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Abstract

The White Chuck Tuff, a massive deposit approximately 15 m thick, caps two 

terraces in the White Chuck River valley covering an area of approximately 5 km^ at the 

base of Glacier Peak, Washington. Three major post-glacial eruption cycles from Glacier 

Peak reportedly occurred approximately from 12,000 to 11,250 years ago (White Chuck 

Assemblage), from 5,500 to 5,100 years ago (Kennedy Creek Assemblage), and from 

1,800 to 250 years ago (recent eruptions). West of Glacier Peak, pyroclastic and lahar 

deposits from all three episodes are found in drainages out to Puget Sound 100 km away. 

The White Chuck Tuff has been assumed to be approximately 11, 500 years old (Beget, 

1981) and not found west of Camp Creek in the White Chuck River Valley, 

approximately 17 km from Glacier Peak. Anisotropy of magnetic susceptibility, 

paleomagnetic, petrographic, and geochemical procedures were conducted to characterize 

the tuff deposit. Similar laboratory procedures were conducted on five distal pyroclastic 

deposits to determine if they were unconsolidated runout of the White Chuck Tuff

Flow direction, paleomagnetic directions and paleomagnetic poles, mineralogy, 

and chemical composition of the proximal indurated White Chuck Tuff indicate that it 

was emplaced as a single unit at temperatures exceeding 580° C. The overall flow 

direction during emplacement was northwesterly down the White Chuck River Valley. 

The paleomagnetic directions, mineral and chemical compositions are similar amongst 

the seven sampling sites.

Five distal deposits WC-1, SR-1, SR-2, SR-3, and ST-1 were products of cold to 

warm (from 22°C to 375°C) debris flows that made their way down the White Chuck
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River Valley into the Sauk and North Fork Stillaguamish River Valleys. The 

paleomagnetic directions amongst the distal deposits were not well defined. The 

anisotropy of magnetic susceptibility of these deposits had no preferred orientation of the 

magnetic fabric indicating that the flow direction and individual clast anisotropy were 

independent of emplacement mechanisms. A viscous magnetization was measured in 

many of the pumiceous clasts sampled at all of the cooler distal sites and upward 

directions were measured in the low unblocking temperature range of 100 to 300° C in 

many of the samples from these sites. The clasts from these deposits had a previous 

magnetic history before they came to rest at their present location. The chemistry and 

mineralogy of all five distal sites is similar and indicate dacitic composition.

The virtual geomagnetic pole of distal deposit WC-1 closely corresponds with the 

9180 +290/-200 virtual geomagnetic pole of Hagstrum and Champion (2002), which post 

dates the White Chuck Assemblage. Virtual geomagnetic poles of other distal deposits 

are not well enough defined to be useful. From field relationships associated with the 

deposition and location of other deposits (Dravovieh et al, 2003), the Glacier Peak distal 

deposits were probably produced during the Kennedy Creek Assemblage eruption cycle.

The virtual geomagnetic pole of the White Chuck Tuff deposit matches the 

12,750 b.p. virtual geomagnetic pole of Hagstrum and Champion (2002). This virtual 

geomagnetic pole dates the tuffs deposition before the White Chuck Assemblage 

eruptive cycle. Therfore the previously assumed age of 11,500 b.p. is probably incorrect.
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Introduction

Correlation of ash flow deposits is important in complex volcanic fields because 

such deposits may provide clues to the regional stratigraphic framework. The White 

Chuck Tuff, a product of Glacier Peak Volcano (Figure la), is such a deposit. The tuff is 

a massive ash flow deposit believed to cap the White Chuck Assemblage, first named by 

Tabor and Crowder (1969) for the volcanic deposits resulting from the Late-Pleistocene 

eruptive episode of Glacier Peak, has and assumed age of approximately 11,500 years 

b.p.

Late-Pleistocene pyroclastic and lahar deposits contemporaneous with tephra 

eruptions (G through B) occurred in river drainages surrounding Glacier Peak (Beget, 

1981). The Late-Pleistocene eruptions produced pumiceous pyroclastic flows that 

extended as far as 20 km down valleys. Lahars and alluvium consisting entirely of 

reworked pyroclastic debris were deposited contemporaneously in the Sauk and North 

Fork Stillaguamish Valleys as far as 100 km downstream (Beget, 1983). Holocene 

eruptions had similar eruptive sequences depositing pyroclastic flows and lahars to the 

west and east of Glacier Peak. Lahars deposited during the Holocene have also been 

identified to reach Puget Sound.

The purpose of this study is to show the relationship between the White Chuck 

Tuff deposit in the upper White Chuck River Valley and five possibly correlative distal 

lahar deposits of the Sauk and North Fork Stillaguamish River Valleys using 

paleomagnetic, petrographic, and geochemical methods. The principal goals of this study 

are to determine the (1) depositional relationship between the White Chuck Tuff and the



distal deposits, (2) mode of emplacement of the White Chuck Tuff and distal deposits, 

and (3) relative emplacement temperature of the deposits.

Previous geologic studies west of Glacier Peak include Vance (1957), Beget 

(1981) and Dragovich et al (2000). The authors of these studies concluded that during 

the Late-Pleistocene, deposition of voluminous pyroclastics and lahars caused major 

drainage changes. An estimated 10 km^ of volcanic debris, deposited where the city of 

Darlington is located today, diverted the original western course of the Sauk River into 

the North Fork Stillaguamish River, to its present route north, into the Skagit River 

(Figure lb). Beget (1981) reported that most deposits in this area, approximately 30 km 

from Glacier Peak, were emplaced during Late Pleistocene volcanic episodes. Dragovich 

et al (2000) noted that volcanic deposits in the Sauk River and North Fork Stillaguamish 

River confluence are intercalated with alluvium and glacial outwash. This suggests that 

there were two separate volcanic episodes younger than 5,000 years ago. If the volcanic 

debris beneath Darrington was deposited during the Holocene, the Sauk River could have 

been flowing westward down the North Fork Stillaguamish River only 5,500 years ago 

(Dragovich, personal communication, 2001).

Petrologic studies of Glacier Peak deposits have been performed by Ford (1957), 

Tabor and Crowder (1969) and most recently by Taylor (2001). The earliest studies 

concluded that Glacier Peak is a dacitic stratovolcano with isolated mafic volcanic 

centers distributed between 5 and 10 km south of Glacier Peak. Taylor (2001) focused on 

the petrology and geochemistry of four Late Pleistocene to Early Holocene mafic vents 

between 5 and 10 km south of Glacier Peak. Glacier Peak dacite samples were a critical 

part of Taylor’s analysis. Characteristics of the two most evolved mafic centers suggest
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parent magma mixing with more felsic crustal compositions, similar to evolved Glacier 

Peak dacites.

A major uncertainty is the age and extent of the White Chuck Tuff, a high volume 

pyroclastic flow, thought to have been deposited in the upper White Chuck River Valley 

approximately 11,420 ± 150 years ago (Beget 1981, W-4616, p. 46). The dated log, on 

which this age is based, was located approximately 30 km west of the tuff deposit in an 

outcrop near the mouth of the White Chuck River. The date was interpreted as a lower 

limit to the White Chuck Tuff by Beget (1981) because the stratigraphy at that site had a 

pumiceous deposit bounded by a lower lahar deposit containing the log, and an upper 

lahar deposit with rip-up clasts of the White Chuck Tuff The pumiceous deposit was 

interpreted as possible distal runout of the White Chuck Tuff.

This tuff deposit has not been identified down stream of Ceimp Creek in the White 

Chuck Valley (Tabor and Crowder, 1969), but material from this could have extended 

farther downstream where it was deposited as unconsolidated laharic fill, such as that of 

the Sauk/Stillaguamish River divide. The distal deposits were examined in the four areas 

shown on Figure lb. Distal deposits that have similar paleomagnetic, mineralogical and 

chemical characteristics may be contemporaneous with the eruptive event of the White 

Chuck Tuff

3



Figure la. The location of the research field area in relation to Glacier Peak, Washington

Figure lb. An enlarged view of the field area showing the location of the four focus 
study areas west of Glacier Peak.
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Glacier Peak

The following discussion describes the major landforms and the geologic makeup 

of Glacier Peak so that the reader can better evaluate the conclusions regarding 

correlation of the White Chuck Tuff and distal deposits. The discussion is primarily taken 

from Vance (1957), Tabor and Crowder (1969), Beget (1981, 1983), Beget et al (1990), 

Dragovich et al (2000), and Waitt et al (1995).

Regional Setting

Glacier Peak is one of five dormant stratovolcanoes in Washington State (Figure 

la). The Cascade Volcanic Arc is made up of approximately 15 Quaternary 

stratovolcanoes paralleling the length of the Cascadia Subduction zone where the North 

American Plate is converging (N50°E) with the Juan de Fuca Plate approximately 45 mm 

per year (Riddihough, 1984). Glacier Peak is located about 100 km northeast of Seattle, 

Washington and rises 3,213 m above sea level. There is no evidence that Glacier Peak is 

older than 700 Ka because all deposits sampled on the flanks of the volcano have normal 

polarity magnetization (Tabor and Crowder, 1969).

Post-Glacial Eruptive History

Glacier Peak (Figure 2) has had three major eruptive episodes since the retreat of 

continental glaciers in Western North America. The three episodes produced volcanic

5



6

Fi
gu

re
 2.

