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Abstract 

 

The Mesoproterozoic MARA terrane of South America has been interpreted to collide 

and subduct beneath the Gondwana margin of South America in the Cambrian.  To test 

the proposed tectonic model, I combine metamorphic petrology and geochronology 

along with quantitative thermobarometry to constrain metamorphic events and peak 

conditions within the Sierra de Maz of the MARA terrane and the adjacent Sierra de 

Ramaditas.  Foliations within the Sierra de Maz are steeply east dipping, with a major 

sinistral reverse shear zone separating the two major units (Zaino and Maz Complexes) 

of the northern range.  Garnet Lu-Hf records a single metamorphic event in the Zaino 

Complex at ~425 Ma.  Combined garnet Lu-Hf and monazite U-Pb reveal a 

polymetamorphic history in the Maz Complex with two distinct metamorphic events at 

~1.2 Ga and ~425 Ma.  Both Complexes were deformed by sinstral transpression 

between 435 and 415 Ma.  Preserved across these Complexes is a Silurian-Devonian 

amphibolite to granulite inverted metamorphic field gradient that is compatible with 

observed and modeled gradients from other transpressive orogens.  The Ramaditas 

complex records lower-pressure granulite facies metamorphism at ~460 Ma, was 

deformed at ~426 Ma, and is correlated with the Famatina arc rather than its previously 

proposed affiliation to units in the Sierra de Maz. Units of the Sierra de Maz do not 

share metamorphic histories with nearby ranges within the proposed extent of the 

MARA terrane.  Age dissimilarities require that portions of the MARA terrane were 

tectonically juxtaposed likely as a result of transpressive translation along the 

Gondwana margin. 
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Introduction 

Collisional orogens are among the most complex tectonic settings on Earth and 

exhumed metamorphic rocks record processes that take place during convergence, 

collision, and exhumation.   Classically held models of orogeny invoke a simple cycle of 

crustal thickening followed by exhumation (e.g., Thompson and England, 1984) and 

successfully reproduce pressure-temperature paths preserved in many metamorphic 

terranes.  Exhumed orogens, however, often record multiple episodes of thickening and 

exhumation, magmatic addition, and/or orogen parallel translation which give rise to 

complicated metamorphic histories (e.g. Brown and Talbot, 1989; Mulcahy et al., 2014). 

Testing proposed tectonic models in these orogens requires detailed metamorphic 

and structural studies in order to reconstruct the most accurate pressure, temperature, 

and deformation history.  

The western margin of South America preserves a poorly understood and 

complex orogenic belt that is critical to Paleozoic plate reconstructions and the relative 

positions of Laurentia and Gondwana.  Basement exposures within the Maz, Arequipa, 

and Rio Apa (MARA) ranges span almost the entire length of South America, are 

located immediately west of the Famatina continental arc, with the prevailing tectonic 

model based largely on observations in the Western Sierras Pampeanas of northwest 

Argentina (Figure 1).  The MARA terrane is interpreted as Laurentian-derived crystalline 

basement that preserves two metamorphic episodes at ~1200 Ma and between 460-430 

Ma (Lucassen and Becchio, 2003; Casquet et al., 2006).  The current tectonic model 

assumes that MARA rifted from Laurentia around 570 Ma and then collided and was 

partially subducted beneath the Rio de la Plata craton around 530 Ma (Rapela et al., 
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2016; Figure 2).  Direct evidence for ~570 Ma rifting comes from a carbonatite intrusion 

found within the Sierra de Maz of the MARA terrane, but high temperature rift-related 

metamorphic ages have yet to be documented.  Evidence for a ~530 Ma collision is 

indirectly inferred from cessation of arc volcanism within the Rio de la Plata craton but 

direct evidence for this event is absent within MARA (Rapela et al., 2016; Figure 2).  

Figure 1: A) Proposed extent of the MARA terrane (magenta) and geographic location of map area in 
panel B.  B) Geologic map of the Western Sierra Pampeanas, modified from Mulcahy et al. 2011. 
Abbreviations: M, Sierra de Maz; P, Sierra de Pie de Palo; and U, Sierra de Umango. Thick line weights 
indicate proposed terrane boundaries, thin weights outline important mountain ranges, dash-dot lines are 
major roadways. Boxed region is the extent of Figure 3. 
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Existing metamorphic ages from the MARA terrane are difficult to reconcile with 

the proposed tectonic model as this region records seemingly different metamorphic 

and deformational histories.  Basement exposures in the Sierra de Pie de Palo (Figure 

1) record lower-crustal Cambrian to Middle Ordovician shortening along low angle shear 

zones (Mulcahy, 2007; Mulcahy, 2011) between ~515-430 Ma.  In contrast, the Sierra 

de Maz exposes mid-crustal rocks with steep fabrics interpreted to record oblique to 

strike-slip deformation of unknown age.  Inferred metamorphic U-Pb ages within the 

Sierra de Maz of 460-430 Ma reported by Casquet et al. (2003) are not explained by the 

Rapela (2016) model. The ages imply that potentially, 1) the collision and juxtaposition 

of the MARA terrane with the Rio de Plata craton is younger than assumed, 2) 

metamorphic ages within the MARA terrane represent cooling ages or are 

misinterpreted, or 3) metapelitic rocks recording 530-520 Ma metamorphism and 

deformation have yet to be sampled.   

In order to test the Rapela et al. (2016) tectonic model for the MARA terrane, I 

combine quantitative thermobarometry with Lu-Hf and U-Pb geochronology to constrain 

the conditions and timing of metamorphism and deformation within the Sierra de Maz of 

the MARA terrane.  The data suggest that rocks within the Sierra de Ramaditas are 

barometrically and chronologically distinct from the rest of the MARA terrane and likely 

represent a contact aureole more closely associated to the adjacent Famatina arc.  The 

Sierra de Maz records Silurian to Devonian sinistral transpression and an amphibolite to 

granulite inverted metamorphic field gradient. 
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Figure 2: Proposed tectonic model for the MARA terrane modified from Rapela et al. 2016.  RPC: Rio de 
la Plata Craton. 
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Geology of the Sierra de Maz 

The Sierra de Maz is situated between the allochthonous Devonian Precordillera 

terrane and the Ordovician Famatina continental magmatic arc (Figure 1B) and was first 

described by Kilmurray and Dalla Salda (1971) as three sub-parallel metamorphic 

domains trending NNW-SSE separated by first-order faults and shear zones (Figure 3).  

Foliation dips steeply to the east and metamorphic grade increases from west to east 

(Kilmurray and Dalla Salda, 1971; Casquet et al., 2006).  From west to east, previous 

workers have divided the domain into distinct units: the Taco Complex, the Zaino 

Complex, the Maz Complex, and the Sierra de Ramaditas.  

The El Taco Complex of the Sierra de Maz (Kilmurray and Dalla Salda, 1971), 

also referred to as the Western Domain by Casquet et al. (2008a), contains mostly 

marble, calc-silicate, and quartz-mica schists, with lesser amphibolite and orthogneiss.  

Titanite U-Pb ages of 443 and 431 Ma (Lucassen and Becchio, 2003) and a garnet Sm-

Nd age of 301 Ma (Porcher et al., 2004) were reported from the Taco Complex with no 

quantitative estimates of metamorphic conditions. 

The El Zaino Complex lies structurally above the El Taco Complex and was 

described by Casquet et al. (2008a) as a succession of Fe-rich garnet-chlorite schists of 

unknown age.  Porcher et al. (2004) described the Zaino Complex as a sequence of 

metasediment of variable bulk compositions containing schist, calc-silicate, amphibolite, 

and marble, although their descriptions came solely from observations within the 

adjacent Sierra de Espinal to the north (Figure 1B).  There are no published ages from 

this unit and thermobarometry is lacking. 
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The Maz Complex lies structurally above the Zaino Complex and is consists of mafic 

and pelitic gneiss, a Paleoproterozoic anorthosite massif, ~845 Ma and ~774 Ma A-type 

granitoids, and ~570 Ma carbonatites (Casquet et al., 2008a; Casquet et al., 2008b; 

Colombo et al., 2009; Rapela et al., 2010).  Lucassen and Becchio (2003) reported a 

titanite U-Pb age of 431 Ma from a calc-silicate in the eastern portion of the Maz 

Complex.  Casquet et al. (2006) recognized 1208 Ma metamorphic rims on zircon in 

orthogneiss and attributed them to Grenvillian metamorphism.  Zircon cores from the 

same sample resulted in peak ages around 1700 and 1880 Ma and were interpreted to 

represent a late Paleoproterozoic provenance age for metasediments of the Maz 

Complex (Casquet et al., 2006).  Casquet et al. (2006) also estimated granulite P-T 

conditions of 780 °C and 0.8 GPa from a metabasite adjacent to the eastern 

orthogneiss.  Porcher et al. (2004) reported three whole rock Sm-Nd ages of 1040, 969, 

and 462 Ma from within the the Maz Complex.  Three P-T estimates made by Porcher 

et al. (2004) from within the Maz Complex span a range of conditions from 630 - 771 °C 

and 5 - 7 kbar, but lack individual uncertainty estimates with at least one analysis 

plotting outside of the kyanite stability field as reported in the sample assemblage. 

Lucassen and Becchio (2010) also reported scattered P-T estimates from within the 

Maz Complex that range from 650 – 800 °C and 0.5 - 0.9 GPa.  These previous studies 

have not systematically examined metamorphic conditions and timing within the Maz 

Complex as it relates to the history of deformation.   

The Sierra de Ramaditas is a lesser range to the immediate southeast of Sierra 

de Maz (Figure 3).  Porcher et al. (2004) described Ramaditas as a sequence of garnet-

sillimanite migmatitic paragneiss, marble, and amphibolite and correlated the region 
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with the El Taco Complex.  Casquet et al. (2008) obtained a weighted mean U-Pb 

zircon age of 442 Ma from within Sierra de Ramaditas and correlated it with units in the 

northern Sierra de Espinal.    

 
Figure 3: General geologic map of the Western Sierras Pampeanas and the Sierras de Maz, Espinal, 
Umango. The Sierra de Ramaditas is denoted by the map unit Fg (compiled and adapted after Meira et 
al., (2012) and references therein) 
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Lithologic Units 
 

This study follows the original naming convention established by Kilmurray and 

Dalla Salda (1971) with modifications based on observed differences in protolith, 

metamorphic assemblage, and metamorphic age (Figure 4).  From west to east, we 

recognize four distinct units: the Taco Complex, the Zaino Complex, the Maz Complex, 

and the Ramaditas Complex of the Famatina arc (Figure 3).   

The Taco Complex occurs only in the southwestern Sierra de Maz and consists 

of isoclinally folded schist, orthogneiss, paragneiss, phyllite, amphibolite, quartzite, and 

marble (Figure 3 and 5A).  The boundary between the Taco Complex and the Zaino 

complex was not directly observed in this study.  Pelitic assemblages of variable 

protolith contain Grt-Bt-Qtz±Ms±Sil±Chl. Amphibolite layers range in thickness from 

sub- to meter-scale and contain the assemblage Amp-Qtz-Bt-Pl±Ms±Grt.  The dominant 

foliation dips from 55°E to sub-vertical with multiple zones of grain size reduction 

throughout the unit.   

