the central cluster of poorly defined peaks falls within the range of 

110-125 ppm on the 15N axis, which is where disordered regions of proteins are often observed.  

We also note that regions of disorder have been observed in sortase A homologs in other 

organisms, for example in the case of sortase A from S. aureus where binding of the LPXTG 

substrate appears to induce a disorder-to-order transition with loops flanking the enzyme active 

site. 

 

 

Chapter 4 – Progress Toward Preparation of Substrate-docked derivatives of 

SrtApneu 

4.1 – Design and Synthesis of ketomethylene isosteres 

In addition to determining the structure of SrtApneu in the absence of substrate, we have 

also been pursuing strategies for generating enzyme bound to substrate mimetics in order to clearly 

delineate the interactions between the sorting motif and the enzyme active site. As described in 

Chapter 1, structures of sortase A from S. aureus and B. anthracis have been reported in which the 

enzymes are bound to a substrate analog that mimics the acyl enzyme intermediate. This approach 

has provided excellent insight into the recognition of the first four residues of the LPXTG sorting 

motif, however it fails to clearly identify contacts that dictate substrate selectivity involving the 5th 

position (often G) of the sorting signal. To address this issue, previous work in the Antos lab sought 

to replace the scissile amide linkage between the 4th and 5th position residues with a non-cleavable 

carbon-carbon bond. Specifically, a ketomethylene dipeptide isostere (5-aminolevulinic) was 

incorporated into a peptide substrate in place of the native threonine and glycine residues (Figure 

26).  
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 Preliminary evaluation showed that this substrate was not cleaved by SrtApneu, and 

additionally it was able to inhibit enzyme activity was added to a model in vitro reaction.70 While 

encouraging, it was recognized that 5-aminolevulinic was not the optimal diketomethylene 

building block for this approach as it mimicked a diglycine dipeptide structure without any of the 

relevant amino acid side chains.   

Figure 26. Structural comparison of a model LPATG substrate to a 1st generation inhibitor substrate. 

The 4th and 5th position residues of the model substrate have been replaced with a ketomethylene linked 

diglycine.  

Figure 27. Structural comparison of 1st generation and 2nd generation inhibitor substrates. The 4th 

position residue of the 1st generation substrate has been replaced with an alanine to serve as an improved 

mimic of the preferential 4th position threonine.  
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To address this limitation, we sought to develop a synthetic approach for preparing 

diketomethylene analogs that included substituents in positions that mirrored natural amino acids.  

Moreover, we wanted to prepare building that would be compatible with standard solid-phase 

synthesis techniques. To that end, we designed ketomethylene analog A[keto]G as an initial 

synthetic target, which would mimic an alanine-glycine dipeptide rather than a glycine-glycine 

dipeptide (Figure 27). 

We adopted a synthetic strategy by Budnjo et al.1 and Mathieu et al.2 in order to produce 

analog 4 (Figure 28). The synthesis began by combining excess lithium enolate of t-butyl acetate 

and carbonyldiimidazole (CDI)-activated Boc-Ala-OH in the presence of a 4-dimethylamino- 

pyridine (DMAP) catalyst. The resulting Boc-ketoester (1) was isolated in 70% yield, and then 

used as a nucleophile in a stereospecific substitution of a triflate (2) derived from t-butyl-2-

hydroxyacetate. Triflate (2) was prepared separately using t-butyl-2-hydroxyacetate, triflic 

anhydride and 2,6-lutidine. Deprotonation of the Boc-ketoester by excess NaH, followed by drop-

wise addition of 2 resulted in the production of Boc-ketomethylene (3) (41% yield). The identity 

of Boc-ketomethylene (3) was confirmed by proton nuclear magnetic resonance spectroscopy (1H-

Figure 28. Overview of the proposed synthetic scheme based on procedures from Budnjo et al. and 

Mathieu et al. using a Boc-protected amino acid starting material.  
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NMR), as well as low resolution LC-ESI-MS which reported a molecular weight consistent with 

the Na2+-adduct of the Boc-ketomethylene. Subsequent exposure to trifluoroacetic acid (TFA) 

provided a means to remove t-butyl ester and Boc protecting groups, which was followed by an 

in-situ decarboxylation to generate an unprotected precursor. This intermediate was not isolated 

and was immediately reprotected using Fmoc-OSu in the presence of excess 

diisopropylethylamine (DIPEA). While the formation of the target compound (4) was confirmed 

via low resolution LC-ESI-MS and 1H-NMR, overall yields were very poor (<7%) and indicated 

the need for further synthesis optimization. 

Optimization of the reaction cascade began by focusing on the synthesis of Boc-

ketomethylene (Table 4).  Alternate bases (KOtBu or LiHMDS) were used in place of NaH, and 

the replacement of THF with DMF was also attempted. Unfortunately, all variations produced 

lower yields than the original reaction conditions. We then tried to replace the sensitive t-butyl-2-

hydroxyacetate triflate (2) with the less reactive and commercially available t-butyl bromoacetate, 

and were encouraged to observe significant improvements in Boc-ketomethylene yield. 

 

Table 4. Summary of Boc-Ketomethylene reaction optimization results. 
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Next, we sought to investigate the Fmoc reprotection step used to generate the final 

ketomethylene product (Figure 29). Using the Fmoc protection of 5-aminolevulinic acid as a 

model, we found that replacement of DIPEA with sodium carbonate (Na2CO3) and the use of 0.96 

eq of Fmoc-OSu improved gave acceptable reaction yields. 

Unfortunately, use of these conditions to prepare the final ketomethylene target (A[keto]G) 

did not significantly increase the amounts we were able to recover, as purification via column 

chromatography consistently failed to produce entirely pure product, despite variations in eluent, 

the inclusion of 0.1% acetic acid in the mobile phase, or the use of dry loading techniques. 

