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ABSTRACT 

 

Nuttallia obscurata is a euryhaline invasive clam with populations that are rapidly 

spreading along the northeast Pacific coast. It inhabits areas of changing salinity such as the high 

intertidal and areas of freshwater seepages, areas uninhabited by local clam species.  N. 

obscurata’s euryhalinity, salinity tolerance, and ability to survive in uniquely stressful areas 

likely facilitated its settlement and rapid spread into these distinctive microclimates.  Previous 

research on N. obscurata is minimal, however favorable physiological and behavioral responses 

likely allow N. obscurata to live in these environments.  The physiological response of osmolyte 

production and the behavioral responses of filtration rate have yet to be studied in N. obscurata, 

but likely play in important role in their tolerance and therefore invasiveness.  I compared these 

responses to those of Leukoma staminea, a local stenohaline clam that inhabits the mid-intertidal.  

By comparing the physiology and behavior of N. obscurata and L. staminea, I may be able to 

determine if euryhalinity and inhabitation of open niche areas helps N. obscurata invade.    

The important osmolytes previously noted in bivalves, betaine and sorbitol, were 

examined using High Performance Liquid Chromatography.  Osmolyte concentration in clams 

under different salinities (1 ppt, 20 ppt, 30 ppt, 40 ppt and 60 ppt), under short-term (5 to 90 

minutes) exposure, and under long-term (24 hr) exposure was examined.  Betaine was a cellular 

component in both N. obscurata and L. staminea.  Large stores were found in N. obscurata under 

30 ppt salinity with concentrations decreasing under hypoosmotic salinities (1 ppt and 20ppt).  

This suggests that betaine is produced in large amounts in N. obscurata tissue and possibly 

utilized for osmotic compensation under decreased salinities.  Betaine concentration in N. 

obscurata decreased under hyperosmotic conditions, likely because N. obscurata was utilizing 

energy stores to survive and not regenerating betaine.  Other osmolytes, such as proline, glycine 
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or taurine, may also be utilized in N. obscurata to cope with osmotic stress.  There was evidence 

that taurine was a cellular component in some samples, but the concentration of taurine could not 

be determined.  L. staminea produced betaine at a very low concentration under 30 ppt salinity 

and increased betaine under hypoosmotic and hyperosmotic conditions, helping the species cope 

with osmotic stress.  Betaine increased significantly over time in N. obscurata gill tissue, 

showing that N. obscurata accumulates betaine quickly to compensate with fast environmental 

changes.  Whether this accumulation is part of N. obscurata’s normal cell function or a response 

to stress is unknown.  Sorbitol was not a major cellular component in N. obscurata or L. 

staminea.   

Filtration rates of N. obscurata and L. staminea were tested using fluorometry over 

multiple salinity levels (1 ppt, 20 ppt, 30 ppt, 40 ppt and 60 ppt) for 340 minutes.  N. obscurata 

filtered under a wider range of salinities than did L. staminea.  Salinity significantly affected 

filtration rate and neither species filtered under extreme hypoosmotic or hyperosmotic conditions 

(1 ppt and 60 ppt), implying that although N. obscurata inhabits some hypoosmotic areas, it is 

unlikely to expand populations to freshwater.  Both species filtered at higher rates compared to 

previously studied bivalves.  This is of special concern for the already invasive and expanding 

populations of N. obscurata, which already outcompete some local clam species in disturbed 

areas.   

While physiological and behavioral responses were examined separately in this 

experiment, they likely interact as part of a complex system.  Filtration rate altered the exposure 

level of clam tissue to the external environment, thereby affecting osmotic response and 

osmolyte concentration.  Future studies should continue to examine physiology and behavior in 

N. obscurata.  
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INTRODUCTION 

Invasions of non-indigenous species (NIS) have reshaped the structure and dynamics of 

ecosystems around the world (Carlton and Geller, 1993; Lodge, 1993; Mack et al., 2000; Verling 

et al., 2005).  There are an estimated 50,000 NIS present in the United States, and the rate of NIS 

invasions in the Pacific Northwest have increased dramatically over the last 200 years (Carlton 

and Geller, 1993; Pimentel and Lach, 2000; Ruiz et al., 2000).  Over 59% of NIS cause major 

ecological and biological diversity damage and have high economic costs (Office of Technology 

Assessment, 1993; Bax et al., 2003; Byers, 2005; Grosholz, 2005).  Forty-two percent of 

threatened and endangered native species are at risk because of competition with or predation by 

NIS (Pimentel and Zuniga, 2005; Mooney et al., 2005).  Marine species introductions have 

increased dramatically in the United States over the past 40 years, accounting for more than 500 

NIS invasions, with a majority of invasions occurring on the Pacific coast (Grosholz, 2005).  NIS 

in the phylum Mollusca are some of the most damaging invasive species (Ruiz et al., 1997; Ruiz 

et al., 2000; Zenetos et al., 2005) and understanding the impacts of molluscan NIS on the Pacific 

coast is critical as marine introductions increase and expand.  

Nuttallia obscurata, commonly known as the purple varnish clam, was first reported on 

the Pacific coast of North America near Vancouver, BC in 1991 and is now considered an 

invasive NIS (Mills, 2002).  Native to Korea, China, and Japan, N. obscurata had spread from 

Northeastern Vancouver Island, BC to Coos Bay, Oregon by 2002 (Gillespie et al., 1999; Mills, 

2002; Byers, 2002).  In some studies, N. obscurata outcompete the economically important 

manila clam, Venerupis philippinarum (Dudas, 2005).   N. obscurata may in some cases change 

food web dynamics, as it is a preferred prey for some crab species and raccoons (Dudas, 2005; 

Simmons et al., 2014).  The bivalve is now found in shellfish markets and is attracting attention 

from the commercial shellfish industry (Gillespie et al., 2001).  N. obscurata has sustainable 
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populations (Dudas, 2005) and in many areas along the Washington and Oregon coasts, these 

clams are abundant and are attracting recreational shellfish harvesters (Washington Department 

of Fish and Wildlife, 2013).  Little is known about this species’ basic biology and the 

characteristics that led it to succeed as an invader.   However, it has been noted that the species is 

incredibly tolerant to environmental stressors.  

N. obscurata is considered an extreme euryhaline, a species which has adapted to great 

changes in salinity.  It is able to survive for 3.75 days at 60 ppt and for up to two weeks at 1 ppt 

salinity (Siegrist, 2010).  This enables the species to live in unique areas such as the high 

intertidal and freshwater seepage (Byers, 2002, Dudas et al., 2007).  These areas are not 

inhabited by local clams and it is likely that N. obscurata was able to inhabit these open niches 

and spread at such a rapid rate because of its unique euryhalinity.   

To survive in such a wide range of salinities, N. obscurata likely uses a strong osmotic 

response.  This osmotic response may be uniquely different than local species because they do 

not inhabit the harsh environments of the high intertidal or areas of freshwater seepages.  N. 

obscurata may also have a higher filtration rate than other bivalves leading to its high densities 

and great rate of population expansion.  Because N. obscurata lives high in the intertidal, it may 

also have less time to filter feed and, therefore, need to filter at a higher rate to compensate for its 

reduced time submerged in water.   