 Th
e 

w
es

t s
id

e o
f G

la
ci

er
 P

ea
k 

w
ith

 th
e K

en
ne

dy
 (l

ef
t) 

an
d 

Sc
im

ita
r (

rig
ht

) g
la

ci
er

s i
n 

vi
ew

.



sequences identified as 1) the White Chuck Assemblage «12,000-11,250 years before 

present (b.p.), 2) the Kennedy Creek Assemblage «5,500-5,100 years b.p., and 3) recent 

eruptions «1,800-250 years b.p. (Beget, 1981). Post-glacial eruptions have produced 

pyroclastic flows, lahars, tephra, and dacite lava. Glacier Peak post-glacial eruptions are 

second only to Mount St. Helens, in southwest Washington, as the largest and most 

explosive eruptions in Washington State. To the west, the Late-Pleistocene and Holocene 

Glacier Peak volcanic episodes filled the White Chuck, Sauk, and North Fork 

Stillaguamish Rivers with pyroclastic and lahar deposits. A select number of flows 

reached the Puget Sound over 100 kilometers away from Glacier Peak via the North Fork 

Stillaguamish and Skagit Rivers (Dragovich et al., 2000).

White Chuck Assemblage: The White Chuck Assemblage is known for its 

tephra deposits that are used as stratigraphic markers throughout eastern Washington, 

Idaho, Montana, and Southern parts of Alberta, Canada (Porter, 1978; Westgate and 

Evans, 1978). These Late-Pleistocene eruptions produced tephra, pyroclastics, and lahars 

that were deposited on all flanks of the volcano. Pyroclastic and lahar deposits 

contemporaneous with these tephra eruptions occur in river drainages that originate on 

Glacier Peak and extend down valleys as far as 20 km (Figure 3a). Lahars and alluvium 

consisting of reworked pyroclastics were deposited contemporaneously in the Sauk and 

Stillaguamish Valleys as far as 100 km downstream (Beget, 1983) (Figure 3b). Vance 

(1957) and Beget (1981) concluded that during this eruptive cycle, a thick sedimentary 

fan of lahars and volcanic alluvium was deposited in the upper Stillaguamish River 

Valley diverting the Sauk River north into the Skagit River drainage.
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Kennedy Creek Assemblage: The eruptions forming the Kennedy Creek 

Assemblage began about 5,500 years ago (Beget, 1981). The assemblage consists of 

pyroclastic flow deposits, and non-cohesive and cohesive lahar deposits, which were 

produced by several eruptive events probably over a period of about 400 years. These 

deposits extend 135 km down valley from Glacier Peak to near La Conner in the Puget 

Lowland (Dragovich et al., 2000). Terraces of Kennedy Creek Assemblage deposits are 

found in the White Chuck, Sauk, and Skagit River Valleys. The total estimated volume 

of the preserved Kennedy Creek Assemblage from the flanks of Glacier Peak to the Puget 

Sound is estimated to be 2-3 km^ (Beget, 1981).

Recent Eruptions: The last major eruptions occurred from 1,800 to 250 years 

ago (Beget, 1981) that produced small tephra eruptioins, pyroclastics, and lahars. Most 

lahars and pyroclastic flows traveled down the Suiattle River into the Sauk River about 

30 km from the volcano. Lahars also traveled as far as 15 km down the White Chuck 

River Valley.
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Figure 3 a. Unsorted pyroclastic deposits of the (Beget 1982) in the White Chuck River 
Valley approxmately 10 km west of Glacier Peak.

Figure 3b. Lahar deposits in the North Fork Stillaguamish River flood plain approximately 
50 km west of Glacier Peak.
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Description of Deposits

White Chuck Tuff

A15 m thick, cliff-forming, tuff deposit (Figure 4) caps a terrace paralleling the 

White Chuck River Valley from Glacier Creek to Camp Creek about 17 km from Glacier 

Peak (Figure 5a and b). Described in detail by Tabor and Crowder (1969) and Beget 

(1981), the indurated tuff has well-developed columnar jointing that generally extends 

from the top to the bottom of the deposit (Figure 6). A thin zone at the base of the tuff 

deposit, ranging from 10 cm to a meter thick, is less well indurated and lacks jointing 

(Figure 6). This friable zone typically forms a re-entrant under the indurated tuff There 

are no indications that separate flow events formed this deposit. The tuff is massive and 

pumice lapilli are observed to be concentrated in the upper part of the flow with the lithic 

dacite clasts concentrated near the base. Mafic crystals in the tuff are primarily 

hornblende, orthopyroxene, clinopyroxene, with minor amounts of biotite (Beget, 1981). 

The deposit is not welded, but is locally indurated from settling pressures and heat. The 

texture of the tuff is seen in Figure 7, which is a photo taken fi-om the Western 

Washington University scanning electron microscope (SEM). The glass shards appear to 

be altered and the individual particles are not welded together. The deposit does not 

show fiamme structure due to pumice collapse, which indicates that the pumiee 

fragments were not hot enough to be ductile.

Approximately 15 km from Glaeier Peak, the upper 1-2 m of the deposit are pink 

to pinkish-red. This discoloration is interpreted as a hydrothermally altered zone

10



diagnostic of a high temperature emplacement that probably formed when the White 

Chuck Tuff was cooling (Crandell, 1980).
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Figure 5a. Geologic map of the west flank of Glacier Peak. The White Chuck Tuff is 
mapped in dark brown as Qvt, outlined in red (Tabor and Crowder, 1969).

Figure 5b. View east from the base of Glacier Peak down the White Chuck River Valley.
The White Chuck Tuff creates the prominent terraces down the center of the 
White Chuck River Valley.
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Figure 6. A view of the White Chuck Tuff in its entire section about 15 m thick.
This outcrop is a landslide scarp in the Fire Creek valley. The base, 
about 30 cm thick, is a moderately friable zone which lacks jointing.
The major portion of the deposit has columnar jointing. Above the jointing 
at the top of the deposit are later pumiceous deposits.
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Figure 7. A photo micrograph of the White Chuck Tuff. The ~20 micrometer mineral grain 
in view is surrounded by a vesicular groundmass. This example shows that the 
groundmass is not glassy, but made up of spongy clay particles resulting from 
devitrification of the glass.
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The age of the tuff has been identified by dating a log in a lahar deposit near 

mouth of the White Chuck River, near the distal deposits, that appears to be conformably 

below lahar deposits that contain tuff fragments. The log is about 11,500 years old and 

Beget suggests that because the deposit does not contain tuff fragments that the White 

Chuck Tuff was probably produced about this same time, as well as tephra layer B,

11,250 b.p. It is not known how far west of Camp Creek the tuff originally extended, but 

large blocks of the tuff occur farther downstream in reworked parts of the White Chuck 

Assemblage and are also found in the distal deposits in the White Chuck River and Sauk 

Rver (Beget, 1981).

Distal Deposits

The distal deposits studied in this project are believed to be of Late-Pleistocene 

age based on stratigraphic position (Beget, 1981). Many deposits of the same lithologies 

occur along the river valleys out to the Puget Sound. The most distal deposit sampled for 

this project is approximately 50 km from Glacier Peak in the North Fork Stillaguamish 

Rver bank about 2 km east of Darrington. Deposits further than 50 km are less 

consolidated and are deemed to be of laharic origin. The more consolidated deposits 

were sampled because of the possibility that heat might have played an important part in 

their formation and they may also represent distal deposits of the White Chuck Tuff.

Distal deposits, defined in this study as being >30 km west of Glacier Peak, are 

pumiceous lahar deposits exposed in creek beds, river valleys, and road cuts. These 

deposits are <3 m thick consist largely of pumice and dacite clasts suspended in a dacite-

16



rich, sandy groundmass (Figure 8). The deposits are unconsolidated, but compacted 

enough to form steep-sided banks along rivers and creeks (Figure 9a, b). The compaction 

is most likely due to settlement of fine and coarse particles during deposition.

Flow boundaries are visible between deposits, but the ages of the individual 

flows are not easily determined. This is interpreted to be due to the lack of vegetation in 

the valleys at the time of peak eruptive cycles, and little material suitable for dating

has been located (Dragovich et al., 2000). The distal deposits may be correlative with 

either the White Chuck Assemblage or the Kennedy Creek Assemblage (Dragovich, 

personal communication, 2001).

The suspended clasts are light gray nonvesicular dacite and more vesicular dacite. 

Pumice clasts are also present and sometimes reversely graded. Cross-beds seen at the 

top of the North Fork Stillaguamish site have concentrations of pumice clasts in each 

cross-bed (Figure 10). Most pumice clasts are rounded and up to 50 cm in diameter. 

Figure 11 shows a tephra layer that was deposited as a thin consolidated lens between the 

more massive laharic deposits.

17



Figure 8. Distal deposit (SR-1), which is typical of the distal deposits containing vesicular 
and non-vesicular clasts suspended in a fine grained sandy matrix. Core samples 
of pumiceous dacite clasts were taken from the locations shown by the red arrows

18



Figure 9a. A view of distal deposit (ST-1) along the North Fork Stillaguamish River.
The deposit is consolidated enough to form steep river banks, but it 
is easily eroded.

Figure 9b. A close up view of the distal
deposit in figure 9a, showing the 
steep sides of the deposit, fine 
grained matrix, and dacite clasts. 
These clasts occur at approximately 
the height of the author's shoulder.
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Figure 10. Cross beds at the top of distal deposit ST-1 that have reversely graded gray 
sandy graundmass and orange-yellow weathered pumice.

