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Abstract

Cancer has long been a significant problem that has affected our world’s population for years
and continues to this day. With the number of cases expected to increase annually there is a
societal pressure to find effective treatment methods for eliminating cancer. Current forms
of cancer treatment tend to cause detrimental effects to the human body and are usually
quite expensive and long lasting, some costing upwards of $30,000 over an 8 week period. A
more recently established form of cancer treatment known as photodynamic therapy is an
effective treatment option for ridding cancers that lie on or just below the surface of the skin.
Photodynamic therapy is usually done as an outpatient procedure, on average costing be-
tween $2,500-3,000 and can eliminate all traces of cancer in as little as a single visit. A major
drawback to this form of cancer treatment is the lack of efficient photosensitizers, the light
absorbing organic compounds which initiate the destruction of cancer cells. Our research is
based on establishing a computational strategy for predicting the effectiveness of new pho-
todynamic therapy photosensitizers. We focus our study on a set of photosensitizers known
as boron-dipyrromethene (BODIPY) dyes. These dyes are fluoresecent compounds used
throughout a variety of photochemical applications such as photovoltaics, biological imag-
ing, and more recently photodynamic therapy. We apply computational chemistry methods
to calculate electronic properties we can use to rate the performance of these photosensi-
tizers. First, we begin with a fundamental understanding of what photodynamic therapy is
and the components that make up the treatment method. Then we move to descriptions of
the computational methods we implement, inlcuding density functional theory (DFT), time-
dependent density functional theory (TDDFT), restricted open-shell Kohn-Sham method
(ROKS), and constrained density functional theory (CDFT). Next we investigate the par-
allelity between the S1 excited state potential energy surfaces predicted by TDDFT and
ROKS. Finally, we investigate the singlet oxygen 1O2 photosensitization characteristics of
a particular BODIPY derivative. This study will help future scientists approach the issue
of finding the top candidate photosensitizers for use in photodynamic therapy through a
rational design process rather than a repetitive trial and error based approach.
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1 Introduction

A significant problem has plagued the world’s population for centuries, and has continued

to affect us to this day. There were an estimated 1.7 million cases of cancer diagnosed in the

United States during 2016, according to the National Cancer Institute.2 With the number of

cases expected to increase annually, scientists and medical professionals are working towards

finding effective interventions to cancer. There are several treatment options currently in

use such as chemotherapy, radiation therapy, and surgery. While these methods do work,

they tend to be expensive and more often than not cause detrimental effects to the human

body. Patients endure months to years of chemotherapy and radiation, with undesireable

side effects.3–6 There are some methods to cope with the side effects,7 but it is not enough

to cover all the issues that come with chemotherapy. The cost for these types of treatments

can be an issue for those without sufficient insurance coverage, especially for individuals who

require multiple visits.8 The cost and after-effects of surgery can be as unfavorable as the

other options, even if multiple visits are not required.9 Though surgery has the ability to clear

certain cancerous tumors from a region and prevent metastasis,10 it may cause permanent

damage to one’s body,11 and surgery may also need to be combined with other remedies to

avoid recurrence.12

In light of these unattractive options, there is a societal pressure to find methods that

cause minimal harm while still eliminating cancer from the body. One promising method

is photodynamic therapy (PDT). PDT is a relatively non-invasive form of cancer treatment

which involves administering a PDT agent (photosensitizer) intravenously into a region where

the cancer cells are present. A light of specific wavelength is then shined on that region which

initiates a photochemical reaction that destroys cancer cells (Figure 1.1).

This method is used to treat cancers which lie on or just below the surface of the skin

since most of the clinically available PDT agents are only able to absorb light at short

wavelengths.13–15 Light of longer wavelengths, such as infrared (IR), are able to penetrate

deeper than light of shorter wavelengths. Currently this form of cancer treatment is being
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Figure 1.1: Simplified schematic of the process of PDT. Triplet oxygen (3O2) is the electronic
ground state of oxygen, while singlet oxygen (1O2) is the highly reactive form of oxygen.

tested as a method

to treat cancers of the skin, prostate, brain, lungs, mouth, and other areas that can be

made accessible by light. PDT does exhibit some of the same adverse side effects as other

treatment methods such as nausea, skin sensitivity, scarring, and swelling, but these tend

to be less severe compared to other treatment options.16 The primary side effect of PDT

tends to be sensitivity to light. For several weeks after the treatment after the treatment,

patients need to limit their exposure to the outdoors and take extra precautions to avoid

bright sources of light.13–15 The side effects of PDT resolve more rapidly than those of

more extended treatment methods such as chemotherapy.6, 16 PDT does minimal damage to

healthy tissue surrounding the treatment site in comparison to other treatment methods due

to its high specificity. PDT is a rapidly growing field, bolstered by the increasing amount of

research and funding being dedicated to its development.

1.1 The What, Why and How of Photosensitizers

PDT operates by illuminating the targeted area with light of a specific wavelength, inducing

photochemical reactions that destroy cancer cells within the region. In order to achieve this

elimination, PDT uses a chemical known as a “photosensitizer”. Photosensitizers (PS) are

molecules which can absorb light to become energetically excited, and then use that energy to

react, fluoresce, or transfer energy to other molecules. In PDT, light of a specific wavelength

electronically excites the PS which then reacts with nearby oxygen (O2) molecules to form

2
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Figure 1.2: Number of articles involving PDT published over the last 30+ years

singlet oxygen (1O2).
1O2 is an electrophilic, highly reactive form of oxygen that damages

critical components of cells, both cancerous and healthy. Though damage to healthy tissue

is not a desirable trait for cancer treatments, PDT is able to target a specific region, causing

minimal damage to healthy cells. The precision of PDT is due to the half-life of 1O2 being

so small (0.6× 10−6µs)17 that the amount of healthy tissue damaged is limited to only those

cells that lie in close proximity to the illuminated area. Precision is also dependent on how

small of an area the light can be concentrated or accessed.

When designing a new PS for singlet oxygen photosensitization, one must first consider

the process that a PS undergoes to generate 1O2. The principal photochemical process that

occurs to generate 1O2 is initiated by the 1PS ground state absorbing incoming light. The

3



absorption of light causes the ground state 1PS to become excited into its S1 excited state

(1PS∗). Once excited, intersystem crossing occurs to generate the 3PS state. The 3PS state

then transfers its energy to 3O2 to form 1PS and 1O2 electronic states. Lastly, 1O2 proceeds

to damage cell components via oxidation, inducing apoptosis, and the leftover PS and clears

the body in a few weeks.1 This type of reaction resulting in the production of 1O2 is known as

a type II reaction. Type II reactions may also consists of the formation of an oxidized PS and

a superoxide ion, created by the PS transferring an electron to an oxygen molecule. There

Figure 1.3: Jablonski diagram for the different electronic states involved in PDT.

is the possibility that the excited PS (1PS∗) may transfer an electron to 3O2 immediately

from the S1 excited state (1PS∗) to form a doublet/doublet cation/anion state (2PS•+ 2O•−
2 ).

This alternate process is known as a type I reaction. Type I reactions yield radical ions

due to either hydrogen atom or electron transfer. Both of these photochemical processes are

illustrated in the Jablonski diagram provided in Figure 1.3.

4



1.2 The Photosensitizers

When designing a PS for PDT, the ultimate concern is how well it will perform in reducing

cancer cells. A major concern should be placed on the quantum yield of 1O2 since it is the

necessary component to eliminate cancer cells.

Φ1O2
=

1O2 molecules generated

absorbed photons
(1.1)

Though a high quantum yield of 1O2 is a primary qualification for PS, there are many other

properties that one should consider. Several studies have assessed desirable traits to consider

when choosing PS that are to be used in PDT.1, 18 In order for a PS to be successful, one

must consider both chemical and clinical traits in the design process. Some of the most

important properties to consider when designing PS are described in Table 1.1.19, 20

Table 1.1: Properties to consider when designing PS.

Chemical Properties

High quantum yield of triplet state formation and high triplet state energy
High singlet-to-triplet intersystem crossing efficiencies

Efficient and high yielding synthesis
Simple and stable compounds that are well characterized and have a constant composition

High quantum yield of singlet oxygen

Photophysical Properties

Strong absorption (High extinction coefficient in red or near infrared region (620-850nm))
Deep tissue penetration

Minimal photobleaching (decomposition of dye due to light)

Clinical Properties

Minimal side-effects (e.g. skin photosensitivity and pain)
High retention/aggregation in diseased tissue
Rapid clearance from body after treatment

Minimum dark toxicity (negligible cytotoxicity in absence of light)
Soluble in biological media

5



There are several different PS currently being used in the field of PDT. One of the first

and most popular ones is porfimer sodium (Photofrin, see Figure 1.4). Photofrin brought

PDT to a worldwide audience21 and set the stage for all modern PS used in oncologic PDT.

After clinical trials Photofrin was approved for treating bladder, skin, lung and esophageal

tumors. One of the best qualities of Photofrin is the fact that it accumulates to a greater

degree in tumors than in healthy tissue, which minimizes the destruction of healthy tissue

(assuming that not so much of the PS is injected that it overflows into healthy tissue as

H
N
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NH

CH3

CH3

CH3(H2C)2COONa

(H2C)2OC

H3C

R

H3C

O

R = OH CH

CH3

and/or C
H

CH2 n = 0 to 6

n

Figure 1.4: Structure of Photofrin

well). One drawback is that Photofrin has a low absorbance at 630nm, thereby requiring an

extended period of irradiation from a higher energy source to activate it. The weaknesses

of Photofrin gave rise to the research and development of more efficient PS. Studies have

proposed other
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7



porphyrin and non-porphyrin related PDT agents for clinical use, but many fell short of

optimal status due to: administration issues, high photobleaching rates, synthetically in-

accessible, or having low light-to-dark toxicity ratios (i.e. PS will not be harmful until

light beam is applied).22–27 Many PS which perform excellently have been investigated and

thoroughly reviewed by Sibata et al.1

1.3 BODIPY Dyes

A new class of photoactive organic compounds has emerged known as boron-dipyrromethene

(BODIPY) dyes. Discovered in 1968 by Treibs and Kreuzer,28 these fluorescent dyes have

found use across a vast range of applications,29 and possess

N
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F F

1
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3
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6

78

Figure 1.6: The structure of the BODIPY
chromophore

many ideal properties for applications as PS

in PDT.19 The diversity of applications for

which BODIPY dyes are used can be at-

tributed to how easily one can tune the pho-

tophysical, spectroscopic and chemical prop-

erties via moderately simple synthetic meth-

ods.30, 31 BODIPY dyes are currently being

used in applications that primarily involve

fluorescence and excitation energy transfer.

BODIPY dyes are quite stable in biological environments, being mostly unaffected by the

surrounding pH and polarity, and they can be attached to proteins which aggregate in specific

parts of the body. For imaging, BODIPY dyes strongly absorb light and emit sharp fluores-

cence peaks with high fluorescence quantum yields. The ability to synthesize water-soluble

BODIPY derivatives able to permeate into biological cells and target tumor cells made them

attractive candidates for use as PS in PDT. Burgess et al. published work summarizing

the properties of halogenated & aza-/non-halogenated BODIPY dyes for use in PDT.19 In

the time since Burgess’ review of BODIPY dyes for PDT, there have been many studies
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Figure 1.7: Applications of BODIPY dyes.

investigating the use of BODIPY dyes as PS. Several studies have found that BODIPY dyes

are able to eliminate cancer cells when being used as a PS for treating breast cancer.32, 33

Though there are a variety of applications that BODIPY derivatives can be used for, one of

the most promising is their use in PDT. For the rest of this work we will be focusing on the

properties of BODIPY derivatives as they relate to PDT and the production of singlet oxy-

gen, while simultanenously examining the computational chemistry methods that are used

to predict their photophysical properties (covered in Chapter 2).

1.4 Preface

All of the research performed in this thesis was accomplished using computational chemistry

methods. Computational chemistry is a branch of chemistry that uses computer models

to understand chemical systems. These methods are rooted in the fundamental laws of

chemistry and physics. A fundmental calculation in computational chemistry is solving the

Schrödinger equation for a specific chemical system. There are many computational methods

that range from highly accurate ones which are quite computationally expensive (such as

9



ab initio methods) to simple and cheap methods (such as molecular mechanics). Density

functional theory (DFT) is the foundation for many of the calculations in this study. DFT is

much more accurate than molecular mechanics methods, but is generally less accurate than ab

initio methods. DFT is a middle ground for calculating molecular properties with reasonable

accuracy without sacrificing exorbitant amounts of time or computational power. Extensions

of ground state DFT permit the calculation of a variety of properties for chemical systems.

DFT based calculations are able to predict many of the properties that can be physically

measured or observed in a lab. DFT can provide very accurate results for geometries,

energies, and dynamics in comparison to those properties obtained via experimental methods

(depending on the experimental conditions that the values were measured at). The majority

of values calculated in this thesis are energies (excitation, emission, coupling, vibrational,

etc.). Aside from energies, we also calculate and interpret the structures and dynamics to

better understand PDT functionality.

The major questions we address in this work are as follows:

• What are the benefits and limitations to time-dependent and time-independent density

functional methods for dye photophysics?

• What electronic excited state properties are most important for photosensitizer opti-

mization?

• What are the singlet oxygen generation properties for a specific BODIPY dye?

– How do we calculate the singlet oxygen generation properties for this BODIPY

dye?

• What advantages exist for using time-independent density functional methods over

time-dependent ones?

To address these questions, we perform calculations to compare time-dependent/time-

independent density functional methods directly for BODIPY dyes. We examine how these
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methods perform for calculating excited state properties and then compare the results to

experimental values and to each other to distinguish which method (if either) is more accu-

rate and how they differ from each other. We computationally examine the individual states

that a PS and oxygen molecule occupy during the process of generating singlet oxygen. By

calculating each of these individual states and the couplings between the states we are able

to estimate the rate at which singlet oxygen would be generated for a specific BODIPY

chromophore. Finally we examine in more detail why a time-independent density functional

method can be effective when investigating electronic excited states. With this thesis we

hope to provide useful information to those who are designing PS for use in PDT. We also

hope to give insightful knowledge about the benefits and limitations of time-dependent and

time-independent density functional methods to those who are developing such methods.

This thesis provides an examination of how we can calculate quantifiable measures of PS

quality and how accurate those values can be. Our findings can help researchers develop

streamlined methods for sorting through a variety of PS to be used in PDT, significantly

cutting down on time spent conducting experiments on potential PS that may end up being

ineffective. This thesis brings new information about the density functional based methods,

the photophysical properties of BODIPY dyes, and the singlet oxygen generation character-

istics that will support researchers and industry professionals in the field of PDT and density

functional based method development.

1.5 The Structure of This Thesis

The structure of this thesis is divided into 4 sections. Chapter 2 describes the different

computational methods used during the course of this thesis work. Chapter 3 compares

two computational methods in relation to BODIPY dyes’ excited state energies. Chapter 4

presents the calculated properties associated with the singlet oxygen generation of BODIPY

dyes. Finally, Chapter 5 closes with the validation of restricted open-shell Kohn-Sham

method for electronic states involving charge transfer.
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Figure 1.8: Types of chemical properties that can be calculated by DFT based methods.

In Chapter 2, we cover the fundamentals of the 4 major methods used during this research:

Density functional theory (DFT), the restricted open-shell Kohn-Sham method (ROKS),

time-dependent density functional theory (TDDFT), and constrained density functional the-

ory (CDFT). The basis from which these methods were created are discussed, highlighting

the fundamental characteristics that differentiate these methods from one another. Also

covered in this chapter is the range of chemical properties each method calculates. Then

we describe how each method is invoked in practice and which parameters are required to

perform a calculation using each of these methods.

Chapter 3 investigates the parallelity between two excited state potential energy surfaces

(PES) of a singular BODIPY chromophore (synonymous for our purposes with BODIPY

“dye”). First covered is the vertical excitation energies from the S0 ground state to the S1

excited state for a set of BODIPY derivatives where experimental values were previously

obtained. Then discussed is the process of generating a S1 excited state PES via molecular
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dynamics (MD) sampling utilizing ROKS and TDDFT, and then calculating the opposing

methods’ S1 energy to compare the PES directly. We found that ROKS MD sampling

provides a description of the PES where the TDDFT and ROKS PES are quite parallel but

has an energy gap between them, while TDDFT MD sampling describes a portion of the

PES where the two PES have a very similar energy but they are not nearly as parallel to each

other. Then we delve into what exactly was causing the deviations in parallelity between the

two PES for the same molecule. This is accomplished by analzing the results of vibrational

energy calculations performed on a BODIPY derivative and determining the vibrational

modes that differed most from each other across the two methods (ROKS and TDDFT). We

found that TDDFT and ROKS have a strong correlation in their excitation and emission

energies, showing that they predict similar shifts in absorption/emission spectra. Also it was

found that TDDFT overestimates the vertical excitation energy, while ROKS underestimates

this energy though to a lesser margin. This section’s work is geared towards providing useful

information to those who are focused on optimizing the BODIPY framework. This work also

contributes useful information to those who are developing time-independent excited state

DFT strategies, giving them an understanding of the methods strengths and weaknesses.

In Chapter 4 we present a study focused on investigating the interaction between a single

BODIPY dye and an oxygen molecule. We began with a look at the preferred configura-

tions of oxygen molecules about the dye, where we found that oxygen molecules aggregate

above/below the plane of the BODIPY dye, or along the outer edges of the plane, classified

as face-on and side-on configurations, respectively. We presented a method for a qualitative

assessment of the singlet oxygen generation characteristics by using the couplings as pseudo

rate values. We then looked at the electronic states which are involved in the photochem-

ical excitation of the BODIPY dye and sequence of electronic transitions that lead to the

formation of singlet oxygen generation and the competing pathways. Being able to accu-

rately compute the different electronic states we moved to computing the couplings between

directly connected electronic states (i.e. electronic states that are able to transition from
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one to the other). The distribution of couplings revealed that the transition leading to the

formation of singlet oxygen was more favorable than the competing pathway of forming a set

of radicals. Further analysis of the couplings showed that oxygen molecules which adopted

a face-on configuration to the plane of the dye would also adopt an orientation parallel to

the plane of the dye, as well as hold a higher coupling value. We conclude with an analysis

of our alternative scheme for computing the electronic couplings, which show little to no

correlation with the full computations. This study sets the foundational work for a future

protocol which performs high-throughput analysis of many candidate PS for use in PDT.

We also provide useful information to those attempting to constrain multi-molecule systems

with varying electronic states and the couplings between them.

14



2 Computational Methods

Computational chemistry is a branch of chemistry that uses a combination of physical theo-

ries and mathematics to calculate properties of atoms and subatomic particles via the com-

puter. Computational quantum chemistry is primarily based around solving the Schrödinger

equation.

ĤΨ = EΨ (2.1)

Using this equation small scale calculations of molecular properties can be performed by

hand, but as the system gets larger with the number of atoms increasing it becomes un-

reasonable to work through the math by hand. The computational power provided allows

us to calculate the properties of large systems containing many atoms and/or molecules in

a shorter amount of time. Early computational methods include the Thomas-Fermi and

Hartree-Fock (HF) methods. The HF method approximates the wavefunction of a system

using a single Slater determinant, ignoring the effects of electron correlation. The Thomas-

Fermi method is based on the electronic density alone, and is only perfectly accurate in the

limit of infinite nuclear charge. Kohn-Sham Density Functional Theory (DFT) is a method

based on the electronic density of a system, which replaces the approximate kinetic energy

of the Thomas-Fermi method with an exact kinetic energy for non-interacting electrons, plus

a correction term called the exchange-correlation functional. DFT is able to handle larger

systems with improved accuracy in comparison to the two former methods. While DFT is

exact in principle, the accuracy of the calculations are primarily based on which functional

is used. Due to the advances made in computational methods and the development of highly

accurate functionals, we are able to calculate the electronic properties of chemical systems

of varying sizes with reasonable accuracy.

In order to calculate photochemical processes, we require the use of several computa-

tional methods. DFT is the fundamental method on which most other methods we use are

based. The other methods we use are time-dependent DFT (TDDFT), restricted open-shell
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Kohn-Sham (ROKS) method, and constrained DFT (CDFT). TDDFT and ROKS are both

excited state methods which can be used to calculate properties of the S1 excited state for

the BODIPY dyes in our study. CDFT constrains electronic charge and spins on specific

atoms, molecules, or molecular fragments. We use CDFT to calculate the energies for spe-

cific electronic states (singlet, doublet, triplet, cation, anion, etc.) that are involved in the

generation of 1O2. In this chapter we cover how each of the different computational methods

functions, as well as how they are used to calculate the properties of BODIPY derivatives.