While the synthesis of 4 remained problematic, we felt that some initial proof-of-concept 

work on its incorporation into a substrate analog were warranted to establish whether any 

additional synthesis optimization would be worthwhile. Thus, a large-scale SPPS preparation of 4 

Figure 29. Reaction scheme for synthesizing a G[keto]G building block for SPPS.  

Figure 30. Synthesis of 2nd generation ketomethylene substrate analog using the A(keto)G building 

block (highlighted) to install a non-cleavable linkage between 4th and 5th residues. 
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beginning with 300 mg of 3 was performed, resulting in the recovery of 200 mg of the final Fmoc-

protected product (<73% yield), which was confirmed by both 1H-NMR and low-resolution LC-

ESI-MS. This provided enough material for use in solid-phase synthesis, which was initiated using 

Rink amide resin and a standard Fmoc-based approach (Figure 30). Unfortunately, following 

cleavage of the crude peptide from the resin, no evidence for the formation of the desired substrate 

analog would be detected by LC-ESI-MS or RP-HPLC. Overall, this prompted us to abandon this 

approach and redirect efforts to the alternate substrate analog design described below. 

 

4.2 – Third generation design using disulfide linked analog  

Having struggled with synthesis of a ketomethylene-containing substrate analog, we 

developed an alternate strategy for generating a substrate bound analog of SrtApneu that relied 

entirely on standard amino acid residues and standard solid-phase synthetic techniques. This 

strategy involves replacing the standard LPATG motif with a derivative containing cysteine (C) in 

place of the native threonine (T) (Figure 31).  

Figure 31. Structural comparison of a model LPATG substrate to a 3rd generation inhibitor substrate. 

The 4th and 5th position residues of the model substrate have been replaced with cysteine and glycine, 

respectively.  
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Subsequently, disulfide bond formation with the enzyme active site would be used to 

anchor the peptide. While this approach would yield a somewhat artificial enzyme analog that does 

not exactly reproduce all the contacts between enzyme and substrate, this approach has been 

reported in the context sortase A from S. aureus and shown to provide a means for identifying 

enzyme residues by solution NMR that are likely to be involved in substrate recognition. 

Additionally, we hypothesized that the presence of a substrate analog could serve to stabilize the 

enzyme structure, and alleviate the disorder observed in 15N-HSQC spectra of the free enzyme 

described in Chapter 3.  

 

Work on this approach began by synthesizing a Bz-GLPACGG peptide using standard solid phase 

synthesis. The peptide was purified by RP-HPLC, and its identity was confirmed by LC-ESI-MS 

(Figure 32).. With the peptide in hand, we then activated the cysteine by conversion to a mixed 

disulfide using 2,2’-dithiopyridine. Quantitative formation of the mixed disulfide was clearly 

evident after 30 minutes as determined by LC-ESI-MS, and the product was subsequently isolated 

by RP-HPLC. Test reactions were then performed in which the thiopyridyl modified peptide was 

combined TEV-SrtApneu in various ratios (2-50 equivalents) at room temperature. Using LC-ESI-

MS, it was observed that an excess of peptide (50 equiv.) was ideal for rapid and quantitative 

formation of the desired enzyme adduct (Figure 33).   
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Figure 32. Shown above is a reaction for generating a Bz-GLPACGG peptide appended to a 

thiopyridine group. RP-HPLC/LC-ESI-MS analysis for determining the purity and molecular weight of 

Bz-GLPACGG starting material (top) and modified peptide product (bottom).  
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Figure 33. Shown above is a reaction for appending Bz-GLPACGG to the active-site cysteine of 

SrtApneu. Deconvolved mass spectra of unmodified SrtApneu (A) and substrate bound enzyme (B). 
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Chapter 5 – Conclusion and Future Directions 

The results reported in this thesis describe our progress toward characterizing the structure 

of SrtApneu bound to a substrate. Chapter 2 detailed the utilization of x-ray crystallography to 

determine the unbound structure of SrtApneu, which began by employing methods of reducing the 

assembled forms of the enzyme by denaturing IMAC purification and isolating the monomer by 

SE-FPLC. Spin concentrated monomeric preparations were subjected to INDEX and PEG/Ion2 

screening kits, which revealed several crystal hits featuring Bis-Tris as a component of each 

condition. Therefore, we anticipated that the presence of Bis-Tris favored crystal formation and 

endeavored toward optimizing the screening conditions in an effort to grow diffractable crystals.  

 

Among all of the optimization trials we had attempted, crystal growth appeared to be 

significantly dependent on pH and PEG 3350 concentration. In particular, our top candidates were 

grown in conditions with a pH ranging from 4.5-5.5, and concentrations of PEG 3350 between 24-

26%. Other optimization trials we had conducted devaited Bis-Tris, or tuning salt, concentrations 

as well as alternative enzyme to mother liquor hanging drop compositions. We had even tried 

exploring chloride-containing conditions not included within the preliminary screening kits, but 

we were still unable to find an optimal crystal condition. Regardless, we sought to diffract the 

suboptimal crystals generated thus far, however, we were unable to glean any structural 

information.  

 

In consideration of the theory guiding crystal packing, even the slightest presence of 

dimeric SrtApneu may have significantly perturbed unit cell assembly of monomers. This may 

provide a rationale for our challenges with protein crystallization, where the enzyme stock may be 

more at fault than the conditions we had employed. To our credit, we prepared the sample to the 
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best of our ability considering our experiences with dimeric SrtA persisting regardless of 

denaturing and reducing preparations as well as the poor resolution afforded by our size exclusion 

column. Taken together, we were unable to solve the structure of unbound SrtApneu via x-ray 

crystallography in a timely manner, which propelled our efforts toward utilizing solution NMR as 

described in Chapter 3.  