Directly northeast from the Taco Complex lies the Zaino Complex, spanning 

almost the entire length of the Sierra de Maz (Figure 3).  The eastern boundary of the 

Zaino Complex is defined by the NNW-SSE trending Maz shear zone.  Casquet et al. 

(2008) described this unit as Fe-rich Grt-Chl schists (Figure 5B), however, we recognize 

additional metacarbonate, calc-silicate, amphibolite, and pelitic schist.  Amphibolite is 

present on the sub-meter scale and contains the assemblage Qtz-Plg-Amp±Ms.  Pelitic 

schists have variable assemblages that change systematically from west to east across 

the Zaino Complex (Fig 4?).  In the most westerly regions of the Zaino Complex, schists 

contain the assemblage Qtz-Plg-Ms-Chl-Bt±Grt.  Moving east, the dominant pelitic 
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assemblage becomes Qtz-Plg-Ms-Bt-Grt (Figure 5C) before crossing into the most 

eastern portions where metapelites contain the assemblage Qtz-Plg-Ms-Grt-Bt-St 

(Figure 5D).  The Zaino Complex is isoclinally folded with post-kinematic garnets 

growing over a steeply inclined NW-SE striking axial planar cleavage (Figure 4; Figure 

5C).  Foliation primarily dips eastward with stretched micas defining shallow lineations 

(Figure 4).   

The Maz Complex extends eastward from the Maz shear zone to the termination 

of the range and has been divided into four parallel groups based on protolith 

differences (Figure 4).  Immediately east of the Maz shear zone is the first subunit 

termed Mm1 that contains amphibolite, orthogneiss, and less common pelitic layers.  

Metapelites found nearest to the Maz shear zone contain the assemblage Qtz-Plg-Ms-

St-Grt with syn to post-kinematic garnet porphyroblasts. This unit is isoclinally folded.  

The next sub-parallel zone to the east, Mm2, is a sequence of paragneiss, amphibolite, 

and interleaved orthogneiss (Figure 5F).  Paragneiss from Mm2 contains pre to syn-

kinematic garnet with the assemblage Qtz-Plg-Ms-Bt-St-Grt-Chl±Ky (Figure 5E).  Rare 

outcrops within Mm2 as well as Mm4 contain pre-kinematic garnet megacrysts several 

centimeters in diameter with chlorite rinds.  Orthogneiss of Mm2 contains the 

assemblage Amp-Qtz-Bt-Plg-Ms-Gt with post kinematic garnet.  Within Mm4 is massif-

type anorthosite body interleaved within the dominant NNW-SSE foliation and labeled 

as Mm3 in Figure 4.  Directly east of the anorthosite massif is the subunit Mm4, with the 

dominant lithologies being intermediate to mafic orthogneiss.  Potassium feldspar 

bearing augen gneiss outcrops in multiple locations within Mm4 and can be seen both 

cutting and being deformed by the latest foliation event.  Paragneiss assemblages in the 
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most eastern portions of Mm4 contain pre-kinematic garnets and the assemblage Qtz-

Plg-Ms-Bt-St-Grt-Sil-Kfs (Figure 5G).   

 Rocks of the Ramaditas Complex within the Sierra de Ramaditas lie 

unconformably below Triassic red beds (Figure 3).  The unit consists of metacarbonate, 

migmatite, intermediate to felsic orthogneiss, amphibolites and metapelite.  The unit is 

isoclinally folded and the dominant foliation dips to the east following the general trend 

of units within the Sierra de Maz.  Weakly deformed felsic Kfs-Bt pegmatites cross cut 

the dominant NNW-SSE foliation. Paragneiss from the Ramaditas Complex contains the 

assemblage Grt-Bt-Kfs-Qtz-Plg-Bt±Ctd±Sil±Ms. 
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Figure 4 Geologic map of northern Sierra de Maz illustrating variation in metamorphic grade across the 
Zaino Complex, Maz shear zone, and the Maz Complex.  Pelitic index minerals, denoted by various 
polygons, indicate an east to west inverted metamorphic gradient across the northern Sierra de Maz.  
Stereonets display poles to foliations, fold axes, and linations from within the Zaino and Maz Complexes 
as well as the Maz shear zone.  Grey lines in the Zaino Complex stereonets are orientations of axial 
planar cleavage, black lines are calculated great circle fits to field measurements.  
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Figure 5: Outcrop photographs of units within the Sierra de Maz. Scales for photos are either a 
mechanical pencil, a ~50cm long rock hammer, or a ~10cm long pocket knife. A) Isoclinal folding and 
gneissic banding within units of the Taco Complex (sample AT-062). B) Chlorite schist of the Zaino 
Complex (sample AT-017). C) Post-kinematic euhedral garnets overgrowing axial planar cleavage within 
the Zaino Complex (sample AT-021). D) Qtz-Plg-Ms-Bt-Grt-St schist found within the most eastern 
exposures of the Zaino Complex. (sample AT-072). E) Pre- to syn-kinematic Qtz-Plg-Grt-Ms-Bt-St schist 
within subunit Mm2 of the Maz Complex. F) Paragneiss (right side of photo, darkly colored) and 
orthogneiss (left side of photo, lightly colored) within the Maz Complex subunit Mm2 (sample AT-068). G) 
granulite facies metapelitic outcrop within the Maz Complex subunit Mm4 (sample AT-028). H) Blue, 
pseudohexagonal cordierite grain found within the Sierra de Ramaditas.  
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Ductile Shear Zones 

Previous studies (Porcher et al., 2004; Casquet et al., 2006) have recognized the 

La Vibora brittle fault as the boundary between El Taco and El Zaino Complexes, 

however no previous work has related ductile shearing within Sierra de Maz to the 

metamorphic history of the region.  This study recognizes the Maz shear zone as a 

major structural boundary separating the Zaino Complex in west from and the Maz 

Complex in the east.  The Maz shear zone is a meter-scale ultramylonite zone of 

reverse-sinistral shear (Houlihan et al., 2017)  that trends NNW-SSE and dips steeply 

east (Figure 6A; Figure 4).  Lineations are shallow to sub-horizontal and are defined by 

stretched mica, quartz, and aligned amphibole.  Even though the ultramylonite Maz and 

Finca shear zones are delineated on the map as a discrete line, those lines mark the 

regions of highest strain, but deformation extends over a zone of more than 7 km wide 

(Figure 6B).   

While the Maz shear zone is a prominent mylonite-ultramylonite zone, smaller 

regions of mylonite and ultramylonite occur within the Maz Complex.  One such region, 

located within the subunit Mm2 of the Maz Complex is referred in this study as the Finca 

shear zone. This sub-meter ultramylonite is concentrated within metapelite and 

orthogneiss around a region of amphibolite.  Mylonitic fabrics in the Finca shear zone 

are sub-parallel to Maz shear zone with similar shallow lineations and a sinistral shear 

sense (Figure 6C).  Pelitic units adjacent to this shear zone contain coarse, zoned 

garnet of varying size that show pre, syn, and post-kinematic relationships to the most 

recent shear fabric.   



 14 

The Ramaditas shear zone is a meter-scale mylonite within the Sierra de 

Ramaditas that has not been described by previous studies of this range.  The trend of 

the shear zone is roughly N-S with foliation steeply east dipping to sub vertical. 

Lineations are poorly preserved within the main mylonite zone, but are generally 

observed to be oblique.  The shear sense is dominantly top-to-the-west thrust with a 

locally weakly developed right-lateral shear sense indicators. A coarse, felsic dike with 

centimeter sized grains of Kfs-Qtz-Ms can be seen cutting across the main mylonite 

zone and is also boudinaged and deformed within the mylonitic foliation (Figure 6D).  

This relationship suggests that shear is pre- to syn-tectonic with respect to the felsic 

dike.  Leucocratic melts within mafic orthogneiss near the main mylonite zone contain 

the assemblage Qtz-Kfs-Grt while pelitic units near the shear zone contain the 

assemblage Qtz-Kfs-Bt-Sil.  
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Figure 6: Outcrop photographs of sheared units within the Sierra de Maz. Scales for photos are either 
~50cm long rock hammer or a ~10cm long pocket knife. A) Steeply dipping ultramylonite zone from the 
Maz shear zone (proximal to sample AT-076). B) A relict orthogneiss fabric from the Maz Complex 
subunit Mm2 that is boudinaged by foliation related to the Maz shear zone (sample AT-015). C) Half 
meter utramylonite from the Finca shear zone within the Maz Complex subunit Mm2 (sample AT-068). D) 
Steeply dipping Ramaditas shear zone with coarse Kfs dike that both cross-cuts and is boudinaged by the 
shear zone.  
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Summary 

Pelitic index minerals suggest an amphibolite to granulite facies inverted 

sequence is preserved within the Maz Complex with pelitic index minerals grading from 

staurolite to kyanite and eventually sillimanite + potassium feldspar from west to east 

and structurally upward.  The presence of the low-pressure phase cordierite (Figure 5H) 

within the Sierra de Ramaditas points to significantly different metamorphic conditions in 

this unit compared to high-pressure kyanite-bearing assemblages within the Sierra de 

Maz.  Outcrop geology suggests that foliation development related to the Maz shear 

zone post-dates much of the metamorphic development within the Maz Complex and is 

a major event in the development of fabrics related to the Zaino Complex. This notion is 

most strongly supported in relict fabrics and assemblages observed within Maz 

Complex subunit Mm2 (Figure 6B) that are otherwise absent from the Zaino Complex.  

Sinistral kinematics and shallow lineations within steeply dipping foliations suggest that 

movement along the Maz shear zone accommodated transpressive deformation.    
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Petrology and Thermobarometry 

Samples were collected along a west-to-east transect across the Sierras de Maz 

(Figure 4; Table 1; Table 2) and Ramaditas in order to (1) identify the metamorphic 

conditions of the various lithological units, (2) compare differences in the metamorphic 

conditions across major structures, and (3) compare the metamorphic conditions 

between the Sierra de Maz and Sierra de Ramaditas.  Mineral compositions were 

determined by electron probe microanalysis (EPMA) with a Cameca SX-100 at UC 

Davis.  Operating conditions including spot sizes and accelerating voltages are reported 

in DR1 of the digital appendix.  Temperature and pressure estimations were determined 

with multiequilibirum thermobarometry using average PT method in THERMOCALC 

(Powell and Holland, 1994) and are summarized in Figure 7 and Table 3.  