2.1 Density Functional Theory

DFT is a computational method that calculates the electronic ground state energy of a

chemical system. DFT is formulated in terms of the electronic density. This is contrary

to methods considered to be ancestors of DFT (i.e. Hartree-Fock-Slater methods) which

are based on the many-electron wavefunction. Being in principle exact, the accuracy of

Kohn-Sham DFT is based on the appropriate exchange correlation (XC) energy functional

being used. The problem is that there is not one XC functional that obtains universally

high accuracy for all types of chemical systems. There are many different XC functionals

being developed for specific goals and types of molecular systems. Modern XC functionals

obtain moderate accuracy with DFT calculations. Correlated wavefunction methods obtain

a higher level of accuracy than DFT, but are much more computationally expensive (take

a lot of computer power and time) and are only reasonable in systems that have very few

atoms (in some cases, less than 10 atoms). With DFT being a moderately accurate method,

we are able to calculate the ground state energies for chemical systems of many atoms with

reasonable accuracy and computational expense.

Fundamentals of DFT

DFT operates based on the electronic ground state density ρ(r) which uniquely determines

the external potential v(r).34 The determination also works vice versa, allowing us to deter-
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mine the ground state density.

ρ(r)↔ v(r) (2.2)

The Hamiltonian has the form of

Ĥ ≡ T̂ + V̂ + Û (2.3)

where

T̂ ≡ −
1

2

∑

j

∇2
j (2.4)

V̂ ≡
∑

j

v(rj) (2.5)

Û =
1

2

∑

i 6=j

1

| ri − rj |
(2.6)

in atomic units. Since ρ(r) determines v(r) as well as the number of electrons, it determines

the full Hamiltonian Ĥ and implicitly all properties determined by Ĥ . A variational principle

for the energy as a function of density can be developed given the theorem by Hohenberg

and Kohn.34 The variational principle is defined as:

Ev(r) ≥ Ev(r)[ρ0(r)] ≡ E (2.7)

where ρ0(r) is the density of the ground state and E is the energy of the ground state.

When we run DFT calculations we are using the computer as an aid to solve for E. These

calculations show that there is a more solvable auxiliary system of non-interacting electrons

that has the same density as a system of interacting electrons, allowing us to correctly

represent the density without explicitly evaluating all many-body interactions.
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How we use DFT

DFT is a tool that we use in order to calculate the ground state energies of chemical systems.

Figure 2.1 shows a schematic of two potential energy surfaces (PES), one for the ground

Figure 2.1: Schematic diagram of two potential energy surfaces. The ground state PES (S0)
and the excited state PES (S1).

state (S0) and one for the lowest singlet excited state (S1). Nuclear coordinates simply

determine the 3-dimensional conformation that a molecule adopts in space. DFT calculations

approximate the most stable ground state energy of a system, which is labeled position 1

in Figure 2.1. When molecular coordinates are constructed by hand, they are rarely in

the most stable state, so we perform geometry optimizations which bring the molecule to

the lowest energy conformation (position 1) which is the most stable conformation that the
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molecule can adopt. Without reliable methods to achieve this conformation we would end

up with inaccurate values for the energy. It is important for us to obtain the most stable

ground state energy and 3-dimensional arrangement of atoms in space (nuclear coordinates)

because we base subsequent excited state calculations on the energies from ground-state

DFT. When exciting molecules, our calculations simulate vertical excitations on one set

of nuclear coordinates (position 1 to position 2). As seen in Figure 2.1, as the nuclear

coordinates change, so does the total energy of the system. So as long as we obtain a reliable

S0 ground state energy and nuclear coordinates from DFT, then we can perform analogous

excited state calculations with full confidence that excitation energies are computed relative

to the correct reference.

2.2 Time-Dependent Density Functional Theory

Time-dependent density functional theory (TDDFT) is a computational method used to cal-

culate, among other properties, the electronic excitation and emission energies of molecules.

This method is widely accepted and used throughout the field of quantum chemistry, par-

ticularly in the realm of electronic excited states. However, TDDFT tends to fail for excited

states with charge transfer or double-excitation character. TDDFT has proven to be an ac-

curate method for calculating the electronic excitation energies for a variety of systems.35, 36

We perform TDDFT calculations in order to compare the calculated transition energies to

those obtained from time-independent density functional based methods, as well as to ex-

perimentally obtained values (energies physically measured in an experimental lab). Since

TDDFT is based on traditional DFT, the accuracy of the calculations greatly depends on

the specific XC functional that is used in the calculations. Choosing an XC functional is

completely dependent on the type of system under study. With our systems containing a

relatively small number of atoms (40-60 atoms) we have found fairly accurate results using

the B3LYP and ωB97X-D functionals.37 Our use of TDDFT is geared towards having a re-

liable method to compare against the ROKS method and verifying that ROKS can perform
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just as well if not better than a more well established and accurate method.

Fundamentals of TDDFT

Derived from traditional DFT, TDDFT operates by replacing the many-body Schrödinger

equation

i
∂

∂t
Ψ({r}, t) = Ĥ({r}, t)Ψ({r}, t) (2.8)

with a series of time-dependent Kohn-Sham (TDKS) equations.

i
dφj(r,t)

dt
=

(

−
∇2

2
+ vs[n](r,t)

)

φj(r,t) (2.9)

This substitution is allowed due to the Runge-Gross theorem which shows that a specific

time-dependent density results from a single time-dependent external potential.38 The many-

body Schrödinger equation represents a many-electron problem, which is quite time consum-

ing and computationally expensive to solve numerically, while the TDKS equations replace

this with a set of single-particle equations that are solved much more easily and quickly. The

TDKS equations describe a system of N non-interacting electrons that change over time with

an external potential, and produces the same density as a system of interacting electrons.

Without the electron-electron interactions explicitly evaluated, the TDKS equations become

much faster to solve, especially for larger systems. We start with a system of non-interacting

electrons, apply an external potential to that system, then calculate the density of the in-

teracting system using the Kohn-Sham orbitals. The only fundamental approximation made

throughout a TDDFT calculation is that in the time-dependent Kohn-Sham potential

vKS[n](r, t) = vext(r, t) + vHartree[n](r, t) + vxc[n](r, t) (2.10)

there is a separation of the known external and hartree potentials (vext, vHartree) from the

XC functional term (vxc) which is approximated in the same manner as in Kohn-Sham DFT.
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We are able to use TDDFT to study the electron’s response to an electric field perturbation

using linear response theory.39 From this response we are able to identify the excitation

and emission energies. In practice TDDFT, just like other methods, is implemented as a

generalized eigenvalue problem to solve for the electronic properties of molecular systems.

How we use TDDFT

In our research we use TDDFT to calculate the excitation and emission energies for a set

of BODIPY dyes. Referring back to Figure 2.1, TDDFT calculations gives us the energy

difference between points 1 & 2 (excitation energy) and points 3 & 4 (emission energy). Note

that the values given are not the exact energies at each point along the PES illustrated in

Figure 2.1, but instead we get energy differences. If we want the separate points then we

would need to run subsequent calculations or do some simple math using previous (ground

state DFT) calculations to solve for the unknown points. We primarily use TDDFT to

compare its performance to ROKS on BODIPY derivatives. We also compare TDDFT to

experimental values40 to further the comparison between TDDFT and ROKS. The goal is to

compare the performance of ROKS to this well-known, established method for calculating

excitation and emission energies for a set of BODIPY dyes.

2.3 Restricted Open-Shell Kohn-Sham

The Restricted open-shell Kohn-Sham (ROKS) method is a computational method used for

calculating excited states of molecules. While being less established than TDDFT, ROKS is

a method that could potentially provide valuable information about charge transfer states,

double excitations, and Stokes shifts that cannot be accurately predicted by TDDFT calcula-

tions. Advantages of ROKS over TDDFT will be discussed in Chapter 3. One disadvantage

of ROKS is that it is only able to calculate the excitation energy of molecules in the lowest

singlet excited state; the method in its current implementation is not able to calculate the en-

ergy for other excited states. Another issue associated with excited state methods is known
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as variational collapse. Variational collapse occurs during the self-consistent field (SCF)

convergence when an excited state orbital occupation pattern returns to the ground state

determinant. Delta self-consistent field DFT (∆SCF-DFT), a similar excited state method

to ROKS, is prone to variational collapse unless the maximum overlap method (MOM) is

included.41 Using MOM still does not guarantee convergence on the excited state. An ad-

vantage of ROKS over other excited state methods is that ROKS provides a straightforward

method for optimizing the Kohn-Sham orbitals in excited electronic configurations. ROKS’s

ability to avoid variational collapse makes it a reliable computational method for S1 excited

states.

Fundamentals of ROKS

To calculate the ROKS energy for a singlet excited state, we use a two-determinantal equation

EROKS
s = 2Em[φi]− Et[φi] (2.11)

where s is the singlet excited state, m is the mixed spin or broken-symmetry determinant,

and t is the triplet determinant. Note that the mixed and triplet determinants are both

constructed from the same set of orbitals. Using this single set of orbitals eliminates the

problem of the spin purification procedure in ∆SCF being approximate. Before solving for

the ROKS energy, we must first solve for the single-determinant energies. To do so we solve

the following equation

FC = Cǫ (2.12)

in a series of three steps. (F is the effective Fock matrix, C is the molecular orbital coeffi-

cients, and ǫ is the orbital energies. We first build mixed and triplet density matrices from

a set of Kohn-Sham orbitals, build matrices for the mixed and triplet determinants from

those densities, then we construct the effective ROKS Fock matrix F and solve for ǫ self

consistently. Finally we substitute the single-determinant energies to solve for EROKS
s .
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How we use ROKS

As with TDDFT, we use ROKS to calculate the excited state energies of the BODIPY dyes

we are studying. Primarily we set out to investigate the similarities and differences in the

performance of ROKS and TDDFT when calculating the excitation and emission energies

for BODIPY derivatives. Within this thesis we are looking to determine whether ROKS is a

viable method to study BODIPY dyes. We also look at ROKS’ ability to calculate the 1O2

generation characteristics of a BODIPY dye. Unlike TDDFT, ROKS provides exact values

for different positions in Figure 2.1. Instead of calculating energy differences, ROKS gives

energies for each of the positions 2, and 3. The different approach ROKS takes to calculating

the excited state energies of molecules gives it an advantage over TDDFT in specific cases,

and we hope to exploit those advantages during the course of this thesis.

2.4 Constrained Density Functional Theory

Constrained density functional theory (CDFT) is a computational method that provides a

direct route to the diabatic ionic-like states as well as the charge transfer excited states

of chemical systems using the Kohn-Sham SCF procedure. Constraints of the systems are

expressed in terms of charge and spin on atoms, molecules, or molecular fragments. CDFT is

especially useful when looking at specific electronic states that are otherwise not computable

by other computational methods. CDFT allows us to dig deeper into chemical systems and

completely understand the mechanics of specific chemical reactions and processes.

Fundamentals of CDFT

In the most simple form of CDFT where we wish to compute the electronic ground state of

a system subject to the constraint that there are N electrons in a volume of Ω, we add a

Lagrange multiplier into the traditional DFT energy functional.

E(N) = min
ρ

max
V

[

E[ρ(r] + V

(
∫

Ω

ρ(r)d3r−N

)]

(2.13)
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We can also calculate systems with a variety of different constraints, such as charge vari-

ation, magnetization, and magnetization orientation.42 If we aggregate all of the different

constraints available then we can develop an equation which incorporates all of the different

constraints currently computable.

W [ρ, V : N ] ≡ E[ρ] + V

(

Σσ

∫

wσ(r)ρσ(r)d3r −N

)

(2.14)

E(N) = min
ρ

max
V

W [ρ, V : N ] (2.15)

CDFT can perform several complicated calculations involving core excitations, localized

excitons, charge localization and fluctuation, electron transfer, electronic coupling, low-lying

spin states, parameterizing model Hamiltonians, and more.42 We are concerned with the use

of CDFT for constraining charge and spin on molecules and studying the charge transfer

states of molecules.

How we use CDFT

With CDFT we are able to perform calculations on chemical systems with molecules that

each have a different spin and/or charge. In the process of a BODIPY dye generating 1O2

the dye and the oxygen molecule go through a series of different electronic states (see Figure

1.3). We use CDFT to calculate each individual electronic state involved in the generation

process. We also use CDFT to compute the couplings between each of the different electronic

states. The couplings are necessary in order to find the rate at which 1O2 is generated for

a specific BODIPY dye. This study is set to show that ROKS can perform more closely to

CDFT (the correct description for the behavior of a molecular system) while TDDFT is not

able to correctly describe the system.

Some key aspects of CDFT to keep in mind when performing CDFT calculations in-

clude:42

• Constraining larger fragments will give more consistent results
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• Constraining charge and spin together is preferable when possible

• There are many ways to constrain the same state

• When donor and acceptor molecules are very close to each other, CDFT may fail

CDFT proves to be an accurate and effective method for calculating individual electronic

states, charge transfer states, and couplings for the chemical systems we are interested in.

We have covered the methods that we use throughout this study, giving a fundamental

understanding of how each method functions and how these methods are incorporated into

our research. We now begin to explore the results that are obtained from these methods as

they apply to the photophysics and photosensitizing potential of BODIPY derivatives.
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3 Investigating the Parallelity between Excited State

Potential Energy Surfaces from Time-independent

and Time-dependent DFT

The design and characterization of organic chromophores for applications including chemical

sensing,43, 44 sensitization of photovoltaic devices,45, 46 and photodynamic therapy47 increas-

ingly integrates computational modeling into the design and development process. Impor-

tant contributions of computational modeling to chromophore design range from detailed

mechanistic studies, which can complement experimental characterization and guide the

further refinement of design criteria,48 to virtual high-throughput screening of candidate

structures49, 50

Among the most thoroughly investigated and utilized chromophore scaffolds, the BOD-

IPY chromophore 1 (Figure 3.1) is especially valued for its high photoabsorption cross-

section, sharp emission profile, high fluorescence quantum yield, biocompatibility, and facile

derivatization.51, 52 Extensive theoretical modeling of BODIPY dyes has assisted in the de-

sign of modular molecular architectures based on the BODIPY chromophore for directed

excitation energy transfer,53, 54 triplet-triplet annihilation,55 and sensitization of 1O2.
56–58

Lincoln and co-workers used molecular orbital calculations based on density functional the-

ory (DFT) as a theoretical bridge to rationalize simple rules based on Hammett constants

for predicting excited-state redox potentials of substituted BODIPY dyes.59 The influence

of alkyl substitutions on the planarity, HOMO-LUMO gap, Stokes shift, and fluorescence

quantum yield of substituted BODIPYs has also been probed computationally.60, 61

To model the excited state properties of BODIPY derivatives and other larger chro-

mophores, time-dependent density functional theory62 (TDDFT) is often employed for its

advantageous computational scaling relative to multireference ab initio methods63 and be-

cause its strengths and weaknesses for standard chromophore scaffolds have been thoroughly

characterized.64 The TDDFT description of the BODIPY chromophore, and of cyanine dyes
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Figure 3.1: (a) Summary of BODIPY derivatives employed in the comparison of TDDFT
and ROKS excitation/emission energies. (b) Structures of the BODIPY core 1 and of the
BODIPY derivative 2 selected for detailed excited-state PES characterization.

more broadly, has been scrutinized in the literature due to a systematic overestimation of

the lowest singlet excitation energy with some commonly used exchange-correlation function-

als.65, 66 This error has been attributed to multireference character of the low-lying excited

states with additional contributions from double excitations and from the approximate treat-

ment of electron correlation.67 A hybrid strategy combining configuration-interaction singles

(CIS) and TDDFT systematically shifts the excitation energy such that errors relative to

experiment are more in line with those observed for other dyes.68 For modeling nonadiabatic

dynamics, standard TDDFT approaches can also yield a qualitatively incorrect description

of the conical intersections through which nonradiative relaxation typically occurs.69

Relative to TDDFT, time-independent approaches to excited states in DFT such as

∆-self-consistent-field (∆SCF) DFT,70–72 the restricted open-shell Kohn-Sham (ROKS) ap-

proach,73, 74 constricted variational DFT,75, 76 and orthogonality-constrained DFT77 remain

less thoroughly benchmarked or applied for modeling essential chromophores such as BOD-

IPY. Recent implementations and benchmarking of time-independent excited-state DFT

methods with modern exchange-correlation functionals has revealed that their accuracy is
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similar to that of TDDFT for a given choice of exchange-correlation functional.74, 76, 77 These

methods are poised to play a greater role in simulations of excited-state processes, especially

in situations where existing TDDFT approaches fail.78 However, the performance of ROKS

and related methods away from critical points, i.e. the minima of the S0 and S1 potential

energy surfaces (PES), is relatively unexplored. A notable exception in the case of BODIPY

is Briggs and co-workers’ characterization79 of BODIPY absorption and emission in water

using a ∆SCF-based quantum mechanics / molecular mechanics (QM/MM) approach, with

non-Aufbau orbital occupations enforced via the maximum overlap method.41 The simulated

spectra reproduced key features of both CASPT2 and experimental spectra, thus demon-

strating the potential utility of time-independent excited state DFT for Born-Oppenheimer

molecular dynamics (MD) in excited states.

For time-independent excited state DFT to be suitable for photochemical applications,

firm theoretical justification of the methods’ approximations and evidence that its accuracy

in practice is adequate for the target application are both needed. Progress on the first

criterion has been made recently with the proven existence of an excited-state analogue

to the exact exchange-correlation functional of Kohn-Sham DFT.80, 81 This work aims to

contribute to the second criterion, examining the practical utility of time-independent excited

state DFT through a detailed comparison of TDDFT and ROKS descriptions of the S1 PES

of a representative BODIPY chromophore. The influence of the local environment (e.g.

solvent effects) on excited state properties can be substantial82–84 and should be included

when aiming to explain observations in condensed phases;85 however in this study we ignore

these contributions in order to focus on exclusively on differences in the excited state PES

of the isolated chromophore.

The central goal of this portion of this thesis is to characterize the nonparallelity of

linear-response TDDFT and variational ROKS excited state potential energy surfaces for a

representative, widely used organic chromophore. If TDDFT and ROKS predicted an energy

for the S1 state of a chromophore which differed systematically by a certain fixed value ∆E,
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we would describe the TDDFT and ROKS PES as parallel with displacement ∆E. In

practice, the different approximations entering into the TDDFT and ROKS descriptions of

the S1 state cause the two PES to differ in a more complicated manner which can nevertheless

be decomposed into a fixed offset ∆E plus correction terms, analogous to the decomposition

of a statistical error into systematic and random components. Figure 3.2 provides a simplified

visual representation of the energy gap and nonparallelity of two approximations to a single

PES. To make this sort of comparison quantitative, the simple alkyl-substituted BODIPY

derivative 2 shown in Figure 3.1b was selected for a detailed comparison of the TDDFT and

ROKS descriptions of its S1 PES via excited-state molecular dynamics (MD) sampling and

analysis of sampled configurations.

E(S1)

q1

q2

A B

Figure 3.2: Schematic illustrating possible nonparallelity of the TDDFT and ROKS S1 PES
along representative degrees of freedom. There may be regions where the two PES have
similar values despite significant differences in parallelity (point A) and other regions where
the PES are quite parallel despite significant differences in energy (point B).

The remainder of this section is organized as follows. First we describe the details of

our excited state energy, geometry optimization, molecular dynamics, and vibrational fre-

quency calculations. Vertical excitation and emission energies obtained from ROKS and
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from TDDFT for a representative set of BODIPY derivatives are then compared against

experimental spectra and against one another. Next, to probe the shapes of the ROKS and

TDDFT PES in greater detail, we perform excited-state MD sampling in the S1 excited state

of the BODIPY derivative 2 using ROKS and TDDFT and compare both the agreement

of the two PES at sampled configurations as well as differences in the sampled configura-

tions themselves. A representation of sampled configurations in the basis of excited state

normal modes is pursued to visualize and interpret major differences between the ROKS

and TDDFT representations of the PES. Finally, we present our conclusions and identify

implications of the work for modeling of chromophore absorption and emission properties

via excited-state DFT methods.

