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Abstract 

The purpose of this study was to investigate the effect of a six week augmented eccentric 

load program on the rate of force development (RFD), center of pressure (COP) in quiet standing 

and single-foot balance, and performance in the five-time-sit-to-stand test (STS-5) in older 

adults. Eighteen moderately active older adults, aged sixty years or older, participated in this 

study. Subjects were separated into two groups; one group added augmented eccentric training in 

addition to resistance training (AEL) and a resistance training only group (RT). The AEL group 

participated in a six-week AEL training program that consisted of six lower extremity body 

exercises. The eccentric phase of each exercise movement was augmented beginning with no 

weight and increasing by five percent weekly up to 20 percent body weight. AEL group 

improved the time to complete the clinical STS-5 fall risk assessment test by -2.21 ± 1.50 s, p = 

0.03. There was no significant change in time to complete the clinical STS-5 fall risk assessment 

test for RT. Those in the AEL group demonstrated a significant increase in the RFD moving 

from 785 ± 176 N·s
-1 to 1041 ± 187 N·s

-1 (p = 0.02) during a chair rising task compared to the 

RT which did not demonstrate a significant change.  RT improved in the anterior-posterior (A-P) 

excursion for quiet standing, 0.075 ± 0.07 m to 0.001 ± 0.00 m, medial-lateral (M-L) excursion 

of right foot, 0.24 ± 0.19 m to 0.03 ± 0.04 m, and in A-P excursion of the left foot, 0.21 ± .19 m 

to 0.13 ± 0.01 m, p < .008. AEL showed significant improvements in M-L and anterior-posterior 

(A-P) excursion in the right foot during the quiet standing from 0.075 ± 0.07 m to 0.003 ± 0.01 

m and 0.157 ± 0.11 to 0.005 ± 0.01. AEL also showed improvements in the M-L excursion  for 

the right foot and the A-P excursion values for the left foot compared to baseline, 0.457 ± 0.20 m 

to 0.012 ± 0.00 m, p =0.002 and 0.465 ± 0.15 m to 0.013 ± 0.01 m, p = 0.0001. Therefore, a six-

week AEL training program may be beneficial exercise prescription for older adults.  
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Chapter I 

The Problem and Its Scope  

Introduction 

Diminished muscle power is largely accepted as a main factor in decreased activities of 

daily living (ADL) as well as in an increased risk for falling in older adults. The ability to 

perform ADLs is important in older adults as it has been demonstrated to increase longevity and 

promote independence (Penninx, Messier, Regeski, Williamson, DiBari, Cavazzini, et al., 2001). 

Frailty in older adults is associated with a decrease in ability to perform ADLs. Assessments of 

function and frailty in older adults are important and give evaluators a good indication of the 

risks associated with aging including the risk of falling.  

Increased risk of falling in older adults may be due to a number of factors which include: 

progressive declines in concentric muscle actions, loss of sensory motor integration, and age-

related sarcopenia (Joshua, Souza, Unnikrishnan, Mithra, Kamath, Acharya, & Venugopal 2014). 

The loss of concentric muscle actions is greater than eccentric muscle actions with aging in older 

adults (Frontera, Hughes, Fielding, Fiatarone, Evans, and Roubenoff, 2000). Most importantly, 

eccentric muscle force output is retained in older adults which may help to prevent falls because 

of the brake-like function of eccentric muscle actions (LaStayo, Ewy, Pierotti, Johns, & 

Lindstedt, 2003). Therefore, the evaluation of both concentric and eccentric muscle strength 

power output in older adults is important for assessing the risk of falling.  

 Common clinical tests of function and risk of falling in older adults include the one-time 

sit-to-stand-test (STS-1) and the five-time sit-to-stand-test (STS-5). In the STS-2, older adults are 

asked to move from a sitting position to a standing position as fast as possible, with the arms 

crossed against the chest. Performances during these tests are related to muscle function domains 



 
 

2 
 

in older adults which include: power, strength, rate of force development, and balance (Zech, 

Steib, Freiberger, & Pfeifer, 2011). Muscle function measurements are different between non-

frail and pre-frail older adults and a decreased muscle function is associated with pre-frail older 

adults (Zech, Steib, Freiberger, & Pfeifer, 2011). The relationship between muscle function and 

frailty among older adults holds implications for the application of an exercise prescription that 

improves these domains of muscle function.  

Along with the STS tests, frailty and risk of falling can also be assessed through a few 

other measurements. The rate of muscle force development (RFD) and center of pressure (COP) 

are among the measurements that can give evaluators a better understanding of an older adult‟s 

risk of falling (Houck, Kneiss, Bukata, Puzas, Clark, & Clark, 2011). The rate of force 

development during a task like standing up from a chair gives insight into how fast an older adult 

can produce the necessary muscle force to stand up. A greater rate of force development 

indicates generally stronger and healthier older adults and is also associated with maintained 

muscle power (Houck, Kneiss, Bukata, & Puzas, 2011). Center of pressure can be used to assess 

how well older adults have maintained stability with aging (Stel, Smit, Pluijim, & Lips, 2003; 

Shubert, Schrodt, Mercer, Whitehead, & Giuliani, 2006). Both RFD and COP are variables that 

can be used as assessment tools for risk of fall and frailty in older adults.  

 In older adults, the rate of force development and peak muscle force output can be 

maintained or increased with resistance training (Schlicht, Camaione, & Owen, 2001). In athletic 

populations, a popular method for increasing muscle force is through the activation of the 

eccentric phase prior to performing a concentric muscle contraction. This phenomena has been 

attributed to non-contractile properties of muscle and a physiological mechanism referred to as 

the stretch shortening cycle (SSC) (Taube, Leukel, Lauber, & Gollhofer, 2012). Recently, 
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research on the effect of the SSC on concentric muscle force production has led to the 

augmentation of the eccentric muscle load in order to further its effect. Research on eccentric 

overloading resulted in faster and more explosive concentric muscle movements along with 

increased muscle force and power output in healthy young adults (Doan, Newton, Marsit, 

Triplett-McBride, Koziris, Fry, & Kraemer, 2002; Friedmann-Better, Bauer, Kinscherf, Vorwald, 

Klute, Bischoff, Muller, Weber, Metz, Kauczor, Bartsch, & Billeter, 2010). These data 

demonstrated that overloading the eccentric phase enhanced concentric muscle actions. 

However, this mode of training has not been investigated in older adults. Therefore the 

application of augmented eccentric load (AEL) training for older adults is needed to investigate 

the effect AEL has on the physiological and functional assessments involved with predicting 

increased risk of falling.  

Purpose of the Study  

Frailty in older adults results in increased risk of falling and therefore decreased 

independence. The loss of muscle mass and muscle strength are largely associated with increased 

frailty and risk of falling. However, muscle mass and strength can be retained with regular 

resistance training. Currently, overloading the eccentric phase of an exercise is practiced among 

strength and power athletes in order to increase concentric muscle force production, though this 

has not been investigated in older adults nor in long term training programs. Therefore, the 

purpose of this study was to investigate the effect of a six week augmented eccentric load 

program on the rate of force development, center of pressure, single-foot balance and 

performance during a one-time sit-to-stand test and  five-time-sit-to-stand test in older adults.   
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Hypothesis  

Neuromuscular adaptations due to eccentric muscle overloading after an augmented 

eccentric load program will improve domains of physical function in older adults which include: 

lower extremity rate of force development during a chair standing task, improved center of 

pressure excursion and therefore stability, and improved performance in the clinical five time sit-

to-stand test.  

Significance of the Study 

This study is novel as it applies an athletic oriented method of muscle force development 

(augmented eccentric loading) to an older adult population. Increased performance on functional 

tests after a six week augmented eccentric loading (AEL) program may provide clinical 

implications for the prescription of long term AEL exercise programs with a goal to enhance the 

performance on functional tests. Additionally, AEL training may play a significant role in the 

improvement of physical function domains for older adults. These domains include balance, by 

improving center of pressure and stability, and improving lower extremity rate of force 

development, which is indicative of muscle power output needed to perform every day 

movements like standing up from a chair. Improvements in these domains of physical function 

hold promising applications for decreasing the risk of falling among older adults which may 

increase longevity and independence in this population.  
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Limitations of the Study 

1. All subjects were recruited from the Bellingham and Blaine Senior Centers and the 

WWU Mature Adult Training Program and therefore had resistance training experience 

prior to intervention.  

2. All participants reported moderately active lifestyles defined as having previous 

resistance training for at least 2 times per week for the last 6 month.  

3. Participants were aged 60 years or older; therefore these results may not be applicable to 

the general public or younger subjects.  

4. Exercises performed were modified to coincide with ACSM‟s general safety guidelines 

for exercise prescription in older adult population. 

5. Lower extremity rate of force development was measured only during a standing task, 

therefore, this AEL training may not yield the same results for other activities of daily 

living.  

6. Specific muscle activation patterns were not measured and limit the results to an overall 

improvement in dynamic movement. This limitation did not allow for comparison to 

direct muscle electromyography of the muscles involved in standing from a chair.  
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Definition of the Terms 

Activities of daily living 

(ADL)  

Instrumental activities needed to be self-reliant in the community 

(Huang, et al 2010) 

Aging An accumulation of biological events that take place over a span of 

time (ACSM, 2014) 

Augmented eccentrics Increasing the stress of the eccentric muscle action by adding 

additional load (Moore, Weiss, Schilling, Fry, & Li, 2007). 

 

Center of Pressure Distribution of reaction forces between the body and the supporting 

surface. The force can then be summed into a single net force acting 

a single point (Winter, Patla, Prince, Ishac, & Gielo-Perczak, 1998).  

Concentric muscle action The shortening phase of muscle fibers due to increasing muscle 

tension (Neumann, 2010)  

Eccentric muscle action Lengthening phase of muscle fibers due to an opposing force that is 

greater than the force generated by the muscle (Neumann, 2010). 

Frailty Clinical syndrome in which three or more of the following criteria 

were present: unintentional weight loss (10 lbs in past year), self-

reported exhaustion, weakness (grip strength), slow walking speed, 

and low physical activity (Fried et al, 2001) 

Isometric muscle action Activation of a muscle or muscle group(s) which generates force 

without producing movement of the skeletal system (Neumann, 

2010).  

 

Muscle quality  Loss of strength per unit of muscle mass (Goodpaster, et al, 2006) 

Older adults     Persons 60 years and older (Institute of Gerontology, 2014)  

Power  The product of force produced by a muscle and the velocity at 

which the muscle shortens (Orr, Vos, Singh, Ross, Stavrinos, & 

Fiatorone-Singh, 2006) 

Rate of force development The rate at which a muscle force is developed in the early phase of a 

muscle contraction (Aagaard, Simonsen, Andersen, Magnusson, & 

Poulsen, 2002) 

  

Sarcopenia The loss of muscle mass due to aging, disuse, poor nutrition or 

malabsorption, or other physiological causes, such as abnormal 

thyroid function (Crus-Jentoft, et al., 2010). 

Sit to Stand  Upward movement transferring the center of gravity (Yamada, 

Demura, & Takahashi, 2013)  

Sit to stand test (STS)  Functional tests used to evaluate risk of falling in older adults based 

on how many fast the subject can stand up from a chair 

(Strassmann, et al, 2013)  

Torque A moment of force causing rotation about an axis. When referring 

to muscle actions, it could be expressed as concentric torque, 

eccentric torque and isometric torque, depending on the nature of 

the muscle action (Harman, 1993) 



 
 

7 
 

Chapter II 

Review of Literature 

Introduction  

The regular pattern of human movement involves a combination of eccentric, isometric 

and concentric muscle actions. As people age, muscle actions decrease in strength due to a 

natural degeneration of muscle mass. As muscle strength declines with aging, older adults have 

an increased risk of falling that is associated with loss of independence and frailty. Retention of 

lower extremity strength with aging may be beneficial in preventing falls in older adults. This is 

especially important to note because older adults have more retention of eccentric muscle 

strength compared to concentric or isometric strength (Klass, Baudry, & Dachateau, 2005).  

Research comparing the muscle forces from the different types of muscle actions has repeatedly 

demonstrated the eccentric (lengthening) muscle force is greater and more energy efficient than 

that of the concentric (shortening) muscle force (Power, Rice, Vandervoort, 2012). Therefore, 

older adults may be able to produce more muscle force with less work. The difference in muscle 

force output between the eccentric and concentric muscle actions has been attributed to the 

disparate physiological mechanisms by which these muscle actions are driven (Klass, Baudry, & 

Dachateau, 2005; Mueller, Breil, Vogt, Steiner, Lippuner, Popp, et al, 2009).   

The activation of the eccentric muscle action immediately before a concentric muscle 

action has been well established as enhancing the consequent concentric muscle force output. 

This is an important finding as there is now research on the enhancement of concentric muscle 

actions through loading eccentric muscle action first (Doan, Newton, Marsit, Triplett-McBride, 

Koziris, Fry, & Kraemer, 2002). However, most research has focused on the effects of loading 
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the eccentric muscle phase on the one repetition maximum in the athletic population. Currently, 

there is little research on the effect augmented eccentric loading (AEL) has on muscle function 

among older adults. Therefore, this chapter will focus on the current literature with respect to the 

increased risk of falling in older adults, functional tests used to assess the risk of falling, how the 

preservation of eccentric muscle action may aid in decreasing the consequences of age-related 

decreases in muscle function. Specific domains of muscle functions that will be assessed include 

rate of muscle force development during a standing task, muscle power, and balance through 

stability in center of pressure measurements. The mechanism through which eccentric muscle 

actions enhance concentric muscle strength will also be covered, including the stretch-shortening 

cycle, stored elastic energy, and implications for augmenting eccentric loads in both the young 

and old.  

Risk of Falling in Older Adults  

Prevalence of falls in older adults.  Falls are both highly common and highly 

devastating in older adults.  Each year, 30 percent of community dwelling older adults fall at 

least once (Rubenstein, 2006) and are two to three times more likely to fall again (Todd & 

Skelton, 2004). The percentage of older adults who fall is 40 to 50 percent higher in those living 

in long term care institutions. In 2010, seven million Medicare patients had received medical 

care for fall related injuries (Stevens, Ballesteros, Mack, Rudd, DeCaro, Adler, 2012). Fatalities 

and injuries from falls among older adults have continually increased from 2.6 million to over 

seven million in the past decade (Stevens, Ballesteros, Mack, Rudd, DeCaro, Adler, 2012). This 

continuing increase in falls among older adults is alarming as falls are accepted as the leading 

cause of injury related deaths and disability among older adults (Stevens, & Olson, 2000; 

Rubenstein, 2006; Stevens et al, 2012).  
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Consequences of falls in older adults. Older adults who fall have increased mortality, 

morbidity, immobility, and early admission into nursing homes (Rubenstein, 2006). Immobility 

is largely associated with decreased independence in older adults and is usually a consequence of 

hip fracture and other fall related fractures such as ankle are wrist fractures (Todd & Skelton, 

2004). Between 2003 and 2007, 40% of hip fractures were a result of slipping and stumbling in 

older adults and were the highest reported consequence of falling (Hartholt et al, 2011). The 

most frequently reported injuries from falls in older adults include: skull and brain injuries, 

wounds to head and face, femur fractures, ankle fractures, and wrist fractures (Hortholt et al, 

2011). Some consequences of falls are subsequent situations in which the injury has decreased 

the independence of older adults and increased their fear of falling, which both, in turn, increase 

the likelihood that the individual will fall again (Hartholt et al, 2011; Rubenstein, 2006; Stevens 

& Olson, 2000; Todd & Skelton, 2004). With such high injury rates related to falls, etiologies of 

falls among older adults has been well examined and established in being highly attributable to 

age-related degenerative processes of muscle mass known as sarcopenia.  

Sarcopenia as the major risk factor for falls in older adults.  The greatest risk factor 

for falls among older adults is age-related loss of muscle mass (sarcopenia) and subsequent loss 

of muscle function (Fielding et al, 2011; Rubenstein, 2006). Sarcopenia has been established as a 

reliable marker of frailty and is the most closely related risk factor to falls compared to other risk 

factors including: age, gender, sensory impairments, physical inactivity, diabetes, and body mass 

index (Landi, Liperoti, Russo, Giovannini, Tosato, Capoluongo, et al, 2012). In a five year study, 

Scott, Hayes, Sanders, Aitken, Ebeling, and Jones (2014) assessed the association between 

sarcopenia and risk of fall in community dwelling middle-aged and older adults. Sarcopenia 

increased from baseline to follow up from 15% to 46% across both genders. Women had a 
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greater increase in the prevalence of sarcopenia than men from baseline to follow up (Scott, 

Hayes, Sanders, Aitken, Ebeling, & Jones, 2014). The Physiological Profile Assessment (PPA) 

was used to evaluate the risk of fall. The PPA evaluates vision, reaction time, proprioception, 

knee extension strength, and balance to assess risk of fall in older adults. Both men and women 

with sarcopenia had a significantly higher risk of falling when compared to men and women 

without sarcopenia at follow up according to PPA scores, however the specific data on PPA 

scores was not provided.  

While there are other risk factors associated with the increased risk of fall in older adults, 

sarcopenia continues to be the leading predictor of falls in older adults. Though the decline of 

muscle mass and function are age-related, the decline in muscle quality (function) is lost more 

rapidly than muscle mass with aging (Goodpaster, Park, Harris, Krtichevsky, Nevitt, Schwartz, et 

al, 2006; Scott et al., 2014). However, recent research has provided evidence indicating retention 

of eccentric muscle function in older adults. This may be largely in part due to age-related 

accumulation of non-contractile properties which increase muscle stiffness. Increases in muscle 

stiffness have been well documented and may give older adults a mechanical advantage for 

producing eccentric muscle actions (Roig, Maclintyre, Eng, Narici, Maganaris, & Reid, 2010). 

This elucidates the need for eccentric training intervention studies that may contribute to the 

positive effects of resistance training programs. Those include improvements in the domains of 

muscle function in older adults such as rate of force development and balance. In order to begin 

designing eccentric resistance training programs for older adults, the mechanisms involved in the 

retention of eccentric strength in older adults must first be explored.  
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Preservation of Eccentric Muscle Function in Older Adults  

While the loss of muscle mass and strength is a normal degenerative process of aging, 

recent research suggests that eccentric muscle strength is more preserved with aging compared to 

concentric or isometric muscle strength.  In a 12 year longitudinal study, knee extensors and 

flexors (vastus lateralis and biceps femoris) along with elbow extensor and flexor strength was 

evaluated in older adults. The specific elbow extensors and flexors were not specified. Using an 

isokinetic dynamometers, strength was assessed from baseline and at follow up (12 years later). 

Frontera et al (2000) reported age-related declines in both knee and elbow flexors and extensors 

at both fast and slow velocities. However, the percent change per year in flexor strength in both 

the knee and elbow were greater, 29.8 %, than changes in extensor strength, 23.7 %. In fact, 

there was no change in the elbow extensors compared to baseline in either condition (Frontera, 

Hughes, Fielding, Fiatarone, Evans, and Roubenoff, 2000).  

In a later study, Klass, Baudry, & Duchateau (2005) determined the association between 

age-related neural and muscular mechanisms and force declines in concentric, eccentric, and 

isometric muscle contractions in both young and old individuals. Using a motor-driven 

ergometer, the maximal voluntary contraction (MVC) of the tibialis anterior and the soleus were 

taken under isometric, concentric, and eccentric conditions. Stimulations of muscle actions were 

induced through electrical pulses from a costume-made stimulator. The peak torque, contraction 

time, and torque development were measured in all subjects. The MVC was recorded at different 

angular velocities (5, 25, 50, 75, and 100 degrees) through a 30 degree range of motion (Klass, 

Baudry, & Dachateau, 2005). The age-related deficit in torque was greater in the isometric and 

concentric actions (mean reduction 24.9 ± 1.4%, p < 0.001) compared to the eccentric actions 

across both genders. When compared to young women, older women did not differ significantly 
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(p > 0.05) in absolute eccentric torque production. Additionally, elderly men and women 

produced higher relative torque (11 ± 1.4%, p < 0.01; 23.1 ± 1.5%, p < 0.01) for the eccentric 

actions compared to the young counterparts (Klass, Baudry, & Dachateau, 2005). An important 

finding was that there was no difference in muscle activation patterns across gender or age 

groups indicating that neural drive may not be responsible for the preservation of eccentric force 

production in older adults.  

Based off emerging evidence of the maintenance of eccentric muscle strength, Powers, 

Rice, and Vandervoort, (2012) assessed residual force enhancement of the dorsiflexors in young 

and older adults. Powers et al (2012) stimulated concentric, eccentric, and isometric actions with 

two round carbon rubber electrodes at 10 Hz and 50 Hz in the tibialis anterior. During voluntary 

muscle actions, older men were similar to young men in activation and co-activation muscle 

patters, but were 13% (p < 0.05) weaker in producing isometric torque. Eccentric strength in 

older men was reported as being well maintained (p < 0.05) compared to the isometric and 

concentric muscle strength. Eccentric torque produced by older men was comparable to that 

produced by young men (p>0.05) (Powers, Rice, Vandervoort, 2012). At baseline, peak eccentric 

torque was 70% greater than baseline isometric and concentric contractions. Following stretch, 

isometric torque was higher in both young and old, and residual force enhancement was two and 

a half times greater in the older adult group than in the young group. These findings add to the 

inconclusive debate on the mechanisms that help to maintain eccentric strength in older adults. 

Therefore, there must be some non-contractile property of the muscle that is responsible for the 

maintenance of eccentric force development with aging. With evidence of the eccentric force 

preservation in older adults, the mechanism driving the retention is currently the focus of 

investigation.  
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Potential Mechanisms Preserving Eccentric Strength in Older Adults 

 Increased connective tissue and stiffness in muscle tendons.  Understanding the 

mechanism by which eccentric strength is preserved with aging is important as it may benefit 

research on furthering the preservation of muscle strength in older adults. One of the current 

hypotheses on the underlying mechanisms involves the increase of muscle stiffness from the 

accumulation of non-contractile properties in the muscle fibers of older adults (Kent-Braun, Ng, 

& Young, 2000). The relationship between stiffness and muscle force enhancement is closely 

related to the stretching of activated fibers. The muscle force enhancement after stretching is 

referred to as residual force enhancement (RFE) (Kent-Braun, Ng, & Young, 2000; Rassier, & 

Herzog, 2005). In trying to understand how RFE works, Rassier and Herzog, (2005) investigated 

the relationship between force and stiffness in activated single muscle fibers of frogs after 

stretching. The individual muscle fibers were examined under four conditions: isometric 

contraction, stretch followed by contraction, and an enhanced state contraction where 2, 3-

butanedione monoxime (BDM) (myosin inhibitor) was added to the Ringer solution during both 

isometric and stretch followed by contraction conditions. BDM is used in order to reduce force 

while not affecting stiffness. After contractions in each condition, Rassier and Herzog (2005) 

found that steady state isometric force after stretching of the fiber resulted in higher force 

production than the isometric contraction at all lengths. Myofibril stiffness was the greatest in the 

enhanced state, and force enhancement and increased stiffness accompanied each other. The 

application of BDM resulted in increased force enhancement in both stretch and isometric 

contractions. Additionally, lower frequencies in muscle activation did not result in enhanced 

force or stiffness of the individual muscle fibers (Rassier, & Herzog, 2005). The force 

enhancement in the stretch and enhanced state conditions was attributed to the increase of 
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attached cross bridges after the stretch. Rassier & Herzog (2005) demonstrated that there is an 

association between increased muscle stiffness and force enhancement.  

