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ABSTRACT 
 
 Rapid climatic change is expected to pose extreme ecological and physiological 

challenges on many ectothermic vertebrates.  Some ectothermic species are notable, 

however, for inhabiting wide geographic ranges and variety of climate zones.  Studying how 

exemplars among ectotherms can behaviorally and physiologically accommodate differing 

temperature ranges should provide useful mechanistic perspectives on climate change 

challenges for less accomplished ectotherms.  The western fence lizard (Sceloporus 

occidentalis) is one such exemplar, ranging from southern California to northern 

Washington.  In Washington State, a single subspecies of this lizard occupies strongly 

contrasting climate zones.  Thus, the focus of this thesis was to determine how this 

subspecies uses behavior and physiology to successfully inhabit these very different habitats 

within these climate zones.   

I chose to study Sceloporus occidentalis populations from the Sondino Ponds Unit in 

the Columbia River Gorge (“CRG”; mean max air = 38.9°C), Goat Wall in the North Cascades 

(“GW”; mean max air = 33°C), and along the coastal shores of the Salish Sea just north of 

Marysville (“CS”; mean max air = 27.7°C).  In summer 2015 and 2016, to compare 

thermoregulatory capacity in the field among lizards at each of these contrasting climate 

zones, I measured field-active body temperatures (field-active Tb) of lizards immediately 

upon capture.  To determine whether lizards may have needed to accept field-active Tb that 

were suboptimal — presumably due to suboptimal thermal conditions — I compared the 

distribution of a) field-active Tb among the three locales, and b) field-active Tb with preferred 
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body temperatures of alert-and-active lizards in the lab (lab Tb) where they were free to 

select precise body temperatures in a thermal gradient.   

To test for presence of temperature-dependent physiological differences among the 

three populations of lizards, I used a flow-through respirometry system in lab to measure 

whole-animal resting metabolic rates (RMR) — lizards with digesting and assimilating food 

in their guts — at three ecologically and physiologically relevant body temperatures (20°C, 

28°C, and 36°C), as well as standard metabolic rates (SMR) — lizards that were fasted and 

empty of foodstuff — at 28°C Tb.  

Lizards at the warmest locale, CRG, had significantly higher field-active Tb than those 

at the cool coastal locale, CS (ANOVA, p=0.05; post hoc, p=0.045), but field-active Tb of 

lizards at the high-elevation, northern population, GW, were not significantly different from 

those of lizards at the other two locales.  The distribution of field-active Tb of lizards from 

CRG skewed warmer than lab Tb (t-tests comparing upper quartile, p<0.05), whereas field-

active Tb of lizards from GW and CS skewed cooler than those selected in lab (t-test 

comparing mid and lower quartiles, p<0.05).  Lab Tb of lizards from GW were significantly 

higher than lab Tb of lizards from CRG (ANOVA, p=0.02; post hoc p=0.025), whereas lab Tb of 

CS lizards did not differ from those of lizards at the other two locales.   

At 20°C Tb and 36°C Tb, RMRs of lizards from CRG and GW were similar, but RMRs 

and SMRs of lizards from these two inland sites were significantly lower than the 

RMRs and SMRs of lizards from the cool coastal site, CS, at all body temperatures 

(ANCOVAs, all p<0.05; post hoc all p<0.015).  Furthermore, RMRs of lizards from CRG 

measured in the late spring-to-early summer (when metabolism may be highest due to 
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reproductive effort in adult lizards) were still significantly lower at 28°C Tb and 36°C Tb when 

compared to RMR of lizards from CS measured during the post-reproductive season in mid-

summer (t-tests, both p<0.05).  

Sceloporus occidentalis in the field at all sites are able to thermoregulate within the 

preferred Tb range of this species (34-36°C) during activity, in spite of the different climates 

these populations inhabit.  Lizards from CRG, however, may be forced by higher 

environmental temperatures to maintain field-active Tb near the upper limit of their 

acceptable range of body temperatures.  Furthermore, lizards along the coast may mitigate 

the retarding effects of cooler environmental temperatures (and the resulting cooler Tb the 

lizards must accept during inactivity) by elevating their temperature-dependent 

metabolism.  Additionally, this RMR of lizards from the coast may also serve to increase 

food energy assimilation and growth rates during a shorter activity season than experienced 

by the inland populations.  Thus, although lizards at each of these contrasting climate zones 

could behaviorally thermoregulate within the acceptable range of field-active Tb during 

mid-summer, physiological adjustment by increase in RMR — presumably related to 

increasing catabolism and anabolism of foodstuffs — also occurred in lizards inhabiting CS, 

the coolest climate zone. 
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INTRODUCTION 
 

Rationale for Research 
 

Predicting the effects of climate change on the spatial and temporal patterns of 

individuals and populations of any species, much less that of multiple species comprising a 

community or biome, is a complex of challenges facing ecologists and evolutionary 

biologists (Huey and Kingsolver 1993, Huey et al. 2012, Quintero and Wiens 2013, 

Sutherland et al. 2013, Clusella-Trullas and Chown 2014).  Rising daily mean and maximum 

temperatures, more extreme events of high temperatures, and more intense droughts are 

expected to impose formidable physiological and ecological challenges on terrestrial 

ectotherms (Clusella-Trullas et al. 2011).  Lizards are a major taxonomic exemplar of how 

species diversity is expected to plummet in response to a warming climate, as lizards are 

particularly sensitive to changes in temperature (Porter and Gates 1969, Dutton and 

Fitzpatrick 1975, Brown and Griffin 2005, Luo et al. 2010).  As such, current models (e.g., 

Sinervo et al. 2010) predict that changes in climate will cause about 20% of all lizard species 

to become extinct by 2080.  Presumably, understanding individual-level behavioral and 

physiological responses to temperature changes in a successful, geographically wide-spread 

lizard would offer useful mechanistic perspective needed to predict population-level and 

species-level changes for other ectothermic taxa — including threatened and endangered 

species — under different climate change scenarios.  Thus, my thesis research attempts to 

answer the following question: “How are individuals of Sceloporus occidentalis, a 

geographically wide-spread lizard species, able to thrive in different climate zones with 

considerably different annual and diurnal temperature regimes?”
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Temperature and Terrestrial Ectotherms 

The temperature of the ambient environment strongly affects the physiology and 

ecology of individual animals.  Consequently, environmental temperatures appear to 

govern, at least in part, the global distribution of most animal species (Stevens 1989, Clarke 

and Gaston 2006).  That is, the global distribution of an animal species may largely be a 

consequence of how environmental temperatures influence that animal’s body 

temperature (hereby denoted at “Tb”), particularly if it is not capable of maintaining a Tb 

independently from that of its environment.  If an animal is not capable of independently 

maintaining a relatively constant Tb, especially in variable environmental temperatures, 

then its body may become nearly the same temperature as that of its environment (i.e. a 

poikilotherm).  But to gain some control over the mean or variation of its Tb during activity, 

some terrestrial poikilotherms change body location to utilize spatial variation in 

environmental temperatures to either raise or lower their Tb relative to the air temperature.  

That is, when under conditions that permit, a poikilotherm — for example, a day-active 

lizard during its activity season — can become an ectotherm.  That is, it uses its behavior to 

be where it can gain or lose heat to its environment via conduction with objects, convection 

with air, or radiation to maintain itself at a relatively narrow zone of body temperatures 

during its activity period. Thus, it thermoregulates.  

When thermoregulating to a self-selected Tb, ectothermic animals are typically 

attempting to achieve a temperature to which their physiology is maximized (Huey and 

Bennett 1987, Huey and Kingsolver 1989, Clarke and Fraser 2004).  For example, 

reproductive output (Luo et al. 2010), rate of digestion (Brown and Griffin 2005, Du et al. 
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2007), food acquisition (Andrews 1984, Grigaltchik et al. 2012), muscle function (James et 

al. 2012), body size (Kingsolver and Huey 2008, Ohlberger 2013), locomotor performance 

(Miles 1994, Artacho et al. 2013), and activity (Adolph 1990, Adolph and Porter 1993) are all 

known to be directly influenced by Tb, with maximal performance occurring within a 

specific, often narrow, Tb range.  Most fundamental, however, is likely the effect that 

temperature has on an animal’s metabolism, as metabolic rates of an animal vary directly 

with Tb, and metabolism is the critical link between an organism and both the mass and 

chemical energy it requires from its environment (Gillooly et al. 2001, Brown et al. 2004).   