 

Taco Complex 

High grade pelitic schist from the EL Taco Complex contains Grt-Bt-Ky-Sil-Plg-

Kfs-Qtz (Figure 8A).  Samples from the El Taco Complex were not analyzed with 

EPMA, thus only qualitative estimates of temperature and pressure can be made.  The 

presence of sillimanite and K-feldspar along with the absence of muscovite implies that 

this rock is beyond the second sillimanite reaction.   A lack of cordierite and 

orthopyroxene within this sample places pressure estimates between 4-12 kilobars and 

temperature estimates between 750-900 °C (Spear and Cheney, 1999). 
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Zaino Complex 

Pelitic schist assemblages from the Zaino Complex vary systematically from west 

to east across the unit, consistent with an increase in metamorphic grade.  The most 

western outcrops contain abundant chlorite (Figure 8B) and transition into garnet-

bearing assemblages over a structural distance less than 2 kilometers.  Average PT 

calculations were determined for three pelitic assemblages using garnet rim and matrix 

mineral compositions with Qtz and H2O in excess.  Sample AT-021a from the Zaino 

Complex contains the assemblage Grt-Bt-Ms-Plg-Qtz (Figure 8C).  The primary foliation 

is an axial planar cleavage defined by alternating mica-rich and quartzo-feldspathic 

layers and cut by post-kinematic garnet. Garnet is compositionally zoned with a bell-

shaped XSps profile and XMg concentrations that increase from core to rim suggestive 

of a single phase of prograde garnet growth (Figure 9A; Figure 10A).  Garnet rim 

compositions paired with matrix Ms, Bt, and Plg record metamorphic conditions of 8.2 ± 

1.7 kbar and 564 ± 91 °C.  Sample AT-021b contains the assemblage Grt-Bt-Plg-Qtz-

Amp with post-kinematic garnets that similarly cut across an axial planar cleavage.  

Garnet rim compositions and matrix Bt, Ms, and Plg record metamorphic conditions of 

7.3 ± 1.6 kbar and 489 ± 71 °C.  Sample AT-017 was the easternmost sample analyzed 

from the Zaino Complex and contains the assemblage Grt-Bt-Ms-Plg-Chl-Qtz.  Garnet 

rim compositions and matrix Bt, Ms, Plg, and Chl record metamorphic conditions of 8.2 

± 1.4 kbar and 575 ± 14 °C.  The most eastern metapelitic outcrops of the Zaino 

Complex contain the assemblage Grt-St-Bt-Ms-Plg-Qtz, although these samples were 

not analyzed for PT conditions, pelitic index assemblages qualitatively suggest that 

temperatures for this region were 550-650 °C (Spear and Cheney, 1989).  Taken 
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together, the three samples analyzed using EPMA are interpreted to represent peak 

metamorphic conditions reached within the Zaino Complex after deformation. 

 

Maz Shear Zone 

Two metapelites and one amphibolite were collected from within the Maz shear 

zone and analyzed for pressure and temperature conditions.  Syn to post-kinematic 

garnets from the Maz shear zone are Fe-rich (XAlm >0.70) with discrete zones apparent 

in major element maps (Figure 9B).  Chemical zoning analysis reveal diffusively zoned 

garnets that are lacking in rim-ward increases in spessartine content. Fig 10b?  Sample 

AT-076 from within the Maz shear zone contains the assemblage Grt-St-Bt-Ms-Pl and 

resulted in average PT calculations of 7.7 ± 1.1 kbar and 653 ± 27 °C (Figure 8E).  

Sample AT-073 from 0.5 km northwest along strike contains the assemblage Grt-St-Bt-

Ms-Plg-Qtz and resulted in average PT conditions of 8.3 ± 1.4 kbar and 602 ± 90 °C.  

Sample AT-015c is a mafic assemblage of Grt-Bt-Plg-Amp-Qtz with post-kinematic 

garnets and aligned amphibole defining a mylonitic foliation that deforms and older 

fabric (Figure 5B; Figure 8F).  The sample records average PT conditions of 8.6 ± 2 

kbar and 652 ± 153 °C.    These estimates are interpreted to reflect peak metamorphic 

conditions during deformation on the Maz shear zone.  
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Maz Complex 

  Schist and gneiss from the Maz Complex exhibit a range of assemblages with 

index minerals indicating an increase in metamorphic grade from west to east across 

the unit (Figure 4). Twelve samples along an east-west transect of the Maz Complex 

were analyzed for pressure and temperature conditions (Table 2).  The most westerly 

sample nearest to the Maz shear zone ultramylonite, sample AT-066, contains pre-

kinematic garnets in the assemblage Grt-St-Bt-Ms-Plg-Qtz.  Garnet rim compositions 

combined with matrix Bt, Ms, and Plg record metamorphic conditions of 9.0 ± 1.5 kbar 

and 706 ± 34 °C.  Roughly 3 kilometers east of the Maz shear zone, sample AT-068 

from within the Finca shear zone contains the assemblage Grt-St-Bt-Ms-Plg-Qtz. 

Garnets are pre-kinematic (Figure 8G) and possess irregular major element zoning, 

including elevated Mn and Ca along garnet fractures possibly from post-garnet fluid 

infiltration (Figure 9C).  Rim to rim garnet compositional zoning generally reflects 

diffusive zoning with symmetrical increases in spessartine content suggesting multiple 

garnet growth events are preserved in this rock (Figure 10C).  Garnet rim compositions 

paired with matrix St, Bt, Ms, and Plg compositions result in average PT conditions of 

7.2 ± 1.1 kbar and 694 ± 27 °C.  Less than a kilometer east of the Finca shear zone, 

sample AT-070 contains the assemblage Grt-Ky-St-Bt-Ms-Plg, with retrograde chlorite 

and resulted in average PT conditions of 6.6 ± 0.9 kbar and 624 ± 17 °C (Figure 8H).  In 

the most eastern portions of the Maz Complex, sample AT-028 contains a metapelitic 

granulite facies assemblage of Grt-Sil-Bt-Kfs-Plg-Qtz (Figure 8I).  Garnets are pre-

kinematic and lack major element zoning in major element maps (Figure 9E) with rim to 

rim chemical analysis showing homogenized XSps compositions and weakly zoned 
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XMg (Figure 10D).  Maximum XMg garnet rim compositions paired with matrix Bt, Kfs, 

and Plg resulted in average PT conditions of 10.3 ± 1.6 kbar and 876 ± 56 °C.  Mafic 

orthogneiss from the eastern portions of the Maz Complex also contains the 

assemblage Grt-Cpx-Scp (Figure 8J) consistent with granulite facies metamorphic 

conditions.   

 

 

Ramaditas Complex 

Several samples were collected from the Sierra de Ramaditas, however only a 

single metapelite contained enough relevant phases for PT calculations.  Garnets from 

Ramaditas are pre-kinematic, Fe-rich (XAlm >0.70), and major element maps lacking 

significant compositional zoning (Figure 8K; Figure 9E).  Rim to rim compositional 

zoning however, shows rimward increases in XSps content and decreases in XMg that 

indicate diffusive cooling from high temperatures (Figure 10E).  Sample AT-047 

contains the assemblage Cd-Grt-Bt-Plg-Qtz and resulted in average PT conditions of 

5.5 ± 1.5 kbar and 856 ± 160 °C.  Additional samples collected from within the Sierra de 

Ramaditas have the assemblage Grt-Sil-Bt-Plg-Qtz (Figure 8L) but were not analyzed 

for average PT conditions.  The presence of stable cordierite within metapelitic outcrops 

indicates that high temperatures occurred at anomalously low pressure when compared 

with metapelitic assemblages from the Sierra de Maz (Figure 7).  
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Figure 7: Pressure-temperature estimates and associated uncertainties for all samples analyzed from the 
Sierra de Maz and Sierra de Ramaditas.  Conditions across the Sierra de Maz most closely reflect a 
Barrovian progression from west to east.  The single analysis at anomalously higher temperatures and 
lower pressures than the rest of the data comes cordierite-bearing assemblages of the Sierra de 
Ramaditas.   
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Figure 8: Photomicrographs of mineral assemblages from the Sierras de Maz and Ramaditas.  Black and 
white scale bars in the bottom right corners of each photo are 1mm in length.  A) Sil-Grt from the El Taco 
Complex. B) Bt-Chl schist from the Zaino Complex. C) Post-kinematic garnets from the Zaino Complex 
and the assemblage Grt-Bt-Ms-Plg. D) Grt-St-Bt schist from eastern units within the Zaino Complex. E) 
Grt-St-Ms-Plg-Bt assemblage from a metapelite near the Maz shear zone exhibiting syn to post-kinematic 
garnets. F) Mafic orthogneiss with the assemblage Grt-Bt-Ms-Amp just east of the Maz shear zone. 
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Figure 8 (continued): Photomicrographs of mineral assemblages from the Sierras de Maz and Ramaditas.  
Black and white scale bars in the bottom right corners of each photo are 1mm in length. G) Grt-St-Bt-Plg-
Ms schist near the Finca shear zone of the Maz Complex. H) Grt-Ky-Bt-Plg-Ms schist with retrograde 
chlorite less than a kilometer east of the Finca shear zone.  I) Eastern Maz Grt-Bt-Ms-Sil-Plg-Kfs gneiss 
with an inclusion of kyanite preserved within a relict garnet.  J) Orthogneiss from the eastern units of the 
Maz Complex containing the assemblage Grt-Scp-Amp. K) Grt-Sil-Bt gneiss from the Ramaditas 
Complex. L) Cordierite from the Sierra Ramaditas with characteristic fractures that radiate from grain 
boundaries and terminate within interior portions of each grain.  Fracture patterns and subtle twinning 
distinguish cordierite from quartz and feldspar.   
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Figure 9: Zoning patterns of garnets chosen for combined thermobarometry and Lu-Hf geochronology.  
Light colors correspond to regions of high concentration.   
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Figure 10: Figures within the left column depict garnet end-member compositions at given points along a 
transect.  Figures in the right column depict elemental ratios at any given point.  (XMg = Mg/Fe + Mg, 
Spessartine = Mn/ Fe + Mg + Mn + Ca). 
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Garnet Lu-Hf Geochronology 

 Garnet-whole rock Lu-Hf ages for all samples were determined at Washington 

State University following the procedure outlined by Mulcahy et al. (2014).  Garnet 

porphyroblasts were separated by hand crushing, magnetic separation, and hand-

picking of individual grains. The concentrations of Lu and Hf were determined by 

isotope dilution with uncertainties estimated to be better than 0.5%. Uncertainties in 

176Lu/177Hf for the purposes of regression and age calculations are estimated at 0.5%. 

Reported errors on 176Hf/177Hf represent within-run uncertainty expressed as 2σ 

standard error. Estimated total uncertainty on individual 176Hf/177Hf measurements for 

regressions and age calculations is 0.01%. Ages were calculated with the 176Lu decay 

constant values of Scherer et al. (2001) and Söderlund et al. (2004) and are reported 

with the associated 95% confidence interval. Concentrations and isotopic data for 

garnet Lu-Hf isochrons are listed in Table 4.  

