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ABSTRACT

From April 1997 to January 1999, a water quality study in a four square mile area
in northern Whatcom County was conducted by the Geology Department and the Institute
for Watershed Studies at Western Washington University. As part of this study, this
thesis focused on characterizing the hydrostratigraphy, groundwater flow directions and
flow velocities and developing a groundwater model using MODFLOW and Boss GMS
version 2.0 (GMS) to simulate groundwater flow and nitrate transport within this area.

Monthly groundwater levels and water quality data were collected and analyzed
from 21 domestic wells and one piezometer in the field and at Western Washington
University’s Institute for Watershed Studies State Certified Laboratory. This thesis used
data collected from April 1997 to August 1998 which was divided into six seasons.

To characterize the hydrostratigraphy, five geologic cross sections were
constructed from well logs in the study area using Autocad. Six geologic units were
identified, which were grouped into two hydrostratigraphic units defined as the Sumas
Aquifer and the Sumas Aquitard. The Sumas Aquifer in this area is an unconfined
aquifer ranging in thickness from 180 feet in the northeast portion of the study area to 80
feet in the southeast portion of the study area. The Sumas Aquifer is a heterogeneous
mixture of gravel and sand with some scattered silt and clay lenses and displays good
hydraulic continuity. The average hydraulic conductivity for the Sumas Aquifer was
determined to be 929 feet/day. The Sumas Aquitard is primarily a clay layer underlying
the Sumas Aquifer interpreted as Bellingham glaciomarine drift. The Sumas Aquitard
also consists of scattered lenses of clay and or silt interpreted as ice contact and lacustrine
deposits.

Water table contour maps were created using the computer program Surfer
version 6.0 (Surfer) for each of the six seasons using seasonally averaged water level
data. A separate water table contour map was generated using the results of a
groundwater model simulation. Groundwater flow directions determined from both sets
of water table contours showed an overall northwest to southeast trend with the exception
of the northwest portion of the study area which showed a south to southwest trend

shifting to a southeast trend in the southeast portion of the study area. Groundwater flow




velocity determined from seasonal water table contour maps using Surfer was
approximately 20.0 feet/day in the northwest to southeast direction. The approximate
travel time from the international border to the southern end of the study area in the
direction of groundwater flow determined using field data was 1.8 years. Groundwater
flow velocity using the model simulation was approximately 25 feet/day. The
approximate travel time from the international border to the southern end of the study
area in the direction of groundwater flow using GMS was approximately 1.5 years.
Groundwater levels varied from season to season with the largest average difference of
4.4 feet (throughout the study area) occurring between Spring 1997 and Fall 1997. The
greatest variation in water level in any one well due to seasonal recharge was 7.8 feet
between Spring 1997 and Fall 1998 at well 3. Well 1 was the only well having a
correlation between rising water levels and elevated nitrates.

Two dimensional nitrate contours were created for each of the six seasons using
seasonally averaged monthly nitrate data. Two dimensional nitrate contours indicate that
the highest concentrations were down-gradient from large dairies and fertilized crops
within the study area. Water quality data and two-dimensional nitrate contours indicate
that most of the contamination in the central portion of the study area is localized and
likely coming from sources up-gradient of wells 9, 14, and 18. However, elevated
nitrates in wells 5, 6, and 7 in the northeast portion of the study area are attributed to
sources across the international border in Canada.

A groundwater model was developed for the study area using MODFLOW and
GMS. Three nitrate transport simulations were created using GMS and a transport model
(MT3D). A 50 mg/L spike of nitrate was entered into the model domain at selected
points for one day. The nitrate spikes created contaminant plumes which were contoured
at the end of one year for scenarios one and three, and at the end of six months for
scenario two. Comparing nitrate transport simulations with nitrate concentrations
obtained in the field revealed correlations of elevated nitrates from known up-gradient
loading sources. Nitrate transport simulations indicate that large nitrate concentrations in
the north and south central portions of the study area are likely caused by local source

loading rather than source loading in Canada (specifically wells 14, and 18). However,




transport simulations also suggest that the relatively stable elevated nitrate concentrations
in the northwest (specifically wells 1 and 2) and northeast (specifically wells 5 and 6)
portions of the study area are likely caused from sources across the international border in

Canada.
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1.0 INTRODUCTION
1.1 ABBOTSFORD-SUMAS AQUIFER

The Abbotsford Sumas Aquifer is predominately an unconfined aquifer located in
southwestern British Columbia, Canada, and extends across the international boundary into
northwestern Washington State. The aquifer lies within the Fraser and Nooksack Lowlands
(Figure 1) and is comprised mainly of glacial sands and gravel deposited during the
Pleistocene Epoch. The aquifer serves as a water supply for nearly 10,000 people in the U.S.
and about 100,000 people in Canada (Abbotsford Sumas Aquifer 1996 Status Report). Due to
extensive agricultural activity in Canada and Whatcom County, a continuing deterioration of
water quality has occurred within the Abbotsford Sumas Aquifer over the past 40 years
(Abbotsford Sumas Aquifer 1996 Status Report). Nitrate is the most documented and long
term contaminant in the Abbotsford Sumas Aquifer with concentrations consistently above
both the Canadian Drinking Water Guidelines (CDWG) (Liebscher et al. 1992; Gartner Lee
1993) and the United States Environmental Protection Agency (EPA) drinking water
standards (Garland and Erickson, 1994; Cox and Kahle, 1999), both of which are 10
milligrams per liter (mg/L) nitrate as nitrogen (NO;N).

Nitrogen in the form of nitrate (NO';) is a negatively charged ion that is found in both
commercial fertilizers and animal manures. In the United States, it is estimated that the farm
animal population voids about 20 times as much manure solids as does the human population
(Gillies, oral communication 2000). Land application of the manures beyond those
agronomically required by crops can result in excess nitrogen loss in the form of nitrates to
surface and groundwater. Nitrates, because of their negative charge, are not readily adsorbed
by soils and are easily leached into the water table where they may reach domestic wells and
surface waters such as streams, lakes, and estuaries. Nitrates are considered one of the most
problematic and widespread of all groundwater contaminants (Canter, 1997).

Nitrate in drinking water can cause harmful effects on human health. Concentrations
of 10 (mg/L) or higher are believed to cause methemoglobinemia or “blue baby syndrome”
which occurs primarily in infants, and have also been cited as a risk factor in developing
gastric and intestinal cancer (State of Washington Department of Health, 1992). Moreover,

elevated levels of nitrate in groundwater serve as an indication of poor water quality in



general, and can be associated with other harmful agrochemicals (e.g. pesticides) (Liebscher et
al., 1992).

Nitrate levels in groundwater vary considerably within the Abbotsford-Sumas Aquifer
(Liebscher et al.. 1992; Gartner Lee, 1993; Garland, 1994: Garland, unpublished; Szeto,1994;
Wassenaar, 1994; Cox and Kahle, 1999). Several recent groundwater studies have
documented levels of nitrates that exceed the EPA limit for nitrate (Gartner-Lee Ltd., 1993;
Garland and Erickson, 1994; Cox and Kahle, 1999). The Washington State Department of
Ecology (Ecology) has identified groundwater nitrate contamination as high as 50 mg/L
nitrate near Halverstick and Pangborn Roads in north Whatcom County (Garland, 1997)
(Figure 2). It is recognized that dairy and berry farms in northern Whatcom County are
contributing to nitrate contamination of groundwater. However, sources for high nitrate
levels are not necessarily just from local agricultural practices. For example, sixty percent of
British Columbia’s poultry industry is located on or near the Abbotsford-Sumas Aquifer
(Ryan, 1994). Groundwater flow directions near the international border have been shown to
be to the south and southeast (Creahan, 1988; Kahle, 1990, Liebscher et al. 1992; Cox and
Kahle, 1999). Some have suggested that heavy poultry farming and agricultural practices in
Canada may be responsible for at least some of the elevated nitrate levels observed in

groundwater in the United States.

1.2 WHATCOM COUNTY AGRICULTURAL SETTING

Higher than normal nitrate concentrations in the groundwater of northern Whatcom
County have generally been associated with the agricultural setting and is the driving force for
this thesis. Whatcom County, Washington, is the second leading dairy producing county in
Washington State and ranks eighth in dairy production for the entire United States
(Thompson, oral communication 2000). Northern Whatcom County is also prime agricultural
land ranking fifth in world raspberry production as well as producing large crops of potatoes,
corn, strawberries and blueberries (Seeger, oral communication 1999). Large areas of
northern Whatcom County have relatively permeable soils and a high water table. Because of
this, unconfined portions of the aquifer in this region are particularly susceptible to nitrate

contamination from surface activities. The primary surface activities of concern include the




spreading of animal manure wastes and nitrogen based fertilizers, and the use of pesticides

related to agricultural activities.

1.3 PREVIOUS GEOLOGICAL RESEARCH

A number of geologic investigations and mapping efforts by Easterbrook (1963, 1966,
1971, 1973, 1974, 1975, and 1976), Armstrong (1981), and Armstrong and Brown (1953,
1954), describe the glacial chronology and surficial geology, but tend to have very general
interpretations of hydrostratigraphy both in the United States and Canada. In 1986, Halstead
investigated groundwater supply for the Fraser Lowland, British Columbia, Canada, which
included a detailed representation of the hydrostratigraphy only on the Canadian side of the
border (Halstead, 1986). On the U.S. side, Creahan and Kelsey (1988) produced a report on
the hydrogeology and groundwater flow in two areas near Lynden, Washington, and Kahle
(1990) conducted MS thesis research on the hydrostratigraphy and groundwater flow in the
Sumas, Washington area. Interpretations of the hydrostratigraphy by Creahan and Kelsey
(1988) was cursory and did not include the area of interest. Kahles study (1990) included the
area of interest. but interpretations of the hydrostratigraphy were determined to be incorrect
based on available well log data. The most recent study in this area was conducted by the
United States Geological Survey (USGS) and covered approximately 225 square miles in
northern Whatcom County and a portion of British Columbia, Canada (Cox and Kahle, 1999).
The USGS study (Cox and Kahle, 1999) provided good overview on the regional
hydrostratigraphy, but still lacks the detail needed for this study and was only made available
after this study was near completion.

Although the above studies outlined a general depiction of the geology and
hydrostratigraphy of the study area and surrounding region, a more detailed understanding is
required for this thesis for a variety of reasons. Little is known about the hydrogeologic
properties of the aquifer specific to this area, including unit depths and thickness. Estimates of
permeability and porosity of the aquifer materials are scarce and tend to be regional in nature.
The hydraulic continuity of various geologic deposits within this portion of the aquifer are not
well documented. Previous interpretations of the hydrostratigraphy in this area was

determined to be incorrect based on available well log data. Most importantly, a more




detailed picture of the hydrostratigraphy is needed to develop an accurate groundwater model

of the study area to aid in the understanding of nitrate distribution and transport.

1.4 PROJECT PURPOSE

[t remains unclear as to why elevated levels of nitrate exist in localized areas within
the Abbotsford-Sumas Aquifer. To help quantify nitrate distributions, a two-year nitrate study
funded by Ecology was conducted by the Geology Department and the Institute for Watershed
Studies at Western Washington University from April 1997 to January, 1999. The overall
purpose of this study was to monitor a small portion of the aquifer near the international
border (Figure 2) to determine the extent and variability of nitrate contamination in this area
and help determine possible sources. As part of this study, this thesis will focus on
characterizing the hydrostratigraphy and its relationship to groundwater flow directions and
flow velocities. The research will also apply a groundwater model and a contaminant

transport model to simulate groundwater flow and nitrate transport in the study area.

1.5 PROJECT OBJECTIVES

1. Characterize the hydrostratigraphy. Five geologic cross sections within the study area will

be constructed using Autocad version 14.0 (Autocad). Information on the hydrostratigraphy
will be gathered primarily through reviewing drillers well logs and conducting site visits to
active and abandoned gravel pits within and outside of the project area. Aquifer properties
will be determined from samples collected in the field for laboratory analyses.