 

Chapter 3 detailed our efforts toward characterizing the structure of substrate-bound 

SrtApneu by solution NMR, which began by utilizing standard IMAC purification and SEC isolation 

of monomeric SrtApneu-TEV. We opted to express a SrtApneu construct with a TEV cleavage site 

prior to the N-terminal His6 tag in the anticipation that its presence may perturb native folding. 

Initially, we sought to determine if SrtApneu-TEV is conformationally stable over the course of 

several days, as we were concerned for the integrity of enzyme stocks moving forward to numerous 

lengthy HSQC acquisitions. We were confident that SrtApneu-TEV remained stable based on the 

spectra consistency observed in the amide region reported by several 1D 1H-NMR acquisitions.  

 

Next, we redirected our efforts toward expressing our construct in minimal media to 

isotopically label SrtApneu-TEV with 15N for prospective HSQC NMR. The overall success of the 

isotopically labelled protein expression was largely dependent on the OD600 (0.4-0.6) of the 

minimal media prior to inducing expression with IPTG, and the period of expression (5 hrs). These 

efforts generated a 98 µM stock of 15N SrtApneu-TEV, where HSQC acquisition revealed a cluster 

of poorly resolved peaks containing approximately 125 peaks. LC-ESI-MS of 15N SrtApneu-TEV 

demonstrated a high degree of isotope incorporation, which was inconsistent with the number of 

couplings reported by our HSQC spectrum. Based on the advice of our NMR collaborator, we 
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subjected the 98 µM enzyme stock to 15 °C and 45 °C during acquisition to observe improvements 

in the resolution. Unfortunately, lowering the temperature did not enhance the spectral resolution, 

and increasing the temperature caused the enzyme to precipitate out of solution.  

 

Sequential HSQC acquisitions of a stock with a significantly higher concentration resulted 

in refinement of peaks confined in the perimeter of the cluster, however, the cluster interior 

remained largely undefined and the number of observable couplings was unchanged. We suspected 

that insertion of the TEV recognition sequence may have compromised the folding dynamics of 

the enzyme. Accordingly, we expressed isotopically labeled a SrtApneu construct lacking a TEV-

site. HSQC acquisition of SrtApneu displayed the appearance of 50 new peaks in addition to those 

observed previously. Although promising, the removal of the TEV-site did not facilitate detection 

of all 1H-15N couplings implied by preliminary MS data. Furthermore, HSQC acquisition of a TEV 

cleaved 15N SrtApneu-TEV expression construct provided no indication of improvement. 

 

 Taken together, the evidence suggested that neither His6 tag nor TEV-site was the direct 

cause of our resolution dilemma. Rather, we hypothesized the possibility that active unbound 

SrtApneu could exist as multiple transient conformations compared to the stable substrate-bound 

acyl-enzyme intermediate. We began to justify our complications with enzyme crystallization and 

poor HSQC resolution based on the premise that the in vitro behavior of the active enzyme is more 

dynamic than we had initially anticipated. As discussed in Chapter 4, we sought to design a non-

cleavable peptide analog to dock in the active site in order to stabilize the acyl-enzyme 

conformation and constrain the movement of nuclei during HSQC acquisition for improved 

resolution.  
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Chapter 4 encompassed the synthesis of 2nd and 3rd generation peptide inhibitors for their 

use towards determining the structure of substrate-bound SrtApneu-TEV via solution NMR. 

Previous efforts had demonstrated a reasonable capacity for 1st generation LPA[G(keto)G]G 

inhibitors to compromise the activity of SrtApneu in the presence of a model substrate and 

nucleophile. However, the suboptimal efficacy of this proof of concept inhibitor was reflective of 

missing active site contacts with canonical Thr and Ala residues in the 4th and 5th positions of the 

substrate, respectively. Attempts to synthesize the 2nd generation LPA[A(keto)G]G peptide analog 

were founded on prior efforts toward generating a ketomethylene-linked dipeptide isostere 

mimicking Ala and Gly, which more closely resembled a model LPATAG substrate upon SPPS 

incorporation.  

 

The original synthesis cascade of an SPPS amenable Fmoc protected [A(keto)G] construct 

was burdened by a very poor overall yield. The most notable alteration in the procedure that led to 

improved yields involved the substitution of t-Bu-2-hydroxyacetate triflate for t-Bu-bromoacetate, 

which also abrogated the necessity for triflate preparation prior to Boc-ketoester synthesis. 

Numerous rounds of optimization afforded a sizeable stockpile of Fmoc-[A(keto)G], but we were 

unable to successfully incorporate it into a peptide via SPPS. Prior to SPPS, we had confirmed the 

identity of Fmoc-[A(keto)G] by 1H-NMR and LC-ESI-MS. In theory, Fmoc-[A(keto)G] should be 

behave similarly to our commercially acquired SPPS coupling agents and we’ve yet to develop an 

explanation for our observations.  
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Having struggled with the synthesis of the 2nd generation peptide analog, we developed an 

alternative 3rd generation substrate design based on standard amino acid residues and standard 

solid-phase synthetic techniques. This strategy involved replacing the 4th position threonine of a 

model LPATG substrate with cysteine, where the enzyme active site cysteine was anticipated to 

form a disulfide bridge upon substrate docking. Therefore, characterization of substrate-bound 

SrtApneu-TEV would demonstrate key binding interactions with the 5th position residue, beyond 

the contacts established by the first four residues reported by Suree et al. (PDB ID: 2KID). A Bz-

GLPACGG-NH2 peptide prepared with a thiopyridine leaving group in the 4th position cysteine 

was successfully synthesized and demonstrated the capacity to covalently bind to SrtApneu using 

excess substrate leaving miniscule traces of unbound enzyme.  