N. obscurata‘s physiological response (osmotic response) and behavioral response 

(filtration) likely differ from local non-euryhaline bivalves, such as the native littleneck clam 

Leukoma staminea.  L. staminea lives in the mid to low intertidal zone and dies within 48 hours 

of hypoosmotic exposure (Byers, 2002; Gillespie et al., 2001; Siegrist, 2010).  L. staminea is an 

important species because of its economic and recreational value (Shaw, 1986).  Understanding 
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these responses will help to more fully explain N. obscurata’s differences from local species, 

success as an invasive species, species range, effect on the environment, and effect on local 

species. 

It is also important to note that behavioral responses such as filtration rate directly affect 

the amount of exposure tissues have with the external environment, altering the tissue’s 

physiological osmotic response.  Because physiological and behavioral changes are interrelated, 

studying these changes in tandem will help to more fully understand a clam’s reaction to 

changing salinities.   

 

 

Osmolyte Concentration 

The biological mechanisms N. obscurata employs to survive under changing salinity are 

unknown.  Many organisms use physiological mechanisms such as solute and ion regulation to 

compensate for osmotic stress.  Altering the internal ion composition in both osmoconformers 

and osmoregulators affects ion gradients, osmotic pressures, protein ion interactions, and other 

cellular functions (Hill et al., 2004).  Isolated N. obscurata gill tissue survives with no decline in 

activity for at least two weeks during hypoosmotic exposure (10 ppt to 30 ppt) (Siegrist, 2010).  

In addition, N. obscurata gill tissue survive in extreme hypoosmotic and hyperosmotic salinities 

for up to 14 days (Wittes and Donovan, unpublished data).  All cell membranes are permeable to 

water, causing cells to shrink in hyperosmotic conditions and swell in hypoosmotic conditions.  

Changes in cell size and internal water content are undesirable for cells that need a constant cell 

volume to maintain optimal function.  To maintain optimal cell volume, organisms adjust their 



4 
 

cellular ion concentration by increasing their internal solute concentration in hypotonic solutions 

and decreasing their solute concentration in hypertonic solutions (Yancey, 2001).   

Osmolytes, especially betaine, play an important role in osmotic regulation at extreme 

salinities in bivalves and do not alter the cell’s protein structure (Yancey, 2005).  Betaine is a 

chemical that is synthesized from choline via intracellular synthesis or from extracellular pools 

produced in the mitochondria (Pierce et al., 1992; Yancey, 2005).  Betaine is often accumulated 

as a response to stress, especially osmotic stress, and is the most important solute dictating 

osmolyte regulation in the California mussel, Mytilus californianus, where its concentration 

decreases in gill tissue under hypoosmotic conditions (Neufeld and Wright, 1996).  Rapid 

increase in betaine is also seen in the ribbed mussel, Geukensia demissa, in hyperosmotic 

environments (Deaton, 2001).  The Atlantic oyster, Crassostrea virginica, mobilizes glycine-

betaine under osmotic stress, but this varies among populations (Pierce et al., 1995).  Sorbitol, 

often synthesized from glucose, has also been linked to osmotic regulation in invertebrates 

(Yancey, 2005).  Betaine and sorbitol are both compatible solutes, meaning their concentrations 

can change dramatically without disrupting protein function.  Betaine and sorbitol concentrations 

in bivalve tissue can be tested simultaneously using High Performance Liquid Chromatography 

(HPLC).   

Not only is it important to understand the role of osmolytes at different salinity levels, but 

it is necessary to determine which tissues are responsible for osmotic regulation to further 

understand their basic biology.  Most studies on bivalves have linked osmotic regulation to gill 

and mantle tissue.  Bivalve gill tissue functions as a major site for gas exchange, having a high 

surface area-to-volume ratio, and has been linked to osmotic regulation.  For example, osmotic 

regulation and changes in osmolyte concentration have been seen in the gills of G. demissa 
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(Deaton, 2001), Mytilus edulis (Neufeld and Wright, 1996), Mytilus trossulus, C. virginica and 

Mercenaria mercenaria (Van Winkle, 1972).  The mantle also has high surface area-to-volume 

contact with the external environment and the free amino acid pool changes with differing 

salinity in the mantle of the bivalve Corbula amurensis (Paganini et al., 2010).   

The timing of osmolyte production, or how an organism responds under short-term stress 

versus under long-term stress, is also important.  Short-term changes are necessary for rapid 

adjustment, as might happen in estuaries subject to quick tidal changes or runoff areas during a 

rainstorm.  These rapid internal solute changes happen via the break-down of existing proteins 

into free amino acids or by disassembling other large molecules.  In many bivalves, there is an 

immediate short-term stress response to salinity change, sometimes referred to as initial shock 

response.  For example, within 12 hours G. demissa rapidly increases glycine and alanine when 

transferred from hypoosmotic to sea water conditions (Deaton, 2001).  Because N. obscurata 

survives in estuaries and areas of freshwater seepages which have rapidly changing salinities it 

likely has a short-term response. N. obscurata also survives for up to 3.75 days at 60 ppt and 

over two weeks at 1 ppt salinity, which means that it has long-term methods of tolerating 

osmotic stress (Wittes and Donovan, unpublished data).  For this reason, I tested osmolyte 

concentrations in both short-term (5-90 minute) and long-term (24 hour) exposure to different 

salinities.   

 

 

Filtration Rates 

As bivalves alter their internal composition to compensate for changes in salinity they 

may also undergo behavioral responses, such as change in filtration rate.  Bivalves may reduce 
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their exposure to a salinity change by closing their shell or reducing filtration.  This may help 

them save energy in an osmotic response (Shumway et al., 1977), but in return they must use 

energy in controlling shell closure and sacrifice optimal respiration and feeding during this time 

(Vernberg et al.. 1969; Pierce, 1971; Riisgard et al., 2003).  Open siphons, active beating of gill 

cilia, and filtration serve in bivalve respiration and feeding.  Therefore, shell-closing and a lower 

filtration rate may reduce a bivalve’s respiration, metabolism, feeding rates, and reproduction 

(Navarro et al., 2003; Gosling, 2003).  Lower feeding and respiration rates may translate to 

lower growth and reproduction, and reduced expansion of the species (Newell and Bayne, 1980; 

Møhlenberg and Riisgård, 1981; Smaal and Widdows, 1994).  Bivalves must balance their need 

to respond to osmotic stress by reducing filtration with the need to filter, respire, feed, grow, and 

reproduce. 

Filtration rate varies among bivalve species, but is particularly high in some euryhaline 

species such as the Asian clam, Corbicula fluminea, which can filter up to 10 ml hr-1 g-1, which 

in turn may have helped the populations expand so quickly (Elliott and zu Ermgassen, 2008). 