 Rim to rim lutetium concentrations were determined by laser ablation inductively 

coupled plasma mass spectrometry (LA-ICPMS) in the AMSEC facilities at Western 

Washington University using an Agilent 7500ce ICPMS with a New Wave UP-213AS 

laser ablation accessory utilizing a 213nm UV Nd:YAG class IV laser. Time-resolved 

spectra with a 1 ms integration were collected using a 55 μm diameter spot size. 

Working acquisition time was 120 seconds, including 30 seconds of background, and 90 

seconds of sample ablation. All analyses used a 1500 W forward power, a 10 Hz 

repetition rate, a 13.7 J/cm2 fluence, and a carrier gas flow rate of 400mL/min. Samples 

were calibrated to NIST610 values determined by Jochum et al. (2011), using an 

internal standard of aluminum determined by SEM analysis. Data were reduced using 
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the software GLITTER (van Achterburgh et al., 2000) to avoid ablated inclusions within 

garnet spots. 

 

Zaino Complex 

A garnet-whole rock Lu-Hf isochron obtained from a Grt-Bt-Ms-Qtz-Plg metapelite (AT-

021a) of the Zaino Complex resulted in an age of 423 ± 10 Ma (MSWD = 4.6) (Figure 

11A).  Garnet from this sample are euhedral, post-kinematic to axial planar cleavage, 

and preserve prograde growth zoning (Figure 7C, 8A, 9A). Lutetium is concentrated 

within the cores of garnet porphyroblasts and systematically decreases towards the rim 

consistent with a single generation of garnet growth (Figure 12A). Garnets from this 

sample are bimodal in size with grains either larger than >2mm or between 1-2mm.   

The smaller grain size fraction had higher 176Lu/177Hf.  Despite the apparent size 

dependency of parent daughter ratios, the high MSWD and bell-shaped Mn and Lu 

profiles suggest a single period of protracted garnet growth (Kohn, 2009). The age from 

this sample is interpreted to date garnet growth in the Zaino Complex as result of burial 

along the Maz shear zone. 

 

Maz Shear Zone 

 Two samples were collected and analyzed from within the Maz shear zone.  

Sample AT-076b, a Grt-St-Ms-Plg-Bt schist within the Maz shear zone produced a 

garnet-whole rock Lu-Hf isochron of 429 ± 5 Ma (MSWD=2.6) (Figure 11B).  Garnets 
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from this sample are pre- to syn-kinematic with respect to the Maz shear zone (Figure 

7E, 8B, and 9B).  Lutetium distribution in this sample does not have a central peak and 

is concentrated on the rims of garnets, implying the age is biased towards the youngest 

period of garnet growth. Garnets from a mafic Grt-Bt-Plg-Amp orthogneiss (AT-015c) 

are post-kinematic with respect to the Maz shear zone and resulted in a Lu-Hf isochron 

of 428 ± 9 Ma (MSWD=5.6) (Figure 11C).  These two ages are interpreted to represent 

the age of garnet growth during the deformation along the Maz shear zone.  

 

Maz Complex 

 Two metapelites were sampled from the Maz Complex along a transect east from 

the Maz Shear zone. Resultant isochrons from samples AT-068 and AT-028 contained 

significant scatter and did not result in clear age interpretations. The oldest age 

calculated from sample AT-068 comes from a three-point isochron at 759 ± 54 Ma while 

the youngest calculated age is 591 ± 59 Ma.  Sample AT-028 produced a less scattered 

isochron with an oldest age of 1074 ± 6.4 Ma and a youngest age of 1030.9 ± 6.2 Ma.  

The scattered Lu-Hf ratios and major and trace element zoning in the two samples 

suggest they did not remain a closed system and/or experienced multiple metamorphic 

events.  
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Ramaditas 

 One Grt-Sil-Bt-Plg-Qtz gneiss, sample AT-047b, was chosen from within the 

Sierra de Ramaditas and produced a scattered isochron with an oldest age of 461 ± 1.7 

Ma and a youngest age of 449 ± 1.6 Ma (Figure 11F).  Lutetium zoning from this sample 

reflects a central peak, and asymmetric increases of lutetium towards each rim (Figure 

12E).  Despite the relative scatter in the produced isochron, this sample is clearly 

distinct from the ~420-430 Ma ages in the Zaino Complex and Maz shear zone and 

>591 Ma ages found within the Maz Complex.  The garnet age of 461-449 Ma is 

interpreted to bracket peak metamorphism within the Sierras de Ramaditas.  
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Figure 11: Garnet Lu-Hf ages.  A) Lu-Hf isochron for sample AT-021. B) Lu-Hf isochron for sample AT-
076. C) Lu-Hf isochron for sample AT-015. D) Scattered Lu-Hf ratios of sample AT-068. E) Scattered Lu-
Hf ratios of sample AT-028. F) Scattered Lu-Hf ratios of sample AT-047.  
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Figure 12: Garnet Lu zoning profiles.  A) Lutetium concentration as a function of distance in sample AT-
021. B) Lutetium concentration as a function of distance in sample AT-076 C) Lutetium concentration as a 
function of distance in sample AT-068. D) Lutetium concentration as a function of distance in sample AT-
028. E) Lutetium concentration as a function of distance in sample AT-047.   
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Monazite U-Pb Geochronology 

In order to date the timing of deformation related to the Maz shear zone and 

interpret the cause of scatter in garnet Lu-Hf isochrons, monazite U-Th-Pb analysis was 

conducted on the sensitive high-resolution ion microprobe reverse-geometry (SHRIMP-

RG) ion microprobe co-operated by U.S. Geological Survey and Stanford University in 

the SUMAC facility at Stanford University. Analyses of monazite were performed in-situ 

on cut pieces of polished thin sections, which were trimmed with a diamond wire saw 

and embedded in epoxy.  Secondary ions were sputtered from the target spot using an 

O2- primary ion beam, which was accelerated at 10 kV and had an intensity varying from 

2.2 to 3.1 nA. The analytical sputter pit was ~18 x 20 μm in diameter and a depth of ~2-

3 μm. Monazite trace element (Y, REE, U, Th) concentrations were calculated relative 

to standard 44069, which was calibrated based on the trace element concentration 

standard NAM monazite (Omarura, Namibia; Aleinikoff et al., 2012). Calculated model 

ages for monazite were standardized relative to standard 44069 (206Pb/238U age = 424 

Ma; Aleinikoff et al., 2006), which were analyzed repeatedly throughout the duration of 

the analytical session. Data reduction for geochronology follows the methods described 

by Ireland and Williams (2003) using the MS Excel add-in programs Squid 2.51 and 

Isoplot3.76 of Ken Ludwig (2009; 2012).  The measured 206Pb/238U was corrected for 

common Pb using 207Pb, whereas 207Pb/206Pb was corrected using 204Pb and a model 

Pb composition from Stacey and Kramers (1975). No additional error was propagated 

for the uncertainty in the common Pb composition. All reported 206Pb/238U and 

207Pb/206Pb model ages and uncertainties (2σ) include error summed in quadrature from 

the external reproducibility (1σ SD) of the standard 44069 during an individual analytical 
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session (24 hours).  Concentrations and isotopic data for monazite U – Pb analyses are 

listed in Table 5 

  

Maz Shear Zone 

Monazite in sample AT-076 from within the Maz shear zone occurs as elongate 

grains within the mylonitic foliation and no monazite was observed as inclusions within 

garnet.  Back-scatter electron (BSE) imaging of monazite (Figure 13) shows patchy and 

somewhat irregular zoning of BSE-light and BSE-dark regions.  Despite zoning 

irregularities, populations of monazite were indistinguishable based on rare earth 

element concentrations (Figure 14A).  Fourteen analyses produced 207Pb corrected 

206Pb/238U ages ranging from ~402 to ~428 Ma with no significant age or trace element 

differences among regions of differing back-scatter intensity. The concordia age 

resulted in 421 ± 4.2 Ma (MSWD = 1.03) while the inverse concordia age gave 435 ± 31 

Ma (MSWD = 4.0) with an overall weighted mean 206Pb/238U age of 418.7 ± 3.3 Ma 

(MSWD = 1.14) (Figure 14).  The weighted mean age is interpreted to date growth of 

monazite within the foliation of the Maz shear after initial garnet growth and during 

deformation.  
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Figure 13: Back scatter electron images of analyzed monazite from sample AT-076 from the Maz shear 
zone. Circles outline ~20 um analytical spots.  White bar at lower right corner is 10 um. 
 

 

 

 



 36 

 

 

 

 

 

Figure 14: Monazite geochronology of sample AT-076 from the Maz shear zone. A) REE distributions of 
analyzed spots normalized to chondritic compositions. B) Concordia diagram with calculated age of 421 ± 
4.2 Ma (MSWD = 1.03). C) Inverse concordia diagram with fitted age of 435 ± 31 Ma (MSWD = 4.0). D) 
Analyzed ages showing 2σ error bars and a weighted mean age of 418.7 ± 3.3 Ma (MSWD = 1.14). Open 
circles represent ages excluded from the weighted mean calculation while closed circles indicate ages 
included in the weighted mean calculation. 
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Maz Complex 

 Monazite from sample AT-068 of the Finca shear zone typically occurs as 

elongate grains within the mylonitic foliation and as inclusions in both garnet and 

staurolite.   Back scatter electron imaging of monazites (Figure 15) reveal sector-zoned, 

and patchy regions of BSE-light and BSE-dark regions.  Monazite are indistinguishable 

in rare-earth concentrations barring a single analysis from a monazite inclusion within 

an unfractured region in garnet.   Twenty-two analyses of matrix monazite and monazite 

inclusions along fractures in garnet and staurolite produced ages ranging between ~381 

and ~428 Ma, with weighted mean 206Pb/238U age of 410.6 ± 2.4 Ma (MSWD = 1.57) 

(Figure 16).  A single grain of monazite in garnet not associated with fractures gave a 

204Pb corrected 207Pb/206Pb age of 1149 ± 12 Ma.  A regression line plotted through 

matrix grains, inclusionary grains along fractures, and the discordant grain has an upper 

intercept of 1219 ± 88 Ma and a lower intercept of 404 ± 20 Ma (MSWD = 2.2).  The 

upper intercept is interpreted to represent the date monazite growth during initial 

metamorphism. The weighted mean age of matrix monazite is interpreted to date of 

monazite growth during deformation in the Finca shear zone.  
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Figure 15: Back scatter electron images of analyzed monazite from sample AT-068 from the Finca shear 
zone.  Circles outline ~20 um analytical spots.  White bar at lower right corner is 10 um. 
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Figure 16: Monazite geochronology of sample AT-068 from the Finca shear zone. A) REE distributions of 
analyzed spots from sample AT-068 normalized to chondritic compositions. B) Concordia diagram with 
calculated upper intercept age of 1219 ± 88 Ma and lower intercept age of 404 ± 20 Ma (MSWD = 2.2). C) 
Inverse concordia diagram calculated upper intercept age of 1214 ± 12 Ma and lower intercept age of 406 
± 18 Ma (MSWD = 2.2) D) Analyzed ages showing 2σ error bars and a weighted mean age of 410.6 ± 2.4 
Ma (MSWD = 1.57).  Open circles represent ages excluded from the weighted mean calculation while 
closed circles indicate ages included in the weighted mean calculation. 
 