Therefore, to inhabit a certain climate zone, an ectotherm must be able to meet the 

thermoregulatory challenges posed by the spatiotemporal patterns, means, and extremes 

of environmental temperatures within that climate zone. More specifically, it must be able 

to maintain a Tb range that permits sufficiently functional physiological performance, 

allowing for activity and food processing for enough hours per day and days per year to 

enable the animal to survive, thrive, and reproduce (Angilletta et al. 2006, Levy et al. 2017).  

Two mechanisms by which ectotherms can meet these thermoregulatory challenges —  

behavioral thermoregulation or physiological adjustments — are discussed in further detail 

in the following sections.   
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Behavioral Thermoregulation of Ectotherms 
 

While endothermic birds and mammals can be active over a relatively broad range 

of ambient temperature and sunlight conditions, ectotherms are more limited.  But when 

the air is cool-to-warm (neither cold nor hot), an active ectotherm may use spatiotemporal 

variation in direct and reflected light intensity, as well as in air and substratum 

temperatures, to maintain a near-optimum, narrow range body temperatures (Cowles and 

Bogert 1944, Sears et al. 2016).  For example, it is common for lizards in the genus 

Sceloporus, which are typically seen in open, sunlit habitats — and regarded by vertebrate 

biologists to be among the paragons of behavioral thermoregulation — to thermoregulate 

at about 35°C during their daily activity periods, even when air temperatures are only 20°C.  

Despite weather-induced periods of inactivity, lizards can still be active enough long enough 

annually to thrive in a range of climate zones (Garrick 1979, Seebacher and Franklin 2005, 

López-Alcaide et al. 2014, Sunday et al. 2014).   

In response to particularly challenging environmental temperatures, lizards can 

show flexibility in their thermoregulatory behavior; either by limiting or adjusting their 

habitat use to utilize only the segments of their habitat in which their “operative 

temperatures” (i.e. potential temperatures an ectothermic animal’s body may achieve while 

in various locations of its habitat) permit effective thermoregulation, or by limiting their 

activity to times of day when environmental temperatures are more accommodating 

(Adolph and Porter 1993, Sears and Angilletta 2015). This flexibility allows ectothermic 

animals, such as lizards, to inhabit geographic ranges that encompass an array of warm to 

temperate climates.  Within lizard species living in locales with sufficient sunny weather, 
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conspecific individuals from different climate zones are able to achieve the same narrow 

range of optimal, field-active body temperatures by varying activity times, locations, and 

thermoregulatory behavior (Grant and Dunham 1990, Andrews 1998, Schwarzkopf 1998, 

Gvozdík and Castilla 2001).  Furthermore, this effective, flexible behavioral 

thermoregulatory capacity may reduce the need to physiologically adjust to differing 

climatic conditions. Indeed, it is believed that behavioral thermoregulation may limit, or 

even prevent, differences in thermal physiology from developing among populations (Huey 

et al. 2003, Muñoz et al. 2013, Buckley et al. 2015).   

Behavioral thermoregulation, however, is a task that can be curtailed if the fitness-

associated costs in a given habitat at a given time are too great (Huey 1974, 1991).  For 

example, lizards that leave their refugia to thermoregulate also, in turn, increase their 

exposure to predators (Huey and Montgomery 1976, Adolph and Porter 1993). Therefore, 

when predation risk is too high, moving to a position to thermoregulate (or remaining 

exposed while thermoregulating) may be too risky.  Lizards also may allow their Tb to drift 

away from the optimal range when pursuing or handling prey in thermally suboptimal 

microhabitats, and the resulting suboptimal Tb may subsequently enhance predation risk 

(Sears 2005).    

Furthermore, the thermoregulatory costs of different climates can influence both a 

lizard’s body size at adulthood and age at first reproduction (Kingsolver and Huey 2008).  In 

cooler climates, activity seasons are shorter.  As such, lizards in these cooler climates often 

have more limited time to eat and grow compared to those born into a warmer climate.  

Hence, cooler-climate lizards may not reach the apparent minimum body size at first 
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reproduction as quickly as warmer-climate lizards, and the cooler climate lizards may 

reproduce a year later (Sears and Angilletta 2004, Horváthová et al. 2013).  Thus, cooler-

climate lizards must allocate the requisite time and energy to growth to reach the minimum 

size for first reproduction, but it is also possible that they may grow even larger in that 

“missed reproductive season” and will then produce more eggs than a smaller-bodied lizard 

could when the next reproductive season arrives.  In stark contrast, where warm seasons 

are too hot and dry for too long, the lizard activity is severely curtailed and embryos 

(produced either oviparous or viviparous lizards) and juveniles may die (Du and Ji 2006, Du 

and Shine 2014).  

 

Physiological Thermoregulation in Terrestrial Ectotherms 
 

Behavioral thermoregulation is energetically cheap (in contrast to endo-

thermoregulation) and spatiotemporally plastic, but is effective only when the ectotherm is 

in a suitable thermal environment.  When the environment does not allow for viable 

behavioral thermoregulation, or when an ectotherm becomes inactive, the erstwhile etho-

thermoregulator is then again poikilothermic (Kingsbury 1994, Catenazzi et al. 2005, Cadena 

and Tattersall 2009, Guizado-Rodriguez et al. 2011).  If so, temporary changes in physiology 

(i.e. reversible plasticity) with respect to body temperature may be beneficial (Seebacher 

2005).  For example, a lizard may adjust its preferred body temperature or its metabolic 

rate to compensate for increasing or decreasing body temperature.  Such temporary 

physiological adjustments have been observed in ectothermic animals as a response to 

seasonal temperature changes (Dutton and Fitzpatrick 1975, Tsuji 1988, Hadamová and 
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Gvoždík 2011, Ortega and Pérez-Mellado 2016), differences in temperature among climate 

zones (Schwarzkopf 1998, Angilletta 2001, Artacho et al. 2017), or increasing temperatures 

caused by climate change (Seebacher et al. 2015, Caruso et al. 2014).   

Furthermore, this capacity for reversible phenotypic plasticity in individuals may 

reduce challenges imposed by changing environmental conditions on a population, thus 

buffering populations against evolutionary change (Lorenzon et al. 2001, Seebacher et al. 

2015).  Alternatively, some physiological traits may be evolutionarily constrained, 

preventing the development of population-specific adaptations (Somero 2010).  For 

example, an inference drawn from recent modeling studies is that thermal tolerance may 

be phylogenetically constrained within any lizard species, thus preventing evolutionary 

change among populations (Grigg and Buckley 2013).   

If, however, generations of lizards encounter a change in environmental 

temperatures that is different enough and persists long enough, then it seems likely 

(barring any limitations regarding the genetic adaptability of the animal) that selective 

pressure on thermal physiology would result in evolutionary change in the thermal 

responses of the population (Huey and Kingsolver 1993, Crawford et al. 1999).  Thus, there 

may be selection for physiological processes (e.g., adjusted thermal sensitivity of metabolic 

machinery) that are favored in a given thermal environment (Huey and Kingsolver 1993, 

Scheers and Van Damme 2002, Clarke and Fraser 2004, Somero 2010).  Although rates of 

evolution vary among animal species — as related to genetic variance and generation time 

— evolution in small vertebrates may occur rapidly, particularly if selection is strong.  For 

example, changes in morphotypes have evolved in the lizard Anolis lemurinus over the 
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course of only 14,000 years, where males of two separated populations developed longer 

toe pads and nails, as well as larger dewlaps than females, in response to different habitat 

structures among island (Logan et al. 2012).  Similarly, two separate islet populations of the 

lizard Podarcis gaigeae, these with an estimated divergence time of ~8,700 years, show 

considerable differences in body mass and GI tract length relative to body mass, as related 

to protein digestion efficiency (Pafilis et al. 2016).  Furthermore — and more germane to my 

thesis question — differences in preferred Tb between insular and continental populations 

of the Balkan green lizard (Lacerta trilineata) seem have evolved as a function of the 

different thermal and environmental conditions experienced by these separate populations 

(Sagonas et al. 2013).   