 The muscle force enhancements seen with stretching muscle fibers prior to contractions 

was also studied in cats (Herzog & Leonard, 2002). They investigated force enhancements 

during ascending and descending after stretching the cat soleus muscle. Bipolar cuff-type 

electrodes were placed on the tibial nerve to stimulate the soleus using 30 Hz. The soleus tendon 

was then attached with sutures that would act as muscle pullers. Force-length relationship was 

then found by increasing the muscle length 2 mm at a time until the descending muscle was 

identified. Then force enhancements following stretching were assessed over four contractions: a 

reference isometric contraction at muscle length, a second isometric contraction at muscle length 

of -10 mm followed by stretching from -10 mm to -2 mm at 4 mm*s, followed by a 5 second 

isometric contraction at -2 mm, a third isometric contraction for 8 s at -10 mm of stretch, and a 

final isometric contraction at muscle length. Force enhancement following stretching was 

measured 3 seconds following stretching when the force curves had reached a steady-state. 

 Isometric contractions following stretching had greater steady-state active forces (p <.05) 

compared to isometric force at muscle length. All stretching tests at any speed had greater 

enhancement force 1.3 ± 1.1 N; 6.5% (p <.05) greater average isometric force than the force at 

initial muscle length. (Herzog & Leonard, 2002). During descending, there was a consistent 

passive force enhancements that were consistent with optimal muscle lengths. Additionally, over 

all of the stretching magnitudes ranging from 3 mm to 9 mm, passive force enhancements were 

responsible for up to 83.7% of the total force enhancements seen. For stretches 6 mm or greater, 

passive force enhancement accounted for more than 50 % of the total force enhancement seen 
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after stretching. These data further support the role of passive force production from stretching of 

muscle fibers.  

Age-related accumulation of non-contractile properties increases muscle stiffness. In 

studies comparing young and old skeletal muscle components, non-contractile components of 

muscle increase with age. Kent-Braun, Ng, & Young (2000) compared contractile and non-

contractile components in men and women. Using magnetic resonance imaging, contractile 

(muscle) and non-contractile (fat) properties of the right tibialis anterior was assessed. Younger 

men and women had larger cross sectional areas of contractile components compared to the older 

men and women. The young group had both smaller absolute and relative non-contractile cross 

sectional areas than older subjects. In fact, older subjects had a two to three fold greater cross 

sectional area of non-contractile components than the young subjects (Kent-Braun, Ng, & 

Young, 2000). Physical activity was also assessed in both young and old, and there was an 

inverse relationship found with percent of non-contractile components and physical inactivity. 

This observation is important, drawing light to the possibility of conserving contractile properties 

in older adults by increasing physical activity. This study also elucidates the decrease of 

contractile properties with aging along with the increase in non-contractile components.  

Increases in connective tissue and the passive stiffening of muscles with aging was 

explored. In a review of literature on passive extensibility of skeletal muscle, Gajdosik, (2001) 

reported that increasing passive muscle stiffness along with length extensibility and increased 

muscle length (eccentric muscle action) results in optimal muscle function, the ability for the 

muscle to produce force per unit. Additionally, the increase in stiffness was largely associated 

with an increase in connective tissue in the cytoskeleton. These findings imply that older adults 

who have age related muscle stiffness may be able to use it to produce muscle force. This would 
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be possible through a couple mechanism that enhance muscle force output. They include the 

stretch shortening cycle and stored elastic energy in tendons (DeVita, Helseth, & Hortobagyi, 

2007; Taube, Leukel, Lauber, & Gollhofer, 2011).   

Mechanisms of Eccentric Muscle Actions on Consequent Enhancements of Concentric  

 Stretch-shortening cycle. The eccentric phase of muscle occurs when the muscle 

lengthens in response to an opposing force that is greater than the force output of that muscle 

(DeVita, Helseth, & Hortobagyi, 2007).  When the muscle lengthens, it serves to either slow 

down the movement of the body, as in walking downhill, or to resist the force of gravity while 

lowering weight. Mechanical energy decreases with lengthening muscle action because in 

muscle lengthening the force and displacement vectors are in opposite directions; this is referred 

to as negative work (DeVita, Helseth, & Hortobagyi, 2007). Typically, any energy that is 

absorbed during the lengthening phase is lost as heat unless it is immediately followed by a 

shortening contraction, in which case the energy can be used to enhance the concentric force 

(DeVita, Helseth, & Hortobagyi, 2007). The force production from this combination of muscle 

lengthening followed by a concentric contraction is known as the stretch shortening cycle (SSC) 

(Taube, Leukel, Lauber, & Gollhofer, 2011). Due to the increased force output from this 

combination, SSC exercises have been used in an attempt to improve muscle force and muscle 

power.  

Stretch shortening cycle and muscle power production. In an eight week SSC exercise 

training program, functional performance and contractile properties were investigated in eight 

healthy men. The exercises included: static jumps with knees flexed, vertical countermovement 

jumps, drop jumps, double leg triple jumps, single-leg jumps, and single leg hurdle jumps 

(Malisoux, Francaux, Nielens, & Theisen, 2005). In order to assess the leg strength and power, 
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each male performed a one repetition maximal force (1RM) of the leg extensors in a two-legged 

leg press before and after 24 sessions of SSC exercises. The contractile properties of the vastus 

lateralis was assessed by muscle biopsies before and after the SSC training program. Peak power 

was assessed in individual muscle fibers during a concentric muscle action. The 1RM in the leg 

press increased by 12 percent after 24 sessions of SSC training, and the peak power of type I, 

type IIa, and hybrid fibers IIa/IIx was enhanced by nine percent.  

The potential to store and use elastic energy was also investigated in a study exploring 

the mechanical efficiency during repetitive vertical jumping. Eight jump trained males completed 

30 repetitions of a static jump (SJ), and a countermovement jump (CMJ). Mechanical efficiency 

between the CMJ and the SJ was analyzed by comparing the force time curves, displacement 

time curves, and oxygen consumption (McCaulley, Cormie, Cavill, Nuzzo, Urbiztondo, & 

McBride, 2007).  Over a total of 30 jumps, there was a significant difference (P < 0.001) of 

oxygen consumption in the CMJ (6.1 L/min) compared to the SJ (7.2 L/min). Energy cost per 

jump measured through the displacement time curve were also significantly different (p < 0.05) 

between the CMJ (5,405 J) and the SJ which required more work (6,176 J). The differences in 

the mechanical efficiency between the countermovement jump, and the static jump were 

attributed to the use of stored elastic energy created during the lengthening phase of the CMJ.  

These studies suggest that the stretch shortening cycle enhances muscle force efficiently. 

Therefore further studies began to explore how to capitalize on the effect that the eccentric phase 

of the SSC has on force development in the concentric phase. It seems that there are underlying 

mechanical adaptations taking place during the eccentric phase of the SSC, one of which is the 

use of stored elastic energy.  
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Stored Elastic Energy.  The elastic properties of tendons help to decrease the amount of 

mechanical energy needed to produce muscle force.  Research on the behavior of animal tendons 

during muscle action has repeatedly demonstrated how stored elastic energy can enhance muscle 

force production (Astely & Roberts, 2011). The major concept is that the muscle tendon acts like 

a spring during muscle action. The elastic recoil of the tendon during a muscle contraction stores 

energy and converts it to kinetic energy in the following muscle contraction. To demonstrate this 

concept, Astley and Roberts (2011) investigated muscle fascicle activity and joint movement in 

frogs during a jump. Based off previous research which demonstrated that frogs used a “catapult 

like mechanism” during jumping to store and rapidly release elastic energy, Astely and Roberts 

(2011) hypothesized that there would be shortening of fascicles prior to joint movement followed 

by rapid joint movement without rapid muscle shortening. This would demonstrate that the 

enhanced muscle power output for jumping could be attributable to stored elastic energy in 

tendons. Plantaris muscle fascicle length change was tracked by implanting digitized markers 

within the muscle. Ankle joint length was measured by implanting bone markers into each of the 

bones of the ankle joint. Then, the relationship between the muscle and tendon unit length and 

joint angle at the ankle was used to evaluate their hypothesis that rapid joint movement would 

not be accompanied with muscle shortening.  

Across all the jumps, fascicle shortening began prior to joint movement. This was the 

phase in which energy was stored from muscle contraction. Fascicle shortening was 

accompanied by large changes in both joint angle and angular acceleration with low muscle 

shortening activity. This angular change and acceleration without muscle shortening was 

attributed to the elastic recoil of the tendons during the jump, demonstrating how muscular force 
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can be enhanced without a muscle contraction through the use of stored elastic energy (Astely 

and Roberts, 2011).   

The use of stored elastic energy has also been demonstrated in human tasks such as 

walking, running, and jumping. In a study examining the relationship between fascicle length 

and tendon utilization of stored elastic energy, fascicle length during walking was studied in 

young males (Ishikawa, Komi, Grey, Lepola, Bruggemann, 2005). Subjects walked on a 10 m 

long force platform at normal walking cadence. Vertical and horizontal ground reaction forces 

were recorded as well as fascicle length using a high speed ultrasonographic apparatus. An optic 

fiber transducer for tendon stress was inserted transversely through the Achilles tendon to 

measure tendon stress. Electromyography was used to record muscle activation of the tibialis 

anterior (TA), medial gastrocnemius (MG), and the soleus muscle (SM) during walking. 

Walking was separated into four phases: brake I and II, push I and II. The tendon tissue of the 

medial gastrocnemius and the soleus muscle lengthened slowly during the standing phase and 

then quickly recoiled by the end of ground contact. The difference in behavior between the MG 

and SM was that while both initially lengthened, the MG remained isometric during the late-

stance phase, while the SM continued to lengthen suggesting a catapult like action of energy 

transference during human walking. Another observation was that both the muscle tendon units 

along with the tendinous tissue of both the MG and SM lengthened slowly during the brake II 

and then quickly recoiled during the push II phase in all subjects. These observations suggest that 

in human walking, without spring-like action can still produce force due to the utilization of 

stored elastic energy through the slow lengthening and quick recoil behavior of the muscle 

tendon unit of muscle involved. This contributes to the evidence of alternative energy production 

from stored elastic energy.  
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The existence of stored elastic energy was also explored during isolated plantar flexion 

exercises in men. In vivo muscle fiber behavior was studied during both static and counter 

movement ankle plantar flexion (Kawakami, Muraoka, Kanehisa, & Fukunaga, 2002). Subjects 

lied supine on a sliding table where a weight training apparatus was attached to the trunk. A 

force plate was then place onto the footplate of the apparatus where the subjects placed the ball 

of the right foot while maintaining full knee extension. Joint angle of the right ankle was 

measured and electromyography (EMG) was used to record muscle activation of the medial and 

lateral gastrocnemius and the soleus muscle. Subjects performed a maximal unilateral plantar 

flexion movement with and without a counter movement. The force at the ball of the foot, joint 

angle, and EMG were recorded.  Achilles‟ tendon force was measured by plotting the muscle 

tendon unit power against the fascicle length during both conditions. For the countermovement 

conditions, the maximal Achilles tendon force was greater (4055 ± 655 N) compared to the static 

condition (3081 ± 667 N), the maximal angular velocity in the plantar flexion phase was also 

higher (138 ± 95. 3 deg*s) compared to the static condition (271 ± 86.2 deg*s), however there 

was no significant difference in muscle activation amplitudes (Kawakami, Muraoka, Kanehisa, 

& Fukunaga, 2002). A major finding of this study was that the muscle tendon unit length 

increased in the dorsiflexion phase with no change in muscle fiber length in later phases in the 

countermovement condition. Additionally the countermovement condition resulted in 

significantly greater mean power and force, as well as angular velocity at the ankle joint. This is 

further evidence of stored elastic energy contributing to greater muscle force and power output 

while requiring less work by first activating the muscle tendon unit through a countermovement.  

These data along with the enhancements seen with the SSC could be applied to older 

adult exercise prescriptions. This is especially important to investigate as the loss of muscle 
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strength and function is age-related and associated with an increased risk of falls in older adults 

(Rubenstein, 2006; Scott, Hayes, Sanders, Aitken, Ebeling, & Jones, 2014).   

Assessment of Function in Older Adults 

Muscle strength assessments in older adults. Muscle performance tests are used to 

assess function in older adults. In a cross sectional study, the relationship of upper and lower 

extremity strength and functional limitations were assessed in older men. Muscle strength to 

muscle mass was used to find muscle quality and functional limitations were found using self-

reports and lower extremity performance tests which included: five time sit to stand test and the 

six meter walking speed test (Hairi, Cumming, Naganathan, Handelsman, Couteur, Creasey, et 

al., 2010) Upper extremity strength was measured by taking the mean of two grip strength trials 

using a Jamar dynamometer. Lower extremity strength was found through the use of a spring 

gauge on each leg separately for one trial. Men with self-reported functional limitations had 

lower lean leg mass (15.5 ± 2.7 kg/m
2
) compared to those who did not have self-reported 

functional limitations (16.4 ± 2.3 kg/m
2
).  Those who had self-reported functional limitations 

also had lower grip strength (29.6 ± 7 kg) compared to those who did not report functional 

limitations (35.2 ± 7.3 kg). Lower extremity strength was also lower in the self-reported 

functional limitation group than in the no limitation group, 25.7 ± 7.3 kg, 31.5 ± 7.8 kg 

respectively. Mean muscle strength, muscle mass, and muscle quality decreased with increasing 

age, a common finding in literature (Graf, Judge, Ounpuuu, & Thelen, 2005; Hairi, Cumming, 

Naganathan, Handelsman, Couteur, Creasey, et al., 2010; Ondoer, Penninx, Feruci, Fried, 

Furalnik, & Pahor, 2005). 
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Additionally, compared to upper extremity muscle performance tests, quadriceps strength 

and lower extremity muscle force performance had a stronger relationship with functional 

limitations and disability (crude prevalence ratio = 2.23, 95% CI = 1.97-2.53) Functional 

limitations and disability were defined as having answered yes to any of the Katz activity of 

daily living (ADL) questions. The Katz ADL questions included: do you need help with personal 

care needs, walking across a room, bathing, dressing, and getting out of bed (Hairi, Cumming, 

Naganathan, Handelsman, Couteur, Creasey, et al., 2010). These data suggest that there seems to 

be a specific relationship with lower body strength and functional limitations that needs further 

investigation.  

Ondoer, Penninx, Feruci, Fried, Furalnik, and Pahor (2005) assessed physical 

performance measures of the upper and lower extremities in predicting disability in women. 

Upper extremity performance was evaluated using: putting-on-blouse-test, Purdue pegboard test, 

and grip strength of dominant hand. For lower extremity performance tests, the four meter 

walking speed, sit to stand test, and the standing-balance test were used to evaluate performance. 

Disability outcomes were measured every 6 months over 3 years and included assessments on: 

activities of daily living (ADLs), walking across a room for lower extremity disability, and 

lifting 4.5 kilograms for upper extremity disability. Compared to upper extremity, lower 

extremity tests were significantly associated with catastrophic ADL disability. Catastrophic 

disability was defined as having difficulty performing two of the following assessments: 

performing ADLs, walking across a room, and lifting 4.5kg.  All of the lower extremity tests and 

only the putting-on-blouse test were significant predictors of mobility disability, and only the 

lower extremity tests were significantly associated with the onset of catastrophic mobility 

disability. 
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Graf, Judge, Ounpuuu, and Thelen (2005) assessed lower extremity joint power and low 

physical performance in older adults. Fifty-two elderly adults were divided into two groups, 

healthy and low performance (LP) groups. Each group underwent kinematic tests for gait and 

speed, and joint power tests of the ankle-flexor (tibialis anterior muscle) power. Kinematic tests 

for gait were measured over 3 trials where subjects walked at a comfortable speed, and over 3 

trials at a “fast as they could without running” speed. The joint power tests were found through 

the joint power time histories during the stance and swing phase of gait. Compared to the healthy 

group, the LP group had a significantly lower ankle power output (2.13 ± 0.58 W/kg, p < .001) 

during walking at a comfortable gait. Additionally, those in the LP group had greater coronal and 

transverse pelvis rotation as well as reduced hip extension in late stance. These findings suggest 

that an intervention for increasing muscular function of the quadriceps and ankle flexors like the 

tibialis anterior muscle in older adults is important. Increasing lower extremity performance 

could has an inverse relationship with the risk of falling and disability in older adults. The 

association with decreased lower extremity performance and increased risk of fall may also be 

evaluated through a simple and reliable functional test known as the five times sit to stand test.  

One-time sit to stand test (STS-1).  Rising from a chair is an important task of daily 

living that can become more difficult with aging. With decreasing ability to rise from a chair 

without support, there is a decrease in independence and an increase in risk of falling in older 

adults. Therefore, the one-time sit to stand test (STS-1) is a simple and common field test used in 

to assess function, risk of falling, and frailty in older adults (Gross, Stevenson, Charette, Pyka, & 

Marcus, 1998). The action of moving from a sitting position to a standing position requires the 

upward shifting of the center of mass (COM) (Yamada, Demura, & Takahashi, 2013). 

Furthermore, this action requires trunk flexion with knee extension and can be used as an 



 
 

24 
 

evaluation test to assess lower limb strength and balance in older adults (Yamada, Demura, & 

Takahashi, 2013). The ability for an older adult to transfer the COM quickly and forcefully 

during a STS-1 requires greater lower extremity strength.  

The minimum amount of muscle strength and speed has been investigated among 

different studies to provide evidence for pre-frail and frailty in older adults. Using three-

dimensional coordinates the kinematics of rising from a chair was investigated in 11 older adults. 

A total of 110 chair rises were assessed and the relationship between the time it took to stand up 

and muscle strength was examined (Yoshioka, Nagano, Hay, & Fukashiro, 2009). This 

relationship was assessed by measuring peak hip and knee joint moments during the chair rise 

test. The amount of strength that needs to be done to stand in 1.5 was 1.8 Nm/kg, and the 

minimum of strength required to rise from a chair in 2- 3 seconds was 1.54 Nm/kg. These 

findings imply that older adults who take longer than 2.5 seconds to rise from a chair have been 

may have low balance and therefore an increased risk of falling (Janssen, Bussman, Stam, 2002; 

Mourey, Grishin, Athis, Pozzo, & Stapley, 2000; Yoshioka, Nagano, Hay, & Fukashiro, 2009).  

Rate of force development during sit to stand test. In order to measure lower extremity 

strength and function during a STS-1, force plates that record ground reaction forces are 

commonly used to measure variables like rate of force development which is the time that is 

required to produce force and is measured by finding the slope of the vertical ground reaction 

force (Chang, Mercer, Giuliani, & Sloane, 2005; Janssen, Bussmann, & Stam, 2002). Force 

platforms measure horizontal and vertical component of applied force as well as center of foot 

pressure (Mourey, Grishin, Athis, Pozzo, & Stapley, 2000). This allows investigators to measure 

how effective older adults are in performing tasks like standing up from a chair.  Additionally, 
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rate of force development elucidates lower extremity movement strategies that may be associated 

with deficits in function in older adults (Houck, Kneiss, Bukata, & Puzas, 2011).  

In a study comparing standing from chair strategies between older adults with hip 

fractures to healthy adults, rate of force development (RFD) and vertical ground reaction forces 

(vGRF) were assessed. Community dwelling elderly subjects participated in functional and 

balance assessments. The tests included gait speed, BERG balance test, and a self-report measure 

of functional mobility (Houck, Kneiss, Bukata, & Puzas, 2011). Subjects performed a sit to stand 

movement on a force plate and the RFD and vGRF were measured. A custom made force plate 

seat was used to determine arm impulse which was defined as the area under the vGRF starting 

at the first 5 N in force and ending when below 5 N. This allowed investigators to determine the 

vertical upper extremity contribution during a STS task. For vGRF variables, RFD was measured 

in N/s and the lower extremity contribution during a STS was used to measure symmetry. Lower 

extremity symmetry during a STS was found by measuring the area between the vGRF of the 

injured side and the vGRF of the uninjured side, where a higher area suggested greater 

asymmetry. The results showed that the arm impulse was significantly higher in the hip fracture 

group (CI of 0.02 (n*s)/kg to .98 (N*s)/kg) compared to the control group and the difference 

between the groups was .35 N*s/kg. There was a moderate correlation (r =-0.443) between 

greater arm impulse and lower self-reported function and gait speed. This suggested that 

movement strategies during STS tests using RFD and vGRF as assessment variables were 

associated with performance during functional and self-reported measures of fall risk.  

In a similar study, the validity of using rate of force development during a sit to stand 

task was evaluated in healthy older adults. Subjects were asked to rise from a chair with their 

arms crossed across the chest and with feet shoulder width apart. Subjects also performed leg 
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press, static balance test, and the YMCA functional capacity test (Ritchie, Trost, Brown, & 

Armit, 2005). There was a significant correlation (r =.68, p < .05) between the sit to stand test 

and the 1RM for leg press. The sit to stand test was both reliable and valid measurement of lower 

body strength and function. Similar to RFD in a sit to stand task, the center of pressure is another 

variable that can be measured through force plates and used to evaluate balance and function in 

older adults.  

Balance, risk assessment and improvements with resistance training in older adults. 

For older adults maintaining muscle strength and function are important in decreasing their risk 

of falling. Among these muscle functions, balance is a critical function to maintain as it is a 

predictor of falls in older adults (Stel, Smit, Pluijim, & Lips, 2003; Shubert, Schrodt, Mercer, 

Whitehead, & Giuliani, 2006). Balance in older adults is assessed by measuring medial-lateral 

and anterior-posterior displacement of center of pressure on a force plate. In a study investigating 

the association between balance and recurring falls in older adults, balance was assessed in 439 

older adults. Subjects performed four balance tests: eyes open, eyes closed, eyes open, and with 

eyes closed. The average medial-lateral and anterior-posterior sway were averaged separately for 

eyes open and eyes closed conditions. Subjects were asked to stand looking straight ahead with 

feet comfortably spaced and arms at their sides for 30 seconds. Recurrent fallers were 

significantly associated with poor balance (OR = 3.8; 95% CI: 1.9 – 7.7) compared to non-fallers 

(OR = 2.9; 95% CI: 1.3-6.5). Medial-lateral sway had the greatest predictive value for 

identifying recurrent falls (AUC = .67; 95% CI: 0.57 – 0.77). Eyes-open-medial-lateral-sway had 

stronger predictive value for identifying recurrent falls (AUC = .67) compared to anterior-

posterior-sway (AUC = .61) (Stel, Smit, Pluijim, & Lips, 2003).  
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The ability to maintain balance has been defined as having postural steadiness that can be 

assessed using center of pressure in older adults (Champagne, Prince, Bouffard, & Lafond, 

2012). In a case control study, postural steadiness was assessed in 15 older women with low back 

pain. Subjects stood straight with eyes open on a force plate and the center of pressure (COP), 

speed and frequencies of total power from 0 to 4 Hz were used to assess postural steadiness 

(Champagne, Prince, Bouffard, & Lafond, 2012). Frequencies were used because of the 

relationship between visual, vestibular, and proprioception and frequency bands of COP. 

Subjects also completed fall-related self-efficacy tests and fear of avoidance questionnaires. 

Postural unsteadiness was related to fall-related self-efficacy (93.5%) compared to the control 

group (79.5%). Low back pain levels, and fear of avoidance in older women with low back pain 

and postural unsteadiness was also higher compared to the control group, 43.8%, and 33.4% 

respectively.  