3.1 Computational Details

The full set of BODIPY derivatives was generated and pre-optimized with the Avogadro

molecular editor86 prior to full DFT geometry optimization. Energies, geometries, and vi-

brational frequencies, unless otherwise stated, were computed with the B3LYP exchange-

correlation functional87 and 6-31G(d) basis set. The selection of a functional was based on

its use in other theoretical treatments of BODIPY dyes, for ease of comparison.

In contrast to the situation for linear-response TDDFT, applications of the ROKS ap-

proach to low-spin excited states are still relatively scarce. Therefore we will briefly review

some essential features of ROKS excited states. In the ROKS approach, the variational prin-

ciple is applied to an energy expression which depends on one or more excited determinants

constructed from a single set of Kohn-Sham orbitals {φi}.
73, 74, 88 For the S1 excited state

of a closed-shell molecule, two determinants are required: a “mixed” or broken-symmetry

configuration m with two unpaired electrons of opposite spin, and a triplet configuration

t with the unpaired electrons spin-parallel. Variational minimization of the ROKS energy

30



expression for the lowest singlet excited state,

EROKS = 2Em [{φi}]− Et [{φi}]

yields the S1 energy and wavefunction in ROKS. The method overcomes the tendency of

∆SCF orbital optimization to collapse to the ground state, but it can sometimes exhibit

artificial energy-lowering due to mixing between the two open-shell orbitals.74, 89 This is-

sue can be diagnosed by calculating the wavefunction overlap between the mixed-spin and

ground-state determinants and corrected through level-shifting techniques. Details of the

implementation used in this work are described in Ref. 74. ROKS excited states are dis-

tinct from the use of a restricted open-shell formalism for ground-state DFT calculations on

open-shell systems, which has been discouraged on both theoretical and practical grounds.90

ROKS calculations of the S1 excited state were performed without a level shift, as the

wavefunction overlap diagnostic indicated that level shifting was unnecessary. For TDDFT

calculations, the Tamm-Dancoff approximation (TDA) was used to pre-converge TDDFT

roots,91 but the final excitation energy calculations employ the complete Casida equations.

The four lowest roots in the singlet manifold were converged to ensure that the lowest root

was obtained in all cases. ROKS and TDDFT S1 → S0 emission energies were computed

at the corresponding ROKS and TDDFT optimized S1 geometries. For the TDDFT excited

state geometry optimizations, where state-switching can occur during the optimization, we

confirmed that the character of the S1 excited state was retained continuously along each

optimization. All ground-state DFT and excited-state TDDFT and ROKS calculations were

performed with the Q-Chem 4.2 package.92

Born-Oppenheimer MD simulations on the S1 excited state of 2 were carried out in the

NVE ensemble. For both ROKS and TDDFT MD, ten independent MD simulations were

performed starting at the B3LYP/6-31G(d) S0 optimized geometry and with initial velocities

independently sampled from the Maxwell-Boltzmann distribution at 300 K. The time step
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was set to 40 a.u. to ensure energy conservation, and the smaller 3-21G basis set was

employed for computational efficiency. For both sets of trajectories, measures were taken to

mitigate the likelihood of termination due to convergence failure: for ROKS, a level shift of

0.2 Hartree was pre-emptively employed, while the convergence criterion for TDDFT roots

was pre-emptively slightly loosened to 10−5 Hartree.

Snapshots from the production MD simulations were collected at every 20th timestep to

mitigate correlation between sampled configurations. The ROKS and TDDFT excitation

energies were then computed for each snapshot at the B3LYP/6-31G(d) level of theory.

Note that this comparison entails a re-evaluation of the excitation energy obtained from the

RO-B3LYP/3-21G or TD-B3LYP/3-21G MD simulation using the larger 6-31G(d) basis set.

Vibrational frequencies were calculated at the ground state and excited-state (TDDFT

and ROKS) optimized geometries of 2. In the case of ROKS, frequencies were obtained using

analytic first derivatives but numerical second derivatives with a displacement of 10−3 Å.

The resulting normal mode displacements were used to express MD snapshots in terms of

distortions from the optimized S1 geometry.

3.2 Results and Discussion

Vertical Excitation and Emission of BODIPY Derivatives

As an initial probe of differences between ROKS and TDDFT descriptions of the BODIPY

S1 state, we calculated the vertical excitation and emission energies for the set of BODIPY

derivatives indicated in Figure 3.1a. Scatterplots of excitation and emission energies from

ROKS and from TDDFT are presented against maxima of the experimental absorption and

emission spectra59 in Figure 3.3. Relative to experiment, we observe a systematic overes-

timation of the excitation energy by TDDFT on the order of 0.4 eV, fully consistent with

previous observations for the BODIPY chromophore.68 Conversely, ROKS underestimates

the excitation energy relative to experiment by approximately 0.15 eV on average.

In the absence of solvent corrections, TDDFT and ROKS excitation energies show only

32



2.00 2.05 2.10 2.15 2.20 2.25 2.30 2.35 2.40 2.45
2.25

2.30

2.35

2.40

2.45

2.50

2.55
E

x
p
e
ri
m

e
n
ta

l 
E

x
c
it
a
ti
o
n
 (

e
V

)

ROKS Excitation (eV)

1.95 2.00 2.05 2.10 2.15 2.20 2.25 2.30
2.15

2.20

2.25

2.30

2.35

2.40

2.45

2.50

E
x
p
e
ri
m

e
n
ta

l 
E

m
is

s
io

n
 (

e
V

)

ROKS Emission (eV)

2.50 2.60 2.70 2.80 2.90 3.00 3.10
2.25

2.30

2.35

2.40

2.45

2.50

2.55

E
x
p
e
ri
m

e
n
ta

l 
E

x
c
it
a
ti
o
n
 (

e
V

)

TDDFT Excitation (eV)

1.95 2.10 2.25 2.40 2.55 2.70 2.85 3.00
2.20

2.25

2.30

2.35

2.40

2.45

2.50

E
x
p
e
ri
m

e
n
ta

l 
E

m
is

s
io

n
 (

e
V

)

TDDFT Emission (eV)

2.00 2.05 2.10 2.15 2.20 2.25 2.30 2.35 2.40 2.45
2.30

2.40

2.50

2.60

2.70

2.80

2.90

3.00

3.10

3.20

T
D

D
F

T
 E

x
c
it
a
ti
o
n
 (

e
V

)

ROKS Excitation (eV)

1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30
1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

T
D

D
F

T
 E

m
is

s
io

n
 (

e
V

)

ROKS Emission (eV)

Figure 3.3: Vertical excitation (S0 → S1) and emission (S1 → S0) energies of BODIPY
derivatives from ROKS and TDDFT compared against maxima of experimental absorption
and emission spectra. The best linear fit (solid red line), best linear fit assuming a slope of 1
(dotted green line), and hypothetical perfect agreement (dashed blue line) are provided for
reference.

a loose correlation with experimental absorption maxima (TDDFT: r = 0.81, ROKS: r =

0.83). However, the correlation between ROKS and TDDFT excitation energies is quite

strong (r = 0.98), notwithstanding the enormous average gap (> 0.5 eV) between them. This

gap originates in the known overestimation of the S1 excitation energy in BODIPY dyes by

TDDFT with global hybrid functionals68 and is exacerbated by an apparent underestimation

of excitation energies by ROKS, which has been observed in other studies, especially with

pure exchange-correlation functionals.74, 89, 93 The favorable correlation between ROKS and

TDDFT excitation energies indicates that the two approaches make very similar predictions

of shifts in excitation energy due to derivatization of the BODIPY core, at least within the

set of derivatives examined here.

Overall, ROKS and TDDFT capture similar trends in the excitation energy as the sub-

stituents are varied. Provided that the systematic under- or overestimation of the excitation
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energy is accounted for,68 the two methods appear similarly well suited for use in computa-

tional screening of BODIPY derivatives based on static, optimized geometries.

Turning attention to the emission energy (bottom row of Figure 3.3), the correlation

between TDDFT and ROKS would be strong if not for the handful outliers for which TDDFT

predicts an anomalously small decrease in the S1 energy due to geometry relaxation in the

excited state. Three of these five apparent outliers in the comparison of TDDFT and ROKS

emission energies bear only -H in the R′ and R′′ positions. The dominant orbital contributions

to the TDDFT transition vector in these cases does not differ substantially from those of the

other BODIPY derivatives, so it is not possible to ascribe the error to a qualitative change of

character of the excited state along the relaxation pathway. The influence of these outliers

is evident on the best-fit line relating TDDFT emission energies to experiment, where they

have a significant effect on the slope and result in a poor correlation coefficient (r = 0.64).

In contrast, the ROKS emission energies lack such outliers and maintain closer agreement

with experimental emission energies across the set of BODIPY derivatives (r = 0.83).

Table 3.1: Mean error (ME), mean absolute error (MAE), and root-mean-square deviation
(RMSD) of ROKS and TDDFT absorption/emission relative to experiment. All energy
errors are reported in eV.

ROKS TDDFT
Abs. Em. Abs. Em.

ME −0.161 −0.224 0.431 0.016
MAE 0.161 0.176 0.431 0.431
RMSD 0.181 0.202 0.447 0.210

ROKS and TDDFT emission energies are in much closer agreement with one another than

the corresponding vertical excitation energies. This observation – along with the fact that

TDDFT overestimates the excitation energy in BODIPY dyes while ROKS underestimates

them – suggests that TD-B3LYP will tend to overestimate Stokes shifts of BODIPY dyes,

while RO-B3LYP is more likely to underestimate them. Just from the excited-state energies

at these two geometries alone (the S0 and S1 optimized geometries), it is clear that the

TDDFT and ROKS descriptions of the S1 PES cannot be exactly parallel: if they were,
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then the average gap between TDDFT and ROKS excitation energies would be identical

to the average gap between TDDFT and ROKS emission energies. In the next section, we

characterize nonparallelity of the TDDFT and ROKS models of the S1 excited state for a

representative BODIPY chromophore.

Nonparallelity of TDDFT and ROKS Potential Energy Surfaces

The propagation of molecular dynamics on the S1 PES is an important step in extracting

rates and quantum yields of photophysical processes from electronic structure simulations.

Naturally, the quality of the predictions is only as good as the quality of the PES. Therefore,

we aim to compare features of the S1 PES obtained from TDDFT against time-independent

approaches like ROKS, with particular attention to differences which may impact the pre-

diction of excited-state properties. In this section we compare TDDFT and ROKS models

of the S1 PES for the BODIPY chromophore 2 (Figure 3.1) through MD sampling of both

surfaces and analysis of molecular motions associated with the most significant differences

between the two PES.

Molecular Dynamics Sampling From the ground-state optimized geometry, we ini-

tiated excited-state Born-Oppenheimer MD simulations on both the ROKS and TDDFT

representations of the S1 PES as described in the Computational Details. To compare the

two PES at a consistent collection of geometries, the S1 energy of snapshots obtained from

TDDFT MD is recomputed using ROKS, and vice versa. Any nonparallelity of the PES will

manifest not only in fluctuations in the energy difference ∆E = E(ROKS)−E(TDDFT); it

will also affect the region of configuration space sampled by the MD. Both of these effects

are discussed below.

Scatterplots of the S1 energy obtained from ROKS and from TDDFT for configurations

sampled from the two approaches are presented in Figure 3.4. If the two methods were in

perfect agreement, then the energies for all sampled configurations would lie on the dashed
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blue lines representing a perfect correspondence between the ROKS and TDDFT energy. In

particular, any deviation of the best-fit line from unit slope would indicate nonparallelity

between the two PES. However, as shown in the previous section, TDDFT consistently

predicts higher S1 energies than ROKS for BODIPY chromophores; this trend is evident in

the constant offset of roughly 0.5 eV for configurations sampled from ROKS MD, shown in

Figure 3.4a. However, the configurations obtained from ROKS MD sampling show a strong

correlation between ROKS and TDDFT energies, indicating that the ROKS and TDDFT

representations of the PES are quite parallel in the region sampled by ROKS.

The configurations sampled by TDDFT MD (Figure 3.4b) reveal two key differences

relative to the ROKS-sampled configurations. First, the correlation between TDDFT and

ROKS energies is significantly weaker for configurations sampled by TDDFT. Furthermore,

the significant offset between TDDFT and ROKS energies is absent among the configurations

sampled by TDDFT MD; roughly as many configurations have a higher energy according to

ROKS than according to TDDFT. Together, these observations suggest that our TDDFT

MD has sampled a qualitatively different region of the S1 PES compared to ROKS MD.

While ROKS MD appears to sample a region of configuration space where the ROKS and

TDDFT S1 PES are approximately parallel but significantly displaced, TDDFT MD has

sampled a region characterized by a smaller displacement but greater nonparallelity. Here,

the configurations sampled by ROKS MD retain the large energy gap between TDDFT and

ROKS S1 energies observed for the S0 optimized geometry in Figure 3.3, while configurations

sampled by TDDFTMD show a smaller gap more consistent with the S1 optimized geometry.

These observations suggest that TDDFT MD evolved toward the S1 minimum early in the

simulations and sampled configurations mostly near this minimum, whereas ROKS MD

evolved much more slowly toward the S1 minimum, sampling mostly structures near the

S0 minimum. These qualitative differences illustrate the potentially compounding effect

of nonparallelity error on finite sampling of high-dimensional PES: errors in the shape of

the PES can bias MD away from important configurations, introducing further error into
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Figure 3.4: Scatterplot of TDDFT and ROKS energies for configurations sampled from (a)
ROKS and (b) TDDFT MD simulations. The solid red line is a linear fit, while the dashed
blue represents perfect agreement between ROKS and TDDFT.
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ensemble averages of molecular properties.

It is instructive to interpret the observed differences between configurations sampled by

ROKS and TDDFT in the context of Figure 3.2 as a means of visualizing regions of the PES

sampled by the two methods. The ROKS MD simulation appears to have sampled a region

represented by Point B in Figure 3.2, where the two PESs are highly parallel but have a

large gap in energy, while the TDDFT MD simulation sampled a region akin to Point A,

where the two PESs have little gap in energy, but they deviate from parallelity. To better

understand these differences in the PESs and their implications for BODIPY photophysics,

we proceeded to analyze the sampled configurations in terms of molecular motions along

which two PESs differed most substantially.

Normal mode analysis of sampled configurations The extent of correlation between

TDDFT and ROKS energies for the S1 state across sampled configurations provides a useful

global view of similarities and differences between the two PES. However, in order to de-

termine how these differences might influence predictions of photophysical or photochemical

rearrangements in the excited state, it is necessary to identify those molecular motions along

which TDDFT and ROKS disagree the most. The normal vibrational modes of 2 in the S1

excited state form a convenient basis for describing these internal motions.

To identify the normal modes along which the two PES differ most significantly, the

Cartesian coordinates of each sampled configuration from the MD trajectories were recast

in terms of displacements from the equilibrium S1 geometry along the normal vibrational

modes,

xi = x0 +Qci (3.1)

where x and x0 are the Cartesian coordinates of sampled configuration i and of the equi-

librium geometry, respectively, Q is a matrix of normal mode displacements, and ci are

the undetermined weights of the different normal modes that map the equilibrium structure

to the displaced configuration i. Eq. 3.1 is nominally underdetermined because of global
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translation and rotation, so we constrain the first two nuclei to their correct positions in the

target configuration and solve Eq. 3.1 for the positions of the remaining nuclei. More so-

phisticated approaches based on principal component analysis have been applied to identify

key motions that modulate the excitation energy based on ground-state MD;94 we adopt the

simpler approach outlined above in order to focus on key motions along which TDDFT and

ROKS excitation energies differ.

The choice of which two nuclei to fix is a potential source of bias in the reconstruction

of snapshot configurations from normal mode displacements. To address this concern, we

compared the weights ci obtained for a representative snapshot with those obtained from a

different choice of fixed nuclei, observing negligible differences in the dominant modes.

Normal mode displacements which contributed most substantially to the sampled config-

urations from ROKS MD and from TDDFT MD are summarized in Table 3.2. Remarkably,

the same three modes emerged as most dominant in both the TDDFT and ROKS MD-

sampled configurations, despite the qualitative differences in sampling observed in the previ-

ous section. Two of the three modes are very low-frequency modes primarily associated with

the side chains on the BODIPY core, although in ROKS this mode also shows some bending

of the plane of the BODIPY chromophore. The third mode is in the ring-breathing region

of the IR spectrum and includes changes in the B–N bond lengths. While the large weights

for the low-frequency modes could be explained by the shallowness of the PES along such

modes, the third mode cannot be rationalized in this way. We suspected instead that this

mode is one of the key modes along which the BODIPY chromophore relaxes from the initial

S0 optimized geometry toward equilibrium S1 geometries. We confirmed this hypothesis by

subjecting the S0 optimized geometry to the same normal mode analysis and identifying this

mode as one of the three modes with largest weight along the displacement connecting the

two minima.

In order to understand how differences between TDDFT and ROKS sampling of the S1

PES might affect predictions of excited state dynamics, we sorted the normal mode displace-
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Table 3.2: Frequency, character, and weight (element of ci in Eq. 3.1) of the most significant
normal mode displacements sampled in TDDFT and ROKS MD.

TDDFT MD

Average Weight Difference

Mode Frequency (cm−1)
Vib. Mode
Description

ROKS TDDFT

12 161
methyl twisting,
ethyl rocking

0.39887 0.39829 5.8× 10−4

15 192
methyl, ethyl

twisting
0.35908 0.35856 5.2× 10−4

75 1227
chromophore B-N and

C=C stretch
0.35699 0.35655 4.4× 10−4

ROKS MD

Average Weight Difference

Mode Frequency (cm−1)
Vib. Mode
Description

ROKS TDDFT

12 159
methyl twisting,
ethyl rocking

0.39553 0.39621 6.8× 10−4

15 183
out of plane bending,

BF2 wagging
0.35774 0.35842 6.8× 10−4

75 1245
chromophore B-N and

C=C stretch
0.35475 0.35540 6.5× 10−4
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ments by their average weights among snapshots from TDDFT MD and from ROKS MD

and then identified the modes whose average contributions differed the most. Among the

snapshots sampled by TDDFTMD, the two modes along which the ROKS and TDDFT PES

deviate most significantly are reported in Table 3.3. Both of the modes are low-frequency

motions predominantly affecting the alkyl side groups rather than the chromophore itself.

This finding indicates that the molecular motions contributing dominantly to the nonpar-

allelity of TDDFT and ROKS in MD sampling of the S1 state of 2 are side chain motions,

not distortions of the central BODIPY chromophore. For computationally assisted design

of BODIPY-based functional molecules and materials, where understanding the influence

of side chains on photophysical properties is crucial, our analysis shows that the simulated

dynamics of these side chains after photoexcitation can be highly sensitive to the choice of

excitation model (here, TDDFT or ROKS) for the S1 PES, even if the exchange-correlation

functional is the same.

Table 3.3: Frequencies, character, and contribution weights of normal mode displacements
along which TDDFT and ROKS energies most significantly deviate.

TDDFT MD

Average Weight Difference

Mode Frequency (cm−1)
Vib. Mode
Description

ROKS TDDFT

10 149 methyl twisting 0.02245 0.02108 1.4× 10−3

13 180 ethyl, methyl twisting 0.10768 0.10892 1.2× 10−3

ROKS MD

Average Weight Difference

Mode Frequency (cm−1)
Vib. Mode
Description

ROKS TDDFT

10 142 methyl twisting 0.00945 0.00994 4.9× 10−4

13 171 ethyl, methyl twisting 0.11807 0.11793 1.4× 10−4

To provide a low-dimensional representation of the differences between the TDDFT and

ROKS S1 PES, we projected each PES onto the normal mode displacements whose contri-

butions to sampled TDDFT and ROKS configurations differed most significantly (Figure
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3.5). These projections were constructed by evaluating the TDDFT and ROKS single-point

energies at different degrees of displacement along the normal mode displacement vector q,

with the degree of displacement controlled by an angular variable θ. Coordinates x for each

sampled displacement were determined relative to the optimized geometry x0 according to

the formula x = x0 + q sin θ.