Figure 11. A prominant tephra layer separating two lahar deposits. The tephra layer is 
approxmately 6 cm thick and is not as easily eroded as the unconsolidated 
lahar deposits.
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Methodology of Study

Field Study and Sampling

A reconnaissance survey of the White Chuck Tuff and distal deposits was 

conducted over a period of several months. The White Chuck Tuff, in the upper White 

Chuck River Valley, and five down stream locations in the Sauk River and North Fork 

Stillaguamish River Valleys (Figure 12 and 13) were chosen for this study because of 

good exposure and potential for proximal and distal tuff deposit correlation. At each of 

twelve sample sites the rock unit was described and samples were collected for laboratory 

analyses.

Individually oriented core samples of the indurated White Chuck Tuff and lithic 

clasts of the unconsolidated distal deposits were used for magnetic susceptibility, 

paleomagnetic, petrographic, and chemical evaluation. A sampling scheme was arranged 

to accommodate paleomagnetic studies in the two distinct locations. Seven sample sites 

were selected to adequately cover the White Chuck Tuff laterally and stratigraphically 

(Figure 12). Twenty oriented drill cores were collected from the face of the outcrop at 

each sampling location. Sample collection started from bottom left and ended at top right 

(Figure 14). Each site was sampled using a cordless electric drill to drive a 2.5 cm inside 

diameter diamond drill bit. Orientations of the core samples were obtained using a 

Brunton pocket transit and core orienter. Field descriptions of the outcrop were also 

made at each site (Appendix I).

Five doAvnstream sample locations were chosen to assess the relationship between

the distal deposits of unconsolidated pumiceous lahars and the White Chuck Tuff (Figure
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14). A minimum of five oriented samples were collected from each distal deposit 

location. Clasts >20 cm were drilled and collected using the same method as used for the 

White Chuck Tuff Smaller clasts tended to get dislodged while drilled in place. These 

clasts were oriented in the field and drilled in the lab. All cores were cut into specimens 

2.2 cm long.

Most drill cores were longer than the 2.2 cm, which yielded samples that were 

useful for petrographic and chemical anaylsis. The cylindrical specimens were ideal for 

thin sections on 7.5x2.5 cm glass slides and each specimen yielded approximately 20 g of 

material for chemical analysis.
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Figure 13. Distal deposit sample locations in the White Chuck, Sauk, and North 
Fork Stillaguamish River Valleys.

24



Figure 14. Sampling scheme in the White Chuck Tuff. Drill cores were collected from left 
to right and bottom to top. There were three rows and four samples in each row 
equaling 20 samples. Sample sites had comers, walls and overhangs to provide 
a variety of orientations for added randomness.
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Magnetic Studies

Paleomagnetism: Paleomagnetism is primarily the study of the ancient 

geomagnetic field recorded by rocks. Igneous rocks acquire a magnetic direction parallel 

to the Earth’s magnetic field at the time they cooled below the Curie temperature of their 

magnetic minerals. In detail, the range of temperatures over which igneous rocks record 

the ambient geomagnetic field depends on the rate of cooling, mineral compositions, and 

grain sizes. The properties of common magnetic minerals in igneous rocks are referenced 

from Dunlop and Ozdemir (1997). To characterize the remanence of these rocks, the 

natural remanent magnetization (NRM) was progressively thermally demagnetized. The 

unblocking temperature of components of magnetization that are identified can be used to 

infer emplacement temperatures, if the composition of the magnetic minerals is well 

constrained. In order to discriminate between an emplacement at ambient temperature 

and an emplacement at a temperature significantly above the ambient temperature, a 

paleomagnetic study was carried out using the method developed by Hoblitt and Kellogg 

(1979).

The NRM of the proximal, indurated White Chuck Tuff and related distal 

unconsolidated deposits might indicate spatial evolution of a high temperature pyroclastic 

flow. Three signatures of NRM at the time of deposition are possible when analyzing 

individual clasts within volcanic debris deposits (Hoblitt and Kellogg, 1979). In Type I 

deposits all clasts are above their maximum blocking temperature when deposited and 

would have acquired their total NRMs parallel to the geomagnetic field. The measured 

directions will be closely grouped about the field direction that was present during 

cooling (Figure 15a). Type II deposits occur if all the clasts are magnetized elsewhere.

26



transported, then deposited below their lowest blocking temperature. The total NRM 

would have been acquired prior to deposition and the measured remanent directions 

would be randomly scattered due to rotation during transport (Figure 15b). Type III 

deposits are intermediate between Type I and II; all clasts are deposited below their 

maximum blocking temperatures, but above the temperature of their minimum blocking 

temperature. The demagnetization path of clasts from a Type III deposit would contain 

two partial NRM components, high unblocking temperature and low rmblocking 

temperature components (Figure 15c). The high-temperature component is acquired 

prior to deposition and thus will be in random directions, whereas the low-temperature 

component is acquired after the clasts came to rest and will be parallel to the direction of 

the geomagnetic field that was present during cooling. Deposition is not the only 

mechanism by which a type II deposit could be partially remagnetized and appears like a 

type III deposit. Among these mechanisms are viscous remagnetization, reheating partial 

thermal magnetization and chemical or crystallization remagnetization.

The NRM was measured with a 2-G Enterprises Model 755 Superconducting 

Rock Magnetometer. To determine components of magnetization the samples were 

thermally demagnetized using an ASC TD-48 thermal demagnetizer. Demagnetization 

was accomplished by subjecting the samples to a certain temperature in a shielded oven 

for 20 minutes, and then cooling them in a zero field with forced air for 10 minutes. The 

magnetization of the samples was then measured in the magnetometer. Once the samples 

were measured the process was repeated at successively higher temperatures until the 

samples were demagnetized. The White Chuck Tuff samples were demagnetized in 

temperature steps of 50° C until 600° C. The distal deposit samples were demagnetized
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in temperature steps of 25° C until 400° C and then 50° C temperature steps until 600° C. 

The smaller temperature step for the lower temperature range of the distal deposit 

samples was used to constrain the laboratory unblocking temperature of the low 

temperature component to within 25° C. Specimens were pretreated prior to being 

thermally demagnetized using low temperature demagnetization.

Low temperature demagnetization (LTD) is an effective method of removing soft 

(low coercivity) components of remanence in magnetite-bearing specimens by passing 

the magnetite through its low-temperature transition (~120 K). Once the specimen is 

below the critical temperature the specimens are brought back to room temperature and 

measured. The distal deposit samples underwent this method of “magnetic cleaning” 

prior to thermal demagnetization. Approximately 10% of the NRM were erased by the 

LTD method. This was important to remove the soft components that were most likely 

related to viscous remagnetization.

A variety of rock magnetic methods including Isothermal Remanent 

Magnetization (IRM), thermal demagnetization of IRM (Lowrie, 1990), Viscous 

Remanent Magnetization (VRM) tests, and thermo-magnetic curves were used to 

constrain magnetic mineralogy. (See Appendix II, Rock magnetic methods, for details)
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Figure 15; Cartoons of thermal remanent magnetization directions in clasts from volcanic
debris flow^s of diflFerent temperatures of deposition, (a) Type I deposit, all clasts 
emplaced above Curie temperature; (b) Type II deposit, all clasts emplaced below 
lowest blocking temperature; and (c) Type III deposit, all clasts deposited within 
their blocking temperature range such that they have a common magnetic 
component as in a) but also a scattered component as in b).
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Anisotropy of Magnetic Susceptibility: Anisotropy of magnetic susceptibility 

(AMS) techniques were used to determine the preferred orientation of minerals in the 

rocks. The ellipsoid shape and orientation reflects the overall directional fabric of the 

sample. The shape ellipsoid with axes Ki, K2, and K3 are expressed as the major, 

intermediate and minor axes respectively. Tuffs commonly have flattening of the AMS 

ellipsoid parallel to foliation, and the elongation of the ellipsoid is commonly parallel to a 

fabric lineation (MacDonald and Palmer, 1990). Commonly, Ki parallels the flow 

lineations in ignimbrites. K3, the axis of minimum susceptibility, is commonly 

perpendicular to the plane of flow foliation (Ellwood, 1982).

The KLY-3s Magnetic Susceptibility Bridge was used for measurement. Every 

specimen collected in the field was measured and the AMS orientations were plotted on 

equal area diagrams to show the directions of minimum, intermediate, and maximum 

susceptibility of the sample. Flinn-type plots showing AMS ellipsoid shape were also 

used to illustrate the shape of AMS ellipsoids.

Rock Composition and Geochemistry 

Petrography: Thin sections of the cylindrical cores collected in the field were 

analyzed for mineral content. Representative samples from the White Chuck Tuff and 

distal deposits were prepared. Joe Dragovitch of the Washington State Department of 

Natural Resources also provided thin sections that represented the study sites. Modal 

analysis was done by counting at least 400 points on each thin section. Ten slides were 

later stained with sodium cobaltinitrite to evaluate the amount of potassium feldspar 

present in the samples.
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Chemistry: X-ray Fluorescence analysis was done to determine the major and 

trace element chemistry of thirteen core samples. Each sample was pulverized in a 

tungsten-carbide ball mill at Western Washington University. Three grams of the 

powdered samples were combined with 7g of lithium-tetraborate and fused for 10 

minutes at 1000° C. Once cooled, the fused glass beads were pulverized and fused again 

for greater homogeneity. The thirteen samples were sent to Washington State University 

Geoanalytical lab to be analyzed for major elements and 17 trace elements. Major 

element and trace element data analysis was done using PetroPlot, a Microsoft Excel 

based program made available by Yongjun et al (2003).
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Results

Paleomagnetism-White Chuck Tuff

Figure 16 represents of the majority of the vector end point diagrams of 

demagnetized White Chuck Tuff samples taken at sampling locations shown on Figure 

14. Nearly all (98%) of the demagnetized tuff samples had similar one-component 

NRMs. The directions of remanence removed at the higher temperature steps from 400- 

600° C are well grouped within each site, and between sites. The mean of all White 

Chuck Tuff site mean directions is declination (dec.) 341.7°, inclination (inc.) 66.5°, a95 

1.7°, and k = 116. Individual White Chuck Tuff site means are listed in Table 1 and 

shown on equal area plots in Figure 17. Not all 20 samples from each site were used for 

analysis because statistically the precision of the site mean direction measured with the 

number of samples used would not increase significantly if all 20 samples were used.