 

Study System and Hypotheses 
 

I chose to investigate whether the behavioral thermoregulatory and metabolic 

performances of the western fence lizard, Sceloporus occidentalis (Baird and Girard 1852) 

varied among populations inhabiting distinct climate zones.  Sceloporus occidentalis is a 

relatively small, insectivorous lizard in the family Phrynosomatidae (Appendix A, Photos 1-

4), with a geographic distribution from northern Washington southward through Oregon 

and California, into northern Mexico, and eastward into Nevada and portions of Utah and 

Idaho (Hollingsworth and Hammerson 2007).  Because the species has a relatively large 

latitudinal geographic range that includes a number of mountain ranges, the regional 

climates vary among the many populations.  Nevertheless — weather and habitat structure 

permitting — temperate populations of S. occidentalis all attempt to behaviorally 
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thermoregulate so that individuals are active with a mean internal body temperature of 

about 35°C (Andrews 1998).  Lizards in the genus Sceloporus are typically effective 

behavioral thermoregulators, achieving a narrow range of field-active body temperatures by 

exploiting the availability of warm substrates and solar radiation in their habitats — 

individuals move between sunny or warm spots and shady or cool spots as needed to 

regulate internal body temperature (McGinnis 1970, McGinnis and Falkenstein 1971).   

After the last glaciers receded and during a warm period about 3000 to 8000 years 

ago, coinciding with the northward migration of oak woodlands west of the Cascade 

Mountains, one (unnamed) subspecies of Sceloporus occidentalis is presumed to have 

expanded from the Willamette Valley of Oregon, northward across the Columbia River, 

along the east and west sides of the Cascade Range (Adam Leaché and James Archie, 

personal communication).  This one subspecies now inhabits a wide variety of climate types.  

Three exemplars in Washington are 1) the forest edge of southwest facing slopes along 

beaches of the Washington coast in the Salish Sea region, 2) the warm, dry ecotone 

between the pine-oak woodlands and shrub-steppe in southern WA, and 3) the highlands of 

the fir-pine ecotone on the east slopes of the Cascade Mountains in northern Washington 

(Figure 1).  Thus, I chose to compare aspects of behavioral thermoregulation and 

temperature-related, whole-animal physiology of individuals from the populations of S. 

occidentalis located within each of these climate zones.  
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Figure 1.  The location of the three study sites within Washington State.  See Appendix A 
for photos of the habitat at each site (Photos 5, 6 and 7).  The coastal site, west of the 
North Cascades is the coolest site, whereas the higher elevation, inland site on the east 
side of North Cascade Mountains site is comparatively warm during the day, and the low 
elevation inland site in the southern extreme of Washington, in the Columbia River Gorge, 
is the hottest site.
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The Washington coast habitats (“coastal shores”, CS; Appendix A, Photo 5), north of 

Marysville, WA, generally have shorter summers and mild temperatures, so not only are the 

coastal lizards probably cooler than lizards at the other two locales during inactivity periods 

in the summer, but coastal lizards also may need to accept relatively low body 

temperatures during activity.  In contrast, at the drier, hotter inland habitats at the Sondino 

Ponds Unit near the Columbia River Gorge (“CRG”; Appendix A, Photo 6), it is reasonable to 

infer that lizards either must accept, or actually prefer, higher body temperatures during 

their daily activity period.  The high-latitude, high-elevation inland habitat at Goat Wall near 

Mazama, WA, (“GW”; Appendix A, Photo 7) combines the cooler nighttime temperatures of 

the coastal shores with the warm afternoons of an inland site, creating another unique 

habitat type.  Because of these differing climatic conditions amongst sites, I expected that S. 

occidentalis at these three localities provided a chance to investigate how ectothermic 

animals use behavior or physiology to adjust to widely varying thermal conditions. 

I formulated hypotheses to assess whether there were differences in behavioral 

thermoregulation and temperature-dependent metabolic rates amongst these climatically 

different populations of S. occidentalis.  I chose to test three hypotheses about 

thermoregulation:  

HT0) Effective behavioral thermoregulation permits S. occidentalis at all locales to 

achieve similar body temperatures during activity,  

HT1) Temperature conditions at each locale force S. occidentalis to thermoregulate at 

the most easily achieved body temperature within its temperature preference range 

during activity, and 
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HT2) Behavioral thermoregulation does not effectively allow for S. occidentalis at any 

locale to maintain a narrow range preferred body temperatures during activity 

(graphical representations of these hypotheses can be found in Appendix A, Figure 

10).   

Similarly, I chose to test three hypotheses to compare the temperature-dependent 

metabolic rates amongst populations (a graphical example of how this to evaluate these 

hypotheses is provided by Figure 2):  

HM0) Temperature-dependent metabolic rates do not differ among S. occidentalis from 

different climate zones when measured across a range of ecologically relevant body 

temperatures (20°C, 28°C when inactive and 36°C when active),  

HM1) Temperature-dependent metabolic rates of lizards resting at daily-relevant 

inactive body temperatures (20°C, 28°C) vary among S. occidentalis from different 

climate zones, and  

HM2) Temperature-dependent metabolic rates differ among S. occidentalis from 

different climate zones when measured across a range of ecologically relevant body 

temperatures (20°C, 28°C and 36°C). 
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Summary of Project 
 
 I investigated how Sceloporus occidentalis meets the challenge of thermally variable 

habitats by conducting a whole-organism, macro-physiological study (Gaston et al. 2011, 

Chown and Gaston 2016).  I characterized the thermal physiology and thermoregulatory 

behavior of each population of Sceloporus occidentalis during the peak of the activity 

season.  I compared field-active body temperatures, where thermoregulation may be 

challenging, with lab-active body temperatures where thermoregulation is easy.  I also 

compared temperature-dependent resting metabolic rates among lizards from each locale.  

Thus, I asked: How do individuals of a single lizard species vary among populations in how 

they utilize behavioral and physiological mechanisms to survive and thrive in distinct, 

different climates? 
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METHODS 
 

Permits and ACUC 
 
 Prior to conducting my research, I attained Scientific Collecting Permit (#239) from 

the Washington State Department of Wildlife and Fisheries.  I also received permission from 

the Animal Care and Use Committee at WWU to conduct noninvasive physiological 

experiments on live lizards for this thesis.  

 

Schedule 
 

I studied populations during their post-reproductive periods in mid-to-late summer 

to avoid the direct effects of reproduction on lizard behavior and physiology.  Locales that 

are warmer earlier in the year are expected to have earlier phenological progression — that 

is, lizards that have an earlier reproductive season and earlier post-reproductive season 

should be studied before lizards in the cooler locales.  The Sondino Ponds Unit in the 

Columbia River Gorge is warmer earlier, so I collected field and lab data from that site first: 

in mid-to-late July of 2015 and 2016.  The next site in the phenological progression is Goat 

Wall, west of Mazama, in the Methow Valley along the east side of the North Cascades.  

There, data were collected on lizards in early August 2016 (better timing) and late August to 

mid-September 2015 (poorer timing, caused by equipment-related logistical difficulties).  

The coolest locality, and the last of the three site-comparisons, was along the Pacific Coast 

near Marysville, WA, which was studied in late August 2016.  Equipment failure in summer 

2015 delayed research on lizards at that locale until 2016, as the only option for study in 
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2015 was in late September and early October, which was unacceptable because it would 

have been the time in which transition into hibernation occurs for these lizards.   

