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Abstract  

 
Quartz crystal microblades are a small lithic tool technology dating predominantly to the 

Locarno Beach Phase (3500-2400 BP) in the Salish Sea region.  The function of these tools has 
not been well established in previous research.  This thesis applies morphological, microwear, 
and residue analyses to a sample assemblage of 68 quartz crystal artifacts from six 
archaeological sites in northwestern Washington State (45SK46, 45WH1, 45WH17, 45WH47, 
45WH55, and 45WH59).  The results of these methods determined that quartz crystal 
microblades were multiuse tools.  Morphological analysis determined the variability of object 
types and metric measurements within the assemblage.  Microwear analyses at multiple 
magnification levels identified a variety of scar types and patterns which suggests that these 
tools were likely utilized in both end and side-hafts, but were more commonly side-hafted.  
Results of residue analyses utilizing the cross-over immuno-electrophoresis (CIEP) method 
determined quartz crystal microblades were used to process rabbit, deer, and salmon.  The use 
of CIEP analysis also identified human proteins, while the use of a scanning electron microscope 
equipped with an energy dispersive x-ray spectrometer (SEM-EDX) identified red ochre.  The 
combination of human protein with red ochre suggests that this lithic technology may have also 
served a ceremonial purpose. 
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CHAPTER 1: INTRODUCTION 

It is well established that in the Salish Sea region of the Northwest Coast, quartz crystal 

microblades were manufactured and utilized almost exclusively during the dynamic cultural 

period of the Locarno Beach Phase (3500-2400 BP) (Ames and Maschner 1999; Carlson 1996; 

Matson and Coupland 1995; Mitchell 1990).  Despite the diagnostic association and the 

widespread occurrence of quartz crystal artifacts in the region, there is very little research 

aimed at understanding the technological, economic, and social role that this industry played 

during this specific time period.   

Specific functions of quartz crystal microblades during the Locarno Beach phase are 

suggested by researchers for two sites on the Olympic Peninsula of Washington State with 

exceptional recovery.  Croes (1995) suggests association of hafted microblades and microliths 

of vein quartz with fish processing at the Hoko River site based on the faunal assemblage and 

residue analysis.  Wet preservation at this site resulted in the recovery of an end-hafted quartz 

crystal microblade, and the opportunity to study hafting methods.  At 45CA426, 571 quartz 

crystal artifacts representing various stages of production and use were recovered.  They were 

associated with concentrations of elk bone and residue analysis indicated artiodactyl protein on 

11 of the microblades (Walker 1999).  Walker suggests that the use of quartz crystal to produce 

microblades was not simply an economic choice, but a cultural one.   

Regional studies can draw on a great deal of previous research on microblades which 

shows commonalities between material choices and production strategies in industries from 
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multiple regions spanning Asia and North America in different time periods.  Microblade 

industries offer portability and flexibility.  Microcores are small, light and can easily be 

transported between locations.  Microblades, which are useful for a variety of purposes, can be 

produced expediently on location as needed.   

Quartz crystal microblades co-occur with microblades of other materials in the Salish 

Sea and in other contexts, such as the Paleoarctic Tradition (Goebel and Buvit 2011).  I suggest 

that they are a specialized subset of microblades because they offer functional advantages such 

as durability, and because quartz crystals commonly have cultural value in addition to its 

qualities as a toolstone.  Unworked quartz crystals are associated with ritual and ceremony and 

ritual in many cultures, and there is evidence that both flaked and unflaked quartz crystal had 

significance to ancestral Coast Salish peoples (Hickok et al. 2010).   

The paucity of research in this region specifically on quartz crystal microblades parallels 

a general lack of focus on quartz crystal as a raw material globally.  Reher and Frison (1991) 

remark upon the fact that quartz crystal occurs ubiquitously but in always in low frequencies 

and is seldom given specific attention.  The distinctiveness of raw quartz crystal as a material in 

regards to flintknapping techniques and lithic analysis is emphasized in the limited amount of 

experimental work that has been performed on both production and microwear (Flenniken 

1981; Reher and Frison 1991; Igreja 2009; Lagestee 2012).   

The goal of this thesis is to provide a better understanding of the function of quartz 

crystal microblades and the role they played for prehistoric peoples of the Salish Sea during the 
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Locarno Beach Phase.  Previous research establishes specific uses for quartz crystal microblades 

that relate to specific locations: marine resources at the Hoko River site and elk at 45CA426.  

The fact that quartz crystal microblades are so widely found in small numbers throughout the 

Salish Sea region suggests that they share the general advantages of microblades in being 

portable and providing a flexible generalized use.  I hypothesize that quartz crystal microblades 

were multi-use tools that were utilized for a variety of tasks.  I further suggest that 

technological, functional, and social factors may all have played a role in why the technology 

was so common in the Locarno Beach phase but not at other times.   

This thesis employs an innovative approach, applying a wide variety of technologies to 

an assemblage of 68 quartz crystal artifacts from six different sites in northwestern Washington 

State, 45SK46, 45WH01, 45WH17, 45WH47, 45WH55, and 45WH59.  Morphological analysis 

separates artifacts into typological categories and describes their attributes in detail.  

Microwear analysis identifies use-wear patterns, the most commonly used edge, and possible 

prehistoric haft placements for individual tools.  Residue analysis methods include the use of a 

scanning electron microscope equipped with an energy-dispersive x-ray spectrometer to 

identify inorganic residues, and cross-over immuno-electrophoresis (CIEP) protein analysis to 

identify organic residues. The combination of morphological, microwear, and residue analyses 

will provide not only a new perspective on the specific function of this tool, but also its place 

within the toolkit of peoples living thousands of years ago.  The Locarno Beach Phase, and the 

artifacts associated with it are representative of a society in transformation and this alone 

justifies a closer look at the technological and social function of this specialized technology.   
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The following chapter provides an overview of microblades as a general technology, 

details about quartz crystal microblades, and a discussion of the global use of quartz crystals.  

Chapter Three discusses the Locarno Beach cultural phase and two sites located on the Olympic 

Peninsula that were especially beneficial to research on quartz crystal microblades. Chapters 

Four and Five provide details of the methods and results of morphological, microwear, and 

residue analyses.  Chapter Six outlines the significance of this research for Northwest Coast 

prehistory and identifies opportunities for future studies of this lithic technology.  
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CHAPTER 2: QUARTZ CRYSTAL, MICROBLADES, AND QUARTZ CRYSTAL MICROBLADES 

In order to better understand the manufacture and use of quartz crystal, one must first 

realize the special qualities of the material that create cultural symbolic value and affect its use 

as a toolstone.  Production of microblades is a very distinctive technology, that while found in 

many times and places, is nonetheless relatively rare.  Quartz crystal is equally distinctive as a 

raw material type, and while quartz crystals have been used widely, they are never common.  

This is reflected in the lack of research focused on the production and use of quartz crystal 

artifacts and technologies (Derndarsky and Ocklind 2001; Igreja 2009; Kimball 1994, 2013; 

Sussman 1985, 1988). 

Quartz Crystal Raw Material 

Quartz is a name used to refer to silicon dioxide (SiO₂), one of the most abundant and 

widespread rock-forming minerals on earth.  It is a component of many metamorphic and 

igneous rocks, and can grow in crystal formations.  This mineral usually develops in prisms that 

have 6 sides and are trigonal in shape (Anthony et al. 2001; Hamilton et al. 1978).  Each crystal 

is a faceted cylinder with defined ridges between each of its crystal faces.  Crystals vary in color 

and transparency depending on trace elements, and common names such as amethyst, citrine, 

milky, rose, and smoky quartz have been given to specific variants (Anthony et al. 2001; 

Hamilton et al. 1978).  The clear crystal variety, commonly called rock crystal, is the only one 

regularly used for flintknapping.  Quartz crystals grow in hydrothermal veins in geographic 

environments varying from alpine to epithermal and range in size from tiny prisms to crystals 
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over 50 feet tall (Anthony et al. 2001).  Single crystals can be found loose on the surface when 

they have been eroded from their formation environments, and may be transported by water.  

The natural cortex, or outer growth surface, on a quartz crystal face can be identified by 

characteristic horizontal striations on the stone’s surface, perpendicular to the direction of 

growth (Hamilton et al. 1978).  

Quartz crystal has an unusual fracturing behavior for a macrocrystalline material 

because it lacks cleavage planes.  It does fracture conchoidally like the cryptocrystalline 

varieties of SiO₂ that are commonly flinknapped, such as chert and flint.  Visible impurities, seen 

as rough areas or pockets on or within a quartz crystal are due to cavities being filled with liquid 

during crystal growth, or inclusions of other minerals within the stone.  These impurities can 

interrupt a fracture, as can natural irregular internal planes that had developed at a slower or 

interrupted growth rate.  These issues would be visible to flintknappers and could be avoided 

during tool production in order to remove a more complete flake or blade (Reher and Frison 

1991).   

Quartz crystal artifacts are seldom found as a dominant lithic material within site 

assemblages, but are recorded in small numbers in sites throughout the world (Reher and 

Frison 1991).  Sussman suggests that despite its ubiquity, quartz crystal as a material type has 

been overlooked in analyses due to its “irregular fracture pattern and surface texture, high 

reflectivity and hardness” (1985:101).  These qualities make analysis of artifacts made of this 
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material physically challenging, while the differences between quartz crystal and other lithic 

material types limit direct comparison. 

Comparative research is hampered by inconsistency in terminology and a failure to 

distinguish between different varieties of quartz.  Often, the general term “quartz” is used 

without an explicit indication as to which variety was present in assemblage.  Cryptoscrystalline 

quartz (CCS), vein quartz, and quartz crystals, should not be lumped together simply as “quartz” 

because these materials are not comparable in production, fracturing, or wear patterns.  

Prehistorically, vein quartz was commonly utilized for lithic tool manufacture across the globe.  

Although it contains the same mineral combination, vein quartz is formed in veins of rocks.  

More resistant than the parent rock, it weathers out and may undergo water transportation to 

become a useable form to flintknappers, such as pebbles (Andrefsky 2005; Driscoll 2009 and 

2010; Flenniken 1981).  Quartz crystal artifacts deserve treatment as a category of their own, as 

I would not connect the similarities in microwear patterns between “quartz” and quartz crystal 

any more closely than I would compare those materials with obsidian.   

Global Use of Quartz Crystal 

Association of quartz crystal and quartz crystal tools with shamans and ceremonial 

activities is noted extensively in ethnographic literature.  Various groups around the world 

associate quartz crystal with religious, spiritual, and healing behaviors (DuBois 2009; Eliade 

1972; Kalweit 1992; Knutsson 1988; Trueblood et al. 1977).  The prismatic shape and distinct 

clarity of quartz crystal causes it to stand out among other flakeable lithic materials.  
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Additionally, it produces a piezoelectric charge when it is struck, a phenomenon known as 

triboluminescence (Hickok et al. 2010).  This reaction impressively causes a dazzling flash of 

light and occasionally a bright spark.  The locations in which quartz crystals are found, such as 

caves and mountain ranges, could also be associated with shamanistic travel such a spirit 

quests.   

Whole unmodified quartz crystals are considered to be the most important element of 

the magical toolkit used by healers in North Borneo and Celebes (Eliade 1972).  The Cobeno of 

South America use the stones as symbols of strength and healing and see crystals as gifts from 

celestial spirits known as Cenoi.  Cenoi also often reside within the individual crystals.  The use 

of quartz crystals by prehistoric peoples of the Northwest Coast region of North America is 

discussed in Chapter 3. 

Definition of a Microblade 

Microblades are small, uniform, sharp cutting tools that are systematically removed 

from a prepared core by applying a semi-vertical force to the edge of the platform to remove an 

elongated flake (Andrefsky 2005; Odell 2004; Smith 1997).  Microblades are distinguished from 

standard blades by their small size.  They measure only centimeters in length, are typically at 

least twice as long as they are wide, and exhibiting parallel lateral margins (Andrefsky 2005:165; 

Desrosiers and Gendron 2004; Kuzmin et al. 2007; Mason and Perino 1961; Smith 1997).  Their 

longitudinal axes vary minimally in width and thickness and can be oriented by identifying their 

platform (proximal) and termination (distal) ends (Figure 1).  The dorsal surface of a microblade 
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exhibits arises from previous flakes or blades and occasionally the natural cortex of the raw 

material.  The ventral surface of a microblade often contains a slight bulb at the point of 

impact, with ripples and fissures moving away from the proximal and towards the distal end of 

the blade.   

  

Figure 1. Orientation of a quartz crystal microblade (dorsal view). 
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Microblades, and similar core reduction technologies, are found in prehistoric 

assemblages in northwestern areas of North America, most notably in Alaska during the Paleo-

Arctic (8000-5000 BC) (Fagan 1991).  Ethnographic literature specific to the functionality of 

microblades is rare, so much of our knowledge of the general function of this tool type is from 

lithic analysis.  Lithic analysts have studied microblade industries from contexts all around the 

world (Andrefsky 2005; Odell 2004). The variability of geographic and environmental locations 

in which these prehistoric tools have been recorded support the overall flexibility and utility of 

this technology.  Andrefsky (2005) suggests that microblades were used during multiple 

activities and varied in function based on tool size and the context in which a microblades was 

needed.  Microblades may have been utilized for a multitude of behaviors ranging from 

precision craft work to basic utilitarian activities.  This includes bead making (Mason and Perino 

1961), drilling, engraving bones, hair cutting, shaving, and cordage or basketry making 

(Hutchings 1996).  They would have also been extremely useful and efficient in plant, hide and 

meat processing tasks (Hutchings 1996; Walker 1999).   

Production of Quartz Crystal Microblades 

Quartz crystals make good cores because of their natural prismatic and cylindrical 

shape, much like the prepared cores of other microcore technologies (Reher and Frison 1991).  

As suggested by experimental quartz crystal production projects, most of the required 

preparation for the removal of microblades would be performed by grinding on the striking 

surface, or platform, of a core.  This preparation is needed in order to apply a blow, likely above 
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a ridge formed by the intersection of natural crystal faces, to remove a microblade (Flenniken 

1981; Igreja 2009; Lagestee 2012; Reher and Frison 1991).  The use of microcore reduction 

strategies on quartz crystals conserves the resource, which is important because only a small 

amount of material is available in each core.  Little preparation is necessary to remove 

microblades.  These microblades have the standard features, including a striking platform, bulb 

of percussion, fissures, and termination.   

In comparison to other lithic materials used to make stone tools, quartz crystal may 

have required greater skill or a larger production toolkit due to the stone’s hardness and 

fracturing patterns.  Like chert and other CCS materials, quartz crystal ranks 7 on Moh’s Scale of 

Hardness, while obsidian ranks at 5.  The harder the material, the greater the pressure and 

applied force is needed to gain the desired result and control the lithic fracture.  Whittaker 

(1994) ranks materials by ease of flintknapping on his Lithic Grade Scale (Figure 2).  Quartz 

crystal is included in the “tough” grade and measures at 4.0 out of 5.0 with agate and jasper, 

while other commonly used chipped stone raw materials such as chert and obsidian fall into the 

“strong” and “brittle” grade categories and measure at between 1 and 3.5.   
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Figure 2. Lithic Grade Scale ranking material types by ease of knapping (from Whittaker 
1994:66). 
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Reher and Frison (1991) utilized segments of large Brazilian crystals in experimental 

research.  They state that the reduction of quartz crystal is similar to that of chert, but that the 

former material lacks some of the flexibility of the latter.  During reduction, the incorrect 

application or angle of force can cause a flintknapper working a piece of chert to obtain a less 

than ideal flake that does not exhibit the desired features, length, or thickness.  The same 

action when working quartz crystal can cause an unpredictably shaped and rough flake.  Worse 

yet, a poorly executed strike can cause a crystal to shatter upon impact, exhausting the core for 

any additional blade removals.  Reher and Frison (1991:379) state that the removal of blades 

from a quartz crystal: 

…require[s] a more robust platform and a point of impact further back from the 
platform edge due to its more brittle nature.  Along with this, however, less force is 
required for fracture propagation once the fracture is initiated.  It is difficult to put into 
words, but it seems almost as if a slightly sharper blow or applied pressure is required 
for fracture initiation, and then results are more favorable if the knapper almost 
instantaneously “backs off.”  

Reher and Frison describe other flintknappers’ reactions to crystal knapping as “limited 

success if not outright failure” (1991:378).  The level of skill required to produce tools out of 

quartz crystals would have been advanced.  The authors emphasize the difficulties and 

frustrations of the material type stating: “crystal knapping is a study in contradiction, since one 

flake can come off as though from the finest obsidian while the next suddenly turns into so 

much crystal dust in a knapper’s hand” (Reher and Frison 1991:393). 

Reher and Frison (1991) list their lithic toolkit for the reduction of quartz crystals as 

hammerstones, pressure flakers, and antler batons.  During experimentation on quartz crystals 
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of various sizes and qualities, they successfully removed some blades with a hammerstone, 

needing only a limited amount of grinding to prepare a flat and even platform between blows.  

The rigid quartz crystal material allows for a sturdy platform, but the fragility of its inner 

structure discourages knappers from applying any unnecessary blows during preparation for 

reduction.   

It would seem natural to use either the attachment or terminal end of the crystal as a 

striking platform.  The attached end from which new crystal growth occurred would only need 

to be flattened to become a suitable platform, while the terminal end of the crystal would need 

to be removed and then flattened.  The authors reference communication with other 

flintknappers, who suggested that a crystal could only be reduced unidirectionally.  Reher and 

Frison (1991) disagree; and chose to not be guided by the natural crystal faces in some of their 

experimentation, and still successfully removed usable blades and flakes.  The authors suggest 

that any part of the crystal could be prepared as a regular striking surface, including facets and 

other platforms prepared during production.  They found that during their flintknapping, the 

rate of failure increased when removing flakes from multiple directions on a crystal, but that it 

was not impossible to remove blades multi-directionally.  The authors noted that blades that 

broke during production were still able to be utilized, and had desirable traits for processing 

behaviors, such as scraping.  

Despite Reher and Frison's (1991) success when using a hammerstone on larger crystals, 

it is probable that tools other than just a hammerstone would be needed to apply sufficient 
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localized force to the platform of a core in order to remove a microblade.  The toolkit used for 

the production of quartz crystal microblades using indirect percussion may have included a 

variety of wedge and punch implements, such as hammerstone and tines.  Flenniken (1981) 

suggests a vise and pressure flaking technique may have been utilized in the production 

methods of quartz crystal microblades.  Experimental work by Lagestee (2012) successfully 

produced quartz crystal microblades using a vise and an indirect percussion technique.  His 

project utilized modern tools such as a grinding wheel, metal vise, and metal pins.  Lagestee 

suggested that the difficulty in production methods he experienced in comparison to that of 

Reher and Frison (1991) report was due to the difference in core size, as he was using small 

crystals from Washington State while Reher and Frison reduced pieces of large Brazilian crystals 

(Lagestee 2012).   

Although quartz crystal is difficult to knap, the effort is rewarded by tools that are 

stronger and more durable than those made from other chipped stone materials.  Quartz 

crystal microblades are sharp and precise, and when comparing them to other lithic tools, 

would have remained so for a longer duration without retouch than tools of other materials.  

Igreja (2009:9) discusses this positive utility during experimentation stating:  

…quartz is especially accurate to butchering, as the cutting capacity of the edge remains 
the same in spite of time using. The side hafted rock crystal bladelets were particularly 
effective and much longer, no matter the hardness of the contact materials (meat, hide 
and tendons).  

Due to their small size, quartz crystal microblades are highly portable, but their fragility 

would need to be taken into account during transportation.  As an alternative, microblade cores 
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which are also relatively small and light, could be easily transported.  It is likely that microblade 

tools were prepared in an expedient manner on location for immediate use (Greaves 1991; 

Walker 1999).   

Walker compiled a list of 16 sites with microblade assemblages located in the Salish Sea 

region; quartz crystal is noted as a material in 13 components that date to or include the 

Locarno Beach Phase, and 4 Marpole Phase components (1999:Table 14.5).  The low frequency 

of quartz crystal microblades in cultural phases other than the Locarno Beach and Marpole 

phases is suggested as a cultural preference influenced by access to raw materials, or new 

technological strategies (Walker 1999).   

At site 45CA426, on the Olympic Peninsula of Washington State, quartz crystal was 

deliberately chosen over other lithic raw materials that were available close to the site.  This 

choice was described as one that was culturally, rather than economically, motivated as the 

quartz crystal raw material was not immediately available, the production technique was labor 

intensive and specialized, and that other tools and material types, such as dacite and fine 

grained basalt, were more readily available could have provided the same function (Walker 

1999).  Even though quartz crystal microblades were likely more difficult to manufacture and 

were made of a less abundant material type, they still dominated the chipped stone 

assemblage at 45CA426.   

