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Abstract:  

Coastal lowlands serve society with important natural and agricultural resources yet, are vulnerable to 

coastal hazards such as inundation from rising-sea level and storm-surge impacts. Estuarine wetlands 

have proven a long term and cost effective buffer against such hazards because, wetlands serve as a 

barrier against erosive wave energy and enable sediment retention by producing hydraulic friction and a 

positive feedback loop (Shepard et al., 2011; Kirwan et al., 2010; Koch et al., 2009). However, human 

modifications to coastal hydrology and sediment transport have resulted in extensive losses of wetland 

land cover and protection (Fresh et al., 2011; Simenstad et al., 2011; Collins and Sheikh, 2005; Jones et 

al., 2001). Historically, the Puget Sound is estimated to have contained nearly 270 km2 of tidal wetlands 

in the late nineteenth century (Thom and Hallum, 1990) and suffered nearly a 56% wetland loss within 

the 16 major deltas from agriculture and urban growth (Fresh et al., 2011). Our study area, the 

Stillaguamish Delta, historically maintained 65km2 of wetlands but currently holds only 36km2, a 55% 

loss (Simenstad et al., 2011), and has witnessed up to a kilometer of marsh edge (shoreline) retreat 

since 1964 (Grossman and Curran (in review)).  

The purpose of this study was to:  

1) Quantify canopy structures and physical characteristics of vegetation (elasticity, biomass, height, 

stem density, stem diameter) that effect wave attenuation using Side-On Photo image analysis 

and in-situ measurements. 

2) Delineate wetland assemblages using remote sensing efforts using Compact Aerial Spectral 

Imager (CASI) hyperspectral imagery and LiDAR. 

3)  Estimate wetland biomass and extrapolate variability across the delta. 

4) Produce a winter sediment budget for the vulnerable northern region of the study area. 

5) Evaluate ecologic, hydrologic and climatic influences on sediment dynamics using turbidity data.   
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We found:  

1) Our Side-On Photo methods to accurately predict plant height and biomass; however, our stem 

density and diameter analysis was not conclusive. BOMA and BOFL maintained rigidity and biomass 

through most of the winter (November through March); however, tended to break more frequently 

in later months.  Our data indicated vegetation has the highest rigidity and biomass within the first 

0.5 m of the canopy from the marsh ground surface and therefore has greatest potential for flow 

attenuation. 

2) Supervised classifications (Maximum-Likelihood and Decision Tree Classifiers) of CASI (Compact 

Aerial Spectral Imager) hyperspectral imagery to successfully delineate the spatial extent of 

vegetation assemblages with an overall accuracy of 76.9%.  

3) Biomass to be highest within the first 30 m of the winter marsh edge where plant material would 

have the largest impact on flow attenuation, sediment retention and coastline stabilization during 

the early monsoon season.   

4)  The highest winter sediment deposition occurred in the High to Mid-Marsh boundary, up to 300 m 

inland of the marsh edge. Overall deposition within the wetland is estimated to be 2.6% of the 

sediment yield from the primary sediment source, the Stillaguamish River. Sediment coating 

vegetation may contribute up to 0.5% of the marsh sediment budget. Sediment deposition and 

vegetation coating is likely abnormally high owing to an increased sediment supply from the recent 

Oso (SR 530) Landslide.  

5)  Turbidity of a tidal channel is closely related to turbidity and discharge responses from the 

Stillaguamish River, the assumed primary sediment source.  The northern marsh turbidity indicated 

a delayed (~2 days) sediment response to the river and uniform delivery. Turbidity within the 

northern marsh showed relationships to regional winds that generate waves.  We conclude that 
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during the study (winter of 2014-15) hydraulic energy was likely high enough to erode the marsh 

edge, suspend sediment from associated tidal flat, and transport material landward.  

Overall, these results inform efforts to restore marshland and associated sediment supply, as well as, 

the overall understanding of vulnerability and adaptability of coastal marshlands to climate change and 

sea-level rise. This information is valuable for coastal managers and decision makers that are interested 

in ecologically sustainable alternatives to coastline armoring. These ecosystems maintain natural 

resources while providing protection against increasing coastal hazards from SLR. 

This thesis is formatted into two chapters addressing vegetation characteristics / distribution and 

sediment dynamics separately. 
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Chapter 1 
 

Title: Characterization of estuarine wetland biophysical characteristics and distribution in a Pacific 

Northwest Delta, Port Susan Bay 

Keywords: 

tidal marsh, sedimentation, vegetation, flow attenuation, Puget Sound, hydrodynamics 

Abstract: 

Emergent wetland vegetation has been shown to mitigate coastal inundation and erosion hazards by 

reducing wave energy through friction (Shepard et al., 2011), although its use in coastal protection 

planning is limited because predictive models require improved vegetation data. Port Susan Bay (PSB), 

the delta for the Stillaguamish River of Western Washington State, a vulnerable estuary that has 

experienced up to 1 kilometer of marsh retreat since the mid-1960s. Marsh retreat is thought to be 

caused by a historic river avulsion trending to the south west. We isolated biophysical characteristics 

(biomass, stem density, elasticity, etc.) of plants using horizontal digital photographs (Side-On Photos 

(SOPs)) and direct field measurements/observations from fall to early spring (August 2014 through April 

2015). Our SOP data was successful in predicting height and biomass; however, stem density and 

diameter showed a very weak relationship (Kendall’s tau p-values =0.04). Vegetation elasticity was 

measured in-situ with a handheld digital hanging scale with respect to measurement height and bending 

angle. Plant elasticity showed a strong correlation to stem diameter in two dominant bulrush species, 

Bulboschoenus maritimus (BOMA) Bulboschoenus fluviatilis (BOFL). BOMA and BOFL maintain material 

strength and biomass through the majority of the winter (November through March); however, tended 

to break more frequently in the later months.  Our data showed a strong logarithmic relationship with 

potential wave attenuation (bending strength) that was insensitive to seasonality but may be influenced 

by daily temperature. Elasticity and SOP vertical assessments indicate that the first 0.5 m of marsh 
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canopy had the greatest potential for flow attenuation. We employed supervised classifications 

(Maximum-Likelihood and Decision Tree Classifiers) of CASI (Compact Aerial Spectral Imager) 

hyperspectral imagery to map the spatial extent of vegetation assemblages with an overall accuracy of 

76.9%.  Decision Tree Classification a series of conditional statements that is based on the empirical 

elevation and Normalized Difference Vegetation Index data of 345 ground truth areas. Vegetation 

biomass was extrapolated broadly across the PSB estuary using remote sensing efforts. This analysis 

showed elevated biomass within the first 300 m of the marsh edge that had a greater potential to 

attenuate flow than directly inland. The information provided here will allow future workers to 

incorporate wetland characteristic information into coastal hazard and residency models; as well as, 

provides a robust method to quantify and distribute salient wetland variables.   

 1 Introduction and Background:  

Coastal lowlands serve society with important natural and agricultural resources, yet are vulnerable to 

coastal hazards such as inundation from rising-sea level and storm-surge impacts. Human modifications 

to coastal hydrology and sediment transport have resulted in extensive losses of wetland land cover and 

protection (Simenstad et al., 2011; Fresh et al., 2011; Collins and Sheikh, 2005; Jones et al., 2001).  

Estuarine wetlands serve as a long term and cost effective buffer against such hazards (Shepard et al., 

2011; Koch et al., 2009). However, wetland restoration is not consistently considered in coastal 

protection strategies because additional research is required to quantify their services across a variety of 

regions. Coastal wetlands’ response patterns to climate change are challenging to validate because they 

are dependent on terrestrial, marine, and climatic forcings (Kirwan et at., 2010). Coastal resilience 

planners require a more robust understanding and efficient methods to characterize wetland influences 

on wave attenuations (Shepard et al. 2011). 
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Wetlands function as a barrier against erosive wave energy and enable sediment retention through a 

positive feedback loop (Koch et al., 2009; Kirwan et al., 2010). Friction imparted by vegetation can 

produce attenuation rates up to two magnitudes higher than a smooth non-vegetated tidal flat (Yang et 

al., 2011). Wave-vegetation interactions enable wave attenuation and sediment deposition necessary 

for plant growth that, in turn, reduces wave energy.  The rate of wave attenuation along the wave flow 

path is a function of wetland biophysical characteristics: canopy height, stem diameter, stem density 

and elasticity (flexibility) (Mendez and Losada, 2004). Wave energy is lost through the direct interaction 

with plants through friction; thereby, surface area of plant material influences water velocity and wave 

attenuation (Chen and Zhao, 2012). Wave attenuation is also sensitive to plant flexibility; a rigid stem 

provides more resistance and friction than pliable stem (Anderson and Smith, 2014; Augustin et al., 

2009; Mullarney and Henderson).  

Here we refine methods to efficiently quantify vegetation composition and structural characteristics 

that influence water flow and sedimentation.  We isolated species-specific biophysical metrics such as 

height, stem diameter, stem density and elasticity using a combination of field and image analysis 

methods based on the work of Moller (2006) and Zehm et al. (2003). These biophysical characteristics 

were then extrapolated using remote sensing methods after Hladik et al. (2013) by implementing 

Maximum Likelihood (MLC) and Decision Tree (DTC) classifications (DTC) to hyperspectral Compact 

Aerial Spectral Imager (CASI) and LiDAR datasets.  

1.1 Site description  

Port Susan Bay (PSB) is a temperate and protected estuary located within the Salish Sea of Washington 

State (Figure 1); PSB serves as outlet and delta for the Stillaguamish River. Marshlands occupy the 

intertidal zone of the deltaic shelf (Figure 1).  
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The Stillaguamish River watershed covers approximately 1,813 km2 from the flat Puget Lowlands, 

dominated by unconsolidated glacio-fluvial deposits and soils, into the high-relief, bedrock dominated, 

North Cascades (Tabor et al., 2002). The Stillaguamish River is supplied largely by rainfall and snowmelt 

and, the river maintains a mean annual discharge of approximately 85 m3/s (3000ft3/s) (Grossman and 

Curran (in review)). Prior to a lahar from Glacier Peak dated at 5kya, the Sauk River likely flowed into the 

north fork of the Stillaguamish (Tabor et al., 2002). The Stillaguamish River recently came under national 

spotlight because of the tragic 2014 Oso Landslide. A recent study estimates that the catastrophic 

landslide increased the river’s sediment load 50% during the first two years following the slide 

(Grossman and Curran (in review). During the winter monsoon season, the dominant wind direction is 

from the south-southwest, the same direction as the bay exposure, and has a fetch of 35-50 km 

(Grossman and Curran (in review)) (Figure 1). Tidal range is generally mesomareal for PSB with a tidal 

range from 2.44 m and -0.27 m of MLLW.  

PSB offers an opportunity to examine the effects of vegetation on wave attenuation in concert with 

other ongoing scientific efforts. Efforts by the U. S. Geological Survey (USGS), The Nature Conservancy 

and partners are measuring and monitoring hydrodynamics, sediment transport, and marsh response 

and, ambient conditions to guide adaptive actions to climate change. The Nature Conservancy recently 

purchased abandoned farmland for the purpose of wetland restoration (Fuller, 2015) (Figure 1).  

Vegetation distribution is largely controlled by gradients along limiting factors such as: elevation 

(inundation, salinity),  sedimentation,  hydraulic energy, and nutrient cycling (Hutchinson, 1988 and 

Seliskar and Gallagher, 1983). Marshland biomass is also sensitive to temporal change; within the PNW, 

winter dieback of above-ground plant biomass is concurrent with the stormy winter months when the 

annual wave energy is highest (Finlayson, 2006).  

PSB has three general marsh assemblages: 
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1) High-Marsh is found above the MHW (>2.5 m NAVD88) and is inundated during unusually high tides 

(Fuller, 2015). It characteristically has the largest species richness dominated by graminoid (grass) 

species (Agostis stolonifera and Distychlis spirata), rush (Juncus balticus), sedges (Carex lyngbyei) 

and Pacific Silverweed (Potentilla pacifica) (Fuller, 2015).   

2)  Mid-Marsh occurs below MHW, between 2.5 and 2.0 m elevation and is dominated by dense 

(mean ~117 ± 30 stems/m2) bulrush species (Fuller, 2015). The Mid-Marsh is largely the focus of this 

study because it serves as the winter marsh edge and is assumed to be the key agent in wetland 

wave attenuation. 

a. BOMA (Bulboschoenus maritimus) – Hip to waist height (mean ~ 0.75 m), semi-rigid stems, 

~3 bladed leaves up to 2ft in length. 

b. BOFL (Bulboschoenus fluviatilis) – Chest to head height (mean ~1.5 m), semi-rigid stems, ~3 

bladed leaves up to 2.5ft in length.  

c. SCAM (Schoenoplectis americanus) – Knee to hip height (mean ~0.5 m), semi-flexible stems, 

no significant leaves.  

The majority of the Mid-Marsh is co-dominated (50/50) by BOMA and SCAM; however, BOFL covers 

a narrow but continuous band in the higher reaches of the Mid-Marsh and only in the northern 

parts of the study area (between the restoration site and South Pass) (Fuller, 2015). Note: previous 

to Fuller (2015), BOFL was considered the tall morph clone of BOMA and potentially misclassified.    

BOMA and BOFL remain present throughout the fall and winter as semi-rigid stems and therefore 

are more likely to interact with waves; whereas, SCAM tends to deteriorate and lay flat by 

December. 

3) The Low-Marsh is dominated by SCAM (low species richness) which generally occurs between 1.3 

and 2 m elevation (Fuller, 2015). The density of stems within the Low-Marsh varies widely (78 ± 156 

stems/m2) and can be particularly patchy in the northern portions of the study area (Fuller, 2015) 
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(Figure 2).  Although SCAM deteriorates relatively early (mid-October – December), it may 

contribute to bed roughness and wave attenuation. 

PSB has experienced up to a kilometer of marsh retreat since 1964 and a historic 55% of marshland loss 

to agriculture (Simenstad et al., 2011; Collins and Sheikh, 2005; Thom and Hallum, (1990); Grossman 

and Curran (in review)) (Figure 1). Marsh retreat in the northern region is associated with lower 

sediment delivery rates from a rerouted Stillaguamish River; the main fork currently flows south instead 

of a historic WNW orientation (Figure 1). Sea level rise, increased wave-energy and other climatic forces 

are also probable factors in the marsh retreat. 

2 Methods:  

For this study, we quantified marsh plant biophysical metrics by combining image analysis, physical 

elasticity measurements, and remote sensing to assess potential vegetation influence on wave 

attenuation.  Data were collected from September 2014 through April 2015 with a focus on the northern 

marsh that has experienced historical loss of marsh.  

2.1 Side-On Photos (SOPs) 

To characterize vegetation metrics including plant height, stem density, stem diameter and biomass, 

that influence water flow and sediment attenuation, we conducted side-on photography (SOP) following 

methods developed by Zehm et al. (2003) and Moller (2006). This consisted of photographing a thin strip 

of vegetation (Figure 3) and processing the images using ENVI and VESTA software. This method has 

been proven as an efficient tool for analyzing vertical vegetation structures and other seasonally –

dependent biophysical characteristics (height, stem density, biomass, and stem diameter) (Leiman at al., 

2015; Rogers et al., 2015; Tackenberg, 2006). 
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For this study, we sampled 20 SOP sites with a focus on the mid and Low-Marsh bulrush assemblages. 

We selected sites to capture the diverse range of assemblages that follow Fuller’s (2015) transects for 

comparison; transects and sites run perpendicular to the marsh edge to document variation in 

assemblages with respect to elevation gradients. We focused largely on the northern and central delta 

that were more accessible. The majority of data were collected in the late summer 2014 (August 9th 

through September 12th) with repeat sampling in January and April to assess seasonal changes in plant 

characteristics.  

At each SOP site, we carefully sectioned off a 0.2 m by 1.3 m strip of emergent vegetation using a red 

backdrop and ground cloth (Figure 3). A total of 5 pictures were taken at a distance of 2 m from the 

backdrop and 0.7 m above the ground surface using a 10-megapixel Canon digital camera (Figure 3).  

Vegetation was then cut at the ground surface, carefully bagged and brought back to the lab.  

In the lab, plants were dried on large tarps for a period of one week and stems were separated by 

species and size (>25 cm). Stems  greater than 25 cm were measured for height and diameter and 

weighed using a digital hanging scale (American Weigh Scales; Model SR-20) with an accuracy to 1g. 

Stem diameter was measured at 25 cm above the cut surface.  Fragments (stems <25 cm in length) were 

not measured for height or diameter but, they were included in overall biomass.  Overall biomass was 

calculated as the sum of all sampled plant material.   

Image processing procedures involved a supervised Maximum Likelihood Classification scheme in ENVI 

where ground truth areas were digitized for information classes (i.e. vegetation, sediment coated 

vegetation, shadow, backboard). These information classes were then combined into vegetated and 

non-vegetated classes.  In some cases, there was significant mud splatter on the backboard that was 

misclassified as vegetation. These misclassified pixels were corrected using the Aggregation Tool in ENVI, 

http://www.americanweigh.com/product_info.php?cPath=40&products_id=1231
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eliminating any vegetated pixels that had less than 40 contiguous pixels.  Last, remaining misclassified 

pixels were identified and removed using the ‘block out’ tool SideLook Software.  

Once classified, images were processed using the SideLook Software developed to measure pertinent 

vegetation attributes. Generally, we compared lab measurements of average plant height, stem density, 

stem diameter, and biomass to SideLook metrics: Mean-Max Vegetated Pixels (overall image average of 

maximum height of vegetated pixels per 1 cm column); Row-Hole Count (the number of contiguous 

nonvegetated spaces for a specific 1 cm wide row); Average Row-Hole Size ( the average length of space 

between vegetated pixels for a specified row), and Total Vegetated Pixel Count (total number of 

vegetated pixels), respectively. SideLook metrics were calculated using 1 cm wide rows and columns. We 

used data from the 25 cm (25 cm to 26 cm in vertical height) row for our stem density and stem 

diameter comparisons.  A detailed account of our image processing and exploratory analysis is in 

Appendix 5.  

2.2 Elasticity 

We measured elasticity for key bulrush species (BOMA and BOFL) to empirically define potential wave 

attenuation traits with respect to plant species. Measurements were taken using a digital scale to 

determine the amount of force required to bend stems to three angles (15, 30 and 45 degrees) at three 

heights (full height, half height, 25 cm) for a total of 9 measurements per plant (Figure 4). We collected 

biweekly data for October and November 2014 then monthly through March 2015.  Measured stems 

were vertical; by November SCAM was no longer vertical and was excluded from data collection and 

analysis.  We also collected height and diameter measurements following Freeman et al. (2000) found 

that bending strength for spartina could be predicted as a function of plant height and diameter. 

Appendix 6 further describes the methods and results of our vegetation elasticity analysis, including 

exploratory analysis.        
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2.3 Remote Sensing 

We used hyperspectral (CASI) and LiDAR derived elevation models to remotely classify wetland 

assemblages, to extrapolate the field-measured, species-specific, vegetation metrics (stem density, 

height, biomass, etc.). We paired supervised classification methods, Maximum Likelihood (MLC) and 

Decision Tree (DTC) classifications, following the work of Hladik et al. (2013) to isolate unique marsh 

assemblages. We developed a linear regression model, based on our SOP sample sites, and employed it 

to estimate biomass characteristics across our study area.   

Normalized difference indices have a long history in remote sensing; most notable is the Normalized 

Difference Vegetation Index (NDVI) that has proven a successful indicator biomass (Delegido et al, 2013) 

(Eqn. 1). NDVI compares the high absorption of solar radiation in the red spectrum (~675 nm) and high 

reflectance in the near-infrared spectrum (~800 nm) (Delegido et al. 2013). The Red-Edge Normalized 

Difference Index (RE-NDI) is the normalized index between the red spectrum and the transition between 

red and NIR spectrums (~715 nm).  Delegido et al. (2013), compared vegetation indices and found that 

RE-NDI to have the strongest correlation with LAI and is not prone to the saturation effects of NDVI. Our 

DTC and biomass model are based on normalized difference vegetation indices (NDVI and RE-NDI) and 

elevation. 