In order to evaluate the magnetic carriers in the samples, three different magnetic 

mineral measurements were made. Curie temperatures suggest that multiple magnetic 

minerals are present in the White Chuck Tuff In Figure 19 three sharp drops are 

identified along the susceptibility curve at 580°C, 500°C, and 190°C, indicating that the 

main magnetic carriers are most likely nearly pure magnetite, approximately 20 mol% 

TiFe204, and approximately 60 mol% TiFe204 (Figure 18) (Dunlop and Ozdemir, 1997). 

The Lowrie (1990) test of the White Chuck Tuff specimen (Figure 20) presents the range 

of unblocking temperatures of the low, intermediate, and high field Isothermal Remanent 

Magnetization (IRM). The magnetization of the IRM components is completely erased
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by 500° C. This indicates that high coercivity minerals (>1 T) such as hematite are not 

present and a small amount of nearly pure magnetite is also present according to the Tc in 

the White Chuck Tuff.

The White Chuck Tuff contains magnetic minerals that exhibit a wide range of 

coercivities. The pARM data indicate that the peak in the coercivity spectrum occurs 

between 2 and 10 mT (Figure 21). This low coercivity range suggests that most 

magnetite is coarse grained, approximately 5 microns, in the White Chuck Tuff (Jackson, 

1988). Opaque minerals observed in thin section have grain sizes > 5 microns (Appendix 

111). Slightly less remanence is acquired between 10 to 70 mT. This suggests the 

presence of smaller magnetic grains, which are less abundant in the White Chuck Tuff 

and have an average grain size of approximately 0.75 microns (Jackson, 1988).
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WCT-1-1a

Figure 16. Vector end point diagram of progressive thermal demagnetization typical of the 
WCT specimens. The filled dircles are projections on the horizontal plane 
and the open boxes are projections onto the N,E vertical plane.
(Tauxe, 1999)
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White Chuck Tuff

Site Declination Inclination k a95 N/N,
Low

unblocking
temperature

High
unblocking

temperature

Latitude / 
Longitude

VGP Latitude 
/ Longitude

Pole Circle 
of

Confidence

WCT-
1

339.3 63.9 602 1.8 12 N/A 400 - 600
48.08N/121.12

W

146.6N/75.7E

WCT-
3

347.6 67.2 98 4.4 12 N/A 400 - 600
48.07N/121.12

W

166.5N/81.7E

WCT-
4

346.7 67.3 49 6.0 13 N/A 400 - 600
48.08N/121.13

W

166.8N/81.7E

WCT-
5

336.6 64.8 292 2.5 12 N/A 400 - 600
48.09N/121.13

W

152.7N/74.2E

WCT-
6

339.5 70.1 234 4.0 7 N/A 400 - 600
48.09N/121.14

W

181.6N/75.9E

WCT-
7

334.6 66.6 208 3.6 7 N/A 400 - 600
48.10N/I21.14

W

161.1N/73.3E

WCT
Mean

340.6 66.7 720 2.5 6 N/A N/A
77.2N/161.4E Dp-3.4 

D„-4.1

Distal Deposits

Site Declination Inclination k a95 N
Low

unblocking
temperature

High
unblocking

temperature

Latitude / 
Longitude

VGP
Latitude / 
Longitude

Pole Circle 
of

Confidence
WC-1

Low
341.4 78.2 24 8.4

14 150-375 375 -570 48.10N/121.27W 219.1N/68.6

E

Dp - 14.9 

D„-15.8

SR-I
Low

157.2 36.2 3 34.3
12 150-325 325 - 500 48.14N/121.35W

SR-2
Low

150.6 ^.3 3 70.1
4 150-300 325 - 500 48.17N/121.34W

SR-3
Low

301.0 51.6 4 28.8
9 150-250 250- 550 48.16N/121.36W

ST-1
Low

244.5 88.7 1.7 77.5
6 150-250 250 - 500 48.16N/121.40W

Table 1. Magnetic site mean directions, statistics, number of samples, and unblocking 
temperatures used for the White Chuck Tuff and distal deposit paleomagnetic 
study. WC-1 was the only distal site with well-defined magnetic pole 
directions.
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WCT-1 WCT-3 WCT-4

Figure 17. Equal area diagrams of site mean directions from the six White Chuck Tuff 
sites of Table 2. (Tauxe, 1999)
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Figure 18. Plot of Susceptibility versus Temperature for a typical White Chuck Tuff specimen. 
The "intersecting tangents" method was used to determine the magnetic 
mineral associated with the approximate unblocking temperature found 
which is approximately 190, 500, and 590 degrees C.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C o mp o sitio n (Mo1%)

Figure 19. Curie Temperature versus mole percent of the ulvospinel-magnetite solid solution 
series. The trendline is taken from Dunlop and Ozdemir, 1997, and the open 
circles are the compositions of the titanomagnetite and magnetite in the White 
Chuck Tuff, and the open squares are the compositions of the titanomagnetites in 
the distal deposit dacite clasts. The temperature data are taken from Curie 
Temperature curves of a White Chuck Tuff sample and a distal deposit vesicular 
sample. The White Chuck Tuff Curie Temperature curve had three changes in 
susceptibility at the temperatures indicated above and the distal deposit Curie 
Temperature curve had two changes in susceptibility at the temperatures indicated 
above.
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Figure 20. White Chuck Tuff specimen demagnetized using the Lowrie method. This graph 
indicates that all of the magnetization is lost before 500 degrees C. The bulk of 
the remanence is in magnetic grains with coercivities between 30 and 150 mT, and 
very little remanence is acquired in the high coercivity grains.
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Figure 21. pARM plot of a White Chuck Tuff sample showing the high coercivity
measurements in the 1-25 mT range. This indicates that the prominant carrier of 
the magnetic remenance are grain sizes of 5-0.75 microns in the White Chuck Tuff. 
These larger grain sizes most likely indicate magnetic carriers of multi-domain and 
pseudo single domain magnetite and/or titanomagnetite (Jackson, 1988).
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Paleomagnetism-Distal Deposits

Clasts found in the distal deposits have two distinct lithologies: vesicular and non- 

vesicular dacite. Not only are the clasts distinct lithologically but paleomagnetically. All 

specimens of the distal deposits have at least two components of magnetization, a low 

unblocking temperature component and a high unblocking temperature component 

(Figure 22).

The low unblocking temperature NRM component was better defined (MAD<15) 

than the high unblocking temperature component (MAD < 30) for most specimens. The 

distal deposit low temperature component site means are shown in (Table 1 and Figure 

23). Methods of Fisher (1953) were used to obtain the site mean directions and a95s for 

the distal deposits, WC-1, SR-1, SR-2, SR-3, and ST-1. The site means of three of the 

five sites have site means in the NW quadrant. Sites SR-2 and SR-3 do not plot near the 

other four distal sites. Figure 24 compares the directions of the low and high unblocking 

temperature components of the distal deposits. This difference between components is an 

indication that there are significant differences in magnetization between low unblocking 

temperature and high unblocking temperature components. All the distal deposits display 

this characteristic.

The temperature at which the low unblocking temperature component was 

unblocked varies from site to site. Sites SR-1, SR-2, SR-3, and ST-1 have unblocking 

temperatures between 200°C and 300°C. These temperatures are lower then the Curie 

temperature of the majority of magnetic minerals that make up the clasts. These distal 

deposits show Type II deposit characteristics. Site WC-1 is the most proximal of the
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distal sites and the low unblocking temperature is unblocked at approximately 375° C.

The warmer unblocking temperature of WC-1 suggests that this is a Type III deposit.

The magnetic mineralogy identified by 580° and 460° C Curie temperatures of 

distal deposit samples are magnetite and titano-magnetites (Figure 25 and Figure 18) 

(Dunlop and Ozdemir, 1997). The Lowrie (1990) test (Figure 26) measurements show 

that the minerals have unblocking temperatures at approximately the same temperatures 

as the Curie temperature, 440° and 580°C. The Lowrie test also points out the difference 

in non-vesicular and vesicular dacite specimens. The remanence acquired by minerals 

with coercivities in the two lower ranges is similar for vesicular specimens. A relatively 

higher proportion of grains have intermediate coercivities, from 30 to 150 mT, in the non- 

vesicular specimen.