Hutchings (1996) suggests both raw material access and technological organization as 

factors in changing use and production of microblades at the Namu site in British Columbia.  
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The relatively sudden disappearance of the obsidian microblade industry after 4500 BP is likely 

linked to a decline in obsidian access between 4500 and 3500 BP.  When obsidian reappears 

after 3500 BP, it was used to produce microliths rather than microblades, indicating a shift in 

technological organization.    

Hafting Styles, Materials, and Microwear 

Like other small lithic tools, microblades are generally assumed to have been used in 

hafts.  Hafting would increase the leverage and pressure that could be applied to the tool while 

reducing the risk of injury to the handler (Croes 1995).  Microblade hafting methods involve 

attaching the tool to a handle, generally by inserting it into a slot in a shaft, and then adding 

some sort of adhesive and wrapping to keep the microblade in place (Croes 1995; Helwig et al. 

2008).  Opportunities to directly observe and analyze prehistoric hafting methods and materials 

are limited, as hafts are most commonly organic, and break down quickly in most depositional 

environments.  Two sites in northwestern North America with environmental conditions that 

allowed for the preservation of hafting materials are the Hoko River wet-site of the Olympic 

Peninsula of Washington State (Croes 1995) and the Gladstone Ice-patch site of Southwestern 

Yukon, Canada (Helwig et al. 2008).   

Helwig et al. (2008) describes the analysis of preserved materials at the Gladstone Ice 

Patch, a site labeled as a hunting and animal processing area dating to 7310 ± 40 BP.  These 

materials include wood, stone, antler, sinew, rawhide, and feathers.  Hafting adhesives and 

“red paint" were recorded on a double slotted antler point used to mount microblades.  The 



 

18 

 

Figure 3. Side-hafted microliths from the Hoko River site, complete with hafting material.  
Photograph courtesy of Dale Croes. 

use of Fourier transform infrared spectroscopy (FTIS) and gas chromatography-mass 

spectrometry identified the adhesive as conifer resin.  The authors suggest the resin was 

spruce, and was unlikely to have been heated.  No suggestion was made on whether wrapping 

would have been used in conjunction with the adhesive to secure the microblade.  The use of 

microblades in composite tools made of bone and antler has also been noted at many sites 

throughout Siberia and Alaska (Ackerman 1996). 

Some quartz crystal microblades and vein quartz microliths recovered at the Hoko River 

site were found with organic hafting material still attached.  Hafting materials found preserved 

at the Hoko River site were made of split western red cedar and cedar bark with binding 

materials split spruce-root and cherry bark with no indication of the use of an adhesive (Croes 

1995:180) (Figure 3).  
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The individualized hafting of each microblade allows for a range of edges and lengths to 

be exposed, depending on the task required.  The Hoko River site exemplifies two general types 

of prehistoric hafting methods: end-hafting and side-hafting (Figure 4).  End-hafting is the 

attachment of the microblade to the distal end of a haft.  To do this, the proximal end of the 

microblade is inserted into the shaft, exposing the sharp distal end of the tool and both lateral 

blade margins for a total of three cutting edges.  Side-hafting involves the parallel attachment 

of a lateral edge of a microblade(s) to the side of a wooden handle to form a tool most similar 

to a present-day knife.  

Figure 4. Photographs of an end-hafted quartz crystal microblade (Artifact #268) and side-
hafted microlith of unidentified material (Artifact #215) from 45CA213, The Hoko River Site.  
Photo courtesy of Dale Croes. 
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Flenniken describes the raw material for the hafts as coming from three sources: wood 

split from living trees, driftwood, or cedar scrap wood already present at the site (1981:61).  

The stages of handle manufacture are outlined in (Figure 5).  He describes haft preparation as 

needing:  

… considerable preparation prior to use.  After the materials were collected or gathered 
from the forest, they were cleaned and stripped of the non-functional parts and then 
soaked in water to make them more pliable.  Once pliable, they were spilt by various 
methods into the desired length, width, and thickness for binding elements [Flenniken 
1981:71]. 

Figure 5. Cedar microlith handle production from the Hoko River site (Flenniken 1981:61, Figure 
36). 

Multiple methods for the side-hafting of quartz microliths were observed at the Hoko 

River site and replicated in experimental projects by Flenniken (1981).  The first was vise-like, 

with a microlith being placed between two separate strips cedar that were then wrapped.  The 

second involved the insertion of the tool in a single piece of cedar that was split a small 

distance across the wide axis of the strip.  The third was not a full split, but rather a small slot in 

which the microlith was placed.  For binding, he employed spruce root (Picea sitchensis) and 

cedar bark (Thuja plicata), both observed on the prehistoric artifacts and available locally.   
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In the absence of preserved hafting materials, archaeologists may use microwear and 

residues to reconstruct hafting.  Mason et al. (1961) analyzed flint microblades from the 

Cahokia site in the American Bottom, Illinois.  Microblades associated with the Mississippian 

cultural period are thought to have been used as tools in the bead production process (Mason 

et al. 1961).  The authors suggest that these tools were end-hafted, as indicated by traces of 

resin and pitch on their surfaces, and by scarring patterns on blade edges. This determination of 

function was based on the presence of rotary wear and polish viewed during microscopic 

analysis.   
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CHAPTER 3: USE OF QUARTZ CRYSTAL DURING THE LOCARNO BEACH PHASE 

 Quartz crystal microblade artifacts are most commonly associated with the Locarno 

Beach Phase, an important cultural transition period in the Salish Sea region of the Northwest 

Coast of North America.  In this chapter, previous research on this specific tool technology and 

sites with quartz crystal artifact assemblages are discussed. 

Microblades and the Locarno Beach Phase 

The Locarno Beach Phase (3500-2400 BP) is a cultural phase defined for the Gulf of 

Georgia, a subregion of the Northwest Coast culture area which included the Salish Sea 

(Matson and Coupland 1995:154).  A number of stylistic markers distinguish the Locarno Beach 

Phase from the preceding Initial Coast Adaptation Phase (4500-3000 BP), and the following 

Marpole Phase (2500-1400 BP).  Sites and associated artifacts from the Initial Coast Adaptation 

Phase suggest no intensified use of resources and a lack of social ranking (Ames and Maschner 

1999; Carlson 1996; Matson and Coupland 1995; Mitchell 1990).  In comparison, the Marpole 

Phase shows evidence of intensification of resources, large seasonal settlements, use of luxury 

goods, craft specialization, widespread ceremonies, and leaders participating in a hierarchical 

social structure (Ames and Maschner 1999; Mitchell 1990; Carlson 1996).  The presence of a 

hierarchical social structure during the Locarno Beach Phase is suggested by grave goods, 

labrets, and ear spools, which Carlson (1996) links to members of higher social rank.  In general, 

the Locarno Beach Phase marks the transition of group structure from mobile foragers to 

complex foragers.  
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Greaves (1991) analyzed lithic assemblages from sites on British Columbia’s southern 

interior plateau.  The author discusses the manufacture, stages of use, function, and preference 

of tool types on a sample of microcore tools from Upper Hat Creek Valley and Highland Valley.  

The goal of the Greaves’s research was to determine the overall role of these tools.  She 

concludes that microcore tools were highly transportable and widely distributed multiuse tools 

that would have benefitted both primary collectors and primary foragers.   

A functional analysis was performed by Hicks (1991) on a sample of microblade artifacts 

made of a variety of materials.  His assemblage was compiled from 19 sites in the Northwest 

Coast region dating between 6000-300 BP.  Hicks analyzed assemblage and site variability and 

concluded that microblades were associated with sites of varying function, indicating that 

microblades were most likely a generalized technology.   

Hicks (1991) suggests that microblades would be more commonly deposited in sites 

interpreted as field camps rather than residence bases, based on the assumption that the tools 

would be transported in the core state (Hicks 1991:61).  The occurrence of microblades at 

45CA426 does not follow this pattern as the majority of the tools were found within one 

housepit feature (Walker 1999).  Similarly, the majority of quartz crystal artifacts at 45WH55 

were found within a pit-house feature (Lewis 2013:125).  

As part of his analysis, Hicks (1991) examined use-wear on microblades from 45WH59 

(Figure 6), a site also analyzed in this thesis.  Wear was observed on 25 of the 26 of the quartz 

microblades (96%), and one of the two basalt microblades.  No wear was observed on the 
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single chert microblades.  This high percentage of wear may indicate that quartz crystal 

microblades were more intensively used and re-used in comparison to other materials.  This 

may be due to the desired material type attributes, such as strength and durability.   

 
 

Quartz Crystal Microblades and the Locarno Beach Phase 

The use of quartz crystals has been documented by archaeologists throughout the 

Northwest Coast during the Locarno Beach Phase, including areas along the Fraser River and 

Salish Sea.  Use of quartz crystal technology continues from the Locarno Beach phase into the 

Marpole phase, but the occurrence of these tools greatly decreases after 2400 BP.   

Sites 45CA426 and 45CA213 provide information that is valuable in the understanding of 

quartz crystal technology and the hafting practices occurring during the Locarno Beach Phase.  

Site 45CA426 is one of the largest recorded quartz crystal microblade assemblages in the 

region, while 45CA213 gives insight into prehistoric hafting procedures due to excellent 

preservation of organic materials.  

45CA426  

A large lithic assemblage including 571 quartz crystal artifacts was recovered from 

45CA426, a site located on the northern Olympic Peninsula (Walker 1999).  This site is unusual 

because quartz crystal makes up 60 percent of the site’s chipped stone assemblage.  Generally, 

at archaeological sites within the Northwest Coast region, quartz crystal is represented in only 

Figure 6. Select sites discussed in Chapter 3 with quartz crystal microblade assemblages. 
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small quantities in comparison to other lithic materials.  Microblades at 45CA426 are exclusively 

made of quartz crystal, and artifacts were separated into the following object types: 

microblades, cores, core fragments, modified flakes, unmodified-flakes, chisels/wedges, 

gravers, and debitage.  A single biface was also recorded at the site (Walker 1999).  The 

majority of these artifacts were recorded in association with elk metapodials within one semi-

subterranean housepit feature.  The housepit was dated to 2250 ± 60 and 2,480 ± 50 BP using 2 

hearth feature samples.  Other quartz crystal artifacts were recorded outside of the housepit 

feature in a meat processing area.  

Walker (1999) compares metric data between the microblades at site 45CA426 to 5 

other selected sites in the region (45CA213, DcRt10, DcRt13, DfRu24, DhSe2), and notes little 

variation between mean tool measurements of length, width, and thickness.  Crushing on the 

base of a quartz crystal core from site 45CA426 suggests that a vise or anvil rest may have been 

used during microblade production (Walker 1999).  Cores from the site have flake scars 

suggesting platform preparation, along with overlapping unidirectional scars from blade 

removal.  Examination of the blades for use-wear showed that wear was more common at the 

distal rather than the proximal end of the tools which suggests the artifacts were end-hafted 

rather than side-hafted (Walker 1999).   

Walker (1999) also discusses the transportation and production of quartz crystal 

microblades.  She assumes that raw quartz crystal material and prepared cores could be easily 

transported, and that the actual production of these microblades would have most likely 



 

26 

 

occurred close to the time and place of use as argued by Greaves (1991).  Because quartz 

crystal microblades themselves are more fragile than the original crystals/cores, this choice 

would assure the tool was not subject to any unnecessary wear or potential crushing.   

Walker (1999) used the enzyme linked immunosorbent assay (ELISA) method for the 

analysis of residues on a sample of quartz crystal tools from the 45CA426.  This technique is 

broken into two categories: broad and narrow.  The results from the tests on 20 tools produced 

3 strong and 8 weaker broad positives from the order Artiodactyl.  Possible sources include 

white tail deer, mule deer, elk, moose, antelope, or bison.  One artifact that reacted with a 

strong broad positive underwent narrow testing which resulted in a positive test for moose/elk.  

Overall, both the broad and narrow results of this analysis are consistent with the large 

presence of deer and elk remains at the site, and more specifically, the deposition of quartz 

crystal microblades with elk metapodials on the house floor adjacent to a hearth feature 

(Walker 1999:14.15). 

45CA213, The Hoko River Site 

The Hoko River wet site (45CA213), located on the northern coast of the Olympic 

Peninsula, is interpreted by Croes (1995) to be a fishing camp dating to between 3000 and 2500 

BP. In this wet portion of the site, artifacts including tools made of quartz crystal, vein quartz, 

and chert, were excavated with hafting components still attached.  This discovery provides 

evidence of the orientation and placement of lithic tools within hafts in use during the Locarno 
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Beach Phase.  Hafting materials were also identified, including the materials utilized for 

handles, resins, and wraps (Croes 1995; Croes and Blinman 1980). 

Flenniken (1981) describes the production of both microliths and hafts at the Hoko River 

site.  Microliths are small stone tools that are not true blades, but have similar dimensions, 

hafting methods, and general potential functions as microblades.  The author defines microliths 

as “small specialized flakes that are quite short (average of 10.5 mm in length) and have at least 

one margin not necessarily a lateral margin, that is sharp” (1981:46).  They were produced from 

vein quartz pebbles/small cobbles using bipolar reduction.  Flenniken (1981) suggests that the 

presence of both quartz microliths and quartz crystal microblades represents the use of locally 

available resources as well as transported materials from other seasonally used locations.   

Quartz pebbles are easily accessible from a large quarry spot on a spit beach less than 

500 m from the Hoko River site.  On the basis of replication experiments, Flenniken (1981) 

suggests that microlith tools could be rapidly produced and discarded at the site.  This is 

supported by the over 40,000 of pieces of vein quartz microlith debitage discovered at the site 

(Croes 1995).  In contrast, the quartz crystals needed to make microblades would not have 

been locally available.  Quartz crystal artifacts were far less frequent than at 45CA426, 

consisting of only 23 microblades and a single potential core.  The rarity of this technology 

suggests that these artifacts were produced at another location and transported to the site 

(Flenniken 1981).   
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A single end-hafted quartz crystal microblade was hafted using the same materials as 

the side-hafted microliths found at 45CA213.  These hafting methods could have been easily 

used interchangeably between the two lithic material/tool types both at this site and at other 

sites in the Northwest Coast Region.  The similarities in hafting methods and materials between 

vein quartz microliths and quartz crystal microblades at the Hoko River site suggest that though 

lithic sources and production differed during seasonal settlement, hafting methods likely stayed 

the same (Croes 1995).  

Croes (1995) and Flenniken (1981) sought input from members of the Makah Tribe to 

infer microlith and microblade function.  Based on experimentation, the authors had concluded 

that side-hafted vein quartz microliths were not suitable tools for cordage or basketry making.  

Three Makah basket weavers commented that they did not have a similar tool in their basket 

making toolkits.  Another activity that the side-hafted vein quartz microliths lacked utility for 

during experimentation was the carving of wooden materials.  A Makah wood carver gave his 

opinion that he did not believe it would have been a useful element of a prehistoric 

woodworking toolkit (Flenniken 1981).  Croes (1995) also notes the suggestion by a senior 

citizen of Neah Bay that the end-hafted quartz crystal microblade may have been used for 

minor surgeries such as lancing boils.   

Croes (1995) discusses a residue analysis performed by Tom Loy on isolated tools (not 

preserved in hafting material) from the Hoko River site.  Loy identified red blood cells belonging 

to fish on 8 of the 13 quartz crystal microblade edges, one of which additionally exhibited the 
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presence of bark.  These residues were described as being “generally found near the lateral 

edges and most often in or near microflake scars along the extreme edges” (Croes 1995:186).  

Ceremonial Use of Quartz Crystal in the Gulf of Georgia Region 

Ethnographic accounts from the Gulf of Georgia region indicate that quartz crystals held 

symbolic significance for ancestral Coast Salish peoples who associate the stone with 

shamanistic powers of weather control, flying, healing, divination, and clairvoyance (Hickok et 

al. 2010).  Archaeological evidence supporting the connection between quartz crystals and 

ritualistic activities is limited, but suggests a deep antiquity for the symbolic significance.   

The burial of a woman believed to be a shaman at the S’oksun site (DiSe 7) at Deep Bay 

on Vancouver Island provides the strongest connection between quartz crystal artifacts and a 

ceremonial context.  Individual 1 was a female with cranial manipulation who died of natural 

causes.  The placement of her body suggests the uniqueness of the burial as she is the only 

interment found with hands placed over eyes.  She was covered in an unusually large amount of 

red ochre, a material used in Coast Salish ritual practices for the enhancement of, or protection 

from, spirit-power.  In addition to the red ochre, Individual 1 was evenly covered with 35 pieces 

of shattered stone (21 pieces of quartz crystal and 14 of obsidian).  A quartz crystal microblade 

and two obsidian microblades were also recorded with the remains.  The burial is not directly 

dated, but likely falls between 2500 and 1600 B.P.  Deposits below the burials returned dates of 

5220 ±80 BP and 4640 ±60 BP, however, her Cowichan style cranial modification is thought to 

date no earlier than 2500 BP.  Stylistically, the grave goods could fall anywhere within the 
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Locarno Beach and Marpole phases between 3300-1600 BP.  Four quartz crystal flakes were 

recorded in another burial at the site.  Less is known about this internment, Individual 3, due to 

disturbance (Hickok et al. 2010).  Hickok et al. (2010) suggest that based on ethnographic 

accounts, the quartz crystal fragments within both burials may have served the purpose of 

protecting the individual, or to limit them from using their powers beyond the grave.   

Curtin (1999) reports a quartz crystal microblade found in a burial pit feature at the 

Tsawwassen shell midden site (DgRs 2).  DgRs 2 is a large site on the Fraser River delta, south of 

Vancouver, B.C., which has deposits ranging between 4260-210 BP.  The microblade was 

recorded within the skull of the adult male of Burial D-20, an internment that could not be 

assigned to a particular component.  The author did not discuss the unique placement of the 

artifact within the skull and categorized the microblade as a utilitarian item that did not likely 

indicate wealth or social standing.   
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CHAPTER 4: METHODS 

The goal of this analysis is to better understand the prehistoric function of quartz crystal 

microblades as multiuse tools in the Salish Sea region.  It is achieved by a multipart analysis on a 

sample of quartz crystal artifacts from six sites in northwestern Washington State.  In this 

chapter, I discuss the three major methods utilized in this research:  morphological, microwear, 

and residue analyses.  The combination of these analytical methods allowed for a large variety 

of data to be collected and analyzed for each artifact of the assemblage.  This collection can 

provide insight as to the individual tool use, along with patterns in tool type and assemblage 

attributes.  Figure 7 outlines the multiple methods utilized in the analysis of this quartz crystal 

artifact assemblage. 

Sample Selection 

Previous authors and analyses identified several sites in Western Washington 

University's repository whose assemblages included quartz crystal artifacts: 45WH59 (Spear 

1977; Hicks 1991); 45WH55 (Lewis 2013); and 45SK46 (Mather 2009).  By reviewing site 

catalogues, I identified three additional sites, 45WH1, 45WH17, and 45WH47 with quartz 

crystal artifacts (Table 1, Figure 8). 
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Total– N=25 

Figure 7. Chart outlining methods of analysis on the sample assemblage. 
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Table 1. Dates, locations, and number of quartz crystal artifacts from sites included in the sample assemblage. 
 

 

 

Site 
Number 

Location Environment Age (BP) # of Quartz 
Crystal 

Artifacts 

Screen Size used 
during 

Excavation  

Reference 

45SK46 
SW Fidalgo 

Island, 
Deception Pass 

Rocky headland on a marine 
channel 

3500-2400 12 1/8" Mather 2009 

45WH1 
SE of Cherry 

Point, Whatcom 
County 

Mainland on open coast 3340-960 4 1/4" Rorabaugh 2009 

45WH17 
Semiahmoo Spit, 

Whatcom 
County 

Base of spit between bay 
and open coast 

4715-350 1 1/4" Montgomery 1979 

45WH47 
Padden Creek, 

Bellingham 
Small creek going into a bay 2330-1960 1 1/4" 

Beta Analytic Inc. 
2011 

45WH55 
Northern 

Chuckanut Bay 
Headland above small bay 2750-2450 9 1/8" Campbell et al. 2010 

45WH59 
Bertrand Creek, 

Lynden 

Terrace on Nooksack River 
floodplain,∼20 miles from 

delta front 
5500-3000 41 1/4" Spear 1977 
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I collected previously identified artifacts and reviewed site catalogues and lithic 

collections to compile a quartz crystal artifact assemblage, referred to as the sample 

assemblage.  All previously identified and catalogued quartz crystal artifacts in WWU’s 

collections were located.  Site lithic catalogues and assemblages were then further reviewed for 

potentially missed or misidentified artifacts.  This required visual checking of all artifacts labeled 

“quartz” or “microblades” in artifact catalogs.  When all potential quartz crystal artifacts from 

across the collections were compiled, further analysis was conducted to assess whether the 

Figure 8. Location of sites analyzed in the thesis, along with those previously discussed in 
Chapter 3. 
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material type had been properly identified.  Some misidentifications included historic glass and 

lithic tools of a different material type, such as agate or vein quartz.   