2. Construct water table contour maps. Water table contour maps will be constructed using

Surfer version 6.0 (Surfer) for each of the six seasons water levels were measured in the field.
Each season will consist of three months of averaged water level data. Water table contours
will provide a tool by which estimates of groundwater flow directions and general
groundwater flow velocities can be determined. Water table contours will also be used to
interpret seasonal water table fluctuations within the aquifer and aid in groundwater model
calibration.

3. Develop a groundwater flow model. MODFLOW and Boss GMS version 2.1 (GMS) will

be used to develop a groundwater model to simulate groundwater flow within the study area.




The groundwater flow model will be coupled with a contaminant transport model to predict
nitrate transport.

4. Construct two-dimensional nitrate concentration contour maps. Surfer will be used to

construct two-dimensional nitrate concentration contour maps. Nitrate contour maps will help
identify spatial and temporal trends of nitrates within the study area.
5. Simulate nitrate transport within the study area A numerical transport model (MT3D) will

be used to simulate two-dimensional advection and dispersion of nitrate concentrations within
the study area. Three scenarios will be used to reflect nitrate loading sources in the field and
predictions from nitrate loading across the international border in Canada. Estimations will be

made concerning residence times for nitrates within this portion of the aquifer.

20 BACKGROUND
2.1 STUDY AREA DELINEATION

The Abbotsford-Sumas Aquifer covers approximately 100 square miles and is located
in southwestern British Columbia extending across the international boundary into
northwestern Washington State. The study area encompasses approximately four square
miles of the Abbotsford-Sumas Aquifer in the northemmost part of Whatcom County, WA,
beginning at the international boundary (Figure 2). The area is located west of Sumas and
northeast of Lynden on the proximal portion of the Sumas outwash plain, also known as the
Lynden Terrace, and includes the following Townships Sections and Ranges:

T41IN, Sec. 36, R3E and T4IN, Sec. 31, R4E.

T40N, Sec. 1 and 12, R3E and T40N, Sec. 6 and 7, R4E.
The study area was chosen because Ecology had previously identified elevated nitrate levels
in the area and studies involving stratigraphy, groundwater, and contamination had already
been conducted in and around the region (e.g., Kahle,1990; Liebscher 1992; Garland and
Erickson, 1994; Garland, 1997; Cox & Kahle, 1999).

2.2 REGIONAL GEOLOGIC SETTING
The Abbotsford-Sumas Aquifer lies within the Fraser and Nooksack Lowlands which

is part of a major structural trough that has subsided repeatedly since late Cretaceous time



(Halstead, 1986). The tectonic activities responsible for this subsidence also produced the
Coast and Cascade Mountain Ranges, which have undergone continuous weathering and
erosion supplying enormous quantities of sediment to the Fraser and Nooksack Lowlands.
These sediments were deposited along with plant and organic matter in fluvial, glacial and
marine environments. Post-depositional lithification and consolidation of these sediments
produced sandstones, siltstones, mudstones, shales, conglomerates, and hydrocarbon deposits
including coal. Post-depositional deformation of these sedimentary rock units produced an
irregular bedrock surface (Cox and Kahle, 1999). The Lowland was repeatedly invaded by
glaciers during the Pleistocene Epoch, which further shaped the topography prior to depositing
thick variable sequences of both glacial and nonglacial sediments which comprise some of the

most productive aquifers in this region.

2.3 LOCAL GEOLOGIC SETTING

Test drilling and geophysical surveys indicate that bedrock is beneath 1,000 to 2,000
feet of Pleistocene deposits throughout much of the Fraser-Nooksack Lowlands (Cox and
Kahle, 1999). However, one well log located less than 3 miles north of the international
border encountered bedrock at approximately 400 feet below land surface (Halstead, 1986).
Repeated advances and retreats of continental glaciers during the Pleistocene Epoch deposited
variable sequences of glacial, glaciofluvial, and glaciomarine sediments (Figure 3). Little is
known about the oldest and deepest deposits in the study area because they are relatively
inaccessible. Much more has been published about the more recent deposits of the last major

glaciation known as the Fraser Glaciation.

2.3.1 The Fraser Glaciation

The Fraser Glaciation began approximately 20,000 years ago and had a 10,000-year
duration (Easterbrook, 1963, 1966). Four phases (or stades) have been defined, each
representing a different time period during the advance and retreat of glacial ice. The first
stade, known as the Evans Creek Stade, was the advance of alpine glaciers in the North

Cascades and did not affect the study area so will not be discussed.




Vashon Stade

The Vashon Stade (20,000 to 13,000 years ago) began with the advance of glacial ice
southward across the international border and into the Puget Sound Lowland. Meltwater
streams from the advancing glacial ice deposited outwash sand and gravel south of the glacier
terminus. Outwash deposits were soon covered with glacial till (Vashon till) as the ice
thickened and moved farther southward. Vashon till is usually a compact, poorly sorted
mixture of clay, silt, sand, pebbles, cobbles, and boulders which has a texture somewhat
resembling concrete (Easterbrook, 1975). The ice responsible for depositing the Vashon till is
believed to have been more than a mile thick in the vicinity of Bellingham, WA (Easterbrook,
1975).

Everson Interstade

The Everson Interstade began approximately 13,500 years ago when the massive ice
sheet retreated and thinned in response to global climate changes. Relative sea level at that
time was several hundred feet higher than at present due to the depressed land surface caused
by the overlying weight of glacial ice and the large influx of water from melting glaciers. The
continental ice was lifted up by rising sea water levels and floated as the ice continued to thin
and retreat. As the ice melted, an unsorted mixture of clay, silt, sand. and gravel fell to the sea
floor burying clams and various other mollusks creating a deposit resembling glacial till with
shells known as glaciomarine drift (GMD). Not all GMD deposits contain shells.

In the Nooksack Lowland and westward to Bellingham, the Everson Interstade is
believed to be represented by two GMD units separated by fluvial sand and peat. Elsewhere, a
single GMD unit (Bellingham GMD) represents the Everson Interstade. According to
Easterbrook (1975), the oldest unit of the Everson Interstade (Kulshan GMD) consists of an
unsorted, blue-gray mixture of silt, clay, sand, and pebbles. The younger Deming Sand unit
overlies the Kulshan GMD and generally consists of stratified, brown, well sorted, medium to
coarse sand deposited on flood plains and beaches when sea level dropped relative to land
surface. The youngest unit (Bellingham GMD) overlies the Deming Sand and consists of

blue-gray, unsorted, pebbly, sandy silt and pebbly clay.



Sumas Stade

The Sumas Stade (10,000 to 11,000 years ago) represents the most recent phase of
Pleistocene glaciation in the area. During that time the main glacial terminus was just north of
the present-day international border with a lobe extending south into Whatcom County
Washington, near Sumas (Figure 4). Three Sumas Stade units were identified by Easterbrook
(1975) including till and ice contact deposits, outwash sand and gravel, and silt and clay
sediments. Glacial meltwaters deposited large quantities of sand and gravel forming an
outwash plain sloping southward from the border to the modern Nooksack floodplain near
Lynden, Washington. The rich sand and gravel deposits of the Sumas outwash makes up the
unconfined aquifer within the study area which is the primary source of irrigation and drinking
water. The Sumas outwash is also an important natural resource that has been and continues

to be mined for sand and gravel.

2.4 Hydrology (Climate and Precipitation)

The intention of this section is to report precipitation values during the course of this
study, not to discuss long term climatic trends. Additional information related specifically to
climate can be obtained through the U.S. Department of Commerce National Oceanic and
Atmospheric Administration. Briefly, northern Whatcom County is unique in that the
climatic controls of latitude, air mass source region, and topography are well blended for the
production of large quantities of high quality water (Washington State Division of Water
Resources, 1960). The region comprising the Abbotsford-Sumas Aquifer tends to experience
warm, relatively dry summers and cool rainy winters.

Precipitation data were obtained from the Clearbrook climatological data station,
which was selected because of its proximity to the study area (Figure 3) and its long history of
accurate daily observations (Washington State Division of Water Resources, 1960). Seasonal
precipitation data for 1997, 1998, and the 30-year precipitation averages are listed in Table 1
and shown in Figure 6. The monthly precipitation values were averaged into four seasonal
blocks per year defined as Spring (March, April, and May), Summer (June, July, and August),
Fall (September, October, and November), and Winter (December, January, and February).

The total precipitation for 1997 was 61.4 inches and the total precipitation for 1998 was 46.15



inches.

2.5 Surface Water Lakes

There are two small surface water lakes in the studyv area known as Judson Lake and
Pangborn Bog (Figure 2). Both Judson Lake and Pangborm Bog occupy deep kettles that have
been filled with peat but are surrounded by very permeable outwash sand and gravel
(Easterbrook, oral communication 1999). Judson Lake, which lies in the northern portion of
the study area and crosses the international boundary into Canada, is a shallow lake
(reportedly 2-7 feet in depth) covering about one half square mile. A small lake of unknown
depth occupies the center of Pangborn Bog and is only visible from aerial photographs. Much
of Pangborn Bog is heavily vegetated making the lake virtually inaccessible. The surface
water lake associated with Pangborn Bog once occupied a much larger area and was

artificially drained in 1947 (Riggs, 1958).

2.6 Surface Water Streams

Surface water streams in the study are limited to a small perennial stream entering the
west side of Judson Lake which originates in Canada, and Pangborn Creek which flows year
round out of Pangborn Bog (Figure 2). Two small springs feed Pangborn Bog from the north
and west as well as several man made drainage ditches to the north and east. The resulting
outflow stream from Pangborn Bog flows south and east and is the only source of surface

water drainage in the study area as there is no outflow stream associated with Judson Lake.

2.7 Soils

Because soils vary throughout the study area in type and thickness, their physical
properties may affect the quantity and quality of water recharging shallow aquifers (Cox and
Kahle, 1999). There are six soil types found within the study site described by the Soil Survey
of Whatcom County Area, Washington. Each will be discussed below; the number in
parentheses correlates to the soil type seen in the aerial photograph (Figure 7). The Soil
Survey of Whatcom County Area (1992) uses the following terms to describe a soils

permeability based on inches per hour water moves downward through saturated soil. Slow =



0.06 to 0.2 inch: moderate = 0.6 inch to 2.0 inches; rapid = 6.0 to 20 inches; very rapid = more

than 20 inches.

2.7.1 Kickerville silt loam, 0-15 percent slopes (79), (80). (81)

Kickerville silt loam soils are the most productive and widespread soils in the study
area. These soils are primarily used for growing raspberries with some areas used as pasture
for dairy cows and for spreading manure. The Kickerville silt loam formed in a mixture of
loess and volcanic ash over glacial outwash. The substratum of this unit is very gravely to
extremely gravely sand (Soil Survey, 1992). Permeability is moderate in the upper portions of
this unit and very rapid in the lower portions (Soil Survey, 1992).

2.7.2 Pangborn muck, drained, 0-2 percent slopes (116)

Pangborn muck is the next most abundant soil type located within the study area. This
is a very deep, very poorly drained soil formed in depressions on outwash terraces and in
abandoned outwash channels (Soil Survey, 1992). It has moderate permeability and has been
artificially drained. Open drainage ditches are used to drain the Pangborn muck in which the
water table is commonly 1.5 to 2.5 feet below the surface from October through May (Soil
Survey, 1992).

2.7.3 Histosols. ponded, 0 to 1 percent slopes (72)

These are deep, poorly drained soils in backswamps, floodplains, and on the edge of
bodies of water. Histosols are located within the portion of the study area which makes up
Pangborn bog and the areas within and surrounding Judson lake. Histosols are formed of
mixed organic material consisting of mosses and shrubs over mineral matter with moderate to
slow permeability. The underlying material to a depth of 70 inches is typically a gray silt
loam (Soil Survey, 1992).

2.7.4 Clipper silt loam, drained, 0-2 percent slopes (31)
There is one small patch of Clipper silt loam on the eastern edge of the study area.

The Clipper silt loam, like the Kickerville silt loam, is a deep, poorly drained soil also found in
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depressions on outwash terraces and outwash plains (Soil Survey, 1992). The substratum of
this unit to a depth of 60 inches is dark grayish brown and grayish brown, mottled very
gravely loamy sand to gravely sandy loam. Permeability is moderate in the upper part of the

soil and rapid in the substratum.