The invasive bivalve Perna viridis has nearly double the filtration rate of the native bivalve C. 

virginica under slightly hypoosmotic conditions (25 ppt to 35 ppt) (McFarland et al., 2013).  It is 

likely that N. obscurata filters at a high rate, which has helped the species grow and expand. N. 

obscurata’s unique inhabitation of the high intertidal which limits the amount of time the species 

can filter feed.   
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Experimental Questions 

My goals were to determine physiological and behavioral responses of N. obscurata and 

L. staminea to different salinities (1 ppt, 20 ppt, 30 ppt, 40 ppt, and 60 ppt).  My research 

questions were:  

1. How do levels of betaine and sorbitol differ in gill and mantle tissues of N. obscurata and 

L. staminea after clams are held for 24 hours at different salinities? 

2. How do levels of betaine and sorbitol change in N. obscurata gill tissue after being held 

at different salinities over short-term exposure (5 min, 60 min, 90 min)? 

3. How do filtration rates differ in N. obscurata and L. staminea under exposure to different 

salinities?  
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MATERIALS AND METHODS 

Clams were collected either from Mud Bay in Bellingham, WA, (48.701861° N, -

122.497041 ° W) during low tides in March through May 2013 or from Birch Bay, WA, 

(48.927° N 122.745° W; accessed north of Birch Bay State Park) during a low tide in February 

2013.  Both species were collected with hands and shovels from the first 0.5 meters of sediment.  

Clams were held in a 10-gallon holding tank of 30 ppt salt water for approximately 48 hours 

until the time of the experiment in Western Washington University’s 10°C cold room.  This is 

where all experiments took place to ensure the clams were tested at a constant temperature.  

Clams were not fed during this time.  Clam mass was recorded before they underwent treatment. 

Water of different salinity levels (1 ppt, 20 ppt, 30 ppt, 40 ppt, and 60 ppt) was prepared 

separately for every experiment.  The salinity levels were chosen to represent one treatment near 

local ambient seawater conditions (30 ppt), two treatments in which N. obscurata osmoconforms 

(20 ppt and 40 ppt), and two treatments in extreme hypoosmotic and hyperosmotic environments 

in which N. obscurata osmoregulates (1 ppt and 60 ppt) (Wittes and Donovan, unpublished data) 

 

 

Osmolyte Analysis 

 

Osmolyte levels of whole animals under long-term conditions (24 hours) 

After collection and the 48 hour holding time, clams (N = 50, 25 clams of each species) 

were haphazardly distributed individually into labeled 500 ml plastic containers filled with 250 

ml of the treatment water (1 ppt, 20 ppt, 30 ppt, 40 ppt, or 60 ppt), resulting in five clams per 

salinity level per species.  The plastic containers were arranged in a randomized block design and 
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stock solutions of water of each salinity were made by mixing Instant Ocean with DI water.  

Salinity was checked with a refractometer.  Each container contained a clam and an air stone, set 

on low air flow.  The clams were held in the treatment water for 24 hours.  

Just prior to the experiment, a small hole was drilled with a Dremel drill into each 

clamshell on the posterior shell area.  The hole ensured that at least some treatment water came 

in contact with gill and mantle tissue if the clam closed during treatment.  Care was taken to 

avoid drilling into any of the clam’s mantle or internal organs during this process, however 

mantle tissue was occasionally damaged in this process.  

 Gill and mantle tissues (25 gill and 25 mantle samples from each species) were dissected 

and to ensure standardization in dissection technique, a single lab assistant was selected to 

dissect all specimens for an entire experiment.  Dissections were completed using surgical 

scissors, washed between dissections.  After dissections, tissues were blotted dry, wet mass was 

recorded, and HPLC preparation and analysis was performed. 

For HPLC preparation, dissected gill and mantle tissues were kept on ice until they were 

homogenized in 2 ml 10% trichloroacetic acid using a table-top homogenizer for 20 seconds per 

sample.  The homogenizer was cleaned with DI water between samples.  Samples were then 

centrifuged at 12,000 rpm for 15 minutes at 4°C.  Samples were refrigerated for 2 hours at 1.6°C, 

allowing extra particulate matter to precipitate out of solution, and then centrifuged once again at 

12,000 rpm for 15 minutes at 4°C.  I then extracted 1.5 ml of the supernatant and neutralized it 

using 2.5M KOH to pH 6.2-7.8, checking accuracy with a micro pH meter, recalibrated every 20 

samples.  Data on the amount of KO (between 200 µL and 500 µL) and the exact pH of each 

sample were recorded for use in dilution calculations.   
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To remove remaining fats and isolate betaine and sorbitol, samples were passed through a 

Water’s Sep-Pak C18 cartridge.  This cartridge was first loaded with 2 ml HPLC grade methanol 

and filtered using a vacuum.  After the methanol filtration, 2 mls of nano-pure water were also 

loaded and filtered through.  During this process, the filter was never allowed to dry out and a 

meniscus of fluid was always left covering the filter.  After the initial preparation of the filter, 

samples were loaded and filtered using a vacuum.  These samples were then stored at -80ºC in 

HPLC vials until analysis. Storage time for the samples never exceeded 72 hours.  

 Each sample was passed through an HPLC column using an ion exclusion Rezex RCM 

Monosaccharide Ca+2 (8%, 300 x 7.8 mm) column manufactured by Phenomenex (PN 00H-

0130-K0).  I ran 50µl of each sample for 40 minutes.  Each sample was run through the column 

at 85º C with a flow rate of 1 ml min-1 and a mobile phase of nano-pure water.  The 

concentration outputs were read by a Reichert digital refractometer (Model #13106600).  Before 

running any samples, the column was turned on and warmed for 4 to 5 hours and nano-pure 

water poured through the system until a baseline had stabilized.  Column filters were replaced 

every 100 samples ensuring the column stayed clean of particulates.  

For both osmolyte experiments, a negative and a positive control (internal standards) 

were included.  Negative controls were samples that went through the entire preparation 

procedure but contained no clam tissue.  Because these negative controls were free of osmolytes, 

they were used to indicate contamination between the samples.  These negative controls were 

placed randomly throughout the samples, ensuring that there was one negative control for every 

20 samples.  Positive controls or internal standards contained 0.5 mM betaine and 0.5 mM 

sorbitol.  There was one internal standard randomly placed for every 20 samples.  These 
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standards showed consistent concentrations of osmolytes, thus ensuring no drift or change over 

time with the sample preparation, the HPLC column, or the refractometer. 

Using Varian Inc.’s HPLC software, a chromatogram was generated for each tissue 

sample and the sample was then analyzed for concentrations of betaine and sorbitol.  This 

information was gathered by first creating a series of chromatograms from standards, which 

contained known concentrations of betaine and sorbitol.  A standard curve was created from this 

series of chromatographic standards.  The samples were then compared to the standard curve to 

determine concentrations of betaine and sorbitol in each sample.   

