
Western Washington University Western Washington University 

Western CEDAR Western CEDAR 

WWU Graduate School Collection WWU Graduate and Undergraduate Scholarship 

2011 

Comparative genomics of Bistorta vivipara Comparative genomics of Bistorta vivipara 

Daniel F. Bronny 
Western Washington University 

Follow this and additional works at: https://cedar.wwu.edu/wwuet 

 Part of the Biology Commons 

Recommended Citation Recommended Citation 
Bronny, Daniel F., "Comparative genomics of Bistorta vivipara" (2011). WWU Graduate School Collection. 
178. 
https://cedar.wwu.edu/wwuet/178 

This Masters Thesis is brought to you for free and open access by the WWU Graduate and Undergraduate 
Scholarship at Western CEDAR. It has been accepted for inclusion in WWU Graduate School Collection by an 
authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu. 

https://cedar.wwu.edu/
https://cedar.wwu.edu/wwuet
https://cedar.wwu.edu/grad_ugrad_schol
https://cedar.wwu.edu/wwuet?utm_source=cedar.wwu.edu%2Fwwuet%2F178&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=cedar.wwu.edu%2Fwwuet%2F178&utm_medium=PDF&utm_campaign=PDFCoverPages
https://cedar.wwu.edu/wwuet/178?utm_source=cedar.wwu.edu%2Fwwuet%2F178&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:westerncedar@wwu.edu


 
COMPARATIVE GENOMICS OF 

BISTORTA VIVIPARA 
 
 

By 
 
 

Daniel F. Bronny 
 
 

Accepted in Partial Completion 
Of the Requirements for the Degree 

Master of Science 
 
 

Moheb A. Ghali, Dean of the Graduate School 
 
 

ADVISORY COMMITTEE 
 
 

Chair, Dr. Eric DeChaine 
 
 

Dr. Dietmar Schwarz 
 
 

Dr. Jeff Young 
  



 
MASTER’S THESIS 

 
 
 

In presenting this thesis in partial fulfillment of the requirements for a master’s degree at 
Western Washington University, I grant to Western Washington University the non-exclusive 
royalty-free right to archive, reproduce, distribute, and display the thesis in any and all forms, 
including electronic format, via any digital library mechanisms maintained by WWU. 
 
I represent and warrant this is my original work, and does not infringe or violate any rights of 
others.  I warrant that I have obtained written permissions from the owner of any third party 
copyrighted material included in these files. 
 
I acknowledge that I retain ownership rights to the copyright of this work, including but not 
limited to the right to use all or part of this work in future works, such as articles or books. 
 
Library users are granted permission for individual, research, and non-commercial 
reproduction of this work for educational purposes only.  Any further digital posting of this 
document requires specific permission from the author.   
 
Any copying or publication of this thesis for commercial purposes, or for financial gain, is 
not allowed without my written permission. 
 
 
 
 
      Daniel F. Bronny 
      November 14, 2011  
 

 
  



 
COMPARATIVE GENOMICS OF 

BISTORTA VIVIPARA 
 
 
 
 
 

A Thesis 
Presented to  

The Faculty of 
Western Washington University 

 
 
 
 
 
 

In Partial Fulfillment 
Of the Requirements for the Degree 

Master of Science 
 
 
 
 
 

By 
 
 

Daniel F. Bronny 
November 2011



	
   iv	
  

ABSTRACT 

 High Northern latitudes are predicted to change considerably in forthcoming climate 

scenarios, and empirical evidence detailing a species' capacity to cope with extreme 

variability is needed.  Tundra plants make for an excellent study because their genetic 

histories were impacted by the dramatic transitions of historic glacial and interglacial ages.  

Here, thousands of restriction site-associated DNA (RAD) markers from geographically 

isolated Alaskan (Arctic) and Coloradan (Alpine) Bistorta vivipara (Polygonaceae) 

populations are compared in an investigation of evolutionary response to rapid climate 

change.   

Non-coding nuclear markers were analyzed in a coalescent framework to estimate an 

effective ancestral population size (Na) and divergence date (t) of the two populations of   

~23 000 individuals and ~140 000 years before present.  Nucleotide substitutions per 

synonymous site (dS) and nonsynonymous site (dN) were calculated for putative orthologous 

protein-coding sequences to determine the form of selection acting on the subsampled 

genome in the context of t.  Most sequences were either 100% conserved or exhibited 

dS>dN, suggesting purifying selection.  The few sequences suggesting positive selection 

(dS<dN) were identified as retroelements, which are expected to escape purifying selection.  

There were two exceptions: a putative protein phosphatase and a kinase involved with steroid 

signaling.  The results suggest genetic adaptation is not a readily apparent option for B. 

vivipara’s response to climate change.  This, and other organisms whose habitats will shift 

quickly or disappear, may depend on demographic and plastic responses as alternatives to 

extinction. 
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INTRODUCTION 

Do evolutionary changes occur in response to rapid environmental change? 

The Anthropocene marks the ongoing global impact of our society, yet our assessment 

of how the planet’s species might respond to forthcoming climate scenarios lacks a 

thoroughly genetic understanding—this, despite the connections between evolutionary 

response and the persistence of populations given future change (Geber and Dawson 1993, 

Travis and Futuyama 1993).  In a post-genomic era where predictions warn of environmental 

change at scales that eclipse the extremes of bygone periodic ice ages (Jansen et al. 2007), 

we can sequence large portions of non-model genomes, infer evolutionary histories with 

respect to historic environmental change, and register, to some degree, their population 

demographic and adaptive response potentials.   

Consider an environment as a multidimensional space whose n-dimensions are 

defined by myriad factors, many of which are climatological (Hutchinson 1957).  Strong 

climate trends, like rapid warming or cooling, alter the 'shape' of this conceptual 

environmental space and challenge organisms whose fundamental niches—sets of 

environmental factors that permit their survival and reproduction—are compromised or no 

longer contained therein.  Some responses to this challenge leave genetic signatures that can 

be recovered using high-throughput DNA sequencing.  In this investigation, I observed 

evolutionary changes in genomes that persisted through historic climate cycles.  The results 

are presented in terms of a species’ response to environmental variability of the past in order 

to understand how it might respond to variability of the future. 

 

Historical context 
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The Quaternary (the last 2.6 million years) is characterized by its alternating glacial 

(100,000 years) and interglacial (20,000 years) ages (durations are approximate).  During 

glacial ages, cool summers failed to offset the glacial growth of winter and the northern 

portions of North America, Europe, and Asia were buried in ice.  The movements of the ice 

sheets literally left their marks in stone, and are further evident in fossil and pollen records 

showing the presence and absence of species with predictable environmental tolerance ranges 

over time (Pielou 1991). 

 

The mechanism driving the glaciations was revealed in Milankovitch's discovery of 

orbital forcing.  He described three gradual astronomical cycles that influence the amount of 

sunlight reaching Earth: the precession of the axis, the obliquity of the axis, and the 

eccentricity of the orbit.  By modeling a combination of these periods, he deduced historic 

global insolation, and thus temperature (Hays et al. 1976).  Since then, empirical evidence of 

these climate cycles has been recovered from marine sediment and glacial ice cores using 

temperature-indicative isotope ratios in diatom shells or atmospheric gases (Bradley 1985).  

Generally, the paleoecological records and Milankovitch cycles agree: there were periodic 

Figure 1.  Past Milankovitch cycles 
and temperature proxies.  Q-day is the 
daily-averaged insolation at the top 
of the atmosphere on the day of the 
summer solstice at 65°N latitude 
calculated from orbital parameters.  
Sediment and glacial ice show two 
proxies for past global temperature, 
from ocean sediment and Antarctic 
ice respectively.  A reduction of 
d18O indicates warmer conditions.  
The vertical gray line is current 
conditions, 2011 C.E.  Adapted from 
Incredio (2009) with permission. 
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trends of warming and cooling (Fig. 1).  

 

Move, adapt, or die   

 How species responded to the oscillating glacial cycles can be broadly categorized as 

demographic, adaptive, or neither, due to extinction (Jackson and Overpeck 2000).   

 Demographic responses affect the size, structure, and distribution of a population or 

species; possible outcomes might include the isolation of one population from another or the 

redefinition of a species' range.  There are numerous examples of species migrating in step 

with their preferred habitats during the Quaternary, including biome reconstructions showing 

latitudinal shifts over time (Shuman et al. 2002) (Fig. 2).  This kind of habitat tracking is a 

classic demographic response.  

 

Adaptive responses occur when a population alters its fundamental niche to fit within 

the constraints of a new environmental space.  Population level adaptive changes (e.g. 

population fitness) and individual responses (e.g. phenotypic plasticity) are facilitated by 

genetic mutation and natural selection and can be investigated at the level of nucleotide 

Figure 2.  Pollen maps of undifferentiated Picea (Spruce) at 4 000 calibrated (cal) year (yr) 
intervals between 17 000 and 5 000 cal yr before present demonstrating habitat tracking.  
White represents regions with no data, and light blue represents ice.  Pollen data comes 
from Williams et al. 2004, images generated by Pollen Viewer 3.2 (Leduc 2003).	
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sequence data.  This is because fixed nucleotide changes in population level data can 

represent a phenotype, and thus fundamental niche, better suited to a particular 

environmental space, and instances of phenotypic plasticity, where a broad fundamental 

niche exceeds the extremes of the current environment, are underpinned by a genetic capacity 

for that niche. 

Finally, if a population can not move to suitable habitat, adapt, or otherwise maintain 

a viable effective population size (Ne) within the constraints of a new environment, then it 

experiences local and/or global extinction. 

 

Filling the gap 

 The importance of being able to respond via adaptation increases when the rate or 

magnitude of environmental changes outpace a species' ability to disperse to suitable habitat.  

It is even more critical when suitable habitat disappears entirely.  Simply put, adaptation can 

prevent local extinction.  Despite this, the literature is biased against genetic adaptation as a 

response to rapid environmental change, with examples of migration (Coope 1995, West 

1980), phenotypic plasticity (Charmantier et al. 2008, Moyes et al. 2011) and extinction 

(reviewed in Barnosky et al. 2004, Jackson and Weng 1999) being more common.  Far less 

work has been done to understand Darwinian evolution—i.e., selection of heritable traits—in 

populations that remain in place when the climate changes.  Perhaps the bias is an issue of 

tractability.  Until now, it has been difficult to observe genetic adaptation in organisms with 

long generation times, especially in the context of environmental variability (although, see 

Bennington and McGraw 1993 and Davis and Shaw 2001), and clear-cut evidence indicating 

a significant role for evolutionary adaptation to ongoing climate warming is conspicuously 
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scarce (Gienapp et al. 2008).   

Comparative genomics provides a new perspective on the past by enabling the mass 

investigation of genomic changes in populations over time.  The field relies on state-of-the-

art high-throughput DNA sequencing technology to boost one of biology's oldest and most 

successful methods (Haubold and Wiehe 2004)—that of comparing closely related organisms 

to infer function and evolutionary forces (Wiener 1994).  Recently, researchers combined a 

classic molecular method—a restriction digest to subsample a genome at enzymatic 

recognition sites—with Illumina technology to jump start the field of comparative population 

genomics (Baird et al. 2008).  Their innovative restriction-site associated DNA (RAD) 

markers extended the platform's high-throughput capabilities from sequencing individual 

genomes to generating thousands of genome-wide markers from multiple individuals. 

Using RAD marker methods as a foundation, I developed an application of the 

modern comparative genomics toolkit for a population that has had the potential for both a 

demographic and adaptive response to historic climate change.  In the process, I observed 

genetic structures influenced by the redistribution, mixing, isolation, and adaptive pressures 

of North American glaciers with resolution that has only recently become possible due to 

advances in nucleotide sequencing technology (next-generation sequencing). 

 

Study system 

The Arctic provides an excellent study system for climate change research.  It is 

relatively unimpeded by direct anthropogenic influence and comes with a well-documented 

climate history.  Life is spread thin and low to the ground in an ecosystem of herbaceous, 

dwarf shrub, or lichen vegetation where summers are too cold to allow tree growth (Billings 



	
   6	
  

1974).  These conditions are echoed, with some variation, in lower latitudes at high altitudes 

as Alpine tundra.  Together, Arctic and Alpine vegetation cover approximately 8% of the 

planet's terrestrial surface (Körner 1995) with 1629 Arctic and over 10,000 Alpine 

pteridophytes, gymnosperms, monocots, and dicots (Löve and Löve 1975, Walker 1995).  

These organisms are influenced largely by abiotic factors (e.g., wind, radiation, freeze/thaw 

cycles), rather than biotic interactions (e.g., grazing, modified microclimate from other 

plants) (Billings 1974), and a good body of research on their natural history and adaptations 

to extreme conditions exists (Borgen and Bengt 1997, Ives and Barry 1974). 

Furthermore, the Arctic is experiencing the fastest rate of temperature increase on the 

globe today (Comiso 2002), and, perhaps rightfully, is gathering cultural and scientific 

attention.  The importance of Arctic history has been clearly stated in the context of making 

reliable predictions about its future.  Previous research intending to assess the potential 

responsiveness and resilience of arctic ecosystems draws on environmental manipulation 

experiments, eco-physiological and plant demographic studies, and a consideration of 

paleoecological and pedogenic processes in the high Arctic (Arft et al. 1999, Parsons et al. 

1995, Robinson et al. 1998, Walker et al. 2005 Wookey et al. 1995).  My project will 

increase our understanding of historic processes in the Arctic/Alpine ecosystem as we 

progress from paleoecological data, through genetic research, and into next-generation 

sequencing, bioinformatics, and population genomics.   

Arctic and Alpine plants have already persisted through extremes, with population 

fragmentation and redistribution playing a key role in their recent histories.  Biologists as 

early as Darwin (1859) postulated that high-latitude residents were pushed southward by 

advancing glaciers.  Additionally, as massive volumes of water were locked up in glacial ice, 
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ocean levels dropped and redefined continents' coasts.  This revealed the landmass, from the 

Lena river in northeast Asia to the Mackenzie river in the Yukon territory, now partially 

submerged by the Bering Strait.  It was coined 'Beringia,' and its ecological significance was 

championed early by the prominent cryophytologist, Eric Hultén (1937).  Evidently ice-free 

through the ages (Hamilton and Thorson 1983, Hopkins 1967, Tarasov 2000), Beringia 

played an important role as a glacial-age refuge for plants and animals (Abbott et al. 2000, 

Brubaker et al. 2005).  So, not only were high-latitude residents pushed southward by 

advancing ice, but they may also have moved into refugial pockets like Beringia.  Other 

proposed havens include coastal refugia, where coastal ranges prevented glacial ice from 

reaching the sea, and mountaintop islands in the ice, called nunatuks, where hardier plants 

may have survived (Pielou 1994).   

The particulars of advancing and retreating ice during glacial-interglacial transitions 

also affected the distributions and population dynamics of ice age organisms.  For example, 

the Laurentide and Cordilleran ice sheets initiated and moved in from the East and West, 

respectively, leaving an ice-free corridor between the Cascades and Rocky Mountains until 

the two continental sheets fused (Fig. 2B).  Whether the glaciological corridor was an 

ecologically inviting one is debated.  Irrespective of population richness, this area of bogs, 

marshes, and icy rivers and lakes connected the refugia north and south of the glaciers 

several times during the Quaternary (Pielou 1994). 

The impact of these scenarios on the Arctic/Alpine ecosystem was undoubtedly large, 

but the general biotic response was likely different on a species by species basis (Stewart et 

al. 2010, Taberlet et al. 1998).  High-latitude vegetation history has been extensively studied 

(Abbott and Brochmann 2003, Comes and Kadereit 1998, Hopkins et al. 1982, Jackson et al. 
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1997, Simakov 2002) and the emerging picture is complex.  Yet, as more histories are 

investigated, a more complete understanding of this rapidly changing landscape is revealed. 

For taxa whose gene flow is restricted due to geographic isolation and limited 

dispersal capabilities, genetic structure is dependent on historical events (Schaal et al. 1998).  

I chose one such arctic resident and looked to its DNA to infer what happened in the past to 

result in the current state of its genome.  

  

Target species 

Bistorta vivipara (Polygonaceae), commonly called Viviparous Knotweed or Alpine 

Bistort, is one of the most ubiquitous and characteristic of Arctic plants.  The plant is a long 

term Arctic resident.  Fossil evidence of this species persisting in the Yukon Territories 

through the last interglacial age (approximately 120k years ago) and glacial maximum 

(approximately 18k years ago) is confirmed (Zazula et al. in press).  It was named for its 

habit of generating self-germinated bulbils attached to the parent plant, although this name is 

somewhat misleading.  Vivipary implies seeds or fruit that sprout before they fall from the 

parent.  Although this occurs in B. vivipara, it is not exclusively the case, giving rise to what 

would more correctly be described as false vivipary. 