Compact Airborne Spectrographic Imager (CASI) hyperspectral imagery and LiDAR were collected by the 

US Army Corps of Engineers’ Joint Airborne LiDAR Bathymetry Technical Center of Expertise (JALBTCX) as 

part of the USGS’s Coastal Habitat in Puget Sound (CHIPS) project. These data were collected over a 2 

hour period centered on 1500 hours of September 10th 2014 from an elevation of 2000 m during low 

tide. The CASI imagery contains 48 spectral bands that are evenly spaced (14.0625nm bandwidths) to 

provide continuous spectral coverage from 375nm to 1050nm at 1 m pixel resolution.  
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Accurate elevation data within densely vegetated wetland environments is often difficult to acquire and 

validate (Hladik et al., 2013).  Often LiDAR cannot penetrate the dense canopies of marshlands and 

residual errors remain despite the LiDAR Bare-Earth correction methods attempted by the vendor.   

Here, the DEM values are considered the sum of partial vegetation height and elevation. Using RTKGPS 

data, we estimated the LiDAR bare earth DEM to be over predicted by 0.40 m +/- 0.27 m in the High-

Marsh, 0.49 m +/- 0.17 in BOFL dominated Mid-Marsh, 0.43 m +/- 0.26 in the BOMA dominated Mid-

Marsh, and 0.38 m +/- 0.24 in the Low-Marsh (Appendix 1).  

2.3.1 Maximum Likelihood Classification (MLC) 

Maximum Likelihood Classification (MLC) is a supervised classification method that classifies pixels 

based on the similarity of the pixel’s spectral signature to the spectral signature of the assigned cover 

type. For example, if a pixel has a spectral signature that is comparable to the High-Marsh then it will be 

classified as such. Following the work of Hladik et al., 2013), we clipped the CASI imagery to the marsh 

extent and applied MLC within ENVI software. The study area was digitized using a real color display of 

the CASI imagery that isolated the vegetation extent from major water filled channels. 

 As a supervised classification algorithm, MLC requires ground truth points assign a cover class to each 

pixel based on their respective spectral signature. Total, we used 345 ground truth points for our 

classification and statistical validation that were assigned randomly into training (50%) and testing (50%) 

areas. Ground truth points were defined in two ways: (1) using ground truth GPS data from this study 

(157 points) and Fuller’s (2015) (104 points) vegetation survey data and (2) by digitizing large 

homogeneous regions of land-cover (eelgrass, blackberries, beachwood, etc) based image interpretation 

of a real color display of the CASI dataset. The GPS ground truth points were used for all marsh types, 

while the digitized areas were for non-marsh cover-types and those outside the wave dissipation area. 
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We collected GPS ground truth points from the summer of 2014 through spring of 2015. Ground truth 

points for our study were taken in large (25 m2) homogeneous patches of cover-type (bare sediment, 

vegetation assemblage, etc) and include our SOP sites. Fuller’s (2015) data contained categorical plant 

height, density and present cover information. Fuller’s (2015) vegetation surveys also contained detailed 

dominant, codominant and present species information. We assigned a cover-type (high, mid, Low-

Marsh) to Fuller’s (2015) these data based on their dominant and co dominant species information. 

Wetland vegetation assemblages and species have historically been difficult to separate through remote 

sensing efforts because their spectral signatures are very similar leading to misclassification (Hladik et 

al., 2013). Our plant assemblages exhibited similar patterns (Figure 5). Following Hladik et al. (2013), we 

processed the MLC results using a Decision Tree Classification (DTC). 

2.3.2 Decision Tree Classification (DTC) 

We applied a Decision Tree Classification (DTC) to incorporate elevation and Normalized Difference 

Vegetation Index (NDVI) variables to our MLC results in order to improve accuracy of our classification. 

In essence, our DTC reclassifies suspect pixels based on a sequence of conditional if-then statements 

developed utilizing spectral and elevation characteristics of vegetation assemblages (Figure 6). The 

primary species of interest (SCAM, BOMA and BOFL) generally occupy separate elevation zones and can 

further be separated using the NDVI (Eqn. 1).  We calculated the elevation and NDVI statistics for the 

vegetation assemblages from the training ground truth points (Table 1). Fuller (2015) found similar 

elevation for vegetation assemblages (Table 1). We used these empirical data to deduce separation 

values and create the condition statements of the DTC. 

Decision trees were created to isolate pixels that were within one standard deviation of both the mean 

elevation and NDVI values (Figure 6; Appendix 3). Decision trees were developed where elevation was 
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accounted for before NDVI. This is because assemblage-specific elevation ranges are more statistically 

distinct than the NDVI ranges (Table 1).  For a pixel to be reclassified by the DTC, it would need to fail at 

least two conditional statements and be outside 1 standard deviation in both NDVI and elevation. All 

bulrush species were determined to have a NDVI value greater than 0.06; less than 0.06 is assumed to 

be sediment (Table 1).  

Elevation ranges for vegetation species vary across our study area (Fuller, 2015). For example, 

vegetation species tended to occupy higher elevation ranges in the southern study area by the mouth of 

the Stillaguamish River where there is an assumed higher sediment supply/retention. Also, the Mid-

Marsh bulrush species (BOMA and BOFL) occupied lower elevation ranges in the restoration area 

because of subsidence (Fuller, 2015). To improve our DTC analysis, we defined 3 geographic zones with 

unique assemblage elevation characteristics: 1) Northern Zone located north of the main branch of the 

Stillaguamish River; 2) South Zone – located south of the main branch; 3) Restoration Area – recovered 

marshland from the 2012 Nature Conservancy estuary restoration. Geographic zones were addressed 

separately using individual decision trees (Appendix 3). Appendix 3 details cover class decision trees and 

statistics for all marsh types, as well as a detailed rational for our decision tree development.   

2.3.3 Biomass Analysis 

We used the 20+ SOP sites to predict biomass as a function of elevation and vegetation spectral indices 

(Eqn. 3) (Figure 7). We compared 13 published vegetation indices to our biomass data to extrapolate 

biomass across the delta (Appendix 4). We compared our biomass values with the Fuller (2015) data for 

validation. In 2014, Fuller (2015) collected categorical plant data, including stem density of bulrush 

species, percent cover (% of marsh floor visible from a bird’s eye viewpoint) and plant height.  
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3 Results: 

3.1 Side-on Photos (SOPs) 

3.1.1 Plant Biophysical Characteristics 

We compared lab-measured plant data (height, biomass, stem density and, stem diameter) to their 

respective image derived data (Mean-Max Vegetated Pixel Height, Vegetated Pixel Count, Row-Hole 

Count, etc.). We found that plant height and biomass data were correlated to SOP data (Figure 8).  Stem 

density and stem count data did not show a strong relationship with SOP data (Figure 8). Lab-measured 

stem density did not show a correlation with measured biomass for any marsh species (Figure 9). 

Mean-Max Vegetated Pixel Height, the average maximum height of vegetated pixels at 1 cm columns 

within an SOP image, showed a strong relationship with measured height (Kendall’s p-value = 1.76x 10-5) 

(Figure 8a and 10). Measured biomass showed a strong relationship with total vegetated pixels of SOP 

images (Kendall’s p-value = 5.25x10-5) (Figure 8b). Row-Hole Count, taken at 25 cm above marsh floor, 

showed a weak relationship with measured stem count (Kendall’s p-value = 0.04) (Figure 8c).  We tested 

Row-Hole Count at row heights 50 cm and 75 cm did not show a correlation using Kendall’s tau with lab-

measured stem height (Appendix 5). Measured stem diameter showed a weak correlation with the 

ration Vegetated Pixel Count over Row-Hole Count (Kendall’s Tau p-value = 0.04) (Figure 8d).  

We assessed vertical biomass patterns through the number of vegetated pixels per row (1 cm tall) 

(Figure 11).  BOFL showed decreasing vegetated pixels from 0 to 50 cm then relatively stable biomass 

values up to 150 cm (Figure 11a). BOMA exhibits a similar pattern, though more nuanced, with a steady 

decline in plant material from 0 to 25 cm and slighter decline in plant material above 25 cm (Figure 11b). 

SCAM showed a relatively consistent decline in biomaterial as approaching maximum canopy height 

(Figure 11c). High-Marsh species showed a wide variety of vertical plant structures owing to assemblage 

heterogeneity (Figure 11d).  
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3.1.2 Seasonal Changes 

Biomass appeared to be stable though January then declines rapidly within BOMA and BOFL dominated 

Mid-Marsh (Figure 12a). SCAM biomass data tended to decline steady though November and is non-

existent by early December; this matched field observations (Figure 12a). SOP data showed a slightly 

different story, where the total number of vegetated pixels tended to decline steady from September to 

march for BOFL and BOMA (Figure 12b).  

We used the SOP analysis to examine seasonal changes with vertical biomass structures (Figure 13). 

BOFL showed the loss of plant material above 50 cm in the canopy but not a loss in height (Figure 13a). 

BOMA showed a loss in canopy height and biomass as the winter progressed (Figure 13b).  

 3.2 Elasticity: 

In both BOMA and BOFL dominated regions, stem diameter did not appear to have any apparent 

relationship to seasonality through the fall and winter (Figure 14c-d). We observed increases in stem 

breakage with seasonality in both species(Figure 14e-f). Stems also are susceptible to brittle breaking 

during temperatures below freezing.  For example, during a November sampling day where 

temperatures were below freezing with floating ice present in the marsh, we observed an anomalously 

high percentage of broken stems (Figure 14e-f).  

BOMA and BOFL both showed strong relationships with diameter and bending force (Figure 14).  Force 

measurements taken low in the canopy (half height, 25 cm) and at higher angles (30, 45 degree) tended 

to have a stronger correlation with diameter (Appendix 6).  In general, BOFL plants tended be more 

resistant to deformation and have a larger diameter (Figure 14a-b and Figure 15 a-b). 

In both species, there tended to be a weak and inconsistent relationship of bending force with total 

plant height (Figure 15c-d; Appendix 6). This relationship tended to be stronger with BOFL than BOMA 
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and to have a stronger relationship at lower measurement heights (half height, 25 cm) and higher angles 

(Appendix 6). The relationship between force and height, if present, tended to be positive; however, in 

some cases the relationship tended to have parabolic relationship (Figure 15c).  

There were strong logarithmic relationships between bending force and measurement height in both 

species (Figure 15e-f). Our regression analysis showed slight and inconsistent variations between 

regressions with respect to month; elasticity data did not exhibit a relationship to seasonality though 

stems became brittle (Figure 15; Table 2).  

3.3 Remote Sensing Analysis 

Through our remote sensing analysis, we mapped the major marsh assemblages and land cover within 

the delta with an overall accuracy of ~77%.  The DTC classification increased the overall accuracy by 10% 

from our MLC results. Our DTC focused on bare sediment, Low-Marsh (SCAM), BOMA/SCAM 

codominant Mid-Marsh, BOFL dominant Mid-Marsh; each of which saw an increase in producer’s 

accuracy: 7%, 13%,6%, and 22% respectfully (Figures 16; Tables 4-5). By combining Mid-Marsh 

subclassess (BOMA and BOFL) we increased the overall and Mid-Marsh accuracy to 65% and 77%, 

respectively (Table 6). Using the empirically derived relationship between measured biomass samples, 

elevation and, the red-edge NDI (Equation 3; Figure 7), we extrapolated the biomass across the study 

area (Figure 17). We found that the High, Mid and Low-Marsh cover approximately 1.02, 1.58 and 1.42 

km2 with 951, 885 and 585 mT of plant material, respectfully (Table 6). Biomass analysis showed that the 

marsh edge (first 20 m) had a higher biomass compared to the Low and Mid-Marsh (Figure 17).  

3.3.1 Maximum Likelihood Classification (MLC) 

Our MLC classified the CASI imagery with an overall accuracy of ~67% (Table 3). Producer’s accuracies 

are as follows: Bare (83%), Low-Marsh (49%), BOMA Mid-Marsh (41%), BOFL Mid-Marsh (44%), and 
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High-Marsh (75%). The MLC misclassified SCAM dominant Low-Marsh as Bare sediment and 

BOMA/SCAM co-dominant Mid-Marsh (Table 3). BOMA Mid-Marsh was primarily misclassified as SCAM 

dominant Low-Marsh (33%), bare sediment (10%) and lesser amounts of misclassification as BOFL and 

High-Marsh (7% each) (Table 3). BOFL dominated Mid-Marsh tended to be misclassified as BOMA/SCAM 

Mid-Marsh (35%) with lesser misclassification with High-Marsh (15%) (Table 3). High-Marsh has a higher 

producer’s accuracy than other marsh assemblages (73.9%) (Table 3).  

3.3.2 Decision Tree Classification 

Through the DTC, we improved the overall accuracy to 77%, up 10% from the MLC results (Tables 3-5).  

Producer’s accuracies are as follows: Bare (90%), Low-Marsh (62%), BOMA Mid-Marsh (47%), BOFL Mid-

Marsh (66%), and High-Marsh (75%). Undifferentiated Mid-Marsh cover type yielded a producer’s 

accuracy of (65%) (Table 6). High-Marsh and non-marsh cover-types saw little, if any, improvement 

between the MLC and the DTC because they were not specifically addressed with the DTC.  

The Low-Marsh (SCAM) still tended to be misclassified as sediment (Figure 16; Table 5-6); however, 

misclassification as BOMA/SCAM dominated Mid-Marsh improved by 10%. The Low-Marsh DTC results 

tended to have solid patches with fewer random Low-Marsh pixels in the northern tidal flat, compared 

to the MLC results (Figure 16). BOMA/SCAM co-dominant Mid-Marsh DTC results had the lowest 

accuracy (48%) but improved by 7% from the MLC (Table 4-5). BOFL dominated Mid-Marsh (66%) had 

the largest improvement of all the marsh cover-types, up 12% from the MLC. Reclaimed BOFL pixels 

primarily came from the BOMA/SCAM cover-type.  

3.3.3 Biomass Analysis 

We found that biomass had the strongest relationship with imagery using a combination of Red-Edge 

Normalized Difference Index (RE-NDI) and elevation (Figure 7; Eqn 2; Appendix 4). We tested 12 
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alternative vegetation indices and found that the RE-NDI correlated best with biomass following the 

methods of Delegido (2013) (Appendix 4). This relationship was then used to extrapolate biomass across 

the delta (Figure 17). Here we used CASI’s Band 22 (663-677nm), Band 25 (705-719nm), Band 31 (781-

803nm) for red, red-edge, and NIR values respectively.  

We found that the RE-NDI and elevation had a strong correlation with our biomass samples from the 

SOP sites. This relationship was used to predict biomass across the study area.  We estimate that in 2014 

marshlands had total of 2694 mT of biomaterial with 951, 885, and 858 mT within the Low, Mid and 

High-Marsh respectfully (Table 5). We found that biomass had a strong relationship with Fuller’s (2015) 

binned percent cover data (Kendall’s p-value =9.07E-6) (Figure 18).  Biomass had a weak correlation 

(Kendalls p-value = 0.002) with Fuller’s (2015) categorical stem density (Figure 19).  

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

𝑅𝐸𝑁𝐷𝐼 =
𝑅𝑒𝑑. 𝐸𝑑𝑔𝑒 −  𝑅𝑒𝑑

𝑅𝑒𝑑. 𝐸𝑑𝑔𝑒 + 𝑅𝑒𝑑
 

𝐵𝑖𝑜𝑚𝑎𝑠𝑠(𝑔) =  
[12.96×𝑁𝐷𝐼 + 6.6607]

1
0.29

𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛
 

4  Discussion 

4.1 Side-on Photos (SOPs) 

4.1.1 Plant Biophysical Characteristics 

We found that SOP analysis is an effective method to predict vegetation height, biomass, vertical and, 

seasonal degradation of dominate bulrush species. These relationships provide an effective monitoring 

regime as photography and image analysis supplement sampling, drying and weighing of vegetation.  

We were unable to predict stem density or stem diameter using image analysis; yet, we argue that with 

 

Eqn. 1 

 

Eqn. 2 

 

Eqn. 3  
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minor modifications to field sampling (e.g. thinner swath of vegetation, etc.), SOPs could improve stem 

density/diameter predications. We suspect that our SOP analysis was unsuccessful in estimating stem 

density because BOFL and BOMA have significant leaf material.  

We used SOP data to assess vertical biomass/ surface area changes within the canopy (Figure 11). 

Leaves, stems and trapped vegetation material (broken stems) influence both surface area and biomass 

at our SOP sites. For example, the lower region, <25 cm, is influenced by trapped vegetation debris 

(broken stems from current and previous years) and exhibits a steep decline in biomaterial with height 

(Figure 11a-b). The mid region, 25 cm through 50 cm, is dominated by stem material for the current 

growing season and showed a lesser decline in plant material with height (Figure 11a-b). The high 

region, > 50 cm, is likely influenced by leafy material and showed stable plant material with increasing 

height (Figure 11a-b).  BOMA sites were often co-dominated with SCAM and have a nuanced pattern 

compared to BOFL because SCAM does not have leaves in the mid to upper canopy (Figure 11a-b). 

We suspect this loss of plant material in higher canopy in the Mid-Marsh to be a factor of: 1) the loss of 

leaf material; 2) the codominance of SCAM; 3) a larger influence of wave energy and stem breakage 

because BOMA dominant Mid-Marsh serves as the marsh edge during the winter season. 

4.1.2 Seasonal Changes 

 Our seasonal SOP analysis showed a steady decline in vegetated pixels whereas biomass appeared 

relatively stable until February (Figure 12). Our seasonal vertical image analysis showed that the upper 

(>50 cm) canopy tended to lose plant material before the lower canopy (Figure 13). These patterns 

indicated a steady loss of leaf material through the winter months, concordant with our field 

observations. Thereby, stems were the dominant source of biomass and surface area during the late 

winter and early spring months.  
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If other workers continue research and monitoring efforts with the SOP analysis within similar wetland 

environments, we recommend a few alterations to the above methods: 1) Reduce the width of the 

photographed segment to 10 cm instead of 20 cm used in this study. We are confident that stem count 

and diameter can be calculated if the photographed segment thinner to reduce overlapping vegetation. 

2) Lemien et al. (2015) and Rogers et al. (2015) incorporated a mirror at a 45-degree angle to produce a 

less destructive and more efficient method to capture plant characteristics. This method would provide 

a larger dataset (several images per site) that would be enough to validate the method and to predict 

characteristics at other sites. 3) Our study focused on the High, Mid and Low-Marsh. If this method is 

used to estimate biophysical characteristics that drive wave attenuation, we would recommend a 

focused sampling regime on the vegetation cover likely to be the most effective at attenuating energy, 

Mid Marsh in our case.  At PSB, the Low-Marsh may attenuate wave energy when present; however, 

Low-Marsh is mostly decomposed by early November and not likely to influence winter erosion events.  

4.2 Elasticity:  

We argue that most wave attenuation occurred below 50 cm canopy height because: 1) there was more 

resistance to bending within the plants (Figure 15 e-f) and; 2) there was greater biomass and surface 

area during our study (Figure 11). The BOFL and BOMA exhibited strong, seasonally-insensitive, 

logarithmic relationships between bending strength and bending height (Figure 15 e-f). These 

logarithmic relationships may indicate two types of deformation, 1) internal deformation as the stem 

bends and 2) flexion at a basal pivot point. We suspect that internal deformation was dominant at 

angles lower than 30 degrees and/or at higher measurement heights (>75 cm), where deformation 

increases with no perceptible increase in bending force.  For example, the force required to bend a stem 

is negligible (approx. 0g) at 100 cm for BOFL and 60 cm for BOMA, independent of season.  Bending 
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strength and breakage was sensitive to cold temperatures because a November field investigation with 

freezing temperatures yielded anomalously high number of stems breaking (Figure 14). 

The type of deformation is important because it is related to the amount of friction and potential wave 

attenuation. If the vegetation deforms with little resistance, then it will impose little friction; whereas, 

rigid stems would produce more friction to reduce wave energy. Therefore, at some critical angle and 

plant height, less than 30 degrees and lower then 75 cm, bulrush stems deform by flexion around a pivot 

instead of internally. At this point, stems physically resist the motion of water instead of attenuating 

flow through increased surface area. These measurements are discussed as analogy to force inflicted on 

a stem by water, we recognize that the two values may not be interchangeable. Water flowing through 

stems produces a force on all submerged vegetation not a single stem. 