Figure 27 displays the range of coercivties of magnetic minerals present in the 

two lithologies of distal deposits’ vesicular and nonvesicular specimens. The pARM data 

for the vesicular specimen, from ST-1, show that the low coercivity grains mostly 

dominate the magnetization. A relatively larger amount of high coercivity grains appear 

to contribute to the magnetization in the nonvesicular specimens, SR-3.
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WC-1
vesicular

SR-l-8a
vesicular

SR-l-14a
nonvesicular

SR-2
vesicular

SR-3
vesicular

ST-1
vesicular

NRM

N

Figure 22. Vector end point diagrams for progressive thermal demagnetization of vesicular 
and nonvesicular specimens from the distal deposits. In these examples the 
inflection points are between 250 and 350 degrees C much lower then the White 
Chuck Tuff specimens. The nonvesicular clast of SR-l-14a clast show upward 
directions, which is the case in most of the distal site nonvesicular clasts. WC-1 
was the only site to have a well grouped site mean. (Tauxe, 1999)

43



WC-1

SR-1

SR-2

SR-3

ST-1

Low Unblocking Temperature 
Component

High Unblocking Temperature 
Component

Figure 23. Equal area projections of the low and high temperature removed components 
of the distal deposits. The directions of the components in the low temperature 
range appear to be clustered, whereas the directions of the components in 
the high temperature range appear to be dispersed compared to the low 
temperature components. (Tauxe, 1999)
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WC-1 SR-1 SR-2

Figure 24. Equal area diagrams of site mean directions from the five distal deposit 
sites of Table 1. (Tauxe, 1999)
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Figure 25. Susceptibility versus Temperature diagram of a specimen from site ST-1. The 
"intersecting tangents" method was used to determine the Curie Temperature 
which is approximately 70 and 440 degrees C. This suggests that the magnetic 
mineral is a titanomagnetite with about 80% and 30% Ti02 respectively. The 
heating and cooling curves are very similar, which indicates that a minor amount 
of alteration occurred during the measurement process.
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f. axis(30 mT) —■—y axis (150 mT) z axis (400 mT)

Figure 26. Two examples of distal deposit samples subjected to demagnatization using the 
Lowrie test. The top graph is of a vesicular sample and the bottom graph 
is of a non-vesicular sample. The diagrams show distributed unblocking 
temperatures of magnetization from 0 to 30 mT, from 30 to 150 mT, and from 150 
to 400 mT. The the total magnetization has been effectively unblocked between 
550 and 600 degrees C. This is consistant with the lack of hematite in the samples 
and a low contribution of the highest IRM. The difference between the samples is 
that there is a higher contribution of intermediate IRM influence in the non- 
vesicular sample than in the vesicular sample.
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Figure 27. pARM plots of a vesicular dacite sample from ST-1 (left) and a non-vesicular 
dacite sample from SR-3 (right). The diagrams show that the low coercivity 
grains mostly dominate the magnetization in the samples but in the non-vesicular 
sample there is a relatively larger amount of high coercivity grains contributing to 
the magnetization.
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Anisotropy of Magnetic Susceptibility

Flinn type plots show ellipsoid shape (Flinn, 1962) for all samples eollected from 

the White Chuck Tuff and distal deposits (Figure 28). The Flinn plots of the White 

Chuck Tuff, sites WCT-1 through WCT-7, show that the ellipsoids are dominantly oblate 

with low anisotropy, P « 1.02. The tuff from site SR-1 has oblate AMS ellipsoids and is 

similar to the White Chuck Tuff sites. Visually the distal deposit specimens have 

different ellipsoid shapes than the White Chuck Tuff The pumiceous samples from site 

WC-1 have mostly prolate AMS ellipsoids. The pumiceous samples from sites SR-1 and 

ST-1 have AMS ellipsoids that have both prolate and oblate shape. The non-vesicular 

samples are mostly oblate.

The AMS ellipsoids for the White Chuck Tuff have tightly clustered minimum 

axes and less-well clustered (but significant) intermediate and maximum susceptibility 

axes (Figure 29). This is consistent with the dominant oblate fabric pattern in the Fliim 

diagrams. The confidence ellipsoids about the site mean minimum axes do not include 

the vertical direction, which is consistent with imbrication of the oblate fabric.

Equal area plots of the AMS data in the distal deposits show the scattered 

distribution of magnetic fabrics. In the distal deposit sites the K3 directions are all 

scattered (Figure 30). The separation of the anisotropy data by clast types has similar 

scattered results. The important distinction between the White Chuck Tuff and the distal 

deposits is that the distributions of K3 pole directions, in the distal deposits, do not cluster 

in any significant way.
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diagrams of this study with the corresponding site number indicated.(Tauxe, 1999)
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WC-1 SR-1

Figure 30. Representative Anisotropy of Magnetic Susceptibility (AMS) equal area
plots of this study with the site number indicated (K1 (square), K2 (triangle),
K3 (circle)). AMS plots of the distal deposits do not have defined magnetic 
fabrics. Deposit SR-1 has been subdivided into clast lithology for comparison. 
Notice the tuff samples do not share the same fabric orientation as the WCT sites. 
The non-vesicular and vesicular clast samples also show independent orientation 
amongst each individualsample. (Tauxe, 1999)
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Petrography

Thirteen thin sections were used to identify the mineralogy of the clasts and

distinguish differences between collection sites and non-vesicular/vesicular clasts 

(Appendix III). All thin sections had at least 400 points counted including matrix, voids, 

and phenocrysts. The phenocrysts observed in the samples were plagioclase feldspar, 

hornblende, orthopyroxene, clinopyroxene, oxyhomblende, and opaque minerals. In 

Figure 31 point count data are depicted in radial charts to display differences and 

similarities of the six Glacier Peak deposits studied. Identifying the mineralogy of the 

White Chuck Tuff and the distal deposits should show similar composition if from a 

similar magma system. The phenocrysts used for these charts are hornblende (Figure 

32), oxyhomblende (Figure 33), hypersthene (orthopyroxene) (Figure 34), clinopyroxene 

(Figure 35), and opaque minerals. The matrix, voids, and feldspar point counts were 

similarly abundant in all samples and would not show the minute differences of Fe-Mg 

minerals (Appendix III). The filled area, in Figure 31, of the five deposits, WCT-3, WC- 

1, SR-1, SR-3, and ST-1 have similar distribution patterns even though the number of 

phenocrysts counted in a particular sample differ between sites. The White Chuck Tuff 

deposit is represented by WCT-3 because all of the WCT samples are similar and would 

produce the same chart shape. All deposits except for SR-2 have a significantly greater 

amount of hornblende than the other minerals, whereas SR-2 is noticeably different in 

shape, due to the occurrence of oxyhomblende and a high abundance of opaque minerals. 

Clinoproxene was observed in similar proportions at each deposit. The matrix of most 

specimens has been altered to potassium rich clay due to devitrification of the glass.
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WCT 3 WC-01

SR-01 SR-02

Hornblende H«mbl«nd«

SR4J3 ST-01

Figure 31. Shown above are radial charts depicting the number of points counted in thin 
sections of Fe-Mg minerals collected from the six Glacier Peak deposits in this 
study. The radii of the chart represent the minerals present and the filled areas 
are the number of points counted.
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Figure 32. In center of view is a hornblende (Hb) crystal in crossed polarized light (XPL) 
surrounded by twinned feldspar. The pseudohexagonal cross section of the 
hornblende displays its characteristic cleavage angles.

Figure 33. In center view is an example of an oxyhomblende in plain polarized light (PPL) 
(site SR-2). The oxyhomblende has a distinct red pleochroism and parallel 
extinction.
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Figure 34. A hypersthene phenocryst (center) in plane light at approximately a 45 degree angle j&om 
vertical where it is not extinct. The phenocryst is in a vesicular sample. Mmor 
alteration of the glassy texture was observed. Note: Hypersthene is present 
all six deposits.

Figure 35. A clinopyroxene phenocryst (augite) in a vesicular sample in XPL. The
phenocryst (center) has inclined extinction and similar examples of clinopyroxene 
can be found in the other five deposits.
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Chemistry

The chemical data displayed in Table 2 are representative of the six deposits. The 

data were used for comparison of the White Chuck Tuff and distal deposits. Pumice 

clasts were used for chemical analysis in this study.

The total alkali vs. silica diagram (TAS diagram) (Figure 36) shows the whole 

rock composition of the 10 samples analyzed. The chart shows that the samples are 

subalkaline, of dacite composition. The samples grade from the least felsic samples, 

WCT-4, 6, and 7, to the most felsic samples, ST-1 and one sample of SR-1.

Figure 37 is major element versus silica diagrams. The diagrams display 

variations with increasing silica typical of calc-alkaline magma suites. The plots show 

that AI2O3 and Na20 increase as silica increases and Ti02, FeOs, CaO, and MgO decrease 

as silica increases. Figure 38 shows trace element versus silica diagrams that display no 

distinct difference among the samples analyzed, but some clustering of individual 

deposits. Figure 39 is a variation diagram of the ratios, Zr/Ti versus Sc/W. The White 

Chuck Tuff samples plot close together whereas the distal deposits are scattered over the 

Sc/V ratio and have similar Zr/Ti ratios. Dense clustering of deposits does not occur nor 

do any distal deposit samples cluster around the White Chuck Tuff.
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ô oCO CM
Z 0. ^ u. o co^i.w .smscAco^x: ZOCO> CDO£(ON>‘ZOONa-iOl-

58



N
a0

2+
K

20

WCT4

A WC 1

A SR 1

• SR 2

♦ SR 3

■ ST 1

Figure 36. Total alkali versus silica (TAS) diagram showing the range of 
compositions of Glacier Peak deposits.
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evolving magma as silica increases, as occurs with the Glacier Peak 
deposits discussed in this study.
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Variation of Rb, Sr, and Zr versus silica diagrams showing that Rb 
increases as silica increases and Sr decreases as silica increases in all 
deposits. The Glacier Peak post-glacial deposits do not overlap but 
are similar in trace element composition.
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Figure 39. A variation diagram showing Zr/Ti versus ScA^. The plot shows that the 
White Chuck Tuff samples are clustered and the distal deposit samples do 
not cluster amongst themselves nor do they cluster around the White 
Chuck Tuff samples.
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Discussion

Mode of Emplacement

Anisotropy of Magnetic Susceptibility (AMS) techniques were used to determine 

the primary fabric and possible flow direction of the White Chuck Tuff and distal 

deposits. Figures 29 and 30 show the White Chuck tuff and distal deposit AMS axes 

respectively. The White Chuck Tuff and distal deposits differ considerably in that the 

orientations of the AMS axes are less well grouped in the distal deposits than in the 

White Chuck Tuff. This scatter of AMS axes in the distal deposits show that the 

orientation of individual clasts is independent of their internal fabric. Individual pumice 

clasts usually have an AMS lineation parallel to the stretched vesicles, demonstrating that 

an AMS lineation is developed before flow (Baer et ah, 1997). While the individual 

pumiceous and non-vesicular clasts have magnetic fabrics, no preferential orientation of 

clasts is found within the same deposit, indicating that the AMS lineation in the clasts 

was developed before deposition. The White Chuck Tuff has an indurated groundmass, 

which has pumice clasts and lithic clasts. The magnetic fabric of the White Chuck Tuff 

sites has a well-defined orientation, consistent with its development during or after 

emplacement.