 Monazite from sample AT-028 occurs as elongate grains within the matrix of the 

foliation and as coarse inclusions in garnet up to 200 microns in length.  Back-scatter 

electron imaging of monazite (Figure 17) show variable zoning patterns that can be 

broadly grouped into three main categories: 1) bright, oscillatory-zoned cores, 2) patchy 

overgrowths commonly forming around cores, 3) dark, unzoned asymmetrical rims on 

matrix grains.  Two general populations can be identified through rare-earth element 
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concentrations of distinctly different enrichments and a continuous range that lies 

between these two (Figure 18A). Twenty-five analyses from nineteen grains with zoned 

cores produced concordant 204Pb corrected 207Pb/206Pb ages that range from ~1191 to 

~1262 Ma.  The concordia plot resulted in an upper intercept age of 1236 ± 18 Ma 

(MSWD = 1.8), while the inverse concordia plot gave an upper intercept of 1230 ± 21 

Ma (NSWD = 1.8).  The weighted mean age for this population is 1227.1 ± 6.8 Ma 

(MSWD = 1.55) (Figure 18).  Dark, homogenous rims on matrix grains resulted in 

concordant 207Pb corrected 206Pb/238U ages ranging from ~379 to~424 Ma The 

concordia plot has a lower intercept age of 415 ± 33 Ma (MSWD = 1.8) while the inverse 

concordia plot has a lower intercept of 404 ± 16 Ma (MSWD = 1.8).  The weighted mean 

age of this population is 413.2 ± 5.0 Ma (MSWD = 7.68) (Figure 18) with rim analyses 

exhibiting higher REE concentrations compared to core populations.  Patchy 

recrystallized/overgrowth textures produced discordant ages that as young as ~900 Ma.  

The resultant ages and corresponding textures suggest that at least two distinct 

populations of monazite exist within sample AT-028 (Figure 18).  Oscillatory zoning is 

commonly observed in igneous monazite (Engi, 2017), and thus the weighted mean age 

of that texture could represent an igneous formation age.  The weighted mean for 

younger, concordant rim ages are interpreted to represent growth of metamorphic 

monazite in the matrix during shear within the Sierra de Maz.   
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Figure 17: Back scatter electron images of analyzed monazite from sample AT-028 within the Maz 
Complex. Circles outline ~20 um analytical spots.  White bar at lower right corner is 10 um. 
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Figure 18: Monazite geochronology of sample AT-028 from the Maz Complex. A) REE distributions of 
analyzed spots from sample AT-028 normalized to chondritic compositions. B) Concordia diagram with 
calculated upper intercept age of 1236 ± 18 Ma and lower intercept age of 415 ± 33 Ma (MSWD = 1.8). C) 
Inverse concordia diagram calculated upper intercept age of 1230 ± 21 Ma and lower intercept age of 404 
± 16 Ma (MSWD = 1.8) D) Analyzed ages showing 2σ error bars and a distinct monazite population with a 
weighted mean age of 413.6 ± 5.0 Ma (MSWD = 7.68). E) Analyzed ages showing 2σ error bars and a 
distinct monazite population with a weighted mean age of 1227.1 ± 6.8 Ma (MSWD = 1.55). Open circles 
represent ages excluded from the weighted mean calculation while closed circles indicate ages included 
in the weighted mean calculation. 
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Ramaditas Complex 

Monazite from sample AT-047 of the Ramaditas Complex occurs as rounded to 

elongate grains within the matrix foliation and as anhedral inclusions in garnet.  

Monazite shows patchy and irregular zoning of BSE-light and BSE-dark regions (Figure 

19).  A general spread in the rare-earth element concentrations does not correlate with 

age.  Fifteen grains produced concordant ages that range from ~418 and ~472 Ma.  The 

concordia age for this sample is 453.1 ± 6.5 MA (MSWD = 1.0) while the inverse 

concordia age is 453.2 ± 6.4 Ma (MSWD = 1.0) (Figure 20). Texturally distinct monazite 

cores gave a 207Pb corrected 206Pb/238U weighted mean of 461.6 ± 3.1 Ma (MSWD = 

1.6) and the monazite rims gave a 207Pb corrected 206Pb/238U weighted mean of 426.1 

± 7.0 Ma (MSWD = 1.02) (Figure 20).  The weighted mean age of the older population is 

interpreted to represent growth of metamorphic monazite during peak granulite facies.  

The weighted mean age of the younger population could be interpreted as 

metamorphism and deformation associated with the Ramaditas shear zone.   

Summary 

Monazite ages from three samples within the Sierra de Maz suggests that the 

deformation related to the Maz shear zone resulted in monazite growth across the 

range at ~415 Ma.  The majority of monazite ages from within the Sierra de Ramaditas 

do not overlap within uncertainty of monazite ages found within the Sierra de Maz.  

Proterozoic monazite was analyzed in two samples from within the Sierra de Maz and 

are absent from rocks of the Sierra de Ramaditas.  A summary table of all ages 

presented in this study can be found in Table 6. 
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Figure 19: Back scatter electron images of analyzed monazite from sample AT-047 with white circles 
outlining ~20 um diameter analysis spot.  White bar at lower right corner is 10 um. 
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Figure 20: A) REE distributions of analyzed spots from sample AT-047 normalized to chondritic 
compositions. B) Concordia diagram with calculated age of 453.1 ± 6.5 Ma (MSWD = 1.0). C) Inverse 
concordia diagram with fitted age of 453 ± 6.4 Ma (MSWD = 1.0). D) Analyzed ages showing 2σ error 
bars and a monazite population with a weighted mean age of 426.1 ± 7.0 Ma (MSWD = 1.02). E) 
Analyzed ages showing 2σ error bars and a monazite population with a weighted mean age of 461.1 ± 
3.1 Ma (MSWD = 1.60). Open circles represent ages excluded from the weighted mean calculation while 
closed circles indicate ages included in the weighted mean calculation. 
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Discussion 

Data from this study stand in contrast to the geotectonic model for the MARA 

terrane proposed by Rapela et al. (2016).  Direct evidence of a Cambrian orthogonal 

collision and ~525 Ma partial subduction is still lacking within units of northern Sierra de 

Maz.  Metamorphic ages presented in this study add to the growing dataset of ages that 

are not explained by the Rapela (2016) model. Silurian titanite ages within the Sierra de 

Maz were reported by Luccassen and Becchio (2003) and by Casquet et al. (2006), but 

were not related to a metamorphic event or deformation fabric.  This study dates 

Silurian-Devonian deformation and metamorphism within the Sierra de Maz and allows 

for direct comparisons to be made between the various ranges of the southern MARA 

terrane.  

Peak metamorphic conditions of Zaino, Maz, and Ramaditas metapelites are 

distinctly different according to observed assemblages, P-T approximations, and garnet 

zoning profiles.  The Zaino Complex contains the lowest metamorphic grades in the 

Sierra de Maz with the dominant assemblage of Grt-Bt-Ms-Plg-Qtz (Figure 7C) and rare 

staurolite-bearing metapelites in the most eastern outcrops (Figure 7D).  Pressure and 

temperature estimates from this unit range within uncertainty of the amphibolite to upper 

amphibolite facies and reflect the west to east increase in metamorphic grade 

suggested by pelitic index minerals (Figure 4).  Post kinematic, prograde growth-zoned 

garnet (Figure 8A and Figure 9A) within Zaino peak assemblages suggest a single 

phase of metamorphism.  Conversely, metapelites from the Maz Complex show 

evidence for multiple metamorphic events at higher temperatures and pressures than 

the Zaino Complex.  A west to east increase in metamorphic grade within the Maz 
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Complex is apparent in pelitic index minerals, with temperatures and pressure estimates 

starting in the upper amphibolite facies with the assemblage Grt-St-Ms-Plg-Bt ± Ky and 

ending in the granulite facies with the assemblage Grt-Bt-Plg-Kfs-Sil.  The presence of 

pre-kinematic garnets (Figure 7G) and complicated zoning profiles from samples AT-

068 (Figure 8C) and AT-028 (Figure 9D) indicate the unit experienced more than one 

metamorphic event.   Kyanite inclusions in garnet from an eastern granulite sample AT-

028 (Figure 7I) that contains sillimanite in the matrix implies that granulite conditions 

were attained during the most recent foliation-forming event.  Metapelites from the 

Ramaditas Complex bear evidence for the lowest metamorphic pressures of the three 

studied units.  The assemblage Cd-Grt-Bt-Plg-Qtz qualitatively suggests that peak 

metamorphic conditions were at least 2 kbars lower than the adjacent eastern units of 

the Maz Complex.  Pressure and temperature calculations from Ramaditas sample AT-

047 confirm that metamorphic pressures do not overlap within uncertainty with any 

other analysis within the Sierra de Maz (Figure 7).  Furthermore, garnet from the Sierra 

de Ramaditas are diffusively zoned (Figure 9E) indicating a single event of slow cooling 

from high-T conditions, unlike garnet from the Sierra de Maz.   
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Figure 21: Geologic map of the Sierra de Maz with the locations and ages of samples dated in this study.   
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The distribution of metamorphic ages is variable among the Zaino, Maz, and 

Ramaditas Complexes.  Of the three, the Zaino Complex has the simplest history with a 

single age of peak metamorphism inferred from the garnet Lu-Hf age of 423 ± 10 Ma 

(MSWD = 4.6) from sample AT-021 (Figure 21).  This garnet crystallization event 

overlaps within uncertainty of two additional garnet Lu-Hf ages from within the Maz 

shear zone  of 429 ± 5 Ma (MSWD = 2.6) and 428 ± 9 Ma (MSWD = 5.6).  When taken 

together, three similar ages of garnet growth are interpreted to record burial and 

metamorphism of the Zaino complex during oblique thrusting along the Maz shear zone. 

The Maz Complex contains an older history of metamorphism not found within 

the Zaino Complex.  Proterozoic garnet growth is inferred from the scattered isochron 

plot of sample AT-028 (Figure 11E).  This older history is also evident in a U-Pb 

weighted mean age of 1227.1 ± 6.8 Ma from monazite inclusions within garnets of the 

Maz Complex and overlaps with U-Pb ages from metamorphic overgrowths on detrital 

zircons first identified by Casquet et al. (2006).  The event recorded by these two 

phases places rough constraints on metamorphism of rocks comprising the Maz 

Complex.  The Maz Complex subsequently experienced thermal events from ~1.0 Ga 

anorthosite intrusions, at ~845 Ma and ~774 Ma by granitoid intrusions, and at ~570 Ma 

from carbonatite intrusions, all of which are currently absent from the Zaino and 

Ramaditas Complexes (Casquet et al., 2008a; Casquet et al., 2008b; Colombo et al., 

2009; Rapela et al., 2010).   