2.8 Recharge

Recharge to groundwater is essentially the amount of precipitation that infiltrates into
the soil after runoff and evapotranspiration. Recharge may also be in the form of irrigation,
septic drain fields, manure lagoons, and losing reaches of streams or rivers. Since most of the
study area is either open pasture or field crops, it is assumed that recharge is primarily
controlled by precipitation and soil permeability. Cox and Kahle (1999) reviewed monthly
soil water budgets for the Clearbrook and Abbotsford weather stations and reported that
evapotranspiration typically exceeded precipitation between May and September while
precipitation exceed evapotranspiration from October to April. The average groundwater

recharge estimated for the study area was 26-30 inches per year (Cox and Kahle, 1999).

3.0 METHODOLOGY

Various methods were used to accomplish the five objectives outlined in section 1.5.
A thorough review of all available well log data and numerous field investigations were
conducted to aid in characterizing the hydrostratigraphy. Standard techniques and procedures
were used in sieve analyses and water quality sampling. Several software packages including
Autocad, Surfer, MODFLOW, GMS, MT3D, and Microsoft Excel were used to produce the

results of this study.

3.1 SITE SELECTION

A representative study area, outlined in section 2.1, was selected to monitor
groundwater levels and various chemical parameters in 21 wells on a monthly basis for a
period of 24 months. The 21 wells were selected based on several criteria which included
geographic location, previous sampling by Ecology, depth and diameter of the well, and

whether or not a drillers log was available. During the course of this study, a piezometer and
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three new wells were added (wells 22, 23, and 26) in addition to the 21 wells already being

sampled (Figure 8). This thesis uses 17 months of the collected data.

3.2 DRILLERS WELL LOGS

Drillers well logs for the study area were obtained through the Whatcom County
Health Department, Ecology, and previous studies (e.g., Halstead, 1986; Kahle, 1990).
Drillers well logs were separated by Township, Range, and Section within the study area. All
well logs were examined, however, only selected well logs were used in the development of
five geologic cross sections within the study area using Autocad. The selection of well logs
for use in the cross sections was based primarily on their proximity to cross section locations
and quality of the well logs. Drillers well logs were also used for several sections outside of

the study area, including Canada, in the interpretation of the regional hydrostratigraphy.

3.2.1 SIEVE ANALYSES

A sieve analysis was used to determine the distribution of grain sizes within a sample
to quantify hydraulic properties of a hydrostratigraphic unit. Sieve analyses were conducted
on ten sediment samples collected at various depths and locations within the study area
(Figure 9). The sieve analyses followed the American Society of Testing Methodology
(ASTM) standards. ASTM standards for particle size boundaries are determined by sieve size
and are broken into five major categories: cobbles, gravel, sand, silt, and clay. Sub-categories
within the five major categories are also defined by sieve size and include coarse and fine

gravel; coarse, medium and fine sand (Appendix A).

Particle size distributions obtained from the sieve analyses were used to estimate the
hydraulic conductivity of a sample using empirical equations. Two empirical equations were
used in the analyses, the Hazen method (Hazen, 1911) and the Harleman method (Harleman

et. al., 1963). They are given as:
Hazen Method: K=Cd ,0)2

Where K is hydraulic conductivity (cm/s), d,, is the effective grain size (cm), and Cis a
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coefficient based on type of material (fine to coarse sand).
Harleman method: k=(654x10")d ,02
Where £; is the intrinsic permeability (cm’).and d 1015 the effective grain size (cm).

Hydraulic conductivity (K) is obtained using the equation:

K= ki(pg/v)

Where K is hydraulic conductivity (cm/s), k;is the permeability (cmz), p is the density of water
at 15°C, g is gravity (cm/sz), and u is the viscosity of water at 15°C (g/s-cm).

The Hazen method is applicable to sands where the effective grain size is between
approximately 0.1 and 3.0 mm (Fetter, 1994). Only two of the nine samples collected meet the
effective grain size criteria for the Hazen method. The hydraulic conductivity for these two
samples were calculated using both the Hazen method and Harleman method. Because of the
large effective grain size for the remaining seven samples, only the Harleman method was
used to determine the hydraulic conductivity.

Ten samples were collected from four different locations within the study area (Figure
9) and sieved to determine the relative particle size distribution of each sample. Seven gravel
and sand samples, two sand samples, and one sandy silty clay with gravel sample, were
collected. Table 2 lists the hydraulic conductivity calculated for each sample. The effective
grain size for the sandy silty clay with gravel could not be accurately obtained using sieve
analysis because d, (effective grain size) falls below the number 200 sieve. A hydrometer
analysis would be required to obtain the effective grain size for this sample. This was not
done because the silt and clay content was high enough that the unit was considered an

aquitard for the purposes of this study.

3.3 WATER QUALITY SAMPLING PROCEDURES
Chemical parameters measured in the field included water temperature, pH,
conductivity, and dissolved oxygen. Water samples were collected consistently from the same

location, which was the closest tap to the well. Water was allowed to run through a flow
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through cell for a minimum of 10 minutes or until the conductivity stabilized. Conductivity,
dissolved oxygen, and temperature were measured using a YSI model 85 multimeter. Water
pH was measured after the conductivity had stabilized using an Orion 9707 pH meter with
automatic temperature compensation. Samples were collected in 500ml Nalgene bottles that
were rinsed three times at each site prior to sample collection. Samples were stored in an iced
cooler and transported the same day to Western Washington University. Chloride, ammonia,
nitrite, nitrate + nitrite, and total nitrogen were measured at Western Washington University’s
Institute for Watershed Studies State certified laboratory. All values of nitrate used in this
report from this point forward are reported as nitrate + nitrite levels measured in mg/L which

are equivalent to parts per million (PPM).

3.4 WATER TABLE CONTOUR MAPS

Maps of the water table for an unconfined aquifer are two-dimensional representations
of three-dimensional surfaces (Fetter, 1994). Data used for the construction of water table
maps should be from wells screened only in the same aquifer; the aquifer of interest. Accurate
elevations of well casings and or water level measuring points are critical in the development
of accurate water table contour maps. A majority (17) of the 21 wells were surveyed including
the peizometer to the nearest 0.01 feet using laser survey equipment from a United States
Geological Survey bench mark located at the intersection of Halverstick and Holmquist roads
(Table 3). Ofthe 21 wells selected for this study, only 17 wells were accessible to obtain
water levels. Only 16 wells were used in constructing water table contour maps because
consistent water levels in well 11 could not be obtained (Figure 8). Of these 16 wells, only 8
had drillers logs; the other 8 had owner-reported or estimated depths.

Water levels in wells reflect the heads in the aquifer of interest. Therefore, wells that
have large variations in depths below the water table may not accurately reflect the actual
water table elevations. If there are large variations in the screened portions of wells below the
water table, inaccurate water table contours may result. The average depth below the water
table of the 16 wells within the study area from which water levels were obtained is
approximately 28 feet. The largest variation in depth between two wells in the study area is

between well 3 (67 feet below the water table) and well 14 (4 feet below the water table).
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Land surface at well number 3 is approximately 165 feet above sea level and 157 feet above
sea level at well number 14 (Table 3). It is assumed that all of the wells used in the collection
of water level data are completed in the same aquifer and have a relatively small difference in
completed well depths below the water table on average. It is further assumed that variations
in elevation head due to depth of the well screens are not significantly impacting the water
table contour maps.

Monthly water level readings were collected from 17 of 21 wells and one peizometer.
Only 16 of the 17 wells were used in constructing seasonal water table contour maps. A
depth-to-water meter and standard measurement techniques were used to determine water
levels. Because of the large number of sample sites and sample collection procedures, water
level readings were taken over two days. When possible, alternating wells were measured on
both days to ensure water levels did not change significantly over a 24 hour period. Water
level data are listed in Table 4 and Appendix B.

Water table levels varied slightly from month to month, however, larger variations
were recorded between seasons. For this reason, water level measurements were divided into
four seasons per year, each with three months of averaged water level data as follows: Spring
(April, May, and June), Summer (July, August, and September), Fall (October, November,
and December), and Winter (January, February, and March). Sampling began in April of
1997 so the spring season data set of 1997 consists only of April and May. Water table
contours were generated with a geostatistical gridding method known as kriging using Surfer.

A water table transect was placed from the northwest corner of the study area to the
southeast corner of the study area (Figure 10). The location of this transect was chosen
because it closely approximates the overall groundwater flow direction as interpreted from the
water table contour maps. A water table cross section displaying the four average seasonal
water tables having the greatest variation over six seasons was created along this transect

(Figure 11).

3.5 HYDRAULIC GRADIENTS
Water table contours were used to obtain hydraulic gradients within the study area.

The hydraulic gradient (dh/dl) is a dimensionless value derived by taking the incremental
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change in water level head (dh) divided by the distance over which the change in head occurs
(dl). Hydraulic gradients were calculated along the same transect described in section 3.3
from the northwest corner of the study area to the southeast corner of the study area (Figure
10). Three sets of hydraulic gradients were calculated because of the change in slope of the
water table across the transect. The three segments along the transect included the north half
of the study area, the south half of the study area, and the overall transect. The 130-foot water
table contour was chosen as the mid point of the transect because it consistently remained the
contour at which the primary change in slope of the water table occurred (Figure 10).
Hydraulic gradients were also calculated along this transect and in the east and west portions
of the study area using water table contours generated by the groundwater model as a basis for

computation.

3.6 GROUNDWATER FLOW VELOCITIES
The following equation is used to calculate average linear groundwater flow velocity:
V=K (@dh/dl)/n,
Where V' = average linear velocity, K = geometric mean of hydraulic conductivity, dh/dl =
hydraulic gradient, and n, = effective porosity.

Hydraulic conductivity values frequently vary by more than two orders of magnitude
within the same hydrostratigraphic unit (Fetter, 1994). For this reason, a more representative
value of the average hydraulic conductivity of a hydrostratigraphic unit is the geometric mean.
The geometric mean for hydraulic conductivity (K;;) is determined by taking the natural log of
each value, finding the mean of the natural logs, and then obtaining the exponential (e*) of that
value to arrive at the geometric mean (Fetter, 1994). Six representative gravel and sand
samples were averaged to produce a geometric mean (K;) (Table 5) using hydraulic
conductivity values derived from section 3.2 (Table 2).

The effective porosity (#,) is the porosity available for fluid flow in a porous media. It
is assumed that the effective porosity is the same as the porosity under saturated conditions,
therefore, standard porosity values reported in various texts can be used as the effective
porosity. Porosity for well-sorted sand or gravel sediments range from 25-50% (Fetter, 1994).

An estimated porosity of 35% (0.35) was used to calculate the linear groundwater flow
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velocities within the study area.

3.7 GROUNDWATER MODEL

A groundwater model is a tool designed to represent a simplified version of a real
hydrogeologic system. Groundwater models can be used for a variety of reasons. Generally,
groundwater models are used to understand why a flow svstem behaves in a certain manner
and to predict how a flow system may behave in the future (Fetter, 1994). One of the most
widely used and versatile groundwater flow models is MODFLOW, which was developed by
the USGS (McDonald and Harbaugh, 1988). MODFLOW is a quasi-three dimensional, cell-
centered, finite difference, saturated flow model used by most practicing hydrogeologists
today. GMS is a computer program that has a graphical pre- and post-processor interface with
the groundwater model MODFLOW. GMS was used for this project.

The purpose of constructing a groundwater model for this study area was to: 1)
estimate groundwater flow directions and travel times in the study area using a water table
contour map generated by a numerical model which included sources and sinks, 2) utilize
groundwater model results to conduct contaminant transport simulations in an attempt to
better understand nitrate residence times within this portion of the aquifer, and 3) develop a

groundwater model that may be used for future studies within this area.