The plant has an unbranched stem, 4-30 cm high, bearing a terminal spike-like 

raceme of white or pinkish flowers.  The inflorescence is 4-8 mm in diameter, and the 

flowers are small, 2.5-4.0 mm long, with seed-like fruits (bulbils) replacing the lower 

flowers.  The leaves, 1-10 cm long, are linear-lanceolate to subrotund, normally tapering at 

the base, with upper leaves being reduced and sessile (Polunin 1959) (Fig. 3).   
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 Bistorta vivipara is similar to other plants thriving at low 

temperatures.  These plants, called cryophytes, evolved in a 

treeless landscape and are metabolically inhibited above 25°C 

(Billings, 1974).  They face low temperatures, short growing 

seasons, sudden changes in growing season length, limited 

nutrients, and spatial heterogeneity, or 'oligotrophic' (Henry et al. 

1986) environments.  Generally, these obstacles are all overcome.  

Cryophytes are low-lying and small, staying safe from wind and 

generating a protective microphytoclimate (Billings 1974).  Their 

size reduces the need for overall primary production, and most of 

them are perennial, reducing the need to make a new 

photosynthetic apparatus each year.  Polyploidy is common in 

high-latitude plants, and many are capable of facultative vivipary, 

so that a new seed set is not required for reproduction.  This, and 

other mechanisms to reproduce without relying on exchanging 

gametes with another individual, overcome the instability of 

factors like pollinator interaction and are widely employed.  In 

fact, 'selfing' is so common in the tundra that there is not a single 

heterostylous, or self-incompatible, arctic population (Baker 1959).  

Bistorta vivipara displays all of these cold-adapted characteristics. 

Cytotaxonomical investigations of Alpine Bistort report complete and incomplete 

somatic chromosome counts from 80-132 (Löve and Löve 1975), suggesting a 6- to 11- ploid 

organism.  The basic chromosome number for the Bistorta genus is 12.  Individuals collected 

Figure 3.  Bistorta 
vivipara (L.) S. F. 
Gray scaled to half 
actual size (from 
Polunin 1959).  
Individuals can be 
highly variable, but 
typically display 
leaves of lustrous 
green above, grayish 
below, a glabrous 
stem, and white or 
pink flowers with 
bulbils replacing the 
lower flowers.	
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in Northwest Alaska near Ogoturuk creek (Johnson and Packer 1968) and Barrow (Packer 

and McPherson 1974) contained >100 chromosomes, a Canadian Arctic individual harbored 

>110 (Mosquin and Haley 1966), and exact counts of 120 are reported from Central Northern 

Canada (Löve and Ritchie 1966) and Boulder, Colorado (Löve et al. 1971).  Additional 

instances of decaploid (2n=120) individuals are recorded in various parts of its Arctic-Alpine 

distribution, and the species was considered, at one point, authoritatively decaploid (1971).   

 The current distribution of the target species is nearly circumpolar (Fig. 4), with 

disjunct Arctic and Alpine populations.  This wide geographic separation between them may 

have occurred during a glacial age, after which, as the climate warmed, the cryophytes 

occupying more southern lowlands retreated northward with the ice but also found refuge in 

temperate mountains (Löve and Löve, 1974).  While we can only suspect the cause of their 

current distribution, we can directly investigate its effects by examining the current 

population genomic structure.   
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Figure 4.  Range map of B. vivipara compiled from numerous sources (Hultén 1971) 
with sampling sites highlighted.  (Note: the synonym P. viviparum has since been 
segregated from Polygonum and placed in the genus Bistorta; it is treated as such by 
the Flora of North America Editorial Committee [2005] and accepted by the 
International Code of Botanical Nomenclature).  Arctic and Alpine populations flow 
together fairly well in Europe and Asia via numerous intermediate localities, whereas 
North American Alpine populations, restricted to the high peaks of the Alaska Range, 
northern Coastal Range, Cascades, and Rocky Mountains, are comparatively 
discontiguous from North American Arctic populations.  One B. vivipara was 
sampled from each numbered site in August 2008: 1) Red Mountain Pass, Colorado 
(37°53'54"N, 107°42'43"W), elevation 3383 m; and, 2) Noatak River, Alaska 
(67°58'3"N, 161°51'48"W), elevation 100 m.	
  



	
   12	
  

Objective 

My goal was to observe genomic changes in a species that has weathered rapid 

environmental changes.   To do this, I generated a large library of DNA markers and observed 

nucleotide polymorphism between an Arctic and Alpine population, including potentially 

adaptive substitutions, in a plant affected by Quaternary climate cycles.  The potential to 

respond adaptively stems from isolation in the slightly different environments of Arctic and 

Alpine tundra; the potential to respond demographically stems from the population shuffling 

associated with repeated glaciations.  So, I addressed the populations' susceptibilities to 

demographic limitations (e.g. range shifts and fragmentation) due to climate while 

simultaneously exploring their potential for genetic adaptation; thus acknowledging both of 

Jackson and Overpeck's (2000) alternatives to extinction in my assessment of a species' 

capacity to respond to change.  With this in mind, I generated the following hypotheses and 

tested them using the tools and techniques of comparative genomics. 

 

Hypotheses and predictions 

Demographic response 

ñ H1alt1:   Arctic and Alpine populations of B. vivipara are panmictic and exhibit 

signals of gene flow. 

ñ H1alt2:  Arctic and Alpine populations of B. vivipara are genetically isolated and have 

been split for a number of years, t. 

 My first set of hypotheses addressed whether or not Arctic and Alpine populations of 

B. vivipara seem to be isolated from one another.  I tested this by generating a robust 

estimate of t, or time since splitting, based on accumulated mutations in non-coding DNA 
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from the two populations.  Support for H1alt1 would have looked like a very shallow 

divergence date, suggesting that the dispersal capabilities of this species connect the Arctic 

and Alpine gene pools sufficiently to mask any signal of isolation.  Support for H1alt2 was a 

deeper estimate of t, suggesting that gene flow between these populations was significantly 

restricted at some point, either by inhospitably warm geographic space during interglacial 

ages, or by massive ice sheets during glacial ages.  I expected to find support for H1alt2 in the 

form of divergent non-coding DNA showing that the populations are or were, in fact, split.  I 

further predicted that the last critical event to severely restrict gene flow and isolate these 

populations was the climax of the last glacial age, approximately 18 000 years ago, and that 

this event would correspond with my estimates of t. 

Support for H1alt2 permitted further investigation based on the following hypotheses 

and provided a temporal context for any potential adaptive response. 

 

Adaptive response 

 These hypotheses address whether or not adaptive genetic changes have occurred in 

the genomes of the two populations since splitting.  Although similar in many ways, the 

Arctic and Alpine tundra have some fundamental differences: the photoperiod in the Arctic is 

three months of continuous sunlight versus the 24-hour day/night cycles experienced at lower 

latitudes; the diversity and density of pollinators, competitor plants, and other animals is 

greater in the Alpine ecosystem; and, low-elevation Arctic cryophytes experience less solar 

radiation than their mountaintop counterparts.  Different selective pressures across 

geographic space may have led to nucleotide polymorphisms that can be observed in the 

putative protein-coding sequences. 
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ñ H2alt1:  The Arctic and Alpine populations did not acquire variation in protein-coding 

sequences since t, time since splitting. 

ñ H2alt2:  The Arctic and Alpine populations did acquire variation in protein-coding 

sequences since t, time since splitting. 

The following sub-hypotheses address the form and magnitude of natural selection affecting 

the markers in the B. vivipara genomes: 

ñ H3alt1: The majority of protein-coding sequences in Arctic and Alpine populations are 

under purifying selection; the minority exhibit signals of positive selection since 

splitting. 

ñ H3alt2:  The majority of protein-coding sequences in Arctic and Alpine populations are 

under positive selection; the minority exhibit signals of purifying selection since 

splitting. 

To test my adaptive response hypotheses, I observed synonymous and 

nonsynonymous nucleotide substitutions in homologous protein sequences from the two 

populations.  Synonymous nucleotide substitutions occur at codon positions that do not alter 

the primary sequence of amino acids; nonsynonymous substitutions result in an exchange of 

amino acids or the insertion of a stop codon.  The signature of purifying selection was 

defined as instances where synonymous substitutions per synonymous site (dS) outnumbered 

nonsynonymous substitutions per nonsynonymous site (dN); positive selection was defined 

as the inverse; and neutrality was defined as instances where dS = dN.  Support for H2alt2 

provided a means of calculating dS and dN.  Support for H3alt1 would have looked like highly 

conserved protein-coding sequences whose differences did not lead to changes in the 

protein’s primary structure.  Support for H3alt2 would have looked like a dS/dN ratio below 
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unity for the majority of the sequences.  (Note: dS/dN is used, rather than its inverse, to be 

consistent with the program that applied the tests for selection [see Methods]). 

Given that genetic adaptation to climate over the time frame of Quaternary climate 

cycles has not yet been shown in plants, I did not expect many markers to exhibit positive 

selection since splitting.  The populations do face some fundamentally different 

environmental pressures, which may have resulted in some sequences responding via positive 

selection, but I predicted they would be a minority.  Thus, I expected to find support for 

H3alt1. 

 

Research strategy 

A library of DNA sequences was generated from two individuals: one B. vivipara 

from the Arctic tundra and one from an Alpine tundra ecosystem.  Each genome was 

subsampled using a restriction digest to generate thousands of homologous markers between 

the individuals.  The pangenomic markers from both individuals were sequenced 

simultaneously using Illumina's (Solexa©) Genome Analyzer II (GAII) platform.  The 

markers included functional and non-functional DNA, which required annotation and 

organization prior to analysis.  Protein-coding markers were identified and separated from 

anonymous, non-coding, nuclear data using similarity search algorithms and bioinformatics 

databases.  The numerous remaining markers were analyzed in a coalescent framework to 

generate an estimate of t, the time since splitting.  Plastid sequences were identified and 

treated as linked genetic markers and the frequency of variable sites in the three genomes 

accessed (nuclear, chloroplast, mitochondrial) was compared.  Finally, dS and dN was 

calculated for all protein-coding sequences to determine the form of selection at play in the 
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subsampled genome in the context of t. 

 

Significance 

Multi-locus approaches to generating demographic parameters are relatively new in 

the literature (Galbreath et al. 2011, Peters et al. 2008, Xiang et al. 2008), and have yet to be 

effectively employed using hundreds—let alone thousands—of unlinked nuclear loci from 

two individuals, which places this investigation in relatively uncharted territory.  In light of 

the theory that more loci are more informative than more individuals in coalescent modeling 

(Felsenstein 2005), my approach has the potential to resolve historic demographic parameters 

with relatively narrow confidence intervals—limited, perhaps, only by the computational 

demands of the numerous required simulated genealogies.  My application of tests for 

selection, based on classic work on the expected frequency of nucleotide substitutions at non-

synonymous and synonymous codon positions (Nei and Gojobori 1986), to a species with a 

long generation time in the context of historic climate cycles is novel. 

By using a range of genomic techniques on a single target species, I contributed to 

our emerging understanding of the history of the Arctic ecosystem and helped sharpen the 

tools at the junction between ecology, global change studies, and Quaternary paleobiology.  I 

did this in the general framework of assessing a species' capacity to respond to environmental 

change in the hopes that it leads to a better understanding of future biotic responses, brings 

awareness to the changing Arctic/Alpine tundra, and contributes to our understanding of 

fundamental evolutionary processes—i.e. genomic change over time.  
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METHODS 

Overview  

 Generally, comparative genomics relies on a stepwise process of:  

1) Generating sequence data; 

2) Reconstructing homologous collinearity (i.e. selecting sequences to compare); 

3) Aligning multiple sequences; and, 

4) Identifying evolutionarily constrained DNA. 

 (Margulies and Birney 2008) 

 These steps were my guide as I generated numerous short DNA sequences from the 

genomes of two geographically isolated individuals, selected and classified the putative 

homologs, and employed coalescent- and selection-based analyses on these comparative 

genomic pairs.  

 

Generating sequence data 

 My molecular methods were based on the Cresko lab's development of restriction-site 

associated DNA (RAD) markers (Baird et al. 2008).  RAD methods are similar to analyses 

using restriction fragment length polymorphisms (RFLPs) and amplified fragment length 

polymorphism (AFLPs), in that they reduce the complexity of the genome by subsampling 

only at specific sites defined by restriction enzymes (Davey and Blaxter 2011)—but surpass 

these methods in cost and time in that RAD libraries are compatible with next-generation 

sequencing. 

 To generate sequence data, I: 1) extracted and amplified genomic DNA from two 

individual B. vivipara; 2) digested the DNA with the endonuclease PsiI; 3) prepared the 
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fragments for Paired-End (PE) Illumina Sequencing; 4) enriched a size-selected portion of 

the fragments; and, 5) sequenced the resulting DNA library in a single Illumina GAII 

flowcell channel. 

  

Collecting samples  

Bistorta vivipara was collected from two populations separated by approximately      

4 600 km: Noatak River, Alaska (Arctic) and Red Mountain Pass, Colorado (Alpine) (Fig. 4).  

Plants were collected by hand in summer 2008 (DeChaine and Walla), kept in silica, and 

transferred to a 4°F Western Washington University Herbarium (WWB) freezer.  Voucher 

specimens were deposited in WWB (to be accessioned).  Genomic DNA (gDNA) was 

purified and amplified from leaf tissue of one Arctic and one Alpine individual using DNeasy 

and REPLI-g kits (Qiagen) in 2010.  REPLI-g kits provide uniform DNA amplification 

across the entire genome with minimal sequence bias (Hosono et al. 2003).  An alkaline 

denaturation reduces damage to the template DNA from heat denaturation, and an overnight 

isothermal reaction with Phi 29 DNA polymerase provides high fidelity amplification based 

on Multiple Displacement Amplification (MDA) technology rather than PCR, for highly 

representative unbiased amplicons. 

 

Subsampling the genome 

 I digested the DNA product from each plant in a three-hour reaction with fresh PsiI 

(New England Biolabs) following the manufacturers' protocols.  A long digest was used to 

increase the likelihood that many or all of the same recognition sites were cleaved in both 

samples.  PsiI's suitability for extended digests (up to 8 hours) made it appropriate for this 
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application, and its 6-base recognition site (5'...TTA^TAA...3') was carefully considered.  The 

variety of commercially available enzymes differ in their nucleotide recognition sequences, 

and each results in a different collection of various-sized fragments in a digest of the same 

genome.  My aim was a subset of gDNA fragments of similar size, so I needed an enzyme 

that would make a large library of fragments in my target size range, yet not so large as to 

risk low coverage per locus in the sequencing reaction.  The targeted size range, 400-500 

base pairs (bp), was the largest suitable insert size for the GAII sequencer and was used to 

maximize the distance between paired-end reads.   

 No previous information existed on the size or content of the B. vivipara genome, so I 

used in silico digests of the Arabidopsis thaliana genome (ADB 2009-02-02) (Huala et al. 

2001) and the ratio of its C-value to an estimated C-value for B. vivipara to select an 

effective enzyme.  Polygonum aviculare (Polygonaceae) has a reported C-value of .855, 

approximately 5 times that of A. thaliana (Marie and Brown 1993).  This served as my C-

value estimate for B. vivipara.  The Arabidopsis genome gives 4 934 fragments in the 400-

500 bp range when cut at PsiI's 6-base recognition site.  I predicted 5 times that many        

(24 670) in my target species.  Each fragment in the library had 202 bases called; two 

samples required 9 966 680 bases to be called to sequence this possible library once.  Given 

that a single GAII lane may return as many as 3.5 billion base calls, I expected ample 

(~350X) oversequencing.  Theoretically, choosing a 5-base cutter would have traded excess 

coverage for more unique loci because we expect more instances of 400-500 bp fragments 

between 5-base recognition sites than 6-base recognition sites in a randomly generated 

genome.  However, given the margin for error in my C-value estimate and the number of 

bases to be called, the 6-base cutter was a more conservative choice.   
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Sequencing the RAD library 

 Fragments from the restriction digest were prepared for high-throughput sequencing 

to enable a comparison of restriction-site associated DNA (RAD) from the Arctic and Alpine 

individuals.  The purified products of the restriction digests were processed following 

Illumina PE Library protocols (Illumina, Inc. 2008) for polishing fragment ends, adding 

adenosine overhangs, and ligating adapters. 

 The sequencing platform requires proprietary adapters (Solexa©) to flank the DNA of 

interest and bind the fragments to the GAII flowcell.  It is possible to append a unique 

barcode, or molecular identification tag (MID), to the Illumina adapters that allows DNA 

from multiple samples to be sequenced simultaneously and separated later bioinformatically.  

I used custom oligos as adapters that were Solexa© sequences lengthened to include a 4-bp 

MID.  The sequences were: 5' ACACTCTTTCCCTACACGACGCTCTTCCGATC-xxxx and 

5' -p-GATCGGAAGAGCGGTTCAGCAGGAATGCCGAG-xxxx, where x=[MID].  The 

MIDs were: Arctic (ACGT) and Alpine (AGCT).  Adapter-ligated fragments from both 

samples were pooled together and size selected in the 400-500 bp range using a QIAquick 

Gel Extraction Kit (Qiagen).  These size-selected fragments were enriched with limited 

opportunity for bias using the cycling conditions described in the Illumina protocol.  The 

enrichment was validated via nanodrop, to confirm its purity; gel electrophoresis, to confirm 

the fragment size; and cloning and Sanger sequencing, to confirm the construct of the 

fragments; then sequenced in a single lane of a GAII flowcell.   