Similar results were found on postural control in a group of 225 community dwelling 

older adults (Delbaere, Crombez, Vanderstraeten, Willems, & Cambier, 2004). In order to assess 

the relationship between lower extremity strength, postural control, and avoidance of activities in 

older adults, each subject underwent a series of evaluations. Fall history was attained prior to 

testing and again at 1 year. The Dutch modified survey of activities and fear of falling elderly 

scale (SAFFE) was used to measure fear-related avoidance of activities. Physical frailty was 

measured through a performance based test where subjects were timed during eating, picking up 

a coin, and ascending and descending stairs. Postural control was measured by having subjects 

stand on a force plate and COP and body sway were recorded. With muscle performance was 

measured by having each subject perform a maximal isometric contraction of the knee and ankle 

extensors and flexors, though specific muscles were not defined. Fear of falling was related to 
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COP (r = 0.33; P < 0.001) and specifically to excursion in the forward direction (r = 0.31; p < 

0.001). SAFFE scores were strongly correlated with both past falls (r = 0.33; P <0.001) and 

future falls (r = 0.30; p <0.001). This is important because fear of falling was predictive of falls 

and recurrent falls in this population. Therefore, maintenance of balance and stability is 

important as its variables are related to increased risk of falling and may be improved with 

resistance training interventions.   

Decreased stability due to aging is an imperative factor contributing to mobility 

limitations in older adults (Bean, Herman, Kiely, Frey, Leveille, Fielding, & Frontera, 2004). 

Interventions for preventing loss of stability include resistance training programs that are both 

functional and task specific. A study on community dwelling older women used velocity 

exercises specific to task to evaluate changes in leg power, balance, and mobility from a 

resistance training program. Twenty-one women aged 70 or older were randomized into either a 

progressive resistance program or a control exercise group (Bean, Herman, Kiely, Frey, Leveille, 

Fielding, & Frontera, 2004). The progressive resistance group (InVest) trained with weighted 

vests and performed exercises specific to mobility tasks at fast velocities. The control group 

performed slow-velocity and low resistance exercises. The training program was done three 

times per week for 12 weeks and all subjects underwent muscle power, balance and physical 

performance tests. The InVest exercises included: chair stand, toe raises, pelvic raises, step ups, 

seated triceps dips, and chest press done in three sets of ten repetitions each. The InVest group 

was instructed to perform the concentric phase as quickly as possible. The weight of the vest was 

increased progressively by 2% body mass. Measurements of mobility and balance included: 

standing balance test, 2.4 meter walk, and the five times sit-to-stand test. Tests were scored on a 

0 to 4 scale for a maximum of 12 points determining highest level of performance. Muscle 
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strength were measured through a one repetition maximum (1RM) leg press. Muscle power was 

measured with the same leg press exercise at eight intensities, ranging from 40-90 percent of the 

1RM, performed as fast as possible.  

Compared to baseline measurements, the InVest group had leg power increases between 

12% and 36%. The InVest group also reached statistical significance (p < .001) at all levels 

between 60 -90% 1RM. The InVest group had significantly greater improvements in the chair 

stand time (p < .001), gait speed (p < .006), and balance stance time (p < .028) compared to 

control group. Specific data on the actual change in times and speed was not available. These 

data demonstrated improvements in balance stance time which is commonly used to evaluate fall 

related injury risk. Those in the InVest group improved in the balance stance time by 50%, a 

meaningful change that should prompt further research on balance and stability improvements 

following resistance training programs.  

High intensity strength training programs may also improve performance on balance 

tests. In a ten week high intensity strength training program, balance measurements were 

assessed in 27 balance-impaired older adults (Hess & Woollacott, 2005). The subjects were 

placed into either a control group that was instructed to not participate in any exercise programs, 

or the experimental group which participated in a ten week high intensity strength training 

program three times per week. Clinical measurements of functional balance included the Berg 

Balance Scale (BBS), Timed Up and Go (TUG) test, and the Activities-Specific Balance 

Confidence Scale (ABC) questionnaire (Hess & Woollacott, 2005). The strength training 

protocol consisted of tibialis anterior flexion exercises done on a Hammer strength tibial 

dorsiflexion machine for strengthening the tibialis anterior muscle (TA), a Maxicam machine 

was used for plantar flexors strengthening of the gastrocnemius muscle (GA), and knee 
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extension/flexion strengthening exercises were performed on a Maxicam variable-resistance 

machine for quadriceps (QD) and hamstrings (HM) strengthening. Exercises were done for three 

sets of eight repetitions at 80% of their estimated one repetition maximum (1RM). All exercises 

were performed within a six second time limit, where two seconds were spent in the concentric 

phase and four seconds in the eccentric phase.  

After the ten week strength training program, subjects in the experimental group and 

control group were assessed again. The 1RM strength for the TA increased significantly (p = 

.045; 15.6 ± 13.8 lb. to 26.8 ± 16.1 lb.) in the experimental group compared to control group 

(13.7 ± 3.7lb to 14.3 ± 2.3lbs). The GA 1RM also increased significantly in experimental group 

(P = .045; 45.5 ± 15.5 lb. to 94.2 ±24.6 lbs.) compared to control group (control group final GA 

1RM was not given). Quadriceps 1RM increased significantly (p = .045) in experimental group 

moving from 60.3 ± 8.1 lbs. to 92.7 ± 12.4 lbs., while the control group decreased from 74.4 ± 

27.1 lbs. to 70.8 ± 28.5 lbs. Hamstring 1RM also increased significantly in the training group (p 

=.045, 37.1 ± 12.9 lbs. to 66.7 ± 24.9 lbs.) compared to control group (39.0 ± 8.5 lbs. to 39.9 ± 

9.5 lbs.). Mean GA strength was significantly correlated with the mean BBS scores (Pearson 

correlation coefficient = -0.1683, p =.014) where BBS scores increased with correlating 

increases in GA strength in the experimental group.  Specifically, the mean BBS score for the 

experimental group increased from 48.8 ± 2.4 points to 51.2 ± 4.3 points of 56 possible points 

while the control group moved from 48.5 ± 2.8 to 49.5 ± 3.0 points. Additionally, there were 

significant changes in the TUG test where time decreased from 11.5 ± 2.4 s to 9.7 ± 2.5 s; p = 

.045) and ABC scale (increasing from 80.3 ± 15% to 88.3 ± 10.3%; p = .038) for the 

experimental group. The control group had a slight increase in TUG test moving from 11.2 ± 1.7 

s to 11.8 ± 3.3 s and ABC scale scores were unchanged (81.1% ± 11.7 % to 81.2% ± 13.5%).  
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Overall, these data suggest that resistance training at high intensities may increase performance 

on balance tests, and balance retention seems to be correlated with muscle strength. Along with 

balance tests, functional tests like the five times sit-to-stand test are useful measurement tools 

used in risk of fall assessments for older adults.  

Five-times sit to stand test. The assessment of overall function and risk of fall among 

older adults is commonly assessed using the sit to stand test (STS-1).  The ability to stand up 

from a chair is an important factor that determines independence in older adults (Lord, Murray, 

Chapman, Munro, & Tiedman, 2002; Schlicht, Camaione, & Owen, 2001). The STS-1 has been 

used in clinical settings to measure the force generating capacity of lower extremity muscles and 

the risk of fall in older adults (Lord, Murray, Chapman, Munro, & Tiedman, 2002; Schlicht, 

Camaione, & Owen, 2001; Whitney, Wrisley, Marchetti, Gee, Redfern, & Furnamn, 2005). 

Although there are many variation of the STS-1, the 5-times STS (STS-5) is most commonly 

used and is among the best measures for predicting risk of fall compared to other functional 

mobility tests (Buatois, Milijkovic, Manckoundia, Gueguen, Miget, Vancon, et al., 

2008;Tiedemann, Shimada, Sherrington, Murray, & Lord, 2008; Whitney, Wrisley, Marchetti, 

Gee, Redfern, & Furnamn, 2005). During a STS-5 test, subjects are instructed to move from a 

sitting position to a standing position as fast as possible, with their arms crossed against the chest 

five times in a row (Houck, Kneiss, Bukata, Puzas, Clark, & Clark, 2011; Tiedman, Shimada, 

Sherrington, Murray, Lord, 2008). The STS-5 test is timed, beginning from the initial sitting 

position and time is stopped when the subject is in the final seating position after the fifth stand.  

The time it takes to complete standing tasks is association with frailty and therefore risk 

of falls for older adults. This was assessed by Millor, Lecumberri, Gomez, Martinez-Ramirez, & 

Izquierdo, (2013) in a chair rise study comparing older adults who were either healthy, pre-frail, 
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or frail. Forty-seven subjects in; healthy, pre-frail, or frail groups performed a 30-s chair stand 

test. The subjects had to stand up and sit down from a chair as many times as they could within 

30 seconds. A global reference system was used to assess kinematic data during each trial 

performed. The system had an XYZ reference frame where Z axis points vertically, the X lateral 

axis, and the Y anterior-posterior axis. These were used to assess the linear acceleration. The 

frail group took longer in the impulse phase of the chair rise that was significantly greater than 

that of the pre-frail group during the same phase (p < 0.0001). Additionally, when normalized for 

the entire length of the movement, the healthy group had a significantly smaller time (P < 0.001) 

than both pre-frail and frail group (no specific data was given for these groups). The greatest Z-

velocity during the stand-up phase (about 1.2 m/s) and also during the sit-down phase ( about 

0.14 m/s) were both greater in the healthy group compared to pre-frail (about .08 m/s and .05 

respectively) and frail ( about .5 m/s and .05 m/s respectively) groups. There seems to be a 

relationship between time to stand and frailty in older adults. Studies have also focused on the 

relationship between fall risk increases with increase in the time it takes for subjects to complete 

the STS-5.  

Reference values for the STS-5. There is no single concrete reference value that has 

been established universally for the prediction of fall risk from performance of STS-5. However, 

multiple studies suggest that a score of 12 seconds or more is closely associated with recurrent 

falls in older adults. In a study comparing standard clinical function tests of older adults, 

performance of the STS-5 as a predictor of falls was assessed (Buatois, Milijkovic, 

Manckoundia, Gueguen, Miget, Vancon, et al., 2008). Over 2,500 subjects over the age of 65 

underwent three balance tests including the one-leg balance test (OBL), timed up and go test 

(TUG), and the five-times sit to stand (STS-5). At 18 and 36 months posttest, falls were recoded 
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from a questionnaire. Out of the three tests, the STS-5 was the only test that was independently 

associated with an increased risk of falling and of recurrent falls (risk ratio 1.74, 95% confidence 

interval = 1.24- 2.45, p < .001) (Buatois, et al, 2008). The optimal cutoff time having the greatest 

sensitivity in predicting falls was 15 seconds (sensitivity = 55%). In addition, subjects who took 

15 seconds or longer to complete the STS-5 had a 74% greater risk of falling compared to those 

who completed the test in less time (Buatois, et al., 2008).  

 Another study comparing mobility tests as predictors of falls in older people found 

similar findings. In defining cut-off points for the associated  sensitivity and relative risk of falls 

in older adults, the STS-5 cut off value with the greatest sensitivity for relative risk of fall was 12 

seconds or greater (sensitivity = 66%) (Whitney, Wrisley, Marchetti, Gee, Redfern, and 

Furnamn, 2005). An analysis of sensitivity and specificity was conducted for the STS-5 and the 

time representing the best sensitivity was 13 seconds (sensitivity = 66%).  

In examining these data, the cutoff time of 12 seconds for predicting an increased risk of 

falls seems to be a reliable reference time. In order to improve this time, some interventions have 

been put into place for older adults, mainly resistance training programs. 

Resistance training improves muscle function and performance on functional tests 

in older adults.  Age-related decreases in muscle strength and mass increase the risk of falls in 

older adults. Resistance training can help attenuate the age-related decrease in muscle strength 

and therefore decrease the risk of falls. In an eight week study, Schlicht, Camaione, and Owen 

(2001) measured the effect of a strength training program on performance of functional tests 

including the STS-5. Twenty-four moderately active, community dwelling adults aged 60 years 

and older were recruited to participate in an eight week intense strength training program set at 
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75% of the 1RM for each exercise. Prior to the training program, performance measurements 

were taken for muscle strength, walking speed, one-legged blind balance test,  and the five 

repetition sit to stand test (STS-5) (Schlicht, Camaione, & Owen, 2001). The strength training 

sessions took place three days a week over an eight week period. The exercises consisted of leg 

extensions, inner thigh press, outer thigh press, glute press, leg press, and ankle press. Each 

exercise was done for two sets of 10 repetitions. For the first two weeks, subjects were allowed 

to use self-selected weight for familiarization and development of proper technique. For the final 

six weeks, the loads were set at 75% of the 1 repetition maximum, and the load was increased at 

the end of two week blocks as strength increased. Functional tests were measured again at mid-

intervention and post-intervention. The STS-5 was significantly better at both mid-and post- 

intervention compared to pre-intervention scores (p < .017), however the actual times recorded 

for the task were not provided.  

The effect of a 12 week heavy lower extremity resistance training program on muscle 

force, strength, and power was investigated. Sixty-five home dwelling women were divided into 

old (60 -65 years) and very old (80-89 years) groups for this study (Caserotti, Aagaard, Larsen, 

& Puggaard, 2008). Explosive lower limb muscle power, leg extensor performance on a power 

rig, rate of force development, and maximal muscle strength during a countermovement jump 

were measured. The strength training program took place twice a week for 12 weeks with at least 

two days between sessions. Exercises for the training program consisted of bilateral knee 

extensions, horizontal leg press, hamstring curl, calf rise, and inclined leg press performed for 

four sets at 8-10 repetitions. The load was set at 75-80% 1RM in order to promote heavy 

resistance that has been found to increase muscle cross sectional area, muscle strength, and 

muscle power output in both old and very old adults (Caserotti, Aagaard, Larsen, & Puggaard, 
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2008). In post-test measurements, both the old and young group had significant improvements in 

explosive lower limb muscle power during the counter movement jump (CMJ) where the old 

group improved by 18% and the very old group improved by 10%. Rate of force development 

increased by 21%, maximal strength during a maximal voluntary contraction increased by 18%, 

and impulse increased by 51% compared to pre-test. This study demonstrated that a low volume 

with heavy resistance training protocol significantly improved muscle function in older women. 

Therefore, it seems that a low volume, moderate intensity resistance program is an appropriate 

prescription for adults over 60 years of age.  

Muscle Function Domains Affecting Physical Performance in Older Adults.  

 Lower extremity rate of force development affects physical performance in older 

adults.  Muscle rate of force development (RFD) is the measurement of a muscle‟s ability to 

generate force quickly at the beginning of a movement, like when standing up from a chair 

(Aagaard, Simonsen, Andersen, Magnusson, & Poulsen, 2002). With aging, there is a trend for 

muscles to experience a decrease in RFD that is associated with the age-related atrophy of 

muscle (Fielding et al, 2011; Rubenstein, 2006). This combination of muscle mass and function 

loss is in large part associated with the increased risk of falling in older adults (Goodpaster, Park, 

Harris, Krtichevsky, Nevitt, Schwartz, et al, 2006; Scott et al., 2014). However, resistance 

training programs may aid in increasing and maintaining RFD.  

The effect of strength training on lower extremity RFD, muscular strength, and body 

composition was examined in 24 older men between the ages of 70 and 80 (Lovell, Cuneo, & 

Gass, 2010). The men were separated into either a strength training (ST) group or a non-training 

control group. The ST group participated in a 16 week training program followed by a four week 
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de-training period. The strength training was done three times per week for 25 minute sessions 

on an incline squat machine, starting at 50% of the one-repetition max (1RM) done at three sets 

of 10 repetitions for the first two weeks. Then the program progressively increased to 70-90% 

1RM done at three sets of eight repetitions.  Prior to training, RFD was measured in both groups 

by performing a maximum isometric contraction in squat position onto a force platform. 

Sampled at 1000 Hz, the maximum force was taken as the highest value recorded during each 

trial from the start of the contraction up to 500 ms. The RFD was then calculated from the 

maximum force that occurred over the force-time curve (Lovell, Cuneo, & Gass, 2010). These 

measurements were taken pre-test and post-test and also every four weeks through to the four 

week de-training period in both groups. Changes in leg strength did not significantly change but 

did decrease over the 16 week period in the control group (724 N ± 65 N to 711 N ± 58 N). In 

comparison, the ST group had significant (p < .05) increases in leg strength, increasing from 702 

N ± 42 N at week 0 to 878 N ± 55 N by week 16. Additionally, leg strength remained 

significantly greater after the four week de-training period in the ST group (746 N ± 43 N, p < 

.05) compared to week zero, while the control group, though the change was not significant, 

continued to decline from week zero to week 20 (724 N ± 65 N to 706 N ± 63 N). Rate of force 

development significantly increased in the ST group from 926 Ns ± 125 N·s
-1

 at week zero, to 

1106 N·s
-1

 ± 140 N·s
-1

at week 16, and remained elevated at 1014 N·s
-1

± 128 N·s
-1

by the end of 

week 20 compared to week zero. The control group had no significant changes (p > .05) from 

week zero (895 N·s
-1

 ± 87 N·s
-1

) to week 16 (882 N·s
-1

 ± 83 N·s
-1

) although there was a decrease 

in RFD. The differences in leg strength and RFD between the ST group and control group did 

not only demonstrate that resistance training may help to increase muscle force and RFD, but 

also, those who participated in resistance training were better able to retain strength gains and 
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RFD even after a de-training period. This holds strong implications for the beneficial effects that 

resistance training has on aging muscle function.  

Rate of force development effect on balance in older adults. Maintenance of muscle 

rate of force development (RFD) in itself is important and may also contribute to the retention of 

other important muscle functions such as stability. As aforementioned, instability is associated 

with an increased risk of falls, and recurrent falls in older adults (Bean, Herman, Kiely, Frey, 

Leveille, Fielding, & Frontera, 2004). The relationship between RFD and balance was assessed 

in a group of 30 community-dwelling older adults (Chang, Mercer, Giuliani, & Sloane, 2005). 

Three main associations were investigated pertaining to RFD; first, the relationship between hip 

abductor RFD and lateral stability during stepping, second, RFD and scores on one-leg standing 

test (OLS), and third, the variance in OLS scores and tandem gait test scored that can be 

accounted for from the hip abductor RFD measurements along with lateral stability during 

stepping (Change, Mercer, Giuliani, & Sloane, 2005). All subjects underwent a series of tests 

beginning with the one leg standing test where subjects stood barefoot with arms folded across 

the chest and given instructions to slowly raise the right leg. Once the subjects achieved 

unilateral stance they were timed until the moment of compensation from either the lifted foot 

touching the ground, or if the arms moved from the starting position. Next a tandem gait test was 

performed where subjects were timed while walking heel to toe along a 20 foot strip of tape 

without stepping off of the tape and while walking as fast as possible. RFD and peak force of the 

hip abductors were measured by mounting a dynamometer on a wooden block against a wall, 

while keeping the contralateral leg in neutral position, the subjects pushed the dominant leg 

straight toward the wall as fast as possible. Subjects were also instructed to maintain a maximal 

effort until told to stop, and peak force values were recorded. RFD was defined as the time it 
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took in milliseconds for the force signal to move from 10% to 60% and then to 90% of the 

maximum force recorded. A postural stress test was given where subjects stood barefoot on a 

force plate and posture was stressed by strapping a waist belt to each subject. The waist belt had 

a rope attached to a pulley system that was four feet behind the subject‟s waist line where it was 

connected to a support used for holding weights. The weight was set at 4.5% of the subject‟s 

body weight and was unexpectedly released causing posterior perturbations that increased by 

1.5% over eight trials. The number of steps taken in response to each perturbation was recorded.  

The Pearson product-moment correlation coefficient was used to assess the relationships 

between the aforementioned outcome variables and RFD. There was a significant positive 

correlation (r = 0.352, p < .05) between peak force and center of pressure (COP) displacement 

from perturbation at 4.5% body weight, and also at 6.0% body weight (r = .421, p < .05). For 

predicting OLS scores, age along with RFD accounted significantly to an increase in variance, R
2
 

change = .314 for age, and R
2 

change = .097 for RFD (p < .05). In predicting tandem gait scores, 

addition of weight and RFD accounted for a significant increase in the variance explained (R
2 

change = .118 for weight, and R
2
 change = .105 for RFD; p < .05) (Change, Mercer, Giuliani, & 

Sloane, 2005). These data demonstrated the contribution of RFD and COP to clinical test 

performances, demonstrating the importance of maintaining and increasing RFD in older adults.  

Rate of force development is related to risk of fall in older adults. Rate of force 

development (RFD) of the lower limb muscles also has a close association with falls in older 

adults. In a study among thirty one older women, muscle peak torque (peak force) and rate of 

torque development, or RFD, was compared between fallers and non-fallers (Bento, Pereira, 

Ugrinowitsch, & Rodacki, 2010). Inclusion criteria for this study required that all women be over 

the age of 60 years, free from balance problems, and had not participated in any physical activity 
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program within the last six months prior to testing. The women were divided into three groups: 

no fall history, one fall, and two or more falls. All subjects performed lower limb maximal 

isometric contraction tests which included: hip, knee, and ankle flexion and extension though the 

specific muscles assessed were not described in the study. Tests were performed from a 

recumbent posture with joints placed at 90 degrees and were performed either proximal to distal 

or distal to proximal order to avoid a training effect. Force-time curves were attained with a load 

cell attached to an adjustable pole that was aligned perpendicularly to the tested segment. Then 

the distance between the load cell and the center of the joint was measured to attain net joint 

torques (Bento, Pereira, Ugrinowitsch, & Rodacki, 2010). Subjects were instructed to move the 

limb tested as fast and hard as possible while maintaining a maximal contraction for two to three 

seconds. RFD was calculated from the slope of the force-time curve between 20% and 80% of 

the highest torque recorded.  

The results did not yield statistically significant differences in RFD and peak torque 

between groups, however, in the non-fallers there was a trend for higher RFD in the hip, ankle, 

and knee extensors and flexors. However, the knee extensors and flexors RFD measurements 

were significantly higher (p < .05) in the non-fallers compared to both the one and the two or 

more fall groups, though specific data on RFD scores was not presented in this study. Although 

the RFD scores were not significantly greater in the non-faller group, these data demonstrate 

differences in RFD between fallers and non-fallers and how increased RFD may play a role in 

the prevention of falls and recurrent falls in older adults. This relationship may be further due to 

the association of RFD and other functional domains of muscle that decline with age, such as 

muscle power. It is important to consider RFD along with power in older adults because RFD is 

an indirect measure of muscle power (Orr, Vos, Singh, Ross, Stavrinos, & Fiatarone-Singh, 
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2006). This is particularly important because muscle power is related to functional performance 

in older adults (Miszo, Cress, Slade, Covey, Agrawal, & Doerr, 2003; Orr, Vos, Singh, Ross, 

Stavrinos, & Fiatarone-Singh, 2006).  

Effect of muscle power on physical function in older adults. A study of older adults 

who participated in a strength and power training program revealed a positive relationship 

between power and physical function. Fifty older adults were separated into one of three groups: 

strength training (ST), power training (PT), or control (Miszo, Cress, Slade, Covey, Agrawal, & 

Doerr, 2003). All subjects underwent pre-test measurements which included: the continuous 

scale physical functional performance scores (CS-PFP), one repetition maximum (1RM) test for 

the chest and leg press, and a Wingate anaerobic cycle power test. The strength training group 

and power training groups trained three times per week for 16 weeks. The strength training 

consisted of the seated row, chest press, triceps extension, leg press, leg extension, and seated leg 

curl, squats, plantar flexion, and biceps curls done for three sets of six to eight repetitions. The 

intensity began at 50% 1RM and progressed to 80% 1RM by the last 4 weeks of training. The 

power training group performed the same exercises as the ST group, with the exceptions of jump 

squats replacing the squat. The intensity was set to 40% 1RM for three sets of six to eight 

repetitions. Subjects in the PT group were coached to perform the concentric action in about one 

second and the eccentric actions in about two seconds. The control group was instructed to 

maintain their regular activities, without participating in strength training or beginning any new 

exercise programs. 