To account for the different mass of gill and mantle tissue in samples, wet tissue mass 

was converted into dry tissue mass.  I derived a conversion factor for wet to dry tissue mass by 

dissecting gill and mantle tissues from three individuals of each clam species, weighing them 

while wet, then drying them at 100°C for 18 hours.  Conversion rates were as follows: 0.17 for 

N. obscurata mantle tissue and 0.13 for gill tissue and 0.17 for L. staminea mantle tissue and 

0.16 gill tissue with small amounts of variance between the dried samples.  These data closely 

matched those of previously derived L. staminea wet to dry tissue conversion rates of 0.21 for all 

L. staminea tissue (Sidwell, 1981).  The initial wet mass of each sample was then converted to  

dry mass and betaine and sorbitol were ultimately analyzed as µmole osmolytes per gram of dry 

tissue mass. 

A three-way ANOVA was used to determine statistical differences between osmolyte 

levels (dependent variable) in the two tissues (gill and mantle) in the two species (N. obscurata, 

L. staminea) at the different salinities (1 ppt, 20 ppt, 30 ppt, 40 ppt, 60 ppt) (fixed independent 

variables).  SPSS was used to analyze results of all experiments.   
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Osmolyte levels of gill tissue under short-term conditions in N. obscurata (5 to 90 minutes) 

Due to time restrictions in processing the tissues for HPLC, only a single tissue type and 

a single species could be tested in this experiment.  Previous research has shown that betaine can 

increase under hyperosmotic conditions and decrease under hypoosmotic conditions in bivalve 

gill tissue (Neufeld and Wright, 1996; Deaton, 2001) and I was most interested with the osmotic 

response of N. obscurata. Therefore I only tested betaine and sorbitol concentration in dissected 

gill tissue of N. obscurata. 

Dissected gills from individual clams (N=75) were submerged in 25 ml treatment water 

(1 ppt, 20 ppt, 30 ppt, 40 ppt, or 60 ppt) in 50 ml plastic containers.  The containers were 

arranged in a randomized block design as described above.  Due to the small size of these 

containers and the short treatment time, no aerators were used.  For each salinity level, the gills 

were held for 5, 30, or 90 minutes.  Each treatment contained five clams per salinity per exposure 

time.  Once the treatment time elapsed, the tissues were prepped for HPLC analysis, and 

osmolytes were extracted and analyzed as described previously.  A two-way ANOVA was used 

to determine statistical differences between osmolyte levels (dependent variable) in N. obscurata 

at the different salinities and the different time periods (fixed independent variables).  SPSS was 

used to analyze results of all experiments.   

 

 

 

 

Filtration Rates 

To determine behavioral responses in  N. obscurata and L. staminea to a range of 

salinities, clams (N = 50, 25 of each species) were collected and placed individually into plastic 
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containers filled with 250 ml treatment water (1 ppt, 20 ppt, 30 ppt, 40 ppt, or 60 ppt), with five 

clams per salinity treatment.  Fluorometry was used to determine filtration rate. Fluorometry 

reads the fluorescence of chlorophyll in algae.  In my experiment, algae was added to an 

experimental chamber and as the clam filtered this algae, the chlorophyll level decreased, 

measuring a decrease in fluorescence.  Preliminary studies showed that Tahitian Isochrysis 

galbana, acquired from a local aquaculture facility, had the lowest death rate under extreme 

salinities.  Therefore, 14 mls of Tahitian I. galbana were added to each container containing a 

clam and fluorometer readings were taken several times over the experiment (0 min, 60 min, 120 

min, and 340 min).  During the filtration experiment traits such as general appearance, siphon 

exposure, tissue swelling, and shell-closure were noted.   

Positive and negative controls were included in the experiment.  For each salinity level, 

there was a positive control that contained no clam, but did have algae added.  For every salinity 

treatment, there was also a negative control that contained a clam but no algae.  The fluorometer 

was checked with blanks containing DI water after every 20th sample to ensure there was no drift 

in the fluorometer readings.  Filtration rate was calculated using the equation:   

 
t

2.303 )C  - C ( V 
= rate Filtration

fo loglog
  

where Co was the fluorometer reading at 60 minutes, Cf was the fluorometer reading at 340 

minutes, V was volume, and t was time.  

During all experiments, the positive controls generally showed a minor decrease in 

fluorometry reading even though no filtration occurred.  This reduced fluorometry reading was 

likely due to algae death and settlement.  Any experimental treatment that produced the same or 

less change in filtration as the positive controls were considered treatments with no filtration and 
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were considered no filtration.  These treatments were not included in the final analysis of 

filtration rate. The negative controls showed almost no changes in the fluorometry readings.  

Two-way ANOVAs were used to determine statistical differences between filtration rates 

(dependent variable) in species ( N. obscurata and L. staminea) at the different salinities (1 ppt, 

20 ppt, 30 ppt, 40 ppt, 60 ppt) (fixed independent variables).  SPSS was used to analyze results 

of all experiments.   
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RESULTS 

 

Osmolyte levels of whole animals under long-term conditions (24 hours) 

Only betaine was consistently detected in gill and mantle tissue samples of Nuttallia 

obscurata and Leukoma staminea.  Sorbitol was present in only 4.5% of all gill and mantle 

samples.  No trends were seen in sorbitol concentration in species, salinity, or tissue type.  

Before analysis, betaine concentrations were transformed using the squared function to ensure 

equal variances.  I used the Levene’s test of equality of variances, which was verified.  There 

was a significant interaction between species and salinity (Table 1).  This means that that salinity 

and species’ effects on betaine concentration were interdependent and that N. obscurata’s 

betaine production responded differently to changes in salinity in comparison to L. staminea.  

The interaction is likely caused by the large amount of betaine in N. obscurata at 30 ppt salinity 

and the reduction in betaine under hypoosmotic and hyperosmotic conditions in N. obscurata 

(Fig.1).  Betaine concentrations in L. staminea were low at near seawater conditions (30 ppt) and 

increased under hypoosmotic and hyperosmotic conditions.  (Fig 1).  There were no significant 

differences in betaine concentration between gill and mantle (Table 1).   

Mean betaine concentrations were 191 µmole g-1 for N. obscurata and 154 µmole g-1 for 

L. staminea tissue over all salinities.  Mean betaine concentrations in mantle tissue were 167 

µmole g-1 for N. obscurata and 161 µmole g -1 for L. staminea, while mean betaine 

concentrations in gill tissue were 215 µmole g-1  for N. obscurata and 148 µmole g-1 for L. 

staminea (Fig. 1).  
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Table 1:  ANOVA results for the effects of  species (N. obscurata and L. staminea), salinity 

treatment (1 ppt, 20 ppt, 30 ppt, 40 ppt, 60 ppt), and tissue type (gill and mantle) on squared betaine 

concentrations (µmole g -1) in tissue held at different salinities over long-term exposure (24 hr). 
 