AMS fabrics of the White Chuck Tuff consistently have minimum axes that are 

steeply inclined and have oblate ellipsoid shapes (Figures 28 and 29). This is typical of 

AMS fabrics in tuff deposits (Tarling and Hrouda, 1993; Pennec et ah, 1998; and Wolf et 

al., 1989). Fiamme or strained pumice clasts, evidence of post depositional settlement or 

rheomorphism, is not seen in the field; therefore the fabric of the White Chuck Tuff is
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considered primary. In contrast the magnetic fabrics in post-depositional strained tuffs 

(Wolf et al. 1989 and Ellwood, 1982) are initially oblate and horizontal. Compaction and 

rheomorphism typically produce a prolate fabric (Pennec et al, 1998, Ellwood, 1982).

The oblate and subhorizontal fabric in the White Chuck Tuff show that some settling has 

taken place during deposition, however rheomorphism has not occurred.

The magnetic foliation planes of ignimbrites usually show imbrication relative to 

the flow direction. The lineations also tend to be variable, being either parallel or 

perpendicular to the flow direction. Usually flow directions are characterized using the 

basal layers of ignimbrites (Baer et al., 1997). The White Chuck Tuff was sampled from 

the middle to upper levels of the flow. More chaotic depositional behavior probably 

occurs near the base where the flow is erosive, and in the upper levels where the flow 

may not be laminar.

AMS fabrics seen in the White Chuck Tuff sites suggest slight imbrication of the 

minimum axes. Imbrication, just as in sedimentary deposits, may reveal the flow 

direction of the tuff deposit. Confidence ellipses of the White Chuck Tuff were used to 

constrain the most likely foliation plane (Figure 29). The foliation plane defined by the 

mean of K3 axis clearly dips southeast in White Chuck Tuff sites 1, 3, 4, 5, and 7. This is 

consistent with formation of mineral alignment due to imbrication of particles during 

deposition from a northwest traveling flow (Figure 12). The scatter of the Ki axes in 

sites WCT-2 and WCT-6 is because they are located in the uppermost level of the deposit 

where chaotic non-laminar flow likely occurs.
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Emplacement Temperature

The White Chuck Tuff, a Type I deposit, was deposited above the Curie 

temperature of magnetite (580° C). The paleomagnetic results show that when the White 

Chuck Tuff was deposited it exceeded 580° C. However the tuff was deposited below 

800° C, the emplacement temperature at which ignimbrites weld (Cass and Wright,

1989).

The distal deposits have two component NRM demagnetization paths. The high- 

temperature component is more scattered and the low-temperature component is better 

clustered in deposits WC-1, SR-3, and ST-1, whereas SR-1, and SR-2 have equally 

scattered low temperature components at the high unblocking temperature components. 

The magnetization of the high-temperature component is unblocked from approximately 

200°C to 300°C, in distal sites SR-1, SR-2, SR-3, and ST-1 (Figure 16). These 

unblocking temperatures are cooler then the 440°C Curie temperature of these same 

samples. This suggests that these distal sites are Type II deposits and could have been 

deposited at temperatures between ambient temperature and approximately 300°C. 

According to viscous magnetization results, the unblocking temperatures of these distal 

deposits were highly susceptible to a viscous remagnetization, so emplacement at 

ambient temperature is the most likely interpretation.

Distal deposit WC-1 has a low imblocking temperature at approximately 375°C, 

warmer than the other distal sites unblocking temperatures. WC-1 appears to be a Type 

III deposit and deposited at approximately 375°C.

The distal deposits appear to have originated from pyroclastic material. However

the distal deposits were deposited at a warm temperature and are considered to be
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Paleomagnetic Relationships

Paleomagnetic site means of the White Chuck Tuff and distal deposits are plotted 

together on an equal area plot in Figure 40. The seven sites (circles) of the White Chuck 

Tuff indicate that the magnetic field was similar at each site when the sites were 

magnetized, which may indicate one or more sites originating from a single eruptive 

event. The five distal deposit site means are not grouped around the White Chuck Tuff 

site means. The distal deposits WC-1, SR-1, and ST-1 circles of 95% confidence of the 

low unblocking temperature component encompass the White Chuck Tuff site means. 

These distal deposits could share the White Chuck Tuff direction. The deposit SR-1 

contains rip-up clasts of the White Chuck Tuff. The event that produced the SR-1 deposit 

occurred following the deposition of the White Chuck Tuff, but whether or not it is from 

the same eruptive event, is unknown. ST-1 has an imprecise site mean but shares the 

White Chuck Tuff direction. The site means of SR-2 and SR-3 do not plot near the other 

sites; therefore they are not part of the White Chuck Tuff The large uncertainty of the 

distal site means is because the distal deposits cooled below the Curie temperature during 

transport and they have a high susceptibility to viscous remagnetization due to the 

abundance of low coercivity magnetic grains (Figure 27).

The low unblocking temperature component in the vesicular sample was highly 

susceptible to viscous remagnetization. The viscous remagnetization data in Figure 41 

imply that there is a change in remanence over a short time with these samples. Samples

unconsolidated pumice rich lahar deposits that cooled during transport down the White

Chuck and Sauk River Valleys.
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from the White Chuck Tuff did not show significant viscous properties. This does not 

disprove that viscous remagnetization had no effect on the White Chuck Tuff.
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Figure 40. The distribution of the White Chuck Tuff and distal deposit site means on an
equal area plot; WCT-1 - WCT-7 (circles), WC-1 (square), SR-1 (hexagon), SR-2 
(diamond), SR-3 (triangle), and ST-1 (star). The circles of confidence are at the 
95% confidence level. SR-2 and ST-1 site means were imprecise, therefore the 
95% confidence circles were not used (Table 2). Although the ST-1 site mean 
could share the White Chuck Tuff direction, the site mean of SR-2 might not. 
(Tauxe, 1999)
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Figure 41. Viscosity tests of a vesicular sample from ST-1 (left) and a tuff sample from 
WCT-4 (right). The change in remanence over 5x10^ seconds is significant 
in the vesicular specimen but not so much in the tuff. The samples had 
opposite behaviors during the test. The vesicular sample lost intensity, 
indicated by the vertical line at 0.01 log, while it was in the near zero 
magnetic field. Once the samples were placed in the Earth’s magnetic field 
the magnetic intensity of the sample peaked and then progressively lost 
intensity towards its original field intensity. The tuff sample initially gained 
intensity during storage and lost intensity while back in the Earth’s magnetic 
field.
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The paleomagnetic direction of the tuff is close to the present day geomagnetic 

field. The tuff has a range of coercivities (Figure 21); therefore it will acquire viscous 

magnetization at different rates corresponding to particular coercivities and relaxation 

times. The low temperature demagnetization steps of the tuff, for example in Figure 16, 

did not result in large decay of remanence, indicating multi-domain magnetic minerals 

are not abundant. The viscosity test conducted in the lab is evidence that the high 

unblocking temperature directions are primary to the White Chuck Tuff.

Figure 42 displays relaxation time versus temperature for single domain and 

multi domain magnetites according to the single domain theory (Pulliah et al, 1975). The 

White Chuck Assemblage and Kennedy Creek Assemblage first-removed component’s 

unblocking temperature and approximate relaxation time are plotted on the diagram with 

a red star and green star respectively. The unblocking temperatures were estimated by 

the time duration that a specimen was subjected to a particular temperature step, 

approximately 20 minutes. Figure 42 shows that the high unblocking temperatures of the 

White Chuck Tuff specimens are not likely to be viscous remagnetization due to the 

geomagnetic field in either the White Chuck Assemblage or Kennedy Creek Assemblage 

times. However the distal deposit specimens, with abundant low coercivity magnetic 

grains, are likely influenced by viscous remagnetization in the low unblocking 

temperature range for both assemblages. The unblocking temperatures of the distal 

deposits, Table 1, SR-2, SR-3 and ST-1 are the same as or below the estimated 

unblocking temperature for the complete removal of a viscous overprint produced at 

ambient temperature for approximately 10,000 years. Figure 42 also shows that at the
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Figiore 42. Single-domain and mixed single-domain/multi-domain blocking/unblocking time-temperature 
contours according to Pullaiah et al. (1975) (solid curves) and Walton (1980) (dashed curves) 
respectively. Each contour joins t and T values for which a particular ensemble of magnetic 
grains are just blocked (remagnetized) or unblocked (thermally demagnetized). Solid and open 
circles and triangles are geological and laboratory examples of low-temperature and high- 
temperature viscous overprints identifying the validity of the two sets of contours. The soUd 
horizontal line marks approximately a 20-30 minute time range. This is the amount of time a 
sample may remain at a temperature step to remove the estimated viscous remanent magnetization. 
This was the time used in experiments by (Dunlop and Ozdemir, 1993) and in the analysis of this 
study. The red star and stippled line represent the White Chuck Assemblage deposits vrith SD 
and SD/MD ensembles. The estimated temperature at which the viscous overprint in a White 
Chuck Assemblage deposit should be removed is 300 C, and any unblocking temperatures above 
300 C is primary remanence. The Green star represents samples from the Kennedy Creek 
Assemblage for reference to the younger deposits of Glacier Peak. If the deposits represented in 
this study originated from theKennedy Creek Assemblage deposits, viscous remagnetization may 
be observed as the low unhlocking temperature component.
(Redrawn from Dunlop and Ozdemir, 1997)
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unblocking temperatures for viscous remagnetization of distal younger deposits (~5,000 

years old) at ambient temperature are possible. Distal deposits with higher unblocking 

temperatures, WC-1 and SR-1 (Table 1) may have the viscous overprint fully removed. 