After the 16 week training period, the PT group had significantly greater improvements 

(P = .033) on the CS-PFP scores moving from 60.8-69.9 compared to the ST group, although the 

ST group did have improvements in CS-PFP scores as well moving from 54.5 to 62.8. Compared 
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to the C group, the PT group significantly increased in CS-PFP scores (p = .016, C: 53 to 61.7). 

There was no significant difference between the training groups for either strength or anaerobic 

power, however, there were some improvements pre to post-test for anaerobic power that are 

worth noting. Peak power in the PT group increased from 310.2 ± 105 W pre-test to 334.7 ± 137 

W post-test. Mean power in the PT group increased from 233.1 ± 80 W pre-test to 247.5 ± 119 

W post-test. The ST group also had some improvements in peak power (pre-test 262.2 ± 117 W 

to 294.117 W post-test) and in mean power (pre-test, 216.7 ± 234.1 W ± 107 W post-test). The 

control group had a decline in both peak power (pre-test, 263. 0 ± 81 W to 248.4 ± 83 W post-

test) as well as in mean power (pre-test, 199.8 ± 64 W to 176.0 ± 54 W post-test), coinciding 

with the typical finding of muscle power loss with aging in older adults (Orr, Vos, Singh, Ross, 

Stavrinos, & Fiatarone-Singh, 2006; Runge, Rittweger, Russo, Schiessl, & Felsenberg, 2004).  In 

this sample of older adults, both strength and power training programs increased peak and mean 

power in older adults, and also resulted in significant increases on the CS-PFP test scores. The 

increases in the CS-PFP after either ST or PT programs is an important finding of this study as 

the CS-PFP encompasses physical function domains which include lower and upper body 

strength, flexibility, balance, and endurance. Therefore these data support the benefits of power 

training for the maintenance and improvement of physical function in older adults.   

Effect of power on balance in older adults. For older adults, maintaining power seems 

to have positive effects on physical function domains (Foldvari, Clark, Laviolette, Bernstein, 

Kaliton, Castaneda, et al, 2000; Orr, Vos, Singh, Ross, Stavrinos, & Fiatarone-Singh, 2006; 

Runge, Rittweger, Russo, Schiessl, & Felsenberg, 2004), including balance. Balance is an 

imperative physical function for older adults, which is related to fall risk and loss of 

independence for this population (Stel, Smit, Pluijim, & Lips, 2003; Shubert, Schrodt, Mercer, 
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Whitehead, & Giuliani, 2006). For this reason, the association between power and balance in 

older adults has been explored. The dose-response of power training on balance performance was 

investigated in 112 healthy community dwelling older adults who had not been participating in 

prior resistance training programs (Orr, Vos, Singh, Ross, Stavrinos, & Fiatarone-Singh, 2006). 

Subjects were randomized into one of three power training dose groups: 20% (Low), 50% (Med), 

and 80% (High). Prior to training, balance was measured in all subjects in order to assess the 

dose-relationship response to power training. Balance was measured under three conditions: 1 – 

narrow bilateral stance on a force platform that slides back and forth at a speed of 8.3 s/cycle in 

the anterior/posterior directions, 2- narrow bilateral stance on a force platform that tilted up and 

down at zero to two degrees in the anterior/posterior direction, and the 3- unilateral stance on the 

preferred leg on a still platform with eyes open and then again with eyes closed. All balance 

conditions were done for 30 seconds and measured through a balance index (BI) which was 

equal to the sum of 12 sway measures plus 180 minus the sum of six time measures, and also 

through loss of balance scores which was the sum of the number of times balance was lost during 

the six testing conditions.   

Muscle performance was measured in addition to balance performance. Dynamic muscle 

strength, power, and endurance were measured on pneumatic resistance machines for multiple 

exercises which included: horizontal leg press, knee extension, knee flexion, seated row, and the 

seated chest press. Strength was calculated as the sum of all the 1RM values measured, muscle 

power was assessed at 10% intervals beginning with 20% 1RM and moving to 80% 1RM for the 

exercises. After performing as many consecutive repetitions at 90% 1RM for each of the 

exercises, muscle endurance was measured by summing the repetitions performed for all five 

exercises divided by the five exercises performed.  
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The power training intervention consisted of explosive resistance training done twice a 

week for ten weeks. Exercises were the same as those used to measure the previously mentioned 

outcomes and were done for three sets of eight repetitions. The concentric movement was 

performed rapidly and the eccentric movement was performed slowly for each exercise. Post-test 

measurements revealed significant improvements across all training groups in balance 

performance (p < .0001). The low training group had significantly greater balance improvements 

compared to the high training group (mean difference = 9.71, p = .003), the medium training 

group (mean difference = 8.73, p = .0001), and the control group (mean difference = 6.51, p = 

.012). Additionally, the low training group had the greatest decrease in balance index (BI) scores 

(-10.8 ± 12.6) although, the medium and high groups also had decreases in BI, -2.1 ± 10.4 and -

3.0 ± 9.6, respectively. Peak power increases were highest in the medium training group (15 ± 9 

W) compared to low (14 ± 7 W) and high (14 ± 8 W) groups, but all groups were significantly 

greater compared to control group after 10 weeks (p < 0.004). Strength increased significantly in 

the high training group (20 ± 7 N) compared to medium (16 ± 7 N, p < .05) and low (13 ± 7 N, p 

< .05) groups, though all were significantly greater (p < .004) compared to control group. 

Endurance was significantly greater in the high training group (185 ± 126 repetitions) compared 

to the medium (103 ± 75 repetitions, p < .05) and low (82 ± 57 repetitions, p < .05), and all 

groups were significantly greater compared to control (26 ± 29 repetitions, p <.004). Baseline 

characteristics which predicated better balance after training included age (r =.22, p =.034), low 

peak power (r =.20, P = .05), lower average peak velocity (r = .27, p = 0.10) where lower 

average peak velocity contributed independently to variance in better balance (r = .29, p = 

0.004). These data, especially the independent contribution of low average peak velocity to 

balance performance exemplifies how decreases in power seem to be associated with decreased 
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balance performance, further elucidating the importance of maintaining muscle function in older 

adults.  

Summary Pertaining to Data Presented  

It is important to illuminate that domains of physical function (balance, lower extremity 

rate of force development, muscle power, and muscle strength) can be improved through 

resistance training (Lovell, Cuneo, & Gass, 2010Miszo, Cress, Slade, Covey, Agrawal, & Doerr, 

2003; Stel, Smit, Pluijim, & Lips, 2003; Shubert, Schrodt, Mercer, Whitehead, & Giuliani, 

2006). It is important to address these domains as they are associated with the risk of fall and 

therefore independence and longevity in older adults (Hartholt et al, 2011; Rubenstein, 2006; 

Stevens & Olson, 2000; Todd & Skelton, 2004). While age-related sarcopenia is related to the 

decreases documented across these domains (Fielding et al, 2011; Rubenstein, 2006), there is 

some evidence of the retention of eccentric muscle action strength in this population (Frontera, 

Hughes, Fielding, Fiatarone, Evans, and Roubenoff, 2000; Klass, Baudry, & Dachateau, 2005). 

This retention of eccentric strength may be the result of physiological mechanisms involved with 

force production in non-contractile properties of muscle (DeVita, Helseth, & Hortobagyi, 2007; 

Kent-Braun, Ng, & Young, 2000; Rassier, & Herzog, 2005). These physiological mechanisms of 

non-contractile properties are largely at work during the eccentric action of a muscle, prior to a 

concentric action, and are suspected to be driving the consequent increased concentric muscle 

force output (Kawakami, Muraoka, Kanehisa, & Fukunaga, 2002). This evidence combined 

holds implications for eccentric-specific resistance training, which in emerging research has been 

explored in both the young and old.     
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Implications for Eccentric Training Programs in Older Adults  

Eccentric Resistance Training in Older Adults. While resistance training programs 

improve muscular performance in older adults, there are only a handful of current studies that 

have taken advantage of the preservation of eccentric force in the prescription of exercise 

programs for this population. Among these studies, the ability for eccentric exercise to prevent 

age-related loss of muscle mass was investigated in older adults. Older adults were randomly 

assigned into one of three training programs: cognitive training (CT), conventional resistance 

training (RET), and eccentric ergometer training (EET) to be done twice a week for a duration of 

12 weeks (Mueller, Breil, Vogt, Steiner, Lippuner, Popp, Klossner, Hoppeler, & Dapp, 2009). 

Subjects underwent functional tests and body composition tests prior to training and again post 

training. Functional tests included the Berg balance test and the timed up and go test. Body 

composition included whole body lean and fat tissue and muscle biopsies from the vastus 

lateralis. Additionally, maximal isometric extension of the leg was measured by having the 

subjects push with maximal effort against a force platform. This was repeated three times, and 

the highest mean force over a one second period was used for analysis. Over the 12 weeks, the 

EET group increased the average load from 69.6 ± 4.3 W to 314. 8 ± 27.0 W an increase of 

352%. For the timed up and go test, all subjects improved significantly moving from 7.37 ± 0.16 

s to 6.88 ± .16 s. Compared to the RET group, the EET group had a reduction in whole body fat 

(5.0 ± 1.1 %) and thigh fat (-6.9 ± 1.5 %)  while the same results were not found in the RET 

group (-0.6 ± 1.0 % WBF and - 0.6 ± 1.9% TF). Both the RET and EET groups had a significant 

increase in thigh muscle mass (RET: +2.0 ± 0.3%; EET: +2.5 ± .6%), although it is important to 

note that the EET group had a higher average increase.  The EET group had a significant 

improvement in maximal isometric extension of the leg (+ 7.5 ± 1.7%) while there was no 



 
 

46 
 

significant improvement in the RET group (+2.3 ± 2.0%) nor in the CT group (-2.3 ± 2.5%).  

Overall the EET group had greater improvements in both physiological and functional tests 

compared to the RET and CT groups. The recorded increase of thigh muscle mass in the EET 

group is an important finding from this study as loss of muscle mass and strength with aging is 

largely accepted as a contributor to an increased risk of falling in older adults.  

In a pilot study, the differences between conventional care and eccentric training in older 

cancer survivors were explored. Subjects were randomized into either the Usual-care group or a 

resistance exercise via negative eccentrically induced work (RENEW) group (LaStayo, Marcus, 

Dibble, Smith, & Beck, 2011). The RENEW group used a recumbent eccentric stepper that 

focused on the quadriceps muscle group. The pedals were driven in a backwards direction and 

the eccentric muscle contractions occurred when the subjects tried to resist the motion by 

pushing down on the pedals. The RENEW sessions were done three times per week for 3-5 

minute sessions for the first two weeks, increased to 15 minutes by the fourth week of training, 

and increased to a range of 16-20 minutes for the last eight weeks of training. The Usual-care 

group was instructed to continue with their usual oncology follow-up care which was not 

specified for any of the subjects, however they did not participate in RENEW. Muscle size and 

lean tissue of the vastus lateralis was assessed using magnetic resonance imaging. Muscle 

strength (peak force) was measured through maximal voluntary isometric knee extensions and 

muscle power was measured with a clinical timed stair climb power test where the average of 3 

trials was taken for evaluation. Mobility was measured with a six-minute walk and a timed stair 

descent test.  

The pre to post change of quadriceps lean tissue in the RENEW group was greater than 

the Usual-care group, 4% increase, effect size (ES) = .16 and < 1% increase, ES = .01, 
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respectively. There were no significant post-intervention differences between groups for muscle 

strength (p = 0.15), however, the RENEW group had a greater magnitude of muscle strength 

change (11 % increase, ES = .28) than the Usual-care group (1% increase = .04). For the stair 

climbing leg power test, the RENEW group had a magnitude of change that was greater (29% 

increase, ES = .71) than the Usual-care group (8% increase, ES = .21) from pre-posttest. The 

RENEW group also had a greater magnitude of change posttest, in the six-minute walk test (12 

% increase compared to 2 % for Usual-care) as well as for the stair descent tests (21% increase 

compared to 5% for Usual-care). These data contribute evidence for the benefits that can be 

reaped from eccentric muscle actions and therefore eccentric training programs. Furthermore, it 

seems that eccentric training programs compared to conventional resistance training for older 

adults, result in greater increases in muscle mass, muscle power and strength, and have positive 

influences on performance during functional tests.  

Implications for Augmenting the Eccentric Loading  

Augmented eccentric loading and muscle force enhancement. Due to the growing 

evidence in the literature on eccentric actions of a muscle enhancing the following concentric 

contraction, research has turned the focus onto athletic subjects in order to investigate how to 

further the benefit of this phenomenon (Doan, Newton, Marsit, Triplett-McBride, Koziris, Fry, & 

Kraemer, 2002; Moore, Weiss, Schilling, Fry, & Li, 2007; Sheppard & Young, 2010).   

In order to capitalize on the effect eccentric muscle actions have on concentric muscle 

force, studies have begun to stress the eccentric muscle action by overloading it, called 

augmented eccentric loading (AEL) (Moore, Weiss, Schilling, Fry, & Li, 2007). The effect of 

additional eccentric loading on a bench press one repetition maximum (1RM) was assessed in ten 

moderately trained men (Doan, Newton, Marsit, Triplett-McBride, Koziris, Fry, & Kraemer, 
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2002). Bench press 1RM‟s were established before testing. Using detaching weight hooks, each 

participant moved into the eccentric phase of the bench press with 105% of their 1RM and the 

weight was removed at the bottom of the lift immediately before lifting 100% of the 1RM (Doan, 

et al., 2002). After the initial 1RM attempt with additional eccentric loading, each participant 

was allowed to attempt a second and third 1RM bench press with respective changes to the 

eccentric load with increasing 1RM. In the eight men that completed the study, 1RM increased 

by 2.27 to 6.8 kilograms. The additional eccentric loading was reported to have significantly 

increased the weight lifted during the concentric phase of the bench press.  

Another study found similar enhancements of the concentric muscle force following 

additional loading to the eccentric phase. Sheppard and Young (2010) compared barbell 

displacement between a 40 kg to 40 kg (equal) eccentric to concentric load, and 60 kg – 40 kg, 

70 kg-40 kg, and 80 kg-40 kg eccentric to concentric loads. The study revealed the barbell 

displacement was significantly greater (p <0.05) among the 60 kg – 40 kg, 70 kg-40 kg, and 80 

kg-40 kg eccentric to concentric conditions than in the equal eccentric to concentric load 

condition (Sheppard, & Young, 2010). This increase in the concentric outputs was attributed to 

neurogenic stimulation in the eccentric phase that may involve lower inhibitory reflexes and 

greater tension capabilities prior to the concentric contraction (Sheppard, & Young, 2010). 

Vaverka, Jakubsova, Jandacka, Zahradnik, Farana, Uchytil, et al (2013) investigated the 

enhancement of vertical ground reaction forces also demonstrated an increase in performance 

attributed to the additional loading of the eccentric phase. Eighteen male students performed an 

initial countermovement jump on a force plate in order to establish a control condition (Vaverka, 

Jakubsova, Jandacka, Zahradnik, Farana, Uchytil, et al., 2013). The subjects then performed a 

series of counter movement jumps with additional loads of 10%, 20%, and 30% of their body 



 
 

49 
 

weight and the ground reaction forces on a force plate were compared with the control jump. The 

magnitude of force impulse during the acceleration phase was greater in all of the loaded jump 

conditions compared to the control jump condition: 212.3 N/s control, 220.3 N/s with 10% 

additional load, 227.9 N/s with 20% additional load, and 233.1 N/s with 30 % additional load. 

The average forces during the acceleration phase increased significantly with increasing 

eccentric loads: baseline was 1543.9 N/s, 10% additional load was 1595.1 N/s, 20 % additional 

load 1661.8 N/s, and 30% additional load resulted in 1733.4 N/s (Vaverka, et al., 2013).  

These data suggest that the enhancement from the stretch shortening cycle along with 

stored elastic energy can be further improved by overloading the eccentric phase of muscle 

actions. The use of AEL has not been investigated in the older adult population nor have the 

chronic effects of long-term AEL training programs in either athletic populations or older adults.  

However, with the identified retention of eccentric muscle force in older adults, the application 

of an AEL resistance training program may be beneficial for the maintenance and/or 

improvement of muscular function in older adults.  

Summary  

 It is evident that age-related declines in muscle mass and function increase the risk of 

falls in older adults. Reducing the risk of falls in older adults is especially important as falls are 

associated with decreased independence, increased morbidity, mortality, and early admittance 

into assisted living institutions. Recent research on the function of older adults has demonstrated 

the preservation of eccentric muscle force production in the geriatric population. Though the 

mechanisms through which this phenomenon occurs are still being investigated, it is likely that 

age-related increases in non-contractile properties of the muscle increase muscle stiffness that 

may be responsible for the maintenance of eccentric force production. This is an important factor 
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to explore as it is well established that eccentric muscle actions immediately before concentric 

contractions enhance the consequent muscle force output. Additionally, it is now evident that 

over loading the eccentric phase furthers the concentric enhancements.  

 In athletic populations, the augmentation of the load during the eccentric phase before a 

concentric muscle action has resulted in improved muscle force production. However, this has 

not been explored in older adult populations. It has been established that low volume with 

moderate intensity resistance training programs for older adults results in increased muscle 

functions.  

When resistance training programs are focused on increasing muscle force and power 

output of the lower extremity muscles, older adults have increases in lower extremity rate of 

force development, improved center of pressure which infers improved balance, and 

improvement in performance on functional tests related to risk of fall. Improving performance on 

functional tests like the sit-to-stand tests and balance tests through the improvement of muscle 

rate of force development and muscle power is vital for decreasing the risk of falls in older 

adults. It seems that the application of augmented eccentric load (AEL) training program may be 

beneficial for older adults in the improvement and maintenance of muscle force development, 

balance, and performance on functional tests. Furthermore eccentric training programs involving 

dynamic resistance training exercises has not been explored in either the young or old. Therefore, 

the focus of this study was to investigate the effect of a six week augmented eccentric training 

program in older adults on the rate of force development during a STS-1, center of pressure, and 

performance in a STS-5.  
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Chapter III 

Methods and Procedures 

Introduction 

 This study tested the effect of a six-week augmented eccentric load (AEL) training 

program on the rate of force development during a one-time sit-to stand test (STS-1), center of 

pressure excursion during single-foot balance and quiet standing, and performance in a five-

times-sit-to-stand test (STS-5) in older adults. Subjects were assigned to either the AEL in 

addition to resistance training group or the resistance training only group. This chapter includes 

the description of the sample, design of the study, AEL training protocol, and data collection 

processes.   

Description of Study Sample 

 Twenty moderately active older adults were recruited for this study from the Western 

Washington University‟s Adult Fitness Program and from the Blaine Senior Center. Older adults 

were defined as being 60 years of age or older. All participants had general knowledge of 

resistance training techniques. Moderately active was defined as participating in at least 30 

minutes a day of exercise, three times per week and having resistance trained for at least 2 days a 

week for the previous six months. Participants were excluded from the study if either knee or hip 

replacements were reported to minimize potential risk of injury.  

Design of the Study 

 A pretest-posttest randomized group study design was used to assess the effect of an AEL 

training program on the rate of force development during an STS-1, center of pressure, single-

foot balance test, and performance in the STS-5 test. The participants were randomly assigned 
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into two groups. The treatment group participated in a six-week AEL training program. The 

resistance training group (RT) was asked to continue their regular resistance training program.   

Data Collection Procedures  

 The Human Subjects Committee at Western Washington University approved this study 

(Appendix A). Both the risk and benefits of participating in this study were clearly explained to 

each subject. All subjects signed an informed consent (Appendix B) before the first testing day. 

Additionally, all subjects obtained physician clearance to participate in the study prior to the first 

day of training (Appendix C).  

 Instrumentation. Rate of force development, center of pressure, and single-foot balance 

tests were measured with an AccuGait AMTI OR6-6 (Watertown, MA) standard sized force 

plate sampling at 1200 Hz. A custom computer software using LabView was used to calculate 

and produce the graphical format of rate of force development from the AccuGait AMTI OR6-6 

force plate.  

 Measurement Techniques and Testing Procedures.  Data collection was conducted at 

the Western Washington University Biomechanics Laboratory. Each subject attended a pretest 

familiarization session. At the familiarization session, subjects were asked to answer questions 

about their age, activity level, recent injuries, and hip or knee replacement to determine inclusion 

for the study. If they met the inclusion requirements, height and weight measurements were 

taken from the pre-participation packets filled out by the subjects. Subjects who met inclusion 

criteria were invited to come back for a measurement session (testing day) and instructed to 

refrain from heavy exercise which may fatigue the lower extremity for 48 hours prior to the first 

testing day.  
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 During the first testing day, each subject performed a general warm-up that consisted of 

walking on a treadmill for three minutes at two miles per hour. Then, each subject performed a 

dynamic warm-up that consisted of five lunge-to-knee hugs for each leg, and were allowed to 

lean against a wall for support and stability. A task-specific warm-up of 10 chair rises was also 

performed. Then a three-minute rest period was given before beginning testing to minimize 

fatigue.   

Center of Pressure Excursion 

Subjects were asked to stand on the force plate with feet hip width apart. Subjects performed this 

test with athletic shoes on. Subjects stood quietly with their eyes closed with their hands 

comfortably at their sides for a full 30 seconds. Test administrators stood beside each subject 

with instruction to catch or support the subject if subject asked for help and the test was then 

restarted. Anterior-posterior and medial-lateral excursions of the center of pressure were 

measured by calculating the moment arm of the vertical force in the x and y directions;           

COPx =My/Fz and COPy = Mx/Fz, respectively.  

Single-Foot Balance Test 

Subjects were asked to stand on a force plate with arms at their sides. Subjects were then asked 

to stand quietly and slowly lift one foot off the ground while keeping the other firmly in the 

middle of the force plate. Subjects performed this test with athletic shoes on. Center of pressure 

was then recorded for up to 30 seconds or until subject became unstable. Subjects were to say 

“HELP” if they felt unsafe. A test administrator stood beside each subject with instruction to 

catch or support subjects if subjects asked for help and the test was then restarted. This test was 
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performed for each foot. Anterior-posterior and medial-lateral excursions from the center of 

pressure were assessed as described in previous section.   

Rate of Force Development in STS-1 

 A chair with no arm rests was placed outside the force plate, so that the participant‟s heel fell 

completely over the force plate in a natural manner. Seat height was 40.6cm and had no arm 

rests, a commonly used chair type used to avoid compensation from the upper body. Participants 

were instructed to keep their arms crossed against the chest throughout the entire test. Then 

instructions were given to stand all the way up from the chair as fast as possible. A „three, two, 

one, GO‟ countdown prompted the subjects to begin the test. Test administrators began 

collection of data on 1, and the subjects began the test on GO.   Test administrators were trained 

to safely assist the subjects in the case a subject lost balance, otherwise, test administrators were 

instructed not assist the subjects. Subjects were instructed to say “HELP”, cueing the test 

administrators to close their arms around the participants and lean the body weight of the 

participants onto themselves to support them safely. The change in force was found by 

subtracting the force exerted at the beginning of the movement from the peak force reached. The 

change in time was found by subtracting the time at which the beginning of the movement 

occurred from the time the peak force was reached. The rate of force development was found by 

dividing the change in force in Newtons by the change in time, thus, determining the slope of the 

vertical ground reaction force.  
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Five-Times Sit to Stand Protocol    

All subjects performed a STS-5 test pre- and post-intervention. The STS-5 test began with the 

subject sitting up straight with knee and hip angles as close as possible to 90 degrees. The 

subject was instructed to sit down quickly after the fifth stand to conclude the test. The test time 

was taken when the participant was in the seated position at the end of the fifth stand. All 

subjects were allowed to finish the five stands, however the test was considered failed if the 

subject failed to stand up all the way successfully.  