I also gained some preliminary data for testing the hypothesis that any potential 

differences in metabolic rates among lizards from each climate zone may be due to 

phenotypic plasticity induced by season-related temperatures.  I measured resting 

metabolism of Sceloporus occidentalis from the hottest site, CRG, in spring 2016 (late April 

through early June) when conditions onsite are relatively mild.  I could then compare these 

metabolic measures to those collected from lizards from the cool, coastal site in the 

summer, which has mild conditions similar to those found at CRG in the spring.  

 

Field Work 
 

Measuring Air and Soil Temperatures 
 

When active, Sceloporus occidentalis shuttles between sunny and shaded locations 

while attempting to thermoregulate within a Tb range of 34-36°C.  When inactive, however, 

the lizards are presumably the temperature of the soil or crevice in which they use as a 

refugium.  Therefore, I characterized the air and substratum temperatures in the sun and 

shade to compare among sites, as well as measured temperatures at multiple potential 

refugia depths in soil. 

I deployed iButtons (Maxim Integrated) and HOBO data loggers (Onset Computer 

Corporation) at each field site to characterize substratum temperatures and air 

temperatures (see Appendix B for model numbers and specifications).  Substratum 

temperature measurements occurred from June through August of 2015, with data 
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collection occurring concurrently amongst the sites from June 17th through August 4th.  Air 

temperature measurements were done within the same time, with data collection occurring 

concurrently amongst sites from June 22nd to July 26th.  These data could be compared to 

data from nearby weather stations so that microclimate and nanoclimate conditions at 

these sites could be estimated with future weather station records alone.   

I measured substratum temperatures with pairs of iButtons buried in the soil of flat 

ground at both a sunny and a shady location within each site.  Pairs of iButtons in sunny 

locations were tethered to a wooden dowel and buried at soil depths of 0 cm, 5 cm, 10 cm, 

20 cm, 30 cm, and 40 cm.  iButtons in shady locations were buried similarly at soil depths of 

0 cm, 5 cm, 10 cm, 20 cm, and 40 cm.  I set the iButtons to record temperature 

measurements every 40 minutes, with each iButton in a pair being offset from the other of 

the pair by 20 minutes; two iButtons at one depth both reduced consequences of iButton 

failure and provided more resolution of temporal dynamics of temperature change.  

I measured the air temperature at each site within a few meters of where iButtons 

were buried.  HOBO data loggers were set to record air temperatures every 24 minutes, and 

were secured in perforated containers attached to the north side of trees at about 1.5 

meters above the ground.  The location and container shielded the logger from direct 

sunlight, wind and rain, whereas the perforations allowed air flow, thus making the logger 

more likely to represent the ambient air temperature accurately.   
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Lizard Sightings and Captures 
 

Upon first sighting, we recorded data on the behavior of the lizard and the features 

of the habitat within proximity of the lizard.  Data variables recorded include time of 

sighting, distance at which lizard was seen, lizard behavior when first seen (e.g., basking, 

pursuing prey, displaying to conspecific, changing perch-search positions, moving to avoid 

humans), the mesohabitat (e.g., boulder field, log field, rock slope, etc.), microhabitat (e.g., 

tree, shrub, shrub, grass patch, log, boulder), nanohabitat (e.g., top, near top, side, near 

bottom, below) and substratum (e.g., rock, bark, bare wood, woody debris, sand, soil, leaf 

litter) used by the lizard, current sunlight conditions (e.g., sunny, cloudy, hazy) and the kind 

of lighting to which the lizard was exposed  (e.g., full sun, full shade, dappled, filtered), as 

well as the precise lizard body position (e.g., relative to vertical v. horizontal and relative to 

perpendicular rays of sunlight).  The foregoing habitat and behavioral categories provided 

confidence in the thermo-ecological relevance of the measured body temperature.  Added 

comments or clarifying notes were recorded as deemed necessary.   

Lizards were captured primarily with a noose attached to the distal eyelet of a 2-

meter-long spin-casting fishing rod, but on rare occasions when the lizards were hiding 

under a small log or rock, we moved the cover and captured the lizards by hand.  

Immediately upon capture of the lizard, we measured its deep-body temperature with a 

quick-reading, thin-bulb mercury cloacal thermometer inserted at least 1 cm deep into the 

cloaca, and tilted dorsally (into the body core and away from the ventral skin).  The lizard’s 

sex, toe clip status (toe clips are discussed later in Laboratory Work section) and apparent 

size/age class (juvenile v. adult) were then stated by me and scribed either by me or an 
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assistant who verified to me that which was scribed.  The lizard was placed into a uniquely 

numbered cloth bag which I clipped to my field belt until we returned to the field vehicle.  

At the lizard’s location where first seen, and within a few minutes of first sighting the lizard, 

we measured substratum temperature, air temperature and wind speed using an infrared 

thermometer gun, thermocouple thermometer, and a hand-held wind speed meter, 

respectively.  Upon return to the field vehicle, the cloth bag containing the lizard was placed 

in a standard 10-quart plastic cooler with a perforated lid, and transported to Western 

Washington University.  If not already toe-clipped, a unique toe-clip order was assigned to 

the lizard in the laboratory. 

 

Laboratory Work 
 

Housing Conditions 
 

After each field visit, lizards were transported back to the laboratory at Western 

Washington University.  I housed lizards individually in glass terraria with a heating lamp, 

heating stone, small refugium (upturned bowl, 12 cm diameter, with a hole in the 3 cm high 

side), and water bowl (Appendix A, Photo 8).  I used a random number generator 

(random.org) to select the terrarium location (which shelf and which location on the shelf) 

where each lizard would be housed.  Heating lamps and heating stones were scheduled to 

be on from 0900 hours to 1900 hours, replicating the approximate diurnal heating cycle of 

summer in temperate latitudes 

All lizards were provided water ad libitum.  Unless they were being intentionally 

fasted for research purposes, lizards were provided with 2-3 medium-sized (small adult 
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males and subadult females) crickets (Acheta domestica) per day.  Crickets were purchased 

at Clarke’s Feed and Seed in downtown Bellingham.  Once or twice per week we removed 

fecal pellets and wiped that location with a clean moist cloth), and any dead crickets or shed 

skin.  Most lizards were returned to the field within two weeks, shortly after all data were 

collected.  On a couple of occasions the logistics with respect to data collection on lizards 

from another locality necessitated holding the lizards for a week or two longer.  All lizards 

were released at their exact sites of capture. 

 

Body Data Measurements 
 

Lizards in lab were fasted for three days to completely clear their guts of any 

foodstuff.  I measured the body mass of fasted lizards by placing them in a weight-tared, 

plastic container on a digital laboratory balance, weighed to the nearest 0.01g.  Then either 

Dr. Anderson or I would measure the lizard’s snout-vent length (SVL) and tail length to the 

nearest half millimeter using a standard ruler.  Unique traits (e.g., a scar, bite marks, 

abnormal coloration, etc.) were also recorded for each lizard.  

Lizards were toe-clipped prior to leaving the lab (Perry et al. 2011) as a long-term 

identifying marker (thus also preventing me from using the same individual if I had to return 

for a larger sample size).  Toe clips were administered as one toe clipped per foot, with 

three or four toes being clipped total. I assigned a specific toe clip pattern for each lizard I 

captured.  The two longest toes on the back feet were not clipped, as they may serve an 

important function in climbing for this species (Dr. Roger Anderson, personal observation).  
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Respirometry System Design 
 

I measured whole-animal metabolic rates of Sceloporus occidentalis using a flow-

through, push-respirometry set up (Lighton 2008, Lighton and Halsey 2011).  A push system 

(i.e. the pump is upstream from the sample chamber and oxygen sensor) is preferred when 

measuring oxygen consumption of small animals such as Sceloporus occidentalis, as the 

positive pressure inside the sample pathway prevents outside air from seeping into the 

pathway and diluting the gas sample (Lighton and Halsey 2011).  Since different 

respirometry methods may produce different oxygen consumption values for the same 

individual (Kristín and Gvoždík 2012), I used the same flow-through push set-up for all of my 

measurements.  