 

Target fragment architecture 

 Each fragment in the RAD libraries was designed to have the following composition: 
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5'- (PE1)(MID)(RS)(plant dna)(RS)(MID)(PE2), where RS is the remnant of the restriction 

enzyme recognition site, and PE1 and 2 are the Solexa© adapter sequences.  The adapters, 

MIDs, and RSs comprised 78 bp, leaving ~320-420 bp of Bistort gDNA at the center of each 

400-500 bp fragment.  The GAII called bases starting with the MID/RS on through 94 bp of 

plant DNA for each of the PE reads.  In a 400-500 bp fragment with two 101-base PE reads, 

the last base called in PE1 is ~150 bp distant from the last base called in PE2 (Fig. 5). 

 

 

 

 

 

The sequencing reaction was not intended to call bases for the entire length of the 

fragments.  Rather, the output was a pair of reads called from the ends of the fragment 

towards the center.  They describe nearly the same location in the genome, offset by a few 

hundred bp.  The space by which they are offset may be large enough to allow for 

recombination in plants.  If it is, the two sets, PE1 and 2, can be argued to double the number 

Figure 5.  Targeted fragment architecture.  PEs are Illumina paired-end 
adapter sequences which bound the fragments to the flowcell during bridge 
amplification and served as primers for sequencing-by-synthesis; MIDs are 
molecular identification tags that enabled bioinformatic separation of Arctic 
and Alpine samples; RSs are remnants of the PsiI restriction site (5'-TAA); 
parenthetic numbers are the segment lengths in bp; the arrows below the 
fragment indicate the direction, start, and stop locations of the two 101-bp 
reads; and Xs are portions of the fragment that were not sequenced.  The 
DNA used in comparative analyses begins 7 bp into each read, after the MID 
and RS.  For each 400-500 bp fragment, the last bp sequenced in one read 
was 120-220 bp away from the last bp sequenced in its opposite.  The center 
of most fragments remained unsequenced.	
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of independent records, or samples of data.  If it is not, and they are linked, the second set of 

reads allows independent verification of the analyses performed at each locus.  In this 

investigation, the two sets remained separate in the analysis pipeline and the results were 

compared. 

 

Flowcell results 

 Approximately 6.7 million 101-bp reads were split into their respective samples, 

Arctic and Alpine, via exact matches at their start to a MID.  There is no a priori bias for one 

population or another in terms of how the molecules will respond to DNA library processing.  

Considering the stochastic elements in that process, one expects the exact number of Arctic 

and Alpine reads to differ, yet hopes they are roughly the same.  There were ~3.2 million 

Alpine reads (48%) and ~3.5 million Arctic reads (52%).   

 The reads contained a total of ~1.3 billion base calls—37% of what was advertised as 

possible.  It is uncertain why there were relatively few reads, although it is likely related to 

the internal quality filter of the GAII.  The lower-than-expected output of called bases 

highlights the importance of choosing a restriction enzyme conservatively. 

 

Quality control pipeline 

 Reads of poor overall quality were removed from the data prior to analysis.  Initial 

quality control (q.c.) of the raw data was carried out with the FastX toolkit 

(http://hannonlab.cshl.edu/fastx_toolkit/), a suite of software written for processing short 

reads associated with next-generation sequencing.  Each base called by the GAII is assigned 

a quality score similar to the widely accepted PHRED scores used in Sanger sequencing.  
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PHRED scores are linked to the probability of calling a base incorrectly (Ewing et al. 1998).  

The Illumina format is simply a PHRED score offset by an integer, incorporated this way to 

circumvent ASCII-encoding problems in the development of another widely accepted data 

format, FASTQ (Cock et al. 2010).  The Illumina quality scores can be reasonably interpreted 

using this rule of thumb: a score of 30 has a 1/1000 probability of error; a score of 20 has a 

1/100 probability of error.  To prevent carrying miscalled bases into the final analyses, I used 

a quality score threshold of 30 at several stages in my q.c. pipeline. 

 Bases with a score less than 30 were trimmed from the ends of all reads to address 

declining scores near the limit of the read length.  Adapter sequences, which were likely in 

the library due to excessive ligation, were clipped out of the reads.  Reads containing one or 

more unknown base (N) were discarded.  They were further filtered by quality score: unless 

90% of a read's bases scored 30 or higher, it was discarded.  Then, to facilitate assembly (see 

below), reads shorter than 38 bases were discarded.   

 Quality control removed an average of 2.25 million reads per set.  The remaining 

reads were converted to FASTA format for further analyses. 

 

Assembling reads into RAD markers 

 A set of algorithms called Velvet, v. 1.0.12 (Zerbino and Birney 2008), was used to 

collapse the millions of q.c.'d PE1 and 2 reads into two lists of RAD markers with 

corresponding coverage information (Fig. 6A).  Velvet is a sophisticated program written to 

assemble long contiguous sequences (contigs) from many overlapping short reads; I co-opted 

the program to process my RAD markers.  A simplified explanation of its function follows.  

The program searches for words of length k (k-mers) in aligned reads and creates a 'node' 
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wherever the k-mer is represented in the reads a number of times specified by the user.  It 

then attempts to extend nodes in either direction if overlapping k-mers (also with required 

coverage) are present.  Nodes that reach 2k-1 in length are reported as contigs.  (Note: I use 

'contig' to describe the output of Velvet; 'locus' the physical location in the genome 

represented by a contig).  Each contig from this assembly process represented either a unique 

locus, or a version thereof.  Since both Arctic and Alpine contigs are needed for comparative 

analyses, Arctic reads were assembled separately from Alpine reads.  Each population had 

two sets of reads, PE1 and 2, which made for a total of 4 assemblies. 

To initiate this process, I removed the 7 leading bases from each read and input them 

in Velvet with a k-mer value of 31 and a coverage cutoff of 2.  The first 7 bases correspond to 

the MID, which is artificial, and the RS.  Although the RS is native, the RAD methods are 

based on the absence of variation in the RS.  The sites confound the assembly algorithm by 

misrepresenting reads as contiguous (due to overlap), which they are not. 

 The k-mer value (k = 31) was chosen to maximize the program's sensitivity to small 

differences in reads in the library.  Longer k-mers work to this end because the complete k-

mer must be intact in the reads multiple times to count as coverage rather than a unique 

contig.  The program detects allelic variation in the same individual as single nucleotide 

polymorphisms (SNPs) in the 31-base word and initiates a new node precisely because of 

that variation.  Longer words are more sensitive to single differences, so versions of the same 

locus with SNPs should generate separate contigs. 

 This sensitivity came at the expense of excluding data from reads shorter than k.  

These reads were discarded for the simple reason that no k-mers could be detected therein, 

and amounted to ~1.3 million reads (almost 20% of the total reads) per set in this 
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investigation.  The trade-off was viewed favorably in light of targeted analyses that relied on 

naturally occurring polymorphic sites to infer evolutionary histories.  K = 31 is the maximum 

value permitted in the 64-bit computing environment available to me, and larger values are 

computationally exhaustive.  Even without this limitation, a k-mer length any higher than 49 

would not be suitable for this data, because the minimum length required to output a contig 

would be longer than the raw input reads.   

 The coverage cutoff of 2 was chosen to differentiate between sequencing errors and 

alleles in the DNA library without discarding potentially informative data.  SNPs that are 

carried through the molecular processing from genomes to flowcell should appear multiple 

times in the reads.  Sequencing errors, on the other hand, are not likely to occur at the same 

position, and will not be represented frequently.  Thus, an effective coverage cutoff abandons 

reads whose unique sequence is likely the result of a miscalled base, yet is not set so high as 

to miss alleles that were present in the DNA library (even in low numbers).  Since Velvet 

interprets coverage as the number of times a k-mer appears in the reads, a coverage cutoff of 

2 (when k = 31) is equivalent to nucleotide coverage of 2.9.  The coverage at each locus was 

essentially doubled by the existence of a highly similar locus in the other sample.  Thus, for 

inclusion in my comparative analyses, a locus had at least ~6X nucleotide coverage over a 

string of 61 or more exactly matching nucleotides.  The average nucleotide coverage for 

sequences used in comparative analyses was ~10X. 
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Figure 6.  Workflow for assembling Illumina reads into RAD markers, pairing homologs 
across samples, and selecting sequences to compare.  A) Millions of q.c.’d Illumina reads 
(dashes) were collapsed into thousands of RAD markers (shapes) with corresponding 
coverage information.  B) Homologous Arctic and Alpine markers were paired together via 
a megablast across samples.  Zero, one, or several sequences generated hits.  Groups of 
similar sequences from a single sample (cluster families) have presumed origins in gene or 
genome duplications.  C) The longest (or only) Arctic sequence in a cluster family is 
paired with the Alpine homolog with the highest percent identity (%ID) for final 
comparative analysis.  Grey bars are sequences from the Arctic and Alpine individuals; 
vertical lines are polymorphic sites with respect to the Arctic sequence.  %ID is calculated 
as identical columns / sequence length.  Note the effect of incomplete data on pairing 
orthologs: 2 is orthologous and 1 and 3 are paralogous, but 2, truncated during q.c., is 
erroneously passed over for 1.	
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Assembly results 

 The contig lengths (in bases) confirmed effective use of the program, given the data.  

The average in each assembly, 94, was the longest read the molecular methods were intended 

to create (101 minus the MID and RS leaves 94).  This was optimal.  The minimum contig 

length for each assembly, 61, was expected from Velvet when using my chosen parameters: a 

read must have 2X k-mer coverage for overlapping k-mers of 31 to generate a node, limiting 

the minimum node length to 2k – 1, or 61. 

 The maximum node lengths in each assembly were 1228, 645, 561, and 461.  Given 

reads from a RAD library, one does not expect the program to either: 1) bridge the unknown 

distances between RAD markers; or, 2) extend nodes beyond the read length of the 

sequencer.  While there is no suggestion that the former occurred, the latter certainly did.  

The algorithm presumably incorporated information from overlapping fragments whose 

origins involve imperfect cleavage, breakage, or ligation events.  This is not unrealistic, 

especially when the bulk genomic processing permitted imperfect fragments.  Fragments 

with unintended architecture could meet q.c. and assembly requirements, overlap with other 

reads, and contribute to extending the contigs.  The different max lengths in each assembly 

supports the idea that long contigs are the result of stochastic elements of the DNA library 

preparation. 

 The number of contigs assembled is this investigation's best approximation of how 

many 400-500 bp fragments are actually generated by PsiI in B. vivipara.  The assemblies 

generated an average of 44 741 contigs, with a standard deviation of < 5%.  The small 

deviation might suggest that the number of contigs reasonably approximates the number of 

fragments—the exact number of which could only be generated in silica if the entire Bistort 
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genome was known.  There are other possibilities for the small deviation.  The number of 

contigs may be converging as a result of the restriction digest: if the enzymes found the same 

number of same-spaced restriction sites in the same amount of time, but the sites were not the 

same sites in each sample, the total number of fragments would remain unknown (though the 

number of fragments generated would be the same).  The DNA was saturated with enzymes 

for an extended period of time to reduce the likelihood of this scenario. 

 Taken as an approximation of the actual number of fragments generated by PsiI in a 

completely digested genome, the contig count nearly doubles the number of fragments 

predicted a priori.  This further highlights the importance of a conservative choice for a 

restriction enzyme when developing RAD markers for a non-model organism.   

 

Reconstructing homologous collinearity 

After the sequences were in hand, my goal was to select those whose comparison 

would be evolutionarily informative.   

 

Defining homology 

 Homologous sequences may arise from either population/species splitting events or 

gene duplication events, and these circumstances must be carefully considered before 

analysis.  Homologs are related to each other by descent from a common ancestral DNA 

sequence.  They may be orthologous—arising from a speciation or splitting event, or 

paralogous—arising from a gene or genome duplication event.  Testing my hypotheses relied 

on a comparison of orthologs—sequences that were once the same and have been 

accumulating changes since the splitting of the population.  They contain the information 
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needed to recover estimates of t and rates of change in protein-coding sequences.  Comparing 

paralogs for these estimates is problematic.  For example, dating divergence using paralogs 

could grossly misrepresent t if variation in the sites has been accumulating since an ancient 

gene duplication.  Unfortunately, the data do not allow a sure way to differentiate paralogs 

and orthologs, and the paralogs, logically, exist within the data because B. vivipara is 

polyploid.  Therefore, it was necessary to adopt several assumptions and precautions in 

evaluating homologs as orthologs for comparative analysis. 

  

Pairing homologs  

I used megablast, the BLAST search task tuned for finding matches among closely 

related sequences (Altschul et al. 1990), several times in this investigation as a tool to inspect 

and curate the data.  This similarity search algorithm aligns sequences, determines their 

percent identity (%ID), and assigns each pair a similarity score.  The score correlates to %ID, 

which the program's default settings define as the number of columns in an alignment with an 

exact match divided by the total number of columns, including gaps.  Unless otherwise 

noted, all megablast searches were executed using default parameters except for an e-value 

threshold of 1e-6, which corresponds, roughly, to a million to one chance that the similarity 

between pairs is a matter of random chance.   

 To identify homologs, I used a megablast search across samples (Fig. 6B).  The output 

from the search was parsed using a Perl program (Appendix 2). The script recorded each 

instance of a query (an Arctic contig) that had a match (an Alpine contig), while an additional 

filter excluded matches if the alignment that identified them as similar was less than 60 

columns.  This eliminated instances of contigs being classified as homologs when only short 
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motif-like portions of DNA embedded in the contig generated a megablast match.  The 

threshold of 60 was chosen based on the minimum contig length from the assemblies.  The 

results were the first confirmation that the RAD-based methods generated homologous 

sequences from multiple samples.  Approximately 25% of the contigs from one sample had a 

homolog in the other as detected using this method.   

  

Cluster families 

Alleles from the same individual were clustered together via a megablast of one list of 

contigs to itself.  Most (~90%) of the contigs had no significant similarity to others from that 

sample.  These are interpreted as different RAD markers from across the genome—the 

welcome outcome of the RAD methodology.  The remaining ~10% were highly similar 

versions of contigs from the same sample.  These alternates were there because the assembly 

algorithm explicitly included allelic differences in the output.  So, the contigs from one 

sample, while mostly unique sequences, were predisposed to grouping into clusters, or 

sequences that share a certain %ID.  The %ID threshold for belonging to a cluster family was 

set based on information from the megablast of each population’s data to itself: the mean, 

minimum, and maximum %ID of sequences recognized as homologs within a sample was 94, 

77, and 99.  I used the minimum value, 77, as the %ID threshold for cluster families to be 

sure all homologs from a single sample were grouped together. 

Cluster family members have an implied evolutionary relationship: they are different 

versions of the same locus from different gene copies in one individual.  They are probably 

paralogs that arose from gene or genome duplication events in the history of the species, 

though I cannot be certain.  They might also be explained as discontiguous loci showing 
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variability in a repetitive genome-wide motif that includes PsiI's recognition site.  Although 

the data did not permit the distinction, I assumed that cluster families were groups of 

paralogs with origins in duplication events. 

 Since ploidy events are an opportunity for gene copies to arise and acquire variation 

(Doyle et al. 2008), and B. vivipara is a known polyploid, I expected instances of clusters 

when assembling the data.  So why are the majority of contigs the sole member of a cluster?  

Several possible explanations exist, including: 1) variants existed in the individual, but were 

not in the flowcell due to stochastic DNA library preparation; 2) variants did not exist in the 

individual, (i.e. all gene copies were homozygous); and, 3) the q.c. and assembly 

requirements discarded evidence that alternate gene versions were sequenced.  Again, the 

data did not easily confirm or refute these possibilities. 

As a proxy measure of completeness, the frequency of various-sized cluster families 

suggests my survey includes DNA from both duplicated genomes and gene families, but only 

covers a portion of the organism’s genetic makeup (Fig. 7).  There are relatively few 

instances where alleles from all 10 genome copies could comprise a complete cluster family.  

 
Figure 7.  A census of sequences per 
cluster family.  A histogram counting 
cluster families with up to 10 
members and a boxplot (insert) 
showing the distribution of cluster 
families with more than 10 
sequences serves to gauge the 
completeness of my genomic survey.  
Despite polyploidy, the majority of 
contigs are the sole member of a 
cluster. 
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Plant genomes harbor large gene families (Wall et al. 2008), so cluster families might be a 

mixture of alleles from duplicated genomes and paralogs from gene families.  This must be 

the case with cluster families larger than 10, which existed in the data, but were the vast 

minority.  The consequences of partial genome sampling are considered in the interpretation 

of results (see Discussion).   

 

Pairing orthologs 

The cluster families confounded a simple comparison of Arctic and Alpine markers.  

There are several permutations of homologs in a megablast across samples: each query and 

its match may or may not belong to a cluster. To make a comparison at a locus, then, was to 

arbitrarily choose which sequences from each sample to compare (Fig. 6C).   