3.7.1 CONCEPTUAL MODEL

The conceptual model is intended to describe a simplified representation of the
hydrogeologic system to be modeled. As the conceptual model is being developed, a number
of assumptions and simplifications must be made in order to obtain a workable model. It is
assumed that the geologic and hydrologic data gathered within the study area allowed for the
elimination of enough detail to make the model workable while retaining enough detail to
make the model accurate and useful. Numerous field investigations provided a solid
understanding of the conceptual model within the study area (Figure 12). The conceptual
model used for this study assumed steady-state conditions, two-dimensional flow,
homogeneous aquifer properties, and a no-flow confining layer at sea level. The no-flow

boundary was set at sea level and is supported by geologic cross sections created as part of this
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study and other studies within this area (Cox and Kahle. 1999).

The model design must conform to the conceptual model including the model
boundary, grid. and model parameters. All models have limitations and varying degrees of
accuracy depending upon the model design. For the design of this model, a portion of a scaled
location map produced by the USGS (Cox and Kahle, 1999) was used as a background image
from which the model boundaries were chosen (Figure 13). Model boundaries were chosen
far enough away from the actual study area so that variations in hydrogeologic parameters
outside of the study area would not adversely impact model results within the study area.

The western boundary of the model follows Fishtrap Creek which begins in British
Columbia, Canada, and continues to flow southwest into Whatcom County, Washington
(Figure 14). Fishtrap Creek was chosen as a boundary for a number of reasons. Fishtrap
Creek represents a specified head boundary so that specified points along the boundary
(nodes) could be placed where topographic contour lines intersect the Creek. It was assumed
in this model that the Creek represents the level of the groundwater table above sea level. The
pre-processor in the GMS program calculates the head values between nodes of known
elevation along the specified head boundary. These values were later reviewed and modified
when necessary. Moreover, Fishtrap Creek was far enough away from the study area focus so
that changing hydrogeologic conditions are less likely to affect the study results. Lastly, west
of Fishtrap Creek the Sumas Aquifer pinches out and it was important for modeling purposes
that the entire model area be within the Abbotsford-Sumas Aquifer.

The southern boundary of the groundwater model begins at Fishtrap Creek and
traverses east across Sumas Outwash deposits for approximately one and one half miles. It
then follows the Sumas silt and clay as described on the surfacial geology map of western
Whatcom County (Easterbrook, 1976) (Figure 14). The boundary limits were chosen
primarily because the Hampton Clay represents a relatively impermeable hydrostratigraphic
unit which is believed to alter groundwater flow in this area. For modeling purposes, the
western portion of the southern boundary was modeled as Sumas Outwash deposits while the
eastern portion was modeled as a no-flow boundary (Figure 14).

The eastern boundary of the groundwater model begins in the southern portion of the

model area where the Hampton Clay stops according to the geologic map of western
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Whatcom County (Figure 3) (Easterbrook, 1976). The eastern boundary then follows Johnson
Creek towards the northeast until it enters the Sumas River at which point the boundary
continues to the northeast corner of the groundwater model (Figure 14). As with the western
model boundary, Johnson Creek and the Sumas River represent a specified head boundary so
head nodes could be placed where topographic contour lines intersect the Creek and River.
The Creek and River are assumed to represent the level of the groundwater table above sea
level. Water table elevations between nodes of known elevations were calculated by GMS
along the specified head boundary. These values were later reviewed and modified if
necessary.

The northern groundwater model boundary follows the scaled location map mentioned
previously (Figure 14) (Cox and Kahle, 1999). The northern boundary does not represent the
termination or beginning of the Sumas Abbotsford Aquifer and for this reason was input as a
general head boundary. However, there were two specified head points input along a small
portion of the northern model boundary where approximate water level elevations had been

obtained from prior studies in Canada (Liebscher et. al., 1992; Halstead, 1986).

3.7.2 GROUNDWATER FLOW EQUATION
The governing equation for groundwater flow for an isotropic, homogeneous aquifer

under steady state conditions in two dimensions is given as:

Where h = total hydraulic head and x and y = spatial dimensions. This equation is known as
Laplace’s Equation in two dimensions. Laplace’s equation is a second-order partial
differential equation which combines Darcy’s law with the continuity equation (Wang and
Anderson, 1982). The solution of Laplace’s equation requires boundary conditions (discussed
in section 3.6.4) in order to constrain the problem and produce a unique solution (Wang and
Anderson, 1982). The MODFLOW model generates a simplified form of Laplace’s equation

by converting the partial differential equation into a set of algebraic equations at each grid
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point in the model domain using a finite difference technique. Head values are obtained at
each point in the problem domain from solutions to the algebraic equations based on the
specified boundary conditions established for that problem. A more detailed discussion on

Laplace’s equation and groundwater modeling can be found in Wang and Anderson (1982).

3.7.3 MODEL PARAMETERS

Groundwater model parameters are required to simulate the flow, these include:
hydraulic conductivity, aquifer porosity, recharge, conductance values for lakes and streams,
and initial head values. Two groundwater flow simulations were created using two different
values of hydraulic conductivity: 929 feet per day, and 270 feet per day representing high and
medium values, respectively. Conductivity values were obtained by sieve analyses (section
3.2.1) and the median USGS value obtained by Cox and Kahle (1999). The aquifer porosity
used for model simulations was 0.35. Recharge values were obtained from the most recent
USGS study within the area (Cox and Kahle, 1999). Groundwater recharge values used in the
model were based on the approximate average of the Clearbrook Weather Station, Whatcom
County, and the Abbostford Weather Station, Abbotsford Airport, British Columbia. The
recharge values used do not represent precipitation, but rather actual groundwater recharge
(section 2.8). The value obtained was approximately 30 inches per year and input into the
model as 0.007 feet per day.

Conductance in GMS represents conductivity per unit length of a drain or sink cell.
Pangborn Creek, Judson Lake, and Laxton Lake all required conductance values. It was
assumed that fine grained materials have accumulated at lake bottoms and creek beds,
therefore, the conductance values used in the model for lakes and creeks were less than the
average hydraulic conductivity calculated for the study area of 929 feet per day. Conductance
values were based on field observations and reviewing core samples obtained from previous
studies (Riggs, 1958, and Easterbrook, oral communication 2000). A conductance of 400 feet
per day was estimated for Judson Lake, while 600 feet per day was estimated for Laxton Lake
and Pangborn Creek. Initial head values are used only as a starting point for the model
simulation and technically have no effect on steady state models other than to speed up

simulation times. Initial head values were input as 210 feet above sea level which
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approximated the highest head levels found to exist within the model area according to the

most recent USGS study (Cox and Kahle, 1999).

3.7.4 MODEL GRID AND CALIBRATION

After the model boundaries and parameters were established, a finite difference grid
was developed using GMS. Grid cell dimensions were initially determined by the overall
model area, average distance between wells, and hydrostratigraphic information. The model
was calibrated by running the model and then comparing the model solution with observed
water table elevations. The initial grid cell size was reduced from 1,000 feet to 500 feet in x
and y dimensions. Using these dimensions, the model closely approximated water table
elevations calculated through recorded field observations and other studies. Reducing the grid
cell sizes to 250 feet in the X and Y dimensions did not improve the model solution. For this
reason, the grid cell sizes of 500 feet in X and Y dimensions were used. The z grid dimension
was one layer 300 feet thick representing the Sumas Outwash resting on the relatively
impermeable clays believed to be Bellingham GMD.

Model verification is typically the next step in developing a groundwater model. In
order to verify a model, information such as water levels through time and the location and
pumping rates of wells are needed. Since this information was not available, the calibrated

model could not be verified.

3.8 NITRATE CONCENTRATION CONTOUR MAPS

Two-dimensional nitrate contours were mapped using Surfer and the kriging method
for each of the six seasons sampled. The six seasons were Spring (March, April, and May),
Summer (June, July, and August), Fall (September, October, and November), and Winter
(December, January, and February). Data used for this thesis began in April of 1997 and
ended in August of 1998 so the spring 1997 two-dimensional nitrate contour map does not
include the month of March. All 21 wells regularly sampled were used in generating the two-

dimensional nitrate contour maps (Table 6).
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3.9 NITRATE TRANSPORT

The calibrated groundwater flow model was coupled with a transport model known as
MT3D (Zheng in 1990) to simulate nitrate transport in the study area. MT3D is a model that
can be used with MODFLOW and simulates advection. dispersion and, chemical reactions of
dissolved constituents in groundwater systems. GMS supports MT3D as a pre- and post-
processor (Boss GMS, 1996). Nitrate transport simulations for this study used only the
advection and dispersion packages within MT3D.

Advection is the process by which solutes are transported by the motion of flowing
groundwater (Fetter, 1994). Contaminants that are advecting are traveling at the same rate as
the average linear velocity of the groundwater. Given the heterogeneity of geologic materials,
advective transport in different geologic media usually result in solute fronts spreading at
different rates through each medium (Fetter, 1993). However, in this case, advection was
fairly simple to simulate because a single layer of the same geologic material (Sumas Outwash
deposits) was used for the model. Although there are known lenses of less permeable
materials within the study area, hydraulic continuity within the aquifer was assumed to be
very high.

As a contaminated fluid flows through a porous medium, it will mix with
noncontaminated water. The result will be a dilution of the contaminant by a process known
as dispersion. often referred to as mechanical dispersion (Fetter, 1994). The mixing that
occurs along the streamline of fluid flow is called longitudinal dispersion. Dispersion that
occurs normal to the pathway of fluid flow is lateral dispersion (Fetter, 1994). Groundwater is
moving at rates that are both greater and less than the average linear velocity, this causes
dispersion of a contaminant. Within MT3D, there is one longitudinal dispersion value and
two ratios for horizontal and vertical dispersion that need to be entered to simulate
contaminant transport. The longitudinal dispersion value entered for the transport simulation
was 25 feet and the ratios of horizontal and vertical dispersion entered was 0.1. Given these
values, the horizontal and vertical dispersion values were 2.5 feet. The values for longitudinal
dispersion were chosen based on the hydrogeologic parameters of the aquifer and similar
examples provided within the GMS users manual.

Four solution schemes are offered within the MT3D advection package. The solution
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scheme chosen for this model utilizes a particle tracking approach for the advective transport
simulation. The scheme chosen was a hybrid of two other schemes within MT3D and was
believed to be the most appropriate for this study area based on examples provided within the
GMS users manual.

MT3D was used to model three different nitrate transport scenarios. Nitrate contours
were plotted at the end of the designated travel times established for each scenario. In
scenario one, a 50 mg/L nitrate spike is placed in selected cells within the model domain for a
duration of one day. The selected cells represent a known source (confirmed through field
observations) within the study area. The spike in scenario one was monitored for a period of
one year and nitrate concentrations were contoured at the end of one year.

In scenario two, an additional 50 mg/L nitrate spike is placed in a second set of
selected cells within the model domain for a duration of one day while keeping the first nitrate
spike previously established in scenario one. The second set of selected cells in scenario two
represents another known source (confirmed through field observations) within the study area.
The spikes in scenario two will be monitored for a period of six months rather than one year
because one of the nitrate plumes will travel outside of the study area after one year and will
not be able to be contoured. Nitrate concentrations in scenario two will be contoured at the
end of six months.

In scenario three, a 50 mg/L nitrate line spike is placed just north of the international
border in Canada for a duration of one day. Scenario three is thought to represent possible
nitrate source loading across the international border in Canada. The spike in scenario three
was monitored for a period of one year and nitrate concentrations were contoured at the end of
one year. These scenarios may be used in future studies to help understand and predict the lag
time between nitrate source loading and nitrate concentrations observed in down gradient

wells.

4.0 RESULTS AND DISCUSSION
4.1 GEOLOGIC UNITS
Drillers well logs completed for domestic and irrigation wells, and various types of

natural resource explorations (e.g., gravel, coal, and gas) are the only source of information
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about the subsurface geology other than road cuts or gravel pits. Drillers well logs are highly
variable and serve only as general indicators of the types of geologic mediums encountered.
Six geologic units were identified by correlating information from more than 50 individual
well logs within the study area and visiting three gravel pits within or adjacent to the study

area (Figure 15) (Appendix C). Each geologic unit will be discussed below (Figures 16-20).