Sample chambers (180 ml internal volume, see Appendix B) were housed in a large 

temperature-controlled cabinet (Percival Scientific, Incorporated).  A small port on the side 

of the cabinet allowed incurrent and excurrent tubing to enter and exit the cabinet.  Up to 

four sample chambers containing lizards were in the incubator during a set of 

measurements.  Only one chamber could be connected to the sample pathway at a time 

(see Figure 3), so I used an electronic pump (Model DOA-P161-AA, Gast Manufacturing, Inc.) 

and a SideTrak 840 mass flow meter (Sierra Instruments, Inc.) to provide the chambers off 

the sample pathway with flowing air.  A five-way gang valve allowed equal amounts of air to 

flow from the mass flow meter through these sample chambers.  With this design, I could 

easily switch sample chambers from the gang valve onto the sample pathway, allowing me 

to measure the metabolism of multiple lizards in quick succession. An empty chamber was 

used as the baseline measure during trials.  
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Figure 3. A box schematic showing the movement of air through the flow-  
through, push respiration system used in my study.  
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I measured oxygen consumption using a FoxBox Field Respirometry System (Sable 

System International).  Incurrent air, pulled from a vent leading to outside of the building by 

the electronic pump, was first homogenized by a Plexiglass mixing chamber and desiccated 

by a Drierite column.  Flow rate through the sample pathway was then controlled by the 

pump and flow meter on the FoxBox.  I chose a flow rate of 125 mL min-1, which is known to 

be appropriate for lizards that average 10 grams in body mass (respirometry.org) and is 

similar to what has been used in other Sceloporus species (Angilletta 2001).  After passing 

through the sample chamber containing the lizard, the air was again desiccated by Drierite.  

The relative humidity, percent O2, and percent CO2 were then measured using an RH-300 

Water Vapor Analyzer (Sable Systems International), and the O2 and CO2 sensors of the 

FoxBox.  I recorded and analyzed all respiration data using Expedata Data Analysis Software 

(Sable Systems International). For photos and specifications of the equipment described 

above, see Appendix B.  

 

Metabolic Measurements 
 

I measured the resting metabolic rate (i.e. non-moving, absorptive lizards; “RMR”) 

and standard metabolic rate (i.e. non-moving, post-absorptive lizards; “SMR”) of Sceloporus 

occidentalis from all three locales.  To avoid any effects of circadian rhythm on metabolism 

(Roe et al. 2005), I measured the RMR of the lizards during their normal hours of daily 

activity (between 1000 and 1930 hours).  Lizards in lab were fed store-bought “domestic 

crickets” for a minimum of two days prior to having their RMR being measured.  I also 
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occasionally measured the RMR of lizards the day after they were captured and brought to 

lab if they already had ample food in their gut.  

Baseline O2 measurements were recorded for two minutes using the empty sample 

chamber before and after each lizard measurement.  Lizard metabolism was measured for 

10 minutes, with only the stable plateaus in oxygen content (indicating a non-active, resting 

lizard) being used (Lighton 2008).  

I measured resting metabolic rate (RMR) at three ecologically relevant body 

temperatures: 20 °C (as if in refugium), 28 °C (as if emerging from refugium for daily 

activity), and at 36 °C (as if the lizard is field-active), and I measured standard metabolic rate 

(SMR) at 28°C.  The RMR includes the metabolism of digestion and assimilation of food 

(absorption), the metabolism of maintenance of the tissue, and perhaps metabolism of 

storage or growth.  Thus, RMR is useful as an ecologically-relevant metabolism of an 

ectotherm during the field season.  Lizard metabolism is higher in fed, resting lizards than in 

post-absorptive, resting lizards (Benabib and Congdon 1992, Roe et al. 2005).  As such, I 

used SMR measurements to compare with RMR to confirm my tactile determination (by 

palpating the entire gut from stomach to cloaca) that there was food in gut during RMR 

trials.  

In 2015, the body temperature order was randomized during metabolic 

measurements, but no effect of order was detected.  Thereafter, in 2016, oxygen 

consumption measures were made in a consistent order, 20°C, 36°C, and 28°C, because this 

order was the most time-efficient for changing temperatures of the temperature control 

cabinet.  
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After the RMR measures, the lizards were fasted for three or four days, then SMR 

was measured at 28°C.  On the third day of fasting, I checked for food mass and fecal by 

palpating the lizard’s abdomen.  If I felt a food bolus in its gastrointestinal tract, it was 

fasted for another day, then checked again.   

Oxygen content of the air sample was recorded as percent oxygen (% O2), adjusted 

for barometric pressure.  The data were corrected for dilution via water vapor pressure and 

corrected for drift using tools and equations available on Expedata.  I calculated the oxygen 

consumption of each lizard (VO2) using the following equation: 

 

VO2 = (BL - Or) x FL 

 

where “BL” is the weighted mean of the % O2 of the first and second baselines, “Or” is the 

mean of the % O2 of the organism’s oxygen consumption measurement, and “FR” is the 

flow rate (mL min-1).  If body mass data ranges were disparate among sites, data were 

corrected for body mass (mLO2 min-1 g-1) for statistical comparisons (see Analysis of 

Metabolism section, page 29).  

 

Thermal Gradient Measurements 
 

To measure preferred body temperature, I placed lizards in a thermal gradient 

designed by Dr. Anderson and built by Scientific Technical Services at WWU (Appendix A, 

Photo 9).  The 4 cm thick aluminum floor surface (substratum), which was cooled by 

refrigerated ethylene glycol pumped through two round tunnels that penetrated the plate 
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within a few cm of the end and parallel to it, had temperatures of about 10°C at one end.  

At the other end of the aluminum floor an electric heating coil penetrated the aluminum 

plate, causing the floor surface to be about 50°C.  A 50 watt spot-floodlight 15 cm from the 

end added heat from above, thus allowing the hot end to approximate the effect of a sunlit 

surface.  Air temperature at 1 cm above substratum ranged from about 20°C at the cold end 

to about 35°C in the hot end.  I confirmed these temperatures routinely for each trial with 

two HH81A thermocouple thermometers (accurate to 1% of reading + 0.7°C; Omega 

Engineering Incorporated), each attached to five thermocouple wires (using a switch box) at 

evenly spaced points along the gradient.  A 10 cm deep shelf runs along the back of the 

gradient at 7 cm above the substratum, which both provided a shaded hiding place as well 

as a place for lizards to perch.  The walls on either end of the gradient are covered in a fine 

metal mesh, which allowed lizards that were more intent on escaping than 

thermoregulating to reveal that behavior by leaving the substratum and climbing up the 

vertical surface.  Furthermore, occasionally during a trial a lizard would venture into the 

cool end of the gradient to hide in the back, dark corner opposite of where the light was 

located.  I considered this to be a hiding, non-thermoregulatory behavior, and Tb measures 

taken from a lizard behaving such a way were not used when calculating preferred Tb.  

Lizards could move freely throughout the gradient.  Every 20 minutes I recorded the 

lizard location in the gradient and the lizard’s behavior; these notes helped me determine 

whether the lizard was calmly thermoregulating or hiding or trying to escape.  I then 

opened the Plexiglas door that spanned the entire front of the gradient, grabbed the lizard 

and quickly measured its deep-body temperature with a quick-read cloacal thermometer, 
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used in the same manner as I did in the field.  I then quickly and gently placed the lizard 

either in the middle of the gradient if it had been on the shelf or on the wall, or back to the 

substratum location where it had been resting.  Trials lasted anywhere from 1.5 to 2 hours, 

with a total of 6-8 measurements being taken.  I required a minimum of three body 

temperatures per trial (most had more) that were associated with a behavior of a relaxed 

thermoregulating lizard (i.e., not trying to climb out).  I then averaged these measurements 

to produce a mean preferred Tb for that lizard.  