Nonparallelity of the TDDFT and ROKS PES along all four selected modes is evident

in the changing gap between TDDFT and ROKS energies in Figure 3.5. Along three of

the four selected modes, the difference between TDDFT and ROKS energies decreases as

the molecule distorts; the exception is mode 18, for which the TDDFT energy becomes

even higher relative to ROKS along the distortion. There is a noticeable asymmetry in the

nonparallelity of the two PES with respect to the direction of the distortion. For example,

the TDDFT and ROKS PES are sufficiently nonparallel to cross during extension along

mode 21 (θ > 0), but a compression of the same magnitude along the same mode does not

induce a similar crossing.
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Figure 3.5: Comparison of S1 PES projections for 2 onto normal modes along which TDDFT
and ROKS sampled configurations most significantly differ. The angular coordinate θ traces
periodic vibrational motion along the corresponding mode with sin θ = 0 for the minimum
energy configuration and sin θ = ±1 for the turning points along the mode.

While these significant differences in the shape of the TDDFT and ROKS PES may be

somewhat mitigated by the use of more sophisticated functionals,95, 96 differences are likely

to persist due to the fundamentally different approaches – time-independent and variational

versus time-dependent linear response – used to model the S1 state. Both approaches invoke

approximations beyond the choice of exchange-correlation functional. For example, TDDFT-
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based excited-state MD simulations generally rely on the adiabatic approximation.97 ROKS

indirectly relies on an adiabatic approximation as discussed for the related ∆SCF approach

in Ref. 72, but the ROKS formulation employed here also invokes a two-determinant Kohn-

Sham ansatz which may be inadequate, for example, in systems with significant double-

excitation character.98, 99

3.3 Conclusion

In this section we identified both similarities and significant practical differences in the

TDDFT and ROKS descriptions of vertical excitation and emission energies of BODIPY

dyes. In contrast to the known overestimation of the lowest singlet vertical excitation energy

by TDDFT with the B3LYP functional, the ROKS approach systematically underestimates

this excitation energy, though by a lesser margin. Nevertheless, TDDFT and ROKS vertical

excitation and emission energies calculated across a range of substituted BODIPY dyes

exhibit a strong correlation, indicating that the two approaches predict similar shifts in

absorption and emission spectra due to chemical substitution along the periphery of the

chromophore.

By sampling the S1 excited state PES of a selected BODIPY derivative through both

TDDFT and ROKS MD simulations, we determined that the two approaches exhibit qual-

itatively different sampling behavior which is likely to impact ensemble-averaged estimates

of excited-state properties. ROKS samples a region of the S1 PES where the ROKS and

TDDFT descriptions of the PES are parallel but offset by roughly 0.5 eV; in contrast,

TDDFT samples configurations with a smaller offset but more substantial differences in the

local shape of the PES.

The excited-state characterization of substituted BODIPYs presented here may help

guide the further optimization of chromophores based on the BODIPY framework. Addi-

tionally, the explicit comparison of ROKS and TDDFT PES may offer useful insight for

users and developers of time-independent excited state DFT strategies. A more complete
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understanding of these methods’ strengths and shortcomings will increase confidence in the

interpretation of simulated spectra and excited-state properties.
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4 Photophysics of 1O2 Sensitization by a BODIPY Deriva-

tive

As a reminder, this study is focused on the computational characterization of the proper-

ties of a set of boron-dipyrromethene (BODIPY) dyes as potential photosensitizers (PS) in

photodynamic therapy (PDT). PS are molecules that are able to absorb photons, become

energetically excited, and then transfer that energy to promote some target chemical process.

In PDT a specific sequence of electronic transitions involving the PS an oxygen molecule

leads to the formation of singlet oxygen 1O2, the active component of PDT which causes

the destruction of cancer cells. Overall this study aims to shed light on the singlet oxygen

sensitization characteristics for the BODIPY dyes in question and to help make accurate

distinctions between several derivatives that are under consideration for use as PS in PDT.

Earlier in this thesis we examined and rationalized how the restricted open-shell Kohn-

Sham (ROKS) method and time-dependent density functional theory (TDDFT) can accu-

rately describe the S1 excited states for several BODIPY dyes. Now we can move towards

studying how the excited PS (1PS∗) interacts with ground state triplet oxygen (3O2) and

leads to the formation of 1O2. First, it is important to understand the process of how 1O2 is

formed and how we can perform calculations to replicate that process. Shown in Figure 1.3

the PS sequentially adopts two electronic states that precede the formation of 1O2:
1PS∗,

and 3PS, where 1PS is the state that results with 1O2. In order to restrict the calculations

so that we can compute each individual electronic state we must use constrained density

functional theory (CDFT). Without constraints on the electron and spin densities, it would

be impossible to accurately compute certain electronic states of BODIPY-O2 complexes that

we are studying. In addition to computing the individual electronic states, we also need to

compute the electronic couplings between all of the directly connected states (couplings be-

tween 1PS∗ and 3PS, as well as 3PS and 1PS). Knowing the couplings will provide us with

insight on the transition rates between the electronic states. Understanding the couplings
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and transition rates will give us a relative estimate on how efficiently a dye can generate 1O2.

To computationally characterize 1O2 photosensitization by BODIPY we use a single

BODIPY dye and one oxygen molecule. Rather than computing the 1O2 generation prop-

erties for all 26 of the derivatives summarized in Table A1, we decided to hone in on a

specific BODIPY derivative seen in Figure 4.1 to perform all subsequent calculations on.

N
B

N

F F

Figure 4.1: Strucutre of 2,6-diethyl-1,3,5,7-tetramethyl-pyrromethene fluoroborate

We decided on specifically the molecule in Figure 4.1, firstly because we had performed the

MD simulations on this molecule which gives us a detailed understanding of the description

for the S1 excited state PES for this particular BODIPY derivative. Second, because the

structure of this molecule is relatively simple, having two ethyl groups attached on either

end of the core’s structure (positions 2 and 6 in Table A1) and methyl groups located at the

1, 3, 5, 7, and 8-carbon positions of the core. Having saturated alkyl substituents is more

simple than halogens or other inorganic substituents which could complicate the electronic

structure of the BODIPY core. The simplicity of molecule 4.1 makes our predictions more

precise and less susceptible to unaccounted deviations in our data. Molecule 4.1 is simple

enough to be widely representative of BODIPY derivatives but has substituents that add

some complexity. At the moment there have been no other studies that have attempted

to predict the properties that we are computing, so limiting our calculations to moderately

simple cases was the most reasonable approach to tackle this problem. In the future there

are plans to broaden this study by looking at how different substituents affect the generation

of 1O2.
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4.1 Electronic Transitions

Molecules that are able to be electronically excited, fluoresce, and sometimes transfer their

energy to form other electronic states are known as fluorophores. There are several relaxation

routes that a fluorophore can take after it has been photo-excited. The first possibility is

that the fluorophore (in its S1 excited state) fluoresces directly and drops back down to the

ground state (S0). In fluorescence, 3 primary steps are involved:

• Excitation (refer to Figure 2.1)

– The fluorophore, in its S0 ground state, is promoted to the S1 excited state via

an incoming photon of specific energy

• Relaxation of the excited state

– The fluorophore’s conformation slighty changes to adopt the lowest energy con-

formation in its S1 excited state (position 3 in Figure 2.1)

• Fluorescence emission

– A photon of lower energy than the incoming photon that excited the fluorophore

is emitted, bringing the molecule back down to the S0 ground state (position 4)

– The emitted photon has a lower energy due to the excited state relaxation. The

energy difference between the energy provided by the incoming photon and energy

emitted is the Stokes shift)

While in the singlet excited state, a process called internal conversion occurs where the

molecule relaxes from a higher vibrational level down to the lowest vibrational level. The

lowest vibrational level of the singlet excited state is usually the level from which fluorescence

occurs.100 If the excited state lifetime is long enough to prevent the PS from not immediately

fluorescing right back down to the S0 ground state then there is a possibility that the fluo-

rophore can transfer an electron or undergo intersystem crossing entering a state of different
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multiplicity. For example, if a PS is excited to its 1PS∗ excited state then it can go through

intersystem crossing to form a high energy triplet state (3PS).100 From here the PS has the

possibility to transfer its excitation energy to another molecule, or it may phosphoresce.

Phosphorescence is a spontaneous emission of energy (in the from of a photon) that is

much slower than fluorescence, due to the fact that the transition from the triplet state

3PS to the ground state 1PS is spin-forbidden.100 When a PS enters the 3PS state, internal

conversion occurs generating a state that is lower in energy than the preceding singlet excited

state 1PS∗. The low energy and multiplicity of the triplet state forbids a radiationless

transition back down to the S1 ground state 1PS. However, radiative transitions are able

to bring the 3PS back down to the S0 ground state because spin-orbit coupling breaks the

selection rule. This radiative transition (phosphorescence) occurs much more slowly and over

a longer period of time than fluorescence does, though it emits weaker than fluorescence.

The efficiency of phosphorescence may be increased by including heavier atoms into the

molecule.101

Contrary to fluorescence and phosphorescence, which emit a photon when relaxing to

the ground state from an excited electronic state, intersystem crossing brings an excited

electronic state to a different electronic state (not always another excited state), without

emitting any photons. Internal conversion is another process that does not emit any pho-

tons, but internal conversion results with a change in vibrational energy rather than a change

in electronic states. These processes are known as non-radiative transitions, while fluores-

cence and phosphorescence are radiative.102 Internal conversion is a non-radiative transition

between two states which have the same multiplicity. In internal conversion, instead of

emitting a photon the energy is given off by a molecule’s vibrational modes and heat. Inter-

system crossing is a non-radiative transition between electronic states which have different

multiplicities. Intersystem crossing occurs between a singlet state and triplet state, where

the transition can occur in either direction depending on the molecular system in question.

This electronic conversion has little to no energy that is gained or lost within the system.
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It is very favorable when the vibrational levels of two electronic excited states overlap, and

also when there are heavy atoms present (due to the higher spin-orbit coupling).100

Having summarized the key relaxation pathways of excited photosensitizers, let’s take

a deeper look at how singlet oxygen can be formed and how we can predict the singlet

oxygen generation properties. First, after a molecule is excited to its lowest singlet excited

state (1PS∗) there are two different mechanisms that can occur which lead to different types

of products. One pathway that the molecular system can undergo is defined as a Type

I mechanism by analog to the definitions of type I and type II photosensitized oxidation

by Foote, Gollnick, and Schenck.103 Type I mechanisms occur when the S1 excited state

molecule directly transfers an electron to a substrate (in our case the substrate is molecular

triplet oxygen), which yields a set of radicals (2PS•+ and 2O•−
2 ). Type II mechanisms are

when the excited molecule undergoes intersystem crossing from the singlet excited state

(1PS∗) forming the triplet state (3PS), then the triplet state transfers energy to molecular

oxygen (3O2) during a collision between the molecules which generates singlet oxygen. Some

photosensitizers can produce up to 105 molecules of 1O2 before they degrade.104 In our

study we want to focus on Type II mechanisms which yield the active component of PDT

(1O2).

In order to find the quantum yield of singlet oxygen, we must first know the amount of

singlet oxygen molecules that are produced. The primary quantum yield is defined as:

Φ1O2
=

number of singlet oxygen molecules produced

number of photons absorbed
(4.1)

In terms of rates we can define the quantum yield as:

Φ1O2
=

rate of 1O2 generation

sum of rates for all other processes
=

k1O2
∑

i ki
(4.2)

To further quantify the rate, we can invoke Fermi’s Golden Rule, which states that during

the transition between electronic states, the rate is a constant value during the transition
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(i.e. the rate is not time-dependent). This definition is formulated by relating the rate of a

state crossing to the electronic coupling matrix element for the process.105 We are focusing

on the following rate equation:

ωT =
2π

~
ρ(Em) | Vkm |

2 (4.3)

where ωT is the rate, ρ(Em) is the density of states, and Vkm is the electronic coupling

between states k and m. In this study we are not concerned with the absolute rate of the

transitions, we are instead focused on the relative rates. To calculate the relative rates we

are looking at the ratio between two rate processes:

ωT,m

ωT,n
=

2π
~
ρ(Em) | Vkm |

2

2π
~
ρ(En) | Vln |2

(4.4)

With this ratio we have the 2π
~
cancel each other out resulting in:

ωT,m

ωT,n

=
ρ(Em) | Vkm |

2

ρ(En) | Vln |2
(4.5)

Also, we do not expect ρ(Em) and ρ(En) to deviate substantially from one another. Resulting

in the following equation:

ωT,m

ωT,n
=
| Vkm |

2

| Vln |2
(4.6)

Where the rates are only dependent on the couplings for each electronic state. Equation 4.6

is now only dependent on the electronic coupling between states. With this new approximate

definition of the relative rate we can use the coupling as a pseudo rate value to investigate the

relative rates of 1O2 generation, transition between different processes, and between different

molecular structures.

Now we must examine how to calculate the couplings Vkm in equation 4.6 using compu-

tational methods. The method used to compute the couplings between different electronic

states is CDFT. This description begins with the coupling equation42 given two electronic
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states | Ψ1〉 and | Ψ2〉:

H12 = 〈Ψ1 | Ĥ | Ψ2〉 (4.7)

where the coupling between the states is the matrix element of the Hamiltonian Ĥ. When

describing an electron transfer system, when the molecules are separated from each other

the coupling is expected to exponentially decay. A more detailed walk-through of the CDFT

method can be found in Kaduk et al.42 The issue with equation 4.7 is that it is written in

terms of wave functions, rather than densities which is what Kohn-Sham DFT provides. So

CDFT uses an approximation where each wave function | Ψi〉, are eigenstates of Ĥ as well

as the constraining potential Viwi(r). Along with this approximation, the wavefunctions are

approximated to be their Kohn-Sham surrogates (| Ψi〉 ≈| Φi〉) which results in the equation

for the CDFT diabatic coupling:

H12 ≈
F1 + F2

2
SKS
12 −

〈

Φ1

∣

∣

∣

∣

V1ŵ1(r) + V2ŵ1(r)

2

∣

∣

∣

∣

Φ2

〉

(4.8)

In order to obtain a physically meaningful coupling an orthogonalization is required. The

non-orthogonal basis Hamiltonian is transformed into an orthogonal basis using the sym-

metric Löwdin orthogonalization42 returning the Hamiltonian in an orthogonal basis:

H = S− 1

2HS− 1

2 (4.9)

giving the final couplings (H12) which are the elements of the H matrix ([H]12).

4.2 Computational Details

In this section we specify how we perform our calculations and obtain the particular elec-

tronic states in study. To obtain the specific electronic states we constrain the electrons

using CDFT or a combination of charge and multiplicity values. CDFT couplings used the

configuration interaction module (CDFT-CI) in Q-Chem with printout of information for the
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coupling calculations (overlap, Hamiltonian, population matrix with eigenvectors and eigen-

values, as well as promolecule orbital coefficients and energies). The exchange-correlation

functional used was ωB97X-D, along with the 6-31G(d) basis set. In order to meet conver-

gence criteria, calculations were set to a convergence level of either 10−5, 10−6, and in some

cases 10−8 hartrees, and a threshold value of either 10−10 or 10−14 to reduce the convergence

requirements. In the event of convergence issues we added a ground state calculation prior

to the CDFT calculation to read in the molecular orbitals, or as a last resort, to selectively

reduce the convergence criteria. Roughly half of the coupling calculations required loosening

the convergence criteria, however the restrictions are still reasonably tight, converging ener-

gies down to 10−5 Hartrees. All calculations were spin-unrestricted. We were able to obtain

a few excited electronic state with ROKS,

Table 4.1: Required components for computing each electronic states. See appendix for
higher level of details and charge/multiplicity.

Electronic states CDFT ROKS MOM Initial Ground State
1PS +3 O2 X
1PS∗ + 3O2 X X
3PS + 3O2 X
1PS∗ + 1O2 X
1PS + 1O2

2PS•+ + 2O•−
2 X

but when computing the coupling between electronic states we were forced to use the

maximum overlap method (MOM) in order to reach convergence. When calculating the

specific electronic states we used a variety of methods to obtain accurate values for the

molecular systems of a single photosensitizer (PS) and oxygen molecule (O2) as shown in

Table 4.1.

Obtaining the couplings between the electronic states is much more logistically cumber-

some than computing each individual electronic state. Due to complications with incorpo-
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rating ROKS, we were forced to use MOM for all coupling calculations involving an excited

state 1PS∗. Methods are reported in Table 4.2.

Table 4.2: Required components for computing the couplings between electronic states. See
appendix for higher level of details and charge/multiplicity.

Electronic states CDFT MOM Initial Ground State
1PS∗ + 3O2 ←→

2PS•+ + 2O•−
2 X X X

1PS +3 O2 ←→
2PS•+ + 2O•−

2 X X
1PS∗ + 3O2 ←→

3PS + 3O2 X X
1PS + 1O2 ←→

3PS + 3O2 X

We were able to obtain the configurations of the oxygen molecules about the BODIPY

dye by performing geometry optimizations on each system. This gave us relatively accurate

values for the positions of the oxygen molecules. We obtained the angles of the oxygen

molecules by generating a Python script which defined the core of the BODIPY dye as a

plane, calculated a vector for the oxygen molecule, and then computed the angle between

the oxygen vector and the plane of the dye.

Before being able to converge the coupling calculations between states 1PS∗ + 3O2 and

2PS•+ + 2O•−
2 we performed an alternative method to calculating the couplings between

electronic states. We used CDFT with the same parameters to calculate the couplings

between a single oxygen molecule in two different electronic states, and then performed the

same computations on a single photosensitizer between electronic states consistent with the

states used for O2. Once calculations were completed we calculated the alternative couplings

between them via:

Coupling =
VPSSO2

+VO2
SPS

2
(4.10)
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where

VPS = The Hamiltonian off-diagonal matrix elements for the photosensitizer

SO2
= The Overlap off-diagonal matrix elements for the oxygen molecule

VO2
= The Hamiltonian off-diagonal matrix elements for the oxygen molecule

and

SPS = The Overlap off-diagonal matrix elements for the photosensitizer

Calculations required a higher level of CDFT-CI printing in order to obtain both the Hamil-

tonian off-diagonal matrix elements, as well as the overlap off-diagonal matrix elements. All

electronic structure calculations employed the Q-Chem program package.

4.3 Results and Discussion

To begin studying the interaction between a BODIPY dye and an oxygen molecule, we

started by generating a variety of geometries for the complex where the oxygen molecule

was positioned incrementally around the dye. Once the collection of structures depicted in

Figure 4.2 was generated, we performed geometry optimizations on the grid-like orientations

and ended up with a new system consisting of conformations the oxygen molecules preferred.

From Figures 4.3a and 4.3b we see that the oxygen molecules aggregate around the outer

surface of the plane of the BODIPY dye as well as above and below the plane.

We can see that the oxygen molecules which are located around the outer perimeter of

the dye have adopted higher energy configurations, while the majority of the molecules that

are above/below the plane of the dye tend towards lower energies. There are very few initial

configurations that relax towards the space between the face-on and side-on configurations.

Oxygen molecules tend to prefer distinct side/top/bottom configurations over angular ones.

We suspect that oxygen prefers a face-on configuration about the plane due to the interaction

of molecular orbitals between the oxygen molecule. While the repulsion, from pendant
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Figure 4.2: Grid of oxygen molecules surrounding a BODIPY dye, generated via Python
script. Oxygen molecules were positioned outside of a defined box to not intersect the dye.
Yellow and violet dots are atoms of the BODIPY dye, maroon dots are a single oxygen atom
(part of an oxygen molecule)
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hydrogen atoms, causes other oxygen molecules to adopt a higher energy side-on orientation.

Next, in order to further study the interaction of oxygen with a BODIPY dye, for each

optimized structure we calculated the energies for the specific electronic states of the PS+O2

complex that are involved in PDT.

At first glance the energies seem to match nicely with those energies positioned in the

Jablonski diagram in Chapter 1 (Figure 1.3), where we have the ground state system at the

lowest energy level, followed by the 1PS+1O2 and 3PS+3O2 states, then the 2PS•++2O•−
2

and 1PS∗+3O2 states. We see a slight split of the peaks in all the distributions, especially

prevelant in the 2PS•++2O•−
2 state. This is due to the orientation of the oxygen molecules

in our sampled configurations being split about evenly between the face-on and side-on

configurations. This claim is also backed by the fact that we originally saw a clear split of

energies between the optimized systems found in Figure 4.3a and 4.3b. The large split of

energies found in the 2PS•++2O•−
2 state may be due to the radical oxygen molecule located

on the side-on configuration, being in much closer proximity to the ethyl groups found on

either end of the BODIPY dye, while the face-on configuration oxygen molecules do not have

a substituent in such close proximity, resulting in a lower energy. There is an agreement of

relative energies between those shown in Figure 4.4 and the Jablonski diagram (Figure 1.3)

allowing us to be confident we are computing the correct electronic states. Our primary

concern is on the relative energies of the complexes because this study is focused on the

photosensitizers ability to generate singlet oxygen which is a process that involves transitions

between different electronic states. This process is not dependent on the absolute energy of

the systems, but rather the relative energy differences of transitions between the electronic

states involved in generating singlet oxygen. Even applying this principle to comparing

different photosensitizers side by side, our claims remain sound, because the relative rates

are what differentiates one PS as being more or less efficient from another.