If future studies continue this work, we recommend pairing the elasticity measurements with wave 

sensor data. Wave sensor data would quantify wave attenuation for these vegetation assemblages and 

be able to relate wave attenuation with the strength of plants.  

4.3 Remote Sensing:  

4.3.1 Maximum-Likelihood Classification (MLC) 

Our Maximum Likelihood Classification (MLC) acceptably delineated High-Marsh (75%) and Non-Marsh 

(85+%) cover types; however, Mid-Marsh (BOFL (41%) and BOMA (44%)) and the Low Marsh (49%) 

classified poorly. The High-Marsh and Non-Marsh cover types classified well because they have distinct 

spectral signatures (Appendix 2). The Mid-Marsh, arguably the most important in regards to winter 

wave hazard mitigation, required further analysis (DTC) and increased accuracy. 

We suspect that this error within the Mid and Low-Marsh cover types is due to: 1) Very similar spectral 

signatures between bulrush species (Figure 5). For example, BOMA and BOFL being nearly identical plant 
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species, separated only by height, have statistically indistinguishable spectral signatures (Figure 5). 2) 

Plant species present in multiple assemblages. Being that SCAM is a dominant species in both the Low 

and Mid-Marsh assemblages, our MLC had difficulty separating the assemblages based on spectral 

signature. 3) By September, when the CASI imagery was taken, plant material has been coated with 

sediment. This sediment cover may have biased the spectral signatures.  For example, Low-Marsh 

(SCAM dominated) tended to be misclassified with bare sediment (Figure 16; Table 3), indicating that 

sediment coating or thin plant cover (Figure 2) is biasing the SCAM spectral signature towards sediment. 

These mixed classes can be quite difficult to classify based only on spectral signature; especially if 

sediment makes up one cover type and covers the other.  

4.3.2 Decision Tree Classification 

Our DTC successfully improved the overall accuracy of our classification to 77%, 10% above the MLC, by 

focusing on the marsh cover-types. Mid-Marsh subclasses, BOFL (66%) and BOMA (47%), still classified 

poorly; however, did see the largest improvements.  Moreover, we combined Mid-Marsh subclasses and 

improved the producer’s accuracy up to 67%.  

Mid-Marsh subclasses accuracies were increased by the incorporation of the LiDAR Bare Earth DEM (BE-

DEM) data through the DTC. The Mid-Marsh is statistically distinguishable from the High and Low-Marsh 

cover-types (Table 1). Therefore, by incorporating this data we isolate wrongly classified High and Low-

Marsh pixels and appropriately classify them as Mid-Marsh. Mid Marsh subclass (BOMA and BOFL) 

accuracy remain low, in part, because their ranges in the LiDAR BE dataset have considerable overlap 

(Table 1). 

Here, we used the BE-DEM for our DTC. We found this data to be biased within marsh cover-types by 

~0.40 m the assumed true elevation taken with RTKGPS (Appendix 1). A DEM corrected for the 

vegetation could potentially yield better results. We argue that a correction for the BE-DEM is not 
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necessary for this study because the bias is a product of elevation, stem height and desity. The biased 

BE-DEM has the potential to be a positive influence on our classification by increasing accuracy because 

vegetation species had more distinctive height ranges rather than elevation ranges (Table 1). 

4.3.3 Biomass 

Our model reasonably predicted biomass because of spatial patterns agree with our field observations, 

correlate with Fuller’s (2015) categorical vegetation cover data, and exhibit similar spatial patterns as 

reported in the literature. Schalles et al (2013) and Hladik et al. (2013) found that marshland biomass 

was greatest at the marsh edge and along tidal channels due to higher sediment delivery and retention. 

Our biomass model predicts this pattern particularly in the northern zones (Figure 17). 

Our predicted biomass showed a weak relationship with Fuller’s (2015) categorical stem density data 

(Figure 19). Similarly, our SOP data showed a similar weak relationship between stem density and 

biomass (Figure 9). We suspect that this weak relationship is because of other biomaterial (leaves, dead 

stems, etc) that were present in biomass data but not accounted for in stem density measurements.  

Were this analysis to be continued or expanded, we recommend a larger sampling size of biomass 

samples to provide a more statistically robust dataset to extrapolate biomass and account for interclass 

heterogeneity. We would focus on Mid and Low-Marsh because of their potential wave attenuation.  

4.4 Port Susan Bay Marsh Structure and Vulnerability  

To assess the relative spatial and temporal variability in biomass related to seasonal changes in species 

distribution and structure, we developed a normalized biomass metric mapped by marsh vegetation 

zone.  The full summer biomass extent for each pixel of classified marsh was normalized by the highest 

biomass value found to create a relative biomass comparison across the study area.  To explore the 

seasonal influences of senescence and SCAM deterioration, we then adjusted the lower marsh biomass 
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and mid-marsh biomass by 100% and 50%, respectively, to represent SCAM die-back that occurs across 

these zones. The resulting analyses show the biomass structure that can attenuate flow and waves 

relative to the maximum biomass in the system and the spatially explicit change through the early 

winter (Figure 20). 

The normalized biomass map shows that large areas of the Low and Mid-Marsh generally exhibit 50 % of 

the biomass characteristic of the upper marsh. Areas like the north end of the marshes and central study 

area have cross-shore reaches of only 200-300 m with biomass only 15- 25% of the highest biomass in 

the system found can buffer waves approaching shore. By December and March, biomass in these areas 

decreases sufficiently to leave only 25-50% of the summer maximum biomass extent.  

We observe that the largest decrease in biomass, 25% of summer maximum and a 50 m decrease in 

cross shore reaches, occurs within the BOMA Mid-Marsh in the regions north of the restoration area 

(Figure 20). In these vulnerable northern reaches BOFL Mid-Marsh and High Marsh are likely to be 

influential for decreasing daily erosive hydraulic energy and promote sediment retention and elevation 

gain in the later winter months (Jan- Mar).   

Last, we coalesced our understanding of vegetation biophysical and wetland structural variability into a 

conceptual potential wave attenuation model (Figure 21). With this model we predict rapidly decaying 

SCAM (Low-Marsh) contributed to bed roughness and BOMA dominated Mid-Marsh produced hydraulic 

friction responsible for the highest wave attenuation during the early monsoon season (November and 

December). We hypothesize that as SCAM was fully incorporated into the tidal flat and BOMA 

dominated Mid-Marsh became patchy and sparse, BOFL dominated areas became critical for flow 

attenuation during the later portion of the monsoon season and early spring (December through 

March). According to our elasticity and vertical biomass studies, we estimated that the highest elasticity 

and biomass occurs within the first 50 to 75 cm of vegetation canopy from the marsh floor, BOMA and 
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BOFL respectively (Figure 13 and 15). This information indicates that BOFL would serve an important 

role to attenuate flow during storm events with high water level and, BOMA remains the most critical 

species for mitigating daily erosion.   

5 Conclusions  

Through this study, we isolated emergent plant biophysical characteristics (plant height, biomass, stem 

density and, stem diameter) using horizontal digital photographic methods described here as Side-on 

Photos (SOP). We found this methodology to be helpful in quantifying plant characteristics and 

investigating the seasonal degradation of bulrush species.  We found our SOP analysis able to predict 

plant height and biomass (Kendall’s Tau p-value 1.8 x 10-5 for both); while, stem diameter and stem 

density showed a weak relationship when comparing lab to image data (Kendall’s p-value 0.04 for both).  

SOPs were helpful to identify seasonal degradation patterns. Co dominant BOMA/SCAM sites showed an 

abrupt decrease in surface area by November; however, these sites did not show a significant decrease 

in biomass until February owing to SCAM’s relatively low biomass.  Mid-Marsh assemblages maintained 

their biomass until February when BOMA and BOFL stems became brittle tended to break.  

We extrapolated marsh biomass across the delta through the experimentally defined relationship 

between elevation, Red Edge NDI and biomass samples. We validated our biomass analysis through a 

comparison with Fuller’s (2015) categorical percent cover data.  We found that the BOMA Mid-Marsh 

tended to exhibit higher biomass within the first 20 m of the marsh edge. 

 We successfully mapped biophysically distinct wetland assemblages using MLC and DTC classifications 

and achieved an overall accuracy of 77%. Our MLC did not capture the extent of plant assemblages 

owing to sediment coating, mixed pixels and similar spectral signatures. We integrated elevation (BE-

DEM) and NDVI data using conditional statements in a DTC analysis and, improved the accuracy of our 

mapped assemblages by up-to 21% (BOFL).  
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BOMA dominated Mid-Marsh served as the winter marsh edge that is the first vegetation to come in 

contact with wave energy. SCAM dominated Low-Marsh decayed into the tidal flat by Mid November, 

whereas, Mid Marsh assemblages (both BOMA and BOFL dominated) maintained rigidity and density 

until degrading begins in February 2015. As such, BOMA dominated Mid-Marsh is likely to have the 

greatest influence on wave attenuation, in particular, the first 20 m where biomass is greatest. 

Generally, BOFL had more material strength, is taller, covered a higher elevation range, formed denser 

patches, had more biomass per stem, and trapped more basal debris than BOMA. BOFL likely played a 

significant role in wave attenuation during large storm events when erosive waves reach the higher 

elevations and later months as BOMA became sparse. Potential wave attenuation is likely to be greatest 

when wave-heights are between 50 and 75 cm above the marsh floor; because, the lower section of the 

canopy (<75 cm) contains the highest biomass/surface area and is where stems exhibit the highest 

structural strength.   

Seasonal wetland structure and potential wave attenuation variability is critical information for coastal 

planners that seek a sustainable, low-impact alternative to protect coastlines and natural resources 

against increasing coastal hazards associated with SLR. Our conceptual model qualifies the current 

conditions and potential wave attenuation within Port Susan Bay. This information can be used to 

parameterize coastal flooding and wave models to quantify wetland protective services. 
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7 Tables 
 

Table 1. Elevation and NDVI statistics for primary bulrush species and bare sediment. These values are derived from the training 
ground truth points with a 5 meter radius around ground truth points. Data includes north zone south zone and the restoration 
site. Note: the elevation statistics for this study were derived from the 2014 Bare Earth LiDAR DEM. We estimate the BE DEM to 
over predict the marsh floor elevation by approximately 0.4 m on average (Appendix 1). All elevation and tidal ranges provided 
here are in NAVD88.   

 LiDAR Bare-Earth DEM NDVI Elevation (Fuller (2015) 

 min max mean SD min max mean SD min max median SD 

BOFL 2.31 3.47 2.76 0.26 0.037 0.711 0.328 0.173 - - - - 

BOMA 1.48 3.14 2.41 0.36 -0.003 0.6.75 0.217 0.117 1.7 2.7 2.2 - 

SCAM 0.48 2.76 1.74 0.46 -0.358 0.438 0.105 0.092 1.2 

 

1.99 1.6 - 

Tide Flat 0.96 2.91 1.69 0.33 -0.034 0.398 0.050 0.047 MHHW MHW MSL - 

Tides - - - - - - - - 2.77 2.50 1.37 - 

 

Table 2. Statistics of the elasticity regression analysis of BOFL and BOMA. Regressions use measurement height (X) to derive 
bending force (Y) to 30 degrees with respect to month.   

 



 

31 
 

Table 3. Confusion Matrix of Maximum Likelihood Classification (MLC). Values are in number of pixels and accuracies are in 
percent. Each GPS ground truth point was converted into a circle polygon with a radius of 5 m and thus represent approximately 
80 pixels.  

 

 

Table 4. Confusion matrix of Decision Tree Classification (DTC). Values are in number of pixels and accuracies are in percent. 
Each GPS ground truth point was converted into a circle polygon with a radius of 5 m and thus represent approximately 80 
pixels. 

 

 

Testing Ground Truth Areas
MLC Blackberries Beachwood Trees High-Marsh Bare BOFL BOMA/SCAM SCAM Total User's Accuracy (%)

Blackberries 1746 7 20 - - - - - 1773 98.5

Beachwood 17 1087 - 59 - - 22 4 1189 91.4

Trees 6 - 279 1 - - - - 286 97.6

High-Marsh 34 127 2 1567 3 237 209 69 2248 69.7

Bare - - - 7 2418 25 298 560 3308 73.1

BOFL - 45 9 283 25 665 220 74 1321 50.3

BOMA/SCAM - - - 170 26 531 1199 310 2236 53.6

SCAM - - - 5 446 54 994 971 2470 39.3
Total 1803 1266 310 2092 2918 1512 2942 1988 14831

Producer's Accuracy (%) 96.8 85.9 90.0 74.9 82.9 44.0 40.8 48.8

Overall Accuracy (%) 67.0

Testing Ground Truth Areas

DTC Blackberries Beachwood Trees High-Marsh Bare BOFL BOMA/SCAM SCAM Total User's Accuracy (%)

Blackberries 1746 7 20 - - - - - 1773 98.5

Beachwood 17 1087 - 59 - - 22 4 1189 91.4

Trees 6 - 279 1 - - - - 286 97.6

High-Marsh 34 127 2 1564 - 237 209 69 2248 69.6

Bare - - 1 8 2622 12 242 545 3308 79.3

BOFL - 45 3 317 - 993 223 6 1321 75.2

BOMA/SCAM - - 5 115 25 270 1385 130 2236 61.9

SCAM - - 28 271 - 861 1234 2470 50.0

Total 1803 1266 310 2092 2918 1512 2942 1988 14831

Producer's Accuracy (%) 96.8 85.9 90.0 74.8 89.9 65.7 47.1 62.1

Overall Accuracy (%) 73.6
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Table 5 Confusion matrix of Decision Tree Classification (DTC) where Mid-Marsh classes (BOMA and BOFL dominated) have been 
combined. Values are in number of pixels and accuracies are in percent. Each GPS ground truth point was converted into a circle 
polygon with a radius of 5 m and thus represent approximately 80 pixels. 

 

 

Table 6. Estimates of the areal extent and biomass of cover types from the DTC land-cover analysis.   

 

 

DTC Blackberries Beachwood Trees High-Marsh Bare Mid-Marsh SCAM Total User's Accuracy (%)

Blackberries 1746 7 20 - - - - 1773 98.5

Beachwood 17 1087 - 59 - 22 4 1189 91.4

Trees 6 - 279 1 - - - 286 97.6

High-Marsh 34 127 2 1564 - 446 69 2242 69.8

Bare - - 1 8 2622 254 545 3430 76.4

BOMA/SCAM - 45 8 432 25 2871 136 3517 81.6

SCAM - - 28 271 861 1234 2394 51.5

Total 1803 1266 310 2092 2918 4454 1988 14831

Producer's Accuracy (%) 96.8 85.9 90.0 74.8 89.9 64.5 62.1

Overall Accuracy (%) 76.9

Testing Ground Truth Areas

Cover Type Area (sq-m) Total Biomass (mT) Min (kg/sq-m) Max (kg/sq-m) Mean (kg/sq-m) STD (kg/sq-m)

High Marsh - undifferentiated 1.02E+06 1083.78 - 64.46 1.06 0.44

Mid Marsh 1.58E+06 925.30

BOFL 5.36E+05 315.67 0.12 3.35 0.59 0.25

BOMA/SCAM 1.04E+06 609.62 0.10 5.42 0.59 0.16

SCAM 1.42E+06 1108.22 0.09 17.47 0.78 0.32

Bare - undifferentiated 2.42E+06 1377.47 - 103.86 0.57 0.24

Other 1.08E+05 149.42

Blackberries 3.76E+04 81.61 0.14 5.00 2.18 0.67

Beachwood 5.47E+04 35.50 - 57.58 0.65 1.27

Trees 1.60E+04 32.32 - 8.34 2.05 0.78

Total Study Area 6.55E+06 4644.19

 Biomass Analyses
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8 Figures 

 

Figure 1. Map showing study area of Port Susan Bay. A) Historical wetland extent (yellow, 2011; green ,1964) reconstructed 
from aerial photography and indicates up to 1km of marsh retreat since 1964 (Grossman and Curran, in review). Also shown is a 
representative cross-shore transect (blue line) of predominant wave approach with extent that historical vegetation of 1964 
would influence wave energy reaching northern PSB. Pink area represents a recent restoration effort by The Nature 
Conservancy.  B) Reference map detailing the extent and topography of the Stillaguamish River catchment.  
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Figure 2. Annotated picture of channel bank on southern island. Shows SCAM dominated Low-Marsh interclass heterogeneity 
(mixed cover-types) with respect to stem density. This image shows a mixed cover-type (SCAM with bare sediment) and a non-
mixed cover-type (SCAM). 

 

Figure 3. A) Schematic of Side-On Photo setup. Representative strip of vegetation was sectioned off (0.2 m by 1.3 m) vegetation 
with a red backboard (~2 m x 1.27 m) and a red tarp on the ground surface. Camera was centered 2 m from the backboard at a 
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height of 0.7 m. Stem density was assess using a 1 cm tall row of pixels at 0.25 m above the marsh floor. B) Unaltered image of 
emergent bulrush (BOMA) to be processed through ENVI and SideLook (VESTA) C) Binary image of bulrush (BOMA) used for 
processing in SideLook. 

 

 

Figure 4. A) Schematic of in-situ elasticity measurements. Each stem had a total of 9 measurements: 3 heights (height, half 
height and, 25 cm) by 3 angles (15, 30, 45 degrees measured from initial position) measurements. Initially stems were 
approximately vertical (~90 degrees) from the marsh surface. B) Photo of data collection.  

 

Figure 5.  Spectral signatures for emergent Mid-Marsh vegetation species: A) SCAM (Schoenoplectis americanus); B) BOMA 
(Bulboschoenus maritimus), C) BOFL (Bulboschoenus fluviatilis). Solid red line is the mean spectral signature; dashed redlines 
are one standard deviation; solid light gray lines are individual spectral signatures. Note: CASI spectral signatures are the 
average for a defined region of interest. There may be some misclassified BOFL spectral signatures as BOMA. At the beginning of 
this study, BOFL and BOMA were considered the same species. 
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Figure 6. Decision Tree diagrams to isolate BOFL. Decision trees were initially created using data in Table 1 for the north zone, 
where a pixel would only be reclassified if it fell out of the standard deviation of two or more classes. Decision trees were altered 
to account for spatially dependent elevation (South Zone and Restoration Site) (Appendix 3). 
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Figure 7. Plots detailing the linear model fit from the transformed biomass, elevation data, and Red-Edge Normalized Difference 
Index (RE NDI). A) Scatterplot detailing model for all marsh assemblages. These data are correlated with a Kendall’s Tau =0.5789 
and p-value = 0.00019. Our linear model: Y = [12.96(X) +6.6607]1/0.29 has an adjusted r2 = 0.4764. Red, blue and green points 
represent High, Mid and, Low-Marsh respectively. Dashed lines represent 95% confidence. Figure 7b – d are scatterplots and 
linear regressions of isolated High, Mid and, Low-Marsh assemblages, respectively. 

 

Figure 8. shows several comparisons of SOP derived parameters to lab measured values. a) Plot detailing the relationship between 
Mean-Max Vegetated pixels, the averaged maximum of vegetated pixels of a SOP image, with lab-measured average plant height 
excluding plant fragments. b) Scatter plot comparing total vegetated pixels with lab measured biomass. c) Scatterplot showing 
Row-Hole Count, contiguous white space between vegetated pixels for a 1 cm row of pixels at 25 cm above the marsh floor, 
compared to lab measured stem count. d) Scatter plot comparing the ratio of vegetated pixels at 25 cm above the marsh floor 
over Row Hole Count with respect to measured stem diameter.   
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Figure 9. Plots comparing lab measured biomass to lab measured stem count with respect to assemblage. A) shows biomass 
with respect to stem count for combined marsh assemblages; B) High-Marsh assemblage; C) Mid-Marsh assemblage; D) Low-
Marsh assemblage. 

 

Figure 10. Plot showing the average plant height by the width of the photograph. Height is averaged for every 1 cm column. 
Binary image underlain the plot shows qualitative accuracy.  Data is from Site 002, a BOMA dominated Mid-Marsh site, Located 
at the marsh edge in the northern study area.  
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Figure 11. Plots detailing vertical biomass, using vegetated pixel count per 1 cm row as analog, with respect to 
assemblage/dominant species. Grey lines show data from a single SOP image; red lines describe the average of all SOP images 
separated by cover-type: A) BOFL; B) BOMA; C) SCAM, D)High-Marsh, respectively.  