Augmented Eccentric Load Protocol   

The augmented eccentric load (AEL) training program was implemented two days a week for 

six weeks with at least two days in between training sessions. An introduction to proper weight 

training techniques was given and continually monitored during each group training session. 

The training session consisted of a five minute walking warm-up, 30 minutes of six different 

lower extremity strengthening AEL exercises were performed and included: calf raise, unilateral 

lunges, task-specific chair rise exercise, step downs, and ankle eversions (Appendix D). 

Additional weight was handed to the subjects during the eccentric phase of each exercise and 

removed prior to the concentric phase. All subjects began with no weight and progressed by 5% 

body weight weekly if the subjects had good form and were able to handle the load. Resistance 

was then increased to 10% in the second week and up to 20% by the final week depending on 

the subject‟s individual progression. Ankle eversions were completed with two kilograms of 

resistance and this weight did not change throughout the six weeks because additional weight 

was not tolerated by the subjects. A ten minute cool down including lower body static stretches 

(Appendix E) ended each session. All exercises were performed for 3 sets of 8 repetitions in 
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accordance with appropriate exercise prescription for older adults (ACSM, 2013).The six-week 

AEL program was concluded with a post-testing day following at least a two-day rest period 

after the final training session. The average length of time between the last training day and the 

post-test was four days. 

Data Analysis  

A two-way analysis of variance was used to assess the effect of group, (AEL) plus 

resistance training versus resistance training only, and time (pre-test vs. post-test) on the rate of 

force development during a one time sit to stand task, center of pressure excursion during quiet 

standing on both feet with eyes closed and in single-leg standing with eyes open, and the time to 

complete a five time sit to stand test. Simple effects analyses were conducted in the case of a 

significant group by time interaction effect. Significance for the rate of force development and 

the five time sit to stand test was set to p < .05. Significance for the center of pressure 

conditions was set to p < .008 after using the Bonferroni correction for six conditions.  
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Chapter IV 

Results and Discussion 

Introduction 

 This study assessed the hypothesis that a six-week augmented eccentric loading (AEL) 

exercise program for older adults would improve rate of force development during a one-time-

sit-to-stand test (STS-1), anterior/posterior and medial/lateral center of pressure (COP) excursion 

in a balance test, as well as in a single-foot balance test. Additionally, it was hypothesized that 

AEL training would decrease the time to complete the clinical five-time-sit –to-stand (STS-5) 

risk of fall evaluation test. In order to measure the effect of a six-week AEL exercise program, 

subjects were separated into either an AEL training group or a resistance training only group 

(RT).  

Subject characteristics 

 Both male (AEL n=2, RT n= 1) and female (AEL n = 8, RT n = 7) subjects aged 60 – 82 

years (73   5.8years) participated in this study. Twelve subjects from the Blaine Senior Center 

performed a six-week augmented eccentric training (AEL) exercise program and eight subjects 

from the Western Washington University‟s Mature Adult Fitness Program were assigned into 

(RT).  Subjects were placed into either the AEL group or the RT group depending on their 

location, due to limited availability of the subjects to train within available trainer times. Two 

female subjects from the AEL group dropped out of the study after three weeks of training due to 

medical complications that were not associated with the training regimen. All subjects were 

moderately active older adults who participated in regular strength training (ST) programs at 

least three times per week prior to the study and continued the ST during the course of the study. 

At baseline, subjects‟ height and weight did not differ significantly between groups (p = .076 and 

p = .406, respectively). The group characteristics are presented in Table 1.   
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Table 1. Subject Characteristics  

 

  
Subject Characteristics     

 

Mean  ± SD 

 

AEL  RT 

Subject Age (years)  70.18 ± 5.70      76.25 ± 5.63 

Subject Height (cm) 166.45 ± 6.58 160.56 ± 15.44 

Subject Weight (kg)    76.48  ± 11.28  65.77  ± 9.77 

      

Results 

Data from eighteen subjects (10 AEL, 8 RT) comprised the final data set. Two subjects 

from the AEL group dropped out due to medical complication unrelated to the training program.  

 Clinical Five Time Sit to Stand Test.  There was no significant group by time 

interaction effect on STS-5 time (F [1, 16] = 2.538, p = .131). Compared to baseline, results 

revealed a significant main effect of time difference in the time to complete the STS-5 among 

both group (F [1, 16] = 15.904, p =.001). There was no significant difference between groups (F 

[1, 16] = 2.538, p = .131) in time to complete the clinical STS-5. However, post-hoc t-tests 

revealed that only AEL decreased the time to complete the STS-5 significantly (t = 2.29, df = 8, 

p = .0004) compared to RT (t = 2.2, df = 6, p =.2). The effect size was moderate, d = .49 for the 

AEL group at pre- to post-test. The results for the STS-5 are presented in Table 2. 
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Table 2. Time to Complete STS-5  

Time to Complete STS-5   

   Group Mean ± SD 

Pretest                       AEL  11.55 ± 2.52 

                                  RT 9.88 ± 0.84 

                                    
 

Posttest                     AEL       9.33 ± 0.72* 

                                  RT    8.94 ± 1.87 

                                   
 

Notes: Time measured in seconds (s); * indicates significant change within group from pre to 

post-test p < .05  

 

 Rate of Force Development during a One Time Sit to Stand. Results of the two-way 

mixed analysis of variance (ANOVA) indicated that there was a significant group by time 

interaction effect (Figure 1) on rate of force development during the STS-1 (F [1, 16] = 9.276, p 

= .008). Simple effects results for the RT group did not demonstrate a significant change,    

( t(13) = = 2.16, p = .55) in RFD during the STS-1 compared to baseline. Simple effects test 

results indicated that at baseline the AEL group did not differ significantly from the RT group in 

RFD during the STS-1 (t (18)= 2.12, p = .711). However, there was a significant post-test 

difference in RFD during the STS-1 between AEL and RT (t (14) = 2.14, p = 0.003). The effect 

size was large, d= .69, for post-test difference in RFD during the STS-1 between the AEL and 

RT. The means and standard deviations for RFD during the STS-1 are presented in Table 3.  
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Table 3. Rate of Force Development in STS-1  

RFD in STS-1   

   Group Mean ± SD 

Pretest                        AEL  785 ± 176 

                                   RT 757 ± 133 

                                       
 

Posttest                      AEL 1041 ± 187** 

                                   RT 794 ± 101 

                                      
 

Notes: STS-1= one time sit to stand, ** indicates significant change between AEL and RT and 

within the AEL at post test 

Figure 1. Rate of Force Development at Pre- to Post-Test 

                                                                                      

  

Center of Pressure Excursion; Both Feet, Eyes Closed.  There was no group by time 

interaction for center of pressure medial-lateral excursion in both feet, eyes closed condition 

(MLCOP) (F [1, 15] = .282, p = .603). Results indicate a significant difference in the main effect 
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of time for medial-lateral COP excursion MLCOP compared to baseline (F [1, 15] = 16.661, p = 

.001). There was no significant difference in main effect of group for MLCOP (F [1, 15] = .282, 

p = .603).  There was no group by time interaction effect on anterior-posterior COP excursion 

(APCOP) (F [1, 15] = 1.29, p =. 274). AEL had a significant difference for APCOP at post-test 

compared to baseline, p = .002.  The effect size for AEL APCOP was large, d = 6.3. For RT, 

there was no significant difference for APCOP (p = .08). There was no significant difference 

between groups in APCOP at either test times (F [1. 15] = 1.289, p = .274). The data for MLCOP 

and APCOP for both groups are presented in Table 4. Data on subject 10 (RT) was not recovered 

for post-test analysis on center of pressure for any condition, therefore n = 7 for RT for all COP 

post-test analysis.  

Table 4. Center of Pressure Excursion; Both Feet, Eyes Closed  

Center of Pressure Excursion; Both Feet, Eyes Closed 

  MLCOP(m) APCOP(m) N  

 AEL 0.075 ± 0.07 0.157 ± .11 10 

Pretest RT  0.056 ± 0.05 0.094 ± .11 7 

      

 AEL   0.003 ± 0.01 0.005 ± .01* 10 

Posttest  RT 0.000 ± 0.00 0.005 ± .00*  7 

     

Notes MLCOP = Medial-lateral excursion, APCOP = Anterior-posterior excursion in meters; * 

significant difference within groups p < .008  

 

 Center of Pressure Excursion; Right Foot, Eyes Open. There was no significant group 

by time interaction for center of pressure medial-lateral excursion in the right foot, eyes open 

condition (MLRF) (F [1, 15] = 5.45, p =.034). Results indicate a significant difference in the 

main effect of time for MLRF in both AEL and RT compared to baseline (F [1, 15] = 42.903, p ≤ 

.001). The effect size was large in both groups, d= .82 and d =. 72, respectively. There was no 
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significant difference for the main effect of groups for MLRF at either test times (F [1, .113] = 

5.455, p = .034). AEL and ST did not have a significant difference in APRF at post-test 

compared to baseline, p = 0.06 and p = .02, respectively. The data for MLRF and APRF for both 

groups are presented in Table 5.  

 

Table 5. Center of Pressure Excursion; Right Foot, Eyes Open  

Center of Pressure Excursion; Right Foot, Eyes Open  

  MLRF(m) APRF(m)  

 AEL  0.457 ± 0.20 0.465 ± .15  

Pretest RT 0.243 ± 0.19 0.199 ± .16  

      

 AEL 0.012 ± 0.00*     0.012 ± .01**  

Posttest  RT 0.032 ± 0.06*          0.012 ± .01  

                    

Notes: MLRF = medial-lateral excursion of the right foot, APRF = anterior-posterior excursion 

of the right foot in meters; * indicates significant difference within groups p < .008, **indicates 

significant difference between groups p < .008.  

 

Center of Pressure Excursion; Left Foot, Eyes Open.  There was no significant group 

by time interaction on medial-lateral COP excursion in the left foot (MLLF). Results indicate a 

significant difference in MLLF in both groups compared to baseline (F [1, 15] = 31.274, p < 

.001). Results revealed that there was no significant difference between groups (F [1, 15] = 

5.033, p < .04).  APCOP excursion of the left foot (APLF) for AEL and ST indicates a significant 

difference (p = .002 and p = .008, respectively) in APLF in both groups compared to baseline (F 

[1, 15] = 35.188, p < .001). The effect size was large in both groups for the pre- to post-test 

difference in APLF, d=.89 and d= .73 respectively. Results did not indicate a significant 
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difference between groups for APLF (F [1, 15] = 4.928, p = .042). The data for MLLF and APLF 

are presented in Table 6.  

Table 6. Center of Pressure Excursion; Left Foot, Eyes Open 

Center of Pressure Excursion; Left Foot, Eyes Open  

  MLLF(m) APLF(m)  

 AEL  0.366 ± 0.14 0.438 ± .22  

Pretest RT 0.227 ± 0.19  0.211 ± .19  

     

 AEL       0.011 ± 0.012* 0.013  ± .01*  

Postest  RT 0.076 ± 0.18 0.013  ± .16*  

     

Notes: MLLF = Medial-lateral excursion of the left foot, APLF = Anterior-posterior excursion of 

the left foot in meters; * indicate significant difference within groups pre to post-test p < .008 

 

Discussion 

 The purpose of this study was to investigate the effect of a six-week augmented eccentric 

load (AEL) program on the RFD during a one-time-sit-to-stand-test (STS-1), center of pressure 

(COP) excursion during quiet standing and single leg standing, and performance in the clinical 

five-time-sit-to-stand test (STS-5)  in older adults. The AEL training program consisted of six 

lower extremity exercises designed to minimize and prevent the risk of falling for older adults. 

Each lower extremity exercise targeted the eccentric muscle action of the major and minor leg 

and thigh muscles involved in braking a fall with the goal to strengthen those muscle groups. The 

lower extremity exercises were a key element in developing the AEL training program as 

sarcopenia, or the loss of muscle mass, as well as dynapenia, or the loss of muscle strength, are 

recognized as the leading causes of falls in the older adults population (Frontera, Hughes, 

Fielding, Fiatarone, Evans, & Roubenoff, 2000; (Joshua, Souza, Unnikrishnan, Mithra, Kamath, 

Acharya, & Venugopal 2014; LaStayo, Ewy, Pierotti, Johns, & Lindstedt, 2003). The nature in 
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which the exercise movements were performed was slow loaded eccentric movement followed 

by quick unloaded concentric movement. The nature of the exercises was chosen in order to 

stimulate a neuromuscular adaptations similar to those found with the stretch-shortening cycle 

and could be used to aid in concentric muscle force development and therefore increase lower 

extremity function in older adults.  

Five Time Sit to Stand. The results of this study support the experimental hypothesis 

demonstrating a significant effect of a six-week AEL program on performance in the clinical 

five-time-sit-to-stand test (STS-5). The STS-5 is an indirect measure of lower extremity muscle 

power, and indicates the risk of falling in older adults (Buatois, Milijkovic, Manckoundia, 

Gueguen, Miget, Vancon, et al., 2008). Performance in the STS-5 is a reliable predictor of falls 

where a time greater than 12 seconds is closely associated with increased risk of falls in older 

adults (Buatois, Milijkovic, Manckoundia, Gueguen, Miget, Vancon, et al., 2008). In the present 

study, AEL training was effective in reducing time to complete the STS-5, where the AEL group 

improved from 11.54 ± 2.52 s to 9.33 ± .72 s to complete the STS-5. More impressively, seven 

of the ten subjects in the AEL group shifted from a high risk of falling time of ≥ 12 s, improving 

the AEL mean time by -2.63 s. After the AEL training program, no subjects in this group were in 

a high risk of falling category for older adults (Buatois, Milijkovic, Manckoundia, Gueguen, 

Miget, Vancon, et al., 2008). Compared to AEL, RT did not demonstrate a significant change in 

time to complete the STS-5, 9.8 ± .83 s to 8.94 ± 1.86 s. In fact, two subjects in RT increased the 

time to complete the STS-5 (Appendix I) and of that two, one subject moved into the high risk of 

falling category of ≥ 12 s. These data support the experimental hypothesis and hold strong 

implications for AEL training to be incorporated into preventative strength training programs for 

older adults.  
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Compared to the present study, research on strength training and performance in the STS-

5 involves strength training programs with heavy lower extremity resistance in order to elicit a 

positive effect on performance (Caserotti, Aagaard, Larsen, & Puggaard, 2008; Schlicht, 

Camaione, & Owen, 2001; Schlicht, Camaione, & Owen, 2001). Schlicht, Camaione, and Owen 

(2010) compared times to complete the STS-5 between an eight week-intense strength training 

group and a control-no strength training group. Compared to the present study, the strength 

training group performed a greater number of repetitions (10 vs. 8) at higher intensities (75% 1-

repetition maximum). In the present study, the resistance exercises consisted of functional and 

dynamic movements, while Schlicht, Camaione, and Owen (2010) required the strength training 

group to perform isolated limb exercises on weight machines. The time to complete the STS-5 

was measured at pre-intervention, mid-intervention, and post-intervention in both groups. 

Similar to the present study, the strength training group performed significantly better at mid- 

and post-intervention compared to pre-intervention while the control group only demonstrated 

significantly better performance at post-intervention compared to mid-intervention. In that study, 

there was no significant between groups suggesting that something other than the strength 

training programs may account for the observed differences. However, in the present study, post-

hoc tests revealed that only the AEL group improved significantly compared to baseline. This is 

a key finding of this study as it seems that an AEL program may be more beneficial than a 

typical strength training program in improving performance in five-time-sit-to-stand test for 

older adults. Additionally, the AEL training program was only six weeks long and required only 

moderate resistance in order to elicit a significant effect that is comparable to that found in an 

eight week, high intensity strength training intervention. Along with the decreased time to 

improve STS-5, the AEL training program also elicited positive results in RFD in the STS-1.  
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Rate of Force Development. The results indicate that six-weeks of AEL training of the lower 

extremity muscles was effective in eliciting a significant increase in RFD during a one-time-sit-

to-stand test (STS-1) in older adults. The AEL group increased RFD significantly at post-testing 

in the STS-1 compared to RT, which did not demonstrate a significant increase in RFD. These 

results are comparable to other studies concerned with the effect of strength training programs on 

RFD during a chair rising task in older adults. Lovell, Cuneo and Gass,  (2010) compared RFD 

during a standing task between a strength training group (ST) and a non-strength training group 

(control) of older adult males. After 16 weeks of strength training, ST demonstrated a significant 

increase in the RFD (926 ± 125 N·s
-1

vs 1109 ± 140 N·s
-1

, p <.05) while the control group 

demonstrated no appreciable change in the RFD at post-testing (895 ± 87 N·s
-1

to 882 ± 83 N·s
-1

). 

Similar to the present study, post-test results revealed that those in the AEL demonstrated 

significantly greater RFD compared to RT. Compared to the present study, lower extremity 

strength training for 16 weeks elicited similar increases in RFD in older adults. This is an 

important comparison as these results contribute to the discussion of the positive benefits of 

strength training programs for older adults as the AEL training program was effective in eliciting 

a notable increase in RFD during chair rising.  

 In another study, RFD was compared between a control (non-fall) and hip fracture (fall) 

group of older adults. Similar to the present study, Houck, Kneiss, Bukata, and Puzas, (2011) 

measured vertical ground reaction forces (vGRF) in order to assess RFD in a sit-to-stand task. 

Unlike this study, the RFD values were then correlated with self-reported lower extremity 

functional ability among both groups. The results indicated that the hip fracture group had a 

significantly lower RFD compared to the control group, 12.9 Ns/kg versus 20.9 Ns/kg. The RFD 
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was significantly correlated with self-reported functional ability (r = 0.499). Additionally, as 

vGRF increased, self-reported functionally ability positively increased. Although the present 

study did not assess correlations between RFD and self-reported functional ability, the RFD 

improvements demonstrated in the AEL group hold clinical implications for the development of 

preventative as well as rehabilitative programs for older adults. More importantly, the correlation 

between self-reported function and RFD observed by Houck, Kneiss, Bukata, and Puzas, (2011) 

along with the data presented in this study elucidate the relationship between RFD and lower 

extremity function in older adults (Miszo, Cress, Slade, Covey, Agrawal, & Doerr, 2003; Orr, 

Vos, Singh, Ross, Stavrinos, & Fiatarone-Singh, 2006).  

Improvement of lower extremity RFD in older adults is important as it contributes to the 

retention of muscle function in this population. The present study contributes to research 

concerned with enhancement of lower extremity RFD with strength training due to the notable 

increase in RFD for the AEL compared to baseline. This is a crucial finding as it may hold 

implications for the development of AEL training programs for older adults.  

Center of Pressure Excursion. The loss of stability with aging has revealed devastating 

consequences in the older adult population. The maintenance of stability is therefore imperative 

as stability is related to the risk of falls and independence in older adults (Foldvari, Clark, 

Laviolette, Bernstein, Kaliton, Castaneda, et al, 2000; Orr, Vos, Singh, Ross, Stavrinos, & 

Fiatarone-Singh, 2006; Runge, Rittweger, Russo, Schiessl, & Felsenberg, 2004). Research on 

stability among older adults has attributed the loss of stability to decreased muscle strength and 

overall to a decrease in muscle function (Stel, Smit, Pluijim, & Lips, 2003; Shubert, Schrodt, 

Mercer, Whitehead, & Giuliani, 2006). Unlike the present study, stability in older adults has 
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been mostly assessed indirectly through tandem stance times and clinical balance tests compared 

to this study where center of pressure excursion was directly measured.  

 In a study conducted by Bean, Herman, Kiely, Frey, Leveille, Fileding, and Frontera, 

(2004), resistance training indirectly elicited positive effects on balance and thus stability 

through increased stance time during single-leg stance in older adults. Similar to this study, Bean 

et al, (2004) used task-specific and functional movement patterns in the resistance training 

program with the goal to produce an increase in stability among older adults. Bean et al (2004) 

used weighted vests in order to provide resistance progressing by 2% body mass over the course 

of 12 weeks and compared excursions from COP between the training group and a control 

exercise group which did not use weighted body vests to perform exercises. Similar to the 

present study, which used augmented eccentric loads, the weighted vest group demonstrated 

there was significant effect of resistance training on stance time, 2.24 ± 2.71 s, and therefore 

stability. Although this study did not measure COP excursion, the results hold similar 

implications to the present study in that balance and stability may be improved through moderate 

augmented dynamic movements as well as regular strength training programs for older adults. 

However, it is important to note that despite having no AEL training, RT also had significant 

improvements in balance. Therefore it is possible that a training effect could have influenced the 

performance during the balancing tasks in RT.  

Summary 

This study, along with current research on stability, strength, and fall risk among older 

adults, elucidate the need for strength training of the lower extremity muscles in this population. 

Lower extremity function is important in order to maintain and improve performance on 
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functional tests having to do with risk of falling. A six-week AEL program may be beneficial in 

generating improvements in lower extremity functional tests and fall-prediction tests compared 

to typical strength training programs. Additionally, AEL training may require a smaller amount 

of time as well as lower work intensities to elicit similar positive performance in functional tests 

compared to traditional strength training programs for older adults. Further research is required 

in this area as the present study is the first of its kind using augmented eccentric training program 

in older adults.  
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 Chapter V 

Summary, Recommendations, and Conclusion 

Summary 

Assessment of the risk of falls among older adults is important as falls are attributable to 

a decrease in longevity and independence in this population.  The literature regarding the 

association between risk of fall and the physical characteristics of older adults reveals an 

association between age-related decreased lower extremity muscle function with an increased 

risk of falling (Frontera, Hughes, Fielding, Fiatarone, Evans, & Roubenoff, 2000; Joshua, Souza, 

Unnikrishnan, Mithra, Kamath, Acharya, & Venugopal 2014; LaStayo, Ewy, Pierotti, Johns, & 

Lindstedt, 2003). There is some research that indicates that older adults retain more eccentric 

muscle strength compared to concentric muscle strength with aging (Frontera, Hughes, Fielding, 

Fiatarone, Evans, and Roubenoff, 2000; Klass, Baudry, & Dachateau, 2005; Powers, Rice, 

Vandervoort, 2012). This retention of eccentric strength may be, in part, due to the accumulation 

of collagen fibers in non-contractile properties, which may subsequently increase muscle tendon 

stiffness and aid in the retention of eccentric muscle strength (Kent-Braun, Ng, & Young, 2000; 

Rassier, & Herzog, 2005). Eccentric strength is important because increasing muscle-tendon 

tension during the eccentric phase of a movement has yielded increases in the consequent 

concentric muscle force output (Doan, Newton, Marsit, Triplett-McBride, Koziris, Fry, & 

Kraemer, 2002; Sheppard and Young 2010; Vaverka, Jakubsova, Jandacka, Zahradnik, Farana, 

Uchytil, et al., 2013). The mechanisms driving this phenomenon include the stretch-shortening 

cycle and stored elastic energy, which are presumed to be the driving force of the consequent 

increased concentric muscle force output and a similar effect may be take place due to AEL 

training.  
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The effect of augmenting the muscle-tendon tension during the eccentric phase of a 

movement has only been studied acutely in the 1RM of athletic populations. The present study is 

novel in that AEL was assessed over a six-week training program. Moreover, AEL training has 

not been studied in older adults, which according to the results presented may be able to 

capitalize on the inevitable increase of muscle-tendon stiffness with aging.  