Many of the quartz crystal artifacts were originally housed in plastic bags or vials filled 

with tissue paper.  They were repackaged in individual plastic bags within a larger plastic bag 

backed with supportive foam.  This minimized any additional wear from handling or curation.  

To eliminate the transmission of modern residues by myself and others, no artifacts in the 

assemblage were handled without wearing gloves.  

Morphological Analysis 

The goal of the morphological analysis was to identify variation in artifact types and 

attributes present in the assemblage.  These attributes, especially size, cross section shape, 

termination style, and the presence of cortex, allowed for comparative analysis within the 

assemblage and against other assemblages.  

Object Type 

In order to determine the morphological and potential production stages present in the 

assemblage, I used the following mutually exclusive object types to categorize each artifact: 

core, microblade, flake, and shatter.  Following Andrefsky (2005), Banning (2000) and Hicks 

(1991), I defined categories as follows.   

Core: a piece of quartz crystal that has been utilized to produce microblades.  Most 

cores exhibit multiple flake scars from the removal of microblades.  Cores may be 
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exhausted (unable to produce blades) or active (have potential for blade production), 

and often have cortex covering a large portions of their surfaces.   

Microblade: a small, thin, linear flake that exhibits parallel lateral margins that displays 

flake elements including arrises, fissures, and ripple marks moving away from the point 

of impact towards the distal end.  An arris is a ridge formed between flakes scars on the 

dorsal surface of a flake.  Natural ridges at the meeting of crystal faces are also are 

found on the dorsal surfaces of tools in this assemblage.  Fissures and ripples are both 

found on the ventral surface of a tool and radiate away from the point of percussion.  

Fissures are small fracture lines; ripple marks are wavy undulations (Banning 2000).   

Flakes: a piece of lithic material that does not display microblade characteristics, but has 

a definite point of impact as shown by a bulb of percussion on the ventral side of the 

proximal end, along with possible ripples and fissures moving away from the point of 

impact.  

Shatter: lithic fragments that do not exhibit any or all of the characteristics to be 

defined as a flake, and are often small in size. 

Attribute Analysis 

For the attribute analysis of the sample assemblage, an Attribute Analysis Form (Appendix A) 

was created to record characteristics of each artifact that may have been the effect of natural 

or cultural activities.  These attributes provided information about the manufacture and use of 
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each object.  The Attribute Analysis Form acted as a summary and solid starting platform to 

make suggestions and record thoughts on each artifact in order to provide a reference for 

future analyses.  Sketches of both the dorsal and ventral surface of each artifact were recorded 

on the Attribute Analysis Form, along with the following traits: 

Microblade Completeness: 

Complete: both proximal and distal ends intact, often the overall form is curved 

Distal fragment: only the distal end intact  

Proximal fragment: only the proximal end intact 

Medial fragment: neither proximal nor distal ends present, but otherwise 

identifiable as a microblade 

Cortex: presence or absence, and on which surface.  In this case cortex refers to the 

natural crystal growth faces, characterized by horizontal striations.   

Termination style of the distal end: feather, hinge, or step, and NA (dorsal end was not 

present to analyze) 

Proximal and distal cross section shapes: triangular, trapezoidal, or lenticular 

Cross section was recorded and drawn on the Attribute Analysis Form for each tool.  All 

microblades, including complete, proximal, distal, and medial fragments were included 
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in the cross section analysis.  When a microblade exhibited differing proximal and distal 

cross section shapes, the proximal cross section chosen to represent that artifact.  The 

proximal end of the mircoblade is closest to the chosen point of impact and exhibits the 

shape which the manufacturer was most likely trying to achieve, and in which the 

material naturally breaks. 

Microwear: absence or presence and location 

Dimensions 

Measurements of length, width, thickness, and weight were taken for each artifact.  

These measurements allowed for a direct comparison between artifacts within the sample 

assemblage and those measured by Walker (1999).  To achieve a mean dimension, three 

measurement sets for length, width, and thickness were taken for each artifact using the same 

digital caliper with a precision of 0.01mm.  The weight of each artifact was measured using a 

digital scale with a precision of 0.05 grams.  Measurements were taken under the following 

parameters: 

Length: Maximum dimension as measured along the longitudinal axis of artifact 

Width: Maximum dimension measured perpendicular to length 

Thickness: Maximum dimension of any part of the blade measured perpendicular to the 

length, generally located at the proximal end of the artifact  
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Microwear Analysis to Determine Location of Use and Haft Placement 

Due to the quickly perishable nature of the organic materials used in hafting methods, 

hafts are not commonly found in association with their attached tools.  Because of this lack of 

preservation, lithic analysts must rely on what was left behind on blade edges, such as 

microwear patterns and residues, to make inferences as to the functions of artifacts (Andrefsky 

2005; Keeley 1980; Odell 2004).  As none of the tools in the sample assemblage came with 

intact hafting materials, I resorted to microwear analysis and residue analysis to determine 

their functions. 

History of Microwear Analysis 

A major goal of microwear analysis is to determine tool function (Andrefksy 2005; Odell 

2004).  Microwear analysis was developed by Sergei Semenov in the 1960s when he discovered 

that differing wear patterns and polishes were formed on lithic tools depending on the raw 

materials they were used to process.  Semenov viewed stone tools with an incident-light 

microscope and a stereomicroscope (Andrefsky 2005; Keeley 1980).  Lawrence Keeley furthered 

Semenov’s work by also identifying polishes and striations, and improving microwear analysis 

definitions and methods.  Keeley (1980) assumes that when working different materials with 

lithic tools, specific microwear patterns to develop on tool edges.  In turn, microwear patterns 

can help identify the material a tool was used to process.  Modern experimental projects are 

used to recreate microwear in order to identify and better understand prehistoric microwear. 
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The three major types of microwear patterns that can be used to determine tool 

function are microchipping, striations, and polish (Andrefsky 2005).  These wear patterns are 

caused by different processing behaviors.  Microwear is caused by the use of a lithic tool 

against another material, striations are caused by the use of the tool against an abrasive 

material, and polish is caused by the frictional heat that is the result of vigorous and repeated 

motions of a tool against another material (Andrefsky 2005).  For this thesis, I only recorded 

microchipping wear, which referred to below by the general term, microwear. 

Microwear analysis methods involve the viewing of artifact edges for evidence of 

microwear, and can be separated into two different techniques: low-power, which uses tools 

such as a hand lens, stereomicroscope, or incident light microscope, and high-power, which 

uses a scanning electron microscope or an atomic force microscope (Andresfsky 2005; Kimball 

1994; Kimball et al. 1995; Odell 2004).  For this analysis, I used the low-powered technique. 

Previous Microwear Analysis on Quartz and Quartz Crystal 

Although studies of obsidian and cryptocrystalline varieties of quartz such as flint and 

chert, dominate microwear studies, a few researchers (Derndarsky and Ocklind (2001), Igreja 

(2009), Kimball (2008, 2013), and Sussman (1985, 1988), have deliberately chosen to examine 

macrocrystalline quartz and, to a lesser degree, quartz crystal.   

Kimball (2008 and 2013) discusses high-powered techniques used to analyze microwear 

patterns on quartz artifacts.  Kimball (2008) found polish on both lateral edges of a pièce 
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esquillée which he believed was likely from bone sawing and also used as a wedge.  Sussman 

(1985) describes the ability to view and identify differing microwear patterns on quartz crystal 

tool edges by viewing a sample of experimental tools with a scanning electron microscope 

(SEM) and an incident light microscope at high magnification.  She utilized silver paint and a 

cement adhesive to mount her flakes.  This adhesive may have contributed to the success of 

her analysis of using the SEM, in contrast to the difficulties I encountered, which are discussed 

further in this chapter.  Sussman (1985) observed polish, striations, and other microwear, while 

Igreja (2009) observed only polish and striations on her experimental quartz crystal tools. 

Derndarsky and Oklind (2000) viewed fluorescent dyed experimental tools and artifacts with a 

confocal laser scanning microscope (CSLM) and were able to view surface and subsurface 

microwear patterns. 

Igreja (2009) addresses the previously neglected topic of use-wear analysis of tools 

made of multiple varieties of quartz, including quartz crystal, by using experimental methods 

and differential interferential contrast microscopy (DIC).  Side-hafted quartz crystal flakes were 

used in an experimental project to process a roe deer.  Igreja observed that while striae and 

scars were visible, micropolishes did not develop on quartz crystal, but do on its related quartz 

and quartzite material types.   

Goal of Microwear Analysis 

Microwear analysis will contribute to the investigation of quartz crystal microblade use 

by determining: (1) most commonly used edge, (2) potential hafting placement, and (3) scarring 
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types/patterns.  The most commonly used edge was identified by the presence of microwear 

patterns, with special attention paid to corresponding lateral and lateral vs distal wear patterns 

that may indicate hafting placement.  All edges of artifact in the assemblage were viewed at 

multiple magnifications using a hand lens and a stereomicroscope/dissecting microscope.  

Analysis took place in the WWU Department of Anthropology’s Archaeology Laboratory or in 

dedicated microscope laboratories in the Biology Department.   

Three microscopes with varying levels of magnification were utilized in this analysis: a 

hand lens, stereomicroscope, and dissecting microscope.  When possible, scales were included 

in photographs at each stage of magnification to allow for an accurate comparison and 

measurement of use-wear patterns.  Often, these scales could not be viewed due to 

magnification levels or sizes of use-wear patterns and so were digitally added to the 

photographs after analysis.   

The levels of magnification used were unique to each microblade, as some microwear 

patterns were easily identifiable at a lower level of magnification, while others needed to be 

examined further to definitively identify the scar pattern and orientation.  An illuminated hand 

lens (20x) was used during the preliminary, morphological analysis.  The microwear scarring 

patterns originally recorded on the Attribute Analysis Form were fairly accurate in identifying 

the presence and location of microwear.  Further magnification and analysis allowed for specific 

scar types, patterns, locations, and orientation to be identified, and occasionally previously 

unidentified wear patterns to be recorded.   
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I used both an Olympus SX61 stereomicroscope with a magnification of up to 45x and an 

Olympus CX41 dissecting microscope with a magnification of up to 100x equipped with an 

interchangeable digital camera.  This camera allowed for an additional level of confidence, as I 

can provide visual documentation of microwear patterns for each tool, rather than just 

descriptions.  Microphotographs also assisted in analysis by permitting me to review previously 

analyzed microblades without requiring re-observation.  This allowed for a level of comparison 

of the microwear patterns between individual blade edges which would not have been as easily 

provided without this technology.  Sussman (1985) viewed her samples a minimum of two 

times for her analysis, as did I in this analysis.  

These microscopes provided a wide array of valuable data, but they also came with 

challenges.  The stereomicroscope has a magnification range and field of view that included 

most of the length of the lateral edges, while still allowing an adequate amount of zoom to see 

more details on flaking patterns and residues.  Unfortunately, this microscope is not equipped 

with lighting, so illumination of the sample was done solely with manual LED lights.  The 

dissecting microscope provides a greater magnification and is equipped with lighting, but 

usable levels of magnification were varied and often limited due to the thickness of the quartz 

crystal artifacts.  Samples would have to be much thinner to view while avoiding contact with 

the lens piece.   
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Complete Blade Analysis Attribute and Location Definitions 

Complete microblades provide the most data in regards to my research goals because 

they allow for the identification of complete possible edge use and haft placement.  In order to 

better understand potential locations of use and placement of quartz crystal microblades in 

hafts, all complete microblades (n=28) were closely analyzed and photographed with the 

stereomicroscope and/or dissecting microscope.  Hafting methods used can be inferred based 

on the placement of scar patterns along a tool edge.  Hafting analysis can both deduce how the 

tools were mounted, and make inference as to tool function based on the potential capability 

or restrictions of the amount of exposed lithic edge. 

To be able to relate locations of wear within and between microblades, I conceptually 

separated both the left and right lateral blade edges into 3 equal portions.  While the distal end 

was included, the proximal blade edge of the artifacts was not included within the microwear 

analysis as it was too difficult to determine if the wear was caused during preproduction, by 

crushing on platform preparation, or during postproduction by utilization.  
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To enhance and easily visualize the microwear present on blade, a grid separating each 

tool into portions was overlaid on a photograph of the blade during analysis (Figure 9).  Each 

blade portion was viewed and photographed at a variety of magnifications and described on a 

Microwear Analysis Form (Appendix B).  The relationships between the presence and absence 

of microwear patterns indicates where a haft would have been situated along the blade edge. 

Figure 9. Example of complete blade microwear analysis on Artifact #1591 from 45WH55 with 
differing wear patterns shown by color-coded dotted lines. 
 

The lengths of R1/L1, R2/L2, R3/L3, and D are unique for each complete blade as each 

tool was divided into even thirds.  The divisions allow for a comparison of the proximal, medial, 

distal lateral edges, along with the distal tip.  This arbitrary length assignment is adequate for 

analysis assuming that they are comparable portions and that exact length of these portions 

would have been important to prehistoric peoples.   
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I used microwear criterion developed by Greaves (1991) which requires modification to 

be continuous for a minimum of two negative flake scars, or a distance of 2mm to be 

considered microwear.  Each of the following microwear attributes was recorded for the 7 

separate edge portions of the complete blade subsample of the sample assemblage: 

Microwear (present or absent)  

Scar Type (Scalar, Half-Moon, Step) (Keeley 1980:24) (Figure 10) 

 Scalar- scale shaped scars  

Half-moon- crescent-shaped breakages 

Step- abruptly terminated scars, with edges directly perpendicular to blade edge 

Combination patterns of scar types were also recorded.  If scalar and step scars occurred 

together in a single portion, even directly overlapping, they would be recorded as SCST 

(Figure 11).  If different scar types occurred in spatially distinct areas within a single 

portion, they would all be indicated, separated by a (/).  In other words, a designation of 

SC/ST indicates a section of scalar scars and then a distinct section of step scars.  The 

two sections could be adjacent or there could be a gap with no wear.  The (/) could also 

be used to indicate distinctly different scar patterns of the same scar type, for example 

two sets of scalar scars of different size or orientation along the same blade edge 

portion were recorded as SC/SC (Figure 12). 

Orientation of microwear (perpendicular or oblique to blade edge) 
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Figure 11. Example of scalar and step combination scar pattern (SCST) (45WH55-#1817). 
 

Scalar  

 

Step  

45WH59-#14 

45SK46-#1172 

45WH55-#1817 

Figure 10. Examples of scalar, half-moon, and step scar types. 
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Figure 12. Example of SC/SC scar pattern (L1) (45SK46-#1166). 

Expectations of Microwear Patterns 

Assumptions and expectations about microwear patterns on the edges of microblades 

are based both on studies of general lithic technology (Andrefsky 2005; Odell 2004) and from 

specific examples of microwear and hafting from the Northwest region (Croes 1995; Goebel 

and Buvit 2011; Helwig et al. 2008; Walker 1999).  Reviewing examples of hafted microblades 

from the same time period and region as the sample assemblage allowed me to suggest where 

hafting material on tools in the sample assemblage would have been placed.  The single hafted 

quartz crystal microblade from the Hoko River site is end-hafted.  Its presence does not limit 

quartz crystal microblades to only this hafting method, but it is a useful example of a hafting 

style.  Flenniken (1981) believes that despite their different methods of manufacture, 

microblades and microliths were likely hafted in the same fashions.   

D 
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Based on microwear analysis, Walker (1999) concluded that quartz crystal microblades 

from 45CA426 were end-hafted.  This assumption was based on the observation of microwear 

on both lateral edges, and more commonly on the distal rather that proximal blade portions, 

along with the presence of microblades with broken distal tips.   

The presence of microwear on a blade portion suggests use, while a lack thereof 

suggests it was not exposed to or was covered by hafting material during use.  The occurrence 

of two distinct areas of microwear, or microwear and then an absence thereof on a single 

lateral edge, suggest a partial covering (by hafting material) or the choice to use that specific 

edge portion.  Microwear along one entire lateral edge, with an absence or different form of 

microwear on the opposite lateral edge suggests the blade was side hafted.  End hafting would 

be indicated by finding wear patterns on the distal tip and possibly one or both distal portions 

of the right and left lateral edges.  Microwear found on just the distal end would suggest a finer 

and more specific cutting style than microwear found on the entire edge or multiple edges of a 

tool. 

The expectations for connecting microwear patterns to hafting styles are as follows:   

End Hafted Microblades: will show microwear on the distal tip (D), with additional 

microwear patterns along one or both most distal lateral edges (R3/L3), starting at the 

junction of the distal tip and lateral edge and moving upwards towards the proximal 

end.  These microwear patterns should show a distinct separation between what would 
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have been the portion of the lateral edge covered by hafting material and that of the 

exposed blade edge(s). 

Side hafted microblades: will have distinct microwear patterns on a single or both 

lateral edges, with microwear patterns covering the majority of the lateral edge with 

limited distal end wear.  Side-hafting would have allowed the total lateral edge to be 

utilized and microblades may have been rotated to expose a new lateral edge previously 

hidden by the haft. 

It is important to take the general topography of a tool into consideration when viewing 

tool edges for microwear.  Natural ripple marks and fissures caused during the removal of a 

microblade from its core may be mistaken as a microwear pattern where they intersect the 

blade edge.  The placement and extent of microwear, along with the presence of general 

morphological features were taken into consideration for each individual tool.   

Ventral and dorsal surfaces were viewed at multiple levels of magnification during the 

analysis.  Due to the clarity of the material, it was difficult to determine ventral versus dorsal 

microblade edge wear, and because of this, the location of wear was separated only by blade 

portion and not blade face.  Abrasion or microwear patterns suggesting haft placement on 

other portions of the ventral and dorsal surfaces were not observed. 
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Experimental Projects 

During experimental analysis, it is difficult to replicate and test every potential 

processing behavior with pressure and angle variables (Keeley 1980).  This limits the abilities of 

functional experimental projects, and makes reaching reliable conclusions about function 

difficult.  Additional challenges occur during attempts to separate or replicate layered wear 

patterns that might arise from multiple uses.  It is a large task to exhaust all possible processing 

activities, while controlling conditions for material, force, angle, and direction.  In the case of 

quartz crystal microblades, additional hafting variables also need to be considered.  After 

considering the number of variables that would have to be controlled and tested for, I decided 

that an exhaustive, formal experimental project fell outside the scope of this research.  

Production Wear and Post-depositional Surface Experimentation 

Andrefsky (2005), Grace et al. (1985), and Odell (2004) have discussed problems posed 

by post-depositional surface modification (PDSM).  Edge damage can take place during artifact 

processing and cataloging in either the field or laboratory, or both.  To improve my ability to 

identify PDSM and edge damage caused during production, I performed a small experimental 

production project.  The manufactured tools were analyzed in order to make comparisons to 

the sample assemblage.   

During the production experiment, multiple microblades were removed from a quartz 

crystal core.  Methods of blade removal were guided by Lagestee (2012), Reher and Frison 
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(1991), Sussman (1988), and Walker (1999), and included the use of a vise and application of 

indirect percussion.  First, the platform was prepared by abrasion with a metal file until it was a 

fairly flat striking surface.  Next, a vise was placed on the core and then held between my feet 

while sitting on a tile floor covered with a piece of leather.  Finally, microblades were removed 

when a sharp and forceful strike with a wooden mallet was applied against a copper tipped 

percussion flaker.  The flaker was placed at an approximate 45° angle, slightly inward on the 

core’s platform, directly above a natural crystal ridge.   

The blades produced during the experimental project were immediately viewed under a 

microscope.  No scarring patterns were observed on the blade edges, with the only exceptions 

being occasional single, large, scalar or half-moon scars.  These scars were likely produced when 

the stone broke along an impurity, or when the blade dropped from the core to the leather 

covered floor below it.   

For comparison, I looked at other replicated microblades that had been housed for at 

least a year under similar conditions as the archaeological sample assemblage.  These quartz 

crystal microblades were produced by Todd Lagestee, who presented results of his 

experimental analysis at the Northwest Anthropological Conference in March of 2012.  

Lagestee’s goal was to better understand quartz crystal core reduction and microblade 

production.  He attempted a variety of production methods and was successful when using 

modern materials and tools in the knapping process.  He did not utilize any of the 

manufactured microblades, so it is assumed that any microwear on microblade edges occurred 
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either during production, or after being stored in bags.  Lagestee’s microblades, flakes, and 

debitage were collected in plastic bags similar to the ones used in WWU’s Archaeology 

Laboratory and were donated to Dr. Sarah Campbell.   

I compared three freshly manufactured microblades to four of Lagestee’s bagged 

microblades.  The edges of both sets of microblades were viewed microscopically to better 

understand the edge damage incurred during curation.  The damage observed consisted of 

minimal, small, disorganized, jagged scars, very different from cultural wear patterns which 

have repetitive and identifiable scar types.  PDSM or “bag-wear” is very distinct from the 

cultural wear patterns which I observed on artifacts in the sample assemblage (Figure 13).  

Scattered medium to large step and scalar scars, likely from production were also seen on 

Lagestee’s microblades.   