 

Figure 12. Temporal analysis of (A) biomass and (B) SOP vegetated pixels through the sampling season, Fall 2014 to Spring 2015. 
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Figure 13. Seasonal changes in vertical vegetation structures at elasticity measurement sites (Site 22 and 20; BOFL and BOMA 
respectfully): A) BOFL cover-type; B) BOMA cover-type. 

 

Figure 14. Temporal changes in plant characteristics height, diameter and brittleness for BOMA (Site 20) and BOFL (Site 22). 
Data was collected biweekly to monthly beginning in September through March. A) Boxplot detailing monthly changes in plant 
height for BOFL; B) Boxplot detailing monthly changes in plant height for BOMA; C) Boxplot of monthly stem diameter in BOFL; 
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D) Boxplot of monthly stem diameter for BOMA; E) Percent of BOFL stems that broke during elasticity measurements by month; 
F) Percent of BOMA stems that broke during elasticity measurements by month. 

 

Figure 15. Plots detailing the seasonal relationships of force (at 25 cm to 30 degrees) to diameter, total plant height and 
measurement height (contains force data for plant height, half height, and 25 cm bent to 30 degrees) in both BOFL and BOMA. 
A) Scatter plot of bending force vs stem diameter for BOFL; B) Scatter plot of bending force vs diameter in BOMA; C) Scatter plot 
of bending force with respect to total stem height in BOFL; D) Scatter plot of bending force with respect to total stem height in 
BOMA; E) Scatter plot of bending force as a function of measurement height by month in BOFL; F) Scatter plot of bending force 
as a function of measurement height by month in BOMA.  October(purple), November (red), December (pale green), January 
(dark yellow), February (dark green), March (blue).  See Appendix 6 for a more detailed analysis of the elasticity data.  
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Figure 16. Maps of Maximum Likelihood Classification (MLC) and Decision Tree Classification focused on isolating bulrush 
species. Black and Red dots represent ground truth points with a 5-meter buffer.  
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Figure 17. Map displaying the biomass grid and contours derived from the linear model (Eqn. 3). This map shows relative 
biomass per square meter across the emergent vegetation defined by the DTC (Figure 3). Maximum biomass is shown here as 
2.6kg/m2, this is over two standard deviations above the mean for High-Marsh (Table 5). Our model predicts values up to 
~100kg/m2 that are anomalous or for non-marsh cover-types (Table 5). High-Marsh vegetation sampling points were taken from 
clumps of Juncus, Carex, and softstem bulrush where the majority of the High-Marsh assemblages is dominated by low (0.1 to 
0.5 m high) grass species. This may lead to an over estimate of biomass within the High-Marsh.  
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Figure 18. Validation analysis for estimated biomass spatial extrapolation by comparison with Fuller’s (2015) categorical percent 
cover data. We dissected the data by marsh assemblage: A) All  marsh assemblages; B) High-Marsh assemblage; C) Mid-Marsh 
assemblage; D) Low-Marsh assemblage. 

 

Figure 19.  Validation analysis for estimated biomass spatial extrapolation by comparison with Fuller’s (2015) categorical stem 
density data. We dissected the data by marsh assemblage: A) All marsh assemblages; B) High-Marsh assemblage; C) Mid-Marsh 
assemblage; D) Low-Marsh assemblage. 
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Figure 20. A) Map displaying the normalized biomass grid derived from the linear model (Eqn. 3) for peak biomass (September) 
normalized by the biomass maximum. Maximum biomass is shown here as 2.6kg/m2, this is over two standard deviations above 
the mean for High-Marsh. Our model predicts values up to ~100kg/m2 that are anomalous or for non-marsh cover-types. High-
Marsh vegetation sampling points were taken from clumps of Juncus, Carex, and softstem bulrush where the majority of the 
High-Marsh assemblages is dominated by low (0.1 to 0.5 m high) grass species. This may lead to an over estimate of biomass 
within the High-Marsh. B)  Our estimate biomass conditions for December where SCAM has fully degraded and been 
incorporated into the marsh floor. Here we assume the Low-Marsh is comprised of 100% SCAM and the Mid Marsh 50% SCAM. 
C) Our estimates for March biomass. Here we assume that BOMA and BOFL have lost approximately 50% of their peak biomass 
from data presented in Figure 12. Therefore, BOMA dominated Mid-Marsh is 25% of September estimates. 
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Figure 21. Conceptual wave attenuation model detailing seasonal and spatial wetland variability. Blue line shows relative 
seasonal wave attenuation responding to vegetation biophysical changes. Potential wave attenuation represents seasonal 
decreases in biomass. Here, 100% of SCAM biomass has been incorporated into the tidal flat by December which results in a 100 
and 50% loss in biomass in the Low and BOMA dominated Mid-Marsh by December. After December the BOMA Mid Marsh and 
continues to degrade slowly and is reduced to 25% of peak biomass by March. Red line shows contemporary and idealized 
monsoon season for the Pacific Northwest (PNW) and our study area, where the study area receives the majority of the erosive 
storm events during November through January. 
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Chapter 2 

Title: Winter sediment dynamics in a Pacific Northwest tidal marsh, Port Susan Bay: role of vegetation 

Keywords: 

Tidal marsh, sedimentation, vegetation, flow attenuation, Puget Sound, Port Susan Bay  

Abstract: 

The role of coastal or estuarine vegetation is conceptually understood to provide protective services 

such as wave attenuation, sediment retention, flood-water storage, etc.  Information quantifying the 

extent that they protect shorelines through flow attenuation and sediment retention is valuable to 

resource managers interested in utilizing wetlands as “green infrastructure.”  Some studies have found 

that wave energy decreases exponentially with distance across marshlands and varies with site 

morphology and species-specific plant characteristics (Yang et al., 2011). Sediment deposition may 

exhibit similar patterns; however, sediment, geomorphic and habitat models seldom integrate site-

specific biophysical plant parameters into change analyses. Our goal is to investigate sediment dynamics 

with respect to vegetation assemblage to characterize: 1) the rate, distribution and composition of 

sediment deposits; 2) effectiveness of wetlands to retain sediment; 3) contribution to the sediment 

budget of sediment coated vegetation; 4) suspended sediment dynamics and availability, e.g. tidal 

channels, along shore and cross-shore, and their relationship with river and wind patterns.  Our study 

was conducted within a vulnerable Pacific Northwest estuary, Port Susan Bay in Washington State, 

where tidal marsh has retreated up to 1 kilometer over the past fifty years. Port Susan Bay serves as the 

mouth of the Stillaguamish River that was influenced by a catastrophic landslide, the Oso Mudslide 

(SR530 Landslide), in Marsh 2015 prior to this investigation. Results showed that the highest winter 

sediment deposition occurred in the High to Mid-Marsh boundary, up to 300 m inland of the marsh 

edge, where bulrush species were determined to have the highest biomass by an associated vegetation 
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study (Chapter 1). We estimated that sediment retained in the northern marsh is up to 2.5% of the total 

sediment delivered to the delta by the Stillaguamish river. Sediment coating vegetation may contribute 

up to 0.5% of the northern marsh sediment budget. Turbidity of a tidal channel is closely related to 

turbidity and discharge responses from the Stillaguamish River, the assumed primary sediment source.  

The northern marsh turbidity indicated an episodic and delayed (~2 days) sediment response to the river 

and showed relationships to regional winds that generate waves. Longshore turbidity patterns indicate 

that sediment is delivered uniformly to our study area. Cross-shore pattern exhibited an increase in 

turbidity inland corresponding to regions with the greatest deposition. Based on turbidity patterns, 

sediment trap data and field observations, we speculate that during the study (winter of 2014-15) 

hydraulic energy was high enough to erode the marsh edge, suspend sediment from associated tidal 

flat, and transport material approximately 300 m inland to the High/Mid-Marsh boundary. These results 

inform restoration efforts to restore marshland and associated sediment supply, as well as, the scientific 

understanding of marshland vulnerability and adaptability to climate change and sea-level rise.  

1 Introduction and Background 

Coastal lowlands provide many ecosystem services important to human populations, such as essential 

salmon habitat, productive agricultural land, and barrier for coastal hazards such as flooding events and 

erosion (Koch et al., 2009). Coastal wetlands have been shown to be important for buffering impacts to 

vulnerable lowlands by attenuating wave energy, encouraging shoreline stabilization and, allowing for 

flood water storage (Shepard et al., 2011).  Human modifications, i.e. engineering and/or agricultural 

efforts, of coastal hydrology and sediment transport have resulted in a loss of wetland land-cover and 

protection within the Puget Sound (Bortelson, 1980). SLR projections, today’s 100 year marine overwash 

event becoming a 10 yr event with 1 ft rise in sea level (Trebaldi, 2012), are leading coastal managers to 

consider alternative approaches to coastal protection. Within the pacific northwest (PNW), storm surges 

and coastal flooding are predicted to increase with SLR compounded by shifts in seasonal precipitation 
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patterns, peak stream discharge and, sediment delivery (Huppert et al., 2009). SLR and increased storm 

events amplify the need for effective and cost efficient engineering solutions to protect coastal 

communities and wetland resources (Shepard et al., 2011). 

Coastal wetland restoration can be a long-term and cost-effective mitigation strategy to supplement (or 

replace) traditional engineered flood protection, i.e. levees and dikes (Shepard et al., 2011). Historically, 

estuarine habitat restoration was seldom considered in coastal protection planning because predictive 

models that evaluate vegetation protective-capacity require improved vegetation biophysical data. An 

improved understanding of the role and adaptability of estuarine wetlands can help guide decisions that 

protect and enhance ecosystem services.  

Wetlands have been shown to accrete and migrate inland at a rate equal to SLR if supplied with 

sufficient sediment (Shepard et al., 2011);  however, because of human modifications to stream flow, 

contemporary sediment delivery to wetlands today varies considerably from historical sediment loads 

(Curran et al. 2016; Czuba et al., 2011). Some streams deliver less sediment due to reservoir 

impoundment, others deliver more sediment due to fluvial and coastal engineering efforts (Grossman et 

al., 2011) and forest management practices (Jones et al., 2001). Important to marshes is the extent, 

connectivity and, retention of fluvial sediment affected by levees and shoreline armoring (Grossman et 

al., 2011). At the interface of terrestrial, marine and climatic forces, coastal wetlands play an integral 

role in coastal resilience because they attenuate flow, trap sediment and, adapt to local sea level 

changes. Here, we seek to understand the role and ability of wetland vegetation to retain sediment. 

1.1 Site Description: 

This study focused in the northern marsh regions of Port Susan Bay (PSB), a temperate estuary located 

in the Salish Sea of Washington State. PSB serves as the mouth and delta for the Stillaguamish River.  

The vulnerable PNW estuary that has experienced up to 1 kilometer of marsh loss (retreat) since 1964 
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(Figure 22).  PSB was selected to investigate sediment deposition patterns within a dynamic wetland 

that has been the focus of restoration efforts (The Nature Conservancy), on-going sediment budget 

studies (Grossman and Curran, in review) and serves as an important environment for salmon resources 

and bird habitat.  This study aims to isolate characteristics that enhance resilience and to help test the 

performance of the 2012 PSB estuary restoration to regain connectivity and sediment supply.  

The Stillaguamish River begins in the North Cascades dominated by high-relief bedrock and, quickly 

reaches the Puget Lowlands dominated by glacio-fluvial and lahar deposits from Glacier Peak (Tabor et 

al., 2002). The associated watershed occupies approximately 1800km2 where flow is dominated by 

rainfall and snowmelt (no glacial influence) with a mean annual discharge of approximately 85 m3/s 

(3000cfs) (Grossman and Curran, in review).  

Glacier Peak lahars have had a significant influence on the fluvial and deltaic morphology of the 

Stillaguamish River. The Sauk River is thought to have been diverted north to The Skagit River by a lahar 

dated at 5kya (Tabor et al., 2002) and, the formation of the deltaic fan is associated with Glacier Peak 

lahar deposits (Tabor et al., 2002). The Stillaguamish River valley recently came under national spotlight 

because of the tragic 2014 Oso Landslide that was sourced from a 300 m tall terrace of unconsolidated 

glacio-fluvial and lacustrine deposits. A recent study estimates that the catastrophic landslide increased 

the river’s sediment load 50% during the first two years following the slide (Grossman and Curran, in 

review) likely increasing sediment load to the study area. 

PSB experiences a temperate maritime climate with a winter monsoon season responsible for the 

majority of the ~30 in of mean annual precipitation and dry summers; temperatures remain temperate 

rarely dropping below freezing and above 80oF (Grossman and Curran, in review).  The dominant wind 

direction affecting the delta is from the south-southwest with a fetch of 35-50 km (Grossman and Curran 
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in review) (Figure 22). Tidal range and regime is generally mesomareal and semi diurnal for PSB with a 

tidal range from 2.44 m and -0.27 of MLLW. 

PSB is dominated by three general marsh types that influence resilience: 

1) High-Marsh is above Mean High Water (MHW) (>2.5 m NAVD88) and is dominated by graminoid 

(grass), sedge, and rush species. Inundation occurs during unusually high tides (Fuller, 2015).  

2)  Mid-Marsh exists below MHW (2.5 m > X > 2.0 m) and is dominated by bulrush species (Fuller, 

2015). The Mid-Marsh plays a key role in winter sediment accumulation and wave attenuation 

because it serves as the winter marsh edge.  Mid-Marsh is dominated by three bulrush species. 

a. BOMA (Bulboschoenus maritimus) – Hip to waist height (mean ~ 0.75 m), semi-rigid stems, 

~3 bladed leaves up to 2ft in length. 

b. BOFL (Bulboschoenus fluviatilis) – Chest to head height (mean ~1.5 m), semi-rigid stems, ~3 

bladed leaves up to 2.5 ft in length.  

c. SCAM (Schoenoplectis americanus) – Knee to hip height (mean ~0.5 m), semi-flexible stems, 

no significant leaves.  

The Mid-Marsh is further separated into two sub categories: 

1. Upper Mid-Marsh is dominated by BOFL and creates a continuous band within the 

study area (between the restoration site and South Pass), the northern section of 

the delta (Fuller, 2015). 

2. Lower Mid-Marsh is co dominated (50-50) by SCAM and BOMA. The lower Mid-

Marsh serves as the winter marsh edge.   

3) The Low-Marsh (1.3 < X > 2 m) is dominated largely by SCAM and has low species richness (Fuller, 

2015).  Low-Marsh Vegetation density (78 ± 156 stems/m2) varied widely with space and time 
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(Fuller, 2015). SCAM tended to be coated with sediment and showed signs of senescence by early 

fall (September) and had degraded into the marsh / tidal flat surface by winter (Mid-November).  

2 Methods: 

We used a combination of sediment tile traps, Sediment Erosion Bars (SEBs) and turbidity sensors to 

study accretion, particle size, erosion and suspended sediment dynamics respectively. These methods 

were employed along 5 cross-shore transects across the northern PSB to examine the role of vegetation 

on sediment retention patterns (Figure 22). Field work was conducted between December 2014 and 

April 2015.  We defined the study area with a polygon that surrounded the sampling area. Seaward 

extent was defined by approximately 15 m southwest of the marsh edge. Landward extent was defined 

by the beachwood/ shrub boundary or grass dominated area. These definitions were adopted in order 

to isolate the Mid-Marsh as defined by Fuller (2015).  

Transects numbered 1 through 5 (South to North) contained 5 sampling sites that were ecologically 

defined by wetland assemblage. Site 1 was located in the High-Marsh surrounded by grass-like plant 

species with sparse patches of BOMA or BOFL.  Site 2 was located at the beginning of bulrush dominated 

marsh, often located in a BOFL patch. Site 3 was located in the center of the vegetated transect often 

co-dominated by SCAM and BOMA. Site 4 was placed 5 m inland of the marsh edge also co-dominated 

by SCAM and BOMA. Site 5 was located 10 m seaward of the marsh edge.  

2.1 Sediment Traps: 

Flat surface sediment traps provide information about the weight and type of material being deposited, 

e.g. sediment size, organic fraction. These sediment traps are a common method to measure sediment 

accumulation within tidally influenced wetlands (Steiger et al., 2003). This method involves the 

installation of tiles flush to the marsh surface (Nolte et al., 2013 and Steiger et al., 2003). On recovery, 

sedimentation rates can be estimated through the thickness and total weight accumulated (Nolte et al., 
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2013 and Steiger et al., 2003).  We used small detachable ceramic tiles (10 cm x 10 cm) anchored flush 

to the marsh surface with a 0.5 m length PVC pipe. Tile traps were deployed at each of the 25 sites. At 

each site 3 tiles were placed within a 0.25 m2 area following protocols of Thomas and Ridd (2004). We 

used the roughened (bottom) surface of the tile to mimic a rough marsh surface. Sediment traps were 

installed between December 8 and 11 of 2014 and samples were collected between March 24 and April 

3 of 2015. The median deployment time was 16 weeks (4 months).  

 We measured the thickness of sediment accumulation on the tiles during sampling; 3 measurements 

were taken per tile, 9 measurements were taken per site (3 tiles per site) and were averaged to estimate 

average sediment accumulation. We sampled the tile with the median deposit thickness at each site. If 

one or more of the tile traps were discarded due to breakage, the tile with the maximum amount of 

deposit was collected. Samples were marked, double bagged and sent to the USGS Pacific Coastal and 

Marine Science Center Sediment Lab for weight, organic fraction and sediment particle size analysis. All 

sampled traps were replaced for future monitoring projects. Tile trap data were extrapolated across the 

study area by Theissen Polygons and Inverse Distance Weighted (IDW) techniques, common methods to 

extrapolate point data across an area. Theissen Polygons divide an area into polygons based on the 

equidistance line between point data sources. Theiessen Polygons extrapolates data that point data is 

representative of the contiguous polygon. IDW algorithm generates a grid and through an algorithm 

interpolates cell values based on distance from the original point data source. Here we used the 

standard parameters within the ArcGIS 10.3 software: output cell size of 1 m, distance exponent of 2.  

2.2 Vegetation Sampling 

To quantify sediment trapped on vegetation, we collected plant samples during December 2014 and 

February 2015. Samples taken in December involved sampling the marsh edge sites (Site 4) for all 

transects and mid and upper marsh (Sites 3 and 1) on Transect 3. At each site, five stems (BOMA or 

BOFL) were selected, cut and bagged. December samples were carefully cut into 10 cm segments and 
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removed of leaves in the lab. For each site, a random subsample of five stem segments was chosen for 

analysis.  

In February, repeat sampling was taken at Site 1, 3 and 4 for Transect 3. Similar to December, five stems 

were carefully cut and bagged. Stem samples were cut into 3 -10 cm long segments in the field: Low 

(marsh floor to 10 cm), Mid (20 cm to 30 cm), High (40 cm to 50 cm). February sampling required stem 

samples to be 50 cm tall or greater. 

Inorganic sediment was isolated from organics through Loss on Ignition (LOI) where samples were 

burned in an anaerobic oven at 450oC for 4 hours. Samples were left to dry for one week prior to 

burning. Samples were weighed (Mt), skinned (we removed outer layers to lessen combusting organic 

material; interior of stem samples were discarded), oven dried (100oC) for 24 hours, weighed (Ms), 

burned and weighed (Mss) again. These samples should be a measure of the sediment accumulated on 

plant surfaces over the growing and wintering season.   

We estimate the contribution of sediment that has accumulated on vegetation to the entire sediment 

budget using Equation 1. Sediment flux is a function of accumulated sediment (Mss), average height of 

vegetation(Ht), stem density(ρVeg), and assemblage area.  