 

 Considering that the 3rd generation peptide was capable binding to SrtApneu, future efforts 

should be directed toward observing if the peptide is accepted by 15N SrtApneu-TEV. Upon 

confirming the identity of substrate-bound enzyme via LC-ESI-MS, subsequent steps include 

isolating the substrate-enzyme complex, determining the lifetime, followed by HSQC acquisition. 

If the appearance of highly resolved (>200) peaks is observed, then our hypothesis pointing blame 

on enzyme mobility for compromising peak detection and resolution would likely be correct. 

Lastly, a 3D NMR would be acquired to begin assigning peaks to individual amino acids 

composing the enzyme primary sequence. Based on this analysis, we may finally assess active site 

residues prompting key interactions with each position along the substrate.  

 

 Regardless of the shortcomings discussed in this thesis, we’ve been able to establish a 

foundation for unveiling aspects of SrtApneu specificity and structural characterization that are not 
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currently reported in literature. Pursuance of determining the structure of substrate-bound SrtApneu 

with our 3rd generation peptide analog may reveal unpublished active site interactions with the 5th 

position residue. In light of this, we may begin to assemble a complete understanding of SrtA 

substrate specificity based on published interactions with the first four substrate residues and our 

newly reported 5th position contacts. As we continue to develop a structure-function relationship 

for SrtA homologs, we can begin to utilize their unique properties to expand the scope of sortase 

mediated ligation.   

 

Chapter 6 – Experimental 

6.1 Expression of SrtApneu 

The following construct was obtained via commercial gene synthesis from DNA 2.0. 

Full sequence of Δ80SrtApneu:  

MESSHHHHHHAVLTSQWDAQKLPVIGGIAIPELEMNLPIFKGLDNVNLFYGAGTMKRE

QVMGEGNYSLASHHIFGVDNANKMLFSPLDNAKNGMKIYLTDKNKVYTYEIREVKRVT

PDRVDEVDDRDGVNEITLVTCEDLAATERIIVKGDLKETKDYSQTSDEILTAFNQPYKQF

Y 

 

The following construct was obtained via commercial gene synthesis from ATUM. 

Full sequence of Δ80SrtApneu-TEV: 

MHHHHHHENLYFQGAVLTSQWDAQKLPVIGGIAIPELEMNLPIFKGLDNVNLFYGAGT

MKREQVMGEGNYSLASHHIFGVDNANKMLFSPLDNAKNGMKIYLTDKNKVYTYEIRE

VKRVTPDRVDEVDDRDGVNEITLVTCEDLAATERIIVKGDLKETKDYSQTSDEILTAFNQ

PYKQFY 
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Non-Isotopically Labelled SrtApneu Expression: A 50 uL aliquot of BL21(DE3) cells in 50% 

glycerol containing the plasmid for SrtApneu was added to 50 mL of LB broth containing 100 

µg/mL ampicillin and incubated with shaking at 37 °C overnight. Roughly 25 mL of culture was 

then added per 1 L of LB broth containing 100 µg/mL ampicillin to initiate largescale growth. This 

culture was allowed to grow to an OD600 reading of 0.7-0.8 at 37 °C in a shaking incubator (210 

RPM) before induction with 1 mL of 1 M IPTG. Cells remained at 37 °C with shaking for at least 

three hours to express SrtApneu, and were then isolated by centrifugation at 6000 RPM. Pelleted 

cells were subsequently stored at -80 °C.  

 

Minimal Media Isotopically Labeled SrtApneu Expression: A 50 uL aliquot of BL21(DE3) cells in 

50% glycerol containing the plasmid for SrtApneu-TEV-His6  was added per 50 mL of LB broth 

containing 100 µg/mL kanamycin to initiate a 100 mL seed culture growth, which was incubated 

with shaking (210 RPM) at 37 °C overnight. Roughly 25 mL of culture was added per 1 L of LB 

broth containing 100 µg/mL kanamycin to initiate a large scale 4 L growth. This culture was 

allowed to grow to an OD600 reading of 0.4-0.5 at 37 °C in a shaking incubator (210 RPM), and 

cells were isolated by centrifugation at 4000xg for 20 minutes at 4 °C. Pelleted cells were 

resuspended in 500 mL of a 1 L salt wash (22 mM Na2PO4, 22 mM KH2PO4, 8.6 mM NaCl, 1 mM 

MgCl2, 2.5 μM B1 Vitamin, 100 μM CaCl2, 100 ug/mL kanamycin) solution, and cells were 

isolated by centrifugation at 4000xg for 20 minutes at 4 °C. Pelleted cells were resuspended in 500 

mL of minimal growth media (22 mM Na2PO4, 22 mM KH2PO4, 8.6 mM NaCl, 1 mM MgCl2, 2.5 

μM B1 Vitamin, 100 μM CaCl2, 100 ug/mL kanamycin, 25 mM D-glucose, 27.5 mM 15N-NH4Cl), 

and the culture was allowed to grow to an OD600 reading of 0.6 at 37 °C in a shaking incubator 

(210 RPM) before induction with 1 mL of 1 M IPTG. Cells remained at 37 °C with shaking for 
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five hours to express 15N SrtApneu, and were then isolated by centrifugation at 5000 RPM for 20 

minutes at 4 °C. Pelleted cells were subsequently stored at -80 °C.  