Ordovician metamorphic ages from the Ramaditas Complex are unique within 

the study area.  Garnet Lu-Hf isochrons from sample AT-047 resulted in an older three-

point isochron age of 461 ± 1.7 Ma and a younger three-point isochron of 449 ± 1.6 Ma.  
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While the validity of three-point isochrons may be suspect, when all analyses are taken 

together, the age of garnet growth for this region appears to be at least 30 my older 

than shear related metamorphism in the Sierra de Maz.  Ordovician signatures are also 

evident in the U-Pb ages of matrix monazite from sample AT-047 with concordia and 

Terra-Wasserburg calculated ages of 453.1 ± 6.5 Ma (MSWD = 1.0) (Figure 20B) and 

453.2 ± 6.4 Ma (MSWD = 1.0) (Figure 20C) respectively.  Despite the multitude of 

thermal events experienced by the Maz Complex, Ramaditas is unique in its dominantly 

Ordovician signature despite the presence of Silurian monazite.  Ordovician 

metamorphic ages, diffusively zoned garnets, and low pressure pelitic assemblages 

imply the Ramaditas Complex most likely recorded contact metamorphism related to 

Famatina arc magmatism.   

Silurian - Devonian metamorphism observed within all of the units in the Sierra 

de Maz was a result of transpressive deformation along the Maz shear zone.  Similar 

garnet and monazite ages in the Zaino Complex, Maz shear zone, Finca shear zone, 

and Maz Complex imply the inverted metamorphic gradient formed during deformation 

associated with Maz shear zone.  These age interpretations are supported by field-

based evidence of similar foliation orientations and sinistral-reverse kinematics.  Thus, it 

can be assumed that the west to east inverted metamorphic sequence is direct result of 

transpression.  Thermal modeling conducted by Thompson et al. (1997) demonstrated 

that low angles (≤30°) of oblique convergence (low ratios of pure/simple shear) can 

cause Barrovian to granulite conditions in transpressive orogens with long-lived periods 

of high temperatures.  Shallow lineations and steeply dipping foliations across the Sierra 

de Maz indicate that the angle of obliquity was, on average, less than 30° within the 
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Maz shear zone (Figure 4) and within the geometric bounds proposed by Thompson et 

al., (1997).  An unpublished Ar-Ar white mica cooling age of ~386.5 ± 1.0 Ma (E. 

Houlihan, written communication, 2018) from directly within the Maz shear zone implies 

temperatures stayed above mica closure for at least 50 my following garnet growth, 

consistent with the long-lived transpressive thermal regimes predicted by Thompson et 

al. (1997).  The extrusional dynamics presented by Thompson et al. (1997) could 

explain a nominally younger age of 410.6 ± 2.4 Ma from sample AT-068 suggesting that 

this area could have acted as a weak zone accommodating later shortening. 

Similar metamorphic PT trends as a function of structural distance (Figure 22) 

have been observed in other transpressive orogens such as Kaoko Belt in Namibia and 

the Kalinjala Shear Zone in South Australia (Goscombe and Gray, 2009), but are 

slightly different than what is seen in the Sierra de Maz.  In the Namibian orogen, 

granulite conditions are seen to exist within the orogen-scale median shear zone and 

diminish away from the shear zone in both directions.  Within the northern Sierra de 

Maz, metamorphic conditions between major blocks (Maz shear zone) are calculated to 

have reached upper amphibolite facies with granulite conditions several kilometers east.  

This difference could be a preservation problem, with the true orogen median shear 

zone being just east of the Sierra de Maz, lost to erosion or possibly buried under 

sediments.   
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Figure 22: Temperature and pressure across the Sierra de Maz (MSZ = Maz shear zone; FSZ = Finca 
shear zone).  
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Metamorphic ages from the Zaino and Maz Complexes do not support 

correlations with other proposed MARA units in the region (Figure 1).  The Taco 

Complex in the southwest Sierra de Maz (Figure 3) contains unpublished metamorphic 

ages spanning 470 - 440 Ma (P. Webber, written communication, 2018).  To the 

northwest within the Sierra de Umango, ~452 Ma monazite, ~446 Ma metamorphic 

zircon overgrowths (Varela et al., 2010) and ~440 Ma titanite (Luccasen & Becchio, 

2003) are different from ages found within the Zaino and Maz Complexes.  To the 

south, exposures in the Sierra de Pie de Palo (Figure 1) record oblique thrusting along 

low-angle shear zones between ~515 Ma and ~440 Ma (Mulcahy et al., 2011).  The age 

data require that the Zaino and Maz Complexes of the Sierra de Maz do not share the 

same metamorphic histories preserved in the Sierra de Pie de Palo, the Sierra de 

Umango, or the Taco Complex.  Continued work uncovering metamorphic cooling ages 

within the Taco Complex, the Sierra de Umango, and the Pie de Palo could provide the 

means to strengthen correlations between these ranges. 

 Considering the variable histories within the southern ranges of the MARA 

terrane that are unaccounted for in the Rapela et al. (2016) model, an additional model 

that accounts for Devonian-Silurian transpression must be proposed.  Given the current 

distribution of ages, it must be assumed that that the Sierra de Maz was at one time 

spatially isolated from its present-day neighboring ranges.  The southern ranges of the 

MARA terrane could represent composite terranes, with site-specific accretion and 

translation histories that span from the Cambrian through the Late Devonian.  On the 

basis of shared metamorphic ages, this study speculates that the Taco Complex, the 

Sierra de Umango, and the Sierra de Pie de Palo were more or less amalgamated 
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during the Ordovician.  The absence of Ordovician Famatina ages within the Sierra de 

Maz suggests that these rocks were far enough away or at an isolated structural level to 

avoid significant arc interactions.  Margin-scale transpression during the Silurian 

juxtaposed the Zaino Complex against the Maz Complex and deformed the contact 

aureole (Ramaditas Complex) of the Famatina arc.   Transpression continued and 

translated the Sierra de Maz into its current position between ranges that experienced 

an Ordovician Famatinian history (Figure 23).  Although the contact between the Zaino 

and Taco Complexes was not directly observed in this study, this model predicts a low 

angle thrust fault that is younger than the Silurian - Late Devonian deformation in the 

Zaino Complex.  Additionally, this model predicts right-lateral faulting within the Sierra 

de Umango which is, at first order, supported by Meira et al. (2012) who documented 

right-lateral reverse-transpression with the Sierra de Umagno in the Ordovician and 

Silurian.   

Figure 23: Map-view graphic of southern ranges of the MARA terrane depicting a simplified model for 
traspressiopnal deformation and displacement of the Sierra de Maz (Pc = Precorderilla, Fam = Famatina 
arc, P = Pie de Palo, T = Taco Complex, U = Sierra de Umango). 
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Conclusions 

 Metapelitic rocks from the Sierra de Maz contain evidence for regional 

transpression throughout the Silurian and Early Devonian.  Metamorphic crystallization 

related to this event bears no Ordovician Famatinian age signature, is apparent in 

fabrics across the entire range, and overprints older events that are preserved in relict 

metapelitic assemblages of the Maz Complex.  Garnet and a majority of monazite 

growth in the Sierra de Ramaditas are coeval with Famatinian arc magmatism and 

exhibit peak metamorphic conditions at distinctly lower pressures when compared to the 

Sierra de Maz.  Data from this study imply that Silurian-Devonian sinistral transpression 

was a major accretion process that shaped the MARA terrane and that continued 

deformation juxtaposed the Sierra de Maz adjacent to rocks recording Famatinian 

histories. 
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Table 1: Sample Locations 

 

 

Sample Latitude Longitude Sample Latitude Longitude
AT-004 -29.056 -68.782 AT-068 -29.186 -68.457
AT-005 -29.04 -68.783 AT-070 -29.187 -68.455
AT-006 -29.041 -68.782 AT-071 -29.193 -68.482
AT-007 -29.109 -68.749 AT-072 -29.192 -68.482
AT-009 -29.188 -68.466 AT-073 -29.195 -68.482
AT-011 -29.188 -68.47 AT-076 -29.201 -68.473
AT-013 -29.189 -68.473 AT-079 -29.188 -68.461
AT-015 -29.189 -68.474 AT-081 -29.187 -68.459
AT-017 -29.191 -68.494 AT-082 -29.186 -68.457
AT-019 -29.189 -68.5 AT-083 -29.188 -68.446
AT-020 -29.19 -68.508 AT-085 -29.19 -68.444
AT-021 -29.193 -68.514 AT-090 -29.19 -68.397
AT-026 -29.221 -68.366 AT-092 -29.19 -68.413
AT-028 -29.222 -68.367 AT-098 -29.194 -68.417
AT-032 -29.214 -68.374 AT-107 -29.197 -68.472
AT-041 -29.212 -68.388 AT-109 -29.201 -68.473
AT-042 -29.214 -68.379 AT-111 -29.193 -68.48
AT-044 -29.214 -68.378 AT-113 -29.199 -68.482
AT-046 -29.285 -68.282 AT-115 -29.21 -68.48
AT-047 -29.287 -68.283 AT-116 -29.195 -68.535
AT-048 -29.234 -68.26 AT-117 -29.195 -68.533
AT-049 -29.2 -68.38 AT-119 -29.194 -68.526
AT-056 -29.205 -68.391 AT-121 -29.157 -68.491
AT-057 -29.205 -68.393 AT-134 -29.158 -68.448
AT-059 -29.467 -68.493 AT-136 -29.156 -68.443
AT-060 -29.466 -68.492 AT-138 -29.158 -68.443
AT-062 -29.466 -68.489 AT-140 -29.16 -68.443
AT-064 -29.189 -68.48 AT-176 -29.403 -68.415
AT-065 -29.188 -68.477 AT-180 -29.403 -68.423
AT-066 -29.188 -68.471 AT-182 -29.401 -68.429
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Table 2: Sample Mineralogy 

 

Sample Chl Bt Grt St Ky Sil Crd Ms Kfs Plg Qtz Cpx Amp Ttn Tur Ap Mnz Rt Ilm Scp Cal
AT-004b X X X X X
AT-004c X X X X
AT-005 X X X
AT-009 X X X X X
AT-011 X X X X X X X
AT-013 X X X X X X X
AT-015 X X X X X X X
AT-017 X X X X X X X
AT-019 X X X X X X X
AT-020 X X X X X X X

AT-021a X X X X X X
AT-021b X X X X X X X
AT-021c X X X X X X
AT-026a X X X X X
AT-026b X X X X X X X
AT-028a X X X X X X X X X X
AT-030a X X X X X X
AT-030b X X X X X X
AT-032a X X X X X X
AT-032b X X X X X X X X
AT-032c X X X X
AT-041 X X X X X X
AT-042 X X X X X X X
AT-044 X X X X X X
AR-046 X X X X X
AT-047a X X X X X
AT-048a X X X X X
AT-048b X X X X X X X X
AT-049 X X X X
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Table 2 (cont.): Sample Mineralogy 