Conclusion 

 The positive effect of a six-week AEL training program on RFD in the one-time-sit-to-

stand test, balance tests, and the clinical five-time-sit-to-stand test confirm the experimental 

hypothesis. Subjects in the AEL group improved the time to complete the clinical STS-5 fall risk 

assessment test by -2.21 ± 1.50 s.  Those in the AEL group demonstrated a significant increase in 

the rate of force development (RFD) during a chair rising task compared to the strength-training 

group. RT improved significantly in anterior-posterior excursion from the center of pressure of 

the right foot as well as in quiet standing, and in anterior-posterior excursion from the center of 

pressure of the left foot. The AEL group also showed significant improvements in M-L and A-P 

excursion values from the center of pressure during the quiet standing condition, as well as in the 

M-L excursion values for the right foot and the A-P excursion values for the left foot compared 

to baseline. Therefore, a six-week AEL training program may be a beneficial exercise 

prescription for older adults resulting in additional enhancement to a standard weight-training 

program. 
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Recommendations 

 Future Research and Limitations. Until the present study, a six week augmented 

eccentric training (AEL) program has not been assessed in any population; more research is 

needed in this area. Additionally, the present study was based on a six week training program 

and therefore a more chronic effect would be beneficial in assessing the potential effect that AEL 

training could have on older adults as well as other populations. Furthermore, the present study 

compared the AEL training group to a resistance trained group whose exercise prescription was 

not controlled. In order to attain a better understanding of the effect AEL training has on 

functional domains among older adults, future research should strictly control both exercise 

groups.  

 Clinical Implications. The six-week AEL training program may be beneficial for older 

adults in lowering the risk of falling as predicted by the STS-5, while simultaneously increasing 

lower extremity power and overall function. Due to the novel and eccentric nature of the 

exercises, delayed onset muscle soreness (DOMS) was reported by the subjects following the 

first week of training. However, DOMS was only reported after the first week during the body 

weight phase and dissipated over the course of the six-weeks. Although the following were 

unexpected outcomes, subjects reported a multitude of benefits after starting the AEL training 

program pertaining to self-reported function and ADLs. Among those outcomes, subjects 

reported: dissipation of thigh and shank numbness that had been present for several years, 

increased ability to carry weight up and down stairs without hand rail support, ability to walk up 

stairs using both feet compared to having spent many years dragging the injured-side-foot 

behind, and diminished rising from chair compensatory efforts such as: holding table, pushing 

off from seat, and swinging feet off the ground in order to build moment to rise. Although the 
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aforementioned were unexpected and not assessed findings, these reports remain a key motive 

for the further investigation and potential development of AEL training programs for older 

adults.  

For those looking to prescribe a similar training program, it is important to design the 

exercises to match functional movements of daily living for older adults. It is also vital that the 

exercises are done in such a manner that movement from the slow loaded eccentric phase to the 

quick unloaded concentric phase is a fluid pattern. This can be established through several 

familiarization sessions as well as consistent and clear training instructions throughout each 

exercise. Though further research is needed in long-term AEL training for older adults, the 

present study yields a positive outlook for the development of AEL training programs as fall 

prevention and lower extremity function exercise prescriptions.  
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Appendix A 

Human Subjects Review Form and Responses  

 

1. What is your research question, or the specific hypothesis? 

The experimental hypothesis states that neuromuscular adaptations due to an augmented 

eccentric load program will improve domains of physical function in older adults which 

include: lower extremity rate of force development during a chair standing task, 

improved center of pressure and therefore stability, and improved performance in the 

one-time sit-to-stand and five time sit-to-stand test.  

2. What are the potential benefits of the proposed research to the field?  

Evidence from this study may contribute to the application of augmented eccentric 

training as an exercise prescription to improve performance on functional tests in older 

adults and therefore contribute to longevity and independence in this population. Age-

related declines in muscle mass and function increase the risk of falls in older adults. 

Reducing the risk of falls in older adults is especially important as falls are associated 

with decreased independence, increased morbidity, mortality, and early admittance into 

assisted living institutions (Hartholt et al, 2011; Rubenstein, 2006; Stevens & Olson, 

2000; Todd & Skelton, 2004).  

Declines in physical function among older adults are highly associated with decreases in 

lower extremity muscle function (Lovell, Cuneo, & Gass, 2010Miszo, Cress, Slade, 

Covey, Agrawal, & Doerr, 2003; Stel, Smit, Pluijim, & Lips, 2003; Shubert, Schrodt, 

Mercer, Whitehead, & Giuliani, 2006). This decline in muscle function is greater in the 

shortening muscle action (concentric) compared to lengthening muscle actions 

(eccentric). Though the mechanisms through which this phenomenon occurs are still 

being investigated, it is likely that age-related increases in non-contractile properties of 

the muscle increase muscle stiffness that may be responsible for the maintenance of 

eccentric force production (Frontera, Hughes, Fielding, Fiatarone, Evans, and Roubenoff, 

2000; Klass, Baudry, & Dachateau, 2005).. This is an important factor to explore as 

eccentric muscle actions immediately before concentric muscle actions enhance the 

consequent muscle force output (Moore, Weiss, Schilling, Fry, & Li, 2007).  

In athletic populations, loading of the eccentric phase of muscle actions prior to a fast 

concentric muscle action increases the muscle force produced during the concentric phase 

(Moore, Weiss, Schilling, Fry, & Li, 2007), however, this has not been explored in older 

adults. The retention of eccentric muscle force production in older adults may be 

beneficial in the prescription of a long term augmented eccentric training program. It 

seems that the application of augmented eccentric load (AEL) training program may be 

beneficial for older adults in the improvement and maintenance of muscle force 

development, balance, and performance on functional tests. 
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3. What are the potential benefits, if any, of the proposed research to the subjects? 

Augmented eccentric load training may play a role in the improvement of physical 

function domains for older adults. These domains include balance, by improving center 

of pressure stability, and improving lower extremity rate of force development, which is 

indicative of muscle power output needed to perform every day movements like standing 

up from a chair. Improvements in these domains of physical function hold promising 

applications for decreasing the risk of falling.   

 

4. Answer a), then answer either b) or c) as appropriate. 

The subjects will be male and female older adults who are at least 60 years of age. All 

participants should have general knowledge of resistance training techniques because 

they have participated in such programs at Western Washington University and at senior 

centers. Moderately active will be defined as: doing resistance training 2-3 times per 

week for the last six months.  

 

B) Describe how you will recruit a sample from your subject population, including 

possible compensation, and the number of subjects to be recruited.  

 

At least thirty subjects will be recruited to participate for this study. Subjects will be 

recruited from the Western Washington University‟s Adult Fitness Program and from the 

Bellingham and Blaine Senior Centers. Older adults are defined as being 60 years of age 

or older. Inclusion for this study demands that subjects be free from either knee or hip 

replacements. Permission to recruit subjects will be obtained from all locations. A flyer 

will be posted in each location for recruitment purposes (see attached).  

 

C) Describe how you will access preexisting data about the subjects  

 N/A   

5. Briefly describe the research methodology. Attach copies of all test 

instruments/questionnaires that will be used.  

Instrumentation: Rate of force development and center of pressure will be measured 

with an AccuGait AMTI OR6-7 (Watertown, MA) standard sized force plate sampling at 

1200 Hz. A custom computer software using LabView was used to calculate and produce 

the graphical format of rate of force development from the AccuGait AMTI OR6-7 force 

plate. Data collection will be obtained at Western Washington University, Biomechanics 

Laboratory.  
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Measurement techniques and testing procedures. Data collection will be obtained at 

Western Washington University, Biomechanics Laboratory. Each subject will attend a 

pretest familiarization session. At the familiarization session, subjects will be asked to 

answer questions about their age, activity level, recent injuries, and hip or knee 

replacement to determine inclusion for the study. If they meet the inclusion requirements, 

height and weight measurements will be taken with a Cardinal Detecto Physicican‟s scale 

and stadiometer. Subjects who meet inclusion criteria will be invited to come back for a 

measurement session (testing day) and instructed to refrain from heavy exercise for 48 

hours prior to testing. During testing, each subject will perform a general warm up that 

consists of cycling on a cycle ergometer for three minutes. Then, each subject will 

perform a dynamic warm up that consists of five knee hugs for each leg, and may either 

lean against a wall for support and stability or lie on ground. A task specific warm up of 

10 chair rises will also be performed. Then a three minute rest period will be given before 

beginning testing to minimize fatigue.    

Center of pressure protocol    Subjects are asked to stand on a force plate with arms at

 their sides. Subjects then stand quietly and slowly lift one foot off the ground while

 keeping the other firmly in the middle of the force plate. Center of pressure will then

 be recorded for 30 seconds. Subjects are to say “HELP” if they feel unsafe. A test

 administrator will stand beside each subject with instruction to catch or support subjects

 if the subjects asks for help or if the subject becomes unstable, and the test will be

 restarted. This test will be performed for each foot.  

Rate of force development during STS-1 

A chair with no arm rests will be placed outside the force plate, so that the participant‟s

 heel falls completely over the force plate in a natural manner. Seat height will be 16

 inches, a commonly used chair height in current literature (Janssen, Bussman, Stam,

 2002; Mourey, Grishin, Athis, Pozzo, & Stapley, 2000; Yoshioka, Nagano, Hay, &

 Fukashiro, 2009). Participants will be instructed to keep their arms crossed against the

 chest throughout the entire test. Then instructions will be given to stand all the way up

 from the chair as fast as possible. A three, two, one, GO countdown prepares the subjects

 to begin the test. Test administrators will begin collection of data on 1, and the

 subjects will begin the test on GO.   Test administrators will be trained to safely assist

 the subjects in the case a subject loses balance, otherwise, test administrators will be

 instructed to not assist the subjects. Subjects will be instructed to say “HELP” cueing

 the test administrators to close their arms around the participants and lean the body

 weight of the participant onto themselves to support them safely. 

 Five-times sit to stand test protocol.  All subjects perform a STS-5 test pre and post

 intervention. The STS-5 test will begin with the subject sitting up straight with knee and

 hip angles as close as possible to 90 degrees and ends when the participant will be in

 this seating position at the end of the fifth stand. The same procedures used for theSTS-1

 will be followed for the STS-5. Three practice trials will be done to familiarize the

 participants with the sit to stand movement with the arms crossed.    

Augmented Eccentric Load Training Protocol. The augmented eccentric load (AEL) 

training program will be implemented two days a week for six weeks with at least two 
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days in between training sessions. An introduction to proper weight training techniques 

will be given and continually monitored during each group training session. All trainers 

assisting in this protocol are CPR and First Aid certified. The training session will consist 

of a five minute walking warm up, 30 minutes of six different AEL exercises that 

included: calf raise, unilateral lunges, task-specific chair rise exercise, step downs, and 

ankle eversions. Additional weight will be handed to the subjects during the lengthening 

phase of each exercise and removed prior to the concentric phase. All subjects will begin 

with no weight and increase by 5% progression during the first week if the subjects have 

good form and are able to handle load. Progression will then be increased to 10% in the 

second week and up to 20% by the final week depending on the subject‟s individual 

progression. Ankle eversions will be completed with 0.9 kg sand-bells and increase to 1.8 

kg sand-bells. A ten minute cool down including lower body static stretches will end each 

session. The six week AEL program will be concluded with a post-testing day following 

at least a two day rest period after the final training session.  All exercises will be 

performed for three sets of eight repetitions in accordance with appropriate exercise 

prescription for older adults (ACSM, 2013).  

6. Give specific examples (with literature citations) for the use of your test 

instruments/questionnaires, or similar ones, in previous similar studies in your field. 
 

The rate of force development during a task like standing up from a chair gives insight 

into how fast an older adult can produce the necessary muscle force to stand up. A greater 

rate of force development indicates generally stronger and healthier older adults and is 

also associated with maintained muscle power (Houck, Kneiss, Bukata, & Puzas, 2011). 

Center of pressure can be used to assess how well older adults have maintained stability 

with aging (Stel, Smit, Pluijim, & Lips, 2003; Shubert, Schrodt, Mercer, Whitehead, & 

Giuliani, 2006). Both rate of force development (RFD) and center of pressure (COP)  are 

variables that can be used as assessment tools for risk of fall and frailty in older adults 

and are commonly measured using a force plate sampling at 1200 Hz (Stel, Smit, Pluijim, 

& Lips, 2003; Shubert, Schrodt, Mercer, Whitehead, & Giuliani, 2006). The PEHR 

department has a standard size AccuGait AMTI OR6-7 force plate (Watertown, MA) that 

is reliable and readily available in the Biomechanics Laboratory that will be used for this 

study.   

 

7. Describe how your study design is appropriate to examine your question or specific 

hypothesis. Include a description of controls used, if any. 
 

A pretest-posttest randomized group study design will be used to assess the effect of an 

AEL training program on the rate of force development during an STS-1, center of 

pressure, and performance in the STS-5 test. The participants will be randomly assigned 

into two groups. The treatment group participates in a six week AEL training program. 

The control group will be asked to continue their regular resistance training program. 

This study will employ a 2-way ANOVA to assess the difference in means pre and post-

test between control and treatment group for rate of force development, center of 

pressure, and time to complete the five-times-sit-to-stand test. Significance will be set at 

P ≤ 0.05. This study design is appropriate to examine the specific hypothesis 
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investigating the effect of augmented eccentric training on lower extremity rate of force 

development, center of pressure, and performance in the five time sit to stand test.  

 

Give specific examples (with literature citations) for the use of your study design, or similar 

ones, in previous similar studies in your field. 

 

This study design has been heavily used in research examining the effect of interventions 

with a goal to increase lower extremity muscle function on the performance in functional 

tasks in older adults (Lovell, Cuneo, & Gass, 2010; Miszo, Cress, Slade, Covey, 

Agrawal, & Doerr, 2003; Stel, Smit, Pluijim, & Lips, 2003; Shubert, Schrodt, Mercer, 

Whitehead, & Giuliani, 2006). This is novel research as there is no long-term augmented 

eccentric training program that has been employed on older adults. However, the acute 

effects of augmented eccentric training have used a similar protocol in the athletic 

population (Doan, Newton, Marsit, Triplett-McBride, Koziris, Fry, & Kraemer, 2002; 

Moore, Weiss, Schilling, Fry, & Li, 2007; Sheppard & Young, 2010).  Common clinical 

tests of function and risk of falling in older adults include the one-time and five-time sit-

to-stand-test (STS-(Zech, Steib, Freiberger, & Pfeifer, 2011).  

 

8. Describe the potential risks to the human subjects involved. 

With any exercise and/or resistance training program there is a risk of injury to the 

muscles, tendons, ligaments, spine, and bones. Some of the measurement protocols and 

exercise from the training program may lead to instability and therefore loss of balance 

that may also lead to injuries.  

 

9. If the research involves potential risks, describe the safeguards that will be used to 

minimize such risks. 
 

In order to minimize the potential risk of injury, special precautions will be taken to 

monitor exercises. Subjects will perform familiarity and technique sessions prior to 

adding weight to the exercises. All subjects will have a test administrator who is trained 

in properly providing safety maneuvers when and if they are needed. To minimize fatigue 

and overtraining, exercises sessions will be two days apart to allow for proper rest time. 

Additionally, an activity harness may be used in order to provide optimal prevention of 

injuries due to the risk of falling from instability during dynamic movements. This 

harness will provide additional safety for the subjects involved in the study and will allow 

subjects to perform maximal and forceful movements with minimal risk of injury.  
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10. Describe how you will address privacy and/or confidentiality. 

Any and all data pertaining to individual characteristics will be stored safely and 

confidentially by subject number only on an external hard drive owned by the primary 

researchers and in a locked cabinet in the biomechanics lab. Only the primary researchers 

will have access to these records.  

 

11. If your research involves the use of schools (pre-kindergarten to university level) or 

other organizations (e.g., community clubs, companies), please attach a clearance 

letter from an administrator from your research site indicating that you have been 

given permission to conduct this research. For pre-kindergarten to grade 12 level 

schools, an administrator (e.g. principal or higher) should issue the permission. For 

post-secondary level schools the class instructor may grant permission. For Western 

Washington University, this requirement of a clearance letter is waived if you are 

recruiting subjects from a scheduled class. If you are recruiting subjects from a 

campus group (not a class) at Western Washington University, you are required to 

obtain a clearance letter from a leader or coordinator of the group. 
 

12. If your research involves the use of schools (pre-kindergarten to university level) or 

other organizations (e.g., community clubs, companies), and you plan to take still or 

video pictures as part of your research, please complete a) to d) below: 
 

 N/A  

In addition, please attach the following information:  

1. A bibliography relevant to the subject matter of the proposed research.  

 

See attached  

 

2. A copy of the informed consent form (a checklist is attached for you to use as a 

guide).  

 

See attached  

 

 

3. A current curriculum vitae.  

 

See attached  

4. A copy of the Certificate of Completion for Human Subjects Training from 

the online human subjects training module, for each person involved in the 

research who will have any contact with the subjects or their data.  
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       See attached   

5. If your subjects are required to turn in a physician clearance form prior to 

participation, include a copy of the blank form.  

 

See attached  
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Appendix B  

Informed Consent for Exercise Testing 

 You are invited to participate in a research study conducted by the Department of 

Physical Education, Health, and Recreation at the Western Washington University. This study 

involves augmented eccentric training which is an exercise method in which additional weight is 

added to an exercise movement during the lengthening phase (when the muscle is stretching) and 

removed during the shortening phase (when the muscle is contracting). The purpose of this 

research is to investigate the effect of augmented eccentric training on lower extremity physical 

function in older adults. In order to participate in this study your age must be at least 60 years or 

older.  

The benefit of this research is that the augmented eccentric training program is designed 

to improve lower extremity muscle function and therefore may decrease the risk of falling. This 

is important because falls are among the leading cause of long term disability and loss of 

independence among older adults.  

Given your participation, you will meet for a familiarization session and two testing 

sessions and at Western Washington University, in the Biomechanics Laboratory, and for twelve 

exercise sessions over six weeks at one of three locations: lower weight room in Carver Gym at 

Western Washington University, Blaine Senior Center, or Bellingham Senior Center.  

Testing sessions: Both sessions will involve the same procedures. You will do a standard 

warm up that consists of five knee hugs for each leg, and may either lean against a wall for 

support and stability or lie on ground. A task specific warm up of 10 chair rises will also be 

performed. Then a three minute rest period will be given before beginning testing to minimize 

fatigue. This will be followed by a few familiarization and practice movements of the tasks 

required. Then you will perform a balance test where you will stand on one foot with eyes closed 

for up to 30 seconds then again on the other foot, a five times sit to stand test where you will rise 

from a seated position in a chair and be timed, and a single sit to stand test to be done where you 

will rise so that you are standing on a force plate in the floor to measure rate of force 

development. You will perform three trials for each test.   

Exercise sessions: All exercise sessions will last a total of 45 minutes from warm up to 

cool down. All sessions will begin with a standard warm up followed by a 2 minute rest period. 

Then a series of exercises will be performed that include: lunges (which are long step forwards), 

chair rising task, calf raises (where you lift your heels off the ground), step downs (where you 

will step backwards off of an aerobic step), and an ankle strengthening exercise. All exercises 

will be done for three sets of eight repetitions. All exercises will be done along with two trainers. 

One trainer will hand you additional weight during the appropriate times of the exercise 

movement and the other will be there for safety precautions. All exercise sessions will end with a 

series of stretches for arms and legs that you will hold for 20 seconds.  
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As with any exercise or resistance training program, there is risk of muscle, tendon, ligament, or 

spinal injury. Some discomfort may manifest especially with resistance training. In order to 

minimize these risks, two trainers will always be present to assist during exercise movements. 

Additionally, all participants will attend a familiarization session which will help you learn 

proper technique for all of the exercises.  

You may withdraw from participation in this study at any time, without penalty. Any questions 

you may have regarding the study protocol, benefits, and risks can be answered by the primary 

researcher (Jennifer Estep) who can be contacted at estep.jennifer5@gmail.com or 253-495-9123 

or Lorrie Brilla who can be contacted at lorrie.brilla@wwu.edu or 360-650-3056. Further, all of 

your personal information will be stored safely in a locked cabinet and only the primary 

researcher will have access to sensitive information.  

Any questions about your rights as a research subject should be directed to:  Janai Symons at 

WWU Human Protections Administrator (HPA) 360-650-3220. Additionally, if any injury or 

adverse effects arise from this research, you should contact your health provider first, along with 

Jenifer Estep, Lorrie Brilla or the HPA.  

HPA Contact  

Office of Research and Sponsored Programs 

Western Washington University 

Old Main 530 

516 High Street 

Bellingham, WA 98225-9038 

Voice: (360) 650-3220 

Fax: (360) 650-6811 

 

Any and all data collected will be stored safely and confidentially by subject number only and 

only the primary researchers will have access to your records.  

Your signature indicates that you have read and understand the information provided above, that 

you willingly agree to participate, that you may withdraw your consent at any time and 

discontinue participation without penalty, that you have received a copy of this form, and that 

you are not waiving any legal claims, rights or remedies. 

           / /  

Participants Name (Printed)       Date 

               

Participant Signature  

mailto:estep.jennifer5@gmail.com
mailto:lorrie.brilla@wwu.edu
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           / /  

Witness Name (Printed)        Date 

           

Witness Signature  
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Appendix C  

Permission Forms to Contact Mature Adults for Testing  

PERMISSION FORM TO CONTACT MATURE ADULTS FOR TESTING (WWU) 
Letter of permission: 
 
As the director of the Mature Adult Training Program of the Western Washington University, I, 
__________________________________, consent to allow Jennifer Estep’s thesis research to recruit the 
WWU Mature Adult Training Program participants. I understand that the thesis research includes 
measurement of lower extremity rate of force development during a standing from chair task, the 
five times sit to stand test, a center of pressure test to be done, and a six week augmented eccentric 
training program will take place, twice a week for 45 minutes sessions in the WWU Biomechanics 
Laboratory.  
 
 
_______________________________________________     _____/_____/__________ 
Program Director’s Name (Printed)       Date 
 
_______________________________________________ 

Program Director’s Signature 

PERMISSION FORM TO CONTACT SENIORS FOR TESTING  
Letter of permission: 
 
As the manager of the Blain Senior Activity Center, I, __________________________________, consent to allow 
Jennifer Estep’s thesis research to recruit the WWU Mature Adult Training Program participants. I 
understand that the thesis research  includes measurement of lower extremity rate of force 
development during a standing from chair task, the five times sit to stand test, a center of pressure 
test, and a six week augmented eccentric training program. Additionally, I understand that the 
augmented eccentric training program intervention may be implemented in the Blain Senior 
Activity Center.   
 
 
_______________________________________________     _____/_____/__________ 
Director’s Name (Printed)       Date 
 
 
_______________________________________________ 

Director’s Signature 
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Appendix D  

Exercise Pre-Participation Packet  

 

Dear Participant,  

We are excited that you have chosen to participate in this study. Before we begin the following 

forms need to be completed so we can provide the safest conditions for you during your 

participation.  

To be completed before any data collection or exercise sessions: 

 Physical Activity Questionnaire 

 Health History Questionnaire 

 Physical Activity Readiness Questionnaire (PAR-Q)  

 Medical Release Form 

 Informed Consent Form  

It is recommended that all participants see their medical doctor prior to participating in any 

rigorous exercise.  
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Physical Activity Questionnaire 

To help us get an idea of how familiar you are with resistance training:   

 

1. Have you ever performed resistance training exercises in the past? (Movement against a 

resistance such as dumbells, weight machines, bands, or bodyweight)  

 

Yes ______ No _______   

 

2. How often do you participate in physical activity?  

        ___ Never ___ 1-3 times/month ___ 1-2 times/wk. ___ 4-5 times/wk.  

3. How often do you participate in resistance training exercise? 

 

___ Never ___ 1-3 times/month ___ 1-2 times/wk. ___ 3-5 times/wk.  

 

4. When doing physical activity, for how long do you remain active?  

  ____NA ____ 20 Minutes ____ 30 Minutes ____ 1 Hour _____ > 1 Hour  

5. At what intensity are you physically active? Choose your ability to talk during exercise.  

___NA ___Able to talk ___Able to talk but not sing ___Not able to say more than a few  

words.  