𝑆𝑒𝑑𝑖𝑚𝑒𝑛𝑡 𝐹𝑙𝑢𝑥 (
𝑔

𝑚2) = 𝑀𝑠𝑠 (
𝑔

𝑠𝑡𝑒𝑚
) ×

𝐻𝑡(𝑐𝑚)

10(𝑐𝑚)
 ×𝜌𝑉𝑒𝑔 (

𝑠𝑡𝑒𝑚

𝑚2 )    Eqn. 4 

2.3 Turbidity and Suspended Sediment Concentration: 

The Suspended Sediment Concentration (SSC) in tidally inundated coastal wetlands represents the 

maximum potential sediment retained within a given marsh (Nolte et al., 2013). SSC is an important 

variable in calculating sediment budgets and parameterizing sedimentation models but, does not 

quantify deposition or net accumulation rates (Nolte et al., 2013). Optical turbidity sensors are able to 

measure continuous turbidity in the water column and rely on calibration to calculate SSC.   
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We conducted three deployments using YSI optical backscatter turbidity sensors (YSI 600 – 6138 series) 

(Table 7). The first deployment in February 2015 was conducted alongside a USGS maintained DTS-12 

turbidity sensor. The DTS sensor had established the relationship between turbidity and the SSC at the 

USGS station at the channel entrance to the 2012 restoration site (Figure 23). This provided a means to 

develop a turbidity-SSC rating for the YSI based on correlation with the DTS-12. The second installment 

(March 1 through March 20) monitored variability in turbidity alongshore at the marsh edge (Site 4) on 

Transects 3 and 5 (Figure 23). The third installment (March 20 through April 18) monitored turbidity 

variability in the cross-shore direction from the marsh edge at Site 4, 3 and 1 on Transect 3 (Figure 23). 

All turbidity data was processed to remove data when the sensors were not submerged.   

We compared our turbidity sensor data to wind data from four local weather stations. We analyzed 

wind average from Padilla Bay (PB), West Point (WP), Smith Island (SI) and Hein Bank (HB) weather 

stations (Figure 23). 

2.4 Sediment Erosion Bars 

We installed Sediment Erosion Bars (SEBs) to measure sediment deposition or erosion at two sites, 

Transect 3 Sites 4 and 5 (T3.4 and T3.5).  SEBs were placed 15 m on either side of the marsh edge and 

included the installation of three vertical poles that form an equilateral triangle after Van Wijnen and 

Bakker (2001); where, a 1.5 m PVC is driven into the ground and leveled. The PVC poles serve as a base 

for a removable aluminum bar with equally spaced holes through which measurements are taken with a 

thin metal pin (Van Wijnen and Bakker, 2001) (Figure 24).  Erosion or accretion was measured using a 

small pin inserted through predrilled holes in the top bar until they reached the marsh surface (Nolte et 

al., 2013). We chose SEBs over other sedimentation/erosion measurement techniques because they are 

cost-effective approaches and unlikely to alter the hydrodynamics (Nolte et al., 2013). SEBs were 

installed and measured in January 2015 and measured again in February and March 2015.  SEBs can only 

detect changes greater the 0.5 cm in surface morphology.  

http://www.ysi.com/media/pdfs/E56-6136-Turbidity-Sensor.pdf
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3 Results 

3.1 Sediment Budget 

Our tile trap data showed that the greatest sediment deposistion occurs seaward of the Mid to High-

Marsh transition at Sites 2 and 3 for most cross-shore transects (Figure 25). Longshore analysis of our 

data indicated that the majority of depostion occurs in the middle of the study area and lower 

deposistion at the north and south ends (Figure  25b). Overall deposits were composed of 97.4% detrital 

fines (< 0.0625 mm), 1.15% sand and 1.16% organic material (TOC).  There did not appear to be a 

difference in  percent volume or composition of deposits between the sampling sites on either side of 

the marsh edge (Sites 4 and 5); however, deposition increased with distance inland of the marsh edge 

and towards the center of the study area (Figure 25-26). Maximum deposition occured on the Mid-High-

Marsh transistion about 300 m inland of the marsh edge (Figure 25). 

 We estimated a total of ~12500 metric Tonnes (mT) of sediment deposited during the winter across our 

study area based on Theissen Polygon interpolation and ~11200 mT using IDW interpolation (Table 8). 

Over the period December 8, 2014  through April 3, 2015 these amounts may represent ~111 mT/day 

and 100 mT/day, resepctively (Table 8). These rates represent between 2.2 and 2.5% if the total 

sediment delevered by the river over that time (Grossman and Curran (in review)) (Table 8). 

Overall, the average deposit contains about 1.15% of sand by weight. Percent of sand deposits increase 

towards the northern regions of the study area (Figure 27b) with no clear trends cross-shore (Figure 
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27a). Longshore percent sand variablity showed an indisinct and inconsitent pattern (Figure 27c); 

however, variablity in percent sand increased toward the northern most transects (Figure 27d).    

On average, these tile trap data have a slightly higher organic fraction (percent TOC) inland (Site 1 and 2) 

and south (Figure 27). TOC variablity is highest within the High-Marsh (Site 1) and has the least variablity 

within the bare tidal flats (Site 5) (Figure 28C) .  

3.1.1 Sediment Accumulation on Vegetation 

We estimate approximately 53 mT of inorganic material accumulated on plant stems accounting for 

0.5% of the total sediment budget for the northern marsh (Table 9). We are to unable to define a 

distinct spatial, vertical or temporal pattern in sediment accumulation on vegetation (Figure 29).  The 

mass of material after our LOI processing (Mss) does show a significant relationship between the total 

stem segment weight (Mt) and a weak relationship to stem surface area (SA) (Figure 29b and d).   

3.2 Turbidity and Suspended Sediment Concentration 

During the first deployment, January 25th to March 1, 2015, YSI 6000 turbidity sensors were deployed in 

the channel to the restoration area alongside the DTS turbidity sensor maintained by the USGS (Figure 

22). The DTS showed correlation to suspended sediment concentration (Grossman and Curran, in 

review), and showed a strong relationship to both YSI turbidity sensors (Turb 1 and Turb 3) used here 

(Figure 30). There was no significant storm event resulting in relatively low turbidity values in both the 

DTS and the Turb 3 sensors during this deployment (Figure 30a). Turbidity values from the YSI sensors 

were generally lower than the DTS which may be the result that the YSI sensors were installed at the 

edge of the channel, ~0.5 m above the DTS installed on the channel bed.  In Figure 31, turbidity values of 

the DTS and YSI sensors deployed in the restoration channel showed a relationship with the 

Stillaguamish River turbidity and gauge height. For example, February 2, 2014 there was an increase in 
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turbidity within the channel (DTS and YSI-Turb1 sensors) that appeared to have a positive and nearly 

immediate response to the Stillaguamish River turbidity (Figure 31c-d).  

The second deployment, March 1 to March 21, 2015, turbidity sensors were placed at the marsh edge 

on Transects 3 and 5 (Sites T3.4 and T5.4) to study alongshore dynamics. Turbidity in the estuary 

restoration channel showed a strong relationship to river turbidity and discharge (Figure 32). The 

relationship between river and the nearshore marsh sensors is more complex than the channel (Figure 

32).  Turbidity measurements were relatively uniform alongshore that suggests equal delivery to the 

marsh edge (Figure 32 e-f).  

The third deployment, March 21 to April 20, 2015, involved the placement of YSI sensors on Transect 3 

(sites T3.1, T3.3, T3.4) to assess cross-shore suspended sediment dynamics. The sensor placed within the 

center of the Mid-Marsh (T3.3) had consistently higher turbidity than the marsh edge (T3.4) and the 

High-Marsh (T3.1) (Figure 33). There were no significant rain events during this deployment.  

Turbidity showed a variable relationship with wind speed and turbidity within the restoration channel 

does not appear to be influenced by wind. For example, on 3/14 and 3/20 there was an increase in 

marsh turbidity and wind speed observed at several wind sensors (SI and WP) (Figure 31f and Figure 

34c); but, on 3/23 and 3/28 there was an increase in turbidity with no apparent increase in wind speed. 

These events occurred approximately 1 day after increases in turbidity within the river (Figure 32a-d). 

Within the tidal channel leading to the restoration area, on February 2, 2014 there was an increase in 

channel turbidity (DTS and YSI-Turb1 sensors) that appears to have a positive and nearly immediate 

response to the Stillaguamish River turbidity (Figure 31c-d); however, local wind stations do not show 

high wind speeds during this time (Figure 34b). 
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3.3 Sediment Erosion Bars: 

The SEB data showed some accretion and erosion between January 11 and March 21 of 2015 at T3.4 

(marsh) and no changes in elevation at the tidal flat site (T3.5) (Figure 35). At T3.4, we observed up to 2 

cm of accretion and 3 cm of erosion at bar lengths 140 cm and 230 cm, respectively (Figure 35).  SEB 

support bars were located at bar lengths 0, 115 and 230 cm, respectively. We observed during field visits 

micro topography at the marsh edge where plateau forms (bar length 115 to 200 and 250 to 300 cm) 

were often vegetated and lower areas (bar length 200 cm to 250 cm) were bare small channels (Figure 

35a and Figure 34).  This pattern was representative of the micro-topography within the first 50 m of the 

marsh edge.  T3.5 showed little micro- topography that was characteristic of the tidal flat.  

4 Discussion 

4.1 Sediment Budget 

The highest during our study deposition occurred at the Mid/High-Marsh boundary (Sites T1.3, T2.2, 

T3.2, T3.3, T4.2; Figure 25 -26). Here the vegetation changes from an emergent marshland dominated by 

bulrush to a rarely inundated, slightly elevated, grass and sedge dominated wetland (Chapter 1).  We 

interoperate deposition at the Mid/High-Marsh transition, along with field observations of ripple marks 

oriented parallel to the shoreline/marsh edge, as sediment being transported from the nearshore and 

deposited, in part, as a result of bed / saltation load (Figure 37). Small developing tidal channels at the 

marsh-edge likely increase bed roughness and contribute to wave attenuation. Ripple marks and 

developing channels are indicators of relatively higher hydraulic energy than the tidal marshlands that 

depend on accumulation from sediment falling out of suspension.  

Sand content patterns reflect variable hydraulic energy with the assumption that higher energy would 

yield higher sand content by winnowing fines proportion. The higher sand content within the northern 

transects (T4 and T5) indicate: 1) that the Old Stilly Slough, northern edge of the study area, serves as a 
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source of sandy material for the marsh and that, 2) that hydraulic energy is highest at the northern 

reaches of our study area. This is consistent with the high exposure of northern reaches to the greatest 

fetch of predominant winter waves. We hypothosize that regions of strong wave attenuation due to 

vegetation would exhibit a decrease in sand content landward.  Our study does not show this pattern 

which may indcate that there is sufficient energy to transport sand uniformly through the relatively 

narrow and uniformly sloping marsh.   

Total organic carbon (TOC) can be used to quantify biomatter is within a sediment sample and can 

further indicate if deposition is influenced by  accretion and decomposition of plant material or by 

detrital processes (Mitsch and Gosselink, 2015). Total organic content (TOC) was relatively low (< 5% ), 

consistent with other studies (Grossman et al., 2011) . TOC patterns indicate higher content to the south 

and inland (Figure 28). High TOC may indicate: 1) a relativly low energy environment that allows light 

organic material to be accreted; 2) a relatively high, intial and, local, biomass. Inland and southern 

reaches have a higher wetland biomass and may be exhibit more accretion of plant material (Chapter 1).  

4.1.1 Sediment Accumulation on Vegetation 

We predict that the accumulated sediment on vegetation may contribute up to 0.5 % and 53 mT of the 

overall sediment budget. Suspended sediment delivered by tides and waves adhered to bulrush stems 

seemingly would vary with surface area; however, our measurements suggest is a strong relationship 

between inorganic material (Mss) and stem segment biomass (Mt) and a lesser relationship with surface 

area (Figure 29b and d). We speculate that the relationship between Mss and SA is biased by the LOI 

approach which produces ash. LOI is a method used most often to calculate the fraction of carbon 

within a sediment sample and not the fraction of sediment on a plant sample as we have performed 

here. One possibility is that the amount of ash from the stem is not insignificant as often assumed in 

sediment studies and therefore biasing our results.  
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Vertical and temporal analyses are equally unclear (Figure 29c and 29e). We speculate that Mss values 

should increase with number of inundations with more accumulation at the base of plants and later in 

the season.  However, it is possible that increased inundation speeds the degradation and rotting 

processes and therefore less likely to retain sediment. Future studies should reconsider using LOI 

analysis to determine sediment accumulation on emergent plant species. Future studies may also 

consider a larger sample set, earlier season, and more frequent sampling to determine if there is a 

spatial, vertical or temporal pattern.  

4.2 Sediment Dynamics from Turbidity Sensors 

Our turbidity sensors indicated that the suspended sediment concentration (SSC) within estuary 

restoration channel closely correlated with turbidity/discharge of the Stillaguamish River in magnitude 

and timing. This relationship indicated that the Stillaguamish River was the primary source of sediment 

for the restoration area.  

Turbidity across the nearshore and northern marsh sites showed variations in response to both the river 

input of sediment and wind events that generate waves. The intermittent 1-2 day delay between 

northern marsh and river turbidity peaks suggests flux from the river likely takes a circuitous route to 

reach the marshes, 2-4 cycles of flood and ebb tides given the semi-diurnal tidal regime.  Elevated 

turbidity in the northern nearshore and marshes associated with high wind events suggested waves 

suspend and transport sediment from the tidal flats (Figure 33-35). A standard sediment delivery event 

required inundation from tides and wind-driven waves to remobilize sediment. If tides remained high 

during a sediment moving event within the Stillaguamish River then the northern marsh may experience 

a direct, albeit delayed by 1-2 days, relationship with the assumed primary sediment source for the 

delta. The relatively uniform turbidity alongshore during high river delivery and wave events may be a 

result of the elevated sediment flux associated with the 2014 Oso landslide. 



 

62 
 

Cross-shore turbidity on Transect 3 showed the highest turbidity concentrations within the middle of the 

Mid-Marsh and coinciding with the highest sediment accumulation from tile trap data (Figures 25 and 

34). This pattern suggests the highest potential sedimentation was ~300 m landward of the marsh edge 

where the reduction of tidal current velocities would facilitate sedimentation.  During a storm event 

material was likely excavated from the tidal flat and marsh edge and then transported and deposited 

within the central Mid-Marsh.  

4.3 Marsh Migration and Bed Roughness  

Although the SEB data did not indicate significant accretion, erosion, or marsh migration, we 

acknowledge that the sampling period was relatively short. The power of the SEB measurements are to 

be realized through continued monitoring. Even so, variations of up to 3 cm over the few months are 

high; though it remains uncertain if the highest erosion was effected by support bars.  Accretion 

patterns, albeit less than 1 cm in places, may be the result of the high input of sediment associated with 

the Oso slide. The SEBs provide salient information characterizing the greater surface roughness within 

the wetland compared to the tidal flat. This surface roughness may indicate the formation of tidal 

channels and rivulets and thus an overall erosion pattern at the marsh edge. Moreover, surface 

roughness produces obstacles and friction that decrease hydraulic energy and may contribute to the 

deposition directly landward.  

5 Conclusions 

This study investigated and compared sediment dynamics to ecologic, climatic and geomorphic 

influences within a vulnerable temperate estuary within the Pacific Northwest (Figure 38). Here, we 

estimate the total sediment deposition during the 2014-15 winter to be between ~6400 and ~7100 m3 

with highest deposition occurring within the High-Mid-Marsh that was dominated by chest to head 

height bulrush (BOFL).  The northern marsh is estimated to retain up to 2.5% of the average daily 
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sediment delivered by the Stillaguamish River. We estimated the influence of sediment that has adhered 

to vegetation to contribute up to 0.5% to the sediment budget. Sand content increased toward the 

north and TOC increased towards the south. These patterns may indicate increasing hydraulic energy 

associated with wind generated wave activity towards the north. Turbidity data within the restoration 

tidal channel showed a strong and closely timed relationship with river sediment and responses. 

Turbidity within the northern marsh indicated that SSC is uniform along the marsh edge and increased 

landward where deposition is highest. The cross-shore turbidity patterns and presence of ripples in 

muddy sands within the high marsh are consistent with transport landward by bed-load and suspended 

load associated with wind-driven waves. Moreover, marsh turbidity showed a delayed relationship to 

the river and pronounced responses to high wind and assumed wave events. Our comparative analysis 

with wind data indicated that wind-driven waves may be the dominant influence remobilizing sediment 

from the contiguous tidal flat enabling deposition within the wetland. The amount of sediment 

estimated to accumulate during the study, while only a fraction of the river load, is likely biased high 

over normal years in response to the increase in delivery from the Oso Landslide.  
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7 Tables 
 

Table 7. Table detailing the inundation frequency of turbidity sensors during deployments. Inundation frequency was calculated 
as the ratio of the number of wet values over the total sample number. 

Site - Sensor 
Inundation 

Frequency (%) 
Begin date End Date Sample Number Elevation (m) 

Highest tide 
(m) 

PSB1 – Turb1 99.1 1/29/2015 2/6/2015 2220 0.10 3.56 
PSB1 – Turb3 100 2/14/2015 3/1/2015 3597 0.10 3.24 
T5.4 – Turb3 32.6 3/1/2015 3/20/2015 5363 2.08 3.27 

T3.4 – Turb1 24.9 3/1/2015 4/18/2015 14245 1.99 3.41 
T3.3 – Turb3 22.0 3/20/2015 4/18/2015 4318 2.74 3.41 
T3.1 – Turb2 0.44 3/20/2015 4/18/2015 8135 3.35 3.41 

 

 

Table 8.  Summary of sediment budget for the study area. Volume deposits calculated using Thiessen Polygons and Inverse 
Distance Weighted (IDW) technique. Sediment density is assumed to be 1.75 g/cm 3.  Daily Rate assume an average study time 
of 112 days. Grossman and Curran (in review) investigated the sediment yield for the Stillaguamish River estimating 2.6 Million 
Metric tonnes of material being delivered to the delta between 11/15/2013 and 6/15/15 (577 days).  

 Thiessen Polygons IDW Grossman and Curran (in review) 

Total deposit volume(m3) 7116.86 6412.60  

Total deposit mass (mT) 12454.51 11222.04 2.6 x 106 

    

Volumetric Rate (m3 /day) 63.54 57.27  

Deposited Mass Rate (mT/day) 111.20 100.20 4506.06 

Percent of River Sediment yield (%) 2.4 2.5 100 

 

Table 9. Sediment budget and flux results for study area. Average mass of sediment (Mss) derived from LOI analysis of all 
samples. Sediment flux (g/m2) calculated from detrital accretion on vegetation using Equation 1. Bulrush density and height 
data were provided by Fuller (2015) for their defined Zone 4 and Zone 5.  Total sediment flux is calculated by multiplying 
sediment flux over the study area (530458 m2). Here we assume a bulk density of 1.75g/cm3 

Habitat Zone Zone 4 Zone 5 Average 

Bulrush Density (stems/m2) (Fuller, 2015) 114 100 107 
Vegetation Height (cm) (Fuller, 2015) 83 78 81 

    
Average Mss (g/10 cm stem segment)   0.116 

Sediment Flux (g /m2) (Eq. 1)   100.756 
Total Sediment Flux (metric ton)   53.446 

Estimated Volume Flux (m3)   30.541 
    

Volumetric percent sediment budget   0.2-0.3% 
Weight percent of sediment budget    0.5-0.6% 
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8 Figures 

 

Figure 22. Map showing study area of Port Susan Bay. A) Historical wetland extent (green, 1964; yellow,2011) reconstructed 
from aerial photography and indicating up to 1km of marsh (shoreline) retreat since 1964 (Grossman and Curran, in review). 
Representative cross-shore transect (blue) of predominant wave approach). Yellow area is study area and northern 2014 marsh 
extent; Red lines are sediment sampling transects; White Stars are turbidity sensors with the YSI sensors within the study area, 
DTS at the channel into restoration site (pink) and the Stillaguamish River Sensor maintained by the USGS. B) Reference map 
detailing the extent and topography and the Stillaguamish River catchment. 
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Figure 23. Locations for weather stations with continuous wind speed data near our study area; including Hien Bank (HB), Smith 
Island (SI), West Point (WP) and Padilla Bay (PB). Base map provided by google maps 2016. 