The resultant low unblocking temperature did not appear to be viscous in origin due to 

their relatively linear demagnetization paths, MAD <15, after using the low temperature 

treatment on distal deposit specimens.

Distal deposit sites SR-1, SR-2, SR-3, and ST-1 have two component NRMs with 

many scattered directions in both the low unblocking temperature and high unblocking 

temperature components (Figure 23). The scattered low unblocking temperature 

components in the most distal deposits most likely indicate Type II deposits because of 

scatter and the multiple reversed polarity directions in the low unblocking temperature 

range. The more well grouped specimens in the low unblocking temperature range have 

Type III characteristics but due to viscous effects this does not necessarily imply elevated 

emplacement temperature. The reversed polarity directions in the low imblocking 

temperature range in distal deposits SR-1 and SR-2 appear to have previous depositional 

histories associated with them and these clasts were not remagnetized during the last 

transport and deposition. The clasts that show this behavior were the nonvesicular clasts. 

The vesicular clasts were more clustered and showed the two component NRM was due 

to transport and deposition. Distal site WC-1, containing all vesicular samples, has a 

more well grouped low unblocking temperature component compared to the high 

unblocking temperature component. WC-1 is the only distal site that closely relates to a 

true Type III deposit (Hoblitt and Kellogg, 1978).
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The White Chuck Tuff high unblocking temperature and distal deposit WC-1 low 

temperature site mean directions were used to calculate their corresponding Virtual 

Geomagnetic Poles (VGP) (Table 1). The VGPs of the deposits were compared to VGPs 

of a western North America paleosecular variation (PSV) curve (Hagstrum and 

Champion, 2002). Figures 43 and 44 shows the White Chuck Tuff and distal deposit 

WC-1 in pole space and their corresponding ages. The VGP from the White Chuck Tuff, 

previously believed to be ~11,670±250 b.p., does not fall near the secular variation curve 

from -10,500 to 11,950 years b.p (Figure 43). However it does correspond with the VGP 

pole for 12,700 b.p. This is pole corresponds with the age of Tephra layer G of Glacier 

Peak 12,750 b.p. (Porter, 1978). In more recent research. Beget (1985) suggests that 

Tephra layer G was erupted later approximately 11,500 b.p., much later then previously 

thought. If the White Chuck Tuff does match the 12,700 year pole for Western North 

America then Tephra layer G could be 12,700 years old and related to the tuff.

The distal deposit WC-1 VGP is the only distal deposit that had sufficiently well 

defined low unblocking temperature components and site mean for comparison with the 

paleosecular variation data of Hagstrum and Champion (2002) (Table 1). WC-1 VGP 

datum is consistent with deposition between the time period of the White Chuck 

Assemblage and the Kennedy Creek eruptive period, approximately 9,180 years b.p., 

later then previously estimated (Figure 43). The WC-1 VGP circle of confidence does 

not overlap any of the VGPs of Hagstrum and Champion (2002) during the Kennedy 

Creek Assemplage time interval (Figure 44).
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Figure 43. Virtual geomagnetic pole (VGP) postions 
with a95 confidence limits from Hagstrum 
and Champion (2002). VGPs of the White 
Chuck Tuff and distal deposit WC-1 are plotted 
amongst the western North American VGP 
positions as listed in Table 1.
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Figure 44. Virtual geomagnetic pole (VGP) postions 
with a95 confidence limits from Hagstrum 
and Champion (2002). VGPs of the White 
Chuck Tuff and distal deposit WC-1 are plotted 
amongst the western North American VGP 
positions as listed in Table 1.
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Mineralogical and Chemical Relationships

The petrography results indicate subtle differences between the White Chuck Tuff 

and the distal deposits (Figure 31). Mineralogical constituents of all deposits are the 

same except for SR-2, which contains oxyhomblende instead of hornblende. The 

differences between deposits are the abundance of minerals observed in thin section. The 

sites that are similar to the White Chuck tuff are SR-1 and SR-3. The sites WC-1 and 

ST-1 have similar mineralogy but the abundance of mafic minerals is greater in these 

sites.

Figure 37 shows typical trends of major elements versus silica of intermediate 

magma compositions and indicate Glacier Peak magma evolved by fractionation. 

However trace element diagrams indicate that White Chuck Tuff and distal deposits are 

not dissimilar chemically (Figure 38). There is no consistent overlap or difference 

between deposits in the trace element diagrams or the variation diagram, Figure 39. The 

chemistry of the distal deposits does not indicate whether they are related to the White 

Chuck Tuff.

76



Conclusions

Anisotropy of magnetic susceptibility, paleomagnetism, petrography, and 

chemistry were used to characterize Glacier Peak proximal and distal pyroclastic 

deposits, in particular the White Chuck Tuff and five distal deposits greater than 30 km 

west of Glacier Peak. Distal deposits may hold the clues to the correlation of the 

proximal White Chuck Tuff to unconsolidated runout deposits. The following 

conclusions characterize the White Chuck Tuff and distal deposits.

1. The indurated White Chuck Tuff was deposited during one event. All 

samples of the tuff are similar in paleomagnetism, petrography, and 

chemistry. Debris of the White Chuck Tuff traveled westward down 

the White Chuck River Valley and was emplaced at temperatures 

above 580°C and below 800°C.

2. The AMS measurements of the White Chuck Tuff indicate an overall 

northwestward downvalley flow direction. The distal deposits AMS 

fabrics had no consistent orientation. This was due to the magnetic 

fabric being formed in individual clasts prior to deposition.

3. The first removed component of remanence of the distal deposits has 

unblocking temperatures that decrease westward, in the apparent 

direction of transport. However, only one site (WC-1) has clustered 

magnetization directions for both first and second removed 

components. This indicates WC-1 is a Type III deposit, emplaced at a 

temperature as high as 350° C. The other distal deposits have scattered
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directions indicating that they were products of cooler lahars at ambient 

temperature that traveled down the White Chuck River Valley.

4. The paleomagnetic direction of the White Chuck Tuff is well defined 

with a mean declination of 342° and inclination of 60°. The White 

Chuck Tuff is within the 95% circles of confidence of distal deposit 

site means WC-1, SR-1, and ST-1. Deposits SR-2 and SR-3 site means 

do not plot near the White Chuck Tuff mean.

5. Viscous remagnetization may affect vesicular samples of the distal 

deposits SR-1, SR-2, SR-3, and ST-1, but the two component NRM 

and upward low unblocking temperature directions show that the clasts 

of the distal deposits were emplaced as Type II deposits. These 

deposits were deposited below the Curie temperature of both the non- 

vesicular and vesicular clasts magnetic minerals. These contributed to 

the uncertainty of site mean directions of the distal deposits.

6. The White Chuck Tuff and distal deposits all fall in the dacite field 

explaining the explosive nature of the eruptions. The overall chemical 

variations of Glacier Peak deposits indicate typical intermediate 

magma compositional trends. However, these variations of the White 

Chuck Tuff and the distal deposits do not have consistent similarities or 

differences, and show no conclusive evidence that the distal deposits 

are related to the White Chuck Tuff.

7. Paleomagnetism does not support the assumed age of approximately 

11,500 years ago, for the White Chuck Tuff. Instead it supports
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deposition towards the beginning of the White Chuck Assemblage 

eruptive cycle. The virtual geomagnetic poles of the White Chuck Tuff 

deposit correspond with the 12,750 b.p. VGP of Hagstrum and 

Champion (2002). 12,750 b.p. also corresponds to a major eruption of 

Glacier Peak that produced the deposit Tephra G.

8. The VGP of distal deposit WC-1 corresponds with the 9180 +290/-200 

b.p. VGP (Hagstrum and Champion, 2002) towards the end of the 

Kennedy Creek eruptive cycle. Other distal deposits VGPs are not well 

enough defined to be useful, but from field relationships associated 

with the deposition and location of other deposits, they were erupted 

during the Kermedy Creek Assemblage.

9. Glacier Peak has produced hot material that traveled down the White 

Chuck River Valley, displayed in the White Chuck Tuff and distal 

deposit WC-1. The White Chuck Tuff was deposited at a minimum 

temperature of 580° C approximately 17 km west of Glacier Peak. 

Distal deposit WC-1 was deposited at a maximum temperature of 

approximately 375° C, which could be classified as a hot deposit (Cas 

and Wright, 1989). The material of WC-1 retained these elevated 

temperatures during transport to at least 30 km from Glacier Peak. 