Source dF F p 

Species 1 3.885 0.055 

Salinity 4 0.859 0.497 

Tissue Type 1 0.495 0.486 

Species x Salinity 4 3.321 0.019 

Species x Tissue Type 1 0.789 0.379 

Salinity x Tissue Type 4 0.877 0.486 

Species x Salinity x Tissue Type 4 1.126 0.357 

Error 42   

Corrected Total 61   
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Figure 1. Average betaine concentrations (µmole g -1) in gill (upper panel) and mantle (lower 

panel) tissue of N. obscurata and L. staminea held at different salinities (1 ppt, 20 ppt, 30 ppt, 40 

ppt, 60 ppt) over long-term exposure (24 hr).  Clams were collected from Mud Bay, WA. N =5 

per treatment.  Error bars indicate standard error. 
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Osmolyte levels of gill tissue under short-term conditions in N. obscurata (5 to 90 minutes) 

Only betaine was consistently detected in excised gill tissue that had been exposed to 

different salinities for 5, 30, and 90 minutes.  Sorbitol was present in only 2.5% of the samples. 

No trends were seen in sorbitol concentration in species, salinity, or tissue type.  Before 

analyzing the results for betaine, I used an inverse transformation (1/y) to ensure equal variances 

under Levene’s test which was verified.   

Betaine concentration was significantly affected by time but not salinity under short-term 

exposure (Table 2).  Post-hoc analysis using Bonferroni’s method indicated that gill tissue 

exposed for five minutes had significantly less betaine than gill tissue exposed for 90 minutes (p 

> 0.001).  Mean betaine concentrations were 33 µmole g -1, 36 µmole g -1, and 48 µmole g -1 after 

5, 30, and 90 min, respectively (Fig. 2). 

Under these short-term conditions, N. obscurata produced an average of 38 µmole g-1, 

while over 24 hour exposure in the previous experiment N. obscurata produced 242 µmole g-1, a 

difference of 536%.   

 

 

Filtration Rates 

Before the results were analyzed, I transformed the filtration rate values using the log10 

function to achieve equal variances according to Levene’s test which was verified.  Species and 

salinity significantly affected filtration rate (Table 3).  N. obscurata actively filtered at 20 ppt, 30 

ppt, and 40 ppt salinity, with mean values of 5.2 ml hr-1 g-1, 7.9 ml hr-1 g-1, and 5.8 ml hr-1 g-1 

respectively.  L. staminea only actively filtered at 30 ppt and 40 ppt salinity, with mean filtration  
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Table 2:  ANOVA results for the effects of salinity (1 ppt, 20 ppt, 30 ppt, 40 ppt, 60 ppt) over 

short-term exposure periods (5 min, 30 min, and 90 min) on the inverse of betaine concentrations 

(µmole g -1) in N. obscurata gill tissue.  

 

Source dF F P 

Time 2 8.805 0.001 

Salinity 4 0.199 0.937 

Time x Salinity 8 0.753 0.645 

Error 42   

Corrected Total 57   
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Figure 2. Average betaine concentrations (µmole g-1) in N. obscurata gill tissue held at different 

salinities (1 ppt, 20 ppt, 30 ppt, 40 ppt, 60 ppt) over short-term exposure (5 min, 30 min, and 90 

min).  Clams were collected from Mud Bay, WA.  N = 5 per treatment.  Error bars indicate 

standard error.  
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Table 3:  ANOVA results for the effects of salinity (1 ppt, 20 ppt, 30 ppt, 40 ppt, 60 ppt) and 

bivalve species (N. obscurata, L. staminea) on the square root of filtration rates over 340 minutes 

exposure time using Tahitian Isochrysis galbana algae. 
 

Source dF F P 

Species 1 3.615 0.041 

Salinity 4 4.002 > 0.001 

Salinity x Species 4 0.693 0.567 

Error 38   

Corrected Total 47   
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rates of 3.6 ml hr-1 g-1 and 6.7 ml hr-1 g-1.  Overall N. obscurata filtered at a higher rate than L. 

staminea.  Species and salinity significantly affected filtration rate (Table 3).  N. obscurata 

actively filtered at 20 ppt, 30 ppt, and 40 ppt salinity, with mean values of 5.2 ml hr-1 g-1, 7.9 ml 

hr-1 g-1, and 5.8 ml hr-1 g-1 respectively. Species and salinity significantly affected filtration rate 

(Table 3). 

Species and salinity significantly affected filtration rate (Table 3).  N. obscurata actively 

filtered at 20 ppt, 30 ppt, and 40 ppt salinity, with mean values of 5.2 ml hr-1 g-1, 7.9 ml hr-1 g-1, 

and 5.8 ml hr-1 g-1 respectively.  L. staminea only actively filtered at 30 ppt and 40 ppt salinity, 

with mean filtration rates of 3.6 ml hr-1 g-1 and 6.7 ml hr-1 g-1.  Overall N. obscurata filtered at a 

higher rate than L. staminea.  At 30 ppt and 40 ppt salinity, where both species filtered, N. 

obscurata filtered at an average rate of 8.5 ml hr-1 g-1 while L. staminea filtered at an average rate 

of 6.2 ml hr-1 g-1 (Fig 3).  Filtration rates at 1 ppt and 60 ppt salinity were greatly reduced for 

both species.  Post-hoc analysis using Bonferroni’s method showed that filtration at 30 ppt was 

significantly higher than filtration at 1 ppt or 60 ppt salinity.  There was great variability in the 

filtration rates of N. obscurata at 30 ppt and L. staminea at 40 ppt salinity because both groups 

contained a single outlier with very high filtration.  

N. obscurata also exhibited less shell-closing and more exposed siphons in comparison to 

L. staminea at all salinity levels except at 1 ppt and 60 ppt salinity (Table 4).  At 1 ppt and 60 ppt 

salinity both species exhibited shell-closing and unexposed siphons.  Tissue swelling was noted 

in L. staminea at 1 ppt salinity.   
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Table 4:  Quantitative results for the effects of salinity (1 ppt, 20 ppt, 30 ppt, 40 ppt, 60 ppt) and 

bivalve species (N. obscurata, L. staminea) on filtration rates over 340 minutes exposure time 

using Tahitian Isochrysis galbana algae.  Plus plus (+ +) signifies that the action was observed to 

a great degree, plus (+) signifies that the action was observed to a lesser degree, and minus ( - ) 

signifies that the action was not observed. 

 

Filtration 

Treatment 

Active 

Filtration 

Openness 

of Shell 

N. obscurata 1 ppt - - 
L. staminea 1 ppt - - 

N. obscurata 10 ppt + + 
L. staminea 20 ppt - - 
N. obscurata 30 ppt + + + + 
L. staminea 30 ppt + - 
N. obscurata 40 ppt + + + 
L. staminea 40 ppt + - 
N. obscurata 60 ppt - - 
L. staminea 60 ppt - - 
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Figure 3.  Average filtration rates (ml hr-1 g-1) of N. obscurata and L. staminea held at different 

salinities (1 ppt, 20 ppt, 30 ppt, 40 ppt, 60 ppt) for 340 minutes.  Tahitian Isochrysis galbana 

algae were used for filtration and clams were collected from Mud Bay in Bellingham, WA.  N = 

5 per treatment.  Error bars indicate standard error.  
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DISCUSSION 

 

Filtration Rate  

 Nuttallia obscurata filtered at a higher rate than Leukoma staminea.  This significant 

difference is likely due to the slightly higher filtration rate of N. obscurata under ambient 

seawater conditions (30 ppt) and the dramatically higher filtration rate under brackish water 

conditions (20 ppt).  N. obscurata’s high filtration rate may lead to higher growth and 

reproduction, contributing to this species’ invasive settlement and fast population expansion 

(Newell and Bayne, 1980; Møhlenberg and Riisgård, 1981; Smaal and Widdows, 1994).  Higher 

filtration rate also likely helped N. obscurata inhabit the open niche of the high intertidal, where 

feeding time is limited, enabling this species to survive even with reduced time to feed.  Little is 

known about the effects of N. obscurata’s invasion, however it does outcompete some local 

species, such as the manila clam, Venerupis philippinarum, in disturbed or heavily harvested 

areas (Dudas, 2005).  N. obscurata’s high filtration rate is likely one characteristic which 

allowed the species to outcompete V. philippinarum. 