 

Statistical Analyses  
 

All statistical analyses were done using the open source software R (The R Project), 

version 3.3.2, and Excel (Microsoft Corporation), from Office 2016.  A p-value of 0.05 was 

used to determine significance for all analyses.  Before running any F-tests, I first tested the 

data for normality and equal variance using Shapiro-Wilks tests and Levene’s tests, 

respectively.  I used a nonparametric test such as a Kruskal-Wallis one-way analysis of 

variance test if the data were not normally distributed and the “degree” of non-normality 

was high enough to suspect that the robustness of the parametric test was in doubt.  

Because many F-tests assume linear data are being compared, the distributions of body 

mass, SVL, and oxygen consumption data were linearized by way of a natural logarithm 

transformation prior to these analyses.  Furthermore, covariate data were tested for equal 

range of values using an analysis of variance test (ANOVA) prior to being used in any 

analysis of covariance tests (ANCOVA). 
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Statistical Analyses of Body Condition 
 
 Body condition data (mass SVL-1) of Sceloporus occidentalis from the Columbia River 

Gorge site, the Goat Wall site, and the coastal shores site (CRG n=55, GW n=79, CS n=52) 

were compared among sites with an ANCOVA: body mass of gut-empty lizards was the 

response variable, the locality from which the individual was collected and sex were the 

predictor variables, and SVL was the covariate.  Sex was found to be a significant factor, so I 

then ran two separate ANCOVAs — one comparing the body condition of male lizards 

among sites (CRG n=36, GW n=37, CS n=31) and the other comparing the body condition of 

females among sites (CRG n=19, GW n=42, CS n=21).  

 

Statistical Analyses of Thermoregulation 

After confirming the normality and homoscedasticity of the data, I used ANOVAs to 

test for differences among localities in both field-active (CRG n=40, GW n=58, CS n=89) and 

laboratory body temperatures (CRG n=33, GW n=39, CS n=34).  I then compared field-

measured to lab-measured body temperatures within each locality using either a Student’s 

t-test (if data were normally distributed) or Mann-Whitney U test (if data were not normally 

distributed).  I divided the range of field-active body temperature data into quartiles for 

these comparisons, with 25% of the data in the upper quartile and lower quartile (CRG 

n=10, GW n=15, CS n=22), and 50% of the data in the middle two quartiles (CRG n=20, GW 

n=28, CS n=45), which I then compared to the lowest, mean, and highest Tb values of 

thermoregulating lizards on the thermal gradient (CRG n=33, GW n=39, CS n=34).  Since we 

may expect lizards from differing climate zones to “bump into” either the hotter or cooler 
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ends of their preferred Tb range because of the thermoregulatory challenges posed by their 

hotter or cooler environments, I judged it best to examine these upper and lower quartiles 

specifically.  I then compared the middle two quartiles of the field active Tb data to the 

calculated mean Tb values found using the thermal gradient.  

 

Statistical Analyses for Metabolism  
 

Oxygen consumption rates among sites were compared with ANCOVAs (CRG n=15, 

GW n=16, CS n=13 at 20°C Tb; CRG n=14, GW n=26, CS n=15 at 28°C Tb fasted; CRG n=15, 

GW n=17, CS n=11 at 28°C Tb fed; CRG n=16, GW n=19, CS n=9 at 36°C Tb).  Oxygen 

consumption rate, recorded in µLO2/minute, was the response variable.  The locality from 

which the lizard was obtained was the predictor variable, and the lizard body mass was the 

covariate.  When an ANCOVA resulted in significance, I used a post hoc Fisher’s Least 

Significant Difference test (Fisher’s LSD) to determine which sites were significantly 

different from the others.  

To test for seasonal changes in metabolism among sites, I also made comparisons of 

oxygen consumption rates between Sceloporus occidentalis from the cooler CS site 

measured in the summer and a set of S. occidentalis from the hotter, inland CRG site 

measured in the spring (CRG n=7, CS n=13 at 20°C Tb; CRG n=7, CS n=15 at 28°C Tb fasted; 

CRG n=6, CS n=11 at 28°C Tb fed; CRG n=7, CS n=9 at 36°C Tb).  Since body sizes of lizards 

were found to be dissimilar between sites (limiting the effectiveness of using an ANCOVA), 

oxygen consumption rates of CS lizards measured  
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during summer months and of CRG lizards measured during spring months were corrected 

to a standard body mass (9.5 grams, which was near the mean body mass of the lizards 

being used in this comparison) using the following equation: 

 

LN(VO2/min)CORR = LN(VO2/min) + (b)(LN(MSTD) - LN(M))  

 

where “(VO2/min)CORR” is the oxygen consumption rate corrected to the standard mass, 

“(VO2/min)” is the observed whole animal oxygen consumption rate, “(b)” is the slope from 

the regression of oxygen consumption rate over body mass for each site at each 

temperature, “MSTD” is the standard body mass, and “M” is the observed body mass of the 

animal.  I then compared standard mass-corrected oxygen consumption rates between the 

two sites for each body temperature and gut-load status using Student’s t-tests.  
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RESULTS 
 

Environmental Temperature Conditions  
 
 

 At the three study sites in general, daily maximum temperatures at the soil surface 

averaged 8.2°C hotter in the open than at nearby shaded soil surface (30.7°C versus 22.5°C, 

respectively).  Maximum air temperatures in open locations were, on average, 3.5°C hotter 

than in shady locations at each site (32.8°C versus 29.3°C, respectively).  The mean 

maximum soil temperature decreased with soil depth (Figure 4, Graph “a”), whereas the 

mean minimum soil temperature increased (Figure 4, Graph “b”).  Likewise, the difference 

in mean maximum soil temperature among sites decreased with soil depth, though such a 

pattern is not apparent with mean minimum soil temperatures.  

Comparing mean maximum temperatures among sites, the Columbia River Gorge 

(CRG) had hotter maximum soil temperatures than Goat Wall (GW) or the coastal shores 

(CS) in both open and shaded locations at every soil depth, except for GW having hotter 

mean surface soil temperature in the shaded location (34.5°C for GW versus 33.9°C for CRG; 

full list of averages shown in Table 1).  In open locations, the mean maximum surface soil 

temperature at CRG was 6.65°C hotter than the combined mean of the other two sites 

(64.0°C at CRG vs 58.1°C at GW and 56.6°C at CS, respectively).  GW and CS had similar 

maximum soil temperatures in the open, with a mean difference of only 0.4°C across all soil 

depths.  In the shaded locations, however, surface soil temperatures at GW were 12.1°C 

hotter on average than CS (34.5°C vs 22.4°C, respectively).  CS had the coolest minimum 

subsurface soil temperatures (i.e. 5 cm depth and below), averaging 0.9°C cooler 

temperatures than CRG and GW in the sunny location, and 1.7°C cooler temperatures in the 
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shaded location.  In contrast, CRG had the hottest minimum soil temperatures across all 

subsurface depths, averaging 1.5°C hotter temperatures than GW and CS in the sunny 

location, and 1.9°C hotter temperatures in the shaded location.  

Regarding air temperatures, CRG had the hottest maximum air temperature in the 

open, with an average temperature of 38.9°C. GW had the next hottest average maximum 

temperature at 33°C, followed by CS at 27.7°C (Figure 5, Graph “a”).  GW had the highest 

average minimum temperature in the open at 17.1°C, followed by CRG at 15.5°C, and CS at 

14.0°C (Figure 5, Graph “b”).  CRG again had the hottest maximum air temperatures in the 

shade, with an average temperature of 32.1°C, followed by GW at 31.7°C, and CS at 24.8°C. 