4.1.1 Sumas Outwash Gravel and Sand

The primary geologic medium encountered within the study area is Sumas Outwash
deposits consisting of fine to coarse gravel with varying amounts of sand, pebbles, cobbles,
and in some areas boulders (Figures 16-21). Six samples of the Sumas Outwash were
collected and sieved to determine the relative percentages of cobbles, gravel, sand, and silts
and or clays (Figure 9). Of the six samples collected, the average cobble content was 5.4%,
the average gravel content was 67.8%, the average sand content was 26.1%, and the average

silt and or clay content was 0.72% (Appendix D).

4.1.2 Sumas Outwash Sand

Numerous sand lenses were observed in drillers well logs in the area and were visible
within the gravel pit just south of Pangborn Road (Figure 22). Most sand lenses recorded in
drillers logs within the study area are on the order of five to twenty feet thick (figures 16-20).
One larger sand lens, approximately forty feet thick, was observed in a well log in the
southwest portion of the study area (Figure 17). The thin discontinuous beds of sand are
indicative of a glacio-fluvial environment. Two samples from the sand lens within the gravel
pit south of Pangborn Road were collected and sieved to determine the relative percentages of
coarse, medium, and fine sand, and silts and or clays. There was no coarse sand found in
either sample collected. The average medium sand content was 5.2%, the average fine sand
content was 86.4%, and the average silt or clay content was 8.4% (Appendix D).

There is a sand unit believed to be the Deming Sand observed in one well log below
the Bellingham GMD. This unit is one hundred feet thick and begins at approximately 30 feet
below sea level. This unit is not part of the Sumas Outwash deposits but does appear in the

geologic cross section E-E’ (Figure 20).
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4.1.3 Ice Contact Deposits

Lenses of sand, gravel, and clay, or clay, silt and sand are also reported in the drillers
well logs near the eastern margin of the study area. These deposits are interpreted as ice
contact deposits and coincide with the general location of the Sumas ice margin as interpreted
by Easterbrook (personal communication, 1999) (Figure 3). Most ice contact deposits within
the study area range from only a few feet to ten or fifteen feet in thickness (Figures 19 and 20).
However, two thick lenses (averaging 65 feet in thickness) were identified near the eastern

boundary of the study area (Figure 20).

4.1.4 Peat Deposits

Peat is found in and around Pangborn Lake and Judson Lake. Core samples of peat in
and around Pangborn Lake were taken by Riggs, 1958, and Easterbrook (personal
communication). A core sample was also taken from Judson Lake by Easterbrook (personal
communication). The peat in the Pangborn Lake area ranges from a few feet thick on the
fringes of the kettle, occupying an area much larger than the current Lake, to over 30 feet thick
closer to the center of the Lake (Figures 16 and 23). The peat around Judson Lake is not as
laterally far reaching as Pangborn Lake. A core towards the western edge of Judson Lake
taken by Easterbrook found the peat to be approximately 10 feet thick (Easterbrook, personal

communication).

4.1.5 Lacustrine Deposits

Lake sediments consisting of blue-gray clay, silt and sand are found beneath peat in
both Pangborn Lake and Judson Lake (Riggs, 1958; Easterbrook, personal communication).
The depth of lake sediments depend upon the sedimentation rates. which are a function of the
amount of time the kettles were occupied with quiet water and the amount of fine material
available for deposition. To date, the lake sediments beneath the peat of Pangborn and Judson
lakes have not been fully penetrated and the relative depths remain unknown.
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4.1.6 Glaciomarine Deposits

Differentiating Glaciomarine deposits from ice contact deposits within the study area
is difficult. Two distinct glaciomarine units have been interpreted within the study area based
on drillers well logs and a literature review of glacial chronology. The first, and oldest, of
these units is found 340 feet below land surface. The unit has a thickness of 20 feet in the
northern most portion of the study area (Figure 17). This unit may correlate with the Kulshan
Drift of the Everson Interstade, which is encountered in southern areas of the Nooksack
Lowland. A second, younger glaciomarine unit was identified in the same well log 213 feet
below land surface (21 feet thick). One hundred and six feet of fine sand, described in section
4.1.2, separate the two glaciomarine units in this well log. Possible correlations exist between
the younger glaciomarine drift unit found in the northern portion of the study area and clay
units encountered in the southern portion of the study area (Figures 18-21). A sample of silty
clay, thought to be part of the Hampton Clay unit (believed to be Bellingham GMD), was
collected from the base of the gravel pit south of Pangborn Road and sieved to determine the
relative amounts of gravel, sand, silt and or clay. The sample contained 9.0% fine gravel
(rounded to sub-rounded), 40.3% sand (3.4% coarse, 7.7% medium. and 29.2% fine), and
50.8% silt and or clay (Appendix D).

4.2 SIEVE ANALYSES AND HYDRAULIC CONDUCTIVITY

Through sieve analyses and empirical equations outlined in section 3././, an average
hydraulic conductivity using the geometric mean (K;) was estimated at 929 feet per day
within the study area. The conductivity value of 929 feet per day is relatively high, but
assumed to be reasonable for this aquifer based on several different factors. Samples collected
within the study area were a fairly good spatial representation of the aquifer within the study
area (Figure 9). The median hydraulic conductivity value obtained by the USGS within the
same general area was 274 feet per day (Cox and Kahle, 1999). Furthermore, the USGS study
concluded that the Sumas Aquifer has a higher hydraulic conductivity than is typical of similar

glacial outwash deposits in the Puget Sound region (Cox and Kahle. 1999).
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4.3 HYDROSTRATIGRAPHY

Hydrostratigraphic units comprise geologic units grouped together on the basis of
similar hydraulic conductivity (Fetter, 1994). Using this definition, several geologic units
may be grouped together into a single aquifer or confining unit. The six distinct geologic units
that were identified within the study area were grouped into two hydrostratigraphic units. The
Sumas Aquifer is the youngest deposit in the study area; however, clay lenses of the Sumas
Aquitard are found within the Sumas Aquifer. The Sumas Aquitard is primarily made up of
an older underlying clay unit at depth interpreted as Bellingham GMD. The Sumas Aquifer

and the Sumas Aquitard are reserved for this study area only.

4.3.1 Sumas Aquifer

The Sumas Aquifer in the study area is an unconfined aquifer comprised of three
geologic units that have been grouped together based on similar high hydraulic conductivities.
The three units that define the Sumas Aquifer include the Sumas outwash gravel and sand,
Sumas outwash sand, and peat deposits. The thickness of the Sumas Aquifer ranges from
approximately 180 feet in the northeast portion of the study area, near the international border,
to approximately 80 feet in the southeastern portion of the study area (Figure 20). Outside of
the study area, the Sumas Aquifer tends to increase in thickness to the north and east. The
Sumas Aquifer is the only source of groundwater currently being used for domestic and
irrigation purposes within the study area based on available well log data. Although clay
layers or lenses exist within the Sumas Aquifer, their discontinuous nature allows for good
hydraulic continuity and does not drastically effect the ability of the aquifer to transmit water.
It is reasoned that the conductivity is higher in the northern portions of the aquifer and lower
in the southern portions of the aquifer because gravel and sands are more prominent in the
northern portions of the aquifer which then grades to coarse and fine sands in the southern
portions of the aquifer. Moreover, geographic trends in hydraulic conductivity reported by the
USGS indicate higher values near the international border and lower values at the southern

end of the aquifer (Cox and Kahle, 1999).
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4.3.2 Sumas Aquitard

The Sumas aquitard consists of three geologic units in the study area having low
hydraulic conductivities. The three units are glaciomarine drift deposits, ice contact clays with
sand and gravel and or till, and lacustrine deposits. Glaciomarine units were only fully
penetrated in one well log in the northeast portion of the study area. The two glaciomarine
units have an average thickness of 20 feet (Figure 20). Similar glaciomarine units are found
less than two miles to the north (Halstead, 1986). The Glaciomarine unit which underlies the
Sumas Aquifer is interpreted as Bellingham Glaciomarine Drift (Fort Langley Formation in
Canada). Although evidence of a continuous clay layer at depth within the study area could
not be verified from available well log data, it is believed to be continuous. This sequence of
deposition is consistent with regional geologic interpretations by Easterbrook (1966, 1973,
1975, 1976), Armstrong (1981), and Cox and Kahle (1999).

Clay lenses appear throughout the study area in the Sumas Aquifer and range in
thickness from 5 to 20 feet. Several drillers logs north of the study area in Canada indicate
that outwash deposits of the Sumas Aquifer are inter-layered with at least one clay deposit of
glaciomarine origin (Halstead, 1986). Thick clay lenses and or layers in excess of 30 feet are
found beneath Pangborn bog (Figure 18), in the southern portion of the study area (Figure 16),
and in the eastern portion of the study area (Figure 20).

The Bellingham GMD of the Sumas Aquitard is believed to be stratigraphically
continuous with the Hampton Clay to the south of the study area, and the Fort Langley
Formation to the north, in Canada (Halstead, 1986). One piece of supporting evidence for this
is a regional blanket of Bellingham GMD present south and west of the study area, as mapped
by Easterbrook (1976). A regional pebbly silty clay unit approximately 60 feet thick
interpreted as glaciomarine drift also exists to the north in Canada (Halstead, 1986). The
USGS also concluded this in geologic cross sections reported in the most recent study
conducted in this area (Cox and Kahle, 1999).

Although this scenario fits the glacial chronology, which has been well documented
by Easterbrook and Armstrong as mentioned in section /.3, there was not enough evidence in
the drillers logs to conclusively prove the existence of a continuous clay layer at depth in the

study area. The lack of evidence in the drillers logs was due to the distance between drillers

28



logs, a lack of deep descriptive drillers logs, and the discontinuous nature of the glacio-fluvial
depositional environment. Moreover drillers logs, within and outside of the study area,
encountered several clay lenses which could be interpreted as fluvial or glaciomarine in origin
and are extremely difficult to correlate. One example of the difficulty in properly interpreting
the hydrostratigraphy is a previous study conducted within this area by Kahle, 1990. Kahle
correlated the Hampton Clay (improperly referred to as Badger Clay, Easterbrook, personal
communication) which crops out just south of the study area boundary (Figure 3) with clay
lenses found at very shallow depths (5-15 feet) in the Pangborn bog area to the north. Such
correlations were based on encountering clay in two or three drillers logs located in most cases
over one mile apart. However, the most recent USGS study, co-authored by Kahle (Cox and
Kahle, 1999), does not correlate the Hampton Clay with the near surface clay deposits of the
Pangbomn bog area.

4.4 WATER TABLE CONTOURS

Groundwater flow directions interpreted from water levels measured in the field were
generally south in the west half of the study area and south to southeast in the east half of the
study area. There is a stronger southeast groundwater flow direction in the southeast portion
of the study area (Figures 24-29). Over the 6 seasons of data collection (17 months), water
table levels were highest in the spring of 1997 with the exception of the southeast portion of
the study area during the winter of 1998. Water table levels were lowest in the summer of
1998 with the exception of the northern most portion of the study area during the fall of 1997.
The largest average variation occurred between the spring of 1997 (high) and the fall of 1997
(low): approximately 5 feet was calculated in the northern half of the study area and
approximately 3.5 feet in the southern half of the study area (Table 4). Similar variations were
observed between spring 1997, and summer 1998 (Table 4). During 1998, the largest
difference in water table levels was approximately 0 to 1 foot in the northern portion of the
study area increasing to 3.5 feet in the center, then increasing to 4.5 feet in the southern
portion between winter and summer (Figure 11). Comparing water table contour maps with
topography, the water table is predicted to be a maximum of 60 to 65 feet below land surface

in the northeast portion of the study area to anywhere from 0 to 30 feet below land surface in
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the southern portion of the study area.

The greatest variation in any one well sampled was 7.8 feet between Spring 1997 and
Fall 1997 at well 3 (Table 4 and Appendix B). The large variation of water levels in well 3 is
believed to be in part due to recording water levels while the pump was still on, or taking
water levels before full recovery was achieved within the well. Well 3 presented this problem
throughout the duration of the study sometimes shifting the water table contours north as can
be seen in Figures 24 through 29.