I faced two primary obstacles to confidently pairing orthologs: incomplete data and 

the ambiguity of paralogs and orthologs.  The final decision to pair orthologs was influenced 

by both.  I paired the longest sequence from the larger database (Arctic), to take advantage of 

the available data, with its highest scoring hit in the Alpine sample, to increase the chance 

that the comparison truly is orthologous, based the assumption described below.  If a 

sequence was homologous to one without cluster family members, that pair was taken as the 

ortholog.  Pairs made according to these criteria were carried into comparative analysis, and 

are herein referred to as comparative genomic (CG) pairs.  

Due to stochastic molecular processing and/or q.c. methods, the true ortholog may not 

have been represented in the opposite sample.  If it was, and it was shorter than other cluster 

members, it may have been passed over as the best hit because of a higher similarity score to 

a paralog with a longer length (see example in Fig. 6C).  Because all the alleles of a given 
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locus were not necessarily present in the data, and the pairing process needed an anchor, I 

started with the longest cluster family member from the sample with the most data.   

The critical assumption made by taking the highest scoring Alpine hit as its ortholog 

is that an ortholog is always more similar than a paralog.  If all gene and genome duplication 

events pre-date the population split and the molecular clock is fairly accurate over the time 

scales of the Quaternary, then paralogs are older than orthologs, have more time to 

accumulate mutations, and are less similar.  I predicted a shallow population divergence date 

(the last glacial maximum) relative to the origin of the species, so the idea that ploidy and 

gene duplication events pre-date the split seemed plausible.  On the other hand, ploidy events 

can happen virtually overnight (Pikaard 2001), and mutation rates of different gene copies 

and different loci may vary.  Genetic simulations to test my assumption that paralogs are 

more divergent than orthologs might be possible, but have not yet been done and are outside 

the scope of this investigation.  Other investigations have faced the "perils of paralogy" 

(Martin and Burg 2002), and more sophisticated approaches to sorting orthologs from 

paralogs are desirable. 

Current approaches that infer protein orthologs from massive post-genomic era 

alignments were only marginally helpful for choosing Bistorta vivipara sequences to 

compare.  Current strategies for parsing orthologs from paralogs vary depending on their 

basis of inference: graph-based methods rely on BLAST searches and tree-based methods 

rely on phylogenetic analysis.  The former, like those in OrthoMCL (Li et al. 2003) and 

Multi-Paranoid (Alexeyenko et al. 2006), provide orthologs from hundreds of complete 

genomes given protein data.  The latter, like those in Orthostrapper (Storm and Sonnhammer 

2002), SDI tree reconciliation (Zmasek and Eddy 2002), and LOFT (van der Heijden et al. 
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2007) take user-provided multi-species genome data and build phylogenetic trees with the 

target species.  If either group of tools could show that Arctic and Alpine homologs share a 

higher %ID or closer relation with orthologs from another species than they do with each 

other, I could infer the pair did not diverge at the population split, but rather earlier, and 

should not be compared as orthologs.  There were several roadblocks to using these tools to 

this end.  The first was the relative scarcity of completely sequenced plant genomes.  Of the 

two BLAST-based programs above, the first references just 3 genomes from Plantae and the 

second, none.  Even with completed genomes, the tree-based programs are not built for 

automated comparisons with numerous partially sequenced genes.  Rather, they sort and 

classify homologs from long alignments with multiple species.  Some programs (e.g. 

Ensembl Compara [Hubbard et al. 2007], TreeFam [Li et al. 2006], and OrthologID [Chiu et 

al. 2006]) combine graph- and tree- based approaches, but again, the hitch is automation and 

relevant source data.  Only OrthologID draws on a database of completed Plant genomes and 

places a query sequence in a phylogeny, but there is no support for including both halves of a 

homologous pair to assess their relative positions.  I manually entered 10 putative protein-

coding pairs into OrthologID, and only 3 produced orthologs from their database of 4 

complete (and one partial) plant genomes.  Each pair was incorporated into two trees to 

visually confirm that the Arctic/Alpine homologs held the same position in the phylogeny.  

The confirmation added support that the select pairs were more likely orthologs than 

paralogs, but it would be impractical to mine and parse ortholog databases in this way 

without automation.  A better approach would be to link OrthologID’s strategy of clustering 

and automatic tree building to a comprehensive plant gene family database, like 

GreenPhylDB (Rouard et al. 2010).  However, more advanced programming is needed to 
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generate and interpret trees with multiple samples’ queries and their interspecific orthologs 

automatically.  Finally, none of these contributions to the complex task of classifying 

homologs are applicable to non-coding DNA, which comprised the bulk of the sequences I 

sampled.  So, the algorithm that paired the longest Arctic sequence with the most similar 

Alpine sequence was used to make CG pairs. 

  

Alignment of multiple sequences 

As the orthologs were paired, they were aligned to properly assess the form, number, 

and location of nucleotide changes as observed in the two samples.  I incorporated MUSCLE 

v3.8.31 (Edgar 2004), an alignment program based on the now-classic algorithms developed 

by Needleman and Wunsch (1970), Smith and Waterman (1981), and Altshcul et al. (1997), 

to power the alignments in a script that (if needed) reverse complimented one or the other 

sequence in a CG pair, aligned them, and placed them in a small .fasta file (Appendix 3). 

 

Identification of evolutionarily constrained sequences 

 Comparative genomic pairs were destined for one of four analyses depending on their 

putative content: chloroplast (CP), mitochondria (M), nuclear protein-coding (P), or nuclear 

non-coding (NC).  Sequence content was determined by querying annotated databases with 

each pair in BLAST or BLAST-like searches.  Pairs whose content was ambiguous were 

excluded from downstream analyses. 

 

Identifying plastid sequences 

 All contigs were searched (megablast) against a collection of complete plastid 
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genomes downloaded from NCBI (Appendix 1).  Ten chloroplast genomes and 12 

mitochondrial genomes from diverse taxa across Plantae comprised the custom database.  For 

each contig with a match, the most similar sequence in the database was either CP or M.  If 

the two most similar database sequences were either both CP, or both M, the contig was 

assigned to the appropriate category.  If the two highest scoring matches did not correspond, 

the contig was flagged as an ambiguous plastid sequence.   

 The relatively small plastid database allowed me to use the complete list of contigs, 

not just those selected as orthologs, to serve as the query.  This way, every contig had a 

chance to be recognized as a plastid sequence and carry its cluster family members into a 

category, regardless if it was used as one half of a CG pair.  The buckwheat chloroplast 

genome was the best hit for many contigs, which was expected, given that it was the closest 

relative to B. vivipara in the custom plastid database.   

 The combined database was important for unambiguous categorization.  Plant plastid 

genomes may be exchanging genetic materials with a relatively high frequency (Goremykin 

et al. 2008).  This became evident from the data when the contigs were blasted to separate CP 

or M databases: only a few sequences found a match in one, but not the other plastid 

database.  It was these few unambiguous plastid markers I carried into downstream analyses.  

They were double-checked by blasting them against NCBI's complete nucleotide database 

(nt).  The best hit for each was a known CP or M sequence, and several highest scoring 

matches were to B. vivipara sequences already in the nt database. 

 

Identifying protein-coding sequences 

 Gene-finding algorithms based on statistical techniques, empirical evidence, or a 
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combination of both, have been thoroughly developed for genomic data.  Some, like 

GLIMMER (Salzberg et al. 1998) and GeneMark (Lomsadze et al. 2005), use interpolated or 

hidden Markov models (I/HMMs) to analyze codon content and recognize protein-coding 

patterns.  Others, like NCBI’s ORF Finder (http://www.ncbi.nlm.nih.gov/gorf/gorf.html) pick 

out the potential genes in a large gDNA sequence by automatically parsing BLAST results.  

Popular web portals (e.g. Oak Ridge National Laboratory [ORNL]) integrate multiple 

established programs in a pipeline to benefit from both approaches.  Pattern-searching tools 

are most effectively employed on microbial genomes due to their low fraction of intron-

containing genes.  IMMs trained on eukaryotic genomes (human, mouse, and yeast) exist, 

and are incorporated into ORNL’s pipeline.  Like most genome annotation pipelines, 

however, it is intended for use on small numbers of vast gDNA sequences.  The GrailEXP 

(Hyatt et al. 2000) component can run pattern-finding analyses in large batches (required for 

numerous markers), but the required binary files are no longer distributed at ORNL.  Both 

GrailEXP and GeneMark provide the option to train IMMs on user-supplied databases prior 

to detecting ORFs and could potentially find protein-coding sequences in the Bistorta data.  

Still, these techniques were originally intended to aid the annotation of new, nearly complete 

genomes.  Given the short, unlinked sequences of RAD markers, the complex developments 

in eukaryotic pattern-finding algorithms would likely go unused.  This, and the need to 

process hundreds of small sequences iteratively, prompted the use of a gene- (or partial gene) 

finding strategy based solely on BLAST-like searches. 

I used USEARCH's blastx-like similarity search task (Edgar 2010) and Perl scripts to 

search the largest publicly available protein database—NCBI’s "non-redundant" (nr)—with a 

representative list of contigs to identify protein-coding sequences.  Each open reading frame 
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(ORF) for each sequence was translated into protein data using the standard genetic code.  

ORFs were allowed to start at the beginning of a sequence even if it was not a start codon, 

end at the end of a sequence without a stop codon, and start immediately following a stop 

codon, all of which was appropriate for sequences that may only partially cover a gene.  

Unlike a default BLAST search, which reports all similar sequences in the database, 

USEARCH moved on to the next query once a match was found.  This reduced run time 

without compromising purpose: a query was flagged as a putative protein-coding sequence at 

the first instance of similarity to a sequence in nr. 

 The massive nr database required that I use a reduced number of Bistort queries.  To 

do otherwise would have been a computationally exhaustive task with a long run time.  To 

make the search tractable, I combined the Arctic and Alpine contigs and sorted them into 

clusters of 77 %ID using USEARCH's default definition of similarity, which uses the length 

of the shorter sequence as the denominator, excluding gaps.  This had the effect of lowering 

the BLAST definition of identity from 77% and ensured that all homologs clustered together.  

I used the longest member of a cluster to represent the homologs.  If it found a match in nr, 

then its cluster family members were assumed to be protein-coding.   

 To execute the search, I downloaded the nr database in binary via ftp, converted the 

database to FASTA format using the BLAST task fastacmd, replaced the protein identities 

with integers, split up the database into 333 smaller databases, and searched each portion 

serially with the representative sequences described above using a Perl script (Appendix 4).  

Replacing the protein names with integers reduced the amount of memory required per 

search (nr protein names are long and information rich), and the identities were not needed to 

flag the contigs as protein-coding.  Each portion of the nr database was searched using the 
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default USEARCH parameters, except: 1) the maximum sequence length was 35 000 (longer 

than the longest in nr, so that all were included); 2) the maximum number of rejects was zero, 

so that a search whose query failed to find a match after several attempts was not terminated 

until all sequences in that portion of the database were examined; and, 3) the maximum 

number of accepts was 3, to increase the likelihood that the reported match is the best match 

in the database, which would eventually help me get the correct frame information for each P 

sequence.  As with megablast searches, the expect-value threshold was set to 1e-6. 

  Each representative sequence with a match initiated the final process of 

categorization via a custom program (Appendix 5).  First, the match and its cluster family 

members were screened to see if the locus was already flagged as a plastid in the plastid 

database search.  This was liable to happen, given that nr contains CP and M proteins and 

contigs flagged as plastid were not removed from the nr search query.  If a contig had not 

been previously categorized, the representative sequence and all its cluster members were 

committed to the P category.   

 Having populated master lists for each category with the names of all contigs that 

could be argued to be CP, M, or P sequences, the script screened each CG pair by these lists.  

If either name was on the CP, M, or P list, it was designated accordingly.  If either name 

appeared on more than one master list, its association with a category was ambiguous, and it 

was designated an 'error' pair.  Comparative genomic pairs not associated with CP, M, P, or 

error categories were classified as NC. 

 

Analysis of non-coding pairs 

IMa2 
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 I used IMa2 (Hey 2010), a program that can 

recover historic demographic parameters from multi-

locus data sets, to estimate two parameters: 1) time 

since splitting, t; and, 2) ancestral population size 

(Na); using thousands of NC CG pairs.  It runs 

Markov chain Monte Carlo (MCMC) simulations 

based on a population model that includes up to 6 

different demographic parameters (Fig. 8).  

Parameters not relevant to data with a population 

sample size of 1 were either excluded from the 

model or provided meaningless computations that 

were ignored. 

 I ran more than 50 independent MCMC 

simulations of 200 NC loci each for PE1 and 2 data sets.  Two hundred loci is the program's 

default maximum.  It can be recompiled to handle more, but this leads to problems: analyzing 

more loci requires weeks or months of run time, huge memory demands, and program 

instability.  It is desirable to analyze thousands of loci in the same run, but is apparently 

beyond the current theoretical and technical means (at least with a sample size of 1, see 

Discussion).  I used the best available computing cluster, Odyssey, supported by the FAS 

Science Division Research Computing Group at Harvard University (HU), which was 

running IMa2 at a maximum of 200 loci and failed at attempts of analyzing more. 

 The activity of the MCMC simulations is based on coalescent theory.  Due to the 

stochastic nature of genealogical processes, we cannot recreate the true genealogical history 

Figure 8.  The IMa2 model depicting 
6 possible demographic parameters 
(Hey and Nielsen 2004).  N1, N2, and 
Na are constant effective population 
sizes, m1 and m2 are gene flow rates, 
and t is the time of population 
splitting.  Parameters evaluated in 
this investigation are circled; others 
were either removed from the model 
or provided meaningless values.	
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(gene tree) that gave rise to the contemporary homologs; but we can use the probability that 

two sequences coalesce (merge together, in the direction of the past) in the previous 

generation to our advantage.  The equation of that probability, Kingman's coalescent (1982), 

incorporates various demographic parameters.  In IMa2, Choi, Hey, and Nielsen 

implemented the coalescent so that it does not include population size and migration rates, 

but rather the splitting time parameter and mutation parameters.  This fit my data—those 

parameters could be estimated with a sample size of one individual per population given 

numerous loci. 

 At each locus, a genealogy was generated with random values for the various 

parameters and then updated with new values.  The new values were either accepted and 

saved, for comparison to the next, or rejected and the old values were retained, depending on 

which values resulted in the more likely genealogy, given the data, according to Metropolis-

Hastings criteria (Hey and Nielsen 2007).  Each round of updating and evaluating the 

simulation state counted as one step, and I ran the simulations for 2.1 million steps.  Every 

100 steps, the current genealogies and parameter values were saved, giving me 21 000 

genealogies from which I recovered the posterior likelihood of the targeted parameter values.  

The 100 steps between saving states gave the chains sufficient time to explore the full state 

space before saving, making each saved state effectively independent.  Exploring the state 

space properly via mixed and heated chains was vitally important and these elements are 

further described below.  To estimate the posterior probability of t and Na, their values from 

zero to a user-defined maximum (the 'prior') were split into 1000 bins and a histogram was 

generated plotting the frequency of each value among the saved genealogies.  The peak of 

this curve, converted to the appropriate demographic units, provided my final demographic 
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parameter estimates and the 95% highest posterior density (HPD) intervals thereof. 

 The target demographic units for t and Na were time of population splitting at t 

generations in the past (years), and effective ancestral population size (individuals), 

respectively.  Generally, values fitted in the IMa2 model are scaled by the neutral mutation 

rate, u, and/or the inheritance scalar (i.e. 1 for autosomal diploid loci), so conversion from 

parameter values to target units was required.  In the model, time is estimated as t(u), so these 

values were divided by the geometric mean of the mutation rates included in the input file to 

get t in years.  Na is estimated as Na(u).  To convert to individuals, the formula 

(4Nau)/(20uG), where G = years per generation, was employed, because the parameter value 

is proportional to the inverse of the coalescent rate per generation (Hey 2010b).  The 

inheritance scalar of 5 accounted for decaploid individuals. 

 The posterior probability curves from each run within the paired-end data sets were 

combined to generate my final estimates of t and Na.  Each of the 1000 bins, from zero to the 

prior, were nearly the same in each run.  They differ because the scalar variable for each 

parameter in the model is not the constants themselves, but the constants scaled by the 

mutation rate priors (in mutations/locus/year).  Most of the sequences are 94 bp, but there is 

some variation in length.  Variation in length led to a variation in mutation rate priors, and 

thus variation in the flat values at each bin.  I averaged the x-axis units (years or individuals) 

from all the runs to generate the bin values for the final posterior probability curves, and 

summed the probability for each of the bins from all the runs of PE1 or 2 to generate the final 

y-values.  The result was one curve each for t and Na for both PE sets that represent the 

combined posterior likelihood results from the numerous simulations of 200 loci each. 

 I followed several precautions to assess the correct use of the program and the 
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convergence and mixing of the Markov chains.  Some checks were automated and applied to 

every run.  Others required repeating runs with different command line inputs and were too 

long to repeat with all 100+ runs.  I ran these tests on 3 random sets of 200 loci and the 

results were assumed to be applicable to all runs.  In this manner, I determined how long the 

program needed to run to get reliable results, what priors would be useful, and how changing 

priors and random number seeds affected repeatability. 