GW again had the highest minimum average minimum temperature in the shade at 17.3°C, 

followed by CRG at 16.4°C, and CS at 14.7°C.  
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Figure 4.  The mean maximum (a) and minimum (b) soil temperatures (°C) at each depth 
from three climate zones: the warm, inland site at Columbia River Gorge (CRG), the more 
moderate summer climate inland site on the east side of the Cascade Mountains at Goat 
Wall (GW), and cool, maritime climate of the coastal shores (CS) sites.  Data were recorded 
from 6/17/2015 through 8/4/2015. 
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Body Condition Analyses  
 
  Regardless of sex, the largest adult lizards, by both average snout-vent length (SVL) 

and body mass (no food in gut), were found at GW (Table 2).  For the two inland sites, the 

hotter CRG site and the warm GW site, females had larger SVLs and body masses than 

males.  The females from these two sites in fact had the largest mean SVL and mass values 

of all lizards measured at those sites, but GW females had higher body condition indices 

(BCI) than those at CRG. Males from CRG had the smallest average SVL and body masses, 

and had significantly lower BCI measures than males from the coastal CS site.   At the cool, 

coastal CS site, females were smaller than females at the inland sites, and thus close to the 

body size of coastal males, which were intermediate in size compared to the other two 

sites.   

I tested for differences in BCI amongst sites by way of a two-way analysis of 

covariance test, with mass as the response variable, site and sex (males n=104, females 

n=82) as the predictor variables, and snout-vent length as the covariate.  Both site and sex 

were found to be significant factors (ANCOVA1,179: psite < 0.001, psex < 0.001).   
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Table 2.  Body measurements of adult lizards from three the Columbia River Gorge (CRG), 
Goat Wall (GW), and the coastal shores (CS) sites.  Listed are the means ± SD for snout-vent 
length (SVL), body mass and body condition index (BCI, as mass per unit SVL). 
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Since sex was found to be a significant factor, I conducted BCI analyses for each sex 

independently (Figure 6).  I tested for an interaction between SVL and site on body mass 

using ANOVAs, which showed no significant interactions.  I then ran ANCOVAs with body 

mass as the response variable, site as the predictor variable, and SVL as the covariate.  The 

result of the ANCOVAs showed that body mass differed significantly amongst sites, and that 

the relationship between body mass and SVL also differed significantly amongst sites (male 

data ANCOVA2,100: psite < 0.001, pSVL <0.001; female data ANCOVA2,78: psite < 0.001, pSVL < 

0.001).  A post hoc Tukey HSD revealed a significant difference in body mass of males 

between the CRG and CS sites (Tukey HSD, p=0.04).  Regression equations for the BCI of 

male and female lizards from each site are shown in Table 3.  
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Figure 6.  The natural log of body mass (grams) plotted as a function of the natural log of 
snout-vent length (millimeters) for male (M) and female (F) lizards from the Columbia River 
Gorge (CRG), Goat Wall (GW), and coastal shores (CS) sites. 
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Table 3.  Regression equations for the body condition index (BCI) comparisons among males 
and females from each site, derived using natural log transformed body mass (y) and SVL (x) 
data.  
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Analyses of Thermoregulation  
 

Mean field-active Tb of lizards from CRG, GW, and CS were 35.9°C, 35.7°C, and 

35.4°C, respectively, whereas mean lab-measured Tb of lizards from CRG, GW, and CS were 

35.8°C, 36.4°C, and 35.9°C, respectively (Figure 7).   

I tested the hypothesis that lizards at all three locales can regulate to the same 

known preferred Tb during activity (HT0) by comparing Tb data among sites using a one-way 

ANOVAs, with site as the predictor variable.  The ANOVAs showed a significant difference in 

both lab-measured Tb among sites (ANOVA2,103; p=0.02) and field active Tb (ANOVA2,184; 

p=0.05).  I then conducted post-hoc Tukey HSD tests, which resulted in a significant 

difference in the lab-measured Tb between the CRG versus GW comparison (p=0.025), and 

in the field active Tb between the CRG versus CS comparison (p=0.045).  

 Within each site, I compared the upper 25%, middle 50%, and lower 25% quartiles of 

the field active to the highest, mean, and lowest lab-measured Tb of thermoregulating 

lizards using either Student’s t-tests or Mann-Whitney U tests.  The lower quartile field Tb 

data and minimum lab-measured Tb data were normally distributed for every site except CS 

(Wilks-Shapiro test, pField<0.001).  The upper quartile field Tb and maximum lab-measured Tb 

data were normally distributed in the CRG site, but not GW or CS (Wilks-Shapiro testGW, 

pField<0.019, pLab<0.001; Wilks-Shapiro testCS, pLab<0.026).  The middle quartiles of the field 

Tb and mean lab-measured Tb data were normally distributed for every site except CS 

(Wilks-Shapiro test, p=0.017).  The lower temperatures Tb data from neither GW nor CS 

showed equal variance (Levene’s test1,52, pGW=0.003; Levene’s test1,55, pCS<0.001), while the 

data from CRG did show equal variance. The Tb data from the higher quartile exhibited 
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equal variance for every site except CS (Levene’s test1,55, p=0,005).  The variance of the 

median Tb data was unequal for every site (Levene’s test1,51, pCRG=0.047; Levene’s test1,65, 

pGW<0.001; Levene’s test1,77, pCS=0.003).  The heteroscedasticity of the data sets could not 

be normalized by any transform, so the raw data were used for the following comparisons.   

There was no significant difference between the lower quartile field-active Tb and 

the minimum lab-measured Tb data in either the CS or GW sites.  The hotter CRG site, 

however, had significantly higher Tb values in the field when compared to the lab measures 

(t-test, p=0.004).  The warm, inland GW and the cool, coastal CS site both had significantly 

lower field-active Tb in the upper quartile when compared to the maximum lab-measured 

values (Mann-Whitney U test, pGW=0.001; Mann-Whitney U test, pCS=0.001), unlike for CRG 

in which there was no difference.  For the median Tb data, again both GW and CS had 

significantly lower field-active Tb values when compared to the mean lab-measured Tb 

values (t-test, pGW=0.001; Mann-Whitney U test, pCS=0.001), while CRG showed no 

difference.  
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Figure 7.  Left: Field-active body temperatures (°C) of lizards from the Columbia River Gorge 
(CRG), Goat Wall (GW), and the coastal shores (CS) sites. Listed on the figures are the mean, 
standard deviation, maximum, and minimum air and substratum temperatures at time of 
capture. Right: Lab-measured body temperatures of lizards from CRG, GW, and CS.  Slashed 
lines represent the mean body temperature of each group.  
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Analysis of Metabolism 
 
 The lizards used in these comparisons all had similar body masses (Table 4; ANOVAs 

all p>0.05), and therefore could be compared directly using ANCOVAs.  Some data sets still 

exhibited unequal variance amongst sites even after the natural log transformation (RMRs 

of lizards at 28°C and 36°C Tb, Levene’s test2,40, p28°C=0.04; Levene’s test2,41, p36°C=0.01, 

respectively).  These data sets were still compared by way of ANOVA or ANCOVA.   

I tested the hypothesis that Sceloporus occidentalis from all three sites had similar 

whole-animal metabolic rates when measured at similar body temperatures (HM0) by 

comparing oxygen consumption amongst sites within each Tb using ANCOVAs, with oxygen 

consumption as the response variable, site and the site*body mass interaction as the 

predictor variables, and body mass as the covariate (Figure 8).  Site, body mass, and the 

site*mass interaction were all found to be significant for every comparison (20°C, 

psite<0.001, pmass<0.001, pinteraction=0.03; 28°C fasted, psite<0.001, pmass<0.001, pinteraction=0.04; 

28°C fed, psite<0.001, pmass<0.001, pinteraction=0.009; 36°C, psite<0.001, pmass<0.001, 

pinteraction=0.02).  Fisher LSD tests revealed that 1) CS lizards had a significantly higher RMR 

than lizards from the other two sites at 20°C Tb (CS vs. CRG, p<0.001; CS vs. GW, p<0.001), 

2) RMR and SMR differed at 28°C Tb at each site, with CS lizards being the highest in both 

comparisons (p<0.015 for all comparisons), and 3) CS lizards had a significantly higher RMR 

at 36°C Tb than lizards from the other two sites (CS vs. CRG, p<0.001; CS vs. GW, p<0.001).  