Water table cross sections for all seasons show that the largest fluctuations were in the
central portion of the study area with smaller differences in water table levels in the far north
and south portions of the study area. There are a number of factors that may help explain this
phenomenon. Contouring a limited number of water level data points over a large area created
data gaps and water table contours are best estimates fitted to this data. Dummy water level
points were inserted around Judson Lake (along the international border) to ensure that water
table contours matched lake levels and the dummy points did not change from season to
season with the water table. Changes in topography, especially in the central and southern
portions of the study area, most likely impact water levels (Figure 2). Heavy irrigating during
the summer and fall months, especially in the north and central portion of the study area,

likely affect water levels in this area as well.

4.5 HYDRAULIC GRADIENTS

The overall hydraulic gradient for the study area was calculated from the first water
level contour to the last water level contour along the transect (Figure 10 and Table 7). The
hydraulic gradient of the north half of the study area was calculated from the first water level
contour to the intersection of the 130 foot water level contour with the transect (Figure 10 and
Table 7). The hydraulic gradient of the south half of the study area was calculated from the
intersection of the 130 foot water level contour with the transect to the last water level contour
(Figure 10 and Table 7). Water level contours varied from season to season so the distance
over which the hydraulic gradient was calculated also changed (Table 7). The average
hydraulic gradient over six seasons (17 months) was 0.0075 along the entire water table cross

section (northwest to southeast), 0.0036 for the north half of the cross section, and 0.0115 for
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the south half of the cross section.

4.6 GROUNDWATER MODEL

After adjusting various MODFLOW input parameters (discussed in section 3.6),a
successful simulation was created using an iterative solver package based on the strongly
implicit procedure for a steady-state system. The strongly implicit procedure solves a system
of simultaneous linear equations by iteration (McDonald and Harbaugh, 1988). The head
change criterion for convergence of the model was set to 0.01 feet. The groundwater model
output file contains a head value for each cell within the model domain (Appendix E). From
this output file, a water table contour map was created within GMS. Two F igures were
generated using this function, one for the entire model domain (Figure 30) and one for the
study area only (Figure 31).

Calibration of a groundwater model is important to ensure that it produces reasonable
and accurate representations of groundwater flow. The model produced for this study was
calibrated, but was not verified due to a lack of available data as described in section 3.6.
Nevertheless, predictions made from groundwater models that have not undergone model
verification are useful, but are not as accurate as those made with a verified model (Fetter,
1994). The groundwater model produced for this area was based on a simplified conceptual
picture (i.e. a single layer two-dimensional model with the assumptions made as outlined in
section 3.6). After careful calibration, the accuracy of this groundwater model is presumed to
be good. The head change criteria for convergence of the groundwater model simulation was
0.01 feet. This criterion is considered acceptable given that actual head values throughout
both the model area and the study area are not known beyond this range of accuracy and more
often than not, less than this range of accuracy.

Head contours generated from the groundwater model closely approximate observed
field data and previous studies conducted in and around the study area as outlined in section
1.3. Naturally occurring springs are found in the southeast portion of the study area around
100 feet above sea level on the USGS topographic map (Figure 2). The springs are believed
to be caused by the intersection of the water table with land surface due to a pinching out of

the Sumas Aquifer near the Hampton Clay (Bellingham GMD). The groundwater model head
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contours predict with good accuracy the intersection of the water table with land surface at this
same location (Figure 31). Water table contours generated in Surfer intersect the spring
locations at approximately 80 feet above sea level. The fact that the groundwater model head
contours predict the spring locations is another indication that the model produces a better
representation of the actual water table than that contoured from field data.

There are two key items that would significantly impact the groundwater model and
associated water table contours within the study area: the interaction of Judson Lake and
Laxton Lake with the water table, and the depth, hydrostratigraphic extent, and permeability
of the Hampton Clay (believed to be Bellingham GMD) at the south end of the study area.
The interaction of Judson Lake and Laxton Lake with groundwater in this area remains
uncertain. Judson Lake and Laxton Lake are both presumed to be the surface of the
groundwater table (Cox and Kahle, 1999). Laxton Lake is surrounded by very obvious coarse
gravel and sand, which indicates that it communicates directly with the aquifer. However,
these same features are not seen around Judson Lake indicating that Judson Lake may be
perched, thus not accurately representing the groundwater table. If this is true, corrections to
water table contours would need to be made and could alter groundwater flow directions in the
region around Judson Lake and to a lesser degree affect groundwater flow velocities.

Understanding the depth, hydrostratigraphic extent, and permeability of the Hampton
Clay is essential for predicting groundwater flow in the southern portions of the study area. It
was assumed, for this study, that the Hampton Clay generally follows the surficial geology as
mapped by Easterbrook, 1976 (Figure 3). The Hampton Clay creates a no-flow boundary
which forced groundwater to the west and east of the outcrop as shown in Figure 31.
Although the depth of the Hampton Clay is not known for certain, several drillers logs south
of the study area indicate that the unit is continuous and over 100 feet thick in places. Sieve
analysis on a sample believed to be part of the Hampton Clay indicate that it is relatively
impermeable (Appendix D). More detailed information about the hydrostratigraphic extent
and or continuity of the Hampton Clay and its permeability will increase the accuracy of the
groundwater model and may affect the directions and velocity of groundwater flow in this
area.

Hydraulic gradients calculated from the water table contour maps were compared to
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gradients calculated from the groundwater model water table contours. Heads generated by the
model simulate steady-state groundwater flow in the aquifer over a one year period.

Therefore, the model does not account for seasonal fluctuations of the water table or
fluctuations in precipitation, both of which were observed in the field over the course of this
study. Moreover, the model does not account for groundwater withdrawals. Nevertheless, the
head contours produced by the groundwater model closely approximate flow directions,
gradients, average groundwater levels observed in the field, and those reported by previous
studies within the area (e.g. Liebscher, 1992; Cox and Kahle, 1999).

Given that groundwater flow directions are perpendicular to water table contours,
three hydraulic gradients were calculated in the study area because of changing contour
direction: one for the east and west (Figure 32), and one from the northwest to the southeast
along the same transect described in section 3.4 (Figure 10). The gradients were
approximately 0.010 for the east portion of the study area, 0.003 in west portion of the study
area, and 0.008 from the northwest to the southeast in the general direction of groundwater
flow (Table 8). Using the gradient calculated from the groundwater model along the water
table cross section (Figure 10), the estimated travel time is approximately 557 days or 1.5
years. Calculated flow velocities in the east portion were approximately 0.8 years and
approximately 3.0 years in the west portion of the study area.

The gradient for the far east portion of the study area which most closely
approximated the groundwater flow direction was 0.010 using model head contours (Figure
32). The 0.010 gradient was higher than the 0.0075 value calculated along the transect using
Surfer contoured field data (figure 10) because it was calculated further east and the model
water table contours are closer together. The gradient calculated using the groundwater model
for the west portion of the study area was 0.003 (Figure 32). The gradient calculated from the
model in the west is much lower than that calculated from the model in the east, but closely
matches the north half gradient of 0.004 calculated from water table contour maps using
Surfer (Table 7). The gradient calculated along the transect from northwest to southeast was
0.0077 using groundwater model head contours compared to 0.0075 using the water table
contour maps from field data. The difference in gradients along the transect from the

northwest to the southeast is considered to be negligible.
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4.7 CALCULATED FLOW VELOCITIES
Groundwater flow velocities were calculated to approximate groundwater travel times

from the international border to the south end of the study area. Groundwater flow velocities
calculated from water table contours and the groundwater model are used to obtain nitrate
travel times within the study area. The geometric mean for hydraulic conductivity of the
gravel and sand samples within the study area was determine to be K; = 929 ft/day (Table 5).
Using the equation listed in section 3.5, the following average linear groundwater flow
velocities were calculated along the transect (Figure 10) within the study area:

Northwest to Southeast = 20.0 ft/day

North Half = 9.4 ft/day

South Half = 30.6 ft/day
Average linear groundwater flow velocity represents the average rate at which the water
moves between two points. This average was used to estimate approximate travel time rates
of groundwater within the study area from the northwest to the southeast. Assuming flow
begins at the international boundary and travels a total distance of 12,990 feet to the
southeastern end of the study area at an average rate of 20.0 feet/day, the approximate travel
time is 650 days or 1.8 years. Using the distance over the north half of the study area
(international border to the 130 foot water table contour = 7,442 feet) and the linear
groundwater flow velocity calculated at 9.4 feet/day, the approximate travel time is 792 days
or 2.2 years. Using the distance over the south half of the study area (130 foot water table
contour to 65 foot water table contour = 5,548 feet) and the linear groundwater flow velocity
calculated at 30.6 feet/day, the approximate travel time is 181 days or 0.5 years. These results
are summarized below:

Northwest to Southeast = 650 days or 1.8 years

North Half = 792 days or 2.2 years

South Half = 181 days or 0.5 years

4.7.1 Flow Directions And Velocities From Water Table Contour Maps

Water table contours generated in Surfer reveal that groundwater flow directions are
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almost due south in the north half and west portions of the study area (Figures 24-29).
Groundwater flow directions are to the southeast in the far east and southeast portion of the
study area. Due to the lack of data points in the southwest portion of the study area,
groundwater flow using contoured field data has more of a southern component rather than a
southeastern component predicted by groundwater model contours. For this reason, it is
assumed that the actual groundwater flow direction is more closely approximated by the
groundwater model contours than the contoured field data, especially in the southwest portion
of the study area.

Groundwater flow velocity in the southern half of the study area is a little over four
times that in the north half of the study area using water table contours. One explanation for
this large variation is the impact of topography on the slope of the water table. The northern
portion of the study area loses approximately 30 feet in elevation over 7,442 feet in distance
while the southern portion of the study area loses approximately 65 feet in elevation over
5,548 feet in distance. This large variation between the north half and the south half of the

study area is not as pronounced in the groundwater model simulation.

4.7.2 Flow Directions And Velocities From The Groundwater Model

Groundwater flow directions predicted by MODFLOW show a more defined
southeasterly trend than flow directions predicted by head contours generated from the field
data using Surfer. This is attributed to the southwestern half of the model area being defined
as a no-flow boundary (Hampton Clay) which forces groundwater to flow to the southwest
and southeast (Figure 31). Although the depth and continuity of the Hampton Clay in the
southeastern half of the model area is not known for certain, evidence from drillers logs,
surficial geology, and freshwater springs, suggest that the flow pattern generated by the
groundwater model is a close approximation of actual groundwater flow within the study area.
There may also be a vertical groundwater flow component due to the location of the
impermeable Hampton Clay in southwest portion of the study area. Unlike the contoured
field data, which rely on points scattered throughout the study area. the model simulation uses
computed head values in each cell within the model domain to create water table contours.

For this reason, model contours appear to be more evenly distributed than the contoured field
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data and may not reflect any localized groundwater flow directions due to topography.

The largest difference between the groundwater model contours and the contoured
field data occurs in the southwest and far east half of the study area. In the northeast portion
of the study area, the model water table contours are approximately 5 to 7 feet lower than
those predicted by contoured field data. In the east central portion of the study area, the model
water table contours are approximately 10 to 12 feet lower than contoured field data. In the
south east portion of the study area, the model water table contours are approximately 5 to 10
feet lower than contoured field data. Water table differences between contoured field data and
the groundwater model are attributed primarily to the lack of data points in the field, and
topographic variability within the study area. The lack of data points along the far east portion
of the study area caused water table contours to be truncated and thus does not reflect the true
water table surface in this area (Figure 24-29). In the southwest portion of the study area the
lack of data points creates water table contours that do not reflect the no-flow boundary to the
south. For this reason, there appears to be a strong southerly flow which is not predicted by
the groundwater model. The effect of fewer data points is fairly evident by a break in slope of
water table contours using Surfer seen along Trapline Road in the south central portion of the
study area (Figure 33).