 

Native purification:  Frozen cell pellets were resuspended in 30 mL denaturing lysis buffer (50 

mM Tris pH 7.5, 150 mM NaCl, 0.5 mM EDTA). The resuspended cells were sonicated for two 

30 second intervals at 50% power output and the lysate was clarified by centrifugation at 17,500 

RPM (Thermo Scientific Fiberlite F20-12x50 LEX rotor). This clarified lysate was added to 5 mL 

of His-Bind resin (Thermo-Fisher) column pre-equilibrated in denaturing wash buffer (50 mM Tris 

pH 7.5, 150 mM NaCl, 20 mM imidazole). Bound protein was washed with 10 column volumes 

of wash buffer and then eluted in two 1 column volume portions of denaturing elution buffer (50 

mM Tris pH 7.5, 150 mM NaCl, 300 mM imidazole). Collected fractions were analyzed by native 

and SDS-PAGE. SrtApneu monomer was further purified on an NGC FPLC system (Bio-Rad) by 

size-exclusion chromatography using an Enrich SEC 70 column (Bio-Rad) with running buffer 

(50 mM Tris pH 7.5, 150 mM NaCl) or a HiPrep 16/60 Sephacryl 200-HR column as the eluent at 

either 0.2 mL/min or 0.5 mL/min. Monomeric protein fractions were pooled, and if necessary, 

concentrated using centrifugal concentrators (10 KDa MW cutoff). Samples were stored at 4 °C 

for temporary storage or -20 °C for long term storage. 

 

Refolding Purification: Frozen cell pellets were resuspended in 30 mL denaturing lysis buffer (50 

mM Tris pH 7.5, 150 mM NaCl, 1 mM TCEP, 0.5 mM EDTA, 8 M urea). The resuspended cells 

were sonicated for two 30 second intervals at 50% power output and the lysate was clarified by 

centrifugation at 17,500 RPM. This clarified lysate was added to 5 mL of His-Bind resin (Thermo-

Fisher) column pre-equilibrated in denaturing wash buffer (50 mM Tris pH 7.5, 150 mM NaCl, 1 
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mM TCEP, 20 mM imidazole, 8 M urea). Bound protein was washed with 10 column volumes of 

wash buffer and then eluted in two 1 column volume portions of denaturing elution buffer (50 mM 

Tris pH 7.5, 150 mM NaCl, 1 mM TCEP, 300 mM imidazole, 8 M urea). The first eluted fraction 

was then rapidly diluted (100x) by addition to dilution buffer (50 mM Tris pH 7.5, 150 mM NaCl, 

1 mM TCEP). This material was then recirculated through a 5 mL Ni-NTA column equilibrated 

in native wash buffer (50 mM Tris pH 7.5, 150 mM NaCl, 1 mM TCEP, 20 mM imidazole). Bound 

protein was further washed with 10 column volumes of native wash buffer, then eluted in two 1 

column volume aliquots of native elution buffer (50 mM Tris pH 7.5, 150 mM NaCl, 1 mM TCEP, 

300 mM imidazole). Collected fractions were analyzed by native and SDS-PAGE. SrtApneu 

monomer was further purified on an NGC FPLC system (Bio-Rad) by size-exclusion 

chromatography using an Enrich SEC 70 column (Bio-Rad) or a HiPrep 16/60 Sephacryl 200-HR 

column with running buffer (50 mM Tris pH 7.5, 150 mM NaCl, 1 mM TCEP) as the eluent at 

either 0.2 mL/min or 0.5 mL/min. Monomeric protein fractions were pooled, and if necessary, 

concentrated using centrifugal concentrators (10 KDa MW cutoff). Samples were stored at 4 °C 

for temporary storage or -20 °C for long term storage. 

 

Evaluation of protein concentration. UV/Vis spectroscopy for determining concentrations of the 

prepared samples was performed on a NanodropTM ND1000 spectrophotometer (Thermo 

Scientific) at 280 nm using 17,420 M-1 cm-1 (SrtApneu) or 18,910 M-1 cm-1 (SrtApneu-TEV)  as the 

estimated molar extinction coefficient from analysis of the protein sequence by ExPASy 

ProtParam. 
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Protein LC-ESI-MS Analysis. Liquid chromatography electrospray ionization mass spectrometry 

(LC-ESI-MS) was performed using a Dionex Ultimate 3000 HPLC system (Thermo Scientific) 

connected to an expressionL high performance compact mass spectrometer (Advion, Inc.) through 

analytical scale separations using a Phenomenex Kinetex 2.6 µm, 100 Å C4 column (2.0 x 100 

mm) with Method B. Data analysis was conducted by Advion Data Express software version 3.0. 

Mass spectrum deconvolution was achieved through a max entropy algorithm to determine 

uncharged masses of samples. 

 

6.2 Protein Crystal Preparations & Diffraction 

Crystallization of SrtApneu. Efforts to produce crystals suitable for x-ray diffraction were grown via 

hanging drop vapor diffusion. All hanging drop loadings were composed of 1:1 mother liquor to 

enzyme (2 μL drop), unless stated otherwise, using a 6 mg/mL SrtApneu stock. PEG/ION2 and 

INDEX screening kits were utilized, and crystal formation was observed under the following 

conditions: 0.2 M sodium acetate pH 7.0 20% w/v PEG 3350 4 °C (C1), 0.2 M sodium formate 

pH 7.0 20% w/v PEG 3350 4 °C (C2), 0.2 M sodium malonate pH 6.0 20% w/v PEG 3350 4°C 

(C3), 0.1 M Bis-Tris pH 5.5 25% w/v PEG 3350 21 °C (C4), 0.1 M Bis-Tris pH 5.5 0.2 M Sodium 

Chloride 25% PEG 3350 21 °C (C5), 0.1 M Bis-Tris pH 5.5 0.2 M Ammonium Acetate 25% w/v 