 I used Perl-driven automated checks to parse the IMa2 output files for update rates, 

swap rates, autocorrelation, and effective sample size (ESS) values for all runs.  Update rates, 

or the percent of new values accepted versus rejected, were well above zero and swap rates 

between chains were high; these checks indicate the chains are doing a fair job of exploring 

the state space and evaluating the full range of parameters.  I confirmed near-zero 

autocorrelation of output parameters and high ESS values for all runs.  Non-zero 

autocorrelation values indicate long term trends, meaning a stationary distribution has not 

been reached (Hey 2010b).  ESS values should be high (theoretically, as high as the number 

of iterations completed), but in practice (due to the properties of the chains), can be lower.  

ESS values for all chains in all runs were greater than 30 (average 153 604).   

 As an alternative method of evaluating stationarity and convergence, I ran 3 

representative sets three times, identically, except for the random number seed (which 

generates the random starting parameters) and observed that the output values converge to 

the same parameter estimates at the end of the run. 

 

Burn-in 

 The initial phase of the MCMC simulation (the 'burn-in') allows it to run long enough 
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that the current values are independent of their starting point.  It is unlikely that the randomly 

generated starting values are correct, so the burn-in gives the chains time to explore alternate 

genealogies and parameter values before those values are used to generate posterior 

probabilities. 

 I found 230 000 steps to be an effective burn-in for my runs.  I used the automated 

checks described above to confirm stationarity for all runs at this point, and I observed trend 

plots of the values over time from 3 representative sets.  Update rates, swap rates, and ESS 

values were non-trivial, and the trend plots, which chart the attempted parameter values at 

each step, did not indicate long term trends.  After 230 000 steps, the chains were mixing 

well and the genealogies began to be saved. 

  

Markov-chains 

 I used 40 Metropolis-coupled chains with the suggested heating figures from the 

IMa2 documentation for a medium-sized data set with a geometric heating model for all runs.  

Metropolis-coupled chains allow multiple chains to run simultaneously and are strongly 

suggested for data sets containing multiple loci (Hey 2010b).   

 I confirmed the chains were effectively mixing for the duration by running my 

automated and visual checks after 2.1 million steps.  As after the burn-in, update rates, swap 

rates and ESS values were high, and the trendplots indicated stationarity.  Autocorrelations 

were zero, or near-zero for all runs.  Again, if the charts of the updated values over the course 

of the simulation showed a trend, the posterior probabilities were probably not from the true 

stationary posterior distribution, and the program was not run long enough. 
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Priors 

 I provided prior ranges for mutation rates, Ne, and t that were larger than a priori 

expectations, but not excessively higher than needed. 

 The mutation rate range prior covered three orders of magnitude and encompassed 

what I estimated from the literature to be a realistic rate for nuclear non-coding plant DNA.  

The geometric mean of the mutation rate was used to convert the parameter value t into 

years, thus it was critical that the true mutation rate fell within the prior range if estimates of t 

were to be reliable.  Whole genome studies in humans (Roach et al. 2010), and extensive 

mutation studies in mice (summarized in Russell and Russell 1996, Drake et al. 1998) honed 

in on a rate of ~1.1 X 10-8 mutations per bp per generation; Bayesian multilocus analyses 

from the genus Cornaceae (Cornales) arrived at substitution rates from ~1.5 X 10-8 to 8 X   

10-8 in nuclear genes (Xiang et al. 2008).  The former studies are sophisticated investigations 

on mutation rates in organisms with completely sequenced genomes.  The latter used MCMC 

based analyses to estimate posterior likelihoods of the mutation rate in a species 

monophyletic with rosids, asterids, and Bistorta vivipara.  I multiplied an upper (1.1 X 10-7) 

and lower (1.1 X 10-9) bound, in mutations per bp per generation, by the length of each locus, 

and used the ratio of these limits as limits on the ratios of the mutation rate parameters in the 

IMa2 runs. 

 I ran the program several times on 3 test sets of loci with successively smaller Ne 

priors to find that as long as they were greater than the equivalent of 40 000 individuals, the 

complete posterior marginal distributions were visible.  I set the mutation rate-scaled prior 

for the final runs to 1.75, the equivalent of ~80 000 individuals.   

 By a similar approach, I found runs with t value priors greater than 0.5 contained the 
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upper bounds of the posterior distribution and generally converged on the same posterior 

probabilities.  The scalar 0.75—the equivalent of ~700 000 years—was used as the prior for 

the final runs.  

I explicitly tested the influence/bias of the priors and found none.  There was little 

variation in the posterior distribution of parameter values in runs with priors greater than 1.75 

and 0.75 for Ne and t (Fig. 8B).  

  

Substitution model 

 I used the Infinite Sites (IS) model (Kimura 1969) as the nucleotide substitution 

model for the simulations.  Under this model, all mutations in the history of a sequence occur 

at a different site.  The IS model is best used for relatively recent splitting—one does not 

expect multiple mutations per base pair along a lineage unless the branch is very many 

generations long—so, it suited the NC CG pairs. 

 

IMa2 model assumptions 

 IMa2 fit my data to a model that made several important assumptions: 1) there was no 

migration between populations; 2) the loci were under selective neutrality; 3) there was no 

recombination within loci; and, 4) there was free recombination between loci.  I argue that 

my data fit these assumptions and were suitable for use in this framework. 

 By excluding migration, I assumed that Arctic and Alpine populations were at some 

point true island populations, i.e., there was not another population exchanging genes with 

the sampled populations that was more closely related than the two.  The IMa2 model does 

include a migration parameter that would estimate the degree of isolation between the 
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populations, but this requires a sample size > 1.  Regardless of its tractability given the data, 

the effect of Bistorta migration between Arctic Alaska to the southernmost Rocky Mountain 

population is assumed to be nearly nil.  Ornithophily is probably the Alpine Bistort’s best 

means of long-distance dispersal.  The bulbils share none of the characteristics of wind 

dispersed fruits; plus, they are consumed by and pass through ptarmigan digestive tracts 

intact and viable (Clarke and Johnson 2005).  However, Alaskan ptarmigan (Lagopus 

lagopus) tend to winter in Alaska (Irving et al. 1967), and Coloradan ptarmigan (Lagopus 

leucurus) migrate less than 10 km seasonally (Hoffman and Braun 1975).  The remaining 

effect of gene exchange over the thousands of kilometers separating the Bistorta populations 

(or even the intermittent Alpine populations north of Colorado) by long distance avian 

migrants that consume Bistorta fruits was assumed to be minimal. 

 The second assumption was that the variation within the data was not affected by 

directional or balancing selection.  The NC CG pairs were categorized by their lack of 

similarity to any known proteins or non-coding conserved plastid sequences and were 

assumed to fit this characterization. 

 The salient implication of the third and fourth assumptions is that the length of the 

contigs was short enough and the genomic distance between them long enough to restrict free 

recombination within loci and permit it between them.  The CG pairs were, on average, 94 bp 

long, with a min and max of 61 and a few hundred.  Although recombination rates vary 

widely in the literature, I was comfortable assuming recombination does not occur over such  

small distances in plant genomes, and certainly not for the majority of NC markers.  With 

regard to free recombination between loci, despite the similarly variable estimated rates of 

crossing over in plants, even loci with a low rate of crossing over per generation are 
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effectively unlinked over longer time frames.  Rare instances of recombination or linkage 

between markers may be included in the sheer volume of data, but such cases are likely the 

minority and their effects were swamped out by unlinked loci.  Assuming the distribution of 

PsiI's recognition site is pangenomic in B. vivipara, I was comfortable treating all NC loci as 

having segregated independently over time, which, if true, gives the multi-locus analysis its 

power (Felsenstein 2005).   

 

Analysis of plastid pairs 

The chloroplast markers within each sample were linked together and aligned as two 

long loci.  The same procedure was followed for mitochondrial markers, and the cytoplasmic 

genomes were inspected visually using MEGA version 5 (Tamura et al. 2011).  The lack of 

variation in both genomes was apparent, and the alignments were processed by a variant of 

the code in Appendix 6 to generate statistics on the frequency of polymorphic sites.   

 

Analysis of protein-coding pairs 

 My goal was to estimate the form and magnitude of natural selection on the P CG 

pairs by calculating dS and dN for each. 

 I used Perl code (Appendix 6) to segregate identical P pairs from those exhibiting the 

requisite polymorphism.  Pairs were deemed identical if each column in the alignment 

matched, disregarding gaps.  To determine the reading frame of each pair, also requisite for 

my calculations, I searched NCBI's nr exactly as described for identifying protein-coding 

sequences, except this time the queries were the already categorized pairs.  Sequences that 

did not find a match in this search were excluded from further analyses.  Matchless 



	
   49	
  

sequences were probably cluster family members carried into the P category by their 

representative sequence and were not sufficiently similar to a database protein to be 

recovered in the reciprocal search. 

 I wrote another program (Appendix 7) to execute SNAP (Synonymous 

Nonsynonymous Analysis Program) (Korber 2000) iteratively on each polymorphic pair.  

The pairs were put into frame and loaded in SNAP, which provided dS and dN by: 1) 

counting the number of synonymous and nonsynonymous sites; 2) counting the number of 

substitutions at synonymous and nonsynonymous sites; 3) dividing the number of 

substitutions by the number of sites (usually called pS and pN); 4) applying the Jukes-Cantor 

correction (Jukes and Cantor 1969) for multiple substitutions to transform pS to dS, etc.; and 

5) dividing dS by dN.  The final ratio is unavailable from sequences displaying one, but not 

both types of substitutions.  Pairs with dS/dN > 1 or dS > dN were interpreted as examples of 

purifying selection; those with dS/dN < 1 or dS < dN were interpreted as examples of 

positive selection.  Ratios with greater distance from unity were interpreted as having a 

greater magnitude of selective pressure.  
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RESULTS 

Summary 

Most protein (P) pairs analyzed were governed by purifying selection since the 

splitting of the Arctic and Alpine populations, ~140 000 years ago.  Very few of the P pairs 

gave a signal of positive selection, and none gave a signal of neutral selection (dS=dN).  The 

size of the ancestral population was ~23 000 (Table 1).   

 

Bioinformatics 

 Paired-end (PE) 1 and 2 results were compared throughout the investigation (Table 2).  

Both sets of data follow the same pattern, with the exception of the quality control (q.c.) 

segment: 11% more reads were discarded from PE2 than PE1.  Compared to the PE1 data, 

the PE2 data lost 246% more reads after trimming low-quality bases from the ends, 80.5% 

more when reads < 5 bp were discarded after removing adapter sequences, 18% percent more 

failed to pass the stringent quality filter, and 5% more were lost when reads < 39 bp were 

discarded.  In one instance, more PE1 than PE2 reads were discarded: 123% more PE1 reads 

contained one or more unknown base (N).  When normalized by the number of reads 

remaining after q.c., PE1 and 2 results vary by less than 0.05% (except max contig length, 

see above). 

 

Alignment statistics 

 The proportions of variable sites in the three partially sequenced genomes— 

mitochondrial, chloroplast, and nuclear— rank from lowest to highest, in that order (Table 3). 

Polymorphic sites in the mitochondrial and chloroplast genomes were an order of magnitude 
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less frequent than in the nuclear genome. 

All columns containing a dash (-) were ignored when generating alignment statistics.  

Terminal gaps overwhelmed internal gaps by the thousands due to cases where the Arctic and 

Alpine homologs were different lengths.  They were not informative when estimating the 

frequency of polymorphic sites in the alignments, difficult to separate bioinformatically from 

internal gaps, and thus, not counted. 

 Three CP markers were discarded for the alignment statistics.  The match to mismatch 

ratio in the outliers (98:73, 218:16, and 78:14) accounted for 75% of the variability in 41 CP 

markers. 

 

Demographic analyses 

 Time since splitting, t, is ~140 000 years ago, and the ancestral population size, Na is 

~23 000 individuals.  Fifty-five coalescent simulations using 200 loci and 1 simulation using 

152 loci tapped the PE1 NC pairs for results; similarly, 51 plus 1 were run on the PE2 NC 

pairs.  Taken one at a time, the peak of the posterior probability curves for t and Na was each 

simulation's best estimate of those parameters.  The values above HPD95%Lo and below 

HPD95%Hi contained 95% of the area under each curves.  These are typically interpreted as 

confidence intervals, i.e., the probability of the actual value falling within that range is 0.95.  

The curves were combined as described in Methods to generate final estimates (Fig. 9).  
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Figure 9.  Combined probability curves for time since splitting, t, and ancestral effective 
population size, Na, from 50+ Markov Chain Monte Carlo (MCMC)-based IMa2 runs each 
for paired-end (PE) data sets 1 and 2, generated with alternate priors.  For the curves in A, 
priors were set to ~700 000 years and ~80 000 individuals; for B, priors were set to ~1.4 
million years and 200 000 individuals, with the exception of (*), which used a prior of     
150 000 individuals.  For all runs, the mutation rate range priors were estimated from the 
literature and encompassed 3 orders of magnitude.  Each simulation began with 200 pairs of 
non-coding, unlinked, neutral nuclear markers with an average size of 94 bp.  After a burn-
in of 230 000 steps, the simulations ran for 2.1 million iterations, saving the parameter 
values and genealogies every 100 steps, for a total of 21 000 saved parameter value sets per 
simulation.  Summary histograms were made for each batch of 200 loci (not shown) in 
which the x-axis was the target parameter from 0 to the prior divided into 1000 bins, and the 
y-axis was based on the liklihood of each parameter value occuring in the numerous saved 
geneologies.  The 50+ summary curves from either PE1 or 2 were combined by plotting the 
sum of the probabilities at each bin against the average bin value from all the runs.  The 
upper (a) and lower (c) bounds of the highest posterior density 95% (HPD95%) interval 
(black) span a distance on the x-axis that has a 0.95 probability of covering the actual value 
of t or Na, and may be interpreted as confidence intervals.  The peaks of the curves (b, red) 
correspond to the most likely value of each parameter, given all PE1 or 2 data.  Here, the 
best estimate of t is ~140 000 years before present, and Na is ~23 000 individuals.  	
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Adaptive analyses 

 Protein (P) pairs exhibiting positive or purifying selection were determined by either: 

1) the absolute number of substitutions per synonymous or nonsynonymous site after being 

subject to the Jukes-Cantor correction (dS, dN); 2) the ratio of dS/dN; or, 3) a lack of 

polymorphism (Table 4).  Fifty-eight percent of the P pairs were identical (ignoring gaps, see 

above) and were interpreted as evidence of purifying selection (Fig. 10).  There were more 

substitutions per synonymous site (dS) than dN in 62.5 ± 1.5% of the polymorphic pairs 

analyzed in SNAP; these were also interpreted as evidence of purifying selection.  In pairs 

from which dS/dN could be calculated, instances of purifying selection outnumbered 

instances of positive selection approximately 4 to 1.  The median intensity of selection on 

pairs from which dS/dN was available was 3.975 ± 0.275 for those under purifying selection, 

and 0.675 ± 0.035 for those under positive selection (Fig. 11). 

 Twenty-five sequences implied positive selection via dS/dN.  Based on a blastx 

search of NCBI's nr, all but 2 were retroelements, transposases, reverse transcriptases, and 

integrases.  The exceptions were a marker sharing 79% amino acid identity with several 

putative protein phosphatases, and a putative kinase sharing 61%ID with proteins that 

interact with receptor kinase VHI. 
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Figure 11.  Intensity of selection on CG pairs depicted as the distribution of dS/dN values.   
The median for pairs under positive selection (dS/dN <1, n=25) was 0.675, the median for 
pairs under purifying selection (dS/dN > 1, n=95) was 3.975.  The y-axis is logarithmic; 
circles are outliers. 

 

Figure 10.  Relative proportion of P pairs under purifying selection (green) and positive 
selection (gold).  Absolute counts are given in parentheses.	
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Table 1.  A summary of the primary results delivered by this investigation.  The variance 
around the mean value from both paired-end (PE) sets is given where applicable. 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bases sequenced 1 353 797 132 

101-bp reads 13 403 932 

Reads remaining after q.c. 8 861 830 

Contigs 178 926 

Average contig length (bp) 94 

CG pairs 11 123 ± 416 

Nucleotide coverage for CG sequences: 
min / mean / max 2.8 / 10.4 / 4303.3 

Time since splitting, t (years) 141 613 ± 10 572 

Effective ancestral population size, Na (individuals) 22 798 ± 154 

Protein (P) pairs analyzed 320 ± 25 

P pairs lacking polymorphism, purifying 186 ± 13 

P pairs with dS>dN, purifying 83.5 ± 5.5 

P pairs with dS<dN, positive 50.5 ± 6.5 
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Table 2.  Bioinformatics results for paired-end (PE) data sets.  