Now that we have a stable method for computing the individual electronic states, we

calculate the couplings between directly connected electronic states to investigate the rate
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(a) Post-optimization plot of where oxygen molecules aggregated around the BODIPY dye, color
coded with energy plot 4.3b where the aqua colored dots are lower energy, violet dots are high
energy, the maroon dots are outliers, and the yellow dots are atoms on the BODIPY molecule.

(b) Distribution plot of ground state energies of the BODIPY+O2 complex, colors are correlated
with those of Figure 4.3a.
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Figure 4.4: Plot of the distributions of energies for the energy of each electronic state.
Calculations were performed with a single BODIPY dye and single oxygen molecule within
one system. Energies for the states were normalized so that the ground state (1PS+3O2)
resides at 0.0eV.
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of processes leading to the formation of singlet oxygen and the other processes that compete

against them.
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Figure 4.5: Plots of the absolute value of the couplings (|V |) between directly connected
electronic states, pathways for forming singlet oxygen and competing against the formation
are included.

Electronic couplings were computed for the sampled configurations in Figure 4.3a and

are plotted in Figure 4.5. Looking closely at the figures in Figure 4.5, we can make a
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few conclusions about how the configuration of the oxygen molecule affects the couplings

between different electronic states. In plot 4.5a with the 1PS+1O2 and 3PS+3O2 couplings

we see a very clear split of the couplings between the systems that contain side-on vs. face-

on configurations of oxygen. The face-on configurations have the highest couplings, while

the side-on configurations have lower couplings. Though the face-on configurations have

higher couplings, the values span a wider range from 0.00eV to 0.22eV, while the side-on

configurations all reside at around 0.00eV. From these observations we can conclude that

the final step of energy transfer leading to the generation of singlet oxygen heavily favors

the face-on configuration, giving a very low probability of taking the path towards singlet

oxygen generation when the oxygen molecule adopts a side-on configuration. The other

plots in Figure 4.5 do not show quite as valuable information. The plots 4.5d and 4.5b give

little qualitative information. Plot 4.5d has an almost indistinguishable difference between

the face-on vs. side-on configurations. All couplings are overlapping and there is no clear

trend noticed. In the 4.5b plot there is a split of about 0.0005eV between the side-on vs.

face-on configurations, but in relation to the difference seen in plot 4.5a where there is a

0.2eV difference, this value is rendered insignificant. We can make a few conclusions based

on plot 4.5c. There exists a clear split between couplings of systems with face-on vs. side-on

configurations, though the split is relatively small, spanning about 0.1eV. Nonetheless the

face-on configurations exist, overall, at a higher coupling than the side-on configurations.

There is a cluster of side-on configurations that have couplings higher than the face-on ones,

these oxygen molecules could be interacting with the ethyl groups which gives them a higher

coupling for this transition because the oxygen molecules maybe be close enough and position

just correctly to allow for electron transfer to occur which would give these configurations

higher coupling. More analysis of the orbitals would be required to confirm this, but for now

we hypothesize that the relatively small difference in coupling is due to the oxygen molecule

existing in just the right position to allow for electron transfer to occur.

To further examine how the configurations of the oxygen molecules about the BODIPY
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dye affect the system’s couplings, we will look at the angle each oxygen molecule makes

relative to the dye and how it relates to the couplings between states.
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Figure 4.6: Plots of the couplings between directly connected electronic states, and the angles
of the oxygen molecules in relation to the plane of the dye. Angles for the oxygen molecules
are defined along the bond between two oxygen atoms.

Figure 4.6d shows the couplings between the 1PS∗+3O2 and 3PS+3O2 states, which is

the first step after vertical excitation the complex takes towards generating singlet oxygen.
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Looking at the plots in Figure 4.6d we can investigate the couplings with a deeper under-

standing of how they relate to the orientation of an oxygen molecule around the BODIPY

dye. In the plot 4.6d, we see that the face-on configurations have oxygen molecules consis-

tently residing at about 0◦ in relation to the plane of the dye, while the molecules with a

side-on configuration span from 0-90◦ without a variation in the coupling. Plot 4.6b, which

shows the couplings between the 1PS∗+3O2 and 2PS•++2O•−
2 states, has the same trend of

oxygen molecules with a face-on configuration adopting a 0◦ angle to the plane, while the

side-on configurations span from 0-90◦ rotation. We see this trend in all of the plots within

Figure 4.6. The most distinguishable plot is 4.6a where we see the range of couplings for

the face-on configurations almost equally spread from 0.0-0.225eV. This trend is seen more

clearly in this plot due to all of the configurations adopting the same orientation within

roughly 10◦ of each other, so we can see the data clustered together.

Taking a step back to look at the coupling values overall, regardless of the position of

the molecules we can make some conclusions about which processes may be more favorable

over others.
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Figure 4.7: Distribution plot for all the electronic states involved in the process of PDT.

From Figure 4.7 we see that the couplings between 1PS+3O2 and 2PS•++2O•−
2 is < 0.01

eV, showing that the process of relaxing from 2PS•++2O•−
2 down to the ground 1PS+3O2

state would be very slow. The 1PS∗+3O2 to
2PS•++2O•−

2 electron transfer charge separation

chances are slightly higher, having couplings that range from 0.015-0.09eV. The transition

from 3PS+3O2 to 1PS+1O2 has consistent couplings from 0.0-0.225eV, having a significant

amount of couplings around 0.0-0.01eV. Though the consistent couplings also give some of the

highest couplings close to 0.225eV, due to the configuration of the oxygen molecules having a

parallel and face-on configuration. These higher couplings give the system a better chance at

crossing from the triplet state over to the singlet state via energy transfer, generating singlet

oxygen. Finally we examine one of the most important transitions, from the excited state

1PS∗+3O2 over to the 3PS+3O2 state, which is the first step in generating singlet oxygen.

This transition has consistently high coupling values, much larger than the transition from

the excited state to the doublet state. The formation of a doublet state is the primary
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competition to forming singlet oxygen (other than fluorescence/phosphorescence) that could

negatively impact the photosensitizers performance. Since we see that the system has large

coupling values between the excited state and triplet state, it shows that the formation of the

triplet state is preferred over the doublet state. This shows that the specific photosensitizer

we are investigating has a better chance of forming singlet oxygen than of forming superoxide

because referring back to the Jablonski diagram in Figure 1.3 we see that the formation of

the triplet state is the first step in forming singlet oxygen where the only other competition

is to form the doublet radical ion.

Before we were successful in converging CDFT calculations of the PS+O2 system to

calculate the couplings, we attempted a method to calculate the couplings via an alternative

“ad hoc” method, covered in Equation 4.10.
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Figure 4.8: A plot of our alternative method of computing the electronic state couplings.
The blue line is a x=y line, to show what a perfect 1:1 ratio would be. R2 is 0.00705.

The results are presented in Figure 4.8. From this plot we can see almost no correlation

between the values calculated via our alternative method and the values that were computed
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in a single calculation on the PS+O2 complex. This is clearly shown in the R2 value of

0.00705 which essentially states there is no correlation. Also looking at the blue 1:1 line,

the alternative couplings are not predictive of the corresponding direct couplings at a given

configuration, and vice versa. The full details of our alternative method is laid out in the

computational details section. From our findings we see that the alternative method we

explored is not an accurate method to calculate the couplings between electronic states of

a system containing different molecules. The discrepancies in the data could very well be

due to the lack of coupling interactions between the BODIPY dye and the oxygen molecule.

In the alternative method presenting the two molecules are in systems of their own, while

the full coupling calculation includes both molecules within one system. It appears to be

necessary to include intermolecular interactions directly within the CDFT-CI calculations

rather than as a post-CDFT correction.

4.4 Conclusions

The major findings we gained from the coupling position and angular analysis is that overall

the systems where the oxygen molecule adopts a face-on configuration, usually have the

highest coupling values and those systems also have the oxygen molecule being nearly parallel

to the plane of the dye. This could be due to the interaction of the molecular on the orbitals

of the oxygen with the orbitals of the BODIPY dye which allow for easier intersystem

crossing and energy transfer. As opposed to the systems where the oxygen molecule adopts

a side-on configuration where there is little to no orbital overlap. However, with the side-on

configurations we do see a higher coupling between the 1PS∗+3O2 and 2PS•++2O•−
2 states

which could be due to the oxygen being in such close proximity to the dye that electron

transfer was highly favorable. We also found that the distributions of couplings inferred

that the more favorable process for this particular BODIPY dye is to form the triplet state

photosensitizer as opposed to the doublet radical ion. This leads us to the believe that there

is less competition between possible routes of electronic state transitions that could deter
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the formation of singlet oxygen. We also found that the formation of singlet oxygen from

the prior PS triplet state has a reasonably high likelihood of occuring if oxygen is nearby.

Our findings have shown that the particular photosensitizer in study could be a poten-

tially useful scaffold for designing PS to be used in PDT due to the potential for singlet

oxygen generation with little competition from other processes that could deter the quan-

tum yield of singlet oxygen. In order to be a successful PS however, one would need to

promote the formation of the triplet 3PS via enhancing intersystem crossing to facilitate sin-

glet oxygen generation. We also have provided accurate methods to compute the couplings

between systems of two molecules where each exist in different electronic states and are not

connected by any bonds or direct intermolecular interactions. Also, we have shown that

the alternative method of combining and averaging the couplings between the individual

molecules (i.e. coupling between 3O2 and 2O•−
2 , and 1PS∗ and 2PS•+) is not an accurate

method to compute the couplings between states. It is highly suggested that one uses the

approach of implementing the CDFT techniques described in here to compute the couplings

between electronic states of different molecules.

5 Conclusion

In this thesis through the use of computational chemistry methods we were able to compute

the excited state properties for a set of 26 derivatives of BODIPY dyes, as well as char-

acterize how two excited state density functional based methods (TDDFT, and the ROKS

method) describe the S1 excited state PES for a particular derivative. Through these results

we have found that in addition to the known overestimation of the vertical excitation energy

by TDDFT, ROKS systematically underestimates the excitation energy, though to a lesser

margin than TDDFT. There also exists a strong correlation between ROKS and TDDFT

vertical excitation and emission energies, showing that both approaches predict similar shifts

in absorption and emission spectra due to chemical substitution on the dye. Through molec-
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ular dynamics samplings, we found that ROKS samples a region of the S1 PES, where the

ROKS and TDDFT PES are parallel but are offset by roughly 0.5eV. While TDDFT samples

a region that is not as offset, but has substantial differences in the local shape of the PES.

Also covered was the investigation of the interactions between an oxygen molecule and a

particular BODIPY derivative, employing CDFT to compute the electronic states and cou-

plings between the states. Through this study it was found that the oxygen molecules which

adopted a face-on configuration have the highest couplings between all electronic states,

while couplings with oxygen molecules in a side-on configuration had the lowest couplings.

Oxygen molecules that were in a face-on configuration were nearly parallel in relation to

the plane of the dye, which possibly allowed the orbitals to overlap between molecules and

allow for higher couplings. The couplings between the 1PS∗+3O2 and 2PS•++2O•−
2 states

showed that for the oxygen molecules that were in a side-on configuration the systems had

high couplings (0.145-0.150eV). These higher couplings could be due to the proximity of

the molecules to each other allowing for electron transfer to occur more easily. It was also

found that if one can suppress the preference of this specific dye to fluoresce/phosphoresce,

then the production of singlet oxygen is preferred with little competition from the forma-

tion of the doublet radical ions. Through this study we have provided useful information

that may help others optimize the framework of a BODIPY dye to tailor their photophys-

ical characteristics, give insight to users and developers of time-independent excited state

DFT strategies, provided a scheme for computing the couplings between systems of multiple

molecules existing in different electronic states, and shown that BODIPY dyes can be an

efficient photosensitizer so long as their preference to radiatively relax is suppressed. In the

future this work may benefit from the addition of solvent in calculations, expanding the on

the excited state dynamics, and also applying our scheme to calculate the couplings on other

BODIPY derivatives.
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[81] P. W. Ayers, M. Levy, and Á. Nagy. Communication: Kohn-Sham theory for excited

states of Coulomb systems. J. Chem. Phys., 143:191101, 2015.

[82] C. Reichardt. Solvatochromic dyes as solvent polarity indicators. Chem. Rev., 94:2319–

2358, 1994.

[83] A. DeFusco, N. Minezawa, L. V. Slipchenko, F. Zahariev, and M. S. Gordon. Modeling

solvent effects on electronic excited states. J. Phys. Chem. Lett., 2:2184–2192, 2011.

[84] C. A. Guido, D. Jacquemin, C. Adamo, and B. Mennucci. Electronic excitations in

solution: The interplay between state specific approaches and a time-dependent density

functional theory description. J. Chem. Theory Comput., 11:5782–5790, 2015.

[85] A. Filarowski, M. Lopatkova, P. Lipkowski, M. Van der Auweraer, V. Leen, and W. De-

haen. Solvatochromism of BODIPY-Schiff dye. J. Phys. Chem. B, 119:2576–2584,

2015.

77



[86] M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek, and G. R.

Hutchison. Avogadro: An advanced semantic chemical editor, visualization, and anal-

ysis platform. J. Cheminf., 4:17, 2012.

[87] A. D. Becke. Density-functional thermochemistry .3. The role of exact exchange. J.

Chem. Phys., 98:5648–5652, 1993.

[88] I. Frank, J. Hutter, D. Marx, and M. Parrinello. Molecular Dynamics in Low-spin

Excited States. J. Chem. Phys., 108:4060, 1998.

[89] S. Grimm, C. Nonnenberg, and I. Frank. Restricted open-shell kohn–sham theory

for π–π∗ transitions. i. polyenes, cyanines, and protonated imines. J. Chem. Phys.,

119:11574, 2003.

[90] J. M. Wittbrodt and H. B. Schlegel. Some reasons not to use spin projected density

functional theory. J. Chem. Phys., 105:6574, 1996.

[91] S. Hirata and M. Head-Gordon. Time-dependent density functional theory within the

Tamm-Dancoff approximation. Chem. Phys. Lett., 314(3-4):291–299, 1999.

[92] Y. Shao, Z. Gan, E. Epifanovsky, A. T. B. Gilbert, M. Wormit, J. Kussmann, A. W.

Lange, A. Behn, J. Deng, X. Feng, D. Ghosh, M. Goldey, P. R. Horn, L. D. Jacobson,

I. Kaliman, R. Z. Khaliullin, T. Kus, A. Landau, J. Liu, E. I. Proynov, Y. M. Rhee,

R. M. Richard, M. A. Rohrdanz, R. P. Steele, E. J. Sundstrom, H. L. Woodcock III,

P. M. Zimmerman, D. Zuev, B. Albrecht, E. Alguire, B. Austin, G. J. O. Beran, Y. A.

Bernard, E. Berquist, K. Brandhorst, K. B. Bravaya, S. T. Brown, D. Casanova, C.-

M. Chang, Y. Chen, S. H. Chien, K. D. Closser, D. L. Crittenden, M. Diedenhofen,

R. A. DiStasio Jr., H. Do, A. D. Dutoi, R. G. Edgar, S. Fatehi, L. Fusti-Molnar,

A. Ghysels, A. Golubeva-Zadorozhnaya, J. Gomes, M. W. D. Hanson-Heine, P. H. P.

Harbach, A. W. Hauser, E. G. Hohenstein, Z. C. Holden, T.-C. Jagau, H. Ji, B. Kaduk,

K. Khistyaev, J. Kim, J. Kim, R. A. King, P. Klunzinger, D. Kosenkov, T. Kowalczyk,

78



C. M. Krauter, K. U. Lao, A. D. Laurent, K. V. Lawler, S. V. Levchenko, C. Y. Lin,

F. Liu, E. Livshits, R. C. Lochan, A. Luenser, P. Manohar, S. F. Manzer, S.-P. Mao,

N. Mardirossian, A. V. Marenich, S. A. Maurer, N. J. Mayhall, E. Neuscamman, C. M.

Oana, R. Olivares-Amaya, D. P. O’Neill, J. A. Parkhill, T. M. Perrine, R. Peverati,

A. Prociuk, D. R. Rehn, E. Rosta, N. J. Russ, S. M. Sharada, S. Sharma, D. W.

Small, A. Sodt, T. Stein, D. Stueck, Y.-C. Su, A. J. W. Thom, T. Tsuchimochi,

V. Vanovschi, L. Vogt, O. Vydrov, T. Wang, M. A. Watson, J. Wenzel, A. White,

C. F. Williams, J. Yang, S. Yeganeh, S. R. Yost, Z.-Q. You, I. Y. Zhang, X. Zhang,

Y. Zhao, B. R. Brooks, G. K. L. Chan, D. M. Chipman, C. J. Cramer, W. A. Goddard

III, M. S. Gordon, W. J. Hehre, A. Klamt, H. F. Schaefer III, Michael W. Schmidt,

C. D. Sherrill, D. G. Truhlar, A. Warshel, X. Xu, A. Aspuru-Guzik, R. Baer, A. T. Bell,

N. A. Besley, J.-D. Chai, A. Dreuw, B. D. Dunietz, T. R. Furlani, S. R. Gwaltney, C.-P.

Hsu, Y. Jung, J. Kong, D. S. Lambrecht, W. Liang, C. Ochsenfeld, V. A. Rassolov,

L. V. Slipchenko, J. E. Subotnik, T. Van Voorhis, J. M. Herbert, A. I. Krylov, P. M. W.

Gill, and M. Head-Gordon. Advances in molecular quantum chemistry contained in

the Q-Chem 4 program package. Mol. Phys., 113:184–215, 2015.

[93] C. Nonnenberg, S. Grimm, and I. Frank. Restricted open-shell kohn–sham the-

ory for π–π∗ transitions. ii. simulation of photochemical reactions. J. Chem. Phys.,

119(22):11585, 2003.

[94] A. Van Yperen-De Deyne, T. De Meyer, E. Pauwels, A. Ghysels, K. De Clerck,

M. Waroquier, V. Van Speybroeck, and K. Hemelsoet. Exploring the vibrational fin-

gerprint of the electronic excitation energy via molecular dynamics. J. Chem. Phys.,

140:134105, 2014.

[95] R. Peverati and D. G. Truhlar. Quest for a universal density functional: The accuracy

of density functionals across a broad spectrum of databases in chemistry and physics.

Phil. Trans. Roy. Soc. (London) A, 372:20120476, 2014.

79



[96] N. Mardirossian and M Head-Gordon. Mapping the genome of meta-generalized gra-

dient approximation density functionals: The search for B97M-V. J. Chem. Phys.,

142:074111, 2015.

[97] F. Furche and R. Ahlrichs. Adiabatic Time-dependent Density Functional Methods

for Excited State Properties. J. Chem. Phys., 117:7433, 2002.

[98] M. Schulte and I. Frank. Restricted open-shell kohn–sham theory: n unpaired elec-

trons. Chem. Phys., 373:283–288, 2010.

[99] M. Tassi, I. Theophilou, and S. Thanos. Double excitations from modified hartree fock

subsequent minimization scheme. J. Chem. Phys., 138:124107, 2013.

[100] J. R. Lakowicz. Principles of Fluorescence Spectroscopy. Springer, 1983.

[101] McGlynn S. P., M. J. Reynolds, G. W. Daigre, and N. D. Christodoyleas. The external

heavy-atom spin-orbital coupling effect. iii. phosphorescence spectra and lifetimes of

externally perturbed naphthalenes. J. Phys. Chem., 66:2499–2505, 1962.

[102] G. N. Lewis and M. Kasha. Phosphorescence and the triplet state. J. Am. Chem. Soc.,

66:2100–2116, 1944.

[103] C. S. Foote. Definition of type i and type ii photosensitized oxidation. Photochem.

Photobiol., 54:659, 1991.

[104] M. C. DeRosa and R. J. Crutchley. Photosensitized singlet oxygen and its applications.

Coord. Chem. Rev., 233–234:351–371, 2002.