Other invasive bivalves such as the Asian clam, Corbicula fluminea, also have high 

filtration rates of 10 ml hr-1 g-1 (Elliott and zu Ermgassen, 2008), comparable to the 8.6 ml hr-1 g-1 

in N. obscurata.  These behavioral characteristics allowed C. fluminea to cause great economic 

and environmental damage such as outcompeting local species, limiting resources and changing 

food web dynamics, changing water turbidity, and changing sediment characteristics (Elliott and 

zu Ermgassen, 2008).  Morphological differences such as gill size and gill structure also play a 

role in filtration rate.  C. fluminea has large gills in comparison to total body size and wide 

spacing between gill cirri resulting in high filtration rate (Neufeld and Yoder, 2011).  The source 

of N. obscurata’s high filtration is unknown, but it is possible that similar morphological 
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characteristics to C. fluminea such as total gill size or gill characteristics could help N. obscurata 

filter at a high rate.  C. fluminea provides a cautionary tale with more than enough evidence to 

merit further research and understanding of how N. obscurata is able to filter at a high rate and 

the effects on growth rates, reproduction rates, high expansion rates, interspecies competition, 

and other economic and ecological impacts.   

N. obscurata also filtered under a wider range of salinities than L. staminea.  N. 

obscurata’s ability to filter under hypoosmotic conditions (20 ppt) may have allowed this 

invasive species to grow in the open niche areas of freshwater seepages and brackish waters.  

Inhabitation of these unique areas likely led to N. obscurata’s fast population expansion along 

the eastern Pacific coast because these areas had limited competition and available space.  N. 

obscurata’s ability to filter under 20 ppt, 30 ppt, and 40 ppt salinity is likely due to its 

euryhalinity adaptations and ability to cope with and adjust to osmotic stress.  Such adaptations 

may have come from N. obscurata’s inhabitation of hypoosmotic conditions in its native habitat 

where it commonly found from 8 ppt to 35 ppt salinity (Kolpakov and Kolpakov, 2004).   

N. obscurata’s ability to filter at a high rate under 20 ppt salinity and ability to filter 

under a wider range of salinities in comparison to L. staminea was expected.  L. staminea 

typically lives in salinities ranging from 27 ppt to 35 ppt salinity (Shaw, 1986) and N. obscurata 

inhabits areas of 8 ppt to 35 ppt salinity (Kolpakov and Kolpakov, 2004).  Previous research 

confirms that N. obscurata gill tissue survived for over two weeks at low salinity environments 

as low as 1 ppt salinity (Wittes and Donovan, unpublished data).  This difference in filtration rate 

between N. obscurata and L. staminea at 20 ppt salinity is further supported by Siegrist’s (2010) 

study on the effects of salinity on the health and survival of bivalve gill tissue.  This study found 

that N. obscurata had no reduction in gill cilia activity at 20 ppt compared to activity at 30 ppt 
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salinity, while L. staminea gill cilia activity was significantly reduced under 20 ppt in 

comparison to 30 ppt salinity.  In addition, Elsasser and Donovan (unpublished data) found that 

whole N. obscurata survived for 57.2 ± 2.8 days in 20 ppt salinity while L. staminea only 

survived for 35.0 ± 2.6 days.  N. obscurata’s salinity tolerance merits further research to confirm 

differences between N. obscurata and local species and the impacts of these differences.   

Both N. obscurata and L. staminea filtered at high rates compared to other bivalves 

previously studied.  At 30 and 40 ppt salinity L. staminea filtered at 6 ml hr-1 g-1 while N. 

obscurata filtered at 10 ml hr-1 g-1.  Kryger and Riisgård (1988) examined six different bivalves 

and found that filtration rates varied between 1.2 and 1.9 ml hr-1 g-1 at 35 ppt salinity, much 

lower than L. staminea or N. obscurata.  Even the incredibly invasive and fast growing 

euryhaline Zebra mussel, Dreissena polymorpha, filtered between 1.4 and 1.9 ml hr-1 g-1 (Kryger 

and Riisgård, 1988).  N. obscurata and L. staminea filtration rates were comparable to invasive 

bivalves such as the Brown mussel, Perna perna, which filtered at a rate of 8.85 ml hr-1 g-1 at 35 

ppt salinity (Berry and Schleyer, 1983) and the Asian clam, C. fluminea, which filtered at a rate 

of 10 ml hr-1 g-1 (Elliott and zu Ermgassen, 2008).  The reason for high filtration rates in N. 

obscurata and L. staminea are unknown but may be due to favorable morphological differences 

(gill size or structure). Further research is needed to determine the cause of high filtration N. 

obscurata and L. staminea. 

 The high filtration of N. obscurata and L. staminea could be a result of experiment 

conditions and methodology.  There are many ways of measuring filtration rate and even similar 

experimental procedures can result in different filtration rates (Møhlenberg and Riisgård, 1981; 

Riisgard et al., 2003).  Algae concentration can even effect filtration rate with very low or very 

high algae concentrations resulting in lower filtration rate as seen in Mytilus edulis (Riisgard et 
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al., 2011).  Further experimentation is needed to confirm N. obscurata and L. staminea high 

filtration rates in comparison to other species without the bias of experimental methods. 

Salinity significantly affected filtration rate and both species had greatly reduced 

filtration rate under 1 ppt and 60 ppt salinity.  N. obscurata and L. staminea underwent additional 

behavioral and physical responses including shell-closing in both species and tissue swelling in 

L. staminea.  Tissue swelling also occurs in N. obscurata under 1 ppt salinity (Wittes and 

Donovan, unpublished data). This implies that neither N. obscurata nor L. staminea have a 

sufficient osmotic response to survive in freshwater. These species were unable to combat the 

uptake of water at this very low salinity via regulatory volume decrease, which is common in 

salinity stressed invertebrates (Pierce and Greenberg, 1973).  Swelling is detrimental to a cell’s 

vital functions, often resulting in cell death (Yancey, 2001).  This means that neither N. 

obscurata nor L. staminea have adapted to survive in freshwater environments. 