 
Flowcell 
 PE1 PE2 
Bases sequenced 676 898 566 676 898 566 
101-bp reads 6 701 966 6 701 966 
 
Quality control 
Length = 0 after end-
trimming 8 392 29 056 

Contained unknown base 
(N) 3 314 1 485 

Length < 5 after clipping 
adapters 24 657 44 495 

Removed by quality filter 799 777 943 755 

Length < 39 bp 1 312 596 1 374 575 

Reads remaining after q.c. 4 553 230 4 308 600 

 
Assembly 
Split by barcode 
 

2 356 673 (51.8%) - Arctic 
2 196 557 (48.2%) - Alpine 

2 222 421 (51.6%) - Arctic 
2 086 179 (48.4%) - Alpine 

Contigs 47 564 - Arctic 
44 257 - Alpine 

44 749 - Arctic 
42 356 - Alpine 

Contig length (in bases): 
min / median / max 

61 / 94 / 645 - Arctic 
61 / 94 / 1228 - Alpine 

61 / 94 / 461 - Arctic 
61 / 94 / 561 - Alpine 

 
CG pairs 
Total 11 539 10 707 
Chloroplast (C) 19 22 
Mitochondria (M) 10 8 
Protein (P) 358 308 
Non-coding (NC) 11 152 10 369 
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Table 3.  Alignment statistics for mitochondrial (M), chloroplast (C), protein (P), and nuclear 
non-coding (NC) markers.  Total columns refers to all columns aligned in each category for 
PE1 and 2 combined, not counting gaps.  The percent of polymorphic sites for the nuclear 
genome (P and NC combined, not shown) is 2.10%. 
 

Category M C P NC 

Total columns (excluding gaps) 1 783 4 533 65 709 1 981 735 

Identical columns 1 780 4 501 64 439 1 939 989 

Variable columns 3 32 1 270 41 746 

% of polymorphic sites  0.17% 0.71% 1.93% 2.11% 
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Table 4.  Adaptive analysis outcomes for paired-end (PE) 1 and 2 data sets. 

 PE1 PE2 

P pairs with frame information 345 295 

P pairs lacking polymorphism 199 173 

P pairs analyzed in SNAP 146 122 

dS>dN, purifying  89 78 

dS<dN, positive  57 44 

dS/dN > 1, purifying 51 44 

dS/dN < 1, positive 13 12 

dS/dN value, purifying: min / median / 
max 1.1 / 3.7 / 49.67 1.1 / 4.25 / 39.99 

dS/dN value, positive: min / median / 
max 0.09 / 0.71 / 0.92 0.24 / 0.64 / 0.86 
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DISCUSSION 

Demographic analyses: setting the stage 

A Middle- to Late Pleistocene divergence 

 The probability that the Alaskan and Coloradan populations of B. vivipara became 

isolated from each other within the last 4 glacial ages is 0.95.  Out of more than 450 million 

simulated genealogies, none suggest they split later than the older boundary of the glacial age 

known as pre-Illinoian A (as demarcated by marine isotope stage [MIS] 12 [Cohen and 

Gibbard 2011]), ~400 000 years ago.  The most likely divergence date coincides with the late 

Illinoian glacial maximum, ~140 000 years before present (Fig. 12A).  Thus, H1alt1 was 

clearly supported: the populations stopped exchanging genes at some point—most likely 

during the second to last glaciation, and almost certainly during the Pleistocene.  The 

confidence intervals on t span cool and warm ages, so I cannot definitively suggest that either 

glaciers or uninhabitable warm environments prevented these populations from exchanging 

gametes, but it is clear that the turbulent changes of the Quaternary evoked the well-studied 

species response: to move.   

 

Habitat tracking 

In order for the homologs from the sampled individuals to coalesce, the range must 

have looked different than it does today.  At least once, a founding population contributed 

generations of offspring that tracked suitable habitat into isolated refugia.  The species 

altered its range to match the environment that met its basic needs for survival and 

reproduction; thus, in terms of its capacity to respond to historic climate change, it is fair to 

say habitat tracking may be counted among its potential future responses. 
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Fluctuating population size 

 The range of the ancestral population was not determined by this investigation, but its 

size is evident from my estimate of ancestral effective population size (Na).  That figure,   

~23 000 individuals, could be compared to extant effective population sizes (Ne) to 

confidently add fluctuating Ne to B. vivipara's potential demographic responses.  If its 

preferred environmental space increased since splitting, local populations may be larger than 

the founding population.  On the other hand, Na > Ne would suggest that the current state is 

not only the result of the plant moving to refugia, but also reducing Ne, and, consequently, 

genetic diversity.  The data leave the comparison unanswered because they lack the 

Figure 12.  A) A correlation of chronostratigraphical subdivisions showing, from left to 
right, formal time divisions of the Middle and Late Pleistocene subseries, North American 
Stages, and Marine Isotope Stages (MISs), redrawn from Cohen and Gibbard (2011).  Solid 
horizontal lines indicate observed boundaries, the red dashed line indicates the divergence 
date estimate (t), and the grey horizontal bar marks the 95% confidence intervals thereof.  
B) MIS 7 at a higher resolution.  Various proxy climate records report multiple interglacial 
peaks during MIS 7, a milder interglaciation than the Sangamonian.  Redrawn from Lang 
and Wolff (2011). 
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information needed to estimate Ne.   The RAD markers are a useful starting point, though, for 

designing primers for loci that could be sequenced from multiple Alaskan and Coloradan 

individuals, which would then provide means to estimate Ne.  Although not directly 

confirmed, a change in population size is expected to follow a change in range, and it is 

probably fair to say B. vivipara also responded demographically via a change in Ne. 

 

Glacial influence 

 Some potential distributions of the founding population are offered which aid the 

interpretation of the demographic results.  Initially, I predicted the last glacial age 

(Wisconsonian) split the populations.  I imagined its preceding interglaciation as similar to 

the current and that the prehistoric distribution echoed the plant's modern range in Western 

North America.  As the climate cooled and the two great continental ice sheets formed, the 

Arctic populations might have sprawled south and mingled with more southerly populations 

that had shifted down slope from Alpine refugia into the now cool lowlands.  Birds and 

animals roaming the corridor between the Cordilleran and Laurentide might have assisted the 

plant's panmixia by transporting indigestible bulbils.  Eventually, as the ice sheets fused 

together, the northern and southern populations would have retreated to their respective 

glacial age refugia.  Alternatively, perhaps an Arctic or an Alpine population alone migrated 

to found the disjuncts.  I further imagined that a version of this scenario was repeating itself 

throughout the long series of Quaternary cycles.  Regardless of where the founding 

population was, its polymorphisms were carried into both daughter populations and the 

extant genetic markers would bear the signature of the last mixing event.  

  If a N/S glacial corridor was involved in the population’s dynamic history, what 
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characteristics of one glacial-interglacial period could inhibit the Alpine Bistort’s panmixia 

while another supported it?  Lang and Wolff (2011) concluded there is no reason to think of a 

single glacial-interglacial 'type' of cycle, and, indeed, a closer look at the Illinoian and 

Wisconsonian carries a plausible explanation as to why the divergence date settles at not the 

last, but the second to last glacial maximum.  The key differences between the two are in the 

climate trends that precede them.  The interglaciation before the Wisconsonian (the 

Sangamonian, demarcated by MIS 5e) appears as a severe 'spike' in marine and ice core 

isotope records, and serves as one of the few boundaries in Quaternary stratigraphy that 

researchers can all agree on (Fig. 12A).  Whether seen as the official beginning of the Late 

Pleistocene sub-stage, the Tyrrhenian standard stage in marine records, or the variously 

named ages from northwest Europe, Russia, or North America, the last interglaciation saw a 

dramatic transition from the Illinoian glacial maximum to warmer-than-today conditions 

(Clark et al. 1993) and back to the formation of Wisconsonian ice sheets in little more than 

20 000 years (Cohen and Gibbard 2010).  On the other hand, the Illinoian is preceded by a 

series of almost indecisive temperature swings.  These events, demarcated as MIS 7, are only 

hesitantly described as an interglaciation.  At a higher resolution, MIS 7 itself shows up to 5 

weak interglacial-glacial cycles, depending on the location and type of record (Fig. 12B).  At 

their coolest, the mini-periods behave similarly to records close to fully glacial, yet at times 

and at some sites, there is an almost continuous period of weak interglaciation.  An unbiased 

ranking of the relative strengths of the last 9 ages and their transitions highlighted MIS 7 as 

one of the weakest interglaciations and transitions—it is the exception to the rule that the 

oscillations become more exaggerated as we move closer to the present (Lang and Wolfe 

2011).  Perhaps its irregular flirtations with glacial conditions and soft transition into full 
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glaciation held a cool ice-free corridor open long enough for B. vivipara to occupy or 

otherwise traverse the distance from Alaska to Colorado, whereas the severity of the 

Sangamonian and its transition into the Wisconsonian prevented it. 

 

Effects of polyploidy on demographic estimates 

Certain considerations are required in the interpretation of Na and t because I 

surveyed the genome copies in a decaploid organism more or less equally. 

Na calculations are based on the allelic diversity in previous generations, so the 

parameter values in the model were scaled by an integer, 5, to reflect the ratio of an 

individual to its contribution of alleles to the next generation (each decaploid parent 

contributes half of the alleles in the offspring).   

T estimates were affected in that each duplicated genome was a source of potential 

paralogs.  Analyzing paralogs in IMa2 would date the divergence of the sequences instead of 

the splitting of the populations.  I took precautions in selecting orthologs from cluster 

families, but the incompleteness of the data suggests that some paralogs were included in the 

IMa2 runs.   

How did paralogs in the IMa2 runs bias the results?  The posterior likelihood curve 

for each run was a summary of the individual posterior probability curves for each locus 

analyzed.  Paralogs may have widened and/or shifted summary peaks, and likewise, the 

peaks of the combined summaries, to higher values of t.  The individual posterior probability 

curves for each locus in a run might display a multi-modal distribution: orthologs peaking at 

the population split and paralogs peaking at one (or several) other values of t.  To strengthen 

the demographic estimates, then, I would next analyze an individual batch of 200 loci one 
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locus at a time with very high priors to observe the distribution of posterior probability peaks 

on a locus-by-locus basis. 

 

Effects of cloning on demographic estimates 

Clonal population genetics trends should also be considered in the interpretation of Na 

and t.  Genetic variation in clonal populations is expected to be lower than sexually 

reproducing populations, due to the absence of segregation and recombination.  In a survey 

of allozyme markers, populations of Bistorta vivipara reflect these expectations: their 

genotypic diversity and structure was similar to the average for clonal species (Diggle et al. 

1998).   T estimates are not affected by cloning because the mode of inheritance (sexual or 

asexual) is separate from the neutral mutation rate (Nordborg 2000).  

 However, the partially clonal populations mean that effective population size 

estimates in this investigation are probably underestimates.  Na is based on allelic diversity.  

In clonal populations, heterozygosity is maintained, but the total number of alleles does not 

change much from generation to generation (Balloux et al. 2003).  In the IMa2 model, the 

seemingly slow-to-change allelic diversity resulted in lower estimates of Na because it did not 

account for generations of clones.  

 

Violation of assumptions 

 The demographic results are based on assumptions that, if violated, would influence t 

and Na in different ways.  Here, I revisit the assumptions in the IMa2 model briefly.  

Assumptions for pairing orthologs and the accuracy of the sequence data are dealt with 

further below. 
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 If the variability between Arctic and Alpine populations is not the result of 

microevolutionary changes imposed by physical isolation but rather the result of exchange 

with diverse populations, then the demographic estimates are not informative.  I think the 

argument for their physical isolation is sound and that gene exchange is minimal, but how 

would a small amount of migration affect the results?  If another population more closely 

related to both sampled populations were exchanging genes from Arctic to Alpine tundra, it 

would widen the pool of naturally occurring NC diversity—diversity that I counted as 

evidence of time passing since the split.  Thus, small amounts of migration would shift t 

closer to the present. 

 If the markers I designated as NC were under natural selection, estimates for t and Na 

could be off in either direction.  If there were a degree of purifying selection, then mutations 

would be occurring less frequently than I assumed they were, and the results would be 

underestimates.  If they were encouraged by natural selection to continually change, then the 

actual split time would be younger than the results suggest.  The categorization process limits 

this possibility that selection is in play, but the true strength is in numbers in this case.  It is 

unlikely that most, if any, of the NC loci were under selection. 

 Lastly, if the assumptions for recombination were violated, then the confidence 

intervals on both estimates would be artificially narrow.  The numerous loci must be counted 

as independent records if the probability estimates are to have statistical merit.  Linked loci 

introduce false calculations: if two loci are linked, the probability of the parameter values at 

each step must be calculated based on the likelihood of generating the data at all of the sites 

together.  If a portion of a locus is probable, and another is not, the probability of the data 

would incorrectly increase the posterior probability of that parameter set if the unlikely 
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portion were considered as a separate record.  Cloning as a reproductive strategy does not 

link the individual loci, as long as the population is not exclusively asexual (Balloux et al. 

2003). 

 

Next-generation estimates 

The thousands of sequences and simulated geneologies incorporated into the 

demographic analyses make these results noteworthy.  Coalescent-based computer algorithms 

are extremely effective at exploring polymorphism data (Nordborg 2000), and independent 

records of genealogic processes (i.e., unlinked neutral loci) are a priority of hypothesis-

testing coalescent models.  Despite some theoretical and practical assumptions in my 

methodology, I find the combination of next-generation sequencing and coalescent-based 

approaches highly functional.  The uncertainties of sequencing errors, IMa2 model 

violations, and paralogy are balanced by analyses of millions of character states (nucleotides) 

from a single data set.  The potential accuracy of the demographic estimates rings of the 

profound impact post-genomic technology is having in various disciplines.  

 

Adaptive analyses 

No evidence of a sweeping adaptive response 

In ~140 000 years, the protein-coding (P) sequences examined did not change at all 

(the majority), changed only at synonymous sites (some), or changed at nonsynonymous sites 

(very few).  Those few with strong signatures of positive selection (dS/dN < 1) were 

identified as sequences expected to escape purifying selection.  All but two were similar to 

some class of retroelement.  But for their existence, I conclude: an adaptive response was not 
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in play in this population over the studied time frame. 

One of the two exceptions was a sequence similar to a kinase involved with auxin and 

brassinosteroid signaling (see NCBI Gene ID: 837960).  The other matched several putative 

protein phosphatases.  If either contains a region under positive selection through the glacial 

cycles, clocking the rate of those evolutionary changes is desirable.  As of this writing, 

‘climate change genes’ are still dubious.  Some of the most hopeful candidates (e.g. 

flowering-time genes FRI and FLC [Atwell et al. 2010]) are still missed in genome-wide 

SNP surveys in model organisms (Fournier-Level et al. 2011).  The Bistorta sequences 

provide a point from which we can expand the search for local adaptation in plant genomes. 

To learn more, primers based on these sequences can be developed to obtain longer portions 

of the genes.  Comparative analysis of longer markers would be an informative starting point 

for functional analysis. 

The scarcity of markers under positive selection suggests the adaptive potential may 

be at odds with vivipary and small effective population sizes, two things that reduce the raw 

material for an adaptive response.  Genotypic diversity is reduced both as asexual 

reproduction increases (Balloux et al. 2003) and after a population bottleneck (Landergott et 

al. 2001).  The combination of reproducing clonally and losing diverse individuals during the 

retreat to refugia may explain the lack of adaptive genetic changes in all but two of hundreds 

of sequences.  Or, perhaps it reflects a bias of sampling the entire genome: more gDNA is 

expected to be under purifying than positive selection.  Thus, one might expect examples of 

purifying selection to dominate in a pangenomic survey. 

 

Interpreting the capacity to adapt 
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Whether on a gene in a genome or a codon in a gene, natural selection acts locally.  

The question pertinent to this data, then, is: if an adaptive response did occur since splitting, 

was it on a locus sequenced in this survey?  My assessment of Bistorta vivipara’s adaptive 

capacity is limited to the markers sequenced in this study.  The data may contain partial genes 

under selection, but sites with a fitness-increasing polymorphism may not be included.  It is 

also of note that some potentially adaptive genetic responses would not register in these 

analyses (e.g. insertions, deletions, and polyploidy); nor, was the genetic basis of phenotypic 

plasticity assessed. 

I further consider the utility of these markers for assessing adaptive potential in the 

light of contingency tables that accompany MEGA 5’s (Tamura et al. 2011) test for selection.  

This alternate implementation of a Nei and Gojobori (1986) – based test for selection has 

benefits over SNAP, but was not easily automated using Perl.  The codon based Z-test for 

selection in MEGA 5 calculates the probabilities of rejecting one of three null hypotheses: 

positive, purifying, and neutral selection, given two aligned sequences.  The Z-test adds 

statistical significance to the argument that the observed polymorphisms are the result of 

selective pressure, not random chance, for each marker.  I manually analyzed 10 random CG 

P pairs with MEGA 5’s Z-test and found that SNAP and MEGA 5 agree on the form of 

selection in all 10.  However, only 1 in 10 dS/dN-based measure of selection was supported 

by P values less than 0.05 in MEGA 5.  Most of the markers were too short to statistically 

differentiate the signals of positive or purifying selection from neutral evolution (although, 

the probability of a rejecting a hypothesis of neutral evolution was at least 40% greater than 

the probability of rejecting a hypothesis of either positive or purifying selection in all cases).  

The non-significant results of a quick sampling of CG P pairs in MEGA 5 calls into question 
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the usefulness of these markers themselves to gauge adaptive potential. 