PEG 3350 21 °C(C6), 0.1 M Bis-Tris pH 5.5 0.2 M Magnesium Chloride hexahydrate 25% w/v 

PEG 3350 21 °C (C7). Room temperature screening conditions (C4-7) were modified by 

optimizing pH, PEG 3350 and salt concentrations, as well as mother liquor:enzyme drop loading 

ratio. Optimization efforts around the C4-7 conditions varied pH (pH 4.5-7.5 in steps of 1 pH, pH 

4.5-5.5 in steps of 0.2 pH) and PEG concentration (18-28% w/v in steps of 2% w/v). Optimization 

of C4 (pH 4.5/5.5) varied Bis-Tris concentrations (0.05-0.30 M in steps of 0.05 M), and 
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optimization of C5-7 (pH 4.5/5.5) varied concentrations of the salts in addition to 0.1 M Bis-Tris 

(0.05-0.2 M in steps of 0.05 M, and 0.2-0.4 M in steps of 0.1 M), where 1:1 (2 uL drop) and 2:1 

(3 uL drop) mother liquor to enzyme ratios were used for C4-7. Furthermore, conditions C4-7 were 

optimized by varying PEG 3350 concentration (20-30% w/v in steps of 2% w/v) and mother liquor 

to enzyme ratio (1:1, 1:2, 2:1, 2:2, 1:3, and 3:1). Observed crystal conditions not evaluated in the 

preliminary screening, yet were anticipated to induce crystal growth, included: 0.1 M Bis-Tris pH 

5.5 0.2 M Potassium Chloride 25% w/v PEG 3350 21 °C (C8), 0.1 M Bis-Tris pH 5.5 0.2 M 

Ammonium Chloride 25% w/v PEG 3350 21 °C (C9), 0.1 M Bis-Tris pH 5.5 0.2 M Calcium 

Chloride 25% w/v PEG 3350 21 °C (C10). Crystal screening of C8-10 (pH 4.5/5.5) involved 

varying concentrations of the salts in addition to 0.1 M Bis-Tris (0.05-0.2 M in steps of 0.05 M, 

and 0.2-0.4 M in steps of 0.1 M).  

 

X-ray Diffraction: Crystals from the following conditions were analyzed via x-ray diffraction: 0.05 

M Bis-Tris pH 5.5 25% w/v PEG 3350 21 °C; 0.25 M Bis-Tris pH 5.5 25% w/v PEG 3350 21 °C, 

0.05 M Bis-Tris pH 5.5 0.05 M Ammonium Acetate 25% w/v PEG 3350 21 °C; 0.1 M Bis-Tris 

pH 5.5 0.15 M Magnesium Chloride hexahydrate 25% w/v PEG 3350 21 °C; 0.1 M Bis-Tris pH 

5.5 0.05 M Sodium Chloride 25% PEG 3350 21 °C. Crystals looped from these conditions were 

cryoprotected by washing each crystal with respective crystal inducing conditions with 30% v/v 

glycerol, followed by immediate flash freezing in liquid nitrogen. All x-ray diffraction data was 

collected on a Rigaku XtaLAB PRO diffractometer. 
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6.3 NMR sample Preparation & Acquisition 

NMR samples contained 50–300 μM of SrtApneu-TEV-His6 or SrtApneu-His6 (unlabeled as well as 

labeled with 15N), which were all prepared under NMR conditions (10% v/v D2O, 0.5 mM EDTA, 

0.02% w/v NaN3). NMR spectra were collected with a Brüker Avance spectrometer at 500 MHz 

for both 1D 1H and 2D HSQC FID processing, and figure generation was done using Mestrelab 

MestReNova software version 10.0.2-15465. 

 

6.4 Synthesis of ketomethylene isosteres 

All chemicals were obtained from commercial sources and were used without further purification. 

NMR spectra were collected with a Brüker Avance spectrometer at 500 MHz for 1H. FID 

processing and figure generation was done using Mestrelab MestReNova software version 10.0.2-

15465. All reactions were performed in flame-dried glassware under argon atmosphere. HPLC 

purification and analysis was performed using a Dionex Ultimate 3000 HPLC system. LC-ESI-

MS was performed with a Dionex Ultimate 3000 HPLC system connected in line to an expressionL 

high performance compact mass spectrometer (Advion, Inc.). Analytical separations for MS 

analysis of synthetic products were achieved with a Phenomenex Kinetex 2.6 µm, 100 Å C18 

column (2.1 x 100 mm) with the following method: MeCN (0.1% formic acid) / 95% H2O, 5% 

MeCN (0.1% formic acid) mobile phase. Flow rate = 0.3 mL/min. Gradient = 5% MeCN (0.0-0.5 

min), 5% MeCN to 90% MeCN (0.5-5.0 min), hold 90% MeCN (5.0-7.0 min), 90% MeCN to 10% 

MeCN (7.0-7.1 min), re-equilibrate to 10% MeCN (7.1-10.0 min).  

 

tert-butyl 2-(((Trifluoromethyl)sulfonyl)oxy)acetate (1). A solution of t-butyl 2-hydroxyacetate 

(0.66 g, 5.0 mmol) in dry DCM (20 mL) was combined with 2,6-lutidine (0.87 mL, 5.0 mmol). 
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The mixture was cooled to 0 °C and triflic anhydride (1.18 mL, 5.0 mmol) was added dropwise 

over 70 minutes, during which time the color changed to light red then orange. After stirring for 1 

hour at 0 °C, the reaction mixture was diluted with n-hexane (100 mL), washed with 1:3 1 M 

HCl/sat. NaCl (3x, 50 mL), and dried over MgSO4. The extract was concentrated by rotary 

evaporation and dried under vacuum to afford the product as a red/orange oil which was used 

without further purification (0.71 g, 41% yield). 1H NMR (500 MHz, CDCl3): δ 4.80 (s, 2H), 1.54 

(s, 9H).  