 

Sample Chl Bt Grt St Ky Sil Crd Ms Kfs Plg Qtz Cpx Amp Ttn Tur Ap Mnz Rt Ilm Scp Cal
AT-056 X X X X X X X
AT-057 X X X X X X X
AT-058 X X X X X X
AT-059 X X X X X X
AT-060 X X X X X X X X X X
AT-062 X X X X
AT-064 X X X X X X X X
AT-065 X X X X X X X
AT-066 X X X X X X X
AT-070 X X X X X X X X
AT-071 X X X X X X X
AT-072 X X X X X
AT-073 X X X X X X X X X

AT-076a X X X X X X X
AT-079 X X X X X X X X
AT-081 X X X X X
AT-082 X X X X X X X
AT-083 X X X X X X X X
AT-085 X X X X X X

AT-090a X X X X X
AT-090b X X X X X X
AT-092 X X X X X X X X
AT-098 X X X X X X
AT-107 X X X X X X X X X

AT-109a X X X X X X
AT-109b X X X X X X
AT109c X X X X X
AT109d X X X X X X X X
AT-109e X X X X X X
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Table 2 (cont.): Sample Mineralogy 

 

 

 

 

 

Sample Chl Bt Grt St Ky Sil Crd Ms Kfs Plg Qtz Cpx Amp Ttn Tur Ap Mnz Rt Ilm Scp Cal
AT-111a X X X X X X X X
AT-111b X X X X X X X X X
AT-111c X X X X X X X X
AT-113 X X X X X X X X
AT-115 X X X X X X X

AT-116a X X X X X X X
AT116b X X X X X X X
AT-116c X X X X X X X
AT-117 X X X X X X X
AT-119 X X X X X X X

AT-121a X X X X X X X
AT-121b X X X X X X X
AT-134 X X X X X X X

AT-136a X X X X X X X
AT-136b X X X X X X X X
AT-138 X X X X X X X
AT-140 X X X X X X X
AT-176 X X X X X X X
AT-178 X X X X X X X
AT-180 X X X X X X
AT-182 X X X X X X
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Table 3: Pressure – Temperature summary 

 

Sample Latitude Longitude Assemblage °C ±2s kbar ±2s cor σfit fit
El Zaino Complex

AT-021a -29.19322 -68.51361 Grt-Bt-Ms-Plg-Kfs 564 91 8.2 1.4 0.861 0.82 1.61
AT-021b -29.19322 -68.51361 Grt-Bt-Amp-Plg 489 71 7.3 1.6 0.559 1.45 1.54
AT-017 -29.19053 -68.49359 Grt-Bt-Ms-Plg-Chl 575 14 8.2 0.7 0.333 0.73 1.54

Maz Shear Zone
AT-073 -29.19457 -68.48200 Grt-Bt-Ms-Plg 602 90 8.3 1.4 0.800 0.86 1.61
AT-015 -29.18856 -68.47404 Grt-Bt-Plg-Amp 673 142 8.6 1.7 0.795 1.24 1.73
AT-076 -29.20108 -68.47318 Grt-Bt-Ms-Plg-St 653 27 7.7 1.1 0.742 0.30 1.61

Maz Complex
AT-066 -29.18795 -68.47084 Grt-St-Bt-Ms 706 34 9.0 1.5 0.928 0.53 1.61
AT-079 -29.18817 -68.46121 Grt-St-Bt-Ms-Plg-Chl 647 47 7.0 1.1 0.756 0.77 1.54
AT-068 -29.18615 -68.45705 Grt-St-Bt-Ms-Plg 694 27 7.2 1.1 0.840 0.72 1.54
AT-070 -29.18690 -68.45453 Grt-St-Bt-Ms-Plg-Chl 613 13 6.6 0.8 0.224 0.53 1.49
AT-083 -29.18825 -68.44635 Grt-St-Bt-Ms 616 51 6.7 1.0 -0.263 1.11 1.54
AT-098 -29.19443 -68.41742 Grt-Bt-Plg-Amp 676 112 7.8 1.4 0.486 0.57 1.96
AT-092 -29.18971 -68.41295 Grt-Bt-Plg-Amp 690 74 7.9 1.6 0.491 1.18 1.61
AT-056 -29.20469 -68.39146 Grt-Bt-Plg-Kfs-Ms 804 167 10.6 1.1 -0.016 0.97 1.96
AT-041 -29.21208 -68.38789 Grt-Plg-Amp-Bt-Kfs 749 120 9.0 1.6 0.581 0.25 1.73
AT-042 -29.21378 -68.37942 Grt-Plg-Amp 725 118 9.7 2.0 0.663 1.50 1.73
AT-044 -29.21397 -68.37800 Grt-Bt-Ms-Kfs 723 142 10.0 3.1 0.507
AT-028 -29.22158 -68.36735 Grt-Bt-Plg-Kfs 878 56 10.3 1.6 0.272 0.61 1.73

Ramaditas Complex
AT-047 -29.28666 -68.28350 Grt-Bt-Plg-Cd 856 160 5.5 1.5 0.261 1.10 1.96
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Table 4: Lu - Hf Summary 

Sample Mineral Lu (ppm) Hf (ppm) 176Lu/177Hf 176Hf/177Hf ±2σ
AT-021
423 ± 10 Ma MSWD = 4.6

Garnet 7.63 2.66 0.4064 0.285705 15
Garnet 5.73 1.93 0.4224 0.285818 15
Garnet 4.71 2.63 0.2549 0.284460 15
Garnet 3.19 1.91 0.2362 0.284326 15

Whole Rock 0.495 8.82 0.0080 0.282538 15
Whole Rock 0.432 4.96 0.0123 0.282634 15

AT-076
429 ± 5 Ma MSWD = 2.6

Garnet 6.73 0.560 0.3350 0.285201 15
Garnet 7.16 0.470 0.3566 0.285394 16
Garnet 6.35 0.470 0.3663 0.285452 15
Garnet 9.09 0.500 0.3806 0.285573 15

Whole Rock 3.51 0.530 0.0117 0.282588 15
Whole Rock 3.50 0.520 0.0162 0.282655 15

AT-015
428 ± 9 Ma MSWD = 5.6

Garnet 7.15 0.144 7.105 0.339633 21
Garnet 6.72 0.142 6.786 0.336439 20
Garnet 7.20 0.085 12.27 0.380860 26
Garnet 7.03 0.107 9.456 0.356599 23

Whole Rock 1.88 8.74 0.0305 0.282703 15
Whole Rock 1.97 1.75 0.1595 0.283902 15

AT-068
591 ± 59 Ma, 759 ± 54 Ma

Garnet 6.51 2.09 0.4421 0.287954 15
Garnet 6.84 2.24 0.4336 0.287606 15
Garnet 6.69 2.16 0.4396 0.286907 15
Garnet 6.58 1.80 0.5203 0.287443 15

Whole Rock 0.423 10.6 0.0057 0.281706 15
Whole Rock 0.236 3.47 0.0097 0.281799 15

AT-028
1031 ± 6.2 Ma, 1074 ± 6.4 Ma

Garnet 1.46 0.730 0.2828 0.28732 15
Garnet 1.81 0.850 0.3016 0.28753 15
Garnet 2.00 0.950 0.2998 0.28748 15
Garnet 1.81 0.880 0.2937 0.28761 15

Whole Rock 0.050 6.710 0.0012 0.28168 15
Whole Rock 0.040 1.120 0.0049 0.28173 15

AT-047
449 ± 1.6 Ma, 461 ± 1.7 Ma

Garnet 10.55 0.810 1.854 0.298613 16
Garnet 11.49 0.840 1.957 0.299025 16
Garnet 11.84 0.710 2.378 0.302597 16
Garnet 11.36 0.710 2.291 0.302277 16

Whole Rock 0.270 6.21 0.0063 0.282584 15
Whole Rock 0.180 1.04 0.0238 0.282992 15
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Table 5: U - Pb Summary 

 

 

 

 

 

 

 

Concentrations Atomic Ratios Age (Ma)
Spot U Th Th/U 206Pb f 206 238U/206Pb % err 207Pb/206Pb % err 206Pb/238U % err 206Pb/238U err abs Weighted Average age

AT-068 (ppm) (ppm) (ppm) (%)  (1s)  (1s)  (1s)  (1s)  (2s)
68-36A.1 8568 9961 1.2 114 4.8 61.49 19.8 0.0577 114.3 0.0157 19.9 99 21 410.6 ± 1.4 Ma
68-05A.1 574.3 2607 4.5 15 -0.3 32.23 45.4 0.0207 77.6 0.0300 45.4 198 89 MSWD: 1.57
68-14B.1 3815 59150 15.5 200 8.9 14.96 2.4 0.0709 47.0 0.0622 3.8 381 14
68-12C.1 2973 31970 10.8 158 1.1 16.01 1.1 0.0526 4.1 0.0617 1.2 387 4
68-08A.1 4435 36268 8.2 237 2.9 15.63 0.8 0.0650 5.2 0.0630 0.8 389 3
68-03C.1 2061 12485 6.1 110 -0.2 16.11 3.3 0.0505 6.5 0.0619 3.3 389 13
68-04A.1 2411 24146 10.0 133 1.8 15.33 0.8 0.0540 5.0 0.0640 0.8 400 3
68-03B.1 3676 33052 9.0 203 0.6 15.49 1.0 0.0556 1.5 0.0643 1.0 401 4
68-14A.1 2728 33828 12.4 151 7.0 14.43 1.4 0.0529 15.5 0.0643 1.5 403 6
68-11A.1 2780 23694 8.5 154 0.4 15.44 1.2 0.0553 1.3 0.0646 1.2 403 5
68-12B.1 4261 58848 13.8 238 7.9 14.15 3.2 0.0702 46.9 0.0663 3.8 406 19
68-03A.1 3534 25614 7.2 198 0.9 15.22 1.2 0.0567 1.8 0.0653 1.2 407 5
68-17A.1 2553 24877 9.7 143 0.5 15.25 1.0 0.0555 1.5 0.0653 1.1 407 4
68-13A.1 3181 30587 9.6 179 0.4 15.17 0.9 0.0566 1.2 0.0658 0.9 410 4
68-16B.1 2904 25593 8.8 164 1.2 15.03 1.3 0.0556 2.3 0.0658 1.3 410 5
68-17B.1 2635 23572 8.9 149 3.0 14.76 0.8 0.0519 4.8 0.0655 0.8 410 3
68-12D.1 3271 27533 8.4 185 2.7 14.79 0.8 0.0571 3.3 0.0659 0.8 411 3
68-12A.1 2622 26280 10.0 149 0.3 15.07 1.3 0.0551 1.3 0.0661 1.3 413 5
68-13B.1 2955 25129 8.5 170 1.0 14.80 1.0 0.0569 1.9 0.0671 1.0 417 4
68-08C.1 2767 20944 7.6 159 0.3 14.86 1.3 0.0545 1.4 0.0670 1.3 418 5
68-08D.1 4073 26565 6.5 235 2.2 14.56 1.3 0.0539 3.5 0.0670 1.3 419 5
68-16A.1 2059 21512 10.4 119 0.4 14.81 1.0 0.0540 1.7 0.0672 1.0 420 4
68-18B.1 2752 28763 10.5 162 0.5 14.50 2.1 0.0561 1.9 0.0687 2.1 428 9
68-08B.1 2847 21496 7.6 170 0.3 14.38 0.9 0.0546 1.3 0.0693 0.9 432 4
68-18A.1 2405 15758 6.6 346 0.9 5.92 0.8 0.0781 0.6 0.1686 0.8 998 7
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Table 5 (cont.): U – Pb Summary 