 

Figure 24. Sediment Erosion Bar installation at tidal flat site (T3.5). Measurements are taken from the bar to the ground surface.  
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Figure 25.Map detailing tile trap and sampling sites along with Thiessen Polygon and Inverse Distance Weighted (IDW) analysis.  
A) Map of Thiessen Polygons within the study B) Map of IDW interpolated sediment thickness derived from tile trap data.  
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Figure 26. A) Line plot showing the average measured depth (cm) of sediment accumulated on tile traps cross shore (East to 
West).  B) Line plot showing sediment thickness (cm) on tile traps alongshore, South to North. This plot shows that the majority 
deposition occurred at Sites 2 and 3 within the mid transects (Transect 2-4). C) Boxplots of measured sediment thickness by 
station. D) Boxplots of measured sediment thickness by transect.  

 

Figure 27. A) Line plot detailing the spatial patterns of sand deposits by weight percent across-shore. B) Line plot of sand 
deposits along-shore (south to north), showing a general increase toward the north. C-D) Box plots showing variation and 
average percent sand by station and transect respectively.  
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Figure 28. A) Line plot showing the cross-shore variation in weight percent of Total Organic Carbon (TOC), East to West. B) Line 
plot of weight percent of TOC by alongshore, North to South. C – D) Boxplots showing variation and average percent TOC by 
station and transect respectively. 
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Figure 29. A)  Boxplots of mass after skinning and burning through Loss on Ignition (Mss) by sediment sampling site. B) Scatter 
plot comparing Mss values to the total mass of stem segment (10 cm long segment) (Mt). Mss shows a significant linear 
relationship with Mt (p-value = 2.49x10-10; Kendalls Tau =0.38).   C) Boxplot comparing Mss values to sampling period, December 
2014 and February 2015. D) Scatter plot of estimated stem surface area compared to Mss.  Mss shows a significant linear 
relationship with surface area (p-value = 2.72x10-3; Kendalls Tau =0.17). E) Boxplot comparing Mss values the height of the 
sample in the vegetation canopy; Low (marsh floor to 10 cm), Mid (20 cm to 30 cm), High (40 cm to 50 cm). Vertical assessment 
use samples from February sampling period. 
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Figure 30. Scatter plots comparing turbidity measured by FTS DTS-12 sensor (DTS) and YSI 6136 turbidity sensors; a) Turb 3 and 
b) Turb1, within the restoration channel (PSB1).  
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Figure 31. Time-series plots of turbidity and discharge of the Stillaguamish River(A,C,E,G)  and within the restoration area tidal 
channel (B,D,F,H). Blue lines represent Stillaguamish River discharge (cfs); black represents turbidity (NTU) within the river; red 
lines represent turbidity (NTU) within the restoration channel. Green and purple lines represent YSI turbidity sensors (NTU) 
deployed along the marsh edge at stations T3.4 and T5.4, respectively. Continuous plots range from 1/25/2013 to 3/2/2014.   
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Figure 32. Time-series plots of turbidity and discharge of the Stillaguamish River(A,C,E,G)  and along-shore turbidity and water 
level (B,D,F,H) at stations T3.4, T5.4. Blue lines represent Stillaguamish River discharge (cfs); black represents turbidity (NTU) 
within the river; red lines represent turbidity (NTU) within the restoration channel. Green and purple lines represent YSI turbidity 
sensors (NTU) deployed along the marsh edge at stations T3.4 and T5.4, respectively. Continuous plots range from 3/1 to 
3/21/2014.   
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Figure 33. Time-series plots of turbidity and discharge (A,C,E,G) of the Stillaguamish River and cross-shore turbidity and water 
level (B,D,F,H) along Transect 3 (stations T3.1, T3.3, T3.4). Blue lines represent Stillaguamish River discharge (cfs); black 
represents turbidity (NTU) within the river; red lines represent turbidity (NTU) within the restoration channel. Dark blue, gold 
and green lines represent YSI turbidity sensors deployed at stations T3.1, T3.3 and, T3.4, respectively. Continuous plots range 
from 3/20 to 4/20/2014. There were no notable storm events during this timeframe.  
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Figure 34. Line plots detailing wind speed data from local weather stations for January through April 2014. Weather station 
location is detailed within Figure 23. Grey lines show the raw wind speed data (measurements taken every 10 min to 1 hour), 
Colored lines show the running 6 hr average wind speed data at local weather stations: black lines represent West Point (WP), 
Blue lines represent Hien Bank (HB), green lines represent Smith Island (SI), red lines represent Padilla Bay (PB) weather station.  
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Figure 35. Results from Sediment Erosion Bar (SEB) analysis. A) Ground surface from site T3.4, approximately 15 m landward of 
the marsh edge. Data is displayed as distance below the bar as a function of bar length. Black, red and green lines represent 
1/11, 2,16, and 3/20/2016 samplings, respectively. SEB support bars were located at bar lengths 0, 115 and 230 cm, 
respectively. 

 

 

Figure 36. Sediment Erosion Bar installation showing site differences in vegetation and bed roughness. A) Tidal flat SEB site 
(T3.5). B) Marsh SEB site (T3.4).  
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Figure 37. Images detailing field notes on sediment dynamics and bed roughness. A) Site T4.2 with notable ripple marks (1 cm in 
height, 6” crest to crest). B) Site T3.4 showing marsh edge microtopography including developing pedestals and rivulets.  

 

Figure 38. Overall summary and conclusions for sediment budget and dynamics analyses.  
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Overall Conclusions: 

The purpose of these studies is to: 1) estimate vegetation canopy structures (elasticity, biomass, height, 

stem density, stem diameter) using image analysis and in-situ measurements, 2) accurately map 

vegetation assemblages using remote sensing and field surveys, 3) extrapolate vegetation characteristics 

across the delta, 4) estimate an overall sediment budget for the delta’s most vulnerable marsh, 5) 

evaluate ecologic, hydrologic and climatic influences on sediment dynamics, within a temperate estuary 

within the Pacific Northwest, Port Susan Bay.  

We found that our image analysis of strips of vegetation (Side-On Photos) was useful for estimating 

biomass, and vegetation height; however, our methods did not yield significant relationships between 

images and stem density due the potential interference of bladed leaves. Temporal analysis indicate 

that dominant Mid-Marsh bulrush maintain biomass through the winter months and beginning to 

degrade in February; though, leaves and associated surface area tend to decrease consistently with 

time.  

We measured elasticity on two dominant bulrush species within the Mid-Marsh, Bulboschoenus 

maritimus (BOMA) and Bulboschoenus fluviatilis (BOFL), and found that resistance was a function of 

canopy height. Elastic resistance did not appear to vary with time because measured bulrush tended to 

become brittle and break as a main mechanism for decay.  

Our remote sensing efforts, Maximum Likelihood Classification (MTC) and Decision Tree Classification 

(DTC) reasonably mapped vegetation assemblages and land cover with an overall accuracy of 77%.  

Biomass was extrapolated using the relationship of field samples biomass data to the Red-Edge NDI and 

LiDAR Bare-Earth elevation and validated using percent cover data from Fuller (2015). We estimate 

overall biomass to be 4640 mT undifferentiated between marsh types. Our biomass analysis indicates 

relatively high biomass within the first 50 m, which likely contributes to high wave attenuation rates.  
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Our sediment budget analysis determined that the highest rate of deposition occurred within the Mid-

Marsh near the High-Marsh boundary, where elevation and plant biomass increase. From field 

observations and Sediment Erosion Bar (SEB) data, we hypothesize that the marsh edge was 

experiencing enough hydraulic energy to cause erosion and bed load transport forming ripple marks 

within Mid-Marsh. Overall sediment deposition is likely abnormally high from increased sediment yield 

of the Stillaguamish River from the recent Oso (SR 530) Landslide.  

Sediment dynamics showed a strong turbidity relationship between the Stillaguamish River and the tidal 

channel into the restoration site. The relationship between the northern marsh and the river turbidity 

shows a weak and delayed relationship. There does appear to be a relationship between marsh turbidity 

and regional wind data. These patterns lead to the conclusion that wind events are producing wave 

energy high enough to mobilize tidal flat sediment and transporting into the marsh. Alongshore turbidity 

data indicate that the suspended sediment is entering the marsh uniformly across the northern marsh. 

Cross-shore patterns show consistently higher turbidity readings in the central Mid-Marsh than the 

marsh edge coinciding with the study area’s highest deposition rates. We speculate that during the 

study period the marsh edge was generally being eroded and the material being transported into the 

Mid-Marsh.  
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Appendix 1: RTKGPS Ground-Truth Analysis 

This appendix describes our elevation ground-truth analysis for Port Susan Bay. LiDAR, a powerful 

remote sensing tool, is often used to measure elevation and is insensitive to vegetated land-cover. 

However, the dense vegetation of marshlands is often impenetrable to LiDAR leading to an over 

prediction in marshland elevation.  Here we assess the accuracy of the 2014 Bare Earth LiDAR DEM (BE 

DEM) using RTKGPS data collected by Fuller (in review) in 2015.  

To assess the accuracy of the LiDAR BE DEM, we populated Fuller’s (in review) 2015 RTKGPS data with z-

values from the 2014 BE DEM and land-cover assemblages’ data from our decision tree classification 

(DTC).  We used these data to produce elevation statistics, BE LiDAR and RTKGPS z values, with respect 

to vegetation assemblages (Table 10 -11). We subtracted RTKGPS z-values from BE LiDAR z-values to 

assess relative difference (Table 12).   

We found that the LiDAR BE DEM over predicts elevation values by an average of 0.40 m for all marsh 

species (Figures 39 – 43, Table 10). BOFL dominated marsh was the least accurate (0.49 m), followed by 

BOMA (0.43 m), SCAM (0.38), and High-Marsh (0.35 m). All marsh species showed an over prediction of 

elevation by the LiDAR BE DEM (Figures 39 – 43, Table 12).  

Bare sediment land-cover should have very little difference between the two z-values because of 

minimal interference from vegetation. We estimate the BE LiDAR dataset to be off by 0.15 m +/- 0.06 m 

on average (Table 12). This difference is within the precision of the LiDAR instruments; however, the fact 

that there is an average over prediction may indicate an increase in elevation from 2014 to 2015.  
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Table 10. Elevation (2014 LiDAR Bare Earth DEM) statistics in meters with respect to vegetation assemblages.  All values are in 
NAVD88. 
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Table 11. Fuller’s (2015) RTKGPS statistics with respect to vegetation assemblages. All Elevation values are in meters and 
NAVD88. 

  

 

Table 12. Statistics of the difference between the 2015 Fuller’s (in review) data with the 2014 LiDAR Bare Earth DEM (LiDAR – 
RTKGPS) with respect to vegetation assemblage. Positive values represent an over prediction of elevation by the LiDAR dataset. 
All values are in meters and NAVD88. 

 

. 

Cover Type Min Max Mean STD n

All Marsh Types 0.258 3.945 1.972 0.419 409

High Marsh 0.258 3.945 2.521 0.360 77

Mid Marsh 1.369 2.738 1.963 0.283 182

BOFL 1.734 2.738 2.106 0.275 62

BOMA/SCAM 1.369 2.467 1.887 0.256 122

Low Marsh 1.118 2.234 1.701 0.295 150

Bare -undifferentiated 1.077 1.838 1.460 0.195 89

RTKGPS Elevation Analysis 

Cover Type Min Max Mean STD n

All Marsh Types -0.925 3.017 0.404 0.271 409

High Marsh -0.925 3.017 0.354 0.363 77

Mid Marsh -0.055 1.061 0.448 0.239 184

BOFL 0.087 0.789 0.492 0.174 62

BOMA/SCAM -0.055 1.061 0.426 0.263 122

Low Marsh 0.005 0.949 0.376 0.242 149

Bare -undifferentiated -0.011 0.276 0.150 0.062 89

Differnce Analysis 
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Figure 39. Map detailing the difference between the RTKGPS and Bare Earth LiDAR for full study area. All elevation values are in 
meters and NAVD88. 
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Figure 40. Map detailing the difference between the RTKGPS and Bare Earth LiDAR for North Zone of the study area. All 
elevation values are in meters and NAVD88.   
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Figure 41. Map detailing the difference between the RTKGPS and Bare Earth LiDAR for Restoration site and Mid Zone of the 
study area. All elevation values are in meters and NAVD88. 
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Figure 42. Map detailing the difference between the RTKGPS and Bare Earth LiDAR for South  Zone of the study area. All 
elevation values are in meters and NAVD88. 
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Figure 43. Exploratory plots of the RTKGPS and difference (LiDAR BE minus RTKGPS z values) data compared to LiDAR BE and 
Biomass. Box plots of difference values and Standard deviation of LiDAR BE values within the 5 m radius polygons around 
RTKGPS points. 
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Appendix 2: Cover Classes and Spectral Signatures 

This appendix details the spectral signatures for all cover types (Figures 44 – 49). Spectral signatures 

were assessed in two ways: 1) remotely using hyperspectral data taken on September 10th 2014; 2) in-

situ measurements using an ASD FieldSpec® HandHeld 2.  

Hyperspectral imagery was taken by the Joint Airborne LiDAR Bathymetry Technical Center of Expertise 

(JALBTCX) within the US Army Corps of Engineers and funded by the USGS’s Coastal Habitat in Puget 

Sound (CHIPS) project. Hyperspectral imagery data were taken with a Compact Airborne Spectrographic 

Imager (CASI) on September 10th at a 2000 m elevation at during low tide and (approximately 1500 

hours). CASI imagery contains 48 spectral bands that are evenly spaced (14.0625nm bandwidths) to 

provide continuous spectral coverage from 375nm to 1050nm at 1 m pixel resolution. Spectral 

signatures were derived by using a 10 m diameter buffer around GPS land cover ground truth points.  

In-situ spectral signatures were taken using the ASD FieldSpec® Handheld 2 on September 11th and 12th 

2014 within Port Susan Bay. These data are shared here for comparison only; these field spectral 

signatures were not applied to the remote sensing classification scheme of the CASI dataset. At each 

ground truth site we took spectral signatures within a roughly homogenous patch of vegetation or 

sediment at least 10 m in diameter. We took 9 spectral signatures within a ¼ m2 quadrat: 3 spectral 

signatures were taken 6in above land cover at nadir; 3 were taken 6 in above land-cover off nadir (~45 

degrees); 3 signatures were taken at chest height (1.5 m) (Table 13). Note: additional in-situ spectral 

data were taken at Padilla bay and Skagit Bay estuaries. In general, these data are not shown here 

except for the native eelgrass data taken from Padilla Bay while floating at the water surface. We made 

an exception for these data because native eelgrass data were not taken in Port Susan Bay.   

http://www.asdi.com/products/fieldspec-spectroradiometers/handheld-2-portable-spectroradiometer
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Table 13. Details of the number of spectral signatures and ground truth sites for both the ASD and CASI datasets. CASI spectral 
signatures are the average of all the pixels within a 5 m radius of a GPS ground truth point. 

Land-cover ASD  
Spectral Signature Count 

ASD  
Site Count 

CASI  
Site Count 

Beachwood - - 5 

Blackberries - - 2 

BOFL - - 14 

BOMA 27 3 27 

Carrex 18 2 5 

Cattails 18 2 2 

Native Eelgrass 18 2 11 

Grass 9 1 10 

Japanese Eelgrass 18 2 7 

Juncus 18 2 2 

Bare (Mud) 14 2 28 

POPA 9 1 1 

Sand 27 3 6 

SCAM 54 6 30 

SCTA 9 1 4 

Trees - - 3 
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Figure 44. Spectral signatures for High-Marsh vegetation species including Cattails (Typha latifolia and angustifolia), POPA 
(Potentilla Pacifica) and SCTA (Schoenoplectis tabernaemontani). Solid red line is the mean spectral signature; dashed redlines 
are one standard deviation; solid light gray lines are individual spectral signatures. Note: CASI spectral signatures are the 
average for a defined region of interest (5 m radius around a GPS point). See Table 13 for spectral signature count and site 
count.   
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Figure 45. Spectral signatures for High-Marsh vegetation species including undifferentiated Grasses, Carex (Carex lyngbyei)  and 
Juncus (Juncus Balticus)). Solid red line is the mean spectral signature; dashed redlines are one standard deviation; solid light 
gray lines are individual spectral signatures. Note: CASI spectral signatures are the average for a defined region of interest. 
Note: the change in scale for ASD signatures for Grasses land-cover. 
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Figure 46. Spectral signatures for other High-Marsh land-cover classes defined during the aerial imagery classification: 
Himalayan blackberries (Rubis discolor); Beachwood, and undifferentiated trees. Solid red line is the mean spectral signature; 
dashed redlines are one standard deviation; solid light gray lines are individual spectral signatures. Note: CASI spectral 
signatures are the average for a defined region of interest. The ground truth areas for these cover types were digitized from 
aerial imagery because these were not priority cover types.  
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Figure 47. Spectral signatures for emergent Mid-Marsh vegetation species: SCAM (Schoenoplectis americanus); BOMA 
(Bolboschienus maitimus); BOFL (Bolboschoenus fluviatilis). Solid red line is the mean spectral signature; dashed redlines are one 
standard deviation; solid light gray lines are individual spectral signatures. Note: CASI spectral signatures are the average for a 
defined region of interest. There may be some misclassified BOFL spectral signatures as BOMA. At the beginning of this study, 
BOFL and BOMA were considered the same species. 
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Figure 48. Spectral signatures for submergent vegetation species: Japanese Eelgrass (Zostera Japonica) and Native Eelgrass 
(Zostera marina) floating on water surface. Solid red line is the mean spectral signature; dashed redlines are one standard 
deviation; solid light gray lines are individual spectral signatures. Note: CASI spectral signatures are the average for a defined 
region of interest. 

 

Figure 49. Spectral signatures for bare sediment: undefined bare defaults to Bare (Mud) and Sand. Solid red line is the mean 
spectral signature; dashed redlines are one standard deviation; solid light gray lines are individual spectral signatures. Note: 
CASI spectral signatures are the average for a defined region of interest. 
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Appendix 3: Decision Tree Classification (DTC) 

This appendix details the criteria used for the decision tree classification. This appendix first outlines the 

step-by-step thought process we used to develop these decision trees. Second, we detail the statistics 

and regions used to complete our decision tree classification. Our decision trees were created using the 

ENVI remote sensing software program.  

We decided on the appropriate land-cover classes; these were slightly different than the land-cover 

classes used in the Maximum-Likelihood Classification (MLC). The MLC utilized the dominant plant 

species, assemblage or land-cover. During the DTC, we grouped the marsh assemblages into four 

categories: High, Mid-BOFL, Mid-BOMA and Low-Marsh. The MLC began with 6 cover types for High-

Marsh (SCTA, POPA, Carex, Juncus, Grasses, and Cattails) and 3 cover types for each of the Mid (BOMA 

and BOFL) and Low-Marsh (SCAM) assemblages based on plant density (low density; moderate density; 

high density). The MLC was not able to capture plant densities accurately; therefore, these sub-classes 

were combined.  

Next, we generated the statistics for the NDVI and elevation data for our ground truth areas (Tables 15 – 

16). These data come from the average value of a 5 m radius buffer around GPS ground truth points. 

Elevation data is from the LiDAR bare earth dataset, which represents elevation and an unknown portion 

of the marsh canopy (~0.6 m from marsh surface) (Appendix 1). 

 Through experimental analysis, we discovered that the elevation ranges for assemblages differ spatially; 

this was confirmed by Fuller (2015, Written comm.). We divided the delta in to three zones: North; 

South; and Restoration Zone (Figure 50). We defined these zones by areas north of the main stem of the 

Stillaguamish River (North zone), south of the Stillaguamish River (South Zone) and, within the 

restoration area. The south zone typically has the highest elevation for assemblages, suggestion higher 

sediment delivery and retention. The restoration site has the lowest elevation for Mid-Marsh 
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assemblages because of subsidence before the farmland was reclaimed.  We assume that NDVI values 

do not differ spatially.  

We separated cover type statistics by zone and addressed the zones with separate decision trees. For 

every marsh cover type, we created three decision trees, one for each zone (Figures 51-53). Note: the 

restoration site only contained Mid-Marsh species (BOFL and BOMA). 