Glacier Peak is capable of producing hot ash flows that travel great 

distances. The hazards associated with Glacier Peak have been known 

as ash deposits and lahars, and as seen from this study pyroclastics are 

recent and extensive products of Glacier Peak.
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Appendix I

Sample site locations and descriptions
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Appendix la.1-7. A landslide scar exposes the White Chuck Tuff and 2000 cm of 
hillside on the north side of the White Chuck River trail at N48 W121, Glacier Peak 

Quadrangle. The stratagraphic section below represents sites WCT-1 through WCT-7. 
Descriptions of stratigraphy above and below the White Chuck Tuff may be referenced to

Beget, 1981. (Figure 4)

Thickness (cm)

Colluvium: reworked ash and forest duff............................................................32

Tephra layer......................................................................................................... 10-20

Forest duff: Contains fragments of burned branches...........................................10-50

Reworked fluvial sand and gravel, interbedded with thin lahars that contain blocks of 
White Chuck Tuff up to 1 m in diameter................................................................ 300

Lahar: Subangular to subrounded cobbles and boulders up to 50 cm in diameter in matrix 
of sand and silt; no apparent sorting or stratification; contains reworked blocks of the 
vitric tuff...................................................................................................................400

White Chuck Tuff: Pyroclastic flow deposit, indurated, with well-developed columnar 
jointing, columns average 1-2 m in diameter; deposits form prominent cliff in outcrop; 
contains abundant unflattened pumice lapilli (sampled)...........................................800

Pyroclastic deposits: at least 10 pyroclastic flow deposits; mostly light gray; pumiceous 
ashy matrix, non-vesicular rock fragments mostly light-gray dacite, with some white to 
medium-gray pumice; some deposits are reversely graded; some contain boulders as large 
as 1 m in diameter; prismatically jointed boulders common.................................. <2500
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The White Chuck Tuff deposit
Appendix lb. Site WC-1 is located at N48.1 W121.27 about 0.5 miles from the 
beginning of the Mountain Loop Highway, White Chuck Mountain quadrangle. The 
description of unstudied deposits are referenced from Beget, 1981.

Thickness (cm)

Alluvium, thin sand and silt beds, horizontally stratified and interbedded with pumiceous 
lahars; contains blocks as much as 30 cm in diameter of the White Chuck Tuff.........60

Lahar; Sandy-silty matrix; no apparent sorting of or stratification; contains rare blocks of 
White Chuck Tuff.........................................................................................................20

Pyroclastic: Pumiceous clasts in silty-sand ash matrix; reversely graded; contains white 
gray pumice lapilli; there are circular voids that appear to have been tree logs, which 
were described as visible and sampled by Beget, 1981 and described as correlative with 
the White Chuck Tuff. (Sampled as WC-1)............................................................10-30

Silty alluvium: cross-bedded; crystal-rich fine ash.. 

Lahar: pumice lapilli in fine sand matrix; light gray

Lahar: Pumice lapilli in fine sand matrix; light gray to gray 30

Site WC-1 showing the unconsolidated 
pyroclastic deposits sampled
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Appendix Ic. Site SR-1 is located approximately 2.5 km south of Darrington atN48.14 
W121.35, Darrington quadrangle.

Thickness (cm)

Lahar: Sandy-silty groundmass; no apparent sorting of or stratification; contains rare 
blocks of White Chuck Tuff..................................................................................200

Lahar: pumice lapilli and dacite clasts in fine dacitic sand groundmass; light gray with 
occasional ripup clasts of the White Chuck Tuff (sampled as SR-1)........... 150

Alluvium: Dacite clasts and exotic boulders approximately 30-90 cm in diameter in a 
silty sand groundmass; gray to light brown........................................................... 100

Silty alluvium: cross-bedded; crystal-rich fine ash and exotic medium to coarse sand; 
light brown............................................................................................................. 50

Site SR-1 photo showing large 
boulders were transported by a 
pyroclastic flow 40 km from Glacier 
Peak.

Site SR-1 showing pumiceous clasts 
entrained in the groundmass. These 
clasts were sampled for this study
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Appendix Id: Site SR-2 is located approximately 5 km North of Darrington at N48.17 
W121.33 on private property just above the present Sauk River flood plain, Darrington 
Quadrangle.

Thickness (cm)

Lahar: Sandy-silty groundmass; no apparent sorting of or stratification; contains rare 
blocks of \\'Tiite Chuck Tuff.................................................................................... 200

Lahar: pumice lapilli and dacite clasts in fine dacitic sand groundmass; light gray 
(sampled as SR-2).................................................................................................... 150

Appendix le: Site SR-3 is located at the intersection of WA. Hwy. 530 and the Sauk- 
Prairie Road, N48.16 W121.36, Darrington Quadrangle.

Thickness (cm)
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Appendix II

Rock Magnetic Methods
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Partial Anhysteretic Remanent Magnetization: Partial Anhysteretic Remanent 

Magnetization (pARM), a coercivity spectrum analysis (Buttler, 1998), was performed on 

specimens from different sites. A D-Tech D-2000 Alternating Field Demagnetizer with a 

DE coil was used to generate the pARM. Partial Anhysteretic Remanent Magnetization 

was used to understand the size distribution of magnetic grains in dacite and pumice 

clasts from Glacier Peak. The data may be plotted graphically to display the coercivity 

range of the most abundant magnetic minerals present in the sample, which provides 

information on their grainsize (Jackson et al, 1988).

Isothermal Remanent Magnetization: Exposing samples (usually at room 

temperature) to a magnetizing field (H) generated by an electromagnet creates Isothermal 

Remnant Magnetization (IRM) (Butler, 1998). Ferromagnetic grains with a coercive 

force less than the applied field acquires IRM. In the laboratory IRM is used as another 

form of coercivity spectrum analysis. The procedure is to expose a sample to a magnetic 

field, measure the resulting IRM, and then repeat the procedure using a stronger 

magnetizing field. A sample containing only titano-magnetite acquires IRM in a 

magnetic field < 300 mT, but no additional IRM is acquired in higher magnetic fields. If 

other ferromagnetic minerals such as hematite are present in a sample, IRM is gradually 

acquired in H up to 3T.

Lowrie Method: The analytical method that has come to be known as the Lowrie 

method (Lowrie, 1990) is a combined method of IRM acquisition and progressive 

thermal demagnetization of the IRM. This method is used to interpret the ferromagnetic 

mineral content of a rock. The x-axis, y-axis, and z-axis of a specimen are given an IRM 

using different magnetic field strengths. Subsequent progressive thermal
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demagnetization is able to identify minerals, which have similar maximum coercivities 

that generally have different characteristic unblocking temperatures, for example the 

unblocking temperature of magnetite is approximately 580° C. If magnetite dominates 

the magnetic mineralogy in a sample the demagnetization of the IRM will decay 

smoothly to zero by 580° C.

Curie Temperature: The Curie point is the temperature below which magnetic 

minerals in a rock can acquire a magnetization. The Curie temperature of individual 

clasts was measured using an AGICO KLY-3-s Magnetic Susceptibility Bridge and a CS- 

3 Furnace. The samples were crushed into powder and placed in a test tube with an 

alumina-spacing agent. The tube was placed in the fiimace and the susceptibility was 

measured at incremental temperature steps to the target temperature 610° C. Curie 

temperatures may indicate differences in Ti02 content in magnetite and oxide 

equilibration temperature by measuring a specimen’s susceptibility at different 

temperatures. Two thermomagnetic curves are generated from the measurements, the 

heating curve and cooling curve. The Curie temperatures of clasts were estimated by 

using the intersection point of the two tangents to the thermomagnetic curve that bounds 

the Curie temperature.

Viscous Remanent Magnetization: Viscous Remanent Magnetization (VRM) is 

the gradual change of remanent magnetization in ferromagnetic substances over time 

during exposure to weak magnetic fields. The time-decay of the already acquired 

remanent magnetization, such as TRM, results in a secondary magnetization from the 

weak external geomagnetic field. This rate of decay is quantified by the relaxation time 

and is controlled by the volume and coercive force (He) of a magnetic grain. The inverse
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relationship between these two properties allows acquisition of VRM to take place (low 

coercive force/high volume). In single domain grains, the acquisition of VRM is 

essentially the inverse of magnetic relaxation. The VRM is acquired by the realignment 

of magnetic moments of grains with short relaxation times.

After allowing four representative samples, 1 tuff, 1 non-vesicular, and 2 

vesicular, to relax for four months in a low magnetic field, the samples were placed with 

the z-axis parallel to the present day measured geomagnetic field. Over the course of six 

24-hour periods each sample’s magnetization was measured documenting the relationship 

of time and magnetization acquired over the period of 144 hours.
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Appendix III
Thin Section Point Counts
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Sites

Thin Section Constituents and Points Counts

Matrix Void Feldspar Hornblende Hypersthene Oxyhornblende Clinoproxene Opaque Total

WCT-1 196 95 64 14 3 2 0 3 377

WCT-2 309 33 81 15 6 0 0 2 446

WCT-3 247 64 94 17 4 0 3 8 437

WCT-4 266 73 94 18 0 0 1 15 467

WCT-7 261 86 76 14 0 1 5 446

WC-1 376 31 131 14 11 0 5 12 580

SR-1 234 120 78 12 6 0 3 3 456

SR-2 255 119 133 0 13 4 3 10 537

SR-3 247 83 128 24 5 0 2 4 493

ST-1 200 42 57 9 1 0 1 2 312

Thin section point counts of minerals, voids, and matrix observed.
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