On the other hand, H2alt2 was clearly supported by observed changes in P pairs, and 

the proportions of variable sites should reflect the influence of selective pressures.  The 

sequences could be longer, but that would run the risk of introducing recombination.  Here 

again, a drawback in methodology may be balanced out by the volume of markers and the 

ease of their retrieval. 

Lastly, more than half of the sequences that did not have polymorphisms at both types 

of substitution site have a single variable site, and might be more effectively used in 

population genetic diversity work or genome mapping rather than an analysis of adaptive 

genetic changes. 

 

Patterns of variation in three genomes 

 The chloroplast (CP), mitochondrial (M), and nuclear (P and NC) markers show 

patterns of mutations that we generally expect for plant DNA: the mtDNA is slowest to 

change, and cpDNA and nuclear DNA is faster. 

Similarities between chloroplast and mitochondrial genomes emerged as I was 

categorizing plastid sequences, which lends support to the idea that horizontal gene transfer 

is common in angiosperms.  Goremykin et al. (2008) report that 42.4% of the Vinis vitifera 

chloroplast genome has been incorporated into the mitochondrial genome.  In B. vivipara, 

every sequence identified as either CP or M had multiple analogs in archived chloroplast and 

mitochondrial genomes.  This made unambiguous categorization difficult, but perhaps more 

importantly, highlights the potential importance of nuclear markers in phylogeography.  CP 

and M markers are not free from recombination and chromosomal rearrangement mediated 
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by the opposite genome, and they harbor little overall variation, thus their usefulness in 

phylogenetic reconstruction is challenged.  

 Recent work highlights how historic inference can be missed without the utility of 

nuclear data (Galbreath et al. 2011).  Most phylogenetic work in plants has been based on 

chloroplast phylogenies, which may work well for distantly related species.  Yet, 

comparisons between closely related species are likely to yield more precise and informative 

measurements of evolutionary patterns and rates (Brown et al. 1982).  Unfortunately, even 

with long stretches of plastid DNA, there is not much variation to be had.  The vital sets of 

organelle genes naturally resist evolutionary change (Zurawski and Clegg 1987), and the 

problem may be compounded by viviparity.  The roadblock is essentially this: low levels of 

sequence variation restrict conclusive results in phylogeography and nuclear sequences are 

difficult to recover when designing and implementing species-specific primers from scratch.  

Comparing Bistorta genomes demonstrated nicely that we can get informative nuclear 

markers without prior knowledge of the target genome.  Next-generation sequencing methods 

like restriction-site associated DNA (RAD) markers circumvent the problem of targeting 

specific nuclear markers.  As was predicted for many other disciplines in the life sciences, 

next-generation sequencing has the potential to revolutionize plant phylogeography by 

facilitating access to vast portions of nuclear DNA from numerous individuals 

simultaneously. 

 

Future biotic response 

Given that range contractions, isolation, and loss of genetic diversity have driven 

plant extinctions of the past (Jackson and Weng 1999), the need to protect the remaining gene 



	
   71	
  

pools of tundra plants is apparent.  We know B. vivipara tracked its preferred habitat into 

isolated refugia during historic climate cycles.  The founding population contributed the 

initial population genetic structure to the modern populations following a corresponding 

change in effective population size.  Populations were isolated from gene-exchange across 

geographic space, while individual genomes were passed on, often asexually, to the next 

generation.  Mutations accumulated in neutrally evolving DNA, but, despite differences in 

rainfall, radiation, competition, and pollinator interaction, the Arctic and Alpine populations 

seem to be working off of the same blueprints for protein-coding DNA.  The lack of evidence 

for adaptation does not rule out the capacity to adapt at a genetic level: it may be a single 

nucleotide difference, not sequenced here, that prevents local extinction.  But adaptation does 

require variation.  Variation allows the species to occupy different microhabitats, which 

broadens the tolerance of the population from that of an individual.  On the one hand, 

multiple genome copies may be a source of variation that increases adaptive potential.  And, 

despite viviparity, over the long run, variation may be maintained by refugia: new allelic 

combinations arise from plant life diverging in isolation (Gavrilets 2003).  Once they arise 

due to mutation, heterozygosity is maintained at that locus via asexual propagation (Balloux 

et al. 2003).  Genotypic variation would be boosted at the species level by the mixing of 

diverse alleles maintained in refugia, provided they have the chance to come back together at 

some point.  On the other hand, the last retreat to refugia was probably a bottleneck event, 

which reduces variation.  Plus, any adaptive potential must draw on the standing variation, 

for the need to adapt is now.   

Given evidence of genetic adaptation is scarce, more pressure is placed on phenotypic 

plasticity and demographic responses as alternatives to extinction.  It has yet to be seen how 
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a plastic response may help B. vivipara out of a potentially threatened position, but it is 

historically resilient.  It survived the Quaternary period in what could be argued to be the 

most difficult landscape to weather those changes.  Explicit (Hultén 1968)	
  and implicit 

(Wookey et al. 1995) attention to the plant’s impressive morphological variation is palpable 

in the literature.  Perhaps the genetic basis for a wide environmental tolerance is already 

carried in this species, regardless of the effects of clonality and refugia on variation.  Genome 

duplications have been long been suspected to aid the durability of tundra plants simply due 

to association: the relative proportion of polyploidy is greater in the high-latitudes than 

anywhere else (Löve and Löve 1974).  It is possible that polyploidy facilitates plasticity, and 

the entire system is effectively propagated clonally. 

 

Improvements and future work 

 Lessons from this exploratory investigation should inform forthcoming research 

based on these data or techniques.  Observations towards potential improvement are 

discussed in broad categories below. 

 

Effectively sampling populations 

 The often clonal nature of the B. vivipara life cycle encouraged my commitment to a 

sample size of one—sampling more would have risked potential resources by sequencing 

identical genomes.  However, data from multiple individuals per population would have 

offered several advantages.  Such data would provide a means to estimate Ne and facilitate 

the use of a migration parameter in the coalescent simulations.  Estimating Ne for each 

population would have allowed nucleotide diversity to be compared within and across 
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populations, enhancing the interpretation of why so few adaptive genetic changes occurred. 

 Data from more individuals would have strengthened my conclusions, but more 

samples can complicate the bioinformatics processing.  Theoretical and computational 

strategies for managing large volumes of data will only get easier as researchers tailor their 

efforts to next-generation sequencing.  As such, we can expect (and benefit from) multi-locus 

studies that involve a more complex sampling scheme than this one in future investigations.  

 

Effectively generating RAD markers 

 A longer restriction digest of unamplified genomes might have recovered more 

homologs from these two samples.  The fact that not all, or even a majority, of markers had a 

homolog across samples suggests I recovered only a fraction of the 400-500 bp fragments 

that would be generated in silica using a complete B. vivipara genome and PsiI's recognition 

site.  If the in vitro digest were complete, then all the markers would have had a homolog.  

What, then, prevented a more complete digest of the extracted genomes?  To a single 

restriction enzyme with a limited turnover rate, a genome is a massive physical structure.  

Adding time to the digest might have allowed the discovery and cleavage of more sites.  

Adding more enzymes may also have had a similar effect; or, perhaps not.  Activity may be 

hindered above a certain number of enzymes.  Careful experiments with the digest length and 

concentration of enzymes that focused on increasing the volume of DNA that migrates to the 

desired size band during electrophoresis would probably pay off with a greater number of 

markers, and thus, of homologous markers, in the bioinformatic stages. 

 In this investigation, I digested amplified gDNA.  This was initially done to prevent 

having too little DNA to submit to the sequencing center after the size-selecting step.  At the 
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time, paired-end GAII sequencing of small amounts of DNA was untested by my colleagues 

at HU, so the amplification step was a precaution against wasting an expensive sequencing 

reaction.  Since then, several groups have had successful runs with smaller amounts of DNA 

for Illumina sequencing.  Is it possible the excessive genetic material in vitro actually 

prevented the enzymes from effectively scanning the full genome?  This would be especially 

true if there was preferential digestion for some parts of the genome: the numerous copies 

would keep the enzymes 'busy' cutting the easily accessible restriction sites.  The result of 

this scenario would be excessively high coverage for some markers.  The highest coverage of 

one marker (4303.3) compared to the average coverage of all markers (10.4) lends support to 

this possibility, and leads me to think that removing the whole genome amplification step 

would not only eliminate possible bias, but also increase the efficiency of the restriction 

digest, and thus the number of homologs to compare. 

 

Effectively using next-generation sequencing 

 Paired-end sequencing was created to help researchers who randomly fragment 

genomes, use the small pieces as Illumina inserts, and reassemble the raw reads back into 

large contigs.  The paired-ends work like addresses to help place reads in the proper order 

when repetitive regions make placement via overlap ambiguous.  My samples occupied 1 of 

8 available channels on an Illumina flowcell that was shared with research groups using PE 

data to sequence whole genomes, which automatically carried me into the PE option.  I had 

hoped the distance between my PE reads was large enough to allow for recombination in my 

target species, which would have doubled the number of independent markers for my 

analyses.  The almost perfectly parallel results from PE1 and PE2 suggest they were linked.  
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It would have been more effective to reduce my insert size to 200, just short of twice the read 

length.  That way, I would have sequenced the middle of the fragments, had longer contigs, 

and analyzed a single set of data.  Longer markers would have strengthened all my analyses, 

especially the tests for selection.  On the other hand, longer markers might increase the 

likelihood of recombination, so a recombination step, such as the 4-gamete test, would be 

recommended for the analysis pipeline. 

 I took risks of introducing artificial variation with whole genome amplification, 

enrichment of the size-selected DNA, and massively parallel sequencing, because I relied on 

the assumption that data carried into the final analyses was a faithful representation of the 

state of the genome(s) I extracted from both plants.  Violations of this assumption have 

unpredictable effects on the results.  I followed protocols devised to reduce bias at both 

amplification steps, but I suspect the quality control (q.c.) pipeline was my most effective 

weapon for safeguarding against sequencing errors.  Its importance for any next-generation 

sequencing project cannot be overstated.  The q.c. results of this investigation are particularly 

relevant for researchers relying on PE reads: the PE2 reads had dramatically lower quality 

scores than PE1, especially near the limit of the read length.  Interestingly, there were more 

unknown bases (reads containing N) in PE1 than PE2. 

   

Effectively handling paralogs and orthologs 

 At its worst, the ambiguity of paralogs and orthologs caused the erroneous 

comparison of sequences for any number of my CG pairs.  Given the incompleteness of the 

data, I have no doubt some pairs were, indeed, paralogous.  When generating divergence 

estimates, these pointed to the timing of a duplication event, not the split, and led to an 
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unwelcome widening of my confidence intervals on t.  In tests for selection, these gave 

meaningless counts of synonymous and nonsynonymous polymorphisms, for a duplicated 

gene could accumulate changes at equal rates for all sites if it was not under any selective 

pressure (Zhang 2003).  My hope is that given the sheer amount of data and the application 

of my assumptions when pairing markers, orthologous pairs outnumbered paralogous pairs 

and the results were skewed towards the correct interpretations.  It is reassuring that the 

results are compatible with a priori expectations: t falls within the Quaternary period, and 

instances of purifying selection outnumber instances of positive selection.   

 One possible idea for quantitatively testing whether paralogs accumulate more 

mutations than orthologs would be a carefully devised simulation incorporating duplication 

events, population splits, and the requisite substitution rates and models for different genomic 

regions.  This posit of future work, or any forthcoming techniques to untangle orthologs from 

paralogs would undoubtedly be welcome by the research community.  Even with our current 

understanding, there may be some powerful analyses yet to be done with the Arctic/Alpine 

Bistorta data.  For example, if we assume cluster family members are paralogs, the 

demographic and adaptive analyses I applied across samples could be applied within 

samples, and, with some thought, yield such desirable outcomes as dating ploidy events or 

finding evidence of functional selection on gene copies in a polyploid. 

 

Effectively analyzing thousands of loci 

 There was no precedent in the literature for analyzing thousands of loci for much else 

but SNPs and genetic mapping when I designed this investigation.  The Perl programming 

language became invaluable for implementing tasks that were well-established for use with a 
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few sequences on the many.  The demographic analyses with IMa2 were particularly 

challenging because of the computational demands (e.g., random access memory [RAM], 

CPU time) when analyzing multiple loci in a coalescent framework.  Even with HU’s world-

leading computing facilities, I was unable to process more than 200 loci at a time without 

breaching RAM limits.  To use the thousands of markers I recovered, the runs were 

performed separately, which was awkward and time consuming.  My method of combining 

the results, summing the probability from all the simulations for each of 1000 bins from 0 to 

the prior for t and Na, is 'legal' for combining runs performed on the same data set, but is not 

usually done for the results from different data sets.  The only reason it worked for these data 

is that the batches of 200 loci, although different, all had the same characteristics (i.e. 

nuclear, unlinked, non-coding DNA of approximately the same length, from the same 

genomes).  The method worked well for x-axis values less than the median and was less 

accurate closer to the maximum.  The reason for this is the difference between the constant of 

a larger bin in two different runs is potentially greater than that of a two smaller bins because 

it is a larger number scaled by the mutation rate.  For example, the bulge on the right side of 

the final posterior probability curve for t (Fig. 8A) is probably an artifact of my method of 

combining results, not an increase in probability for those parameter values.  Just recently, 

the author of IMa2 published a manuscript outlining a theoretical framework using thousands 

of loci simultaneously, hinting at a practical application of high-throughput sequence data for 

estimating demographic parameters (Wang and Hey 2010).  It does require multiple 

individuals per population, which my data lack, but would be an excellent direction for 

improvement from here. 
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Conclusion 

 Global change studies forecast a reorganization of terrestrial biomes that will give 

organisms less time to move and/or adapt than transitions in and out of glacial ages (Jansen et 

al. 2007).  The response of Bistorta vivipara, a hardy tundra species, to transitions past 

suggests its capacity to respond is primarily demographic.  Some demographic responses, 

like retreat to refugia, may combat extinction, but only if refugia still exist or can be 

colonized by extant populations.  Unfortunately, the severity of the predicted change does 

little to encourage either adaptation or viable shifts in population structure as sustainable.   

With genetic adaptation ruled out as a response and potentially no way to keep up with (or 

find) ideal environmental conditions, the remaining option is irrevocably final—unless 

phenotypic plasticity can overcome the potential challenge.   

 Broadly applied to other plant species, the implications are enormous.  Some species 

may fare better than others (Willis et al. 2010), but plants that provide us with food, clothing, 

and shelter will probably struggle to adapt genetically in the time period imposed by 

anthropogenic climate scenarios.  As a result, we may see massive rearrangements in 

population demographics worldwide that tend toward circumstances—i.e. loss of genetic 

diversity—previously associated with extinction (Jackson and Weng 1999). 
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APPENDIX 
 
1.  Complete mitochondrial and chloroplast genomes used to identify M and CP 
sequences 
Mitochondrial 

Name NCBI Accession No. Order 
Arabidopsis thaliana 49256807 Brassicales 
Brassica napus 37591045 Brassicales 
Beta vulgaris subsp. vulgaris 47118321 Caryophyllales 
Marchantia polymorpha 786182 Marchantiales 
Nicotiana tabacum 56806513 Solanales 
Oryza sativa (indica cultivar-
group) isolate 93-11 

74100068 Poales 

Physcomitrella patens 90991378 Funariales 
Sorghum bicolor 114309646 Poales 
Silene latifolia 301338014 Caryophyllales 
Triticum aestivum 78675232 Poales 
Tripsacum dactyloides 
cultivar Pete 

114432085 Poales 

Zea mays strain NB 40794996 Poales 
 
Chloroplast 
Name NCBI Accession No. Order 
Arabidopsis thaliana 7525012 Brassicales 
Buxus microphylla 149390519 Basal tricolpates 
Coffea arabica 116617087 Gentianales 
Fagopyrum esculentum 
subsp. ancestrale 

166065336 Caryophyllales 

Oryza sativa Japonica Group 11466763 Poales 
Populus alba 110227059 Malpighiales 
Piper cenocladum 115605001 Piperales 
Pinus thunbergii 7524593 Pinales 
Ranunculus	
  macranthus	
   122893969	
   Ranunculales	
  
Vitis	
  vinifera	
   91983971	
   Vitales	
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2. list_querynames_and_compliments.pl 
	
  
#!usr/bin/perl 
open(BLASTOUT, "$ARGV[0]"); 
@blastlines = <BLASTOUT>; 
close BLASTOUT; 
open( FILE, '>queries_that_hit.txt'); 
open( FILE2, '>query_compliments_rc.txt'); 
$blastlines = join("", @blastlines); 
@queryblocks = split('Query=', $blastlines); 
shift @queryblocks; 
foreach $block (@queryblocks) { 
 ($qth) = ($block =~ /(^.*?\n)/); 
 $qth =~ s/\n//g; 
 $qth =~ s/\s//g; 
 @hsp = split('>', $block); 
 shift @hsp; 
 if($hsp[0]) { 
  ($qc) = ($hsp[0] =~ /(^.*?\n)/); 
  $qc =~ s/\s//g; 
  $qc =~ s/\n//g; 
  @id = split("/", $hsp[0]); 
  @id2 = split(" ", $id[1]); 
  $numcol = $id2[0]; 
  $numcol =~ s/\n//; 
  if ($numcol > 58) { 
   if ($hsp[0] =~ /Plus\/Plus/) { 
    print FILE ">","$qth\n"; 
    print FILE2 ">", "$qc\n"; 
    } 
   else { 
    print FILE ">","$qth\n"; 
    print FILE2 ">", "$qc","_rc","\n"; 
    } 
   } 
  } 
 } 
exit; 
 