This direct comparison allowed me to confidently separate wear patterns into those 

associated with prehistoric use and production and those arising from modern curation 

practices.  PDSM wear was observed, but not recorded, on artifacts from within the sample 

assemblage.  This wear was usually continuous along the whole, and sometimes multiple blade 

edges.  In comparison to microwear patterns such as scalar, step, and half-moon scars (Keeley 

1980), PDSM wear appeared as small, jagged scar patterns, with less definition or extent onto 

the microblade face.  I do not believe the presence of PDSM obscured my ability to identify 

microwear patterns from blade use; it did not extend far enough from the edge to obscure 

larger flake scars.  PDSM was most recognizable on blade edges that otherwise had no 
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microwear.  Little difference was noticed between the PDSM between site assemblages despite 

their differing dates of excavation and original curation and collection techniques. 

 

Residue Analysis 

Residues on microblades allow inferences to be made about their use in prehistoric 

processing behaviors.  Two methods were used to analyze residues on the surfaces and edges 

of a subsample of the sample assemblage: energy-dispersive x-ray spectrometry using the 

scanning electron microscope (SEM-EDX) and cross-over immuno-electrophoresis (CIEP).   

Residue analysis began with observing the entire sample assemblage using a hand lens, 

and recording colors of residues viewed on an Attribute Analysis Form.  Next, these residues 

were viewed and photographed at a variety of levels of magnification using a stereomicroscope 

and dissecting microscope.  Greater magnification levels allowed for the viewing of residues 

more clearly, and for a better understanding of their density on the artifact.  I did not use a 

standardized color classification system, such as Munsell's, because it was not possible to fit 

color scales beneath the microscope lens at the same time as samples.  I assigned common 

color categories visually, and was able to be consistent and note minor color variations.   

Figure 13. Post depositional surface modification along experimental tool edge. 
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Attribute and microwear observations at differing magnifications allowed me to select 

which tools should be further analyzed using inorganic and organic residue testing methods.  

Twenty-three artifacts were tested for the presence of inorganic compounds using a scanning 

electron microscope equipped with an energy-dispersive x-ray spectrometer (SEM-EDX) and 25 

quartz crystal microblades were tested for organic residues using the cross-over immune-

electrophoresis (CIEP) technique.   

Energy-dispersive X-ray Spectrometry (SEM-EDX) 

The Vega TS 5136MM scanning electron microscope equipped with an EDAX Energy 

Dispersive X-Ray Spectrometer (EDX) and Retractable Backscatter Detector (BSE) available at 

Western Washington University Scientific Technical Service’s SEM instrument laboratory allows 

a magnification of 1,000-150,000x (Flegler and Klomparens 1995).  Odell (2004) suggests that it 

is not feasible to process an entire assemblage through the scanning electron microscope, and 

such is the case with the sample assemblage.  The data gained from this analysis was beneficial, 

but there were many time constraints and difficulties associated with imaging such a pure 

mineral.  Artifacts often collected a charge and required multiple imaging attempts.  The 

insertion and changing of artifacts in and out of the SEM chamber was also much more time 

consuming than using other microscopes. Due to these challenges, only a subsample of the 

sample assemblage (n=29) were viewed using the scanning electron microscope.  The SEM was 

used for limited viewing and photographing of artifact surfaces and edges at extremely high 

magnifications.   
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An energy-dispersive x-ray spectrometer (EDX) was utilized for the analysis of inorganic 

residues on 23 of 29 analyzed quartz crystal artifacts.  SEM-EDX allowed for the identification of 

the elemental composition of each artifact, along with that of any residues on their surfaces.  

Compositional readings were taken on proximal, medial, and distal sections for each artifact to 

confirm that the artifact was indeed SiO2.  Areas that appeared to have adhered residues were 

also tested.  These areas were easily identifiable as they reflected less of the electron beam and 

exhibited a different texture than the rest of the artifact under SEM magnification. 

The use of the scanning electron microscope was challenging due to the fact that quartz 

crystal collects a charge when exposed to the electron beam (Figure 14).  This charge obscures 

visibility and does not allow for images to be taken.  It also makes targeted composition analysis 

difficult.  To limit or avoid the buildup of a charge, I moved as quickly and efficiently as possible 

as soon as the artifact was exposed to the beam.  To deflect some of the charge away from 

artifact surfaces, I produced mounts by attaching an aluminum foil pocket to an aluminum plate 

with copper tape.  The aluminum foil and copper tape attracted some of the charge away from 

the artifact being analyzed.  The pockets also held the artifacts in place and allowed for them to 

be tipped within the chamber.  This permitted viewing and compositional analysis of artifact 

residues from additional angles.  I also experimented with varying levels of beam power and a 

variable pressure mode to help eliminate some of the charge on the samples.  I was most 

successful with a combination of these, but the level of aluminum covering, tilt, and the use of 

the retractable backscatter detector was unique for each analyzed artifact. 
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Cross-Over Immuno-electrophoresis (CIEP) Analysis 

Cross-over immuno-electrophoresis (CIEP) was originally used to assist in crime 

investigations before present day DNA fingerprinting methods were available.  The use of CIEP 

testing to assist with archaeological analysis began in the 1980s when Dr. Margaret Newman, at 

the request of David Hurst Thomas, analyzed projectile points from the Hidden Cave site of 

Northwestern Nevada (Thomas 1985).  This method continues to be an important part of 

Figure 14. Quartz crystal microblade collecting a charge while being exposed to the 
electron beam of a scanning electron microscope. 
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archaeological analysis and has been labeled the “most effective extractant for old and 

denatured proteins without interfering with subsequent testing” (CSUBLAS 2014).   

CIEP residue analysis occurs in multiple steps (CSUBLAS 2014).  First, each artifact is 

placed in a separate container where a solution of 5% ammonium hydroxide is applied directly 

onto its surface.  This solution breaks the hydrogen bond between the stone tool and the 

proteins attached.  The solution, and an individual soft brush used to rub it on each tool, 

removes residues from the artifact’s surface, along with the proteins trapped in its 

microfissures.  Next, the artifact and solution are disaggregated using an ultrasonic cleaning 

bath, collected, and then cooled. 

CIEP traces the immunological or “allergic” response of foreign proteins.  To cause this 

response, a known antiserum and the unknown solution are injected into horizontally adjacent 

wells in a prepared agarose gel template.  Next, the gel is placed in an electrophoresis tank 

filled with barbital solution and subjected to an electric current.  This agitation encourages a 

reaction between the known and foreign proteins and causes them to migrate between the 

wells.  This response is marked by a one, or two “precip lines” that are invisible until the gel is 

pressed, dried, and stained.  The gels must be carefully analyzed as reactions occur at a variety 

of levels, leaving a range of visible precipitation lines.  CIEP analysis identifies residues at the 

family level which can lead to suggestions as to which species was likely present as residue on 

the artifact.  Positive controls are utilized throughout the process to assure accuracy (CSUBLAS 

2014).   
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I tested a subsample of the sample assemblage using the CIEP process at California State 

University, Bakersfield’s Laboratory of Archaeological Sciences (CSUBLAS).  The goal of this non-

profit laboratory is to assist archaeological researchers in performing analyses and with the 

knowledge that can be obtained from the process.  The lab also experiments with the 

refinement of the CIEP technique as whole (Robert Yohe, personal communication, November 

2013).   

CIEP Sample Selection 

A sample of 15 quartz crystal microblades that exhibited visible residues and microwear 

patterns were selected from the sample assemblage for CIEP analysis (Table 2).  Within the 

sample was artifact #760 from site 45WH59, a complete microblade with a red ochre-covered 

distal tip.  It was unclear as to how many visible residues would be removed during the CIEP 

process.  Because of this, the surfaces of each artifact were thoroughly photographed at a 

minimum of two levels of magnification before the testing.  I personally transported the 

selected artifacts to CUBLAS and assisted with the CIEP analysis.  All 15 artifacts were tested 

using the same methods and controls.  The exception was artifact #760, which was not exposed 

to the ultrasonic bath, but rather manually agitated because of the sensitive red ochre covering 

the blade’s distal tip.  The tip and remainder of the blade were tested separately to determine if 

the tip had been exposed to different proteins than the rest of the artifact. 

After processing the first set of samples, Dr. Yohe offered to test an additional set of 10 

artifacts (Table 2).  Due to a limited success from the original set of 15, I chose different 
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qualifications for the next set of samples.  Selections for the first sample set primarily focused 

on the presence of visible residues, so for the second set, the presence of microwear took 

priority.  Some of the microblades chosen did not exhibit any visible residues, but did have 

extensive microwear scarring patterns on their blade edges.  The cost of the CIEP residue 

analysis caused some constraints, but the sample of 25 artifacts (33% of the assemblage) 

allowed for a good representation of the residues associated with these tools. 

Table 2. Artifacts selected for CIEP analysis. 

Site #  Artifact #  Description  

45SK46 407 Microblade 

45SK46 1163 Microblade 

45SK46 1164 Microblade 

45SK46 1165 Microblade 

45SK46 1166 Microblade  

45SK46 1168 Microblade 

45SK46 1171 Flake 

45SK46 1172 Microblade 

45WH1 54 Microblade 

45WH1 119 Microblade Fragment (Proximal) 

45WH1 179 Microblade 

45WH17 1344 Microblade 

45WH55 507 Shatter 

45WH55 612 Flake 

45WH55 707 Microblade 

45WH55 760a Distal Tip of Blade 

45WH55 760b Remainder of blade 

45WH55 1147 Microblade Fragment (Medial) 

45WH55 1565 Microblade (Proximal) 

45WH55 1817 Microblade 

45WH59 9 Microblade Fragment (Medial) 

45WH59 15 Microblade 

45WH59 16 Microblade 

45WH59 31 Microblade Fragment (Proximal) 

45WH59 36 Microblade Fragment (Proximal) 

45WH59 37 Microblade  
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Botanical Analysis and Radiometric Dating  

Spear (1977:93) suggested 45WH59 dated between 5500 and 3000 BP based on the 

presence of microblades but no radiometric date had been obtained.  Selected charcoal 

samples recovered from 45WH59 in association with quartz crystal artifacts were chosen to be 

radiometrically dated.  Units at the site with multiple quartz crystal artifacts were identified, 

and then checked against the site catalogue for charcoal samples from the same units.  Only 17 

charcoal samples had been collected, and only 2 from units with quartz crystal artifacts; both 

charcoal samples were selected for radiometric dating.   

The first charcoal sample (Cat #64) was collected from N1W1, which yielded 7 quartz 

crystal artifacts, and the second sample (Cat #22) was collected from N1W2, with 8 quartz 

crystal artifacts (Table 3).  These adjacent units had similar stratigraphy, with quartz crystal 

artifacts found at the same depths as the charcoal samples, as well as depths above and below.  

Neither piece of charcoal was recovered from a hearth feature, but profile drawings show 

intermittent small charcoal lenses in the "B-horizon" in which the samples were collected 

(Spear 1977).  In the A-horizon layer above the B-horizon, Spear (1977) describes charcoal in a 

humic mineral soil which he believes is a product of brush and root fires.  There was no 

indication, however, of any intrusive burned roots in the B-horizon.  Profile drawings of N1W1 

and N1W2 are located in Appendix C. 

Table 3. Samples from 45WH59 chosen for radiometric dating.  

Site # Catalog # Cut Unit Level Depth 

45WH59 22 N1W2 A 40-60cm 56cm 

45WH59 64 N1W1 C 40-60cm 56cm 



 

62 

 

The first charcoal sample (Catalogue #64), was recovered on 5/27/1976 from N1W1, 

unit C.  It was removed within the 40-60 cm level (56cm) in soil described as 5 YR 3.4.  The layer 

in which the sample was collected is described on a profile map of the east wall of N1W1 and 

field notes as the “Red Lynden Loam” layer, a reddish silty-sand layer with lenses of charcoal.  

The excavation of N1W1 is described in the field notebooks of Donald J. Pint and Gene 

Woodruff from 5/13/76-6/3/76.  Eight artifacts, including 4 of quartz crystal, were recovered 

from the 40-60cm layer, and 2 quartz crystal artifacts were recovered from the 60-80cm level 

(Table 4).  

Table 4. Artifacts from cut N1W1, 45WH59, associated with charcoal sample (Catalog #64) from 
site catalogue and field notes. 

Cat # Artifact Type Unit Depth 
(cmbs) 

Munsell Association 

54 Spall tool /cobble 
tool 

E 42cm 5 YR 
2.5/2 

With charcoal lens 

57 Quartz crystal 
microblade 

E 40cm 5 YR 3/4 In close proximity to #54 and 
charcoal 

- 2 wood 
objects/fragments 

B 52cm - - 

60 Quartz crystal 
microblade 

H 46cm 5 YR 
2.5/2 

In direct association with small lenses 
of charcoal 

56 Basalt microblade A 52cm 5YR 3/3 - 

62 Quartz crystal 
microblade 

A 56cm - With #63 and within a charcoal layer 
and at the exact same depth as the 
charcoal sample in unit C 

63 Quartz crystal 
microblade 

A 56cm - With #62 and within a charcoal layer 
and at the exact same depth as the 
charcoal sample in unit C 

65 Quartz crystal 
artifact 

A 55cm - - 

67 Quartz crystal 
microblade 

A 61cm 5 YR 3/2 In association with charcoal sample 
(#64) and two small lenses of “burnt” 
soil. 

74 Quartz crystal 
microblade 

D 72cm 5YR 
2.5/2 

In charcoal lens and bunt soil 
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The second charcoal sample (Catalog #22), recovered on 4/30/1976 from N1W2, unit A 

(Table 5) was removed within the 40-60 cm level (56cm).  The layer in which the sample was 

collected is described on two profile maps, one of the east wall and one of the north wall of 

N1W1, and in the field notes as the “Red Lynden Loam” layer, a reddish silty-sand layer with 

lenses of charcoal.  The excavation of N1W2 is described in the field notebooks of Diane K. 

Hanson and Kevin Jacques from 4/15/76 through 5/21/76.   

 
Table 5. Artifacts from cut N1W2, 45WH59, in association with charcoal sample (Catalog #22). 

Cat # Artifact Type Unit Depth (cmbs) 

3 Quartz crystal core fragment D 43 

5 Flake C 50 

9 Quartz crystal microblade fragment C 51 

11 Quartz crystal microblade fragment F 49 

15 Quartz crystal microblade I 54 

16 Quartz crystal microblade C 54 

17 Quartz crystal microblade fragment F 51-55 

18 Basalt microblade C 55 

21 Projectile point A 56 

25 Quartz crystal microblade fragment F 59 

 

In January 2014, Deborah Ann Gahr performed a botanical analysis to determine the 

makeup of two charcoal samples from 45WH59 (Appendix D).  The samples were then analyzed 

using radiometric dating techniques in February of 2014 by Beta Analytic Inc. in Miami, Florida.  

Catalogue #22 was described by Gahr (2014) as a mix of sediment and charcoal pieces 

measuring less than 0.5mm, along with “parenchyma tissue such as from geophytes, 

herbaceous dicot (hardwood) bark, conifer (cf. Tsuga sp. and unidentified conifer).”  Gahr 

showed concern for the presence of root hair intrusions in this sample.  She removed some, but 
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not all of these intrusions, and their presence was noted when the samples were sent away for 

radiometric dating.  The sample was sent to Beta Analytic Inc. and resulted in a modern date of 

330 ±30BP using AMS dating techniques (Beta Analytic Inc. 2014) (Appendix E).  Gahr (2014) 

identified Catalogue #64 as Douglas fir (Pseudotsuga menziesii).  Radiometric dating of this 

sample resulted in a conventional date of 2760 ±30BP (Beta Analytic Inc. 2014).   
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CHAPTER 5: RESULTS 

The methods described in the previous chapter were successfully applied to the sample 

assemblage, or in some cases to selected subsamples.  This chapter presents the results of 

these analyses beginning with morphological analysis, followed by sections on microwear and 

residue analyses.  

Morphological Analysis 

The frequencies of quartz crystal object types by site are shown in Table 6.  Of the 68 

artifacts in the sample, the most common object type was microblades (68%), followed by 

cores (12%), flakes (13%), medial fragments (10%), and finally shatter (7%).  Among the 

microblades, complete blades were the most frequent (61%), followed by proximal fragments 

(24%), and finally medial fragments (15%) (Table 7).  No distal fragments were recorded.  Raw 

attribute data can be found in Appendix F. 

 
Table 6. Total counts and percentages of artifacts in the sample assemblage. 

Site # Core %  Microblade %  Flake %  Shatter %  Total  

45SK46 0 0% 8 67% 1 17% 2 17% 12 

45WH01 1 25% 3 75% 0 0% 0  0% 4 

45WH17 1 100% 0 0% 0 0% 0 0% 1 

45WH47 1 100% 0 0% 0 0% 0 0% 1 

45WH55 0 0% 7 78% 1 11% 1 11% 9 

45WH59 5 12% 28 68% 6 15% 2 5% 41 

Totals 8 12% 46 68% 9 13% 5 7% 68 
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Table 7. Total counts and percentages of types of microblades in the sample assemblage. 

Site # Complete %  
Proximal 
Fragment 

%  
Medial 

Fragment 
%  Total  

45SK46 7 88% 1 13% 0 0% 8 

45WH01 2 67% 1 33% 0 0% 3 

45WH55 5 71% 1 14% 1 14% 7 

45WH59 14 50% 8 29% 6 21% 28 

Totals 28 61% 11 24% 7 15% 46 
 

In the sample assemblage complete blades are the most common, at 61%, followed by 

proximal fragments (24%) and medial fragments (15%).  In contrast, at 45CA426, proximal 

fragments were the most common portion type at 38%, followed by complete blades at 34%.  

Medial and distal fragments each made up 14% (Walker 1999:14.5).  Distal microblade 

fragments were not present in the sample assemblage 

Walker (1999) describes a core rejuvenation flake as a flake removed from the platform 

of an exhausted core, or the removal of the entire platform in order to prepare the core for 

additional flake removal.  I was unable to define any artifacts in the sample assemblage as core 

rejuvenation flakes.   

As expected, artifact richness increases with sample size, with 45WH59 having the 

largest overall quantity of quartz crystal artifacts, along with artifacts from all 4 object types.  

Screen size may be a factor in overall sample sizes.  The second and third largest assemblages, 

45SK46 and 45WH55, rank after 45WH59 in richness, with three object types each.  Both of 

these sites were excavated using 1/8” screen.  Before the 1980s screen mesh size was typically 

1/4”, which would affect recovery rates of quartz crystal microblades, which are small as well as 
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being difficult to see because of their clarity.  Because cores are generally larger than the 

microblades, they would be less affected by screen size bias, this may account for the recovery 

of only cores at 45WH17 and 45WH47.  However, the same screen size was used at 45WH59, 

where a larger range of artifacts was recovered.  Perhaps differences in the sediment affected 

visibility, or excavator awareness early in the project led to great recognition but there is no 

direct indication of this in the field notes.   

Comparison to Spear’s (1977) Analysis of 45WH59  

Spear (1977) previously analyzed the quartz crystal artifacts from 45WH59; there are 

some differences between his results and those in this thesis.  The author described and 

measured three “quartz” microblade cores from site 45WH59 while I recorded 5 cores, 

including artifact #176, which was labeled by Spear (1977) as a proximal microblade section, 

but appears to be a split crystal fragment with a small negative microblade scar on one cortical 

surface.  Nonetheless, the overall measurements obtained in both analyses are similar (Table 

8).  I also analyzed all 26 quartz microblades included in Spear’s (1977) analysis, along with 2 

additional microblades.  These were catalogued artifacts and I am unsure as to why they were 

not included his analysis.  Spear's morphological categories differ from this analysis, and his 

criterion for microblade fragment categories are not defined (Table 9).  
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Table 8. Comparison of 45WH59 core measurements taken by Spear (1977) and this analysis.   

 

 
 
Table 9. Comparison of 45WH59 microblade categories, Spear (1977) and this analysis.   

 

 

  

Dimensions 

Microblades are removed from microcores, so dimensions of different object types 

provide information on the initial size of cores, the amount of reduction, and the likely desired 

dimensions of microblades (Figure 15).  Complete raw metric data from the three sets of 

dimension measurements is provided in Appendix G.  Measurements provided by Walker 

(1999) allowed for a direct comparison between the cores and microblades in the sample 

assemblage to those from site 45CA426. 

  

Measurement  Spear (1977) This Analysis 

Length 
Range .83-1.5 .75-1.51 

Mean  1.18 1.16 

Width 
Range .73-1.19 .70-1.2 

Mean  0.9 0.95 

Thickness 
Range .43-.66 .43-.57 

Mean  0.54 0.52 

Microblade Category Spear (1977) This Analysis 

Complete Blade 0 14 

Proximal Fragment 14 8 

Medial Fragment 10 6 

Distal Fragment 2 0 

Total 26 28 
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The mean weight of the six core artifacts measured by Walker (1999) was 4.02 g while 

the same measurement of the eight cores in the sample assemblage was 2.12 g (Table 10).  