 

tert-butyl (S)-4-((tert-butoxycarbonyl)amino)-3-oxopentanoate (2). Boc-Ala-OH (1.32 g, 7.0 

mmol) was dissolved in dry THF (20 mL) and then treated with CDI (1.08 g, 7.7 mmol), which 

was added in three portions while stirring, resulting in bubble formation. Within five minutes of 

CDI addition, DMAP (26 mg, 0.21 mmol) was added to the reaction mixture. This was left to stir 

for one hour. In a separate flask, t-butyl acetate (4.1 mL, 28.7 mmol) was added dropwise to 1 M 

LiHMDS (28 mL, 28 mmol) in THF (28 mL) at -78 °C under stirring over the course of ~10 

minutes. This reaction was left to stir for 20 min at -78 °C, and then removed from cooling and 

stirred at room temperature for an additional 10 minutes. The enolate solution was then again 

cooled to -78 °C and stirred for 20 additional minutes, followed by the dropwise addition of the 

CDI-activated Boc-Ala-OH over 10 minutes. The combined reaction was allowed to stir for 1.5 

hrs at -78 °C before being quenched with 10% w/v citric acid (50 mL). The mixture was extracted 

with ethyl acetate (2x, 30 mL), washed with sat. NaHCO3 (30 mL) and sat. NaCl (3x, 30 mL), and 

then dried over MgSO4. After concentration by rotary evaporation, the crude product was purified 

by flash column chromatography (1:3 EtOAc/n-hexane) yielding the product as a white solid (1.38 
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g, 70% yield). 1H NMR (500 MHz, CDCl3): δ 5.15 (m, 1H), 4.38 (m, 1H), 3.46 (q, J = 15.6 Hz, 

2H), 1.46 (s, 9H), 1.44 (s, 9H), 1.36 (d, J = 7.2, 3H). 

 

General procedure for synthesis of di-tert-butyl 2-((tert-butoxycarbonyl)-L-alanyl)succinate (3). 

Boc-Ala ketoester (2) (0.50 g, 1.74 mmol) was dissolved in dry THF (10 mL) and added dropwise 

to a stirred suspension of NaH (60% in mineral oil, 0.126 g, 3.2 mmol) in dry THF (10 mL) at -5 

°C. This mixture was allowed to stir for 20 min, after which t-Bu-bromoacetate (390 µL, 2.64 

mmol) was added at -5 °C. The reaction was allowed to stir overnight at room temperature before 

being quenched with 10% w/v citric acid (15 mL). The quenched reaction was extracted with 

EtOAc (3x, 30 mL) washed with sat. NaCl (90 mL) and dried over MgSO4 before being 

concentrated via rotary evaporation to yield a yellow oil. This residue was purified by flash column 

chromatography with 1:5 EtOAc/hexane and the desired product fractions identified by TLC were 

pooled, and concentrated by rotary evaporation (0.55 g, 79% yield).1H NMR (500 MHz, CDCl3) 

δ 5.24 (dd, J = 13.6, 5.6 Hz, 1H), 4.68-4.44 (m, 1H), 4.11 (ddd, J = 16.9, 8.2, 6.5 Hz, 1H), 2.88-

2.68 (m, 2H), 1.50-1.37 (m, 27H), 1.37-1.33 (m, 3H).  

 

(S)-5-((((9H-fluoren-9-yl)methoxy)carbonyl)-amino)-4-oxohexanoic acid (4). Compound 3 (0.3 

g, 0.747 mmol) was solvated in 10% TFA/DCM (25 mL) and allowed to stir overnight at room 

temperature. After concentrating the resulting mixture by rotary evaporation, the residue was 

dissolved in DCM (10 mL) and reconcentrated by rotary evaporation (3x), after which the 

remaining residue was dried under high vacuum. The vacuum dried residue was then dissolved in 

1:1 water/MeCN (15 mL) and DIPEA (0.375 mL, 2.15 mmol). Fmoc-OSu (0.252 g, 0.747 mmol) 

was then added and allowed to react for 24 hours before the addition of 10 mL of 1 M HCl, which 
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formed a precipitate. The reaction was extracted into DCM (3x, 30 mL), washed with sat. NaCl 

(1x, 30 mL) and dried over MgSO4 before being concentrated under rotary evaporation. The 

residue was solubilized in 3:1 EtOAc/n-hexane and subjected to flash chromatography using 3:1 

EtOAc/n-hexane to purify Fmoc-ketomethylene (4) (0.2 g, 73% yield). 1H NMR (500 MHz, 

CDCl3) δ 7.78 (d, J = 7.5 Hz, 2H), 7.61 (dd, J = 7.6, 3.6 Hz, 2H), 7.45-7.40 (m, 2H), 7.34 (td, J = 

7.5, 1.2 Hz, 2H), 5.53 (d, J = 7.1 Hz, 1H), 4.43 (m, 3H), 4.24 (t, J = 6.8 Hz, 1H), 2.86 (m, 2H), 

2.72 (m, 2H), 1.41 (d, J = 7.2 Hz, 3H). LC-ESI-MS: calculated exact mass 368.14 Da, observed 

368.13 Da. 

 

6.5 Peptide Synthesis & Analysis 

General procedure for solid-phase peptide synthesis. All chemicals were obtained from 

commercial sources and were used without further purification. All peptides were synthesized in 

glass or plastic synthesis vessels. Peptides were synthesized on a 0.1 mmol scale using Rink amide 