3. restore_and_align_CGpairs.pl 
	
  
#! /usr/bin/perl 
$i = "ARC99.2_contigs.fa"; 
open(ARCCNTIGS, $i); 
@c = <ARCCNTIGS>; 
close ARCCNTIGS; 



	
   91	
  

$c = join("", @c); 
@contigs = split('>', $c); 
shift @contigs; 
%arc; 
foreach $element (@contigs) { 
 ($name) = ($element =~ /(^.*?\n)/); 
 $element =~ s/$name//; 
 $element =~ s/\n//g; 
 $name =~ s/ARC99/>ARC99/; 
 $name =~ s/\n//; 
 $arc{$name} = $element; 
 }         
$ii = "ALP99.2_contigs.fa"; 
open(ALPCNTIGS, $ii); 
@cc = <ALPCNTIGS>; 
close ALPCNTIGS; 
$cc = join("", @cc); 
@contigz = split('>', $cc); 
shift @contigz; 
%alp; 
foreach $elment (@contigz) { 
 ($nam) = ($elment =~ /(^.*?\n)/); 
 $elment =~ s/$nam//; 
 $elment =~ s/\n//g; 
 $nam =~ s/ALP99/>ALP99/; 
 $nam =~ s/\n//; 
 $alp{$nam} = $elment; 
 }      
open (FILE, "$ARGV[0]"); 
chomp $ARGV[0]; 
$ARGV[0] =~ s/CGpairs//g; 
$ARGV[0] =~ s/_//g; 
$ARGV[0] =~ s/.txt//g; 
$id = $ARGV[0]; 
`mkdir CG_pairs_$id`; 
@input = <FILE>; 
close FILE; 
$input = join ('', @input); 
@echpr = split ('\n', $input); 
$count = 1; 
foreach $pair (@echpr) {  
 @arcalp = split ('>', $pair); 
 shift @arcalp; 
 $arcalp[0] =~ s/A/>A/g; 
 $arcalp[1] =~ s/A/>A/g; 
 $alpwith_rc = $arcalp[1]; 
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 $arcalp[1] =~ s/_rc//g; 
 open (FILE, '>unaligned.txt'); 
 if ($alpwith_rc =~ m/_rc/) { 
  $revcom = reverse $alp{$arcalp[1]}; 
  $revcom =~ tr/ACGTacgt/TGCAtgca/;   
  print FILE "$arcalp[0]\n", "$arc{$arcalp[0]}",  
  "\n\n", "$alpwith_rc", "\n", "$revcom"; 
  close FILE; 
  `./muscle3.8.31_i86darwin32 -in unaligned.txt  
  -out ./CG_pairs_$id/$id\_pair_$count.fasta`; 
  ++$count;   
  } 
 else { 
  print FILE "$arcalp[0]\n", "$arc{$arcalp[0]}",  
  "\n\n", "$arcalp[1]\n", "$alp{$arcalp[1]}"; 
  close FILE; 
  `./muscle3.8.31_i86darwin32 -in unaligned.txt  
  -out ./CG_pairs_$id/$id\_pair_$count.fasta  `; 
  ++$count;   
  }  
 } 
exit; 
 
4. run_usearch_serially_FINAL.pl 
	
  
#!/usr/bin/perl 
foreach my $file (`ls nr*`) { 
    chop($file); 
    if ( $file =~ /lite/){ 
     `./usearch4.1.93_i86darwin32 --query 
 /Users/danielbronny/rhs/clusters/ALL99.2_contigs_seeds.fa 
 --db $file --maxlen 35000 --minlen 5 --userout 
 /Users/danielbronny/rhs/output_of_nr/output_of_$file.uc 
 --userfields query+target+ql+qs+frame+qrow+trow   
 --maxrejects 0 --maxaccepts 2 --evalue 1e-6`; 
     } 
    } 
exit; 
 
5. make_CG_pairs.pl 
	
  
#!usr/bin/perl 
open (FILE1, "./blastanalysis/queries_that_hit.txt");   
open (FILE2, "./blastanalysis/query_compliments_rc.txt"); 
@temp1 = <FILE1>; 
@temp2 = <FILE2>; 
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close FILE1; 
close FILE2; 
$temp1 = join('', @temp1); 
$temp2 = join('', @temp2); 
@qwhits = split ('\n', $temp1); 
@qcomps = split ('\n', $temp2); 
@cgpairs{@qwhits}=@qcomps; 
open(P, 'P_names.txt'); 
open(C, 'C_names.txt'); 
open(M, 'M_names.txt'); 
open(U, 'C_or_M_names.txt'); 
open(RPTS, 'repeats.txt'); 
@p = <P>; 
@c = <C>; 
@m = <M>; 
@u = <U>; 
@rpts = <RPTS>; 
close P; 
close C; 
close M; 
close U; 
close RPTS; 
$p = join('', @p); 
$c = join('', @c); 
$m = join('', @m); 
$u = join('', @u); 
$rpts = join('', @rpts); 
open(ERR, '>CGpairs_error_.txt'); 
open(PPR, '>CGpairs_P_.txt'); 
open(CPR, '>CGpairs_C_.txt'); 
open(MPR, '>CGpairs_M_.txt'); 
open(UPR, '>CGpairs_U_.txt'); 
open(NCPR, '>CGpairs_NC_.txt'); 
while (($key, $value) = each %cgpairs) { 
 if($c =~ /$key|$value/) { 
  if($m =~ /$key|$value/ | $p =~ /$key|$value/ | $u 
  =~ /$key|$value/ | $rpts =~ /$key|$value/) { 
   print ERR "$key","$value\n"; 
   } 
  else { 
   print CPR "$key","$value\n"; 
   } 
  } 
 elsif($m =~ /$key|$value/) { 
  if($c =~ /$key|$value/ | $p =~ /$key|$value/ | $u 
   =~ /$key|$value/ | $rpts =~ /$key|$value/) { 
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   print ERR "$key","$value\n"; 
   } 
  else { 
   print MPR "$key","$value\n"; 
   } 
  } 
 elsif($u =~ /$key|$value/) { 
  if($c =~ /$key|$value/ | $p =~ /$key|$value/ | $m 
  =~ /$key|$value/ | $rpts =~ /$key|$value/) { 
   print ERR "$key","$value\n"; 
   } 
  else { 
   print UPR "$key","$value\n"; 
   } 
  } 
 elsif($p =~ /$key|$value/) { 
  if($m =~ /$key|$value/ | $c =~ /$key|$value/ | $u 
  =~ /$key|$value/ | $rpts =~ /$key|$value/) { 
   print ERR "$key","$value\n"; 
   } 
  else { 
   print PPR "$key","$value\n"; 
   } 
  } 
 unless($m =~ /$key|$value/ | $c =~ /$key|$value/ | $u  
  =~ /$key|$value/ | $rpts =~ /$key|$value/ | $p =~ /
  $key|$value/) { 
  print NCPR "$key","$value\n"; 
  } 
 }   
close ERR; 
close PPR; 
close CPR; 
close MPR; 
close UPR; 
close NCPR; 
exit; 
 
6. find_identical_ppairs.pl 
	
  
#!/usr/bin/perl 
open (NODIFF, '>no_polymorphisms.txt'); 
foreach $file (`ls`) { 
    chop($file); 
    if ( $file =~ /P_pair_[0-9]*\.fasta/) { 
     open ( FILE, "$file"); 
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     @contents = <FILE>; 
     close FILE; 
     $contents = join ('',@contents); 
     @eachtig = split ('>',$contents); 
     shift @eachtig; 
     $arc = $eachtig[0]; 
     $alp = $eachtig[1]; 
     $arc =~ s/A/>A/; 
     $namechk = $arc; 
     $namechk =~ s/\n.*//g; 
     $alp =~ s/A/>A/; 
     $eachtig[0] =~ s/(^.*\n)//; 
     $eachtig[1] =~ s/(^.*\n)//; 
     $arcstring = $eachtig[0]; 
     $alpstring = $eachtig[1]; 
     $arcstring =~ s/\n//g; 
     $alpstring =~ s/\n//g; 
     @posarc = split ('', $arcstring); 
     @posalp = split ('', $alpstring); 
     $colcnt = 0; 
     $match = 0; 
     $miss = 0; 
     $gap = 0; 
     foreach $column (@posarc) { 
      if ($column eq "-") { 
       ++$gap; 
       ++$colcnt; 
       } 
      elsif ($posalp[$colcnt] eq "-") { 
       ++$gap; 
       ++$colcnt; 
       } 
      elsif ($column eq $posalp[$colcnt]) { 
       ++$match; 
       ++$colcnt; 
       } 
      else { 
       ++$miss; 
       ++$colcnt; 
       } 
        } 
       $total = $match + $miss; 
     if ($total eq $match) { 
      ++$nochange; 
      print NODIFF "$namechk", "\n"; 
      } 
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     print "\n$file","\n"; 
     print "The number of columns was $colcnt\n"; 
     print "The number of gaps was $gap\n"; 
     print "The number of match columns was $match\n"; 
     print "The number of mismatch columns was $miss\n"; 
     print "The number of eligible columns was $total\n";  
     }  
 }  
print "\nThere are $nochange \"identical\" protein pairs\n\n"; 
exit; 
 
 
7. run_SNAP_on_all.pl 
	
  
#! /usr/local/bin/perl 
open(FILE, "ALL_frame_output.uc"); 
@lines = <FILE>; 
close FILE; 
foreach $line (@lines) { 
 @tabs = split("\t", $line); 
 unless ($tabs[0] =~ /query/){ 
  $framehash{$tabs[0]} = $tabs[4]; 
  } 
 } 
while (($key, $value)=each %framehash) { 
 push (@keylist,$key); 
 } 
$framekeys = join('', @keylist); 
open(POLYCHK, "no_polymorphisms.txt"); 
@chk = <POLYCHK>; 
$polychk = join ('', @chk); 
close POLYCHK; 
open (FILE, "P_pair_ALL.fa"); 
@readta = <FILE>; 
close FILE; 
$readin = join("",@readta); 
@readin = split(">AR", $readin); 
shift @readin; 
$count = 0; 
$tpp = 0; 
$nopoly = 0; 
open (ERR, '>not_appearing_in_framesearch.txt'); 
foreach $elm (@readin) { 
 open (FILE2, '>onepair.fasta'); 
 $elm =~ s/C991/>ARC991/; 
 ($name) = ($elm =~ /(^.*?\n)/); 
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 $name =~ s/\s//g; 
 if ($polychk =~ /$name/) { 
  ++$nopoly; 
  } 
 else{  
  $name =~ s/>//g; 
  if ($framekeys =~ /$name/) { 
   $arcid = $name; 
   @arcid = split ("_", $arcid); 
   $arcidfinal = "R".$arcid[2]; 
   $elm =~ s/>AR.*\n/$arcidfinal\t/g; 
   ($name2) = ($elm =~ /(>.*?\n)/); 
   $name2 =~ s/>//g; 
   $name2 =~ s/\n//g; 
   $alpid = $name2; 
   @alpid = split ("_", $alpid); 
   $alpidfinal = "L".$alpid[2]; 
   $elm =~ s/>AL.*\n/$alpidfinal\t/g; 
   $elm =~ s/\n//g; 
   $elm =~ s/A(L)/A\nL/; 
   $elm =~ s/T(L)/T\nL/; 
   $elm =~ s/G(L)/G\nL/; 
   $elm =~ s/C(L)/C\nL/; 
   $elm =~ s/-(L)/-\nL/; 
   $elm =~ s/$/\n/; 
   $elm2 = $elm; 
   $elm2 =~ s/(L|R).*\t//g; 
   @thetwolines = split ("\n",$elm2); 
   $seq1a = $thetwolines[0]; 
   $seq1b = $thetwolines[1]; 
   $frame = $framehash{$name}; 
   $seq1a_rc = reverse $seq1a; 
   $seq1a_rc =~ tr/ACGTacgt/TGCAtgca/; 
   $seq1b_rc = reverse $seq1b; 
   $seq1b_rc =~ tr/ACGTacgt/TGCAtgca/; 
   if ($frame =~ m/(-)/) {   
    if ($frame =~ m/1/) { 
     print FILE2      
     "$arcidfinal","\t","$seq1a_rc","\n"; 
     print FILE2      
     "$alpidfinal","\t","$seq1b_rc","\n"; 
     `perl SNAP.pl onepair.fasta`; 
     } 
    if ($frame =~ m/2/) { 
     print FILE2      
     "$arcidfinal","\t","--","$seq1a_rc","
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     \n"; 
     print FILE2      
     "$alpidfinal","\t","--","$seq1b_rc","
     \n"; 
     `perl SNAP.pl onepair.fasta`; 
     } 
    if ($frame =~ m/3/) { 
     print FILE2      
     "$arcidfinal","\t","-","$seq1a_rc","\
     n"; 
     print FILE2      
     "$alpidfinal","\t","-","$seq1b_rc","\
     n"; 
     `perl SNAP.pl onepair.fasta`; 
     } 
    } 
   else { 
    if ($frame =~ m/1/) { 
     print FILE2      
     "$arcidfinal","\t","$seq1a","\n"; 
     print FILE2      
     "$alpidfinal","\t","$seq1b","\n"; 
     `perl SNAP.pl onepair.fasta`; 
     } 
    if ($frame =~ m/2/) { 
     print FILE2      
     "$arcidfinal","\t","--","$seq1a","\n"
     ; 
     print FILE2      
     "$alpidfinal","\t","--","$seq1b","\n"
     ; 
     `perl SNAP.pl onepair.fasta`; 
     } 
    if ($frame =~ m/3/) { 
     print FILE2      
     "$arcidfinal","\t","-","$seq1a","\n"; 
     print FILE2      
     "$alpidfinal","\t","-","$seq1b","\n"; 
     `perl SNAP.pl onepair.fasta`; 
     } 
    }  
   ++$count; 
   } 
  else { 
   print ERR ">", $name, "\n"; 
   ++$tpp; 
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   } 
  }  
 }  
close FILE2; 
$wpur=0; 
$wpos=0; 
$spur=0; 
$spos=0; 
$ntrl=0; 
open (FILE3, '>dsdnlist.txt'); 
open (FILE4, '>SNAP_summary.txt'); 
foreach my $file (`ls summary.*`) { 
    chop($file); 
    open (FILE, $file); 
    @summary = <FILE>; 
    @secondline = split(" ",$summary[1]); 
    if ($secondline[8] =~ /0\.00/) { 
      print FILE3 $secondline[2],"\t",    
  $secondline[3],"\t","W\t","pos\t",    
  $secondline[12],"\t",$secondline[4],"\t",  
  $secondline[5],"\n"; 
      ++$wpos; 
     } 
    elsif ($secondline[9] =~ /0\.00/) { 
      print FILE3 $secondline[2],"\t",    
  $secondline[3],"\t","W\t","pur\t",    
  $secondline[12],"\t",$secondline[4],"\t",  
  $secondline[5],"\n"; 
      ++$wpur; 
     } 
    elsif ($secondline[12] gt 1) { 
     print FILE3 $secondline[2],"\t",    
  $secondline[3],"\t","S\t","pur\t",    
  $secondline[12],"\n"; 
     ++$spur; 
      } 
    elsif ($secondline[12] eq 1) { 
     print FILE3 $secondline[2],"\t",    
  $secondline[3],"\t","NA\t","ntrl\t",   
  $secondline[12],"\n"; 
     ++$ntrl; 
     } 
    else{ 
     print FILE3 $secondline[2],"\t",    
  $secondline[3],"\t","S\t","pos\t",    
  $secondline[12],"\n"; 
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     ++$spos; 
     } 
    } 
close FILE3; 
print FILE4 "The total number of P pairs in the input file was 
", scalar @readin, "\n";     
print FILE4 "The total number of P pairs that had 
polymorphisms, frame information, and were run in SNAP is 
$count.\n"; 
print FILE4 "$tpp P pairs did not appear in the output of 
framesearch.\n"; 
print FILE4 "$nopoly P pairs were not run because they lacked 
polymorphism.\n"; 
print FILE4 "$wpos were categorized as weak-pos\n"; 
print FILE4 "$wpur were categorized as weak-pur\n"; 
print FILE4 "$spos were categorized as strong-pos\n"; 
print FILE4 "$spur were categorized as strong-pur\n"; 
`mkdir SNAPrawout`; 
`mv summary.* SNAPrawout/`; 
`mv dsdist.* SNAPrawout/`; 
`mv dndist.* SNAPrawout/`; 
`mv codons.* SNAPrawout/`; 
`mv background.* SNAPrawout/`; 
exit;  
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