Both of the sample sets had a large range, with Walker’s (1999) at 6.1 and the sample 

assemblage at 7.7.  Walker (1999) measured the “height of core” which is comparable to the 

sample's core length measurements.  Three of her measurements, noted with an asterisk, were 

included in the data table, but were labeled incomplete.  These measurements were still 

included within the mean length comparison.  The mean length measurements of the sample 

assemblage of cores in comparison to Walker (1999)’s differed by only 2.44 mm.   

  

Figure 15. Mean lengths, widths, and thicknesses for artifacts in the sample assemblage (mm). 
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Table 10. Core measurement comparisons between the sample assemblage and 45CA426 
(Walker 1999). 

Site # Artifact # Length (mm) Weight (g) 

45WH01 1275 22.83 7.89 

45WH17 1435 26.31 3.83 

45WH47 61 16.35 0.96 

45WH59 3 7.77 0.43 

45WH59 27 14.86 1.32 

45WH59 33 10.73 0.82 

45WH59 41 14.8 1.51 

45WH59 176 9.86 0.19 

Average - 15.44 2.12 

45CA426  5411 26.67 6.5 

45CA426  5946 23.74 5.2 

45CA426  6001 10.84* 0.5 

45CA426  6027 14.24* 0.4 

45CA426  6110 22.72 11 

45CA426  7471 9.04* 0.5 

Average - 17.88 4.02 

 

The measurement of core lengths and weights for the sample assemblage were 

statistically analyzed and compared to those included in Walker (1999) using t-tests.  The core 

length measurements of the two samples were not significantly different from one another 

(t=.659, p=.346).  Core weight measurements were also not significantly different between the 

two samples (t=-1.028, p=.104).   

Differences in the length, width, and thickness of microblade artifacts from 45CA426 

and the sample assemblages were also tested (Table 11).  The length (t=4.762, p=4.43736E-06), 

width (t=2.062, p=0.04) and thickness (t=-4.573, p=6.38594E-06) of microblade artifacts in the 

two assemblages were significantly different from one another.  The overall results of statistical 
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analyses determine that though the cores in the sample assemblage could have been from the 

same population as those from 45CA426, the microblades and microblade fragments from the 

respective sites could not be from the same population.  In comparison to metric data provided 

by Walker (1999) of length, width, and thickness measurements of microblade artifacts of 

unspecified material types at regional sites, the artifacts in the sample assemblage appear to be 

quite similar, but were not statistically analyzed (Table 12).  

Table 11. Metric comparisons between microblades of the sample assemblage and those from 
45CA426 (Walker 1999). 

Measurement Author Range Mean Median S.D. Sample Size 

Length (mm) 
Walker (1999) 8.07-29.09 18.21 18.32 4.19 126 

This Analysis 6.88-25.23 13.97 13.33 4.58 28 

Width (mm) 
Walker (1999) 2.16-9.35 5.37 5.49 1.13 367 

This Analysis 1.81-8.0 5.00 4.96 1.28 46 

Thickness (mm) 
Walker (1999) 0.17-2.74 1.34 1.32 0.36 367 

This Analysis 0.66-5.36 1.66 1.42 0.88 46 
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Table 12. Microblade measurement (mm) comparisons between sites in the region (additions to 

Walker 1999). 

Site 
Mean Length 
(sample size) 

Mean Width 
(sample size) 

Mean Thickness 
(sample size) 

Reference 

Hoko River (45CA213) 14.4 (22) 5.29 (24) 1.23 (24) Croes 1995 

Georgeson Bay (DfRu 
24) 

- 4.85 (30) 1.42 (30) 
Haggarty and 
Sendey 1976 

Shoemaker Bay (DhSe 2) 19.1 (28) 6.2 (91) 1.8 (91) 
McMillan and 
St. Claire 1982 

Bowker Creek (DcRt 13) 14.02 (13) 5.10 (60) 1.19 (60) Mitchell 1979 

Willows Beach (DcRt 10) 21.4 (7) 6.3 (63) 1.27 (63) Kenny 1974 

45CA426 18.21 (126) 5.37 (367) 1.34 (367) Walker 1999 

45SK46, 45WH51, 
45WH17,45WH47, 
45WH55, 45WH59 

13.97 (28) 5.09 (46) 1.668 (46) 
 

 

Presence of Cortex 

Cortex (unweathered natural crystal face) was recorded on at least one surface on over 

half of the artifacts in the sample assemblage (Figure 16).  All 8 had cortex, and of these cores, 3 

had cortex on more than their just dorsal surface, while the other 5 had cortex present only on 

their dorsal surfaces.  Walker (1999) labels some microblades from 45CA426 as “primary” 

blades, meaning that their dorsal surfaces are completely covered in cortex.  She suggests that 

this artifact type serve the purpose of cortex removal flakes.  No primary blades are present in 

the sample.  Cortex is recorded more frequently on flakes than it is not, while it is less 

commonly recorded on microblades and shatter (Table 13).  This suggests that shatter may be 

associated with a later stage of reduction as cortex would no longer be present on the 

microblade core. 
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Table 13. Presence (P) and absence (A) of cortex by artifact type and site. 

 
Microblades Flakes Shatter Core Artifact 

Total Site P A P A P A P A 

45SK46 2 6 0 1 0 2 0 0 11 

45WH01 0 3 0 0 0 0 1 0 4 

45WH17 0 0 0 0 0 0 1 0 1 

45WH47 0 0 0 0 0 0 1 0 1 

45WH55 2 5 1 0 1 1 0 0 10 

45WH59 7 21 4 2 1 1 5 0 41 

Totals 11 35 5 3 2 4 8 0 68 

Figure 16. Horizontal striations characteristic of cortex (45WH55- Artifact #760). 
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Cross Section 

At 45CA426 trapezoidal cross sections were most common at 84%, followed by 

triangular at 10%.  Microblades with more than 2 arises, a category not present in the sample 

assemblage, make up 6%.  The cross section observations for the sample assemblage are similar 

(Table 14).  Of the 46 microblades, the most common cross section shape observed was 

trapezoidal.  At each site, trapezoidal cross sections were also the most common, followed by 

triangular and then lenticular.  Note that 45WH17 and 45WH46 are not present in the table, as 

they did not contribute any microblades to the sample assemblage.   

Table 14. Microblade cross section shapes observed at each site. 

Site Lenticular Trapezoidal Triangular Total 

45SK46 1 6 1 8 

45WH01 0 2 1 3 

45WH55 1 4 2 7 

45WH59 2 20 6 28 

Total 4 32 10 46 

Percentage 8.70% 69.57% 21.74% 100%  

Cross section can suggest the stage of manufacture within microblade core reduction.  A 

triangular cross section indicates an earlier stage of manufacture because the single dorsal arris 

would likely be made from the meeting of two natural crystal faces.  A trapezoidal cross section 

is indicative of a blade made in a secondary stage of manufacture as the presence of an 

additional dorsal arris is likely caused by the negative flake scar of previously removed 

microblades (Banning 2000).  Multiple cross section types within each site’s assemblage 

suggests that a single core might have been reduced through several stages at the site, or that 

cores at different stages of reduction were brought to the site.  No refits between blades and 
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cores were present in the sample assemblage.  Varying stages of manufacture are present 

within the sample assemblage as natural crystal ridges and cortex are present on some tools, 

while negative flake scars are exhibited along the dorsal surfaces of others.   

Cortex and Cross Section  

 Frequencies of cortex were similar on microblades with trapezoidal and triangular cross 

sections (22 and 20% respectively) while both of the lenticular cross sections were associated 

with cortex (Table 15).  I was surprised by these results as I assumed triangular cross-sectioned 

microblades would be most likely to exhibit cortex because the platform directly above the 

ridges formed by natural crystal faces is inherently a good place to remove microblades.  This 

juncture is discussed as a place to removal blades from by Walker (1999), and is where I was 

able to most successfully remove microblades during production experiments.  Results may be 

due to the small sample sizes as only 4 lenticular and 10 triangular cross sectioned microblades 

were included in the assemblage. The lack of cortex present on microblades with trapezoidal 

cross sections suggests that these artifacts were produced in a later stage of reduction.  A flake, 

likely another blade, would have removed cortex and formed a negative flake scar or the dorsal 

surface of the microblade, making the trapezoidal cross section shape.   

Table 15. Cortex in Relation to Cross Section 

Cross Section Cortex Present Cortex Absent Total 

Lenticular 2 2 4 

Trapezoidal 7 25 32 

Triangular 2 8 10 

Total 11 35 46 
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Figure 17. Artifact #407 from site 45SK46 with rounded distal tip and wear along left lateral edge. 

Termination Type 

Termination type was recorded for 27 of the 28 complete blades (Table 16).  One 

microblade (45SK46 #407) had a rounded distal tip (Figure 17), which did not allow for the 

identification of termination type, so it was not included in this portion of the analysis.  No 

distal microblade fragments were present in the sample assemblage.  In the set of 27 complete 

microblades, feather terminations are most abundant (51.85%), followed closely by step 

termination (29.63%), and then hinge termination (18.52%).   

 
Table 16. Termination types, counts, and percentages for the complete blades in the sample 
assemblage. 

Termination Count Percentage 

Feather 14 51.85% 

Step 8 29.63% 

Hinge 5 18.52% 

Total 27 100.00% 
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Microwear Analysis of Complete Blades 

Raw microwear data for the complete blade analysis can be found in Appendix H.  The 

most commonly used part of the microblades was the distal most section on the left lateral 

edge (L3); 21 of the 28 complete microblades (75%) exhibited microwear patterns on L3 (Figure 

18).  Blade portions L1 and L2 were almost as frequently used, with microwwear recorded 19 

times for each portion (67.9%).  The right lateral edges of these tools showed microwear at 

lower frequencies; 15 of the 28 complete blades exhibited microwear on R3 (53.6%), while 

microwear was recorded for R1 and R2 portions 12 times (42.9%).  Many of the microblades 

had microwear on both lateral edges, but microwear on either lateral edge differed in scar 

patterns.  This difference suggests that the blades may have been used as a side-hafted tool 

that was rotated. 

Figure 18. Percentage of microwear on complete blades by blade edge portion. 
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The distal tip portion (D) exhibited microwear patterns less frequently than one might 

expect based on previous literature suggesting end hafting.  Of the 28 complete blades in the 

sample assemblage, only 5 (18%) had distal microwear.  Walker did not specifically discuss wear 

on the distal tip of artifacts from the 45CA426, but rather based her assessment of end-hafting 

on the fact that scar patterns were found closer to the distal ends than the proximal ends of the 

microblades in her analysis.  This analysis has comparable results in that the frequency of wear 

on R3 and L3 is higher than on the more proximal margins, but Walker does not provide 

comparable information on the portion that I am calling D.  The lateral microwear observed on 

the sample assemblage matches the expectations for side-hafted tools, while the presence of 

distal microwear matches that for end-hafted tools.  Therefore, the microwear patterns 

observed in the sample assemblage suggest these microblades were both side and end hafted, 

but that they were much more commonly side hafted.  Further, the sample demonstrates that 

side-hafting practices were occurring on quartz crystal microblades during the Locarno Beach 

Phase, as Flenniken (1981) suggested likely occurred at the Hoko River site.  

Scar Orientation on Blade Edge 

Scar orientation along blade edges varied, with some edges exhibiting only 

perpendicular or oblique scars, while others had a combination of scar orientations along a 

single part of the blade edge.  Some of these overlapped or had organized repetitive patterns.  

All blade sections that displayed both perpendicular and oblique scar orientation, regardless of 
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the pattern were lumped together into a combined category.  Of the 103 blade portions that 

exhibited microwear patterns, 82 of those patterns were exclusively perpendicular to the blade 

edge (79.6%), 16 were a combination of perpendicular and oblique scars (15.5 %), and only 5 

were scars oriented exclusively at an oblique angle to the blade edge (4.9%).  

Scar Types Observed 

Five of the 28 complete blades exhibited only a single type of scar pattern on their blade 

edges (Table 17).  The other 23 microblades had multiple scarring patterns on lateral and distal 

blade portions. 

Table 17. Complete microblades exhibiting only a single type of scarring pattern on any/all 
edges.  

Site Artifact # Scar Type # of Blade Portions 

45SK46 1172 HM 1 

45WH59 46 SC 3 

45SK46 1165 SCHM 2 

45WH59 59 SCHM 4 

45WH59 67 SCHM 2 
Key: Scalar (SC), Halfmoon (HM), SCHM (Combination of Scalar and Halfmoon Scars) 

Of the 103 portions with scars in the complete blade assemblage, 66 (64%) were made 

up of multiple different scar types, while the other 37 (36%) of the assemblage showed 

exclusively SC (scalar), ST (step), or HM (half-moon) scars (Figure 19, Table 18).  The most 

common observed scar type was SC, recorded 29 times (28.2%), followed closely by SCHM at 26 

(25.2%).  Some combinations of scars were only recorded once.  In total, these combinations 

make up for 13.59% (n=14) of the scar types observed and were the result of multiple scarring 

patterns within a single blade portion.  For example, SC/SC/SCHM represents a scalar pattern, 
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followed by a different scalar pattern, followed by a pattern of repetitive scalar and half-moon 

scars.  Of these individual combinations, the most common scar type was once again SC, 

followed by SCHM (Table 19). 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Table 18. Types of scar patterns recorded on portions of complete microblades. 

Scar Type 
# of Times 
Observed 

% of 
Sample 

SC 29 28.16% 

SCHM 26 25.24% 

HM 7 6.80% 

SCST 7 6.80% 

HM/SC 4 3.88% 

HM/SCHM 3 2.91% 

SC/SC 3 2.91% 

SC/SCHM 3 2.91% 

SCHMST 3 2.91% 

SC/SCHM 2 1.94% 

SC/SCST 2 1.94% 

Other Combos 14 13.59% 

Total 103 100% 

Figure 19. Examples of differing microwear patterns along artifact edges. 
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Table 19. Scar types within combination patterned portions. 

Scar Type 
# of Times 
Observed 

% of 
Sample 

SC 10 33.33% 

SCHM 6 20.00% 

HM 4 13.33% 

SCHMST 4 13.33% 

HMST 2 6.67% 

SCST 2 6.67% 

ST 2 6.67% 

Total 30 100% 

 

A continuous pattern along an entire lateral edge suggests that it was exposed to the 

same use.  Of the 28 complete blades, 6 had lateral edges with the majority of all three blade 

portions covered with the same continuous scar pattern.  Artifact #15 from 45WH59, two of 

these portions were found on opposite lateral edges (Figure 21).  Three complete blades had a 

continuous scar pattern covering the majority of two portions.  Though portion separations are 

arbitrary, this means that at least half the edge was a continuous scar pattern.  Four complete 

blades had matching scar patterns on opposite lateral portions.  Artifact #1591 from 45WH55 

had a continuous SCHM scar pattern on R3, D, and L3 (Figure 20).  This suggests that #1591 may 

have been end hafted with these three edges being exposed to the same use. 
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Figure 20. Artifact #1591 from 45WH55 with a SCHM scar pattern covering its distalmost 
portion. 

Figure 21. Artifact #15 from 45WH59 with different microwear patterns covering almost the 
entirety of both lateral edges. 
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I did not observe polish as a type of wear, likely because the levels of magnification 

utilized for microwear analysis in this research were not high enough to identify polishes.  

According to Igreja (2009) polish is not easily visible on quartz crystal artifacts and she only saw 

them under high levels of magnification.  Rounding of tool edges that one would generally 

equate to polish was noticed occasionally, such as seen in Figure 17 on the distal tip of Artifact 

#407 from 45SK46.  

Residue Analysis 

Morphological and microwear analyses helped determine which tools should be 

analyzed using residue analysis.  Residues visible to the naked eye or with limited magnification 

were noted on the Attribute Analysis Form and then viewed at greater magnification levels.  I 

observed colored residues on 58 of the 68 artifacts in the sample assemblage.  Residue color 

was highly variable, ranging from dark black spots to light brown resin-like coverings, and red 

scaly smears to thicker coverings with attached particles (Figure 22). 
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Two techniques were used for residue analysis on the sample assemblage.  Inorganic 

compounds were identified using a scanning electron microscope equipped with an energy-

dispersive x-ray spectrometer (SEM-EDX).  Organic residues were identified using the cross-over 

immuno-electrophoresis (CIEP) technique.  I tested a subsample of the sample assemblage 

using each of these analysis (EDX: n=19, CIEP: n=25).   

Colors of Residues Observed 

Residues were found on 58 of the 68 objects analyzed.  A total of 86 residues, falling 

within 11 general color categories were recorded (Figure 23).  The most commonly observed 

Figure 22. Examples of residues observed on microblade surfaces. 
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color of residue was dark brown, but other shades of brown, black, white, red, and green were 

also recorded on the objects.  A small number of the artifacts (n=10) had no visible residues on 

their surfaces. 

 
Figure 23. Colors of residues observed on artifact surfaces (n=86). 
 

Compositional Analysis of Residues using Energy-Dispersive X-ray Spectroscopy  

Residues on the surfaces of 23 of the artifacts in the sample assemblage were tested 

using SEM-EDX.  During this analysis, I also tested the bare surface of each artifact for 

comparison and material verification.  Of the 23 artifacts analyzed, all were confirmed to be 

quartz crystal (SiO2).  Carbon, aluminum, feldspar, calcium, sodium, phosphorous, iron and 

magnesium were commonly recorded on the subsample assemblage.  These elements are 

0

5

10

15

20

25

30



 

86 

 

commonly found in soils, so their presence may be natural (Schaetzl 2005).  Alternatively they 

could be due directly to human behavior.  Phosphorus is found in animal bones and it is natural 

to find this mineral in archaeological sites (Holliday 2007).  Other combinations of elements 

such as calcium carbonate (found in shell) and sodium chloride (salt) could be suggestive of 

prehistoric behaviors.  Sodium chloride for example, could be from human sweat during 

handling, and may have occurred prehistorically, or during excavation and curation.   

Elements that stood out as unusual during SEM-EDX analysis were cobalt (Co) and 

molybdenum (Mo), which are used in pigments.  Spectra displaying these results can be found 

in Appendix I.  Cobalt was identified on artifact #176, a core from 45WH59 (Figure 24) and 

molybdenum on artifact #760 from 45WH55.  The elevated level of iron on artifacts #760 from 

45WH55, and #27 and #40 from 45WH59 was abnormal.  The combination of iron and oxygen 

on these tools, along with the red coloring of residues on artifact surfaces is indicative of the 

presence of hematite, also known as red ochre (Fe2O3).  
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Red ochre is commonly associated with ritual practices (MacDonald 2008; Wreschner et 

al. 1980).  The connections between Coast Salish peoples, quartz crystal, red ochre, and 

ceremonial activities described by Hickok et al. (2010) suggested that I pay special attention to 

the quartz crystal artifacts in this assemblage with red ochre residues on their surfaces.  Ochre 

residues were photographed using the SEM and viewed at other magnification levels using the 

stereomicroscope and dissecting microscope.  This residue has a diagnostic platy texture and 

vibrant red color (Figure 25).  Due to the difficulties and time constraints associated with SEM-

Figure 24. Artifacts with pigment residues and elevated iron levels from site 45WH59: Artifact #176 
(left) and Artifact #40 (left). 
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EDX and the quartz crystal material type, red ochre was recorded and compositionally analyzed 

on only a sample of artifact surfaces using this technology.  Based on visual identification rather 

than EDX, I believe an additional four artifacts: a core (45WH59-#27), a medial microblade 

fragment (45WH59-#9), and two proximal microblade fragment (45WK46-#402 and 45WH59-

#31), have red ochre residues on their surfaces.   

 

A split core from 45WH49 (Artifact #27) is an interesting example of red ochre 

application. Half of this core is covered completely with cortex, with multiple areas of showing 

red ochre residues (Figure 26).  These residues occur on only the cortical surface of this quartz 

crystal core, suggesting a purposeful application of ochre to the entire core prior to the crystal 

being split.  

  

Figure 25. Platy texture of red ochre residue on Artifact #760 from site 45WH55. 
Stereomicroscope (left) and SEM (right). 



 

89 

 

Figure 26. Artifact #27 from site 45WH59, with residues including red ochre covering only the 
cortical surface. 

A complete microblade (Artifact #760) from site 45WH55 has a visible red residue on its 

sharp, angled distal tip ending proximally in a straight line perpendicular to the blade length 

(Figure 27).  The position and distinct separation between the residue and the rest of the 

microblade suggests hafting material may have been present at the time the ochre was 

adhered to the blade.  Campbell et al. (2010:55) suggests that “the residue adhered to the tip 

when it was fastened into a haft and that the residue accumulated above the haft or binding."  