Groundwater flow velocities predicted by the model simulation differ from velocities
predicted from field data contour maps because there is not a large variation from north to
south within the study area. There is, however, a large variation in groundwater flow
velocities from west to east within the study area (Figure 31). In the east portion of the study
area, the model predicts a maximum velocity of approximately 25 feet per day compared to 20
feet per day from water table contours generated from field data in the direction of
groundwater flow. In the west portion of the study area. the model predicts a velocity of
approximately 8 feet per day compared to 11 feet per day from water table contours generated
from field data in the direction of groundwater flow. Groundwater flow velocity variations
within the study area are attributed primarily to the sharp contrast in topography from east to
west (Figure 2), and regional groundwater flow directions established by the model (Figure

30).
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4.8 NITRATE CONCENTRATION CONTOUR MAPS

One set of nitrate contour maps were created for each of the six seasons using Surfer
(Figures 34-39). Two-dimensional nitrate contour maps do not accurately reflect actual nitrate
plumes and/or nitrate concentrations, as samples were obtained from wells screened at varying
depths within the aquifer. However, nitrate contour maps still provide a valuable tool from
which generalizations can be made about spatial and temporal trends within the study area.
The data set used for two-dimensional nitrate contours can be found in Table 8. Wells 1, 2, 5,
6,9, 10, 13, 14, 17, and 18 had consistent nitrate levels at or above the maximum contaminant
level of 10 mg/L nitrate. Wells 5, 6, and 7 showed a gradual increase in nitrate concentration
over the course of the study. Two wells in the study area with the highest concentrations of
nitrates (wells 14 and 18) showed some interesting trends. Well 14 showed a gradual decrease
in nitrates over the entire course of the study while well 18 showed a rising trend from Spring
of 1997 to the Fall of 1997 and then a sharp decrease for the duration of the study. Comparing
nitrate levels with water levels did not reveal any distinct correlations with the exception of
well 1. Well 1 did show some correlation with water table levels and nitrate concentrations
from April, 1997 to March, 1998. Generally when water levels increased in well 1, nitrate
levels increased and vice versa.

There are three factors which will influence the occurrence of nitrates within the
Sumas Aquifer. These include 1) the geographic location of the nitrate source, 2) recharge
and groundwater levels, and 3) the concentration, duration, and form of nitrate being applied.
Two-dimensional nitrate contours indicate the highest concentration in wells down-gradient of
large dairies in the central portion of the study area and down-gradient of large fertilized crop
fields identified in field investigations. Two-dimensional nitrate contour data suggests that
most of the contamination is localized with some impacts from Canada. The majority of wells
sampled were relatively shallow and did not provide access to water at deeper levels within
the aquifer. Nitrate levels in wells 5, 6, and 7 (deep wells) seem to indicate some impact from
Canada, given their depths and proximity to the border.

A trend in decreasing nitrate levels was observed down-gradient from known point
sources (Figures 34-39). This trend is most likely a result of high nitrate loading to the water

table from agricultural sources, which is then mixed and diluted as groundwater travels down-
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gradient. Well 1 was the only well to show some correlation with water levels and nitrate
concentrations from April, 1997 to March, 1998. This correlation is attributed to the very
shallow groundwater levels (0-5 feet below land surface) and the intense farming directly
adjacent to the well. Wells 5, 6, and 7 showed a gradual increase in nitrate concentration but
not in relation to rising water table levels. The rising nitrate trend may be from loading
sources across the international border in Canada.

Three of the most highly contaminated wells in the study area (wells 9, 14, and 18) did
not show any clear correlation between water levels and nitrate concentrations. It remains
unclear as to why wells 9 and 14 showed a gradual decrease in nitrates over the duration of the
study. Well 14 is a very shallow well (20 feet deep) located down-gradient of known point
sources including a dairy pasture, feed lot, and manure lagoon. Well 9 is 71 feet deep and
screened approximately 40 to 45 feet below the water table. Well 9 is also located down-
gradient of a known point source. A possible explanation for lower nitrate levels observed in
wells 9 and 14 may be the increased attention given to dairy farms in Whatcom County by
Ecology and EPA shortly after this study began. Ecology and EPA enforced more stringent
handling practices of manure wastes at dairy farms and threatened significant enforcement
penalties for violators, which may partly explain the decreasing nitrate levels observed in
wells 9 and 14 during this study. Well 18 showed a rising trend from Spring of 1997 to the
Fall of 1997 and then a sharp decrease for the duration of the study. The apparent
convergence of nitrate contours around well 18 is believed to be caused by the lack of data
points west of well 18 and the high concentration of nitrates within the well. Well number 18
is down-gradient from very large raspberry fields. It may be that the increasing trend in
nitrates from Spring 1997 to Fall 1997 was due to lower water levels in the well from
increased use for irrigation during the dry months, however, this same trend was not seen from

the Spring of 1998 to the Summer of 1998.

4.9 NITRATE TRANSPORT SIMULATIONS
MT3D was used to model three different nitrate transport scenarios (Appendix E). A
50 mg/L nitrate spike was introduced at selected cell locations in the model domain for a

duration of one day as discussed in section 3.9 (Figures 40-42). Results of the nitrate transport
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simulations are given in Table 9. Nitrate contours for all three scenarios were plotted after one
year of travel time with the exception of scenario two. In scenario two, the nitrate plume
traveled outside of the study area after one year at the highest hydraulic conductivity value, so
nitrate contours were plotted at six months. Nitrate contours within the study area for each
transport scenario are shown in Figures 43-48. Because Judson Lake crosses the international
border, two sets of nitrate line sources had to be used in scenario three (Figure 42). Asa
result, two distinct nitrate plumes were produced on the west and east side of Judson Lake
(Table 9). To ensure that nitrate transport results reflected the estimates of the groundwater
flow model, the distance the contaminant plumes traveled were measured from the center of
mass against groundwater flow velocities calculated by the groundwater model. These values
were found to be accurate and reasonable and are reported in Table 9.

Two values of hydraulic conductivity were used for each scenario because a range of
hydraulic conductivity values have been reported for the Abbotsford-Sumas Aquifer. Using
two different hydraulic conductivity values (high and medium), a better representation of
possible contaminant transport times within the aquifer was achieved. The medium
conductivity value used for transport modeling was obtained from the USGS study conducted
within the same general area (Cox and Kahle, 1999). The median value reported in the USGS
study was 274 feet per day for the entire USGS study area. The high conductivity value used
in transport modeling was the value obtained from this study of 929 feet per day (section 4.2).

The groundwater model was developed in part to enable approximations to be made
about residence times for nitrates within the study area and to simulate trends observed in the
field data. In scenario one, a hydraulic conductivity of 270 feet per day produced slightly
higher travel times and reduced plume concentrations at the end of 1 year. These results are
expected given the increase in groundwater flow velocity associated with higher hydraulic
conductivity values. Transport simulations using a hydraulic conductivity of 929 feet per day
not only generated faster travel times, but also elongated the nitrate plume in the direction of
groundwater flow (Figure 44).

In scenario two, the second nitrate spike was located in an area of slightly higher
groundwater flow velocity as predicted by the groundwater model. Because of this, both

transport simulations produced faster travel times and larger reductions in nitrate plume
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concentrations. Nitrate levels in the southeast portion of the study area were relatively low
throughout the duration of this study. Using high hydraulic conductivity values in the
transport simulations (like that estimated within the study area of 929 feet per day) seem to
support the fact that high concentrations of nitrate entering groundwater in the northern
portions of the study area is rapidly diluted by the time it reaches the southeast portion of the
study area (Figure 46).

In scenario three, a hydraulic conductivity of 270 feet per day reduced the nitrate
plume concentration by one half after one year (Figure 47). A hydraulic conductivity of 929
feet per day produced nitrate contours that seem to indicate contamination from Canada as a
likely source. After three to six months in the transport simulation, the east half of the study
area indicated nitrate levels that closely resembled those collected in the field for wells 5, 6,
and 7. After one year, nitrate concentrations in the west half of the study area around wells 1
and 2 were beginning to approach nitrate concentrations observed in those wells during the
course of this study (Figure 48). If the transport simulation were allowed to run another three
months, nitrate levels around wells 1 and 2 would be about the same as those observed during
the course of this study. It can also be seen that wells 3 and 4 seem to be somewhat protected
from the nitrate plume possibly due to the interaction of Judson Lake with groundwater flow
(Figure 48). Groundwater model head contours in the northwest half of the study area show a
strong southwest flow component, especially where the nitrate spikes were initiated for
scenario three (Figure 42). Because of the strong southwest flow directions, it is not surprising
that wells 3 and 4 are somewhat protected from nitrate loading across the international border
in Canada. This may explain why nitrate levels in wells 3 and 4 were continually low
throughout this study. However, there have been elevated nitrate spikes in the past observed
in well number 4 (Garland, personal communication 1998). Furthermore, well 3 is screened
between 87 and 92 feet below land surface and the average water table level is approximately
15 feet below land surface in this area. Therefore, well 3 may be drawing water deeper within

the aquifer that is less contaminated.
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5.0 CONCLUSIONS

This thesis focused on characterizing the hydrostratigraphy and its relationship to
groundwater tlow directions and flow velocities. Information collected as part of this study
was used to develop a groundwater flow model to predict groundwater flow and simulate
nitrate transport in the study area. Five project objectives were defined in section 1.4 and have

been accomplished by this study.

5.1 HYDROSTRATIGRAPHY

Six geologic units were identified within the study area and grouped into two
hydrostratigraphic units defined as the Sumas Aquifer and the Sumas Aquitard. The Sumas
Aquifer is unconfined in the study area and ranges in thickness from 180 feet in the northeast
portion of the study area to approximately 80 feet in the southeast portion of the study area.
The Sumas Aquifer is primarily a heterogeneous mixture of gravel and sand with some sand
lenses and scattered silt and or clay lenses, but is believed to have good hydraulic continuity
throughout the study area with the possible exception of ice contact deposits in the southeast
portion of the study area. The average hydraulic conductivity of the Sumas Aquifer was
determined through sieve analyses to be 929 feet/day. This estimate was determined to be a
close representation of the actual hydraulic conductivity of the aquifer given the high content
of gravel and sand in the study area. The Sumas Aquitard is made up of three relatively
impermeable units that are found in scattered lenses throughout the study area. However, the
primary unit of the Sumas Aquitard is a clay layer interpreted as Bellingham GMD which is
believed to exist at approximately sea level in the study area. This study concludes that the
Hampton Clay. which crops out at the south end of the study area as mapped by Easterbrook
in 1976 (Figure 3), is the same unit as the Bellingham GMD that occupies large areas
northwest, south, and southwest of the study area. This theory is in agreement with the most
recent mapping done by the USGS (Cox and Kahle, 1999) and has also been verified by Don
Easterbrook (Easterbrook, personal communication 1999). Understanding the relationship
between the Hampton Clay and Bellingham GMD is very important in obtaining accurate
groundwater flow directions in the southern portion of the study area. The Hampton Clay

defines a no-flow boundary which forces groundwater to flow east and west and may also
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create a vertical groundwater flow component in this area.

5.2 SEASONAL WATER TABLE FLUCTUATIONS

Water table levels fluctuated from season to season and showed the largest variations
between the spring and fall, and the spring and summer seasons. The largest overall average
variation in water table levels was approximately 5 feet in the north half of the study area and
3.5 feet in the southern half of the study area. The water table is predicted to be a maximum
of 60 to 65 feet below land surface in the northeast portion of the study area and anywhere
from 0 to 30 feet below land surface in the southern portion of the study area. It is believed
that the seasonal water tables contoured from field data using Surfer are not as accurate as the
water table contour predicted by the groundwater model. There were no clear trends with
rising water levels and rising nitrate concentrations with the exception of well 1, which did

show a possible correlation between rising water table levels and rising nitrate concentrations.

5.3 HYDRAULIC GRADIENTS

Hydraulic gradients were calculated utilizing both the water table contour maps
generated in Surfer from water levels collected in the field, and the water table contour map
generated from the groundwater model results using GMS. Hydraulic gradients are highest in
the east portion of the study area and lowest in the west portion of the study area.
Comparisons of hydraulic gradients between the contoured field data and the groundwater
model data revealed little difference overall. The largest differences between the two occurred
in the eastern portion of the study area and the north and southern halves of the study area.
Water tables developed from the field data showed a large difference in gradients between the
north half and the south half the study area. This difference was not observed in the gradients
calculated using the groundwater model. Hydraulic gradients were used to calculate linear

groundwater flow velocities in the study area.