[105] W. J. Royea, A. M. Fajardo, and N. S. Lewis. Fermi golden rule approach to evaluating

outer-sphere electron-transfer rate constants at semiconductor/liquid interfaces. J.

Phys. Chem. B, 101:11152–11159, 1997.

80



A Appendix

Table A1: Naming scheme for examined BODIPY dyes based on the positions of particular
substituents. Placement of substituents are specified in Figure 1.7.

Substituents on positions 2,6 Substituent on position 8

CH3 CH2OH H CH2OAc CHO

CH2CH3, CH2CH3 2c 3c 4c 5c 8c

H, H 2d 3d 4d 5d 8d

H, Cl 2f 3f 4f 5f 8f

Cl, Cl 2g 3g 4g 5g 8g

H, CN 3i 5i 8i

CN, CN 3j 5j 8j

Optimized geometries in xyz file format:

48

2c

C 0.010776 -1.507885 0.134120

C -1.216058 -0.817756 0.185172

C 1.232869 -0.808804 0.177075

N -1.238574 0.568033 0.356265

B 0.001360 1.484589 0.555786

F -0.004710 2.505277 -0.392186

F 0.002912 2.017175 1.845585

C -2.517348 0.987392 0.373058

C -3.382992 -0.120951 0.196813

C -2.577249 -1.257817 0.075169

C -3.103430 -2.646393 -0.158744

H -2.621410 -3.138377 -1.010669

H -4.176058 -2.616998 -0.367833

H -2.967027 -3.300017 0.713370

C -2.872184 2.428651 0.556224

H -2.556707 3.019182 -0.310914
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H -2.349776 2.841337 1.424798

H -3.948813 2.552783 0.694113

C 2.596367 -1.239094 0.057812

C 3.394855 -0.096656 0.175336

C 2.522527 1.005386 0.358050

N 1.246680 0.576941 0.349077

C 3.131209 -2.623676 -0.180339

H 4.201999 -2.585932 -0.397338

H 2.646856 -3.119257 -1.028843

H 3.006032 -3.278245 0.692718

C 2.868039 2.449250 0.538568

H 2.337713 2.861813 1.402238

H 2.555438 3.035137 -0.332899

H 3.943085 2.579926 0.682925

C 0.016305 -3.013285 0.029216

H 0.018112 -3.341727 -1.019104

H -0.859386 -3.447764 0.507757

H 0.894925 -3.441086 0.508658

C -4.885756 -0.049504 0.131613

C -5.436656 0.199067 -1.284841

H -5.242112 0.746964 0.796978

H -5.318350 -0.975734 0.529106

H -5.060823 1.143482 -1.694248

H -6.532128 0.244968 -1.277539

H -5.134814 -0.599653 -1.971845

C 4.896604 -0.015041 0.099193

C 5.435551 0.232155 -1.322015

H 5.338444 -0.936810 0.496990

H 5.252238 0.786326 0.759058

H 5.133065 -0.570364 -2.004274

H 6.530779 0.284210 -1.323020

H 5.051419 1.173167 -1.731499
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36

2d

C -0.037917 -1.522195 0.062784

C -1.243998 -0.797395 0.028956

C 1.201696 -0.855805 0.034773

N -1.229786 0.602254 0.013411

B 0.035261 1.507844 0.051467

F 0.056787 2.339094 -1.067410

F 0.052239 2.264289 1.221003

C -2.497737 1.053351 -0.030904

C -3.373490 -0.049012 -0.056594

C -2.616930 -1.214629 -0.019049

C -3.212796 -2.593023 -0.055459

H -2.794933 -3.211911 -0.857368

H -4.292018 -2.521228 -0.222619

H -3.069327 -3.139696 0.885942

C -2.841884 2.507355 -0.046746

H -3.926450 2.641287 -0.069434

H -2.399018 3.000463 -0.918330

H -2.436575 3.008893 0.838683

C 2.552636 -1.339822 -0.005240

C 3.365497 -0.212558 -0.039974

C 2.544413 0.931352 -0.020520

N 1.255720 0.542779 0.017396

C 3.079143 -2.746278 -0.035822

H 4.161032 -2.729576 -0.200520

H 2.632175 -3.346496 -0.836209

H 2.905840 -3.281215 0.907309

C 2.958402 2.367185 -0.034968

H 2.579393 2.885811 0.852244

H 2.537651 2.882733 -0.904390

H 4.048080 2.448904 -0.059794

C -0.073882 -3.029675 0.113120

H -0.075760 -3.456987 -0.898739

H -0.964691 -3.390653 0.624155

H 0.791041 -3.431954 0.637803

H -4.453432 0.012939 -0.104566

H 4.447435 -0.203792 -0.082216
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36

2f

C -0.532093 -1.518123 0.056749

C -1.756920 -0.830959 0.031028

C 0.690708 -0.813414 0.022339

N -1.781176 0.570415 0.018036

B -0.543906 1.514300 0.050212

F -0.550769 2.342974 -1.068311

F -0.542372 2.266579 1.220478

C -3.059516 0.987446 -0.013983

C -3.907103 -0.138635 -0.034511

C -3.122536 -1.283500 -0.006266

C -3.691232 -2.673731 -0.042514

H -3.507766 -3.229003 0.886406

H -3.288129 -3.272146 -0.867332

H -4.776271 -2.620878 -0.174955

C -3.444066 2.431042 -0.022284

H -4.531894 2.534802 -0.036576

H -3.021019 2.938848 -0.895153

H -3.045941 2.940091 0.862033

C 2.045735 -1.273712 -0.019178

C 2.817962 -0.114088 -0.048093

C 1.979091 1.018949 -0.026028

N 0.705921 0.582968 0.010264

C 2.593908 -2.668493 -0.054790

H 3.670024 -2.637420 -0.242728

H 2.134364 -3.275670 -0.841622

H 2.445773 -3.197791 0.895352

C 2.351484 2.463547 -0.034619

H 1.958803 2.962468 0.857709

H 1.909290 2.966637 -0.900438

H 3.436787 2.577667 -0.063637

Cl 4.557970 -0.040416 -0.110060

C -0.505229 -3.024634 0.117612

H -0.269345 -3.454555 -0.864726

H -1.455935 -3.438031 0.441891

H 0.259564 -3.372502 0.814231

H -4.988544 -0.104089 -0.073166
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36

2g

C -0.009632 -1.505714 0.104086

C -1.230142 -0.803501 0.079559

C 1.216735 -0.815507 0.043755

N -1.243148 0.594632 0.072203

B 0.006742 1.526230 0.134220

F -0.010386 2.404551 -0.941851

F 0.032758 2.216926 1.339848

C -2.513942 1.032427 0.038404

C -3.356860 -0.099899 0.007481

C -2.588940 -1.260302 0.031988

C -3.143684 -2.651932 -0.028172

H -3.042852 -3.180960 0.928628

H -2.653574 -3.260787 -0.794498

H -4.210381 -2.613611 -0.262894

C -2.885346 2.477063 0.030916

H -3.964850 2.593702 0.144472

H -2.569992 2.949058 -0.905819

H -2.373995 3.003614 0.842555

C 2.568430 -1.287157 -0.039133

C 3.348058 -0.135113 -0.086474

C 2.518715 1.006334 -0.036166

N 1.244261 0.582327 0.031780

C 3.105360 -2.685161 -0.110094

H 4.164944 -2.660493 -0.376795

H 2.585189 -3.291287 -0.858495

H 3.026882 -3.209058 0.851662

C 2.905886 2.446761 -0.044449

H 2.526307 2.945687 0.853564

H 2.461106 2.957861 -0.904110

H 3.991878 2.549554 -0.082823

Cl 5.084306 -0.074272 -0.203695

Cl -5.094666 -0.018634 -0.063691

C -0.015136 -3.011228 0.194421

H -0.019752 -3.469317 -0.803793

H -0.892434 -3.373058 0.727449

H 0.863760 -3.378960 0.721241
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49

3c

C 0.027438 -1.271513 -0.252148

C -1.217358 -0.648116 -0.066026

C 1.226751 -0.561832 -0.077158

N -1.285572 0.722407 0.190019

B -0.074037 1.695280 0.290327

F -0.106631 2.622800 -0.749750

F -0.097167 2.345608 1.523215

C -2.577979 1.075746 0.321490

C -3.402720 -0.070371 0.178349

C -2.558594 -1.157258 -0.066313

C -3.008582 -2.582561 -0.217797

H -3.041091 -2.899756 -1.269916

H -4.021507 -2.706678 0.177367

H -2.351285 -3.270640 0.321585

C -2.986344 2.489786 0.583232

H -2.555412 3.155759 -0.171569

H -2.606250 2.829206 1.552922

H -4.073456 2.593432 0.570771

C 2.600232 -0.975074 -0.095426

C 3.369285 0.167988 0.141088

C 2.467724 1.252803 0.297901

N 1.201631 0.809469 0.182692

C 3.148190 -2.364516 -0.255644

H 4.175115 -2.416082 0.119248

H 3.182671 -2.679801 -1.308259

H 2.552787 -3.097563 0.296300

C 2.776716 2.694643 0.545350

H 3.853207 2.859502 0.627456

H 2.287025 3.040041 1.461119

H 2.384304 3.311960 -0.270555

C 0.075875 -2.719243 -0.690996

C -4.905389 -0.078175 0.261213

C -5.596789 0.126699 -1.100317

H -5.241165 0.702413 0.954949

H -5.247348 -1.025735 0.695994

H -5.304826 1.082988 -1.548340

H -6.687738 0.120307 -0.991751

H -5.320200 -0.665970 -1.804732

C 4.869572 0.263064 0.205163

C 5.530975 0.481652 -1.168733

H 5.279590 -0.648842 0.657511

H 5.159220 1.080331 0.876746

H 5.304107 -0.346379 -1.849868
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H 6.620691 0.554716 -1.072973

H 5.167760 1.403414 -1.636790

O 0.109404 -3.565141 0.463569

H 0.959092 -2.877369 -1.317203

H -0.799519 -2.936359 -1.310622

H 0.132987 -4.482597 0.147317
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37

3d

C 0.254445 -1.272531 -0.289025

C -1.082593 -0.862248 -0.173125

C 1.304433 -0.343807 -0.221983

N -1.398727 0.497681 -0.086947

B -0.383804 1.675976 -0.188026

F -0.563457 2.366853 -1.383697

F -0.542398 2.531537 0.899273

C -2.733149 0.626379 0.042254

C -3.317696 -0.656978 0.060917

C -2.308855 -1.602532 -0.073937

C -2.523096 -3.088695 -0.046602

H -2.420900 -3.540076 -1.043337

H -3.535701 -3.311377 0.303711

H -1.812276 -3.587426 0.619977

C -3.411426 1.952924 0.150865

H -4.496486 1.825233 0.183022

H -3.150081 2.590434 -0.700836

H -3.083437 2.481703 1.051712

C 2.729884 -0.508658 -0.171885

C 3.260785 0.771720 -0.077793

C 2.196812 1.697634 -0.072110

N 1.031855 1.026077 -0.145359

C 3.540207 -1.772334 -0.149517

H 4.566221 -1.550726 0.160271

H 3.599280 -2.246190 -1.139242

H 3.122744 -2.505875 0.547396

C 2.267495 3.187782 0.005164

H 1.813493 3.549935 0.933553

H 1.704838 3.641376 -0.817714

H 3.306714 3.523342 -0.041046

C 0.568410 -2.738537 -0.497389

O 0.722695 -3.370578 0.777397

H 1.480419 -2.832138 -1.094701

H -0.239714 -3.203311 -1.070549

H 0.924145 -4.305744 0.612618

H 4.310089 1.027838 -0.002346

H -4.374806 -0.857947 0.180889
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37

3f

C -0.493788 -1.314466 -0.270993

C -1.727592 -0.656193 -0.188051

C 0.714744 -0.605165 -0.146947

N -1.780997 0.737725 -0.078780

B -0.558970 1.702648 -0.131632

F -0.561640 2.421675 -1.322763

F -0.583929 2.560292 0.961541

C -3.069260 1.116967 0.011951

C -3.889446 -0.031601 -0.016360

C -3.077457 -1.149884 -0.143588

C -3.571736 -2.567069 -0.159358

H -2.985921 -3.205971 0.508563

H -3.532913 -3.007350 -1.165430

H -4.616899 -2.600733 0.163578

C -3.486823 2.546349 0.124283

H -4.575829 2.629121 0.084124

H -3.050449 3.138662 -0.686920

H -3.128375 2.983173 1.062486

C 2.072333 -1.053623 -0.060600

C 2.825020 0.110201 0.062547

C 1.971211 1.235568 0.057164

N 0.706891 0.789199 -0.056838

C 2.617785 -2.449226 -0.023569

H 2.693611 -2.888867 -1.027936

H 1.991913 -3.103260 0.589630

H 3.626906 -2.442269 0.397261

C 2.325639 2.680667 0.156672

H 1.963349 3.101994 1.100669

H 1.846414 3.244893 -0.649681

H 3.407956 2.812177 0.098890

Cl 4.557051 0.195777 0.223553

C -0.459872 -2.808371 -0.515505

O -0.465725 -3.488272 0.742502

H 0.434801 -3.057809 -1.094958

H -1.324955 -3.094569 -1.121627

H -0.433639 -4.440574 0.556827

H -4.968991 -0.027527 0.065503
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37

3g

C 0.027039 -1.319665 -0.248085

C -1.212760 -0.670231 -0.135043

C 1.230137 -0.602882 -0.144340

N -1.273200 0.722539 -0.033303

B -0.054791 1.698100 -0.098076

F -0.078723 2.417012 -1.287145

F -0.075676 2.548986 0.998089

C -2.557575 1.106158 0.072540

C -3.357820 -0.059871 0.060101

C -2.550154 -1.184391 -0.065616

C -3.027195 -2.604884 -0.044910

H -2.376222 -3.232298 0.569859

H -3.070669 -3.038772 -1.053573

H -4.039963 -2.651533 0.364704

C -2.982304 2.530908 0.182972

H -4.068626 2.610752 0.111638

H -2.519329 3.126955 -0.609686

H -2.653353 2.956678 1.137101

C 2.593953 -1.042790 -0.088254

C 3.340274 0.123885 0.032729

C 2.477833 1.244356 0.053709

N 1.215290 0.791128 -0.041057

C 3.149006 -2.434700 -0.074938

H 3.210207 -2.862447 -1.085353

H 2.537870 -3.099175 0.541770

H 4.165186 -2.425121 0.328307

C 2.825296 2.690334 0.159336

H 2.466209 3.103621 1.108068

H 2.337434 3.256519 -0.640568

H 3.906302 2.828465 0.095222

Cl 5.072872 0.221200 0.164140

Cl -5.091749 -0.054794 0.208115

C 0.067511 -2.810937 -0.509716

O 0.099902 -3.503393 0.740516

H 0.949364 -3.045507 -1.114369

H -0.810454 -3.097291 -1.097088

H 0.126062 -4.454070 0.545334
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38

3i

C -0.387924 -1.315103 -0.286608

C -1.623819 -0.670579 -0.213836

C 0.817205 -0.586265 -0.183579

N -1.694208 0.727008 -0.140894

B -0.483802 1.708201 -0.220418

F -0.494977 2.390877 -1.430200

F -0.525471 2.591794 0.850167

C -2.984119 1.091635 -0.054029

C -3.793143 -0.069265 -0.047048

C -2.971624 -1.179329 -0.148376

C -3.447028 -2.602174 -0.120168

H -2.847616 -3.213176 0.561443

H -3.408601 -3.069581 -1.113768

H -4.489246 -2.640267 0.211074

C -3.420003 2.517281 0.023943

H -4.509507 2.586479 -0.022074

H -2.986043 3.095882 -0.798227

H -3.069459 2.977991 0.953619

C 2.170323 -1.013055 -0.086609

C 2.931076 0.164850 0.021657

C 2.048167 1.274522 -0.010511

N 0.793750 0.812887 -0.120714

C 2.746109 -2.396214 -0.036544

H 3.770584 -2.359379 0.344846

H 2.792766 -2.856306 -1.033249

H 2.155872 -3.049524 0.612268

C 2.393931 2.724290 0.054120

H 3.476801 2.854227 0.114426

H 1.922084 3.193558 0.922961

H 2.016317 3.244517 -0.832941

C 4.340720 0.244311 0.160000

C -0.333120 -2.814803 -0.489783

N 5.498940 0.302189 0.273177

O -0.305580 -3.454614 0.787922

H 0.556080 -3.064635 -1.077504

H -1.202556 -3.133964 -1.072401

H -0.238103 -4.410531 0.632656

H -4.872000 -0.073572 0.042259
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39

3j

C -0.024074 -1.348302 0.319100

C -1.234482 -0.638775 0.265455

C 1.206804 -0.673080 0.329753

N -1.241322 0.761865 0.341644

B 0.011827 1.669141 0.578059

F 0.050084 2.670404 -0.378102

F -0.012998 2.191257 1.861573

C -2.500353 1.205550 0.248199

C -3.360749 0.084209 0.083053

C -2.581665 -1.080614 0.092587

C -3.122024 -2.463333 -0.110738

H -3.173950 -3.021321 0.834029

H -2.502229 -3.033129 -0.808730

H -4.139466 -2.411151 -0.508085

C -2.879406 2.645956 0.314802

H -3.966192 2.753630 0.308969

H -2.457201 3.193185 -0.534262

H -2.473821 3.103863 1.223113

C 2.548239 -1.153277 0.228540

C 3.359398 -0.010875 0.259775

C 2.523533 1.134537 0.379015

N 1.249312 0.726791 0.405856

C 3.058737 -2.551033 0.054393

H 4.095805 -2.529166 -0.291928

H 2.458516 -3.104839 -0.672828

H 3.048188 -3.108022 1.001206

C 2.937380 2.564300 0.463920

H 2.487575 3.037731 1.342869

H 2.584201 3.117964 -0.412088

H 4.024932 2.642921 0.525635

C 4.775237 0.017871 0.167460

C -4.768464 0.153121 -0.082796

N 5.937393 0.035356 0.091869

N -5.924205 0.204755 -0.217854

C -0.046844 -2.861979 0.376924

O -0.015561 -3.371843 -0.956569

H -0.946765 -3.188394 0.907146

H 0.811916 -3.213105 0.957437

H -0.030829 -4.341045 -0.900338
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45

4c

C 0.016137 -1.585872 -0.002560

C -1.198073 -0.915919 0.100099

C 1.220752 -0.913159 -0.173563

N -1.243327 0.475486 0.038313

B -0.007183 1.413111 -0.173476

F -0.156346 2.126428 -1.359642

F 0.128149 2.279525 0.907800

C -2.528984 0.858208 0.172365

C -3.359422 -0.286198 0.329259

C -2.522841 -1.404461 0.281316

C -2.919469 -2.846491 0.380713

H -2.081823 -3.479397 0.692072

H -3.283049 -3.234584 -0.580325

H -3.726155 -2.988258 1.108793

C -2.922355 2.300411 0.147651

H -2.673566 2.746012 -0.822011

H -2.361657 2.861831 0.902284

H -3.992315 2.421907 0.330697

C 2.554815 -1.397663 -0.287581

C 3.376029 -0.277746 -0.442972

C 2.526677 0.863471 -0.421343

N 1.245359 0.477257 -0.260896

C 2.971783 -2.836429 -0.227973

H 3.793292 -3.041791 -0.923527

H 2.148167 -3.510580 -0.485429

H 3.322656 -3.117497 0.774262

C 2.898402 2.305343 -0.550334

H 3.962409 2.421143 -0.769165

H 2.664736 2.845157 0.374350

H 2.313193 2.779466 -1.344927

C -4.855598 -0.277550 0.486725

C -5.620501 -0.294077 -0.849703

H -5.163612 0.602868 1.065033

H -5.161307 -1.147094 1.082899

H -5.373405 0.583342 -1.457952

H -6.703784 -0.294796 -0.680649

H -5.368597 -1.183758 -1.437967

C 4.874777 -0.255812 -0.573420

C 5.606411 -0.020107 0.762173

H 5.175801 0.521602 -1.287706

H 5.215515 -1.205637 -1.004065

H 5.320750 0.941523 1.202622

H 6.693296 -0.018332 0.618619
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H 5.360083 -0.802214 1.488954

H 0.024307 -2.669812 0.055939
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33