 

 

 

 

Concentrations Atomic Ratios Age (Ma)
Spot U Th Th/U 206Pb f 206 238U/206Pb % err 207Pb/206Pb % err 206Pb/238U % err 206Pb/238U err abs Weighted Average age

AT-047 (ppm) (ppm) (ppm) (%)  (1s)  (1s)  (1s)  (1s)  (2s)
47-14A.1 2328 18112 7.8 113 1.3 17.50 13.4 0.0552 11.0 0.0565 13.4 354 47 461.6 ± 3.1 Ma
47-08A.1 2595 23252 9.0 149 1.7 14.66 1.6 0.0547 7.6 0.0670 1.7 418 7 MSWD: 1.6
47-15A.1 1747 14417 8.3 102 0.2 14.64 1.5 0.0570 1.2 0.0683 1.5 425 6 426.1 ± 7 Ma
47-03A.1 2173 17327 8.0 128 0.5 14.50 1.7 0.0553 1.8 0.0686 1.7 428 7 MSWD: 1.02
47-09A.1 1497 11905 8.0 90 0.5 14.18 2.0 0.0577 1.6 0.0704 2.0 437 8
47-07A.1 2645 18281 6.9 161 0.1 14.14 1.5 0.0563 1.5 0.0707 1.5 440 6
47-17A.1 2193 15701 7.2 133 0.1 14.12 1.0 0.0559 1.1 0.0707 1.0 441 4
47-17C.1 2003 18108 9.0 122 0.2 14.03 1.9 0.0572 1.1 0.0713 1.9 443 8
47-02A.1 2048 16763 8.2 126 0.1 13.97 1.0 0.0556 1.2 0.0715 1.0 445 4
47-17B.1 1867 9908 5.3 118 0.2 13.63 1.1 0.0569 1.1 0.0733 1.1 456 5
47-04A.1 2230 15869 7.1 141 0.0 13.62 1.4 0.0557 0.9 0.0734 1.4 457 6
47-15B.1 1663 9658 5.8 105 0.1 13.56 0.8 0.0563 1.2 0.0737 0.8 458 4
47-05B.1 1890 15570 8.2 120 0.1 13.51 0.8 0.0563 1.1 0.0739 0.8 460 4
47-05C.1 1862 12864 6.9 119 0.0 13.48 0.9 0.0555 1.1 0.0741 0.9 461 4
47-08B.1 1904 16310 8.6 123 -0.1 13.35 0.8 0.0550 1.2 0.0748 0.8 466 4
47-05A.1 1601 15183 9.5 105 0.0 13.15 1.0 0.0552 1.3 0.0759 1.0 472 5

Concentrations Atomic Ratios Age (Ma)
Spot U Th Th/U 206Pb f 206 238U/206Pb % err 207Pb/206Pb % err 206Pb/238U % err 206Pb/238U err abs Weighted Average age

AT-076 (ppm) (ppm) (ppm) (%)  (1s)  (1s)  (1s)  (1s)  (2s)
76-05A.1 3147 13798 4.4 174 0.3 15.49 2.0 0.0563 1.9 0.0645 2.0 402 8 418.7 ± 3.3 Ma
76-06A.1 4317 30842 7.1 240 0.1 15.43 3.9 0.0547 1.0 0.0648 3.9 405 16 MSWD: 1.14
76-06B.1 3415 12904 3.8 190 0.2 15.37 4.4 0.0560 1.0 0.0650 4.4 405 17
76-07A.1 3583 11590 3.2 202 0.1 15.24 1.9 0.0558 0.8 0.0656 1.9 409 8
76-03B.1 3212 12469 3.9 182 0.2 15.12 1.4 0.0558 0.9 0.0660 1.4 412 6
76-03C.1 2838 14470 5.1 162 0.2 15.04 1.2 0.0564 0.9 0.0664 1.2 414 5
76-04a.1 3055 11045 3.6 177 0.2 14.82 1.1 0.0563 0.9 0.0674 1.1 420 5
76-02A.1 2491 9839 4.0 144 0.1 14.83 1.6 0.0564 0.9 0.0675 1.6 420 7
76-03A.1 2736 13320 4.9 159 0.1 14.78 1.3 0.0549 1.1 0.0676 1.3 422 5
76-08A.1 4143 22688 5.5 241 0.2 14.73 1.4 0.0556 0.9 0.0678 1.4 423 6
76-10A.1 3672 17579 4.8 214 0.2 14.72 2.2 0.0563 1.5 0.0679 2.2 423 9
76-09A.1 2462 10491 4.3 144 0.3 14.67 1.3 0.0568 0.9 0.0681 1.3 424 5
76-08B.1 4359 24239 5.6 255 0.0 14.67 1.2 0.0551 0.8 0.0681 1.2 425 5
76-08A.2 2872 24016 8.4 169 0.1 14.56 1.8 0.0543 1.2 0.0685 1.8 428 8



 69 

 

Table 5 (cont.): U – Pb Summary 

 

 

 

 

 

 

Concentrations Atomic Ratios Age (Ma)
Spot U Th Th/U 206Pb f 206 238U/206Pb % err 207Pb/206Pb % err 206Pb/238U % err 206Pb/238U err abs Weighted Average age

AT-028 (ppm) (ppm) (ppm) (%)  (1s)  (1s)  (1s)  (1s)  (2s)
28-09A.2 2121 23486 11.1 116 0.3 15.70 1.3 0.0549 1.5 0.0635 1.3 397 5 413.2 ± 5 Ma
28-14A.2 2063 32781 15.9 113 0.3 15.59 1.8 0.0559 1.4 0.0640 1.8 399 7 MSWD: 7.68
28-04A.1 1316 17576 13.4 75 2.0 14.87 1.6 0.0565 4.4 0.0660 1.6 411 7 1227.1 ± 6.8 Ma
28-03B.2 940 32067 34.1 55 0.5 14.67 1.5 0.0573 4.3 0.0680 1.5 423 6 MSWD: 1.55
28-09a.1 1815 20322 11.2 108 0.5 14.39 1.2 0.0554 2.3 0.0692 1.2 431 5
28-06A.2 905 17435 19.3 84 1.3 9.18 6.3 0.0711 2.9 0.1088 6.3 658 41
28-14A.1 560 39184 69.9 57 1.0 8.39 1.8 0.0699 2.6 0.1190 1.8 719 13
28-07A.2 1225 23442 19.1 130 1.1 8.02 4.2 0.0720 1.7 0.1245 4.2 750 31
28-11A.1 538 31063 57.7 64 1.2 7.18 4.0 0.0734 3.2 0.1388 4.0 832 32
28-03A.1 606 22367 36.9 76 1.0 6.74 1.4 0.0753 1.4 0.1481 1.4 884 12
28-07B.1 604 16719 27.7 81 1.0 6.35 3.0 0.0759 1.1 0.1569 3.0 934 27
28-08B.1 2465 22110 9.0 377 1.0 5.56 1.3 0.0808 0.8 0.1795 1.3 1057 13
28-03B.1 696 31217 44.8 110 0.7 5.37 1.7 0.0811 1.1 0.1859 1.7 1093 18
28-06B.1 983 18955 19.3 157 0.6 5.35 2.4 0.0802 0.7 0.1867 2.4 1098 26
28-05A.1 743 24220 32.6 120 0.9 5.27 1.2 0.0806 1.2 0.1887 1.2 1110 12
28-10A.1 560 21900 39.1 94 0.1 5.10 1.2 0.0786 0.9 0.1958 1.2 1153 13
28-02a.1 888 23287 26.2 150 0.4 5.07 1.3 0.0818 0.7 0.1974 1.3 1157 15
28-03C.1 692 20810 30.1 119 0.4 4.99 1.4 0.0813 0.9 0.2002 1.4 1174 15
28-06A.1 750 19435 25.9 130 0.3 4.93 1.2 0.0814 0.8 0.2027 1.2 1187 14
28-13A.1 1488 20797 14.0 259 0.3 4.92 1.4 0.0815 0.6 0.2029 1.4 1188 16
28-08A.1 1097 16868 15.4 191 0.4 4.90 1.6 0.0827 1.3 0.2039 1.6 1193 19
28-10A.2 1072 33311 31.1 187 0.0 4.91 1.2 0.0798 0.7 0.2035 1.2 1194 13
28-10B.1 2855 24926 8.7 506 0.2 4.84 1.2 0.0818 0.4 0.2066 1.2 1209 14
28-10C.1 1584 24342 15.4 285 0.1 4.77 1.1 0.0812 0.5 0.2093 1.1 1225 13

28-07a-1.1 3436 19535 5.7 629 0.0 4.69 1.5 0.0811 0.4 0.2129 1.5 1246 18



 70 

 

Table 6: Lu – Hf and U – Pb Summary 

 

 

Sample Unit Latitude Longitude Age (Ma) ± MSWD Comments
Lu-Hf Grt

AT-021 Zaino Complex -29.19322 -68.51361 423 10 4.6
AT-015 Maz Shear Zone -29.18856 -68.47404 428 9 5.6
AT-076 Maz Shear Zone -29.20108 -68.47318 429 5 2.6
AT-068 Maz Complex -29.18615 -68.45705 759 54 - oldest grt 
AT-068 591 59 - youngest grt
AT-028 Maz Complex -29.22158 -68.36735 1074 6.4 - oldest grt 
AT-028 1031 6.2 youngest grt
AT-047 Ramaditas -29.28666 -68.28350 461 1.7 - oldest grt 
AT-047 449 1.6 - youngest grt

U-Pb Mnz
AT-076 Maz Shear Zone -29.20108 -68.47318 418.7 3.3 1.14 weighted mean
AT-068 Maz Complex -29.18615 -68.45705 410.6 2.4 1.57 weighted mean
AT-068 1214 12 2.2 upper intercept
AT-028 Maz Complex -29.22158 -68.36735 413.2 5 7.68 weighted mean
AT-028 1227.1 6.8 1.55 weighted mean
AT-047 Ramaditas -29.28666 -68.28350 426.1 7 1.02 weighted mean
AT-047 461.6 3.1 1.6 weighted mean
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