5.4 GROUNDWATER FLOW DIRECTIONS AND VELOCITIES
Field data contoured in Surfer showed groundwater flow directions to be almost due

south in the north half and west portions of the study area. Contours in the far east and
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southeast portions of the study area show that the groundwater flow direction is more to the
southeast. It is assumed that the actual groundwater flow directions. especially in the
southwest portion of the study area, more closely approximate those predicted by the
groundwater model. Groundwater flow directions predicted by the model show a more
defined southeasterly trend than flow directions predicted by head contours generated from the
field data. The difference between the two is attributed to the southwestern half of the model
area being established as a no-flow boundary, which forced groundwater to flow to the
southwest and southeast. This predicted flow regime corresponds best with the
hydrostratigraphy in this area. Three major groundwater flow directions within the study area
were observed from contouring the results of the groundwater simulation. In the east half of
the study area, the groundwater flow direction is clearly from the northwest to the southeast.
In the northwest quarter of the study area, the groundwater flow direction is to the southwest.
In the southwest quarter of the study area, the flow direction shifts to the southeast and
eventually almost due east because of the no-flow boundary in this location.

Groundwater flow velocity in the southern half of the study area is a little over four
times that in the north half of the study area, as indicated by field data. This large variation
between the north half and the south half of the study area is not as pronounced in the
groundwater model simulation. As stated previously, it is believed that the groundwater
" model more closely approximates the actual groundwater flow within the study area.
Groundwater flow velocities in the east half of the study area range from approximately 20
feet/day using water level data collected in the field to 25 feet per/day using the groundwater
model simulation. Groundwater flow velocities in the central and west half of the study area
range from approximately 10 feet/day using water level data collected in the field, to 7.5-15
feet/day using the groundwater model simulation. Groundwater flow velocities predicted by
the model simulation show a large variation from west to east within the study area. In the
east portion of the study area, the model predicts a maximum velocity of approximately 25
feet per day compared to 20 feet per day from water table contours generated from field data
in the direction of groundwater flow. In the west portion of the study area, the model predicts
a velocity of approximately 8 feet per day compared to 11 feet per day from water table

contours generated from field data in the direction of groundwater flow. Groundwater flow
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velocity variations from east to west within the study area are attributed primarily to

topography and regional groundwater flow directions established by the model.

5.5 TWO-DIMENSIONAL NITRATE CONTOURS

Two-dimensional nitrate contours indicate that the highest concentrations occur in
wells down-gradient of large dairies in the central portion of the study area and down-gradient
of large fertilized crop fields identified in field investigations. This suggests that most of the
groundwater contamination is occurring from localized sources within Whatcom County,
Washington. However, there is also evidence that suggests groundwater contamination at
deeper levels in the northeast portion of the study area, is related to sources across the
international border in Canada. This may also be true for the northwest portion of the study
area at shallower levels. It is logical to assume that rapid dilution of nitrate would occur given
the vast quantity and velocity of groundwater within the Sumas Aquifer. This theory was

tested using a transport model with various nitrate spikes monitored over a period of one year.

5.6 NITRATE TRANSPORT

Approximate residence times for nitrate plumes within the study area were determined
using the groundwater model developed with MODFLOW, GMS, and a transport model
(MT3D). Three transport scenarios were examined with MT3D. Each scenario used two
different values of hydraulic conductivity to gain a better distribution of possible contaminant
transport times. Transport simulations re-affirm the fact that accurate groundwater flow
velocities are critical in determining nitrate residence times. At higher hydraulic conductivity
values, and thus higher groundwater flow velocities, nitrate spikes initiated in the study area
traveled outside of the study area between 1.5 and two years and were significantly reduced in
concentration. By comparison, nitrate travel times from the international border to the
southern end of the study area predicted by calculated groundwater flow velocities was
approximately 1.8 years. Nitrate transport simulations also suggest that contamination from
sources across the international border in Canada is likely in the northeast and northwest

portions of the study area.



6.0 RECOMMENDATIONS FOR FUTURE WORK

Recommendations for future work within the Abbotsford-Sumas study area include:

1) Perform pump tests to determine aquifer properties to help verify the groundwater model

and future models.

2) Study the interactions of groundwater and surface water between Judson Lake, Laxton
Lake and the Sumas Aquifer. This could be accomplished by getting core samples of the
underlying lacustrine sediments to establish their depth and obtain vertical leakance factors.
The leakance factors could then be used in a groundwater model which may more accurately

predict groundwater flow directions and velocities around these areas.

3) Examine the interactions of Pangborn Bog, nitrate concentrations, and groundwater flow.
This could be accomplished by inserting nested monitoring wells or piezometers along the
northern fringe of the bog across the study area and sampling monthly for water levels and
nitrate concentrations. This could be done very cheaply with the cooperation of two or three
land owners (two of whom have already allowed such access for this study) and basic
materials such as four inch PVC pipe, a hacksaw, screen material, and a post hole digger. The

water levels in this area are very near the surface and peat is relatively easy to dig through.

4) Pick one field of known size that has had little if any type of fertilizer applied to it for one
year in the study area and develop nested monitoring wells directly down gradient. Take
monthly water levels and water samples to establish background nitrate and water levels.
After six months, physically apply a known nitrate concentration as a spike and then monitor
monthly to determine the actual travel times within the aquifer. The nested monitoring wells

would help reveal concentration variations with depth.
5) Ultilize the existing deep test hole in the northeast portion of the study area to obtain water
quality samples to better understand possible impacts from Canada. The existing well has a 6

inch casing that was installed to a depth of 400 feet. The drillers well log indicates that no
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screens were installed and two distinct aquifers are present. The first aquifer is interpreted as
the Sumas Aquifer which is found from 3 feet to 213 feet below land surface in this well
(approximately sea level). There is 21 feet of gray clay separating this aquifer from a 100 foot
thick water bearing sand layer (possibly the Deming Sand) at a depth of 234 feet below land
surface (approximately zero to 100 feet below sea level). If water is found within this well, it
is possible that the water may be representative of the deep aquifer since no screens were
installed. If the well was sealed at depth and is dry, it would be simple to perforate the casing
at the lower level of the Sumas Aquifer. Water quality sampling of the deepest water within
the Sumas Aquifer would provide a wealth of information as to the depth and levels of nitrate
contamination. The company that drilled this well (Hayes Drilling) is still in business and has
a good working relationship with Western Washington University.

6) Soil sampling at various depths in fields with known nitrate application rates and times
along with vadose zone monitoring and or the upper most saturated zone of the aquifer. Soil
sampling and vadose zone monitoring would more accurately quantify the concentration of

nitrate actually entering the water table.
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Table 5. Geometric Mean of Hydraulic Conductivity (K)

Sample # K¢ (ft'day)
1 3222
2 3222
3 5729
4 968.1
5 572.9
6 19493
Arithmetic Mean 3708.6
Geometric Mean (G) 929
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SCALE 1:62 500
R BEs Tl | % 0 1 2 3 MILES
4 : Em e e e——

’ 1 5 0 1 2 3 4 5 KILOMETRES
e acnc e e———— — ]

CONTOUR INTERVALS 20, 50, AND 80 FEET
DATUM IS MEAN SEA LEVEL
DEPTH CURVES IN FEET—DATUM IS5 MEAN LOWER LOW WATER

Figure 3. Geologic Map of Western Whatcom County, Washington
(Adapted from Easterbrook, 1976)

Qso = Outwash Sand and Gravel
Qp = Peat

Qsc = Silt and Clay

Qal = Alluvial Deposits

Qs = Till and Ice Contact Deposits
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Figure 4. Sumas Ice Lobe Boundary
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Figure 7. Aerial Photo of Soils within the Study Area
(Adapted from Soil Survey of VWhatcom County, Washington, 1985)
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Figure 8. Well Sample Site Location Map
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Figure 9. Sieve Sample Locations @ = Gravel & Sand Samples
A = Sand Samples
< = Clay/Silt Sample
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Photo of Sumas Outwash from Gravel P

Figure 21

to backpack for scale.
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Figure 22. Photo of Sand Lens in Sumas Outwash.
Note arrow pointing to backpack for scale.
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Figure 24. Water Table Contour Map Spring 1997 (feet ASL)
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Figure 25. Water Table Contour Map Summer 1997 (feet ASL)
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Figure 26. Water Table Contour Map Fall 1997 (feet ASL)
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Figure 27. Water Table Contour Map Winter 1998 (feet ASL)
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Figure 28. Water Table Contour Map Spring 1998 (feet ASL)
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Figure 35. Two-Dimensional Nitrate Contours Summer 1997
Concentrations = mg/L

96



.l___.'l.ﬁ””_"{.___- CéN_AD‘l " B S,
R T R P"&-" QSN ) WDNiza
i g 3 T & | P
b - i = SAROE 4

y . = SNSSEAA 20 e,

-~
o
0
a
T

e ; )
L7 I
6
z i
Q w
i
s
> GCRY
Gghél it
£

v ,l -
i 1N *Be) trie a . \,—»./_

Figure 36. Two-Dimensional Nitrate Contours Fall 1997
Concentrations = mg/L

97



47

!

e

CANADA

e

FanPand
ETES

s

G !
e

et
1601

Figure 37. Two-Dimensional Nitrate Contours Winter 1998
Concentrations

SU——
TR

i

At
1

98




c o ow

P H
i H
H :

T F e

\

- b
. LA
3 > ]
3 e
", - -
- i s i s
-
Do . |
o
.




& o ov

i

S - NG 1\ P T Y
o it P o N A==z RN = B S Y
e p "\\ a NITED< ‘" i y b f ]r "‘:/

e 8% \:} \ freo—srr] e K P N
£ =

“
b
I rify

(=)

o
nu-ounu-wdo——
/ 2

Concentrations = mg/L



Py Sl

]
P S

b
i Ty

> ey
R4
.--u-.&'{-u-.u-nn&
.

7k

101




T ———. wmcr;;;(\j‘

7
N4 ;-2;_-. i

Y Sl e L e

< LI )
Chiing A=)

] P S WM F_’r'fjj

Figure 41. Scenario 2 - 50 mg/L Nitrate Spike Application Cells

102




AAAAAAAAAAAL AAAA

49

o o, | |4
T v-l.li'imza 7
=

< |

ot e/ / (\20 ‘{Lﬂf”j/‘

"k

22 s \\« b
2 e : s O - o off
of AR
; \ . b
171 10 erec) (e aY o &I

Figure 42. Scenario 3 - 50 mg/L Nitrate Spike Application Cells
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APPENDIX A.

APPENDIX B.

APPENDIX C.

APPENDIX D.

APPENDIXE.

Appendices

MODFLOW MODEL OUTPUT DATA (CD ROM)
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APPPENDIX A.  ASTM STANDARDS FOR SIEVE ANALYSES
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APPENDIX A

ASTM PARTICLE SIZE DISTRIBUTION LIST
Boulders = Particles of rock that will not pass a 12 inch square opening.

Cobbles = Particles of rock that will pass a 12 inch square opening and
be retained on a 3 inch U.S. standard sieve.

Gravel =  Particles of rock that will pass a 3 inch sieve and be
retained on a No. 4 U.S. standard sieve with the following
subdivisions:

Coarse = passes 3 inch sieve and retained on 3/4 inch sieve.
Fine = passes 3/4 inch sieve and retained on No. 4 sieve.

Sand = Particles of rock that will pass a No. 4 sieve and be retained
on a No. 200 U.S. standard sieve with the following
subdivisions:

Coarse = passes No. 4 sieve and retained on No. 10 sieve.
Medium = passes No. 10 sieve and retained on No. 40 sieve.
Fine = passes No. 40 sieve and retained on No. 200 sieve.

Silt = Soil passing a No. 200 U.S. standard sieve that is nonplastic or
very slightly plastic and that exhibits little or no strength when dry.

Clay = Soil passing a No. 200 U.S. standard sieve that can be made to

exhibit plasticity (putty-like properties) within a range of water
contents and that exhibits considerable strength when air dry.
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APPPENDIX B. WATER LEVEL AND WATER QUALITY DATA
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