4d

C -0.017437 -1.663854 0.000118

C -1.226487 -0.981810 -0.001367

C 1.208101 -1.006450 0.000114

N -1.255259 0.415416 -0.001194

B 0.014636 1.342052 -0.001281

F 0.020550 2.133085 -1.143251

F 0.021550 2.132131 1.141340

C -2.543086 0.806453 -0.001259

C -3.378791 -0.339143 -0.001778

C -2.568759 -1.465303 -0.002074

C -2.995649 -2.902510 -0.005341

H -2.600603 -3.446864 0.861655

H -2.648051 -3.428008 -0.903893

H -4.086309 -2.981280 0.022776

C -2.969208 2.239811 -0.000765

H -3.575993 2.457399 -0.888282

H -2.115034 2.915860 0.009445

H -3.592490 2.451351 0.876653

C 2.538846 -1.515635 0.001412

C 3.372568 -0.403078 0.000352

C 2.560063 0.754856 -0.001954

N 1.262259 0.389124 -0.002124

C 2.940351 -2.960195 0.002937

H 3.541232 -3.206569 -0.881058

H 2.073786 -3.628496 0.007962

H 3.548380 -3.202551 0.883100

C 3.012577 2.180558 -0.003768

H 3.623786 2.387789 0.883122

H 2.171316 2.872622 -0.014014

H 3.638844 2.380094 -0.881829

H -4.461480 -0.318763 -0.001776

H -0.031188 -2.749576 0.001292

H 4.455471 -0.400896 0.000756
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33

4f

C -0.494545 -1.653779 0.006282

C -1.735535 -1.035311 0.033513

C 0.695043 -0.928268 -0.022794

N -1.836453 0.358082 0.035783

B -0.626503 1.353675 0.010627

F -0.689004 2.144504 -1.130338

F -0.630364 2.135554 1.158834

C -3.142425 0.683443 0.063998

C -3.918257 -0.502307 0.080328

C -3.052753 -1.587004 0.061592

C -3.406754 -3.043252 0.066060

H -2.965344 -3.566651 0.923509

H -3.052948 -3.550278 -0.840624

H -4.491038 -3.176568 0.118422

C -3.615516 2.099752 0.074177

H -3.252583 2.630758 -0.812422

H -3.214666 2.631235 0.944114

H -4.707159 2.142169 0.097780

C 2.046331 -1.368892 -0.056165

C 2.800604 -0.199730 -0.078359

C 1.937368 0.921073 -0.058653

N 0.668645 0.466250 -0.025357

C 2.549494 -2.776669 -0.069748

H 3.089435 -2.994569 -0.999558

H 1.735983 -3.502011 0.023391

H 3.252080 -2.949941 0.753929

C 2.281457 2.371790 -0.067102

H 1.911302 2.855112 0.843743

H 1.795062 2.871131 -0.911541

H 3.362196 2.510673 -0.135370

Cl 4.538598 -0.115970 -0.123769

H -5.000147 -0.535466 0.103394

H -0.448638 -2.738347 0.006745
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33

4g

C -0.000544 -1.592044 -0.021061

C -1.216160 -0.919195 0.033580

C 1.216691 -0.920897 -0.053224

N -1.251413 0.475536 0.058250

B 0.002691 1.419311 0.024673

F -0.039621 2.218927 -1.108664

F 0.047159 2.187455 1.179536

C -2.537099 0.872667 0.113073

C -3.351728 -0.286436 0.124934

C -2.548527 -1.419754 0.075102

C -2.989194 -2.848176 0.070423

H -3.521607 -3.099599 0.995933

H -2.144667 -3.536135 -0.028209

H -3.681402 -3.041778 -0.757477

C -2.944863 2.305922 0.148914

H -2.588771 2.823236 -0.748470

H -2.487146 2.808497 1.007526

H -4.030901 2.395419 0.211685

C 2.548085 -1.423173 -0.107634

C 3.353953 -0.290811 -0.118757

C 2.541761 0.869422 -0.073254

N 1.255221 0.473891 -0.033733

C 2.984748 -2.852491 -0.138445

H 3.640618 -3.043411 -0.995812

H 2.134672 -3.537568 -0.204595

H 3.555061 -3.110228 0.762598

C 2.953648 2.301943 -0.066166

H 2.594212 2.794816 0.843488

H 2.502244 2.829773 -0.912902

H 4.040271 2.389840 -0.120683

Cl 5.091977 -0.283773 -0.180547

Cl -5.089502 -0.277712 0.193470

H -0.001994 -2.676956 -0.038414
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54

5c2

C 0.129452 -0.709529 0.164014

C -1.172713 -0.202047 0.012827

C 1.253476 0.130780 0.087699

N -1.376648 1.170724 -0.136397

B -0.269676 2.265480 -0.129537

F -0.340759 3.015568 -1.302706

F -0.413402 3.087686 0.986004

C -2.697341 1.405581 -0.251181

C -3.405166 0.176190 -0.206163

C -2.458794 -0.838352 -0.038097

C -2.780894 -2.304688 0.011670

H -2.124373 -2.890307 -0.638594

H -3.809210 -2.477839 -0.317863

H -2.699187 -2.718691 1.025683

C -3.239056 2.791288 -0.394270

H -4.327294 2.784492 -0.484706

H -2.807154 3.283204 -1.271517

H -2.959883 3.398768 0.473827

C 2.664078 -0.136335 0.117173

C 3.311151 1.095340 -0.013273

C 2.302691 2.089258 -0.114184

N 1.089292 1.508233 -0.067861

C 3.361106 -1.463632 0.208490

H 4.415862 -1.358817 -0.061183

H 2.919871 -2.203151 -0.466019

H 3.335733 -1.882623 1.223713

C 2.460324 3.569392 -0.249523

H 1.951460 4.080153 0.575321

H 1.990471 3.922815 -1.172921

H 3.513622 3.858107 -0.248175

C 4.793877 1.353771 -0.031886

C 0.320458 -2.175719 0.467211

C -4.899463 0.018723 -0.300696

O 0.475529 -2.896850 -0.782124

C 0.617720 -4.241570 -0.650421

H -0.528431 -2.588033 1.008562

H 1.202377 -2.344221 1.082867

O 0.613627 -4.809181 0.418981

C 0.787448 -4.914028 -1.993337

H 0.656715 -4.214247 -2.819952

H 0.065162 -5.731400 -2.074806

H 1.788147 -5.355971 -2.043534

C 5.406919 1.540318 1.368545
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H 5.003974 2.244519 -0.636251

H 5.307089 0.527526 -0.539884

H 4.944412 2.385035 1.891331

H 6.484555 1.730226 1.301986

H 5.256923 0.647648 1.986226

C -5.596254 -0.087964 1.068613

H -5.139166 -0.873359 -0.894055

H -5.326193 0.862498 -0.855426

H -5.215487 -0.943561 1.637414

H -6.678636 -0.213811 0.948332

H -5.423399 0.811703 1.669910
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42

5d2

C 0.565273 0.003230 -0.512475

C -0.169652 1.168884 -0.241948

C -0.032281 -1.266238 -0.449461

N -1.535539 1.087597 0.048931

B -2.390436 -0.214185 0.085172

F -2.977536 -0.359962 1.339640

F -3.364496 -0.177654 -0.909409

C -2.007747 2.327414 0.277779

C -0.949549 3.250836 0.151663

C 0.207295 2.554639 -0.173346

C 1.551667 3.197416 -0.358293

H 2.327181 2.712005 0.242956

H 1.503151 4.247765 -0.055141

H 1.885215 3.179810 -1.404131

C -3.438343 2.597452 0.611527

H -3.613392 3.671919 0.707434

H -3.714877 2.101249 1.547773

H -4.094964 2.191132 -0.164946

C 0.499335 -2.592741 -0.602263

C -0.571199 -3.458261 -0.419811

C -1.727654 -2.693296 -0.163181

N -1.398610 -1.387471 -0.173878

C 1.909417 -3.041292 -0.857943

H 1.979823 -4.125453 -0.727732

H 2.621329 -2.575622 -0.168677

H 2.244383 -2.818429 -1.879612

C -3.118207 -3.175449 0.089098

H -3.814605 -2.730526 -0.629511

H -3.457805 -2.871325 1.084987

H -3.166048 -4.264445 0.009931

H -0.533812 -4.539677 -0.456092

C 2.019792 0.118793 -0.897647

H -1.035357 4.320442 0.295822

O 2.818158 0.063958 0.310966

C 4.158166 0.172297 0.116833

H 2.225100 1.053466 -1.416107

H 2.326318 -0.687119 -1.561901

O 4.663300 0.304190 -0.975527

C 4.913238 0.104728 1.424351

H 4.242830 0.010637 2.279697

H 5.524212 1.006778 1.527901

H 5.597026 -0.749579 1.395354
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5f2

C 0.622838 0.421488 -0.459771

C -0.048007 1.629146 -0.220011

C -0.044284 -0.814830 -0.367224

N -1.417841 1.630686 0.066583

B -2.344739 0.381363 0.127301

F -2.943564 0.295797 1.379171

F -3.305356 0.443597 -0.876939

C -1.821923 2.898930 0.264564

C -0.713184 3.760349 0.122410

C 0.404014 2.995632 -0.180739

C 1.781323 3.561422 -0.372953

H 2.526227 3.056683 0.250858

H 1.785091 4.621934 -0.103476

H 2.121585 3.492591 -1.414208

C -3.235851 3.255413 0.586063

H -3.536727 2.810928 1.540793

H -3.913512 2.854137 -0.174670

H -3.354805 4.340296 0.641009

C 0.424680 -2.164340 -0.491286

C -0.703918 -2.954233 -0.295875

C -1.827984 -2.132896 -0.056678

N -1.414551 -0.853370 -0.095660

C 1.809141 -2.687677 -0.729942

H 1.837737 -3.761861 -0.530214

H 2.543614 -2.203588 -0.080048

H 2.133206 -2.544857 -1.769158

C -3.241645 -2.531155 0.199984

H -3.910897 -2.022427 -0.501061

H -3.547686 -2.229524 1.207629

H -3.358985 -3.611528 0.097298

Cl -0.756104 -4.694243 -0.323426

C 2.082226 0.448850 -0.843822

H -0.740031 4.835822 0.243066

O 2.870648 0.336716 0.365952

C 4.217243 0.411041 0.182392

H 2.346129 1.370395 -1.357639

H 2.334903 -0.372190 -1.513119

O 4.729644 0.568572 -0.902285

C 4.945582 0.258770 1.496352

H 4.553582 0.963091 2.236325

H 6.011347 0.428533 1.340423

H 4.789117 -0.750483 1.892461
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42

5g

C -0.030110 -0.734454 -0.235781

C -1.101914 0.170820 -0.164465

C 1.295673 -0.311930 -0.044573

N -0.856680 1.537115 -0.003177

B 0.549345 2.215046 0.048338

F 0.763678 2.955359 -1.107060

F 0.647049 3.012369 1.179372

C -2.025367 2.199810 0.038150

C -3.064564 1.247240 -0.078866

C -2.523207 -0.026769 -0.204330

C -3.315720 -1.296206 -0.282685

H -2.925180 -2.056318 0.399848

H -3.327296 -1.716788 -1.297762

H -4.355597 -1.100093 -0.009384

C -2.124221 3.679424 0.187503

H -3.158703 4.006390 0.067895

H -1.494582 4.177901 -0.556307

H -1.760242 3.989398 1.172807

C 2.528277 -1.042831 0.043389

C 3.501918 -0.075593 0.263109

C 2.902954 1.204956 0.311000

N 1.580125 1.044788 0.133935

C 2.777941 -2.519938 -0.010529

H 3.792530 -2.735445 0.333325

H 2.695488 -2.915246 -1.032221

H 2.080461 -3.070617 0.627423

C 3.549444 2.531842 0.518755

H 3.200687 2.983092 1.453377

H 3.275500 3.218732 -0.288809

H 4.635119 2.425546 0.551960

Cl 5.204242 -0.362352 0.472179

Cl -4.757324 1.643468 -0.045678

C -0.305855 -2.186199 -0.557971

O -0.493518 -2.903425 0.677271

H 0.531396 -2.607365 -1.115228

H -1.196062 -2.266502 -1.182007

C -0.769042 -4.249212 0.676720

O -0.890232 -4.803857 1.738132

C -0.907783 -4.944048 -0.663232

H 0.009740 -4.862477 -1.256429

H -1.722401 -4.511440 -1.254501

H -1.120749 -5.996593 -0.476231
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5i

C 0.375785 -0.585105 -0.496132

C -0.745508 -1.386814 -0.269290

C 0.298788 0.823021 -0.405120

N -1.990605 -0.802916 0.001798

B -2.298232 0.724066 0.068794

F -3.185190 1.078173 -0.940236

F -2.810199 1.048578 1.319053

C -2.897556 -1.776002 0.186016

C -2.259920 -3.031617 0.053272

C -0.921825 -2.819402 -0.230875

C 0.084852 -3.918203 -0.409669

H 0.967477 -3.777177 0.222638

H 0.431789 -4.002879 -1.447468

H -0.366774 -4.878196 -0.142602

C -4.333407 -1.498796 0.484549

H -4.901637 -2.430556 0.535567

H -4.764271 -0.851975 -0.286764

H -4.431114 -0.962798 1.434701

C 1.292423 1.836466 -0.521209

C 0.615667 3.053243 -0.326476

C -0.755762 2.774145 -0.097322

N -0.928058 1.445018 -0.140576

C 2.769390 1.732007 -0.758830

H 3.241952 2.703775 -0.590770

H 3.001842 1.433871 -1.789360

H 3.237776 1.006091 -0.087699

C -1.861406 3.742730 0.156161

H -2.303120 3.567060 1.142517

H -2.662089 3.606032 -0.578043

H -1.490090 4.768489 0.102948

C 1.193771 4.348893 -0.340346

C 1.690736 -1.229238 -0.861677

N 1.672536 5.410978 -0.350770

O 2.439426 -1.445813 0.358021

H 2.271713 -0.597888 -1.532437

H 1.547650 -2.181427 -1.367669

C 3.638771 -2.070402 0.190145

O 4.050286 -2.428444 -0.889332

C 4.345002 -2.234674 1.514112

H 4.523275 -1.254720 1.968855

H 5.294036 -2.747975 1.356682

H 3.720736 -2.806049 2.208511

H -2.747779 -3.991110 0.168236
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5j

C -0.279974 -0.624837 -0.438500

C -1.060408 0.542264 -0.376619

C 1.100279 -0.588266 -0.175580

N -0.458784 1.783425 -0.120971

B 1.073827 2.045941 0.046859

F 1.552569 2.769243 -1.034307

F 1.308316 2.704792 1.242837

C -1.396005 2.737946 -0.098473

C -2.661048 2.129426 -0.327264

C -2.468865 0.752985 -0.506412

C -3.581926 -0.222378 -0.740653

H -3.527079 -1.074278 -0.056637

H -3.576357 -0.614634 -1.765571

H -4.545438 0.272135 -0.590249

C -1.102601 4.181375 0.130085

H -2.012751 4.776589 0.029962

H -0.355299 4.533238 -0.588694

H -0.679283 4.331740 1.128703

C 2.076158 -1.628553 -0.075921

C 3.281519 -0.985207 0.233879

C 3.039835 0.413974 0.318508

N 1.741067 0.632491 0.082142

C 1.931028 -3.114375 -0.208492

H 2.838208 -3.609107 0.149217

H 1.787045 -3.422007 -1.252175

H 1.084742 -3.492373 0.372028

C 4.020228 1.495021 0.621695

H 3.763879 1.987252 1.565742

H 3.991104 2.264541 -0.156731

H 5.030371 1.085813 0.691186

C 4.538124 -1.609483 0.447145

C -3.902835 2.816405 -0.351574

N 5.566452 -2.127358 0.622539

N -4.924441 3.375348 -0.369539

C -0.930075 -1.935260 -0.813905

O -1.397700 -2.570368 0.397319

H -0.230582 -2.597062 -1.321672

H -1.768423 -1.783354 -1.491647

C -2.030599 -3.765129 0.203772

O -2.183895 -4.254291 -0.890802

C -2.487742 -4.348141 1.517891

H -1.635224 -4.478705 2.192207

H -2.969990 -5.309273 1.337677
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H -3.189884 -3.666220 2.008657
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8c

C 0.013489 -1.343655 0.068258

C -1.228765 -0.691949 0.165608

C 1.226356 -0.641878 0.104675

N -1.286133 0.691737 0.309371

B -0.059785 1.645583 0.418508

F -0.101111 2.597930 -0.594552

F -0.048194 2.259631 1.669935

C -2.579524 1.067433 0.350336

C -3.412982 -0.075388 0.225280

C -2.572788 -1.184726 0.099628

C -3.024069 -2.606238 -0.082823

H -2.870323 -3.211289 0.821328

H -2.499939 -3.108793 -0.903058

H -4.092374 -2.644203 -0.312547

C -2.976941 2.499285 0.507477

H -2.641442 3.087095 -0.353973

H -2.495781 2.934298 1.389650

H -4.060227 2.598395 0.604879

C 2.601476 -1.061254 0.068110

C 3.373688 0.094829 0.187884

C 2.475666 1.192074 0.301527

N 1.207153 0.747867 0.257742

C 3.145524 -2.452924 -0.071174

H 2.913548 -2.879648 -1.051109

H 2.729090 -3.138478 0.675401

H 4.231543 -2.452150 0.054448

C 2.795534 2.644441 0.448793

H 2.278416 3.059602 1.319592

H 2.439962 3.204354 -0.423302

H 3.870255 2.802839 0.558318

C -4.918344 -0.059367 0.203278

C -5.515508 0.173238 -1.197500

H -5.286017 0.720478 0.882219

H -5.302009 -1.003777 0.607315

H -5.184373 1.131327 -1.613353

H -6.611037 0.180452 -1.159433

H -5.204447 -0.612707 -1.894818

C 4.874785 0.202323 0.176318

C 5.468442 0.404625 -1.230371

H 5.313354 -0.697092 0.624986

H 5.187499 1.033516 0.820382

H 5.215314 -0.434406 -1.887894

H 6.560794 0.485052 -1.185709
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H 5.079735 1.317617 -1.695341

C -0.003508 -2.839758 -0.055971

O 0.521884 -3.461016 -0.953939

H -0.553256 -3.366694 0.749308
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8d

C -0.106098 -1.379873 -0.189890

C -1.273406 -0.607323 -0.119316

C 1.175260 -0.800063 -0.153007

N -1.166629 0.785192 -0.005230

B 0.154755 1.613924 0.061374

F 0.208137 2.504316 -1.007022

F 0.232224 2.295397 1.272328

C -2.404259 1.313584 0.006375

C -3.350295 0.271943 -0.112858

C -2.674482 -0.936074 -0.197667

C -3.349845 -2.267388 -0.343872

H -3.212818 -2.890908 0.544064

H -2.962270 -2.841437 -1.192517

H -4.421831 -2.116426 -0.502957

C -2.655743 2.780175 0.123340

H -3.727920 2.982547 0.183697

H -2.237191 3.310417 -0.739285

H -2.158823 3.183730 1.011539

C 2.488131 -1.381439 -0.158108

C 3.375717 -0.316802 -0.063617

C 2.632967 0.880268 0.007639

N 1.318804 0.582944 -0.040500

C 2.890992 -2.826846 -0.225701

H 2.708376 -3.263854 -1.216218

H 2.362184 -3.446312 0.507352

H 3.962293 -2.920729 -0.023979

C 3.137762 2.280489 0.124366

H 2.774780 2.742410 1.048859

H 2.762876 2.894384 -0.701334

H 4.230448 2.296809 0.118721

C -0.180628 -2.871028 -0.331423

O -0.854570 -3.596080 0.368024

H 0.445143 -3.293291 -1.141100

H -4.424201 0.406427 -0.133269

H 4.455970 -0.382874 -0.037745
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8f