 The geographical range of N. obscurata and L. staminea populations are likely related in 

part to their filtration rates and salinity tolerance.  N. obscurata inhabits areas of freshwater 

seepage, estuaries, river mouths and seawater. This species is unlikely to spread to freshwater 

lakes and rivers because it cannot filter or survive long-term exposure to freshwater.  Since its 

discovery in 1991, N. obscurata has moved from Northern Vancouver Island (discovered in 

1993) to Crescent City, California (Dudas, 2005; Cureton, 2015).  The geographical range of N. 

obscurata is likely also dictated by temperature and competitive species.  It has been 

hypothesized that N. obscurata has a northern limit of British Columbia, as it can survive in 

brackish frozen Russian waters that even freeze over (Kolpakov and Kolpakov, 2004; Dudas, 

2005).  N. obscurata has moved as far south as Northern California and it has been hypothesized 

that N. obscurata will not move into southern California because of a similar native species 
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Nuttallia Nuttallia, that may compete with N. obscurata (Dudas, 2005; Cureton, 2015).  L. 

staminea only filtered in salinities close to ambient seawater (30 and 40 ppt).  This closely 

matches the previously reported optimal range of L. staminea of 27 ppt to 30 ppt salinity (Shaw, 

1986).  This explains why L. staminea has not moved into areas of the high intertidal, brackish 

water or freshwater.  Current population studies and field collections are needed to confirm the 

current geographical range and preferred microclimates of N. obscurata, which would lead to a 

more complete understanding of geographical range of this growing invasive species.  

The high filtration rate of N. obscurata may have great environmental impacts.  Other 

bivalves with high filtration rates, like C. fluminea, altered eutrophication, increased water 

clarity, limited food availability, increased levels of nitrogen and phosphorus through excretion, 

acted as vectors for parasites, and accumulated contaminants (Nichols et al., 1990; Elliott and zu 

Ermgassen 2008; Sousa et al., 2008).  The invasive mussel, Perna perna, has populations that 

filter an estimated 144,000,000 to 157,000,000 l m-2 of water annually on South Africa’s coast, 

filtering over 454,000 g m-2 of organic material.  This rate of filtration significantly changed 

composition of the water column and the local ecosystem on the Natal Coast (Berry and 

Schleyer, 1983).  Bivalves with high filtration rates also filter larval invertebrates.  This has been 

demonstrated in the oyster, Crassostrea virginica, where high filtration rates contributed to the 

outcompeting of other bivalve species by filtering larvae, therefore decreasing recruitment of 

competitor species (Gosling, 2003).  There is also evidence that the increase in N. obscurata 

increases ammonium. This may increase eutrophication, which is already increasing in the areas 

of freshwater seepages due to increased pollution in areas of freshwater runoff (Chan and 

Bendell, 2013).  N. obscurata has been labeled an invasive species and already shows signs of 

outcompeting the economically important Manila clam, V. philippinarum, in disturbed areas 
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(Dudas, 2005).  V. philippinarum accounts for 50% of commercial clam sales in Washington 

State and is highly valued by recreational and commercial harvesters (WDFW, 2015).  It is 

possible that N. obscurata’s high filtration rate is in part responsible for this out-competition.  

High filtration rates and growth rates for N. obscurata and L. staminea may also be of 

economic interest.  Increased filtration may lead to higher growth rate and shorter incubation to 

sale time.  There is little economic research, market research, or consumer data available on N. 

obscurata, however the clams are sold in fish markets and grocery stores from Canada to 

California.  N. obscurata has been marketed as the “savory clam” and is harvested from naturally 

seeded populations from British Columbia to Oregon.  N. obscurata’s salinity tolerance could 

increase the area of harvesting for N. obscurata.   

N. obscurata’s ability to survive in disturbed areas is of special concern as an increased 

number of beaches and tidal zones undergo human disturbance.  N. obscurata may become a 

more prominent species in these expanding disturbed areas.  Such areas may also be affected by 

pollutants and urban runoff and N. obscurata’s high filtration rate may lead to a high level of 

toxin acquisition for recreation and commercial harvesters.  N. obscurata also thrives in areas 

susceptible to harmful algal blooms and there is some evidence that N. obscurata accumulates 

and stores toxins longer than other local clam species (WDFW, 2015).  This acquisition of toxins 

would be of great interest to the commercial and recreational harvesters. Future work should 

explore the market viability of N. obscurata, while keeping in mind the possibility of higher 

toxin acquisition and invasive nature of the species.   

Both species underwent shell-closing to reduce exposure to the external environment at 1 

ppt and 60 ppt salinity, creating a temporary microclimate in the mantle cavity which minimized 

hypoosmotic stress on tissues.  Shell-closing likely helped N. obscurata and L. staminea survive 
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such conditions by preventing osmotic shock and reducing the need for a strong osmotic 

response.  These results were expected as neither N. obscurata or L. staminea are found in 

freshwater environments or in extreme hyperosmotic conditions (60 ppt), an environment that 

does not exist on the Pacific coast.  Shell-closing is expected as Hoyaux et al. (1976) found that 

three species of bivalves (M. edulis, Scrobicularia plana, and Glycymeris glycymeris) closed 

their shells when transferred to hypoosmotic conditions.  Lack of filtration and shell-closing alter 

cellular responses and internal biochemistry and are likely only used as short-term responses to 

low salinity exposure.  For example, reduced filtration and shell-closing led to reduced 

respiration in Mytilus sp. (Potts and Perry, 1964) and increased anaerobic activity leading to 

changes in chemical composition and free amino acid pool in up to eight different bivalves 

(Shumway et al., 1977).  In Shumway et al.’s (1977) study, eight species of bivalves (M. edulis, 

Mercenaria mercenaria, Crassostrea gigas, Modiolus modiolus, Scrobicularia plana and Mya 

arenaria) closed their shells under low salinity conditions.  These factors may be detrimental to 

normal cell function and the long-term reduction filtration or shell-closing will likely result in 

poor cell health or cell death.  Therefore, the behavioral responses of N. obscurata and L. 

staminea in my experiments were likely short-term responses.  

Filtration rate is also of great importance because it, in part, determines the amount of 

exposure clams have with the external environment and the extent of osmotic response needed 

by the clam.  Therefore, examining the effects of salinity on filtration rate should be studied in 

tandem with the effects of salinity on osmotic response (osmolyte concentration) in N. obscurata 

and L. staminea.  Although my filtration rate experiment was run separately from my osmolyte 

concentration experiment, it is imperative to understand that these biological systems are 
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interdependent and related.  Behavioral responses such as filtration rate affect physiological 

responses such as osmolyte concentrations. 