The decision trees are a series of conditional statements that we applied to the MLC classification to 

minimize misclassified pixels within the mid and Low-Marsh. We focused primarily on the Mid and Low-

Marsh because they did not separate well from each other during the MLC and their importance to 

wave attenuation. Each decision tree is formatted to separate a cover type from its most likely 

neighbors. The general format is for a pixel to be reclassified it must fail the minimum NDVI to be 

considered plants or fall outside one standard deviation in both elevation and NDVI. However, we 

occasionally deviated from this format depending on the how similar the cover class was to its 

neighbors. Below is the detailed thought process for each decision tree.   

The restoration site is rather unique in that region dominated by BOMA and/or BOFL. Using the training 

data, we estimated the cutoff as 2.3 m elevation. Biophysically speaking, BOFL and BOMA and non-

distinct; we separate the two according to height in this study. However, if the BOFL is stressed then it is 

likely to be shorter and indistinguishable from BOMA without lab testing (Fuller, 2015, written comm.). 

This 2.3 m cutoff may seem arbitrary but is more to distinguish plant height rather than species. 
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BOMA North-Zone 

1) Is the pixel classified as BOMA in the MLC and within the North Zone? 
a. Yes – Continue to Step 2 
b. No - Not considered in the decision tree. 

2) Is the NDVI value high enough to be plant material (NDVI > 0.06)? 
a. Yes – Continue to step 3 
b. No – Reclassify pixel as Bare 

3) Is the elevation greater than one sigma below the mean elevation (Elev > 2.03)? 
a. Yes – continue to step 4 
b. No – continue to step  

4) Is the elevation greater than one sigma above the mean elevation (Elev > 2.77)? 
a. Yes – continue to step 5 
b. No – within the average elevation range for BOMA. Remains classified as BOMA.  

5) Is the NDVI greater than the mean + 0.5 sigma NDVI value for BOMA (NDVI >0.25)?  
a. Yes – pixel failed two assumptions –reclassify to BOFL 
b. No – pixel did not fail two assumptions – retain as BOMA 

i. Note: BOFL and BOMA had overlapping NDVI values.  We decide that ½ sigma 
above the mean NDVI values for BOMA would be a more appropriate separate 
than a whole standard deviation.  

6) Is the elevation greater than 2 sigma below the mean elevation (Elev > 1.68)? 
a. Yes – continue to step 7 
b. No – continue to step 8 

7) Is the NDVI greater the mean NDVI value for BOMA (NDVI >0.2)?  
a. Yes – Retain pixel as BOMA 
b. No – pixel failled two assumptions – reclassify as SCAM 

i. Note: We decided that the mean NDVI value would be more appropriate value 
through experimentation. When we used one sigma below the NDVI mean 
value, there was large portions of the SCAM-dominated Low-Marsh that 
remained misclassified.  

8) Is the pixel below 1.2 m elevation?  
a. Yes – reclassify as bare 
b. No – reclassify as SCAM 

i. Note: this conditional statement is a reclassify outliers. These pixels have 
already failed 2 sigma below the BOMA mean elevation and therefore needs to 
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be reclassified. SCAM minimum elevation is 1.2 m. Any pixel below that 
threshold is assumed to be bare sediment.  

BOMA South-Zone 

1) Is the pixel classified as BOMA in the MLC and within the South-Zone?  
a. Yes – continue to step 2 
b. No – not considered in this decision tree 

 
2) Is the NDVI value high enough to be plant material (NDVI > 0.06)? 

a. Yes – Continue to step 3 
b. No – Reclassify pixel as Bare 

 
3) Is the Elevation value less than 2.6 m?  

a. Yes – Reclassify as SCAM  
b. No- continue to step 4 

i. The southern zone is particularly dominated by SCAM and has very little BOMA 
or BOFL. Therefore, we decided that we would use an elevation cutoff above 
the mean value for BOMA. We chose 2.6 m elevation as the cut-off because it 
was 2 sigma greater than the mean elevation for SCAM.  

4) Is the NDVI value greater than 0.2? 
a. Yes – retain as BOMA 
b. No – reclassify as SCAM  

We chose 0.2 as the NDVI cut-off because the south zone NDVI statistics only take into account 27 
ground truth points containing 3 BOMA and 1 BOFL site. We assume that NDVI values do not vary 
spatially.  We used all training ground truth points for the NDVI statics and decision tree cut-offs.  

BOMA – Restoration Site 

1) Is the pixel classified as BOMA in the MLC and within the restoration site?  
a. Yes – continue to step 2 
b. No – not considered in this classification 

2) Is the NDVI value high enough to be plant material (NDVI > 0.06)? 
a. Yes – Continue to step 3 
b. No – Reclassify pixel as Bare 

3) Is the elevation above 2.3 m elevation?  
a. Yes – reclassify as BOFL 
b. No – retain as BOMA 
c. The restoration site is rather unique in that region dominated by BOMA and/or BOFL. 

Using the training data, we estimated the cutoff as 2.3 m elevation. Biophysically 
speaking, BOFL and BOMA and non-distinct; we separate the two according to height in 
this study. However, if the BOFL is stressed then it is likely to be shorter and 
indistinguishable from BOMA without lab testing (Fuller, 2015, written comm.). This 2.3 
m cutoff may seem arbitrary but is to distinguish plant height rather than species. 

SCAM – North Zone 

1) Is the pixel classified as SCAM in the MLC and within the North Zone? 
a. Yes – Continue to Step 2 
b. No - Not considered in the decision tree. 
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2) Is the NDVI value high enough to be plant material (NDVI > 0.06)? 
a. Yes – Continue to step 3 
b. No – Reclassify pixel as Bare 

3) Is the DEM value below 1.2? 
a. Yes –Continue to step 4 
b. No – reclassifiy as Bare 

i. Recall that 1.2 m elevation is the lowest occurrence of SCAM  
4) Is the DEM value above 2.75 m? 

a. Yes – reclassifiy as BOFL 
b. No – continue to step 5. 

i. Max elevation for SCAM is 2.5 m. 2.75 m is one sigma above the mean elevation 
values for BOMA 

5) Is the NDVI value less than 0.22?  
a. Yes -  continue to step 7 
b. No – continue to step 6 

6) This is to generally separate BOMA from SCAM based on NDVI values. If the NDVI values are 
lower, more similar than SCAM, then to be reclassified the pixel would need to be outside the 
DEM range of SCAM (2.5 m – step7). If the pixel has a higher NDVI value, more similar to 
BOMA, then it only needs to be outside one sigma of SCAM’s elevation range (elev >1.9; Step 
6). 

7) Is the elevation value greator than 1.9 m? 
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a. Yes – reclassify as BOMA 
b. No – retain as SCAM 

8) Is the elevation value outside the range of SCAM (Elev > 2.5)? 
a. Yes – reclassify as BOMA  
b. No – retain as SCAM 

SCAM – South Zone 

1) Is the pixel classified as SCAM in the MLC and within the South Zone? 
a. Yes – Continue to Step 2 
b. No - Not considered in the decision tree. 

2) Is the NDVI value high enough to be plant material (NDVI > 0.06)? 
a. Yes – Continue to step 3 
b. No – Reclassify pixel as Bare 

3) Is the elevation value below 1.2? 
a. Yes –Continue to step 4 
b. No – reclassify as Bare 

i. Recall that 1.2 m elevation is the lowest occurrence of SCAM 
4) Is the Elevation value greater than 2.6 m?  

a. Yes – continue to step 5 
b. No- retain pixel as SCAM 

i. The southern zone is dominated by SCAM. we decided that we would use an 
elevation cutoff above the mean value for BOMA. We chose 2.6 m elevation as 
the cut-off because it was 2 sigma greater than the mean elevation for SCAM.  

5) Is the NDVI value greater than 0.22 
a. Yes -  Reclassify as BOMA 
b. No – Retain as SCAM  

SCAM – Restoration Site 

1) Is the pixel classified as SCAM in the MLC and within the restoration site?  
a. Yes – continue to step 2 
b. No – not considered in this classification 

2) Is the NDVI value high enough to be plant material (NDVI > 0.06)? 
a. Yes – Continue to step 3 
b. No – Reclassify pixel as Bare 

3) Is the elevation above 2.3 m elevation?  
a. Yes – reclassify as BOFL 
b. No – retain as BOMA 

i. Recall that there was no notable SCAM patches with in restoration site in 2014.  

BOFL North-Zone 

1) Is the pixel classified as BOFL in the MLC and within the North Zone? 
c. Yes – Continue to Step 2 
d. No - Not considered in the decision tree. 

2) Is the NDVI value high enough to be plant material (NDVI > 0.06)? 
a. Yes – Continue to step 3 
b. No – Reclassify pixel as Bare 

3) Is the elevation greater than one sigma below the mean elevation (Elev > 2.48)? 
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a. Yes – continue to step 4 
b. No – continue to step 6 

4) Is the NDVI greater than one sigma above the mean NDVI value (NDVI >0.13)? 
a. Yes – retain as BOFL 
b. No – Reclassify as BOMA  

5) Is the elevation less than 2 sigma below mean elevation value for BOFL (Elev <2.0)?  
a. Yes – pixel failed two assumptions –continue to Step 7 
b. No – continue to step 6 

6) Is the NDVI greater than 1 sigma below the mean NDVI value for BOFL (NDVI >0.29)? 
a.  Yes – maintain as BOFL 
b. No – pixel failed to assumptions – reclassify to BOMA 

7) Is the pixel below 1.2 m elevation?  
a. Yes – reclassify as bare 
b. No – reclassify as SCAM 

i. Note: this conditional statement is a reclassify outliers. These pixels have 
already failed 2 sigma below the BOMA mean elevation and therefore needs to 
be reclassified. SCAM minimum elevation is 1.2 m. Any pixel below that 
threshold is assumed to be bare sediment.  

8) Is the NDVI greater the mean NDVI value for BOMA (NDVI >0.2)?  
a. Yes – reclassify pixel as BOMA 
b. No – reclassify as SCAM 

i. Note: We decided that the mean NDVI value would be more appropriate value 
through experimentation. When we used one sigma below the NDVI mean 
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value, there was large portions of the SCAM-dominated Low-Marsh that 
remained misclassified. 

BOFL South-Zone 

1) Is the pixel classified as BOFL in the MLC and within the South-Zone?  
c. Yes – continue to step 2 
d. No – not considered in this decision tree 

2) Is the NDVI value high enough to be plant material (NDVI > 0.06)? 
a. Yes – Continue to step 3 
b. No – Reclassify pixel as Bare 

3) Is the Elevation value greater than 2.75 m?  
a. Yes – Retain as BOFL  
b. No- continue to step 4 

4) Is the Elevation value greater than 2.5 m?  
a. Yes – Reclassify as BOMA  
b. No – Continue to Step 5 

5) Is the NDVI value greater than 0.3? 
a. Yes – retain as BOMA 
b. No – reclassify as SCAM  

BOFL – Restoration Site 

1) Is the pixel classified as BOMA in the MLC and within the restoration site?  
d. Yes – continue to step 2 
e. No – not considered in this classification 

4) Is the NDVI value high enough to be plant material (NDVI > 0.06)? 
a. Yes – Continue to step 3 
b. No – Reclassify pixel as Bare 

5) Is the elevation above 2.3 m elevation?  
a. Yes – reclassify as BOFL 
b. No – retain as BOMA 
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Elevation South Zone ELelvation North Zone Elevation

Landcover Pixel Count Min Max Mean StdDev Pixel Count Min Max Mean StdDev Pixel Count Min Max Mean StdDev

Blackberries 1277 2.950 3.760 3.230 0.139 974 2.950 3.760 3.183 0.116 303 3.130 3.570 3.379 0.092

Beachwood 2463 2.440 3.760 3.029 0.296 2463 2.440 3.760 3.029 0.296

Juncus 263 2.350 3.080 2.774 0.213 263 2.350 3.080 2.774 0.213

Trees 591 2.310 3.940 3.363 0.232 591 2.310 3.940 3.363 0.232

Carrex 675 0.590 3.140 2.525 0.641 407 2.470 2.990 2.773 0.101 268 0.590 3.140 2.147 0.885

Grasses 1339 2.550 3.550 2.995 0.174 400 2.780 3.230 3.006 0.086 939 2.550 3.550 2.991 0.201

SCTA 401 2.310 3.080 2.678 0.234 401 2.310 3.080 2.678 0.234

POPA 137 2.940 3.360 3.050 0.084 137 2.940 3.360 3.050 0.084

Cattails 265 2.480 3.050 2.735 0.103 265 2.480 3.050 2.735 0.103

JapEel 133 0.360 0.930 0.549 0.112 133 0.360 0.930 0.549 0.112

Sand 532 0.620 2.550 1.307 0.453 131 0.830 2.550 1.803 0.608 401 0.620 1.530 1.145 0.212

Mud 2929 0.960 2.910 1.694 0.330 2929 0.960 2.910 1.694 0.330

BOFL 1742 2.310 3.470 2.765 0.262 131 2.640 3.040 2.786 0.092 1611 2.310 3.470 2.763 0.271

BOMA 4711 1.480 3.145 2.412 0.357 404 2.330 2.740 2.500 0.071 4307 1.480 3.145 2.404 0.371

SCAM 3342 0.480 2.760 1.738 0.459 668 1.810 2.760 2.415 0.112 2674 0.480 2.520 1.569 0.343

Table 15. Elevation Statistics for all cover classes for the South, North and All Zones.  

Table 14. NDVI statistics for all cover classes for the South, North and All Zones. Note: we assumed that the NDVI values did not vary spatially 
and used the combined All zones for the development of the decision trees. However, all data is included here.  

NDVI All NDVI South Zone NDVI North Zone

Landcover Pixel Count Min Max Mean StdDev Pixel Count Min Max Mean StdDev Pixel Count Min Max Mean StdDev

Blackberries 873 0.655 0.896 0.837 0.039 653 0.690 0.896 0.849 0.029 220 0.655 0.870 0.803 0.044

Beachwood 1781 0.070 0.804 0.209 0.129 1781 0.070 0.804 0.209 0.129

Juncus 195 0.265 0.581 0.406 0.081 195 0.265 0.581 0.406 0.081

Trees 394 0.272 0.904 0.826 0.096 394 0.272 0.904 0.826 0.096

Carrex 472 -0.185 0.749 0.442 0.222 284 0.330 0.629 0.530 0.051 188 -0.185 0.749 0.309 0.300

Grasses 940 0.165 0.800 0.485 0.124 285 0.404 0.800 0.595 0.119 655 0.165 0.668 0.438 0.092

SCTA 285 0.318 0.760 0.484 0.112 285 0.318 0.760 0.484 0.112

POPA 98 0.594 0.793 0.684 0.037 98 0.594 0.793 0.684 0.037

Cattails 192 0.300 0.624 0.510 0.083 192 0.300 0.624 0.510 0.083

JapEel 95 -0.278 0.297 -0.063 0.119 95 -0.278 0.297 -0.063 0.119

Sand 382 -0.066 0.352 0.078 0.096 95 -0.066 0.352 0.207 0.118 287 -0.027 0.124 0.035 0.020

Mud 2092 -0.034 0.397 0.050 0.048 2092 -0.034 0.397 0.050 0.048

BOFL 1222 0.037 0.711 0.329 0.174 96 0.225 0.588 0.498 0.074 1126 0.037 0.711 0.314 0.172

BOMA 3330 -0.003 0.675 0.217 0.117 288 0.256 0.494 0.339 0.039 3042 -0.003 0.675 0.205 0.115

SCAM 2383 -0.358 0.438 0.106 0.092 479 0.124 0.438 0.227 0.044 1904 -0.358 0.365 0.075 0.074
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Figure 50. Map detailing the zones for the decision tree classifications. Training ROIs were used to generate the statistics in 
Table 12 and 13. Testing ROIs were used to create the confusion matrices.  
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Figure 51. Decision Tree diagrams to isolate BOMA. Decision trees were initially created using data in Tables 12-13, where a 
pixel would only be reclassified if it fell out of the standard deviation of two or more classes. Decision trees were altered to 
account for spatially dependent elevation (South Zone and Restoration Site). 
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Figure 52. Decision Tree diagrams to isolate SCAM. Decision trees were initially created using data in Tables 12-13, where a pixel 
would only be reclassified if it fell out of the standard deviation of two or more classes. Decision trees were altered to account 
for spatially dependent elevation (South Zone and Restoration Site). 



 

109 
 

 

Figure 53. Decision Tree diagrams to isolate BOFL. Decision trees were initially created using data in Table 12, where a pixel 
would only be reclassified if it fell out of the standard deviation of two or more classes. Decision trees were altered to account 
for spatially dependent elevation (South Zone and Restoration Site). 
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Appendix 4: Biomass Model Derivation 

This appendix is to detail our exploratory analysis in order to be able to extrapolate biomass and stem 

density across our study area. We compared our physical lab measurements (Biomass, stem count) from 

the Side-on Photo (SOP) sampling sites with LiDAR BareEarth DEM (Figure 54) and 8 vegetation indices 

derived from CASI hyperspectral imagery (Figure 55 – 56).  We used the 8 vegetation indices compared 

in Delegido (2013) (Table 16). Note: aerial LiDAR is unable to penetrate the dense emergent marshlands 

and according to our analysis of RTKGPS data the BE LiDAR DEM is off by approximately 0.5 m within the 

dense marsh (Appendix 1).  

Through this exploratory analysis, we found that a combination of elevation and the Red- Edge 

Normalized Difference Index (RE-NDI) yielded the best Kendall’s correlation values when compared to 

biomass (Figure 56, Table 17-18). This relationship was used to create an exponential model to predict 

and extrapolate biomass across the delta (Figure 54 -56). Stem density did not correlate well with any of 

the vegetation indices and was not used in extrapolation (Table 17). We chose to use the RE-NDI for our 

biomass extrapolation because it had the most accurate linear model.  

  



 

111 
 

Table 16. Vegetation indices from Table 1 in Delegido et al. (2013), where Rλ is the reflectance values at wavelength λ. Note: 
equations were altered from Delegido et al (2013) to show median wavelength of bandwidths from the CASI dataset used in this 
study. 

Vegetation Indices   Equation Reference 

         

NDVI  (R804 –R669)/ (R804 +R669) Rouse et al. (1973) 

RE - NDI  (R719 –R669)/ (R719 +R669) Delegido et al. (2013) 

MCARI  [(R705–R669) -0.2(R705 –R550)R705 /R669] Daughtry et al. (2000) 

MTCI  (R747 –R710)/ (R710 +R680) Dash and Curran (2004) 

TCI  1.2(R705 –R550) – 1.5(R669 –R550)(R705 /R669)0.5 Haboudane et al. (2008 

RM  R747 /R719 – 1 Gitelson et al. (2005) 

OSAVI  (R804 –R669)/ (R804 +R669 +0.16) Rondeaux et al. (1996) 

SR   R804 /R669  Jordan (1969)   

 

Table 17. Statistics for vegetation indices and BE LiDAR DEM with respect to stem count.  

   Stem Count     
            Kendall's Tau  Linear model 

 Vegetation Indices   Tau p-value   Equation adj. r^2 p-value 
        

NDVI  0.158 0.319  Y = 95.28 x + 67.59 -0.022 0.461 

RE - NDI  0.196 0.216  Y = 230 x + 61.29 -0.006 0.36 

MCARI  0.158 0.319  Y = 0.06 x + 78.9 -0.039 0.618 

MTCI  0.033 0.833  Y = -2.91 x + 94.2 -0.052 0.943 

TCI  0.167 0.29  Y = 0.04x + 79.67 -0.041 0.647 

RM  0.081 0.608  Y = 7.81 x + 89.6 -0.052 0.918 

OSAVI  0.158 0.319  Y = 95.3 x + 67.6 -0.022 0.461 

SR  0.138 0.381  Y = 6.97 x + 81.0 -0.05 0.849 
  

  
    

BE LiDAR DEM   0.148 0.349   Y = 36.1 x + 4.0 -0.02 0.45 
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Table 18. Statistics for vegetation indices and BE LiDAR DEM with respect to lab measured biomass in grams. 