C -0.519218 -1.366441 -0.123127

C -1.754743 -0.700747 -0.108826

C 0.699998 -0.672955 -0.065904

N -1.805455 0.691513 -0.026798

B -0.576249 1.646000 0.051753

F -0.562579 2.501693 -1.043268

F -0.608426 2.362868 1.241794

C -3.096477 1.075868 0.005947

C -3.918499 -0.070962 -0.046039

C -3.104653 -1.193238 -0.112379

C -3.596829 -2.611009 -0.156983

H -3.125638 -3.243821 0.603585

H -3.416779 -3.082229 -1.132033

H -4.676585 -2.633889 0.018181

C -3.509723 2.507964 0.087823

H -4.598960 2.593327 0.077412

H -3.094503 3.076416 -0.751201

H -3.120680 2.967911 1.002690

C 2.065564 -1.113824 -0.128502

C 2.815366 0.054275 -0.063161

C 1.955435 1.175342 0.027139

N 0.689516 0.724433 0.016888

C 2.627398 -2.496771 -0.248299

H 3.706624 -2.442657 -0.409040

H 2.189035 -3.047086 -1.087685

H 2.437265 -3.087016 0.652579

C 2.309726 2.620497 0.113748

H 1.831930 3.075240 0.987270

H 1.936947 3.155247 -0.766637

H 3.391706 2.746942 0.181675

Cl 4.551122 0.165227 -0.088908

C -0.545245 -2.865717 -0.209837

O 0.023786 -3.602997 0.564633

H -1.144033 -3.276225 -1.046112

H -5.000788 -0.062512 -0.027004
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8g

C -0.006474 -1.357733 -0.070900

C -1.242633 -0.687932 -0.077549

C 1.212066 -0.667601 -0.018284

N -1.289294 0.705123 -0.036981

B -0.054519 1.660030 0.029184

F -0.026595 2.480149 -1.090435

F -0.101180 2.407529 1.197544

C -2.574223 1.105294 -0.031391

C -3.387005 -0.052620 -0.059828

C -2.585130 -1.188518 -0.079774

C -3.072522 -2.606015 -0.075254

H -2.534497 -3.227944 0.647459

H -2.972192 -3.078570 -1.061335

H -4.133327 -2.632725 0.187810

C -2.983868 2.537764 0.003913

H -4.070891 2.626313 -0.036020

H -2.542081 3.079763 -0.838725

H -2.613905 3.015140 0.917592

C 2.578546 -1.114434 -0.057136

C 3.331116 0.051224 -0.007691

C 2.473150 1.177774 0.049709

N 1.206292 0.731907 0.035415

C 3.135956 -2.501631 -0.140568

H 4.218284 -2.455426 -0.281067

H 2.711007 -3.064887 -0.978256

H 2.924846 -3.074025 0.766971

C 2.832490 2.622750 0.109061

H 3.913607 2.746631 0.191083

H 2.342019 3.099285 0.963723

H 2.475329 3.137963 -0.789372

Cl 5.066082 0.157405 -0.015117

Cl -5.125299 -0.025268 -0.057059

C -0.034600 -2.858839 -0.144800

O 0.517905 -3.589410 0.647179

H -0.616859 -3.273495 -0.990654
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8i

C -0.511461 -1.358334 -0.114346

C -1.702738 -0.627082 -0.062030

C 0.748684 -0.741650 0.015633

N -1.675795 0.757982 0.121437

B -0.397860 1.629390 0.323959

F -0.321136 2.595096 -0.669557

F -0.413675 2.207615 1.586379

C -2.937686 1.221991 0.098243

C -3.823543 0.138999 -0.114680

C -3.079260 -1.023793 -0.222318

C -3.651020 -2.387782 -0.477934

H -3.552262 -3.048268 0.393238

H -3.174472 -2.890952 -1.326716

H -4.718556 -2.304382 -0.701454

C -3.270966 2.665584 0.273788

H -4.352016 2.817810 0.233655

H -2.790612 3.266542 -0.505719

H -2.890295 3.032415 1.233328

C 2.077618 -1.262245 0.040377

C 2.908974 -0.149078 0.240927

C 2.097792 1.012801 0.341761

N 0.815764 0.646090 0.210927

C 2.579702 -2.666207 -0.104645

H 3.657225 -2.693330 0.078220

H 2.383671 -3.057221 -1.106632

H 2.099639 -3.351010 0.602839

C 2.536334 2.421217 0.557215

H 2.093833 2.819963 1.476270

H 2.188782 3.056958 -0.263460

H 3.624991 2.476528 0.624924

C 4.324862 -0.159480 0.336881

C -0.620329 -2.844300 -0.310563

N 5.486745 -0.167005 0.419441

O -0.030366 -3.462580 -1.168364

H -1.301051 -3.360038 0.393746

H -4.900029 0.222805 -0.190079
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8j

C -0.093473 -1.375361 -0.018199

C -1.288100 -0.640355 0.073818

C 1.162687 -0.757477 0.041864

N -1.254735 0.748418 0.238403

B 0.034842 1.624652 0.370002

F 0.062215 2.573757 -0.637385

F 0.080128 2.210316 1.624931

C -2.507806 1.220582 0.270129

C -3.404196 0.126517 0.111892

C -2.652642 -1.049125 -0.018555

C -3.234629 -2.413737 -0.231281

H -3.117891 -3.050792 0.654910

H -2.773707 -2.934357 -1.077399

H -4.306407 -2.332556 -0.432188

C -2.840815 2.663013 0.441286

H -3.922383 2.802648 0.496976

H -2.441737 3.245792 -0.395854

H -2.373993 3.053361 1.351543

C 2.496922 -1.279944 0.007751

C 3.333299 -0.166905 0.144115

C 2.525790 1.000873 0.266261

N 1.240833 0.635387 0.208385

C 2.987292 -2.686933 -0.138838

H 4.072990 -2.714134 -0.015414

H 2.734889 -3.094630 -1.121502

H 2.544698 -3.356481 0.606577

C 2.979428 2.409679 0.437122

H 2.600239 2.816709 1.380752

H 2.576132 3.037763 -0.363575

H 4.069937 2.464197 0.430929

C 4.752719 -0.174023 0.165252

C -4.819457 0.229021 0.082123

C -0.207700 -2.868766 -0.168568

N 5.916972 -0.177082 0.186398

O 0.316329 -3.500153 -1.057704

H -0.824251 -3.369817 0.602412

N -5.981098 0.307509 0.056953
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Electronic states and coupling calculations Q-Chem input file for 1PS+1O2 state.
Note that all subsequent example calculation inputs will be using this same set of xyz
coordinates as this first example but will use ”XYZ” as a placeholder.

$rem

Unrestricted TRUE

exchange omegaB97X-D

basis 6-31G(d)

scf_convergence 6

thresh 14

max_scf_cycles 200

!geom_opt_max_cycles 100

!SCF_ALGORITHM DIIS_GDM

!THRESH_DIIS_SWITCH 6

$end

$molecule

0 1

C 0.222728 -1.490455 -0.073732

C -0.947463 -0.734001 -0.250214

C 1.461899 -0.860527 0.104457

N -0.908665 0.653375 -0.168442

B 0.337810 1.509928 0.167649

F 0.539752 2.469687 -0.820348

F 0.185342 2.116872 1.413746

C -2.142125 1.135152 -0.364148

C -3.035226 0.069133 -0.596236

C -2.293318 -1.108901 -0.532844

C -2.863706 -2.479314 -0.741917

H -2.254106 -3.086369 -1.416579

H -3.865678 -2.417037 -1.173517

H -2.954122 -3.026122 0.205126

C -2.430888 2.599008 -0.329498

H -1.968592 3.098559 -1.186002

H -2.008516 3.046319 0.574186

H -3.507222 2.783349 -0.351425

C 2.795594 -1.367102 0.189312

C 3.632912 -0.268894 0.356824

C 2.814654 0.883246 0.352493

N 1.536870 0.526290 0.196750

C 3.274970 -2.783520 0.070863

H 4.363500 -2.807768 -0.022991

H 2.860558 -3.279363 -0.812546

H 3.015232 -3.389375 0.947418

C 3.241691 2.309277 0.453854

H 2.569021 2.874929 1.101972
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H 3.217349 2.780098 -0.534024

H 4.258756 2.375742 0.847026

C 0.138912 -2.991662 -0.086360

H 0.153232 -3.373916 -1.114194

H -0.782010 -3.338323 0.381083

H 0.968403 -3.445764 0.449724

C -4.499923 0.201279 -0.899089

C -4.783121 0.319673 -2.401909

H -4.909364 1.078441 -0.384815

H -5.039140 -0.660570 -0.489212

H -4.306892 1.213961 -2.817408

H -5.858993 0.381273 -2.598708

H -4.384567 -0.548292 -2.938529

C 5.130221 -0.253434 0.465069

C 5.820991 0.028710 -0.874463

H 5.488758 -1.207055 0.867605

H 5.433376 0.504762 1.197329

H 5.561998 -0.737217 -1.613327

H 6.910655 0.046193 -0.767297

H 5.501117 0.995667 -1.277534

O -2.626873 -0.625388 2.679067

O -1.648812 0.056300 2.860184

$end

Q-Chem input file for 1PS+3O2 state

$rem

CDFT TRUE

Unrestricted TRUE

exchange omegaB97X-D

basis 6-31G(d)

scf_convergence 8

thresh 14

max_scf_cycles 200

!geom_opt_max_cycles 100

!SCF_ALGORITHM DIIS_GDM

!THRESH_DIIS_SWITCH 6

$end

$cdft

2

1 49 50 s

$end

$molecule
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0 3

XYZ

$end

Q-Chem input file for 1PS∗+1O2 state

$rem

Unrestricted false

ROKS True

exchange omegaB97X-D

basis 6-31G(d)

scf_convergence 5

thresh 10

max_scf_cycles 200

!geom_opt_max_cycles 100

!SCF_ALGORITHM DIIS_GDM

!THRESH_DIIS_SWITCH 6

$end

$molecule

0 1

XYZ

$end

Q-Chem input file for 1PS∗+3O2 state

$rem

Unrestricted TRUE

exchange omegaB97X-D

basis 6-31G(d)

$end

$molecule

1 2

XYZ

$end

@@@

$rem

Unrestricted TRUE

exchange omegaB97X-D

basis 6-31G(d)

MOM_START 1
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SCF_GUESS READ

$end

$swap_occupied_virtual

alpha 94 95

$end

$molecule

0 3

XYZ

$end

Q-Chem input file for 3PS+3O2 state

$rem

CDFT TRUE

Unrestricted TRUE

exchange omegaB97X-D

basis 6-31G(d)

scf_convergence 6

thresh 10

max_scf_cycles 200

!geom_opt_max_cycles 100

!SCF_ALGORITHM DIIS_GDM

!THRESH_DIIS_SWITCH 6

$end

$cdft

2

1 49 50 s

$end

$molecule

0 5

XYZ

$end

Q-Chem input file for 2PS•++2O•−
2 state

$rem

CDFT TRUE

Unrestricted TRUE

exchange omegaB97X-D

basis 6-31G(d)

scf_convergence 8
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thresh 14

max_scf_cycles 200

!geom_opt_max_cycles 100

!SCF_ALGORITHM DIIS_GDM

!THRESH_DIIS_SWITCH 6

$end

$cdft

1

1 49 50 s

$end

$molecule

0 3

XYZ

$end

Q-Chem input file for coupling between 1PS+1O2 and 3PS+3O2

$rem

CDFT TRUE

CDFTCI TRUE

CDFTCI_STOP 1

CDFTCI_COUPLING 2

Unrestricted TRUE

exchange omegaB97X-D

basis 6-31G(d)

scf_convergence 5

thresh 14

max_scf_cycles 200

!geom_opt_max_cycles 100

!SCF_ALGORITHM DIIS_GDM

!THRESH_DIIS_SWITCH 6

$end

$cdft

0

1 1 50 s

----------

2

1 49 50 s

$end

$molecule
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0 1

XYZ

$end

@@@

$rem

CDFT TRUE

CDFTCI TRUE

CDFTCI_RESTART 1

CDFTCI_COUPLING 2

Unrestricted TRUE

exchange omegaB97X-D

basis 6-31G(d)

scf_convergence 5

thresh 14

max_scf_cycles 200

!geom_opt_max_cycles 100

!SCF_ALGORITHM DIIS_GDM

!THRESH_DIIS_SWITCH 6

$end

$cdft

0

1 1 50 s

----------

2

1 49 50 s

$end

$molecule

0 5

XYZ

$end

Q-Chem input file for coupling between 1PS∗+3O2 and 2PS•++2O•−
2

$rem

Unrestricted TRUE

exchange omegaB97X-D

basis 6-31G(d)

$end
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$molecule

1 2

XYZ

$end

@@@

$rem

CDFT TRUE

CDFTCI TRUE

CDFTCI_STOP 1

CDFTCI_COUPLING 2

Unrestricted TRUE

exchange omegaB97X-D

MOM_START 1

SCF_GUESS READ

basis 6-31G(d)

scf_convergence 6

thresh 14

max_scf_cycles 200

$end

$swap_occupied_virtual

alpha 94 95

$end

$cdft

0

1 1 50 s

----------

1

1 49 50

1 49 50 s

$end

$molecule

0 3

XYZ

$end
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@@@

$rem

CDFT TRUE

CDFTCI TRUE

CDFTCI_RESTART 1

CDFTCI_COUPLING 2

scf_guess read

cdftci_skip_promolecules true

Unrestricted TRUE

exchange omegaB97X-D

basis 6-31G(d)

scf_convergence 6

thresh 14

max_scf_cycles 200

!geom_opt_max_cycles 100

!SCF_ALGORITHM DIIS_GDM

!THRESH_DIIS_SWITCH 6

$end

$cdft

0

1 1 50 s

----------

1

1 49 50

1 49 50 s

$end

$molecule

0 3

XYZ

$end

Q-Chem input file for coupling between 1PS+3O2 and 2PS•++2O•−
2

$rem

exchange omegaB97X-D

basis 6-31G(d)

unrestricted true

$end
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$molecule

0 3

XYZ

$end

@@@

$rem

CDFT TRUE

CDFTCI TRUE

CDFTCI_STOP 1

CDFTCI_SKIP_PROMOLECULES TRUE

CDFTCI_PRINT 3

scf_guess read

scf_guess_mix 10

CDFTCI_COUPLING 1

Unrestricted TRUE

exchange omegaB97X-D

basis 6-31G(d)

scf_convergence 5

thresh 10

max_scf_cycles 250

!geom_opt_max_cycles 100

!SCF_ALGORITHM DIIS_GDM

!THRESH_DIIS_SWITCH 6

$end

$cdft

0

0 1 50 s

----------

1

1 49 50

1 49 50 s

$end

$molecule

0 3

XYZ

$end

@@@
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$rem

CDFT TRUE

CDFTCI TRUE

CDFTCI_RESTART 1

CDFTCI_COUPLING 1

CDFTCI_SKIP_PROMOLECULES TRUE

Unrestricted TRUE

exchange omegaB97X-D

basis 6-31G(d)

scf_convergence 5

scf_guess read

scf_guess_mix 10

thresh 10

max_scf_cycles 250

!geom_opt_max_cycles 100

!SCF_ALGORITHM DIIS_GDM

!THRESH_DIIS_SWITCH 6

$end

$cdft

0

0 1 50 s

----------

1

1 49 50

1 49 50 s

$end

$molecule

0 3

XYZ

$end

Q-Chem input file for coupling between 1PS∗+3O2 and 3PS+3O2

$rem

Unrestricted TRUE

exchange omegaB97X-D

basis 6-31G(d)

$end

$molecule

1 2

XYZ

$end

123



@@@

$rem

CDFT TRUE

CDFTCI TRUE

CDFTCI_STOP 1

CDFTCI_COUPLING 2

Unrestricted TRUE

exchange omegaB97X-D

SCF_GUESS READ

basis 6-31G(d)

scf_convergence 6

thresh 14

max_scf_cycles 200

$end

$cdft

0

1 1 50 s

----------

2

1 49 50 s

$end

$molecule

0 3

XYZ

$end

@@@

$rem

CDFT TRUE

CDFTCI TRUE

CDFTCI_RESTART 1

CDFTCI_COUPLING 2

Unrestricted TRUE
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exchange omegaB97X-D

basis 6-31G(d)

scf_convergence 6

thresh 14

max_scf_cycles 200

!geom_opt_max_cycles 100

!SCF_ALGORITHM DIIS_GDM

!THRESH_DIIS_SWITCH 6

$end

$cdft

0

1 1 50 s

----------

2

1 49 50 s

$end

$molecule

0 5

XYZ

$end

Figure A1: Simulated vibrational spectra for molecule 2c in the S0 ground state (left), S1

excited state using ROKS (center) and TDDFT (right). Lineshapes are approximated via
uniform Lorentzian broadening of each absorption peak, with scale parameter y= 0.4cm−1.
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Table A2: Excitation and Emission Energies for BODIPY derivatives

ROKS TDDFT
Excitation (eV) Emission (eV) Excitation (eV) Emission (eV)

2c 2.3265648262 2.1691204892 2.916 2.6904
2d 2.4014377803 2.2367761858 3.0608 2.9091
2f 2.3614554315 2.1973839644 2.9584 2.2836
2g 2.3007578689 2.1437104924 2.8613 2.2995
3c 2.1958718756 2.0126138435 2.7856 2.0294
3d 2.2790184005 2.0921167921 2.9412 2.7516
3f 2.2282097144 2.0479652232 2.8323 2.0721
3g 2.1729844458 1.9836422818 2.7381 2.0449
3i 2.2881629833 2.0989830898 2.8947 2.2565
3j 2.2424471005 2.0669765254 2.8312 2.1733
4c 2.3069469907 2.205148412 2.911 2.3198
4d 2.4113619325 2.2594537133 3.1084 2.3869
4f 2.3311471359 2.2221813159 2.9412 2.3368
4g 2.2918894013 2.1690209092 2.8557 2.3132
5c 2.1901334595 2.0460072389 2.7975 2.0506
5d 2.2784489798 2.1135047747 2.9518 2.784
5f 2.2421596558 2.0754177338 2.841 2.0931
5g 2.1588320109 1.9530407011 2.7248 1.9833
5i 2.295658158 2.1256988984 2.9096 2.2756
5j 2.248869192 2.0725921444 2.8371 2.618
8c 2.074733482 1.3605294123 2.5745 1.3028
8d 2.1044591383 1.4391190434 2.6642 1.4847
8f 2.0871535587 1.4000179702 2.6108 1.361
8g 2.046402361 1.3583134695 2.5373 1.3426
8i 2.1311671808 1.4352242067 2.6691 1.4778
8j 2.1271977725 1.4277424205 2.6561 1.485
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Details on computing individual electronic states:

• 1PS + 3O2 → Used CDFT with 2 spin constraints, one on each oxygen atom. No

charge and an overall multiplicity of 3

• 1PS∗ + 3O2 → Initial ground state calculation with overall charge of 1 and multiplicity

of 2, followed by a MOM calculation swapping orbitals 94 and 95 and using an overall

charge of 0 and multiplicity of 3

• 3PS + 3O2 → CDFT with 2 spin constraints on the oxygen molecule, 0 charge and a

multiplicity of 5

• 1PS∗ + 1O2 → Used ROKS with overall charge of 0 and multiplicity of 1

• 1PS + 1O2 → Charge of 0 and multiplicity of 1

• 2PS•+ + 2O•−
2 → CDFT with one spin constraint on the oxygen molecule, 0 charge

and a multiplicity of 3

Details on computing couplings between electronic states:

• 1PS∗ + 3O2 and
2PS•+ + 2O•−

2 → Initial ground state calculation with charge of 1 and

multiplicity of 2. CDFT and CDFT-CI constraining 1 spin and 1 charge constraint on

the oxygen molecule. Also used MOM and swapped orbitals 94 and 95. Overall charge

of 0 and multiplicity of 3

• 1PS + 3O2 and
2PS•+ + 2O•−

2 → Initial ground state calculation with charge of 0 and

multiplicity of 3. CDFT, CDFT-CI, and skipping promolecules, constraining a spin

and charge of 1 on the oxygen molecule with same charge and multiplicity overall

• 1PS∗ + 3O2 and 3PS + 3O2 → Initial ground state calculation with charge of 1 and

multiplicity of 2. CDFT, CDFT-CI with 2 spin constraints on the oxygen molecule.

Overall charge of 0 and multiplicity of 3 for the first part of the calculation and overall

charge of 0 and multiplicity of 5 for the second
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• 1PS + 1O2 and 3PS + 3O2 → CDFT, and CDFT-CI with 2 spin constraints on the

oxygen molecule, overall charge of 0 and multiplicity of 1 for the first part, followed by

an overall charge of 0 and multiplicity of 5 for the second part of the calculation

128


	A Computational Investigation of BODIPY Excited State Properties and Photosensitization of Molecular Oxygen
	Recommended Citation

	thesis.dvi