MBHA resin. Deprotection was achieved by washing with 20% piperidine/NMP (10 mL, 2x, 20 

min) and was followed by washing with NMP (10 mL, 3x, 10 min). To the deprotected resin, a 

mixture containing an Fmoc protected amino acid (0.3 mmol), HBTU (0.3 mmol) and DIPEA 

solvated in NMP was added, which was left to incubate for 1-24 hrs at room temperature with 

shaking. Unreacted coupling components were removed, and the resin washed with NMP (10 mL, 

3x, 10 min) before repetition of this process to couple all amino acids. Where appropriate, acetyl 

capping of the N-terminus was achieved by combining acetic anhydride (0.3 mmol), DIPEA (0.5 

mmol), and NMP (10 mL), which was added to the resin to couple for 2 hrs. Each peptide generated 

as a substrate for SML reactions contained the 2-aminobenzoyl (Abz) and 2,4-dinitrophenyl (Dnp) 

fluorphore-quencher pair to simplify analysis by UVVis spectroscopy, where Dnp was conjugated 
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to the ε-amine of a lysine side chain [Fmoc-K(Dnp)-OH]. After completion of the peptide, the 

resin was washed with DCM (10 mL, 3x, 10 min) and incubated with cleavage solution (9.5 mL 

TFA, 0.25 mL H2O, 0.25 mL TIPS) for 30 min (5 mL, 2x). The cleaved peptide was collected and 

concentrated via rotary evaporation before being precipitated into dry ice-cooled diethyl ether. The 

precipitate was centrifuged at 4000xg for 5 min and the ether discarded to afford a peptide pellet, 

which was dried under vacuum for 24 hrs. Peptides were solubilized using a mixture of water and 

acetonitrile that was variable based on the amino acid composition. Purification from this state was 

achieved by RP-HPLC with Method A and the molecular weight of the peptides verified via LC-

ESI-MS with Method B. Peptides were lyophilized and resolubilized in 1:1 water/DMSO or 

DMSO to produce stock solutions for use in reactions, which were further analyzed for purity by 

RP-HPLC analysis using Method B. For peptides containing the Dnp chromphore, concentrations 

were estimated by UV/Vis spectroscopy on a NanodropTM ND-1000 spectrophotometer (Thermo 

80 Scientific) at 365 nm using the molar extinction coefficient 17,300 M-1 cm-1 for the Dnp 

chromophore. 

 

Activation of Bz-GLPACGG-NH2 (5). After RP-HPLC purification with Method A and subsequent 

lyophilization, 5 was combined with 2,2’-dipyridyldisulfide (2x) and solvated in NMP. 

Purification of the activated product (6) from reaction mixture was achieved by RP-HPLC with 

Method A, and the molecular weight was verified using LC-ESI-MS with Method B. Purified 6 

was lyophilized and subsequently resolubilized in 1:10 water/DMSO. An aliquot (1 µL) of 6 was 

diluted (100x) in 100 mM DTT and incubated at room temperature for 15-30 minutes. The 

concentration was estimated by UV/Vis spectroscopy on a NanodropTM ND-1000 
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spectrophotometer (Thermo 80 Scientific) at 343 nm using the molar extinction coefficient 8,080 

M-1 cm-1 for the excised 2-mercaptopyridine chromophore. 

 

HPLC purification and analysis was performed using a Dionex Ultimate 3000 HPLC 

system. Semi-preparative separations for the purification of peptides were performed with a 

Phenomenex Luna 5 µm 100 Å C18 column (10 x 250 mm) fitted with a Phenomenex 

SecurityGuard SemiPrep Guard cartridge (10 mm ID). Purification separations were carried out 

with the following method: (Method A): MeCN (0.1% formic acid) / 95% H2O, 5% MeCN (0.1% 

formic acid) mobile phase. Flow rate = 4.0 mL/min. Gradient = 20% MeCN (0.0-2.0 min), 20% 

MeCN to 90% MeCN (2.0-15.0 min), hold 90% MeCN (15.0-17.0 min), 90% MeCN to 10% 

MeCN (17.0-17.01 min), re-equilibrate to 10% MeCN (17.01-19.0 min).  

 

Analytical assessments of peptide purity by UV/Vis, following purification with Method A, were 

performed with a Phenomenex Kinetex 2.6 µm, 100 Å C18 column (2.1 x 100 mm) with the 

method (Method B): MeCN (0.1% formic acid) / 95% H2O, 5% MeCN (0.1% formic acid) mobile 

phase. Flow rate = 0.3 mL/min. Gradient = 10% MeCN (0.0-0.5 min), 10% MeCN to 90% MeCN 

(0.5-5.0 min), hold 90% MeCN (5.0-7.0 min), 90% MeCN to 10% MeCN (7.0-7.1 min), 

reequilibrate to 10% MeCN (7.1-10.0 min).  

 

LC-ESI-MS was performed with a Dionex Ultimate 3000 HPLC system connected inline to an 

expressionL high performance compact mass spectrometer (Advion, Inc.). Analytical separations 

for UV/Vis and mass spectrometry analysis were performed with a Phenomenex Kinetex 2.6 µm, 

100 Å C18 column (2.1 x 100 mm) with Method B.  
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6.6 Analysis of Enzyme Transpeptidation Activity 

Reactions were prepared by combining all components shown in Table 5. except enzyme, which 

was added to initiate the reaction. Conversion was analyzed by UV/Vis of analytical RP-HPLC 

using a Dionex Ultimate 3000 HPLC system (Thermo Scientific) with a Phenomenex Kinetex 2.6 

µm, 100 Å C18 column (2.1 x 100 mm) with Method B.   
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