 

Osmolyte Concentrations 

Betaine was present in all gill and mantle tissues tested, ranging in concentration from 6 

to 377 µmole g-1.  Therefore, betaine was an intracellular component in both N. obscurata and L. 

staminea.  This was expected as betaine is a common osmolyte in many organisms (Cayley et 

al., 1992; Pierce et al., 1992; Craig, 2004; Asraf and Foolad, 2007).  Betaine is also a compatible 

solute, having the ability to increase or decrease dramatically in concentration without disrupting 

proteins (Yancey, 2005).  Betaine can also increase the water retention of cells, replace inorganic 

salts, and protect intracellular enzymes against osmotic or thermal stress (Craig, 2004).  Betaine 

has also been shown to reduce drought and thermal stress in plant cells (Asraf and Foolad, 2007), 

stabilize protein structure (Cayley et al., 1992), and help water balance in bacteria cells (Cayley 

et al., 1992).  N. obscurata had a very high amount of betaine at 30 ppt salinity in gill and mantle 

tissue after 24 hour exposure.  These large stores of betaine in N. obscurata gill tissue are present 

because N. obscurata is an extremely tolerant species and may need to utilize betaine as an 

osmoprotectant under many stressful conditions on a regular basis.  Betaine also likely allows N. 

obscurata to undergo normal cell function while being very tolerant to changes in salinity, 

temperature, and oxygen.  This high amount of betaine may imply that the choline to betaine 

synthesis pathway is working a high rate under normal seawater conditions (Pierce et al., 1992; 

Yancey, 2005).  Sorbitol was not detected in a high number of samples.  Although sorbitol is 

known as a common osmoprotectant, its absence is not surprising as some studies suggest that a 
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decrease in sorbitol synthesis is compensated by increase betaine synthesis in mammalian cells, 

which may also be true for bivalves (Yancey and Burg, 1990).  

There was a reduction in betaine under hypoosmotic conditions in gill tissue in N. 

obscurata in comparison to ambient seawater conditions under 24 hours of exposure.  This 

reduction in betaine was likely caused by betaine breakdown and/or exportation or the reduction 

in the choline to betaine production pathway.  This is expected as Neufeld and Wright (1996) 

found that the mussel, Mytulis californianus, had a 37% decrease in betaine concentrations after 

gill tissue was exposed to 20 ppt seawater for one hour. Further research is needed to determine 

the cellular mechanism used to decrease betaine in gill tissue.  

There was also a reduction in betaine under hyperosmotic conditions in N. obscurata gill 

tissue over 24 hours.  This reduction was unexpected as N. obscurata, an osmoconformer at 40 

ppt salinity, should increase osmolyte concentrations under hyperosmotic conditions.  I suspect 

that these cells produced other osmolytes or free amino acids to help compensate for the 

hyperosmotic surroundings.  It is also possible that N. obscurata was already undergoing cell 

death at 60 ppt salinity as previous studies show that cell death occurs after 3.75 days (Wittes 

and Donovan, unpublished data).  Betaine concentration was low in L. staminea gill tissues at 

seawater conditions.  This is expected as L. staminea does not undergo environmental stresses 

regularly and would not need a storage of betaine used for osmotic or other stresses.  L. staminea 

did produce betaine under all hypoosmotic and hyperosmotic conditions.  The increase in betaine 

under hyperosmotic conditions likely accumulated as an osmotic response, increasing solute 

concentration in gill cells to closely match that of the external environments, allowing L. 

staminea to try and osmoconform at these levels.  Betaine concentration also decreased in 

hypoosmotic conditions likely accumulating to help stabilize proteins under these low salinity 
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stressful conditions. The betaine concentrations of both gill and mantle tissue in both species 

were relatively constant and no trends were seen in this data. This may mean that gill tissue 

dictates osmotic or stress response more than mantle tissue.  These differences in species and 

tissue reaction to salinity likely let to the interaction seen in this experiment and is a result of the 

different trends in N. obscurata and constant betaine concentrations in L. staminea.    

Betaine levels in N. obscurata gill tissue increased over time by 46%, from 33 µmole g-1 

at 5 minutes to 48 µmole g-1 at 90 minutes.  This shows that betaine can increase in gills quickly.  

It is unclear whether the increase in betaine was part of normal betaine synthesis or betaine 

production due to stress.  Betaine is produced as a general stress response as it is involved with 

drought and thermal stress in plant cells (Asraf and Foolad, 2007), stabilization of protein 

structure in invertebrates (Cayley et al., 1992), and water balance in bacteria cells (Cayley et al., 

1992).  In my experiment, clams were transferred to different environments and tissues were 

removed.  These environmental changes and dissection of the gills undoubtedly caused stress to 

the clams.  There is also evidence in my study that betaine accumulates over a longer time 

period.  Mean betaine levels in gill tissue were 242 µmole g-1 after 24 hours of exposure in 

comparison to an average of 48 µmole g-1 in 90 minutes.  Although these experiments were run 

independently and cannot be directly compared, this may be an indication that betaine 

concentration increases over 24 hours.  Again, this betaine accumulation could be a result of 

normal betaine synthesis or a result of increased production due to the stress caused by the 

experimental treatment process. Further research is needed to determine why betaine was 

produced and to test the difference between short-term and long-term betaine production.   

Betaine did not accumulate under hyperosmotic conditions after 24 hours in N. 

obscurata, but it is clear that the species survives at 40 ppt salinity and survives for at least 3.75 
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days under 60 ppt salinity.  It is likely that other osmolytes such as taurine, alanine, glycine or 

proline help N. obscurata survive in these conditions.  Taurine is one of the most abundant 

intracellular osmolytes present in the bivalves M. californianus (Silva and Wright, 1994) and 

Saxidomus giganteus (Yancey, 2005).  Other osmolytes and amino acids such as proline, glycine 

and alanine also contribute to coping with osmotic stress in bivalves.  Deaton (2001) determined 

that the ribbed mussel, G. demissa, produced alanine, glycine, and proline in gill tissue exposed 

to hyperosmotic salinities.  I had originally planned to measure taurine levels in tandem with 

sorbitol and betaine.  The HPLC chromatogram outputs showed that at least 20% of samples 

contained a compound that was likely taurine.  However, the taurine in the samples reacted with 

the HPLC preparation compounds or the HPLC column.  These interactions created broad and 

tailing peaks in the chromatograph, making it difficult to compare my sample to my taurine 

standard.  Therefore, I was unable to determine the amount of taurine in my samples.  Further 

experiments should determine the relationship between osmotic stress and the concentration of 

taurine, alanine, glycine and proline in N. obscurata and L. staminea and develop HPLC 

preparation and analysis that allows researchers to look at these compounds in tandem.  

 

Conclusion 

N. obscurata’s unique physiological and behavioral characteristics represent an important 

example of how euryhalinity can aide invasive clam species in settlement and expansion.  N. 

obscurata’s large stores of betaine under normal conditions and ability to reduce these stores 

under hypoosmotic conditions likely helped N. obscurata to be a tolerant species to abiotic 

stressors and have relatively high filtration rates under hypoosmotic conditions.  N. obscurata‘s 

tolerance and ability to filter at a high rate and over a wide range of salinity allowed it to feed 
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and grow in open niche areas and expand quickly.  Further research on N. obscurata should 

continue to help us understand this uniquely tolerant species and how its tolerance and high 

filtration rate lead to high growth and production and well as understand the species’ 

environmental and economic impacts.  
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