When analyzed using SEM-EDX, the residue was confirmed to be red ochre.  The occurrence of 

this material on a quartz crystal microblade suggests that this tool was used at an event of 

some level of religious importance and results from this analysis motivated me to perform 

further tests on the artifact using CIEP protein residue analysis. 
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Cross-over Immuno-electrophoresis (CIEP) Protein Residue Analysis 

Two separate sample sets tested using CIEP analysis allowed for 25 artifacts from the 

assemblage to be analyzed against antiserums of 16 animal/fish and 5 plant taxa.  These 

antiserums were materials that may have been found in the Salish Sea region during the 

Locarno Beach Phase (Table 20).  Six tools from three sites yielded seven positive results for 

four taxa: deer, human, salmon, and rabbit (Table 21).  The first sample of 15 artifacts was 

hand-delivered to CSUBLAS, and I assisted with or viewed all stages of the analysis in November 

2013.  Three positive reactions resulted.  The second sample of 10 artifacts was tested by the 

CSUBLAS in April 2014, resulting in 4 positive reactions.  The complete CIEP report by CSUBLAS 

is located in Appendix J. 

Figure 27. Artifact #760 from 45WH55 with ochre covered distal tip. 
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Table 20. Antiserum types and possible species identified during CIEP analysis (from CLUBLAS 
2014). 

Antiserum to: Reacts with: 

Alligator alligator, crocodile 
Bear black, grizzly, etc 

Bovine bison, cow, musk ox 
Camel all camelids (New & Old world) 

Cat bobcat, cougar, lynx, etc. 
Chicken quail, grouse, & other gallinaceous fowl 

Deer deer, elk, moose 
Elephantidae elephant, mammoth 

Guinea-pig beaver, guinea-pig, porcupine, squirrel 
Horse horse, donkey, kiang, etc. 

Human human 
Rabbit rabbit, hare, pika 

Rat all rat & mouse species 
Sheep bighorn & other sheep 
Triops triops (crustacean) 
Trout trout and salmon species 
Agave yucca, agave 

Amaranthaceae amaranth, pigweed, quelite, etc. 
Asteraceae rabbitbrush, sagebrush, sunflower, thistle 

Camas camas, wild hyacinth 
Capparaceae beeplant, bladderpod, stinkweed, etc. 

Chenopodiaceae goosefoot, greasewood, pickleweed, saltbush, 
etc 

Cupressaceae cedar, cypress, juniper 
Lessoniaceae kelp, possibly algae 

Lomatium Lomatium sp. 
Malvaceae mallows 
Mesquite mesquite, palo verde, other legumes 

Portulacaceae bitterroot 
Pinaceae fir, hemlock, pine, spruce 
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Table 21. Results of CIEP analysis of samples of 25 quartz crystal artifacts sent to CSUBLAS 
(CSUBLAS 2014:5). 
 

Site # Artifact # Description Results 

*45SK46 407 Microblade Salmon 

45SK46 1163 Microblade Negative 

*45SK46 1164 Microblade Negative 

*45SK46 1165 Microblade Negative 

45SK46 1166 Microblade Negative 

*45SK46 1168 Microblade Negative 

*45SK46 1171 Flake Deer, Human 

*45SK46 1172 Microblade Negative 

*45WH1 54 Microblade Human 

45WH1 119 Microblade Fragment (Proximal) Rabbit 

45WH1 179 Microblade Negative 

*45WH17 1344 Microblade Negative 

*45WH55 507 Shatter Negative 

*45WH55 612 Flake Negative 

45WH55 707 Microblade Negative 

45WH55 760a Distal Tip of Blade Human 

45WH55 760b Remainder of blade Human 

45WH55 1147 Microblade Fragment (Medial) Negative 

45WH55 1565 Microblade (Proximal) Negative 

45WH55 1817 Microblade Negative 

45WH59 9 Microblade Fragment (Medial) Negative 

45WH59 15 Microblade Negative 

45WH59 16 Microblade Negative 

45WH59 31 Microblade Fragment (Proximal) Negative 

45WH59 36 Microblade Fragment (Proximal) Negative 

45WH59 37 Microblade Negative 

           *Indicates the second set of samples tested. 
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Artifact #760 from 45WH55 resulted in two positives for human, from its ochre-covered 

tip and also from the remainder of the blade, with a stronger positive reaction on the tip.  Soil 

from the corresponding layer collected in level bags during excavation was tested in order to 

verify that the proteins were directly from the artifact, and not the surrounding soil.  Results for 

human protein in the soil were negative.  The presence of human protein on artifact #760 and 

specifically its higher concentration on the ochre coated distal edge supports that this tool 

could have been used for a ceremonial event, possibly involving the piercing of human skin.  It 

would be easy to imagine a microblade being used in a lip cutting ceremony for a labret 

insertion (lower lip piercing) or ear piercing for placement of ear spools, as both of these types 

of adornments were used as symbols of social status during the Locarno Beach Phase (Ames 

and Maschner 1999; Carlson 1996; Matson and Coupland 1995; Mitchell 1990). 

The argument for ritual use is not as strong for the other blade, Artifact #54 from 

45WH01 that tested positive exclusively for human protein because there is no associated 

ochre.  Results for human protein in soil from the corresponding stratigraphic layer were 

negative.  Human proteins could be left on the blade due to an accident while handling.  The 

combination of human and deer proteins on Artifact #1171 from 45SK46 is suggestive of an 

accidental injury during a meat processing event.   

Artifact #119 from 45WH1 tested positive for rabbit.  Soil from the strata in which this 

tool was excavated was not collected, so it could not be tested.  Leporidae (rabbit, hare) 

remains were not observed by Dubeau (2012) in his mammalian faunal analysis of 45WH1.  
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Artifact #407 from 45SK46 tested positive for salmon and artifact #1171 from the same site 

resulted in a positive reaction to deer (and human).  Residues from multiple taxa within the 

same site, as well as at different sites within the sample assemblage strongly supports the 

hypothesis that quartz crystal microblades were multiuse tools. 

Six of the 25 tested artifacts from the sample assemblage resulted in positive protein 

identifications.  Lack of positive results on the other artifacts can not be taken as an indicator 

that they were not used to process plant and animal tissues.  A number of factors may have 

affected preservation and identification of proteins.  These artifacts could potentially have had 

residues of plants or animals not included within the antiserum available to test against.  Also, 

organic residues could have been absent or degraded due to post-depositional processes. The 

best candidates for CIEP protein residue analysis are tools found in dry climates with limited 

acidity in the soil (pH above 4).  Preservation of proteins is less common in climates with higher 

moisture levels, such as tropical and rainforest environments.  The acidity of the soil in the 

Salish Sea region generally has a negative impact on the preservation of residues (R. Yohe, 

personal communication, October 10, 2013).  Shell deposition can lead to a more alkaline 

environment in this region, however.  This is likely the reason that residues were preserved at 

45SK46, 45WH1, and 45WH55 but not at 45WH59, the only non-shell bearing site.   

Artifact Cleaning 

Researcher's opinions differ on the necessity and impact of cleaning tools before 

analysis (Andrefsky 2005; Keeley 1980; Odell 2004).  Site records include no evidence of 
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previous washing of any of the artifacts within the sample assemblage.  The intent to do protein 

residue analysis led me to not wash any artifacts, as I did not know at the beginning of the 

analysis which artifacts would be chosen for the procedure, and did not want to remove any 

potential residues.  I believe the choice to not clean artifacts in the sample assemblage did not 

affect the results of the microwear analysis.  The lighting and microscopic tools used for 

analysis, along with the natural clarity of the quartz crystal material and limited amounts of 

attached sediment allowed scarring patterns and residues to be quite visible through all stages 

of the analysis.   

A sample of artifacts were washed during the cross-over immuno-electrophoresis 

protein residue analysis at California State, Bakersfield’s Laboratory of Archaeological Science 

(CSULAS).  I viewed these objects microscopically before and after the analysis and found that 

the gentle agitation that occurred within solutions during the testing procedure removed only a 

limited amount of the residues on the surfaces and edges of artifacts (Figure 29 and Figure 28). 

This indicates that the CIEP process does not negatively impact additional analysis methods.  

Additionally, Dr. Yohe said they would still be eligible for future residue analyses. 
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Figure 28. Artifact #179 from 45WH01 before and after CIEP analysis. 
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Figure 29. Artifact #16 from 45WH59 before and after CIEP analysis. 
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Production Discussion 

The morphological analysis shows that the sample assemblage was produced using 

methods previously described in the literature.  Relatively pristine prismatic quartz crystals 

were modified at one end to create striking platforms and microblades were removed by 

striking above natural ridges and moving around the circumference of the core, producing a 

few lenticular flakes, triangular blades and then trapezoidal blades.  Although trapezoidal 

blades are the most frequent, blade removal did not necessarily penetrate far towards the 

center of the core, because cortex occurred in approximately a fifth of these.  The recovered 

cores were not all exhausted, some were still of sufficient size to remove microblades similar in 

size to others in the assemblage.  The knappers were relatively successful in removing 

microblades that ran the entire length of the crystal, as indicated by their overall length 

compared to the core length and in a few cases by a crystal face on the distal end.  

My observations do not suggest that blades were removed from both ends of the crystal 

which Reher and Frison (1991) suggest is possible.  Based on observations of the sample 

assemblage, I believe the manufacture of quartz crystal microblades was likely unidirectional.   

This is supported by microblades with angled natural crystal faces as part of their distal ends 

(Figure 30).  A core was likely struck at a prepared platform at the growth base of the crystal.  

This end of a crystal is often slightly wider, and only limited grinding would allow a flat surface 

to be produced.  Successful blade removal in this manner was produced during quartz crystal 

microblade manufacture experiments.  Microblades in the sample assemblage that exhibit 
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natural crystal faces with natural ridges running vertically down the blade could have been 

produced by striking either end of the core.  While this is true, the additional steps necessary to 

prepare a platform from the crystal tip rather than the growth end of the crystal, along with the 

potential for an unpredictable fracture when force moves through this uneven portion of the 

crystal implies that this may have been less likely.   

Another of Reher and Frison’s (1991) suggestions, that inclusions were avoided to allow 

a clean microblade removal, was exemplified in the sample assemblage.  Prehistoric 

flintknappers chose where to strike the core to remove a blade that encompassed the green 

pocket-like inclusions towards the tip of an artifact #37 from 45WH59, also exemplified in 

Figure 30.  This impurity could have interrupted the fracture of the blade removal, while 

intersecting it may have risked an incomplete blade or shattered core. 

Figure 30. Artifact #37 from 45WH59 with green crystal inclusions. 
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Limited experimental work allowed removal of blades from a quartz crystal microblade 

core, with similar sizes and attributes to those in the sample assemblage.  This method — 

previously discussed in Chapter 4 — was successful.  Given the difficulty in flake production 

described by Reher and Frison (1991), I was surprised by how easily blade removal occurred. 

Blades and flakes removed during this experiment were very sharp.   

I also learned how quickly one can exhaust the material with a poorly placed strike.  

Initially, microblades were removed with a single strike.  As the core became more exhausted, it 

became more difficult to remove blades without damaging the core or producing additional 

flakes and debitage.  This experimentally produced debitage varied in size, but was mostly small 

pieces of shatter.  Shatter and failed flakes likely occurred in the production of the sample 

assemblage as well, but would not be recovered due to their small size.  Some of the 

microblade fragments may have been created in production as blades failed to detach properly, 

although others may have broken later in connection with use. 
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CHAPTER 6: DISCUSSION AND CONCLUSIONS  

The goal of this thesis was to identify the function of quartz crystal microblades in the 

Salish Sea region.  As hypothesized, these artifacts were multiuse tools.  They were hafted in 

different fashions, used to process a variety of materials, and may have functioned in 

ceremonial events.  Another goal of this research was to provide a framework for the analysis 

of this particular material as a tool type.  The combination approach of morphological, 

microwear, and organic and inorganic residue analysis allows for a well-rounded functional 

assessment that could be repeated on larger data sets of quartz crystal artifacts.  It could also 

easily be adjusted to attempt similar functional analyses of other lithic technologies. 

Morphological Analysis 

 Morphological analysis of the sample assemblage found that the most common object 

type was a microblade, most often complete.  These artifacts measured on average 13.97 mm 

in length, 5.0 mm in width, and 1.66 mm in thickness.  When comparing the measurements in 

the sample assemblage to those from 45CA426, their core sizes were not statistically 

significantly different, while microblade length, width, and thicknesses were significantly 

different (i.e. not from the same population).  This could indicate different local manufacturing 

techniques used on similar size cores.  On the other hand, because the sample assemblage 

represents several sites collected with two different screen sizes, while the 45CA426 

assemblage is a much larger assemblage recovered with 1/8” mesh, recovery bias might affect 

the average sizes.  
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Further experimental production would provide insight into the manufacture of these 

tools and the placement of artifacts into tool typologies.  Larger data sets would allow a greater 

comparative analysis within a site or set of sites, and could be combined with this and previous 

analyses.  Larger comparative analyses would lead to an even better understanding of the 

different uses of these tools by their site type, location, size, or date.  Additionally, the sourcing 

of such a pure mineral would be difficult, but detailed testing of impurities might allow 

connections to a source of quartz crystal, and to help discover potential trade or travel 

patterns.   

Microwear Analysis 

This microwear analysis contributed to the investigation of quartz crystal microblade 

use by determining: (1) most commonly used edges, (2) potential hafting placement, and (3) 

scarring types/patterns.  Microwear was described, viewed, and photographed at minimal 

magnification.  Separation of complete microblades into portions allowed suggestions to be 

made as to the placement of hafts.  Results of this analysis differed from what was observed at 

the Hoko River site and suggested by Walker (1999).  At the Hoko River site, a single end hafted 

microblade was recorded (Croes 1995) and microblades from 45CA426 were thought to be end 

hafted based on microwear analysis by Walker (1999).  Microwear analysis of the sample 

selection indicates that Flenniken (1981) was correct in suggesting that quartz crystal tools may 

also have been side hafted.  Microwear analysis of the complete blades in the sample 

assemblage suggests these tools were more commonly attached in a side hafted manner.  The 
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lateral edges of these tools exhibited microwear more frequently, but not exclusively.  Some 

distal portions of complete blades also exhibited microwear, suggesting these tools were hafted 

in multiple ways.  Microwear pattern types varied greatly in terms of the scar patterns and the 

extent along blade edges.  This variety further supports the interpretation of quartz crystal 

microblades as mulituse tools that were utilized in multiple ways, on numerous material types.  

Analysis of wear patterns on microblade fragments could be conducted and generally tied to 

the blade portions used for the complete blades to give additional information about wear 

frequency by location.  Observing wear in relation to the breaks might illuminate whether the 

fragments were more likely to be the result of breakage during use or during production.   

I lacked an experimental basis to connect specific microwear patterns to particular 

behaviors.  There were no major differences between microwear patterns at different sites that 

might suggest different functional uses.  The frequency of scalar and half-moon scar types and 

their combinations are similar across the sites in the sample assemblage.  Step scars were 

observed only on microblades from sites 45WH55 and 45WH59; this may be attributable to 

sampling bias, since step scars are far less frequent than scalar and half-moon scars, and these 

two sites contributed the largest numbers of microblades. 

Much of the difficulty of microwear analysis is derived from the lack of comparable 

research.  Few researchers have studied this specific material type.  Those that have, utilized 

high-powered, rather than low-powered techniques.  Experimental analysis in a controlled 

environment analyzing the effect of multiple variables on material types ranging in hardness 
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levels, including methods and durations of use, are necessary to make inferences as to more 

specific functions of these tools.  Detailed explanations of differing microwear patterns at the 

low-powered microscopic level would be extremely beneficial to analysts.  This research 

demonstrates that differences in microwear can be seen at the low-powered level.  A thorough 

comparative photograph collection of quartz crystal microwear at the low powered level would 

be extremely helpful to analysts, as it is a magnification level that is easily accessible.    

Residue Analysis 

Quartz crystal microblades have previously been associated with bark, fish (Croes 1980), 

and deer/elk residues (Walker 1999).  The results of protein residue analysis in this thesis 

expands the data set of organic residues connected to these tools by adding rabbit to the list as 

well as providing additional cases of salmon and deer residues.   

Most importantly, perhaps, was testing conducted on Artifact #760, the ochre and 

human protein tipped quartz crystal microblade from 45WH55.  This microblade highlights the 

value of examining inorganic residues adhered to tools as a method for suggesting function.  It 

also emphasizes the importance of combining inorganic and organic residue methods during 

residue analyses.  Both organic and inorganic residues were necessary to demonstrate the 

association between this tool and a ceremonial activity.  The identification of the presence of 

ochre residues on additional tools, along with the positive results for human proteins on 

multiple tools tested using CIEP analysis further supports the connection between quartz crystal 

microblades and ceremonial functions.  I suggest that quartz crystal microblades, including the 
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Figure 31. Flake with attached fiber on edge (Artifact #44 from 45WH59). 

ones examined for this project, may have served a ritualistic purpose for the prehistoric people 

of the Salish Sea region.  Additional inorganic and organic testing is needed to strengthen the 

connection between microblades and other proteins, minerals, and a combination of the two.  

During microscopic analysis, fibers and particles were occasionally noticed along blade 

edges (Figure 31 and Figure 32).  These were difficult to record as they were often present 

during one analysis and not the next.  These fibers may be prehistoric, or the result of post-

depositional surface modification, and further analysis is needed for the identification of these 

materials. 
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Conclusions 

I have used a wide variety of techniques to better understand the function of quartz 

crystal microblades.  Morphological analysis allowed me to characterize the production 

sequence.  I identified the presence of a variety of inorganic residues such as red ochre, cobalt 

and molybdenum that may be associated with pigments.  Organic residues represent several 

taxa, including salmon, deer, rabbit, and human.  Combined with the highly varied microwear 

types and placement, this data strongly supports the hypothesis that quartz crystal microblades 

were multiuse tools used for a number of processing activities, and possibly ceremonial events.  

When combined, morphological, microwear, and residue analysis methods offers a more 

complete view of these unique prehistoric tools.  This integrative approach can be expanded in 

future research.  Experimental production of wear and contextual analyses, especially 

Figure 32. Attached particles to the distal end of a complete microblade (Artifact #16 from 
45WH59). 
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association with faunal remains, can be used to elucidate the specific nature of processing 

activities.  Potential applications of microblades as fabricators, e.g., for drilling beads or 

engraving bone can be tested in the same way.   
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Rachael Kannegaard — Quartz Crystal Microblade Thesis Research — 2013 

Artifact Attribute Analysis Form 

 

Site: ________________ 

Cat #: _______________ 

 

Length: _____________ 

Width: ______________ 

Thickness: ___________ 

Weight: _____________ 

Cross Section: Triangular 

  Trapezoidal 

  Lenticular 

 

Artifact type:  Microblade Core  Flake  Shatter 

Termination:   Feather Hinge  Step  Modified NA 

Blade/flake portion: Complete Proximal Distal  Medial  NA 

Cortex:   Absent  Dorsal  Other 

Attrition:  R. Lateral L. Lateral Distal  Proximal 

Visible residue: Absent  Present Colors: 

Comments:

Sketch 

Distal 
Cross Section 

Proximal 
Cross Section 

     Dorsal          Ventral 
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APPENDIX B: MICROWEAR ANALYSIS FORM 

 

 

 

 

 

 

 



 

 

 

1
1

7 

Microwear Analysis Form  

Site # Artifact # 
Artifact 

Type 
Wear 

Location 
Wear 
(P/A) 

Scar Type 
(SC, HM, ST, SCHM) 

Orientation 
(P, O) 

Comments 

   R1     

   R2     

   R3     

   D     

   L1     

   L2     

   L3     

   R1     

   R2     

   R3     

   D     

   L1     

   L2     

   L3     
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APPENDIX C: WALL PROFILES OF N1W1 AND N1W2 
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D. ANN GAHR 

2028 Cleveland Street 

Eugene, OR  97405 

(541) 344-5453 (home)   

541-968-9777 (cell) 

e-mail:  anngahr@gmail.com 

 

11 January 2014 

Via First Class Mail 

E-mail: kannegr@students.wwu.edu 

 

Rachael Kannegaard 

Department of Anthropology 

Western Washington University 

516 High Street 

Bellingham, WA  98225 

 

Re: 45WH59—Charcoal Analysis for Carbon-14 Dating 

 

Dear Rachael: 

 This is a brief report on the taxonomic identification of charcoal from two samples 

designated for carbon-14 dating.  The two samples were recovered from archaeological 

investigations conducted by Robert Spear in 1976 at 45WH59, located in Whatcom County, 

Washington.  The site yielded a rich assemblage of lithic artifacts, including the quartz crystal 

lithic artifacts which are the focus of the study.  Few charcoal samples were collected from the 

site during excavation, and the site has not yet been dated by radiocarbon dating.  The question 

submitted here was to determine the sufficiency of these samples for radiocarbon dating.   

Methods 

 Samples arrived in good condition.  Because these samples were selected for radiocarbon 

dating, extra cautionary steps were taken to prevent inter-sample contamination and to minimize 

handling.  After weighing sample on Accu-Lab scale (200 g x 0.01 g +/- 0.01 g), specimens were 

hand selected for analysis.  Mechanical separation using sieves was not used. 