 

6. Did you know that people who schedule activity are more likely to be active?  

 

Yes/No            

What time of day works for you to be active? 

____________________________________  
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Health History Questionnaire  

Participant 

Name: _________________________________________ Date: _________________________  

Address: 

_____________________________________________________________________________  

Local Phone: _______________________________Email: _____________________________  

Date of Birth: ____________________ Age: __________ Sex: __________  

OCCUPATION: 

________________________________________________________________________  

 

Primary Health Care Provider  

Doctor: _________________________________________Phone: ________________________  

Address: 

_____________________________________________________________________________  

When were you last seen by a physician? 

__________________________________________________  

Present/Past History  

1. Have you had surgery within the last 2 years? Yes ______ No _______  

Explain: 

___________________________________________________________________________  

______________________________________________________________________________ 

2. Do you have any past or present orthopedic injuries? Yes ______ No _______  

3. Are you taking any medications (prescribed or not)? Yes ______ No _______  

Please List: 

________________________________________________________________________  

______________________________________________________________________________  
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5. Do you follow or have you recently followed any specific dietary intake plan and, in general, 

how do you feel about your nutritional habits?  

______________________________________________________________________________ 

______________________________________________________________________________ 

 

6. Please check all conditions that you currently have or have had in the past.  

Heart attack   

Diabetes  

Stroke  

Chest discomfort   

Heart murmur  

Trouble sleeping   

Migraine or headache   

Broken Bone  

Shortness of breath  

Anemia   

Asthma   

Epilepsy   

Anxiety Depression  

Fatigue   

Hernia   

Arthritis  

Limited range of motion /pain  

Use of assisted walking device  

Explain any conditions that you checked (i.e. treatment, symptoms, and restrictions):  
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I acknowledge that I am in good health, have answered the previous questions truthfully, and 

have no known medical problems that would preclude safe participation in this exercise program.  

Signed: _______________________________________ Date: _____________ 

Physical Activity Readiness Questionnaire (PAR-Q) 

Regular exercise is associated with many health benefits, yet any change of activity may 

increase the risk of injury. Completion of this questionnaire is a first step when planning to 

increase the amount of physical activity in your life. Please read each question carefully 

and answer every question honestly.  

 

Y   N  Has a physician ever said you have a heart condition, and you should only do

 physical activity recommended by a physician? 

Y   N       When you do physical activity, do you feel pain in your chest? 

Y   N       When you were not doing physical activity, have you had chest pain in the past 

     month? 

Y    N      Do you ever lose consciousness or do you lose your balance because of dizziness? 

Y    N      Do you have a joint or bone problem that may be made worse by a change in your  

physical activity?   

Y    N      Is a physician currently prescribing medications for your blood pressure or heart 

condition?  

Y    N     Do you have insulin dependent diabetes?  

Y     N     Do you know of any other reason you should not exercise or increase your

 physical activity?  

 

 

Yes to one or more questions: It is strongly recommended that you have a Medical Clearance 

Form completed BEFORE you become significantly more physically active. 

 

Note: If your health changes so that you then answer YES to any of the above questions, tell 

your fitness instructor, and ask whether you should change your physical activity plan. I have 

read, understood and completed this questionnaire. Any questions I had were answered to 

my full satisfaction. 
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Participant‟s signature: ______________________________________Date:______________  

Signature of Primary Researcher ______________________________Date:________________ 
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Appendix E  

Medical Release Form  

Medical Release Form  

Your Patient, ______________________________, wishes to participate in an augmented 

eccentric training program study. It is necessary to have this form completed before the 

participant can enroll in this study. Participants will be tested in lower extremity rate of force 

development during a standing from chair task, center of pressure (balance test), and in the five 

time sit to stand test (descriptions of these tests are attached). Participation also includes a six 

week augmented eccentric training program that involves: lunges, calf raises, rising from chair 

task, ankle eversions, and step downs. Proper warm-up and cool downs will also be performed 

by the participants. Please read all testing procedures and explanation of training protocol.  

Have you read the testing procedures and explanation of training protocol?  

Yes No  

 

If your patient is taking medication that will affect his/her heart rate response to exercise, please 

indicate the manner of the effect (raises, lowers, or has no effect on heart-rate response):  

Type of medication _________________________________________________  

Effect ___________________________________________________________  

  

Please identify any other recommendations or restrictions for your patient in this exercise 

program:  

_____________________________________________________________________________ 

_______________________________________________________________    

 

      (Participants Full Name), has my approval to begin an exercise 

program with the recommendations or restrictions stated above.  

 

Printed name ________________________  

Signed _________________________ Date __________ Phone_____________  

  



 
 

105 
 

Appendix F  

Testing Procedures and Training Protocol (for primary physician) 

  

Subject inclusion criteria.  

All subjects must be at least 60 years of age or older. All participants should have general 

knowledge of resistance training techniques because they have participated in such 

programs at Western Washington University and at senior centers. Moderately active will 

be defined as: doing resistance training 2-3 times per week for the last six months.  

Measurement techniques and testing procedures.  

Each subject will attend a pretest familiarization session. At the familiarization session, 

subjects will be asked to answer questions about their age, activity level, recent injuries, 

and hip or knee replacement to determine inclusion for the study. During testing, each 

subject will perform a general warm up that consists of cycling on a cycle ergometer for 

three minutes. Then, each subject will perform a dynamic warm up that consists of five 

knee hugs for each leg, and may either lean against a wall for support and stability or lie 

on ground. A task specific warm up of 10 chair rises will also be performed. Then a three 

minute rest period will be given before beginning testing to minimize fatigue.    

Center of pressure protocol    Subjects are asked to stand on a force plate with arms at

 their sides. Subjects then stand quietly and slowly lift one foot off the ground while

 keeping the other firmly in the middle of the force plate. Center of pressure will then

 be recorded for 30 seconds. Subjects are to say “HELP” if they feel unsafe. A test

 administrator stood beside each subject with instruction to catch or support subjects if

 subjects asked for help and the test was then restarted. This test was performed for each

 foot.  

Rate of force development during STS-1 

A chair with no arm rests will be placed outside the force plate, so that the participant‟s

 heel falls completely over the force plate in a natural manner. Participants will be

 instructed to keep their arms crossed against the chest throughout the entire test. Then

 instructions will be given to stand all the way up from the chair as fast as possible. A

 three, two, one, GO countdown prepares the subjects to begin the test. Test administrators

 will begin collection of data on 1, and the subjects will begin the test on GO.  Test

 administrators will be trained to safely assist the subjects in the case a subject loses

 balance, otherwise, test administrators will be instructed to not assist the subjects.

 Subjects will be instructed to say “HELP” cueing the test administrators to close their

 arms around the participants and lean the body weight of the participant onto

 themselves to support them safely. If the subject becomes unstable, then the test

 administrators will follow the same procedures to support the subject safely. 

 Five-times sit to stand test protocol.  All subjects perform a STS-5 test pre and post

 intervention. The STS-5 test will begin with the subject sitting up straight with knee and
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 hip angles as close as possible to 90 degrees and ends when the participant will be in

 this seating position at the end of the fifth stand. The same procedures used for theSTS-1

 will be followed for the STS-5. Three practice trials will be done to familiarize the

 participants with the sit to stand movement with the arms crossed.    

Augmented Eccentric Load Training Protocol. The augmented eccentric load (AEL) 

training program was implemented two days a week for six weeks with at least two days 

in between training sessions. An introduction to proper weight training techniques will be 

given and continually monitored during each group training session. The training session 

will consist of a five minute walking warm up, 30 minutes of six different AEL exercises 

that included: calf raise, unilateral lunges, task-specific chair rise exercise, step downs, 

and ankle eversions. Additional weight will be handed to the subjects during the 

lengthening phase of each exercise and removed prior to the concentric phase. All 

subjects will begin with no weight and increase by 5% progression during the first week 

if the subjects have good form and are able to handle load. Progression will then be 

increased to 10% in the second week and up to 20% by the final week depending on the 

subject‟s individual progression. Ankle eversions will be completed with 0.9 kg sandbells 

and increase to 1.8 kg sandbells. A ten minute cool down including lower body static 

stretches will end each session. The six week AEL program will be concluded with a 

post-testing day following at least a two day rest period after the final training session.  

All exercises will be performed for three sets of eight repetitions in accordance with 

appropriate exercise prescription for older adults.  
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Appendix G  

Description of Exercises and Stretches  

 

Calf Raise was performed on a stable surface. Additional weight at approximately 20% of body 

weight was handed to the subject as they reached the top of the calf raise. Subjects held on to 

the extra weight as they moved into the lowering phase. Subject then handed weight back to test 

administrator before moving into the concentric phase. Test administrators stood in front of the 

subjects and kept arms slightly to the left and right sides of the subject for safety.  

Lunges were done unilaterally, in place with the additional load of approximately 20% body 

weight given during the rising phase of the lunge. This was defined as the movement prior to 

knee extension. Test administrators stood behind the subjects and placed arms by the left and 

right of the subject‟s sides while moving with them into the lunge for safety.  

Chair rise was performed with the weight held across the chest while slowly sitting down. The 

subject then handed the weight to the test administrator and stood up quickly with no weight. 

Test administrators placed arms on the left and right sides of subjects as they moved from 

sitting to standing for safety.  

Step downs were done on an aerobic step. Subjects were handed the additional weight 

(approximately 20% body weight) when they had their feet firmly on top of the aerobic step and 

then stepped backwards and down off of the step. Test administrators stood behind the subject 

in order to support the subject if they lost their balance. The subjects then stepped back onto the 

aerobic step without weight. Test administrators stood behind the subject with arms at left and 

right sides of the subjects to provide safety during this movement.  
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Ankle eversions were customized exercises done with two kilograms of resistance. The subject 

would sit in a chair and bring the opposite ankle to opposite knee. The subject then performed 

an eversion of the ankle. Then the weight was removed prior to moving the ankle into inversion 

quickly and forcefully. Test administrators were prepared to remove weight from the subject‟s 

ankles if they asked for help.  

All stretches were static, and were held for 20 seconds  

Quadriceps Stretch: Subjects stood next to a chair for support, with feet shoulder-width apart. 

The chair was held with the left hand. The right leg was bent back until the thigh was 

perpendicular to the ground. The right ankle is held with the right hand and this pose is held for 

20 seconds. This was repeated on left leg.  

Hamstring Stretch: Subject sat forward in a chair with the knees bent and feet flat on the floor. 

The right heel was extended out and subjects slowly leaned forward at the hips, bending toward 

the toes. This position was held for 20 seconds and repeated on left leg.  

Calf Stretch: Standing back from a wall, hands were placed on the wall until arms were straight. 

The right foot was placed behind with toes pointing forward. Keeping the right heel on the 

ground, subjects leaned forward until they could feel a stretch and this position was held for 20 

seconds and repeated on the left leg.  
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Appendix H 

 

  

Research Protocol Checklist 

Subject #  Date:  Age  

 

Height  Weight   

 

MANDATORY PAPERWORK  
SIGNED BY 
ALL PARTIES  

GROUP ASSIGNMENT VIA COIN TOSS 

Physical Activity Questionnaire  Yes   /   No 
 

Health History Questionnaire Yes   /   No 

Physical Activity Readiness (PAR-Q) Yes   /   No 

Medical Release Form Yes   /   No 

Informed Consent  Yes   /   No 

Subject received copy of informed 
consent 

Yes   /   No  

  

 

WARM UP                                     INITIAL                                INSTRUMENTATION                     INITIAL 

1. 
Treadmill 3 minutes at 
2MPH 

 Force plate and computer on    

2. Five knee hugs each leg  Force plate zeroed   

3. 10 chair rises  Chair   

4. 3 minute rest period   Stop watch   

 

CENTER OF PRESSURE                                                             INITIAL 

Subject familiarized with task  

1. Feet together eyes closed  

 File saved:      Estep_Subject_#_COP  

2. Right foot eyes open  

 File saved:     Estep_Subject_#_COP_RF  

3. Left foot eyes open  

 File saved:     Estep_Subject_#_COP_LF  

RFD (STS-1)                                                                               INITIAL 

Subject familiarized with task  

1. Force plate zeroed  

2. Force plate armed   

 Practice movement 3 times  

3. 3, 2, 1 … Go   

4. File Saved: Estep_Subject_#_RFD  

STS-5                                                                                          INITIAL      

Subject familiarized with task  

1. Recorded Time:   

Circle One: 

 

HEADS   TAILS    
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Appendix I 

Raw Data  

Table 1.  

Raw Data for Subject Characteristics.  

Subject Characteristics  

Subject Information 

Subject 
# 

Age(yrs.) 
Ht. 
(cm) 

Wt. 
(Kg) 

C8 81 169.16 64.1 

C9 75 167.64 68.2 

C10 74 N/A N/A 

C11 67 161.54 68.2 

C12 79 124.97 50 

C13 69 155.45 57.7 

C19 83 164.59 68.6 

C20 82 173.74 84.1 

Mean 76.25 159.58 65.84 

± SD  6.02 16.34 10.59 

*RT   

    

Subject Characteristics  

Subject Information 

Subject 
# 

Age(yrs.) 
Ht. 
(cm) 

Wt. 
(Kg) 

1 68 N/A 57.7 

2 72 N/A 77.3 

3 67 N/A 78.6 

4 70 172.21 71.7 

5 80 161.54 61.2 

6 72 167.64 78.5 

7 80 155.45 86.6 

14 67 161.54 68 

15 66 167.64 98.9 

16 64 169.16 63.5 

17 72 173.74 77.1 

18 72 176.78 82.8 

Mean 70.83 167.30 75.16 

± SD  5.06 6.76 11.61 

*AEL  
   



 
 

111 
 

Table 2.  

Time to Complete STS-5  

Five Time Sit to Stand Test (seconds) 

Subject # Pretest Posttest Change  

8 9.09 8.7 0.39 

9 9.48 8.06 1.42 

10 9.65 8.61 1.04 

11 11.25 12.41 -1.16 

12 11.16 7.1 4.06 

13 9.25 7.01 2.24 

19 9.54 10.99 -1.45 

20 9.65 8.61 1.04 

Mean  9.88 8.94 0.95 

± SD  0.84 1.75 1.78 

*RT  
    

  

Five Time Sit to Stand Test (seconds) 

Subject # Pretest Posttest Change  

1 14.47 10.62 3.85 

2 10.94 8.29 2.65 

3 11.53 9.12 2.41 

4 15.03 11.67 3.36 

5 Dropped Out 

6 12.8 9.12 3.68 

7 11.89 10.51 1.38 

14 6.93 8.38 -1.45 

15 12.28 9.53 2.75 

16 8.02 5.53 2.49 

17 Dropped Out 

18 11.56 10.6 0.96 

Mean  11.55 9.34 2.21 

± SD  2.52 1.72 1.58 

*AEL  
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Table 3.  

Rate of Force Development in STS-1  

Rate of Force Development (Ns) 

Subject # Pretest Posttest Change 

C8 821.60 804.90 -16.70 

C9 836.30 833.10 -3.20 

C10 502.80 847.20 344.40 

C11 873.70 739.30 -134.50 

C12 606.50 628.50 22.00 

C13 771.90 768.10 -3.80 

C19 870.81 978.50 107.69 

C20 780.39 993.36 212.97 

Average  758.00 824.12 66.11 

± SD  133.66 120.75 150.94 

*RT 

    

  

Rate of Force Development (Ns) 

Subject # Pretest Posttest Change 

1 718.00 884.24 166.24 

2 458.08 949.77 491.69 

3 949.84 991.13 41.29 

4 796.55 879.77 83.22 

5 Dropped out 

6 958.00 833.00 -125.00 

7 650.10 1160.90 510.80 

14 841.30 1309.30 468.10 

15 1065.90 1249.80 183.90 

16 699.00 1276.00 577.00 

17 Dropped out 

18 717.19 878.51 161.32 

Average  785.40 1041.24 255.86 

± SD  176.66 187.45 221.13 

*AEL 
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Table 4.  

Center of Pressure Excursion; Both Feet, Eyes Closed  

COP – Both Feet, Eyes Closed (meters) 

  M-L  A-P  

Subject # Pretest Posttest  Pretest Posttest  

8 0.018 0.002 0.042 0.008 

9 0.017 0.002 0.016 0.003 

10 Data Not Recoverable 

11 0.038 0.001 0.027 0.003 

12 0.013 0.001 0.044 0.011 

13 0.069 0.002 0.013 0.005 

19 0.106 0.001 0.274 0.004 

20 0.133 0.001 0.239 0.004 

Mean 0.056 0.001 0.094 0.005 

± SD  0.048 0.000 0.112 0.003 

*RT  

      

COP – Both Feet, Eyes Closed (meters) 

  M-L  A-P  

Subject 
# 

Pretest Posttest  Pretest Posttest  

1 0.057 0.021 0.015 0.010 

2 0.053 0.001 0.309 0.005 

3 0.125 0.001 0.303 0.003 

4 0.254 0.004 0.284 0.006 

5 Dropped Out 

6 0.070 0.002 0.124 0.008 

7 0.034 0.001 0.088 0.004 

14 0.018 0.001 0.092 0.002 

15 0.054 0.001 0.052 0.006 

16 0.009 0.001 0.075 0.003 

17 Dropped Out 

18 0.072 0.002 0.227 0.007 

Mean 0.075 0.003 0.157 0.006 

± SD  0.071 0.006 0.112 0.003 

*AEL 
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Table 5.  

Center of Pressure Excursion; Right Foot, Eyes Open 

Center of Pressure Right Foot (meters) 

  M-L  A-P  

Subject # Pretest Posttest  Pretest Posttest  

8 0.619 0.009 0.390 0.009 

9 0.052 0.011 0.033 0.031 

10 Data Not Recoverable 

11 0.062 0.009 0.056 0.009 

12 0.230 0.174 0.011 0.008 

13 0.183 0.006 0.305 0.009 

19 0.301 0.008 0.266 0.009 

20 0.257 0.007 0.337 0.010 

Mean 0.243 0.032 0.200 0.012 

± SD  0.191 0.062 0.161 0.008 

*RT 

    

Center of Pressure Right Foot  (meters) 

  M-L  A-P  

Subject 
# 

Pretest Posttest  Pretest Posttest  

1 0.242 0.009 0.422 0.013 

2 0.541 0.007 0.564 0.009 

3 0.363 0.010 0.338 0.011 

4 0.567 0.016 0.349 0.011 

5 Dropped Out 

6 0.230 0.012 0.601 0.014 

7 0.725 0.018 0.783 0.006 

14 0.821 0.007 0.471 0.006 

15 0.262 0.014 0.410 0.017 

16 0.375 0.014 0.287 0.024 

17 Dropped Out 

18 0.444 0.010 0.425 0.009 

Mean 0.457 0.012 0.465 0.012 

± SD  0.204 0.004 0.148 0.005 

*AEL  
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Table 6.  

Center of Pressure Excursion; Left Foot, Eyes Open 

Center of Pressure Left Foot (meters)  

  M-L  A-P  

Subject # Pretest Postest  Pretest Postest  

8 0.302 0.488 0.110 0.049 

9 0.051 0.004 0.042 0.006 

10 Data Not Recoverable 

11 0.029 0.009 0.069 0.010 

12 0.053 0.009 0.059 0.008 

13 0.247 0.009 0.211 0.007 

19 0.454 0.006 0.512 0.007 

20 0.454 0.010 0.445 0.007 

Mean 0.227 0.076 0.207 0.013 

± SD  0.187 0.182 0.195 0.016 

*RT  
     

                                                                                               

Center of Pressure Left Foot (meters) 

   M-L  A-P  

Subject # Pretest Postest  Pretest Postest  

1 0.517 0.013 0.783 0.013 

2 0.282 0.012 0.222 0.010 

3 0.312 0.009 0.386 0.007 

4 0.432 0.018 0.805 0.009 

5 Dropped Out 

6 0.637 0.014 0.409 0.016 

7 0.265 0.036 0.393 0.026 

14 0.241 0.007 0.226 0.014 

15 0.415 0.007 0.307 0.010 

16 0.202 0.008 0.243 0.008 

17 Dropped Out 

18 0.362 0.012 0.615 0.024 

Mean 0.366 0.014 0.439 0.014 

± SD  0.136 0.009 0.221 0.006 

*AEL 
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Appendix J  

Statistical Analysis Tables  

Table 2.  

Time to Complete STS-5  

Within-Subjects Factors 

Measure:   STS5Time   

Test 

Dependent 

Variable 

1 Pretest 

2 Posttest 

 

 

  

 Between-Subjects Factors 

 Value Label N 

Group 1.00 AEL  10 

2.00 RT 8 
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 Descriptive Statistics 

 
Group Mean Std. Deviation N 

Pretest AEL  11.5450 2.51717 10 

RT 9.8838 .83816 8 

Total 10.8067 2.08931 18 

Posttest AEL Training 9.3370 1.72230 10 

No AEL Training 8.9363 1.86714 8 

Total 9.1589 1.74582 18 

 
 

Multivariate Tests
a
 

Effect Value F Hypothesis df Error df Sig. 

Test Pillai's Trace .498 15.904
b
 1.000 16.000 .001 

Wilks' Lambda .502 15.904
b
 1.000 16.000 .001 

Hotelling's Trace .994 15.904
b
 1.000 16.000 .001 

Roy's Largest Root .994 15.904
b
 1.000 16.000 .001 

Test * Group Pillai's Trace .137 2.538
b
 1.000 16.000 .131 

Wilks' Lambda .863 2.538
b
 1.000 16.000 .131 

Hotelling's Trace .159 2.538
b
 1.000 16.000 .131 

Roy's Largest Root .159 2.538
b
 1.000 16.000 .131 

a. Design: Intercept + Group  

 Within Subjects Design: Test 

b. Exact statistic 
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Mauchly's Test of Sphericity
a
 

Measure:   STS5Time   

Within Subjects 

Effect 

Mauchly's 

W 

Approx. Chi-

Square df Sig. 

Epsilon
b
 

Greenhouse-

Geisser 

Huynh-

Feldt 

Lower-

bound 

Test 1.000 .000 0 . 1.000 1.000 1.000 

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables 

is proportional to an identity matrix. 

a. Design: Intercept + Group  

 Within Subjects Design: Test 

b. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are 

displayed in the Tests of Within-Subjects Effects table. 

 

Tests of Within-Subjects Effects 

Measure:   STS5Time   

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

Test Sphericity Assumed 22.127 1 22.127 15.904 .001 

Greenhouse-Geisser 22.127 1.000 22.127 15.904 .001 

Huynh-Feldt 22.127 1.000 22.127 15.904 .001 

Lower-bound 22.127 1.000 22.127 15.904 .001 

Test * Group Sphericity Assumed 3.531 1 3.531 2.538 .131 

Greenhouse-Geisser 3.531 1.000 3.531 2.538 .131 

Huynh-Feldt 3.531 1.000 3.531 2.538 .131 

Lower-bound 3.531 1.000 3.531 2.538 .131 

Error(Test) Sphericity Assumed 22.261 16 1.391   

Greenhouse-Geisser 22.261 16.000 1.391   

Huynh-Feldt 22.261 16.000 1.391   

Lower-bound 22.261 16.000 1.391   
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Tests of Within-Subjects Contrasts 

Measure:   STS5Time   

Source Test 

Type III Sum of 

Squares df Mean Square F Sig. 