      Lab Measured Biomass (g)     

            Kendall's Tau  Linear model 

 Vegetation Indices   Tau p-value   Equation adj. r^2 p-value 
        

NDVI  0.396 0.015  Y = 279 x + 101.9 0.271 0.011 
RE - NDI   0.417 0.01   Y = 577 x + 96.2 0.31 0.006 
MCARI  0.449 0.006  Y = 0.23 x + 120.3 0.24 0.016 
MTCI  0.269 0.098  Y = 60.5 x + 117.5 0.101 0.094 
TCI  0.48 0.003  Y = 0.179 x + 119 0.238 0.017 
RM  0.417 0.01  Y = 135 x + 137 0.168 0.041 

OSAVI  0.396 0.015  Y = 279 x + 102 0.271 0.011 
SR  0.396 0.015  Y = 66.6 x + 70.44 0.179 0.036 

        

BE LiDAR DEM   0.406 0.012   Y = 116x -109 0.356 0.003 

 

 

Figure 54. Scatter plots detailing the relationship of biomass to the BE LiDAR DEM. A) all marsh assemblages; B) High-Marsh; C) 
Mid – marsh, BOFL and BOMA assemblages undifferentiated; D) Low-Marsh  
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Figure 55. Scatter plots detailing the relationship of biomass to the NDVI from the CASI dataset. A) all marsh assemblages; B) 
High-Marsh; C) Mid – marsh, BOFL and BOMA assemblages undifferentiated; D) Low-Marsh 

 

 

Figure 56. Scatter plots detailing the relationship of biomass to the RE – NDI.  A) all marsh assemblages; B) High-Marsh; C) Mid – 
marsh, BOFL and BOMA assemblages undifferentiated; D) Low-Marsh 
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Figure 57. Scatter plots detailing the relationship of biomass to the BE LiDAR DEM. A) all marsh assemblages; B) High-Marsh; C) 
Mid – marsh, BOFL and BOMA assemblages undifferentiated; D) Low-Marsh 
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Figure 58. Derivation of exponential model for Biomass with respect to LiDAR BE (Elevation) and Red-Edge NDI. 

 

Figure 59. Final exponential model with 95% confidence lines for considering RE-NDI and BE LiDAR DEM with respect to marsh 
assemblage. A) shows all marsh type assemblages; B) High-Marsh; C) Mid – marsh, BOFL and BOMA assemblages 
undifferentiated; D) Low-Marsh. Dashed lines are 95% confidence intervals to the linear model.  
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Appendix 5: Exploratory Analysis of Side-On Photography Data 

This appendix details the exploratory analysis of the Side-On Photography (SOP) data. Here we compare 

all relevant SOP data with its lab measured equivalent for all sites and separated by marsh assemblage.  

Through this analysis, we found that our SOP analysis could be used to predict biomass, and plant height 

(Figures 60 and 61). Our analysis did not yield an acceptable relationship with between our lab 

measured stem count and stem diameter with their assumed equivalents.  

Biomass was found to correlate to the number of vegetated pixels within our digital images when 

considering all marsh assemblages (Figure 60a). Mid-Marsh assemblage also showed a correlation 

between biomass and vegetated pixels (Figure 60c). High and Low-Marsh did not show a correlation 

(Figure 60b and 60d); this lack of correlation in High and Low-Marsh could factor of low sample size. 3-4 

data points are not likely to capture the variance within each cover type.  

Height showed a similar pattern as biomass; where all cover types and the Mid-Marsh showed a strong 

correlation between the image processing measured height and lab measured height (Figure 61a and c). 

Mid and Low-Marsh assemblages did not show a valuable relationship, perhaps due to low sample size.  

Stem density is common plant metric used in hydrodynamic wave models; unfortunately, our analysis 

did not show a valuable relationship between stem count and row-hole count in the image processing. 

Row-hole count is the number of contiguous non-vegetated pixels that is measured per row of a defined 

thickness (Zehm et al., 2003). For this study, we looked at row-hole counts for 1 cm tall rows at 25 cm, 

50 cm, and 75 cm above the marsh floor (Figure 62, 63 and 64 respectfully). Row-hole count at 25 cm 

did show a week Kendall’s tau correlation with stem count (Figure 61a and c); however, row-hole count 

at the other heights and individual assemblages did not yield a correlation with stem count (Figures 62 – 

64). Moreover, within the higher (50 and 75 cm) row-hole count measurements there were less data 
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points particularly for Low and High-Marsh, where the majority of plants were below the 50 cm and 75 

cm measurement height.  

The Sidelook software used in this study does not have a direct equivalent measurement for stem 

diameter. In Figure 65 we look at four variable combinations to assess if stem diameters are able to be 

predicted through our digital image processing methods. Figure 65a compares average row-hole size, 

length of contiguous non-vegetated pixels, to stem diameter; this comparison did not yield a correlation. 

Figure 65b compares stem diameter to the ration between vegetated pixels and row-hole count at 25 

cm above the marsh floor; this yielded a very weak correlation and an insensitive linear model. Figure 

64c compares stem diameter to the ration of count of vegetated pixels within the 25 cm row over 

average row-hole size; this analysis did not produce a correlation. Figure 65d compares stem diameter 

with the ration of total vegetated pixels within a digital image over the vegetated pixels within the 25 

cm row; this analysis yielded a weak correlation but this ration is insensitive to changes in stem 

diameter.  
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Figure 60. Vegetated pixels from SOP analysis compared to lab measured biomass with respect to marsh type. A) all marsh 
assemblages; B) High-Marsh; C) Mid-Marsh assemblages (BOFL and BOMA undifferentiated); D) Low-Marsh.  
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Figure 61. Average maximum vegetated pixel height by 1 cm wide column from SOP analysis compared to the mean lab 
measured plant height with respect to marsh type. A) all marsh assemblages; B) High-Marsh; C) Mid-Marsh assemblages (BOFL 
and BOMA undifferentiated); D) Low-Marsh.  
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Figure 62. Row-hole count (contiguous non-vegetated pixels) of a 1 cm tall row at 25 cm height above the marsh floor compared 
to the lab measure stem count. A) all marsh assemblages; B) High-Marsh; C) Mid-Marsh assemblages (BOFL and BOMA 
undifferentiated); D) Low-Marsh. 

 

Figure 63. Row-hole count (contiguous non-vegetated pixels) of a 1 cm tall row at 50 cm height above the marsh floor compared 
to the lab measure stem count. A) all marsh assemblages; B) High-Marsh; C) Mid-Marsh assemblages (BOFL and BOMA 
undifferentiated); D) Low-Marsh. 
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Figure 64. Row-hole count (contiguous non-vegetated pixels) of a 1 cm tall row at 75 cm height above the marsh floor compared 
to the lab measure stem count. A) all marsh assemblages; B) High-Marsh; C) Mid-Marsh assemblages (BOFL and BOMA 
undifferentiated); D) Low-Marsh. 
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Figure 65. Exploratory analysis to derive a model to predict stem diameter. A) Comparison between average row-hole size at 25 
cm height and lab measured stem diameter. B) Ration of vegetated pixels within the 1 cm tall row at 25 cm over row-hole count 
compared to lab-measured stem diameter. C) Ration of vegetated pixels within the 1 cm tall row at 25 cm over mean row-hole 
size compared to lab-measured stem diameter. D) Ration of total vegetated pixels over vegetated pixels within the 1 cm tall row 
at 25 cm compared to stem diameter.  

  



 

123 
 

Appendix 6: Exploratory Analysis of Elasticity Data 

This appendix details the exploratory analysis of our elasticity data set. Here we compare our 9 elasticity 

measurements to plant height, stem diameter and measurement height with respect to seasonality and 

plant type. As a reminder, we took 9 elasticity measurements per stem. We measured the force 

required to bend a stem to 3 angles (15, 30, 45 from vertical) at 3 heights (25 cm, half height, full plant 

height) using a handheld scale. Elasticity was measured biweekly from September through November 

and then monthly through March. In the majority of stems, elasticity measurements taken at full plant 

height or to 15degrees from vertical were below the measurability of our hand-held digital scale. These 

zero values were not included in this study.  

We found that our elasticity measurements correlated well with stem diameter, particularly 

measurements lower on the stem (half height and 25 cm) and higher angles (30 and 45 degrees from 

vertical) (Figure 66 and 67).  These relationships appear to be insensitive to seasonality. These strong 

correlations are present in both BOMA and BOFL species (Table 19-20; Figure 66 - 67).  

Overall, the elasticity measurements have inconsistent and/or weak relationships with total plant height 

but may show some clustering with respect to seasonality (Figure 67 and 68). Similar to diameter, the 

weakest relationships are with force measurements taken at plant height and to 15 degrees from 

vertical. BOFL measurements tend to have a logarithmic relationship, random, and parabolic with 

measurements taken at plant height, half height, and 25 cm respectfully (Figure 68). BOMA 

measurements tend to have weak negative or random relationships with plant height (Figure 69).  

BOMA and BOFL elasticity measurements both show strong logarithmic relationships to measurement 

height (Figure 70 and 71; Table 18-19). This is intuitively a function of torque and lever arm length. 

There does not appear to have a linear relationship with seasonality in either BOFL or BOMA (Figure 70 

and 71).   
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Table 19. Logarithmic regression equations and statistics for BOFL force measurements as a function of measurement height 
with respect to bending angle and seasonality. 
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Table 20. Logarithmic regression equations and statistics for BOMA force measurements as a function of measurement height 
with respect to bending angle and seasonality. 
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Figure 66. Scatter plot diagrams between stem diameter at 25 cm above marsh surface and 9 separate force measurements for 
BOFL. Note: many force measurements equal to zero were not considered in this analysis. Force measurements at plant height 
were often too low to register on hand held digital scale. 
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Figure 67. Scatter plot diagrams between stem diameter at 25 cm above marsh surface and 9 separate force measurements for 
BOMA. Note: many force measurements equal to zero were not considered in this analysis. Force measurements at plant height 
were often too low to register on hand held digital scale. 
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Figure 68. Scatter plot diagrams between plant height and the 9 separate force measurements for BOFL. Note: many force 
measurements equal to zero were not considered in this analysis. Force measurements at plant height were often too low to 
register on hand held digital scale. 
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Figure 69. Scatter plot diagrams between plant height and the 9 separate force measurements for BOMA. Note: many force 
measurements equal to zero were not considered in this analysis. Force measurements at plant height were often too low to 
register on hand held digital scale. For stems, less than 60 cm in height, half height force measurements were not taken because 
it is thought to be a redundant measurement with the 25 cm force measurements. 
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Figure 70. Force vs Measurement Height analysis for BOFL. These series of plots show the relationship between Force and 
measurement height detailing the measurement height type (Height, Half height, 25 cm); the overall logarithmic regression 
where error bars represent plus/minus one standard deviation; and the temporal differences of force regressions by month. 
Note: we were unable to calculate an accurate regression for the September data because stems were only measured at 25 cm 
not at height or half height. 
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Figure 71. Force vs Measurement Height analysis for BOMA. These series of plots show the relationship between Force and 
measurement height detailing the measurement height type (Height, Half height, 25 cm); the overall logarithmic regression 
where error bars represent one standard deviation; and the temporal differences of force regressions by month. Note: we were 
unable to calculate an accurate regression for the September data because stems were only measured at 25 cm not at height or 
half height.  
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Figure 72. Force vs Measurement Height analysis for SCAM. These series of plots show the relationship between Force and 
measurement height detailing the measurement height type (Height, Half height, 25 cm); the overall logarithmic regression 
where error bars represent one standard deviation; and the temporal differences of force regressions by month. Note: we were 
unable to calculate an accurate regression for the September data because stems were only measured at 25 cm not at height or 
half height. 
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Appendix 7: Eel Grass Analysis 

This appendix details our methods and analysis to isolate Japanese (Zostera Japonica) and native (Zostera 

marina) using the combination of Maximum Likelihood Classification (MLC) and (DTC). We altered from 

our main analysis by 1) including the total areal extent of the deltaic shelf; 2) digitizing eelgrass ground 

truth polygons (Figure 73); 3) Decision tree developed using band ratios (Table 21), NDVI and elevation 

data (Figure 74). We found that the combination of MLC and DTC analyses applied to the CASI dataset 

was able to isolate eelgrass species to native (99) and Japanese (90) eelgrass species, respectively (Figure 

75; Table 22-4) .    

Methods: 

Ground truth points were digitized using the real-color display of the CASI data (Figure 73). Native eelgrass 

polygons were separated by density. Over 50% coverage of assumed eelgrass was classified as dense; less 

than 50% was classified as sparse.  Japanese Eelgrass covers a higher elevation range than the native 

eelgrass. The tideline bisected the Japanese eelgrass at the time the imagery was taken. To account for 

this, we defined 6 cover-types for Japanese eelgrass: submerged dense; submerged sparse; tideline dense; 

tideline sparse; exposed dense; exposed sparse.  

Japanese Eelgrass cover-types were able to be separated using NDVI and LIDAR Bare Earth (LIDAR BE) 

datasets. We used the band ratios to classify native eelgrass cover-types. According to the native eelgrass 

spectral signatures for the CASI data set, there is a distinct rise in reflectance between 400 (Band 4) and 

725 (Band 25) nm with its peak around 575 nm (Band 15) (Figure 49, Appendix 2). We found the ratio 

between the end points (B4 and B25) over the peak (B15) to be very useful in separating the eelgrass from 

the surrounding sediment.  

Decision trees for eelgrass species were developed in the same manner as other cover types (Chapter 1). 

We separated ground truth points into testing (50%) and training (50%) polygons. We calculated the 
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statistics for the cover types from 6 random points within the training polygons (Table 21). We developed 

the if-then statements from these statistics (Figure 74). We used only band ratios for the native eelgrass 

because BE LiDAR data was incomplete and NDVI is not useful for submerged vegetation at that water 

depth. Bare sediment, submerged or exposed, was the most commonly confused for eelgrass and 

therefore decision trees were created to isolate the eelgrass cover types from only sediment. 

The Japanese Eelgrass decision tree is based on the statistics from the training ROI for the LIDAR BE and 

NDVI datasets (Table 21). However, this decision tree was altered through experimental analysis to isolate 

the best cutoffs (Figure 73).  

Results and Discussion: 

We predict that in the summer of 2014, PSB had 4.5 and 2.4 km2 of Japanese and Native Eelgrass, 

respectively (Table 22, Figure 74). The MLC classification was successful at separating the eelgrass cover 

types from each other and marsh cover types, 72 and 89 percent for native and Japanese eelgrass 

respectfully (Table 23). Bare sediment, submerged or exposed, was the most commonly confused for 

eelgrass.  The decision tree classification was able to improve the accuracy to 99 and 90 percent for native 

and Japanese eelgrass (Table 24). We did not differentiate between sparse and dense or submerged and 

exposed eelgrass for this study because of the qualitative nature of the distinctions.  

These results are likely to be biased towards higher than realistic producer’s accuracy because of the 

limited number of digitized ground truth points within the lower deltaic shelf. The majority of the 

sediment ground truth points are near the marsh vegetation and are smaller in size than the eelgrass 

polygons.  

Although we are satisfied with the accuracy of the DTC and MLC for the eelgrass species, a more thorough 

and comprehensive study could be conducted. We would recommend isolating the lower deltaic shelf 

separately and rerunning the classification schemes for future efforts.  
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Table 21 Areal data statistics for eelgrass cover types and bare sediment. 

 

 

Table 22. Potential areal coverage of eelgrass cover types from the decision tree classification. 
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Table 23. Confusion Matrix of Decision Tree Classification using combined cover classes. High-Marsh species (Grasses, Cattails, 
Juncus, Carrex, and POPA) and sediment types (Bare and Sand) have been combined into HiMarsh and Sed classes respectively.  
Overall accuracy is heightened because the large ground truth ROIs for the Deepwater class. Values are in percent. 

 
Blackberries Beachwood Trees HiMarsh Eelgrass Japan 

Eelgrass 
Sed BOFL BOMA SCAM DeepWater Macro 

Algae  
# Pixels 

Blackberries 95.73 
  

0.53 
        

1765 

Beachwood 0.83 86.89 
 

3.25 
  

0.10 
 

1.13 0.16 
  

1359 

Trees 1.66 0.55 92.26 3.56 
  

0.63 0.86 0.04 
   

1291 

HiMarsh 1.77 11.22 0.32 76.58 0.01 0.15 0.30 17.06 8.94 3.79 
 

0.08 3161 

Eelgrass 
    

71.77 
 

0.01 
   

0.19 
 

97532 

JapEelgrass 
    

0.00 88.58 40.38 
  

0.20 
 

0.24 181634 

Sed 
   

0.31 28.21 11.20 58.32 0.46 7.81 31.03 1.50 41.68 150409 

BOFL 
 

1.03 0.32 12.52 
  

0.00 75.13 15.84 1.87 
  

1908 

BOMA 
  

0.97 1.63 
  

0.02 6.42 38.54 10.07 
  

1438 

SCAM 
   

1.58 
 

0.01 0.20 0.07 27.71 52.22 
  

2401 

DeepWater 
    

0.01 
     

98.31 
 

914078 

MacroAlgae  
   

0.04 
 

0.06 0.04 
  

0.66 
 

58.00 3004               

# Pixels 1803 1266 310 2276 133439 142686 136767 1512 2652 2562 929800 4907 1359980               

Overall 
Accuracy: 

90.23 
            

Kappa 
Coefficient 

0.8079 
            

 

Table 24. Confusion matrix of Maximum Likelihood Classification (MLC). High-Marsh species (Grasses, Cattails, Carrex, Juncus, 
and POPA) and bare sediment classes (Sand and Bare) have been combined into HiMarsh and Sed cover classes respectively. 
Overall accuracy is elevated because of the large ground truth ROIs for the deepwater class. 

 
 

Blackberries Beachwood Trees HiMarsh Eelgrass Japan 
Eelgrass 

Sed BOFL BOMA SCAM Deep 
Water 

Macro 
Algae 

# pixels 

Blackberries 95.73 0.32 6.13 0.53 
        

1765 

Beachwood 0.83 86.89 
 

2.99 
  

0.10 
 

0.79 0.08 
  

1340 

Trees 1.66 0.55 92.26 3.56 
  

0.64 0.86 0.04 
   

1296 

HiMarsh 1.77 11.22 0.32 74.65 0.01 0.10 0.31 15.94 8.14 3.63 
  

2993 

Eelgrass 
    

98.68 
 

0.03 
    

0.08 147433 

JapEelgrass 
    

1.29 89.99 52.96 0.07 2.07 0.04 1.69 
 

200904 

Sed 
   

0.22 
 

6.99 45.69 2.05 18.33 42.15 
 

0.26 77838 

BOFL 
 

0.95 1.29 10.46 
 

0.07 0.05 51.32 12.78 4.25 
  

1649 

BOMA 
 

47.00 
 

6.55 
 

0.47 0.06 21.10 25.87 9.09 
  

3397 

SCAM 
   

1.05 
 

2.33 0.14 8.66 31.98 40.09 
  

5545 

DeepWater 
    

0.10 
     

98.31 
 

914078 

MacroAlgae 
     

0.05 0.03 
  

0.66 
 

58.00 2993               

Number of 
Pixels 

1803 1266 310 2276 133439 142686 136767 1512 2652 2562 929800 1251 1361231 

              

Overall 
Accuracy: 

91.592 
            

Kappa 
Coefficient 

0.835 
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Figure 73. Map detailing the relevant ROI ground truth polygons for the eelgrass assessment. For the native eelgrass ROIs, there 
is both sparse and dense sub classes. Japanese eelgrass has 6 subclasses: Sparse, Dense combined with submerged, exposed and 
shoreline. Subclasses are not differentiated here.  
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Figure 74. Decision Tree diagrams to isolate eelgrass varieties form water and sediment cover classes.  Native eelgrass was 
determined to have a distinct band ratio of band 25 (b25) over Band 15 (b15) and Band 4 (b4) over b15 based on the spectral 
signatures from the digitized training ROIs for the CASI data. Where b4, b15, and b25 have the midpoint wavelength of 417, 572 
and, 713nm respectively. The areal coverage of Japanese Eelgrass was bisected by the tideline when the CASI imagery was 
taken and therefore I separated the Japanese eelgrass decision tree to by elevation (tideline was approx. 0.4 m elevation). 
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Figure 75. Maps of Decision Tree Classification focused on isolating bulrush species. A) Close up on northern marsh. Green dots 
represent ground truth points with a 5 m buffer. B) Overall land cover map of deltaic shelf (study area).  
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