Wood charcoal specimens greater than 1 mm were prepared for identification by fracturing the 

individual specimens to expose fresh surfaces on each of three anatomical planes (cross, radial, 

and tangential).  Each surface was examined using a stereoscope with enhanced magnification 

(28X to 180X) and enhanced illumination.  Observations were compared with modern and 

archaeological reference specimens and a series of anatomical keys for wood (InsideWood 2004; 

Panshin and de Zeeuw 1980; Phillips 1941; Richter et al. 2004; USDA 2009).   

 

mailto:anngahr@gmail.com
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Results 

Sample:45WH059/1976/022 

Cut: N1W2 Unit: A Level: 40-60 cm Depth: 56 cm cmbs 

Coordinates: 2.02 m N of N; 5.06 m W of W 

Sample weight: 4.26 g. including sedimentary matrix  

Overall charcoal in this sample was highly degraded and comprised into an aggregate of very 

small charcoal particle size (<0.5 mm) and sedimentary matrix.  Little cellular structure 

remained, except as indicated below.  The preserved plant tissue represents parenchyma tissue 

such as from geophytes, herbaceous dicot (hardwood) bark, conifer (cf. Tsuga sp. and 

unidentified conifer).  This sample was divided into four types and bagged to facilitate choice of 

radiocarbon methods.   

1) Sedimentary matrix with a high charcoal load of < 0.5 mm.  Charcoal was unidentifiable. 

6.11 g +/-0.01 g. 

2) Charcoal aggregate comprised of mostly unidentifiable crushed charcoal.  Some 

fragments of conifer, some bark-like anatomy, some parenchyma tissue.  Note there is 

considerable fine root hair intrusion. 

3) Possible geophyte epidermal tissue; dicot bark; 5 specimens 0.09 g +/1 0.01 g.  

4) Conifer unidentifiable, 1 specimen; cf. Tsuga sp., 1 specimen.  <0.01 g. 

 

Sample: 45WH059/1976/064 

Acc. 61 

Cut: N1W1 Unit: C  Level: 40-60 cm Depth: 56 cm cmbs 

Coordinates: 2.5 m N of N; 0.8 m W of W 

 

Sample weight:  23.07 g, including sedimentary matrix 

 

Pseudotsuga sp. 63 specimens 9.2 g. 

 Compression wood, 46 specimens 

 False ring, 15 specimens 

 Larger specimens with 20 – 25 growth increments 

 Growth increments highly variable. Some specimens reveal ring shakes, twisting 

 tracheids, and traumatic schizogenous resin canals. 

 Note: fine root hair penetration present, but not frequent. 

Matching of growth increments, false growth increment, and schizogenous resin canals 

indicate that most likely fewer than three separate trees, or parts of a tree, were 

represented.   
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Discussion 

 The two samples have different considerations as to their desirability for radiocarbon 

dating. 

Sample 022:  This is a small sample, suitable for AMS only, based on weight.  I removed the 

conifer specimens from the sample.  However, I do not know what portion of the highly 

degraded portions is comprised of conifer.  However the presence of young dicot bark and 

parenchyma cells would eliminate the “old wood” problem.   

Sample 064:  This larger sample entirely composed of Douglas-fir could be dated by standard 

methods.  However, Douglas-fir is a long-lived species, some reaching 1,000 or more years old 

in Northwestern Washington region.  The possibility that the sample has an “old wood problem” 

could lead to discarding this as an appropriate sample for radiocarbon dating.  However, 

ecological and functional variation revealed in the wood anatomy lend an argument to this 

sample being considered as potentially promising.  It is more likely than not that these specimens 

derived from branch wood as evidenced from the high ratio of compression wood (73%).  

Compression wood is a dense wood that forms on the lower or underside of branches or leaning 

trunks. Given that Douglas fir self-prunes limbs as it grows, the sample most likely represent a 

fallen branch.  The wood from this sample was in excellent condition and had no evidence of 

pre-charring degradation.  In the humid temperate environment of Western Washington, this 

would most likely signify that the wood was collected fairly shortly after it fell or was cut.  Some 

specimens contained 20 to 25 growth increments indicating that the wood was older than that. 

Furthermore, the specimens in the sample share individual characteristics such as matching 

growth increments (a pattern of narrow and wide growth increments); false growth increment 

(result of temporary cessation of growth caused by a variety of factors including late spring 

freeze, drought followed by rains, or insect defoliation); traumatic resin canals (resulting from 

injury).  Based on these shared histories and identical preservation of the specimens in the 

sample I believe that no more than three separate branches compose this assemblage. It is most 

likely that this sample derived from a single burn event.  This would increase the precision of the 

date.   

 I hope that this information can assist you in selecting your samples for radiocarbon 

dating.  Please contact me if you have any questions.  

Sincerely yours, 

 

D. Ann Gahr 
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February 12, 2014 

 
Dr. Rachael Kannegaard 

Western Washington 

University 

Department of Anthropology, MS9083 

516 High Street 

Bellingham, WA 

98225 USA 

 
RE: Radiocarbon Dating Results For Samples WH59N1W14060, 

WH59N1W24060 Dear Dr. Kannegaard: 

Enclosed are the radiocarbon dating results for two samples recently sent to us. They each 

provided plenty of carbon for accurate measurements and all the analyses proceeded normally. The 

report sheet contains the dating result, method used, material type, applied pretreatment and two-sigma 

calendar calibration result (where applicable) for each sample. 

 
All results (excluding some inappropriate material types) which are less than about 42,000 

years BP and more than about ~250 BP include a calendar calibration page (also digitally available in 

Windows metafile (.wmf) format upon request).  Calibration is calculated using the newest (2009) 

calibration database with references quoted on the bottom of the page.  Multiple probability ranges may 

appear in some cases, due to short-term variations in the atmospheric 14C contents at certain time 

periods. Examining the calibration graph will help you understand this phenomenon.  Don’t hesitate to 

contact us if you have questions about calibration. 

 
We analyzed these samples on a sole priority basis.  No students or intern researchers who 

would necessarily be distracted with other obligations and priorities were used in the analyses.  We 

analyzed them with the combined attention of our entire professional staff. 

 
The cost of the analysis was charged to the VISA card provided. Thank you.  As always, if 

you have any questions or would like to discuss the results, don’t hesitate to contact me. 

 
Sincerely, 

 

 

 

 

Digital signature on file 
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APPENDIX F: RAW ATTRIBUTE ANALYSIS DATA  



 

 

1
3

3 

Site # Artifact # Artifact Type Termination Blade Portion Cortex Visible Residue Colors Cross Section 

45SK46 402 M NA P A P Dk, R Trap 

45SK46 407 M Rounded C A P M, Lt, Dk Trap 

45SK46 1163 M F C A P Lt, M Trap 

45SK46 1164 M F C A P M, G, Dk Trap 

45SK46 1165 M F C D P Dk, M Trap 

45SK46 1166 M S C A P R Trap 

45SK46 1167 M F C D P Dk, G, Lt, M L 

45SK46 1169 S NA NA A P R Trap 

45SK46 1170 S NA NA A P Dk, Matte NA 

45SK46 1171 F NA NA A P Lt  Tri 

45SK46 1172 M F C A P Dk, Matte Tri 

45WH01 54 M S C A A NA Tri 

45WH01 119 M NA P A A NA Trap, Tri 

45WH01 179 M F C A P Dk Trap 

45WH01 1275 C NA NA O P W, Dk, B, Bl Trap 

45WH17 1435 C NA NA D P Dk L 

45WH47 61 C NA NA O P Dk Trap 

45WH55 507 S NA NA A P Br, Milky Br. Trap, Tri 

45WH55 612 F NA NA P P Bl, Lt. Br.   

45WH55 707 M H C A P Dk Tri, Trap 

45WH55 760 M F C A P R, Bl, G Trap, Tri 

45WH55 1147 M NA M A P Dk. Br Tri 

45WH55 1565 M NA P A P Lt. Br L, Tri 

45WH55 1591 M S C D P BL, Dk. Br Trap 

45WH55 1817 M H C A P Dk. Br, Lt. Br Trap 

45WH55 2413 M F C D P Lt. BR Trap, Tri 

45WH59 1 M S C A P Br  Trap 

45WH59 2 M S C A P Br Trap 



 

 

1
3

4 

45WH59 3 C NA NA O P Dk NA 

45WH59 9 M NA M A P R, Br Tri 

45WH59 11 S NA NA A P M, Lt L 

45WH59 13 M NA P A P Bl, Dk, M Trap 

45WH59 14 M H C A P Br, Dk Trap 

45WH59 15 M H C A P Lt  Trap 

45WH59 16 M F C  A P M, Lt Trap 

45WH59 17 M NA M A P Dk Trap 

45WH59 24 M S C D P Dk Trap 

45WH59 25 M NA M A P Dk Trap 

45WH59 27 C NA NA D A NA Trap 

45WH59 30 M NA M A A NA Trap 

45WH59 31 M NA P D P Lt, M Trap 

45WH59 33 C NA NA D A NA Trap 

45WH59 35 F NA NA D P R, Br NA 

45WH59 36 M NA P D P ? Trap 

45WH59 37 M F C D P 
Lt. Br, Gr/Bl., 
R/Br. Tri 

45WH59 39 M NA M D A NA L 

45WH59 40 F NA NA D P R  Trap 

45WH59 41 C NA NA D P Bl, Br L 

45WH59 42 M NA P A P Lt, R Trap 

45WH59 44 M F C  A A NA L, Tri 

45WH59 45 M NA P A P Dk, Lt Tri 

45WH59 46 M H C A P Lt Trap 

45WH59 47 F NA NA A P R, Dk NA 

45WH59 48 M NA M A A NA Trap 

45WH59 50 F NA NA D P R Trap 

45WH59 56 M F C  A A NA Tri 

45WH59 57 M S C A P Lt. Br, R Tri, Trap 



 

 

1
3

5 

45WH59 59 M S C  D P R/Br. Trap 

45WH59 60 M NA P A P RB Trap 

45WH59 62 M NA P A A NA Trap 

45WH59 63 F NA NA A P Dk, Br NA 

45WH59 65 F NA NA D P Dk NA 

45WH59 67 M F C A P Lt, M Trap 

45WH59 74 M F C  D P Br.  Tri, Trap 

45WH59 75 M NA P A P R Trap 

45WH59 176 C NA NA D P R, Bl. NA 

45WH59 210 S NA NA D P Dk, W NA 
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APPENDIX G: MEASUREMENT DATA 
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45SK46 1171 6.2 6.33 6.22 6.25 0.07 5.22 5.39 4.98 5.20 0.21 1.29 1.32 1.24 1.28 0.04 0.31 

45SK46 402 10.07 10.16 9.87 10.03 0.15 7.92 8.01 8.07 8.00 0.08 3.7 3.95 3.93 3.86 0.14 0.59 

45SK46 407 11.06 10.93 10.63 10.87 0.22 4.37 4.3 4.45 4.37 0.08 1.38 1.4 1.29 1.36 0.06 0.34 

45SK46 1163 12.07 12.19 12.09 12.12 0.06 4.93 5.1 5.08 5.04 0.09 1.2 1.26 1.1 1.19 0.08 0.28 

45SK46 1164 7.78 8.05 8.07 7.97 0.16 4.43 4.53 4.52 4.49 0.06 1.64 1.58 1.41 1.54 0.12 0.31 

45SK46 1165 13.27 13.42 13.46 13.38 0.10 6.14 6.17 6.04 6.12 0.07 1.62 1.54 2.99 2.05 0.82 0.35 

45SK46 1166 14.14 14.05 14.04 14.08 0.06 6.14 6.26 6.02 6.14 0.12 2.35 2.11 3.64 2.70 0.82 0.48 

45SK46 1167 11.8 11.86 11.86 11.84 0.03 5.81 6.06 5.68 5.85 0.19 1.86 1.76 2.94 2.19 0.65 0.34 

45SK46 1172 7.15 7.01 6.49 6.88 0.35 4.37 4.16 4.17 4.23 0.12 0.76 0.97 1.04 0.92 0.15 0.29 

45SK46 1168 11.52 11.91 11.42 11.62 0.26 6.65 7.06 6.63 6.78 0.24 1.71 1.7 1.47 1.63 0.14 0.38 

45SK46 1169 8.41 8.42 8.41 8.41 0.01 6.35 6.31 6.51 6.39 0.11 1.37 1.17 1.51 1.35 0.17 0.33 

45SK46 1170 7.47 7.35 7.02 7.28 0.23 4.29 4.45 4.56 4.43 0.14 1.19 1.34 1.2 1.24 0.08 0.30 

45WH01 1275 22.51 22.53 23.45 22.83 0.54 16.27 18.15 16.96 17.13 0.95 16.97 16.98 16.58 16.84 0.23 7.89 

45WH01 54 11.98 12.37 11.72 12.02 0.33 5.57 5.72 5.9 5.73 0.17 2.39 2.46 3.94 2.93 0.88 0.36 

45WH01 119 13.43 13.49 13.18 13.37 0.16 6.5 6.44 6.14 6.36 0.19 1.85 1.73 1.69 1.76 0.08 0.34 

45WH01 179 21.15 20.88 20.86 20.96 0.16 4.13 4.02 3.86 4.00 0.14 1.56 1.78 1.37 1.57 0.21 0.30 

45WH17 1435 25.47 27.08 26.38 26.31 0.81 18.84 18.29 17.83 18.32 0.51 6.81 6.73 6.77 6.77 0.04 3.83 

45WH47 61 16.53 16.6 15.93 16.35 0.37 8.76 8.63 9.09 8.83 0.24 4.83 4.7 4.82 4.78 0.07 0.96 

45WH55 612 8.98 9.41 8.94 9.11 0.26 6.5 6.46 6.44 6.47 0.03 2.84 2.84 2.43 2.70 0.24 0.30 

45WH55 707 16.48 16.11 16.37 16.32 0.19 6.94 7.03 7 6.99 0.05 2.1 1.8 3.43 2.44 0.87 0.31 

45WH55 760 25.43 25.33 24.92 25.23 0.27 5.3 5.71 5.58 5.53 0.21 3.24 1.81 3.63 2.89 0.96 0.44 

45WH55 1147 10.85 11.35 11.2 11.13 0.26 4.03 3.9 3.74 3.89 0.15 1.5 1.5 1.36 1.45 0.08 0.10 

45WH55 1565 7.12 7.15 7.14 7.14 0.02 4.26 4.13 4.14 4.18 0.07 1.07 1.28 0.91 1.09 0.19 0.13 

45WH55 1591 16.83 16.71 16.52 16.69 0.16 4.51 4.05 4.14 4.23 0.24 1.46 1.48 1.37 1.44 0.06 0.23 

45WH55 1817 20.43 20.29 20.29 20.34 0.08 4.58 4.76 4.21 4.52 0.28 1.63 1.52 1.53 1.56 0.06 0.24 

45WH55 2413 8.2 8.2 8.04 8.15 0.09 2.89 2.53 2.6 2.67 0.19 0.97 0.9 0.74 0.87 0.12 0.02 

45WH55 507 11.21 10.84 11.04 11.03 0.19 8.86 7.9 8.68 8.48 0.51 1.69 1.72 1.66 1.69 0.03 0.33 

45WH59 3 7.96 7.83 7.51 7.77 0.23 7.67 7.68 6.98 7.44 0.40 4.23 4.38 4.14 4.25 0.12 0.43 
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45WH59 27 14.55 14.95 15.07 14.86 0.27 11.81 11.58 11.99 11.79 0.21 5.72 5.68 5.7 5.70 0.02 1.32 

45WH59 33 10.36 10.96 10.87 10.73 0.32 7.2 6.93 7.62 7.25 0.35 6.65 7.06 6.64 6.78 0.24 0.82 

45WH59 41 14.9 14.62 14.89 14.80 0.16 15.03 14.84 14.71 14.86 0.16 5.08 5.64 5.75 5.49 0.36 1.51 

45WH59 176 9.87 10.17 9.54 9.86 0.32 6.33 6.21 6.27 6.27 0.06 3.6 3.49 3.75 3.61 0.13 0.19 

45WH59 35 8.89 8.94 8.9 8.91 0.03 7.36 7.68 7.57 7.54 0.16 4.01 3.84 3.68 3.84 0.17 0.34 

45WH59 40 15.02 16.09 15.91 15.67 0.57 10.69 10.74 10.6 10.68 0.07 5.64 5.11 5.25 5.33 0.27 0.87 

45WH59 47 8.54 8.53 8.51 8.53 0.02 5.64 6.22 5.57 5.81 0.36 1.84 1.46 1.37 1.56 0.25 0.08 

45WH59 50 9.16 9.31 9.28 9.25 0.08 7.86 8.17 8.41 8.15 0.28 3.43 3.83 3.29 3.52 0.28 0.28 

45WH59 63 4.93 5.29 5.08 5.10 0.18 5.46 4.84 4.66 4.99 0.42 0.74 0.67 0.83 0.75 0.08 0.05 

45WH59 65 5.41 5.8 5.54 5.58 0.20 4.03 4.94 4.45 4.47 0.46 1.18 1.36 1.41 1.32 0.12 0.04 

45WH59 1 13.93 14.1 14.12 14.05 0.10 5.33 5.65 5.34 5.44 0.18 1.59 1.47 1.56 1.54 0.06 0.22 

45WH59 2 11.81 11.92 11.87 11.87 0.06 6.69 6.83 6.93 6.82 0.12 2.62 2.64 2.13 2.46 0.29 0.24 

45WH59 9 5.45 5.15 5.6 5.40 0.23 4.29 4.17 4.36 4.27 0.10 0.75 0.83 0.84 0.81 0.05 0.14 

45WH59 13 7.34 7.5 6.91 7.25 0.31 4.46 4.26 4.2 4.31 0.14 1.26 1.25 1.18 1.23 0.04 0.16 

45WH59 14 13.43 13.21 13.19 13.28 0.13 6.49 5.95 5.88 6.11 0.33 2.13 1.99 1.99 2.04 0.08 0.20 

45WH59 15 17.2 17.14 17.15 17.16 0.03 5.11 4.96 5.02 5.03 0.08 1.96 1.3 1.96 1.74 0.38 0.17 

45WH59 16 18.85 18.94 18.92 18.90 0.05 5 4.76 4.69 4.82 0.16 1.22 1.2 1.15 1.19 0.04 0.26 

45WH59 17 8.97 7.08 9.28 8.44 1.19 1.7 1.86 1.86 1.81 0.09 9.32 6.63 0.14 5.36 4.72 0.06 

45WH59 24 8.57 8.94 8.98 8.83 0.23 4.5 4.33 4.65 4.49 0.16 1.22 1.36 1.38 1.32 0.09 0.13 

45WH59 25 4.92 5.28 4.49 4.90 0.40 5.19 4.65 5.6 5.15 0.48 1.12 1.15 0.85 1.04 0.17 0.08 

45WH59 30 7.53 7.66 7.62 7.60 0.07 5.54 5.76 5.52 5.61 0.13 1.1 1.05 0.97 1.04 0.07 0.17 

45WH59 31 8.46 8.27 8.68 8.47 0.21 3.64 3.55 3.5 3.56 0.07 1.1 1.07 1.04 1.07 0.03 0.05 

45WH59 36 7.48 8.02 7.49 7.66 0.31 3.61 3.7 3.61 3.64 0.05 0.84 1.21 0.77 0.94 0.24 0.14 

45WH59 37 21.11 21.17 20.85 21.04 0.17 5.22 5.87 4.05 5.05 0.92 1.89 1.24 2 1.71 0.41 0.13 

45WH59 39 5.07 5.11 5.09 5.09 0.02 3.36 3.22 3.22 3.27 0.08 0.71 0.86 0.67 0.75 0.10 0.14 

45WH59 42 9.86 9.96 9.94 9.92 0.05 7.54 7.62 7.71 7.62 0.09 2.71 2.81 2.87 2.80 0.08 0.18 

45WH59 44 11.29 11.41 11.14 11.28 0.14 4.63 4.57 4.46 4.55 0.09 1.02 0.94 1.02 0.99 0.05 0.17 

45WH59 45 5.46 6.25 4.77 5.49 0.74 4.4 4.7 6.67 5.26 1.23 1.19 1.76 1.27 1.41 0.31 0.04 

45WH59 46 9.57 9.85 9.58 9.67 0.16 4.99 4.97 4.94 4.97 0.03 1.39 1.26 1.48 1.38 0.11 0.09 

45WH59 48 5.53 5.52 5.47 5.51 0.03 4.1 4.07 3.84 4.00 0.14 0.6 0.88 0.49 0.66 0.20 0.16 

45WH59 56 15.98 15.97 15.97 15.97 0.01 4.82 4.93 5.08 4.94 0.13 1.53 1.44 0.82 1.26 0.39 0.24 

45WH59 57 9.22 8.86 8.68 8.92 0.27 5.35 5.26 5.48 5.36 0.11 1.62 1.58 1.54 1.58 0.04 0.13 

45WH59 59 17.02 17.12 17.14 17.09 0.06 6.73 7.18 6.65 6.85 0.29 2.15 2.04 1.96 2.05 0.10 0.34 

45WH59 60 10.5 10.73 10.54 10.59 0.12 5.48 5.65 5.5 5.54 0.09 1.74 1.67 1.79 1.73 0.06 0.17 

45WH59 62 13.27 13.47 13.9 13.55 0.32 3.58 3.74 3.75 3.69 0.10 0.97 1.03 0.88 0.96 0.08 0.24 
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45WH59 67 12.45 12.21 11.79 12.15 0.33 4.92 4.91 4.81 4.88 0.06 1.33 1.22 1.35 1.30 0.07 0.07 