Test Linear 22.127 1 22.127 15.904 .001 

Test * Group Linear 3.531 1 3.531 2.538 .131 

Error(Test) Linear 22.261 16 1.391   

 

 

Tests of Between-Subjects Effects 

Measure:   STS5Time   

Transformed Variable:   Average   

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

Intercept 3502.775 1 3502.775 617.350 .000 

Group 9.449 1 9.449 1.665 .215 

Error 90.782 16 5.674   
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Table 3.  

Rate of Force Development in STS-1  

 

 

Within-Subjects Factors 

Measure:   RFD   

Test 

Dependent 

Variable 

1 Pretest 

2 Posttest 

 

 

 

Between-Subjects Factors 

 Value Label N 

Group 1 AEL  10 

2 RT  8 

 

 

Multivariate Tests
a
 

Effect Value F Hypothesis df Error df Sig. 

Test Pillai's Trace .367 9.276
b
 1.000 16.000 .008 

Wilks' Lambda .633 9.276
b
 1.000 16.000 .008 

Hotelling's Trace .580 9.276
b
 1.000 16.000 .008 

Roy's Largest Root .580 9.276
b
 1.000 16.000 .008 

Test * Group Pillai's Trace .246 5.208
b
 1.000 16.000 .037 

Wilks' Lambda .754 5.208
b
 1.000 16.000 .037 

Hotelling's Trace .326 5.208
b
 1.000 16.000 .037 

Roy's Largest Root .326 5.208
b
 1.000 16.000 .037 

a. Design: Intercept + Group  

 Within Subjects Design: Test 

b. Exact statistic 
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Mauchly's Test of Sphericity
a
 

Measure:   RFD   

Within Subjects 

Effect 

Mauchly's 

W 

Approx. Chi-

Square df Sig. 

Epsilon
b
 

Greenhouse-

Geisser 

Huynh-

Feldt 

Lower-

bound 

Test 1.000 .000 0 . 1.000 1.000 1.000 

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables 

is proportional to an identity matrix. 

a. Design: Intercept + Group  

 Within Subjects Design: Test 

b. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are 

displayed in the Tests of Within-Subjects Effects table. 

 

 

 

Tests of Within-Subjects Effects 

Measure:   RFD   

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

Test Sphericity Assumed 190146.162 1 190146.162 9.276 .008 

Greenhouse-Geisser 190146.162 1.000 190146.162 9.276 .008 

Huynh-Feldt 190146.162 1.000 190146.162 9.276 .008 

Lower-bound 190146.162 1.000 190146.162 9.276 .008 

Test * Group Sphericity Assumed 106764.938 1 106764.938 5.208 .037 

Greenhouse-Geisser 106764.938 1.000 106764.938 5.208 .037 

Huynh-Feldt 106764.938 1.000 106764.938 5.208 .037 

Lower-bound 106764.938 1.000 106764.938 5.208 .037 

Error(Test) Sphericity Assumed 327980.901 16 20498.806   

Greenhouse-Geisser 327980.901 16.000 20498.806   

Huynh-Feldt 327980.901 16.000 20498.806   

Lower-bound 327980.901 16.000 20498.806   
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Tests of Within-Subjects Contrasts 

Measure:   RFD   

Source Test 

Type III Sum of 

Squares df Mean Square F Sig. 

Test Linear 190146.162 1 190146.162 9.276 .008 

Test * Group Linear 106764.938 1 106764.938 5.208 .037 

Error(Test) Linear 327980.901 16 20498.806   

 

 

Tests of Between-Subjects Effects 

Measure:   RFD   

Transformed Variable:   Average   

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

Intercept 25373377.615 1 25373377.615 870.520 .000 

Group 167094.099 1 167094.099 5.733 .029 

Error 466357.832 16 29147.364   
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Table 4.  

Excursion from Center of Pressure Both Feet, Eyes Closed – Medial- Lateral  

 

Within-Subjects Factors 

Measure:   MLCOP   

Test 

Dependent 

Variable 

1 Pretest 

2 Posttest 

 

 

Between-Subjects Factors 

 Value Label N 

Group 1.00 AEL  10 

2.00 RT 7 

 

  

Descriptive Statistics 

 
Group Mean Std. Deviation N 

Pretest AEL Training .0746 .07074 10 

No AEL Training .0562 .04789 7 

Total .0670 .06133 17 

Posttest AEL Training .0034 .00616 10 

No AEL Training .0014 .00025 7 

Total .0026 .00474 17 
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Multivariate Tests
a
 

Effect Value F Hypothesis df Error df Sig. 

Test Pillai's Trace .526 16.661
b
 1.000 15.000 .001 

Wilks' Lambda .474 16.661
b
 1.000 15.000 .001 

Hotelling's Trace 1.111 16.661
b
 1.000 15.000 .001 

Roy's Largest Root 1.111 16.661
b
 1.000 15.000 .001 

Test * Group Pillai's Trace .018 .282
b
 1.000 15.000 .603 

Wilks' Lambda .982 .282
b
 1.000 15.000 .603 

Hotelling's Trace .019 .282
b
 1.000 15.000 .603 

Roy's Largest Root .019 .282
b
 1.000 15.000 .603 

a. Design: Intercept + Group  

 Within Subjects Design: Test 

b. Exact statistic 

 

 

Mauchly's Test of Sphericity
a
 

Measure:   MLCOP   

Within Subjects 

Effect 

Mauchly's 

W 

Approx. 

Chi-Square df Sig. 

Epsilon
b
 

Greenhouse

-Geisser 

Huynh-

Feldt 

Lower-

bound 

Test 1.000 .000 0 . 1.000 1.000 1.000 

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent 

variables is proportional to an identity matrix. 

a. Design: Intercept + Group  

 Within Subjects Design: Test 

b. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests 

are displayed in the Tests of Within-Subjects Effects table. 
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Tests of Within-Subjects Effects 

Measure:   MLCOP   

Source 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

Test Sphericity Assumed .033 1 .033 16.661 .001 

Greenhouse-

Geisser 
.033 1.000 .033 16.661 .001 

Huynh-Feldt .033 1.000 .033 16.661 .001 

Lower-bound .033 1.000 .033 16.661 .001 

Test * 

Group 

Sphericity Assumed .001 1 .001 .282 .603 

Greenhouse-

Geisser 
.001 1.000 .001 .282 .603 

Huynh-Feldt .001 1.000 .001 .282 .603 

Lower-bound .001 1.000 .001 .282 .603 

Error(Test) Sphericity Assumed .029 15 .002   

Greenhouse-

Geisser 
.029 15.000 .002   

Huynh-Feldt .029 15.000 .002   

Lower-bound .029 15.000 .002   

 

 

Tests of Within-Subjects Contrasts 

Measure:   MLCOP   

Source Test 

Type III Sum of 

Squares df Mean Square F Sig. 

Test Linear .033 1 .033 16.661 .001 

Test * Group Linear .001 1 .001 .282 .603 

Error(Test) Linear .029 15 .002   
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Tests of Between-Subjects Effects 

Measure:   MLCOP   

Transformed Variable:   Average   

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

Intercept .038 1 .038 19.141 .001 

Group .001 1 .001 .431 .521 

Error .030 15 .002   
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Table 4.  

Excursion from Center of Pressure Both Feet, Eyes Closed – Anterior-Posterior  

 

Within-Subjects Factors 

Measure:   APCOP   

test 

Dependent 

Variable 

1 Pretest 

2 Posttest 

 

 Between-Subjects Factors 

 Value Label N 

Group 1.00 AEL  10 

2.00 RT 7 

  

Descriptive Statistics 

 
Group Mean Std. Deviation N 

Pretest AEL Training .1569 .11218 10 

No AEL Training .0937 .11229 7 

Total .1309 .11329 17 

Posttest AEL Training .0055 .00255 10 

No AEL Training .0055 .00302 7 

Total .0055 .00266 17 

Multivariate Tests
a
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Effect Value F Hypothesis df Error df Sig. 

test Pillai's Trace .553 18.578
b
 1.000 15.000 .001 

Wilks' Lambda .447 18.578
b
 1.000 15.000 .001 

Hotelling's Trace 1.239 18.578
b
 1.000 15.000 .001 

Roy's Largest Root 1.239 18.578
b
 1.000 15.000 .001 

test * Group Pillai's Trace .079 1.289
b
 1.000 15.000 .274 

Wilks' Lambda .921 1.289
b
 1.000 15.000 .274 

Hotelling's Trace .086 1.289
b
 1.000 15.000 .274 

Roy's Largest Root .086 1.289
b
 1.000 15.000 .274 

a. Design: Intercept + Group  

 Within Subjects Design: test b. Exact statistic 

 

b. Exact statistic 
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Mauchly's Test of Sphericity
a
 

Measure:   APCOP   

Within Subjects 

Effect 

Mauchly'

s W 

Approx. 

Chi-

Square df Sig. 

Epsilon
b
 

Greenhous

e-Geisser 

Huynh-

Feldt 

Lower-

bound 

test 1.000 .000 0 . 1.000 1.000 1.000 

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed 

dependent variables is proportional to an identity matrix. 

a. Design: Intercept + Group  

 Within Subjects Design: test 
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Tests of Within-Subjects Effects 

Measure:   APCOP   

Source 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

test Sphericity 

Assumed 
.118 1 .118 18.578 .001 

Greenhouse-

Geisser 
.118 1.000 .118 18.578 .001 

Huynh-Feldt .118 1.000 .118 18.578 .001 

Lower-bound .118 1.000 .118 18.578 .001 

test * 

Group 

Sphericity 

Assumed 
.008 1 .008 1.289 .274 

Greenhouse-

Geisser 
.008 1.000 .008 1.289 .274 

Huynh-Feldt .008 1.000 .008 1.289 .274 

Lower-bound .008 1.000 .008 1.289 .274 

Error(test) Sphericity 

Assumed 
.095 15 .006   

Greenhouse-

Geisser 
.095 15.000 .006   

Huynh-Feldt .095 15.000 .006   

Lower-bound .095 15.000 .006   

 

Tests of Between-Subjects Effects 

Measure:   APCOP   

Transformed Variable:   Average   

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

Intercept .141 1 .141 22.580 .000 

Group .008 1 .008 1.321 .268 

Error .094 15 .006   

 

b. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected 

tests are displayed in the Tests of Within-Subjects Effects table. 
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Table 5. 

Excursion from Center of Pressure Right Foot, Eyes Open – Medial- Lateral  

 

Within-Subjects Factors 

Measure:   MLRF   

test 

Dependent 

Variable 

1 Pretest 

2 Posttest 

 

 

Between-Subjects Factors 

 Value Label N 

Group 1.00 AEL  10 

2.00 RT 7 

 

 

Descriptive Statistics 

 
Group Mean Std. Deviation N 

Pretest AEL Training .4571 .20420 10 

No AEL Training .2433 .19056 7 

Total .3691 .22098 17 

Posttest AEL Training .0117 .00365 10 

No AEL Training .0321 .06245 7 

Total .0201 .03970 17 

 

  



 
 

135 
 

Multivariate Tests
a
 

Effect Value F Hypothesis df Error df Sig. 

test Pillai's Trace .741 42.903
b
 1.000 15.000 .000 

Wilks' Lambda .259 42.903
b
 1.000 15.000 .000 

Hotelling's Trace 2.860 42.903
b
 1.000 15.000 .000 

Roy's Largest Root 2.860 42.903
b
 1.000 15.000 .000 

test * Group Pillai's Trace .267 5.455
b
 1.000 15.000 .034 

Wilks' Lambda .733 5.455
b
 1.000 15.000 .034 

Hotelling's Trace .364 5.455
b
 1.000 15.000 .034 

Roy's Largest Root .364 5.455
b
 1.000 15.000 .034 

a. Design: Intercept + Group  

 Within Subjects Design: test 

b. Exact statistic 

 

 

Mauchly's Test of Sphericity
a
 

Measure:   MLRF   

Within Subjects 

Effect 

Mauchly's 

W 

Approx. Chi-

Square df Sig. 

Epsilon
b
 

Greenhouse-

Geisser 

Huynh-

Feldt 

Lower-

bound 

test 1.000 .000 0 . 1.000 1.000 1.000 

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables 

is proportional to an identity matrix. 

a. Design: Intercept + Group  

 Within Subjects Design: test 

b. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are 

displayed in the Tests of Within-Subjects Effects table. 
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Tests of Within-Subjects Effects 

Measure:   MLRF   

Source 

Type III Sum 

of Squares df Mean Square F Sig. 

test Sphericity Assumed .888 1 .888 42.903 .000 

Greenhouse-

Geisser 
.888 1.000 .888 42.903 .000 

Huynh-Feldt .888 1.000 .888 42.903 .000 

Lower-bound .888 1.000 .888 42.903 .000 

test * Group Sphericity Assumed .113 1 .113 5.455 .034 

Greenhouse-

Geisser 
.113 1.000 .113 5.455 .034 

Huynh-Feldt .113 1.000 .113 5.455 .034 

Lower-bound .113 1.000 .113 5.455 .034 

Error(test) Sphericity Assumed .310 15 .021   

Greenhouse-

Geisser 
.310 15.000 .021   

Huynh-Feldt .310 15.000 .021   

Lower-bound .310 15.000 .021   

 

 

Tests of Between-Subjects Effects 

Measure:   MLRF   

Transformed Variable:   Average   

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

Intercept 1.140 1 1.140 55.831 .000 

Group .077 1 .077 3.772 .071 

Error .306 15 .020   
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Table 5. 

Excursion from Center of Pressure Right Foot, Eyes Open – Anterior-Posterior  

 

Within-Subjects Factors 

Measure:   APRF   

test 

Dependent 

Variable 

1 Pretest 

2 Posttest 

 

 

Between-Subjects Factors 

 Value Label N 

Group 1.00 AEL  10 

2.00 RT 7 

 

 

Descriptive Statistics 

 
Group Mean Std. Deviation N 

Pretest AEL Training .4651 .14799 10 

No AEL Training .1997 .16069 7 

Total .3558 .20031 17 

Posttest AEL Training .0118 .00544 10 

No AEL Training .0122 .00822 7 

Total .0120 .00648 17 
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Multivariate Tests
a
 

Effect Value F Hypothesis df Error df Sig. 

test Pillai's Trace .821 68.908
b
 1.000 15.000 .000 

Wilks' Lambda .179 68.908
b
 1.000 15.000 .000 

Hotelling's Trace 4.594 68.908
b
 1.000 15.000 .000 

Roy's Largest Root 4.594 68.908
b
 1.000 15.000 .000 

test * Group Pillai's Trace .441 11.849
b
 1.000 15.000 .004 

Wilks' Lambda .559 11.849
b
 1.000 15.000 .004 

Hotelling's Trace .790 11.849
b
 1.000 15.000 .004 

Roy's Largest Root .790 11.849
b
 1.000 15.000 .004 

a. Design: Intercept + Group  

 Within Subjects Design: test 

b. Exact statistic 

 

 

Mauchly's Test of Sphericity
a
 

Measure:   APRF   

Within Subjects 

Effect 

Mauchly's 

W 

Approx. 

Chi-Square df Sig. 

Epsilon
b
 

Greenhous

e-Geisser 

Huynh-

Feldt 

Lower-

bound 

test 1.000 .000 0 . 1.000 1.000 1.000 

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed 

dependent variables is proportional to an identity matrix. 

a. Design: Intercept + Group  

 Within Subjects Design: test 

b. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected 

tests are displayed in the Tests of Within-Subjects Effects table. 
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Tests of Within-Subjects Effects 

Measure:   APRF   

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

test Sphericity Assumed .845 1 .845 68.908 .000 

Greenhouse-Geisser .845 1.000 .845 68.908 .000 

Huynh-Feldt .845 1.000 .845 68.908 .000 

Lower-bound .845 1.000 .845 68.908 .000 

test * Group Sphericity Assumed .145 1 .145 11.849 .004 

Greenhouse-Geisser .145 1.000 .145 11.849 .004 

Huynh-Feldt .145 1.000 .145 11.849 .004 

Lower-bound .145 1.000 .145 11.849 .004 

Error(test) Sphericity Assumed .184 15 .012   

Greenhouse-Geisser .184 15.000 .012   

Huynh-Feldt .184 15.000 .012   

Lower-bound .184 15.000 .012   

Tests of Within-Subjects Contrasts 

Measure:   APRF   

Source test 

Type III Sum of 

Squares df Mean Square F Sig. 

test Linear .845 1 .845 68.908 .000 

test * Group Linear .145 1 .145 11.849 .004 

Error(test) Linear .184 15 .012   

 

Tests of Between-Subjects Effects 

Measure:   APRF   

Transformed Variable:   Average   

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

Intercept .977 1 .977 86.832 .000 

Group .145 1 .145 12.858 .003 

Error .169 15 .011   
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Table 6.  

Excursion from Center of Pressure Left Foot, Eyes Open – Medial-Lateral  

 

Within-Subjects Factors 

Measure:   MLLF   

test 

Dependent 

Variable 

1 Pretest 

2 Posttest 

 

 

Between-Subjects Factors 

 Value Label N 

Group 1.00 AEL  10 

2.00 RT 7 

 

 

Descriptive Statistics 

 
Group Mean Std. Deviation N 

Pretest AEL Training .3664 .13557 10 

No AEL Training .2273 .18683 7 

Total .3091 .16855 17 

Posttest AEL Training .0136 .00873 10 

No AEL Training .0765 .18169 7 

Total .0395 .11593 17 
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Multivariate Tests
a
 

Effect Value F Hypothesis df Error df Sig. 

test Pillai's Trace .676 31.274
b
 1.000 15.000 .000 

Wilks' Lambda .324 31.274
b
 1.000 15.000 .000 

Hotelling's Trace 2.085 31.274
b
 1.000 15.000 .000 

Roy's Largest Root 2.085 31.274
b
 1.000 15.000 .000 

test * Group Pillai's Trace .251 5.033
b
 1.000 15.000 .040 

Wilks' Lambda .749 5.033
b
 1.000 15.000 .040 

Hotelling's Trace .336 5.033
b
 1.000 15.000 .040 

Roy's Largest Root .336 5.033
b
 1.000 15.000 .040 

a. Design: Intercept + Group  

 Within Subjects Design: test 

b. Exact statistic 

 

 

Mauchly's Test of Sphericity
a
 

Measure:   MLLF   

Within Subjects 

Effect 

Mauchly's 

W 

Approx. 

Chi-Square df Sig. 

Epsilon
b
 

Greenhous

e-Geisser 

Huynh-

Feldt 

Lower-

bound 

test 1.000 .000 0 . 1.000 1.000 1.000 

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent 

variables is proportional to an identity matrix. 

a. Design: Intercept + Group  

 Within Subjects Design: test 

 

b. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected 

tests are displayed in the Tests of Within-Subjects Effects table. 
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Tests of Within-Subjects Effects 

Measure:   MLLF   

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

test Sphericity Assumed .522 1 .522 31.274 .000 

Greenhouse-Geisser .522 1.000 .522 31.274 .000 

Huynh-Feldt .522 1.000 .522 31.274 .000 

Lower-bound .522 1.000 .522 31.274 .000 

test * Group Sphericity Assumed .084 1 .084 5.033 .040 

Greenhouse-Geisser .084 1.000 .084 5.033 .040 

Huynh-Feldt .084 1.000 .084 5.033 .040 

Lower-bound .084 1.000 .084 5.033 .040 

Error(test) Sphericity Assumed .250 15 .017   

Greenhouse-Geisser .250 15.000 .017   

Huynh-Feldt .250 15.000 .017   

Lower-bound .250 15.000 .017   

 

 

Tests of Within-Subjects Contrasts 

Measure:   MLLF   

Source test 

Type III Sum of 

Squares df Mean Square F Sig. 

test Linear .522 1 .522 31.274 .000 

test * Group Linear .084 1 .084 5.033 .040 

Error(test) Linear .250 15 .017   

 

 

Tests of Between-Subjects Effects 

Measure:   MLLF   

Transformed Variable:   Average   

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

Intercept .963 1 .963 44.673 .000 

Group .012 1 .012 .555 .468 

Error .323 15 .022   
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Table 6.  

Excursion from Center of Pressure Left Foot, Eyes Open – Anterior- Posterior 

Within-Subjects Factors 

Measure:   APLF   

test 

Dependent 

Variable 

1 Pretest 

2 Posttest 

 

 

Between-Subjects Factors 

 Value Label N 

Group 1.00 AEL  10 

2.00 RT 7 

 

 

Descriptive Statistics 

 
Group Mean Std. Deviation N 

Pretest AEL Training .4388 .22060 10 

No AEL Training .2069 .19457 7 

Total .3433 .23541 17 

Posttest AEL Training .0137 .00649 10 

No AEL Training .0133 .01569 7 

Total .0135 .01077 17 
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Multivariate Tests
a
 

Effect Value F Hypothesis df Error df Sig. 

test Pillai's Trace .701 35.188
b
 1.000 15.000 .000 

Wilks' Lambda .299 35.188
b
 1.000 15.000 .000 

Hotelling's Trace 2.346 35.188
b
 1.000 15.000 .000 

Roy's Largest Root 2.346 35.188
b
 1.000 15.000 .000 

test * Group Pillai's Trace .247 4.928
b
 1.000 15.000 .042 

Wilks' Lambda .753 4.928
b
 1.000 15.000 .042 

Hotelling's Trace .329 4.928
b
 1.000 15.000 .042 

Roy's Largest Root .329 4.928
b
 1.000 15.000 .042 

a. Design: Intercept + Group  

 Within Subjects Design: test 

b. Exact statistic 

 

 

Mauchly's Test of Sphericity
a
 

Measure:   APLF   

Within Subjects 

Effect 

Mauchly's 

W 

Approx. Chi-

Square df Sig. 

Epsilon
b
 

Greenhouse-

Geisser Huynh-Feldt Lower-bound 

test 1.000 .000 0 . 1.000 1.000 1.000 

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is 

proportional to an identity matrix. 

a. Design: Intercept + Group  

 Within Subjects Design: test 

b. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed 

in the Tests of Within-Subjects Effects table. 
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Tests of Within-Subjects Effects 

Measure:   APLF   

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

test Sphericity Assumed .788 1 .788 35.188 .000 

Greenhouse-Geisser .788 1.000 .788 35.188 .000 

Huynh-Feldt .788 1.000 .788 35.188 .000 

Lower-bound .788 1.000 .788 35.188 .000 

test * Group Sphericity Assumed .110 1 .110 4.928 .042 

Greenhouse-Geisser .110 1.000 .110 4.928 .042 

Huynh-Feldt .110 1.000 .110 4.928 .042 

Lower-bound .110 1.000 .110 4.928 .042 

Error(test) Sphericity Assumed .336 15 .022   

Greenhouse-Geisser .336 15.000 .022   

Huynh-Feldt .336 15.000 .022   

Lower-bound .336 15.000 .022   

 

 

Tests of Within-Subjects Contrasts 

Measure:   APLF   

Source test 

Type III Sum of 

Squares df Mean Square F Sig. 

test Linear .788 1 .788 35.188 .000 

test * Group Linear .110 1 .110 4.928 .042 

Error(test) Linear .336 15 .022   

 

 

Tests of Between-Subjects Effects 

Measure:   APLF   

Transformed Variable:   Average   

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

Intercept .932 1 .932 42.206 .000 

Group .111 1 .111 5.037 .040 

Error .331 15 .022   
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