45WH59 74 14.05 13.9 13.93 13.96 0.08 3.42 3.3 3.35 3.36 0.06 0.79 0.67 0.84 0.77 0.09 0.13 

45WH59 75 8.71 8.94 8.67 8.77 0.15 7.26 7.19 7.21 7.22 0.04 1.47 1.74 1.01 1.41 0.37 0.09 

45WH59 11 7.65 7.47 7.56 7.56 0.09 6.5 7.53 5.53 6.52 1.00 1.42 1.27 1.31 1.33 0.08 0.16 

45WH59 210 11.51 12.27 12.36 12.05 0.47 12.1 11.7 12.03 11.94 0.21 4.27 4.9 4.02 4.40 0.45 0.50 

 



 

140 

 

 

 

 

 

 

 

APPENDIX H: COMPLETE BLADE ANALYSIS 
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Site Artifact # Artifact Type Wear Location Wear (P/A) Scar Type (HM, SC, ST) Orient. (P, O) 
 45SK46 407 C D A     

 45SK46 407 C L1 P SCHM P 

 45SK46 407 C L2 P SCHM/ SC P 

 45SK46 407 C L3 P SC P 

 45SK46 407 C R1 P SC P 

 45SK46 407 C R2 A     

 45SK46 407 C R3 P SC P 

 45SK46 1163 C D A     

 45SK46 1163 C L1 P SC/HM P 

 45SK46 1163 C L2 P HM/ SC P 

 45SK46 1163 C L3 P SC P 

 45SK46 1163 C R1 A     

 45SK46 1163 C R2 A     

 45SK46 1163 C R3 P HM/ SCHM P/O 

 45SK46 1164 C D A A   

 45SK46 1164 C L1 A     

 45SK46 1164 C L2 A     

 45SK46 1164 C L3 A A   

 45SK46 1164 C R1 A A   

 45SK46 1164 C R2 A A   

 45SK46 1164 C R3 A A   

 45SK46 1165 C D A     

 45SK46 1165 C L1 P SCHM P 

 45SK46 1165 C L2 P SCHM P 

 45SK46 1165 C L3 A     

 45SK46 1165 C R1 A     

 45SK46 1165 C R2 A     

 45SK46 1165 C R3 A     

 45SK46 1166 C D P HM P 

 45SK46 1166 C L1 P SC/ HM O 

 45SK46 1166 C L2 P HM/ SCHM P 

 45SK46 1166 C L3 P SCHM/ HM P 

 45SK46 1166 C R1 P SC/SC P 

 45SK46 1166 C R2 P SCHM P 

 45SK46 1166 C R3 P SCHM P 
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45SK46 1167 C D A     

 45SK46 1167 C L1 P HM P 

 45SK46 1167 C L2 A     

 45SK46 1167 C L3 P SC  P 

 45SK46 1167 C R1 A     

 45SK46 1167 C R2 A     

 45SK46 1167 C R3 A     

 45SK46 1172 C D A     

 45SK46 1172 C L1 A     

 45SK46 1172 C L2 P HM P 

 45SK46 1172 C L3 A     

 45SK46 1172 C R1 A     

 45SK46 1172 C R2 A     

 45SK46 1172 C R3 A     

 45WH01 54 C D A     

 45WH01 54 C L1 A     

 45WH01 54 C L2 P SCHM P 

 45WH01 54 C L3 P SC/ SCHM PO/ P 

 45WH01 54 C R1 A     

 45WH01 54 C R2 A     

 45WH01 54 C R3 P SC P 

 45WH01 179 C D P SC/ HM/ SCHM P/O 

 45WH01 179 C L1 A     

 45WH01 179 C L2 P HM P 

 45WH01 179 C L3 P HM  P 

 45WH01 179 C R1 P SC O 

 45WH01 179 C R2 A     

 45WH01 179 C R3 A     

 45WH55 707 C D A     

 45WH55 707 C L1 P SC P 

 45WH55 707 C L2 A     

 45WH55 707 C L3 A     

 45WH55 707 C R1 P SCHM P 

 45WH55 707 C R2 P SCHM P 

 45WH55 707 C R3 P SC  P 

 45WH55 760 C D A     
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45WH55 760 C L1 P SC O 

 45WH55 760 C L2 P SC/ SC P 

 45WH55 760 C L3 P SC/SC/ SCHM P 

 45WH55 760 C R1 A     

 45WH55 760 C R2 A     

 45WH55 760 C R3 P SC O 

 45WH55 1591 C D P SCHM P 

 45WH55 1591 C L1 P SC /SCST P 

 45WH55 1591 C L2 P SCHM P 

 45WH55 1591 C L3 P SCHM P 

 45WH55 1591 C R1 A     

 45WH55 1591 C R2 A     

 45WH55 1591 C R3 P SCHM P 

 45WH55 1817 C D P SCHM P 

 45WH55 1817 C L1 P SCST P 

 45WH55 1817 C L2 P SCST P 

 45WH55 1817 C L3 P SC P  

 45WH55 1817 C R1 P SC P  

 45WH55 1817 C R2 P SCST P 

 45WH55 1817 C R3 P SCST/ SCHMST/ SC P 

 45WH55 2413 C D A     

 45WH55 2413 C L1 A     

 45WH55 2413 C L2 A     

 45WH55 2413 C L3 P SC P 

 45WH55 2413 C R1 A     

 45WH55 2413 C R2 P HM P 

 45WH55 2413 C R3 P SC/ HM P 

 45WH59 1 C D A     

 45WH59 1 C L1 P SC P 

 45WH59 1 C L2 P SC P 

 45WH59 1 C L3 P SC P 

 45WH59 1 C R1 P SCHMST P 

 45WH59 1 C R2 P SCHMST P 

 45WH59 1 C R3 P SCHMST/ SC P 

 45WH59 2 C D A     

 45WH59 2 C L1 P SCHM P 
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45WH59 2 C L2 A     

 45WH59 2 C L3 P SC P 

 45WH59 2 C R1 A     

 45WH59 2 C R2 A     

 45WH59 2 C R3 A     

 45WH59 14 C D A     

 45WH59 14 C L1 P SC P 

 45WH59 14 C L2 P SCHM/ SC P 

 45WH59 14 C L3 A     

 45WH59 14 C R1 A     

 45WH59 14 C R2 A     

 45WH59 14 C R3 A     

 45WH59 15 C D A     

 45WH59 15 C L1 P SC/ SCST P/ PO 

 45WH59 15 C L2 P SCST PO 

 45WH59 15 C L3 P SCST PO 

 45WH59 15 C R1 P SC P 

 45WH59 15 C R2 P SC P 

 45WH59 15 C R3 P SC/ SCHM P 

 45WH59 16 C D A     

 45WH59 16 C L1 P SCHM PO 

 45WH59 16 C L2 P SCHM PO 

 45WH59 16 C L3 P SCHM/ SC PO 

 45WH59 16 C R1 P ST P 

 45WH59 16 C R2 P ST/ SC PO 

 45WH59 16 C R3 P SC PO 

 45WH59 24 C D A     

 45WH59 24 C L1 A     

 45WH59 24 C L2 A     

 45WH59 24 C L3 A     

 45WH59 24 C R1 A     

 45WH59 24 C R2 A     

 45WH59 24 C R3 A     

 45WH59 37 C D P SC/ HM/ SC P 

 45WH59 37 C L1 A     

 45WH59 37 C L2 A     
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45WH59 37 C L3 A     

 45WH59 37 C R1 P SC/HM/SC/HM O/P/O/P/O 

 45WH59 37 C R2 P HM O 

 45WH59 37 C R3 A     

 45WH59 44 C D A     

 45WH59 44 C L1 P SC P 

 45WH59 44 C L2 P SCST/ SCHMST/ HMST PO/P/P 

 45WH59 44 C L3 P HMST P 

 45WH59 44 C R1 P SC/ SCHM P 

 45WH59 44 C R2 P SCHM/ SC/ SCHM P 

 45WH59 44 C R3 P SCHM P 

 45WH59 46 C D A     

 45WH59 46 C L1 P SC P 

 45WH59 46 C L2 P SC P 

 45WH59 46 C L3 P SC P 

 45WH59 46 C R1 A     

 45WH59 46 C R2 A     

 45WH59 46 C R3 A     

 45WH59 56 C D A     

 45WH59 56 C L1 P SC PO 

 45WH59 56 C L2 P SC PO 

 45WH59 56 C L3 P SC/ ST P 

 45WH59 56 C R1 A     

 45WH59 56 C R2 P SCHM P 

 45WH59 56 C R3 P SCHM/ SCHMST P 

 45WH59 57 C D A     

 45WH59 57 C L1 P SCST PO 

 45WH59 57 C L2 P SCST P 

 45WH59 57 C L3 P SCHMST P 

 45WH59 57 C R1 A     

 45WH59 57 C R2 A     

 45WH59 57 C R3 A     

 45WH59 59 C D A     

 45WH59 59 C L1 A     

 45WH59 59 C L2 A     

 45WH59 59 C L3 P SCHM P 
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45WH59 59 C R1 P SCHM P 

 45WH59 59 C R2 P SCHM P 

 45WH59 59 C R3 P SCHM P 

 45WH59 67 C D A     

 45WH59 67 C L1 A     

 45WH59 67 C L2 P SCHM P 

 45WH59 67 C L3 P SCHM P 

 45WH59 67 C R1 A     

 45WH59 67 C R2 A     

 45WH59 67 C R3 A     

 45WH59 74 C D A     

 45WH59 74 C L1 P SC P 

 45WH59 74 C L2 A     

 45WH59 74 C L3 P SC/SC P 

 45WH59 74 C R1 P SCHM P 

 45WH59 74 C R2 P SCHM P 

 45WH59 74 C R3 A     
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APPENDIX I: SEM-EDX RESULTS – 45WH55-760 AND 45WH59-176 
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APPENDIX J: RESULTS OF CIEP ANALYSIS BY CSUBLAS (CSUBLAS 2014) 
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Introduction 
 
 The use of chemical and molecular biological techniques in the analysis of 
archaeological materials can provide significant new information for the interpretation of 
their use.  The identification of organic residue from lithic and ceramics artifacts, 
coprolites and soils have provided archaeologists with specific data regarding 
prehistoric exploitation of animals and plants. Although ancient protein residues may not 
be preserved in their original form, linear epitopes are generally conserved which can 
be identified by immunological methods (Abbas et al. 1994). 
 
 Immunological methods have been used to identify plant and animal residues on 
flaked and groundstone lithic artifacts (Allen et al. 1995; Gerlach et al. 1996; Henrikson 
et al. 1998; Hyland et al. 1990; Kooyman et al. 1992; Newman 1990, 1995; Petraglia et 
al. 1996; Shanks et al.1999; Yohe et al. 1991) and in Chumash paint pigment (Scott et 
al. 1996).  Plant remains on artifacts also been identified through chemical (opal 
phytoliths), and morphological (use-wear), studies (Hardy and Garufi 1998; Jahren et al. 
1997, Sobolik 1996).  Plant and animal residues on ceramic artifacts have been 
identified through the use of gas-liquid chromatography, high performance liquid 
chromatography and mass spectrometry (Bonfield and Heron 1995; Evershed et al. 
1992; Evershed and Tuross, 1996; Heron et al. 1991, Patrick et al. 1985).  Serological 
methods have been used to determine blood groups in skeletal and soft tissue remains 
(Heglar 1972; Lee et al. 1989) and in the detection of hemoglobin from 4500-year-old 
bones (Ascenzi et al. 1985). Human leukocyte antigen (HLA) and deoxyribonucleic acid 
(DNA) determinations made on human and animal skeletal and soft tissue remains have 
demonstrated genetic relationships and molecular evolutionary distances (Hänni et al. 
1995; Hansen and Gurtler 1983; Lowenstein 1985, 1986; Pääbo 1985, 1986, 1989; 
Pääbo et al. 1989).  Successful identification of residues on stone tools, dated between 
35-60,000 B.P., has been made by DNA analysis (Hardy et al. 1997), while recently, 
residues on surgical implements from the American Civil War were identified by 
immunological and DNA analysis (Newman et al. 1998). A recent study demonstrated 
the viability of identifiable immunoglobulin G in 1.6 million-year-old fossil bones from 
Venta Micena, Spain, (Torres et al. 2002).  Horse exploitation was identified by 
immunological analysis of residues retained on Clovis points dated to ca. 11,200 B.P. 
(Kooyman et al. 2001). 
 
 The use of forensic techniques in the investigation of archaeological materials is 
appropriate as both disciplines deal with residues that have undergone changes, either 
deliberate or natural. Criminals habitually endeavor to remove bloodstains by such 
means as laundering, scrubbing with bleach, etc. yet; such degraded samples are still 
identified by immunological methods (Lee and De Forest 1976; Milgrom and Campbell 
1970; Shinomiya et al. 1978, among others). Similarly it has been shown that 
immunological methods can be successfully applied to ancient human cremations 
(Cattaneo et al. 1992).  Forensic wildlife laboratories use immunological techniques in 
their investigation of hunting violations and illegal trade, often from contaminated 
evidence (Bartlett and Davidson 1992; Guglich et al. 1993; Mardini 1984; McClymont et 
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al. 1982).  Immunological methods are also used to test the purity of food products such 
as canned luncheon meat and sausage, products which have undergone considerable 
degradation (Ashoor et al. 1988; Berger et al. 1988; King 1984).  Thus the age and 
degradation of protein does not preclude detection (Gaensslen 1983:225).   
 

Materials and Methods 
 
 The method of analysis used in this study of archaeological residues is cross-
over immunoelectrophoresis (CIEP).  Prior to the introduction of DNA fingerprinting this 
test was used by forensic laboratories to identify trace residues from crime scenes.  
Minor adaptations to the original method were made following procedures used by the 
Royal Canadian Mounted Police Serology Laboratory, Ottawa (1983).  The solution 
used to remove possible residues is five percent ammonium hydroxide which is the 
most effective extractant for old and denatured proteins without interfering with 
subsequent testing (Dorrill and Whitehead 1979; Kind and Cleevely 1969).  Artifacts are 
placed in shallow plastic dishes and 0.5 ml of five percent ammonia solution applied 
directly to each.  Initial disaggregation is carried out by floating the dish and contents in 
an ultrasonic cleaning bath for five minutes. Extraction is continued by placing the dish 
and contents on a rotating mixer for thirty minutes. For large ground stone items, such 
as metates, stone bowls, etc., the ammonium hydroxide is applied directly to the worked 
surface, agitated periodically with a sterile orangewood stick, and allowed to sit for one 
half hour. The resulting solution is drawn off, placed in a numbered, sterile plastic vial 
and stored at -20ºC prior to testing. In the case of soil samples, one gram is placed in a 
vial and 0.5 ml of 1 M Tris buffer solution (H2NC[CH2OH]3) is used instead of 
ammonium hydroxide. The vial is placed in a rotating mixer overnight.  The resulting 
solution is drawn off, placed in a numbered, vial and stored at -20ºC prior to testing. 
 
 A series of paired wells is punched into an agarose gel. Approximately 2 μl. of 
antiserum is placed into one well and the same amount of the unknown sample extract 
is placed in the other.  An electric current is then passed through the gel. The antiserum 
and unknown sample migrate through the gel and come into contact. If there is protein 
in the unknown which corresponds with the antiserum, an antigen-antibody reaction 
occurs and the protein precipitates out in a specific pattern. The precipitant is detected 
when the gel is pressed, dried and stained. Control positives are run simultaneously 
with all the unknown samples. Sterile equipment and techniques are used throughout 
the analysis. 

 
The Samples 

 
 Fifteen «Number_of_Artifacts»«Types_of_artifacts_tested»artifacts were 
submitted for immunological analysis by Rachael Kannegaard of Western Washington 
University«Company_Name»«Client_City_»«Client_State».  Residue was removed 
from the artifacts as discussed above.  The residue was tested against a suite of plant 
and animal antisera (Table 1).  Animal antisera provided by Cappel Research and 
Lampire Biomedical, and plant antisera produced at the University of Calgary, provide 
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family level identification only. The relationship of antisera to some of the possible 
species identified is shown in Table 2. 
 

Results 
 
 Three«Number_of_positive_hits» positive reactions were registered for the 
quartz microblades.  Artifact number 760 was tested in two separate locations, the tip 
and base, and both resulted in positive reactions to human.  The distal region of the 
blade registered a significantly stronger reaction than that of the base.  A second 
artifact, number 119, registered a positive reaction for rabbit. No other positive reactions 
were observed (Table 3). Unless otherwise noted, any soil samples submitted were 
negative. The absence of identifiable proteins on an artifact may be due to poor 
preservation of protein, insufficient protein, or that they were not in contact with any of 
the organisms included in the available antisera. 
 

 
TABLE 1:  ANTISERA USED IN ANALYSIS 

 
Animal Antiserum Source Plant Antiserum Source 

Bovine “ Asteraceae University of 
Calgary 

Porcine Cappel Research Camas “ 
Feline “ Capparaceae “ 

Phasianinae “ Chenopodiaceae “ 
Cervinae “ Cupressaceae “ 
Cavinnae  “ Lomatium “ 
Caprinae “ Malvaceae “ 
Hominini Cappel Research Amaranthaceae “ 

Leporidae “ Kelp Cedarlane 
Laboratories 

Murinae “ Pinaceae University of 
Calgary 

Triopsidae “ Cedar “ 
Salmoninae Cedarlane 

Laboratories 
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TABLE 2:  POSSIBLE SPECIES IDENTIFIED 
 

Antiserum to: Reacts with: 
Alligator alligator, crocodile 

Bear black, grizzly, etc 
Bovine bison, cow, musk ox 
Camel all camelids (New & Old world) 

Cat bobcat, cougar, lynx, etc. 

Chicken quail, grouse, & other gallinaceous fowl 
Deer deer, elk, moose 

Elephantidae elephant, mammoth 
Guinea-pig beaver, guinea-pig, porcupine, squirrel 

Horse horse, donkey, kiang, etc. 

Human human 
Rabbit rabbit, hare, pika 

Rat all rat & mouse species 
Sheep bighorn & other sheep 
Triops triops 
Trout trout and salmon species 
Agave yucca, agave 

Amaranthaceae amaranth, pigweed, quelite, etc. 

Asteraceae rabbitbrush, sagebrush, sunflower, thistle 

Camas camas, wild hyacinth 
Capparaceae beeplant, bladderpod, stinkweed, etc. 

Chenopodiaceae goosefoot, greasewood, pickleweed, 
saltbush, etc 

Cupressaceae cedar, cypress, juniper 
Lessoniaceae kelp, possibly algae 

Lomatium Lomatium sp. 

Malvaceae mallows 
Mesquite mesquite, palo verde, other legumes 

Portulacaceae bitterroot 
Pinaceae fir, hemlock, pine, spruce 
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TABLE 3A:  RESULTS 

Las # Site # FS or Cat. # Description Results 

1 45WH1 179 microblade Negative 

2 45WH1 119 microblade Rabbit 

3 45WH55 1147 fragment Negative 

4 45WH55 1565 microblade Negative 

5 45WH55 1817 microblade Negative 

6 45WH55 707 microblade Negative 

7a 45WH55 760 tip of blade Human 

8 45WH59 9 
micro/black 

fragment 
Negative 

9 45WH59 15 microblade Negative 

10 45WH59 16 microblade Negative 

11 45WH59 31 quartz fragment Negative 

12 45WH59 36 microblade fragment Negative 

13 45WH59 37 microblade fragment Negative 

14 45SK46 1163 microblade Negative 

15 45SK46 1166 fragment Negative 

7b 45WH55 760 base of blade Human 

TABLE 3B: SECOND ROUND TESTING RESULTS 

Las # Site # FS or Cat # Description Results 

16 45SK46 1172 Microblade Negative 

17 Unknown 1171 Microblade Deer, Human 

18 45WH55 507 Microblade Negative 

19 45WH1 54 Microblade Human 

20 45SK46 1168 Microblade Negative 

21 45SK46 1165 Microblade Negative 

22 45SK46 1164 Microblade Negative 

23 45SK46 407 Microblade Salmon 

24 45WH55 612 Microblade Negative 

25 45WH17 1344 Microblade Negative 
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