The power regression equations are listed in Table 5.  To check for potential skews in body 

mass among sites, I evaluated the residuals of oxygen consumption versus body mass and 

site within each body temperature using an ANCOVA with residuals as the response 
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variable, site as the predictor variable, and body mass as the covariate.  None of the 

residuals were found to be significantly different based on site or mass at any Tb.  

During data collection, I had the strong impression that lizards from CRG seemed 

more skittish, and were more likely to move in the sample chambers than lizards from the 

other two sites (thereby raising their oxygen consumption rates due to exercise).  I was 

careful to only include measures that I was confident were of resting, stationary lizards, 

though the seemingly jittery nature of lizards from CRG may have led to increased variance 

in RMR measures for this population at 36°C Tb.
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Table 4.  Body mass data (g) Sceloporus occidentalis measured by respirometry during 
summer from the warm site at Columbia River Gorge (CRG), the cooler site Goat Wall (GW), 
and the coolest site at coastal shores (CS).  
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Table 5.  Power regression equations of oxygen consumption rate (r), of standard and 
resting metabolic rates, versus body mass (m) for each site at all three body temperatures 
(°C).  
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Seasonal Effect on Metabolism 
 
 

Spring oxygen consumption data of Sceloporus occidentalis from the hotter, inland 

CRG site were compared to summer oxygen consumption data of S. occidentalis from the 

cool, coastal CS site to test for a potential seasonal effect on metabolism of the inland 

versus coastal populations (Figure 9).  The body mass data of the two groups of lizards being 

compared were not similar (Table 6; ANOVA1,20, p=0.006), rendering the body mass data 

inapplicable as a covariate for an ANCOVA.  Therefore, I instead adjusted the oxygen 

consumption data to a standard mass value (9.5 grams).  All data groupings being compared 

were found to be normally distributed and equally variable, except for oxygen consumption 

at 36°C Tb, which was heteroscedastic (Levene’s test1,14, p=0.026).  A natural log 

transformation of the data corrected this, however (Levene’s test1,14, p=0.07). 

 Oxygen consumption data corrected to the standard mass were compared amongst 

sites within each Tb using Student’s t-tests.  There were significant differences in RMR at Tb 

28°C (df=15, p<0.001, CS>CRG), and in RMR at 36°C Tb (df=14, p<0.001, CS>CRG).  There was 

no significant difference in mass-specific oxygen consumption rates of lizards at a Tb of 20°C 

(df=18, p=0.13).  Power regression equations for the data are listed in Table 7.  Spring CRG 

SMR at 28°C Tb data were nonsensical, as they were higher than RMR for spring CRG lizards.  

Therefore, this data were not used (see “Discussion of Metabolism” in Discussion, pg. 55).  
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Table 6.  Body mass data (g) of Sceloporus occidentalis measured by respirometry from the 
Columbia River Gorge site (CRG) in spring compared with the corresponding data of lizards 
from the coastal shores site (CS) in summer. 
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Table 7.  The power regression equations of oxygen consumption rate (r), of standard and 
resting metabolic rates, versus body mass (m) for the CRG lizards from spring and the CS 
lizards from summer all three body temperatures.  
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DISCUSSION 
 

Discussion of Thermoregulation 
 

Sceloporus occidentalis from the hottest site, the Columbia River Gorge (CRG), 

thermoregulated at significantly warmer field-active body temperatures (field-active Tb) 

than those at the cool, coastal shores site (CS).  Furthermore, the distribution of field active 

Tb of lizards from CRG skewed hotter than the preferred Tb measures selected on the 

thermal gradient in the lab (lab Tb).  Thus, one may infer that the first alternative hypothesis 

“HT1” cannot be wholly refuted; that is, high ambient temperatures at CRG and GW may 

have resulted in S. occidentalis accepting body temperatures nearer the upper end of the 

accepted Tb range (35.7°C at GW and 35.9°C at CRG), despite weather conditions at CRG 

being atypically cool during my time there (Figure 7).  Corroborating the hypothesis is 1) the 

CS lizards thermoregulated near the upper limit of the preferred Tb range when in lab 

(35.9°C), but had a relatively low mean field-active Tb, at 35.4°C and 2) the CRG lizards 

thermoregulated at cooler temperatures in the lab than in the field.  Moreover, mean field-

active Tb measures from all three sites rank in order, hottest to coolest, directly with the 

average field temperatures at each site: CRG, GW, CS. 

Due to the inability to perfectly utilize the thermal heterogeneity of their 

environment, as well as other pressures such as predation or interspecific competition, 

lizards are known to carefully thermoregulate either at, or below, their optimal Tb (i.e. 

“suboptimal is optimal”; Martin and Huey 2008).  That is, because the physiological 

consequences of a lizard’s Tb dropping below the preferred range are less severe than if it 

drifts hotter, lizards should tend to thermoregulate towards the cooler end of their 



 

54 
 

preferred Tb range if environmental conditions permit.  That lizards at CRG and GW 

thermoregulated at near the upper limit of their preferred Tb range, despite this notion that 

suboptimal Tb during activity may be preferred (e.g., 34-35°C), further corroborates the 

prevailing hypothesis that S. occidentalis at these hotter sites are forced to accept higher Tb 

during activity.  Although the temperature conditions at all three sites do appear to be 

influencing the thermoregulatory effectiveness of lizards, the mean Tb achieved by lizards 

among sites differ between the hottest (CRG) and coolest (CS) sites by only 0.5°C. As such, 

the physiological consequences of such a small difference in Tb may be negligible.  

 Interestingly, Sceloporus occidentalis from GW selected warmer Tb in the thermal 

gradient than lizards from the other two sites.  Indeed, the laboratory Tb measures of S. 

occidentalis from GW are actually significantly warmer than those of lizards from CRG, 

where lizards are exposed to the hottest climatic conditions.  This result is somewhat 

surprising and difficult to explain.  The ability to behaviorally thermoregulate tends to 

negate the inverse association of Tb with elevation (Adolph 1990, Andrews 1998, Huey et al. 

2003, Zamora-Camacho et al. 2016), as seen in the similar field-active Tb of lizards at CRG 

and GW.  One potential hint toward an explanation for high lab-preferred Tb of GW lizards is 

that the GW locale is at a much higher elevation than the other two sites, such that 

compensating for low food processing rates during cool nights may be offset by 

thermoregulating at higher temperatures during the day.  There has been another instance 

where lizards from cooler environments have selected hotter preferred Tb than other 

populations inhabiting warmer climates when measured on a thermal gradient (Artacho et 

al. 2017), and their speculation for this outcome is similar.  It is possible, however, that the 
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GW lizards are more willing to accept warmer Tb than the other two populations, 

particularly when exploring a novel environment.  Lizards at GW are often found on large 

boulders in relatively open, sun-exposed areas (Photo 6, Appendix A), and thus may be 

forced to accept higher Tb when moving from location to location.  If so, it would not be 

surprising for them to also accept higher Tb when exploring the thermal gradient as well.  

Ultimately, I was interested in studying how these three populations of Sceloporus 

occidentalis were able use behaviorally thermoregulation to successfully inhabit three very 

different climate types in Washington.  Within each climate, S. occidentalis achieved mean 

field active Tb that were within the known preferred Tb range for this species (i.e. 34-36°C). 

Furthermore, lizards brought into the lab from the cool, coastal CS site and the hot, inland 

CRG site both chose lab Tb within this preferred Tb range.  Therefore, due to the apparent 

thermoregulatory success of S. occidentalis at each site, and because the lizard population 

densities appear to be robust at each site, it is clear that all three climate zones are suitable 

for this species to persist.   

 

Discussion of Metabolism 
 

The resting metabolic rates (RMR) and standard metabolic rates (SMR) at each body 

temperature during summer were significantly higher in Sceloporus occidentalis from the 

cool, coastal shores site (CS) than in lizards from the two inland sites, CRG and GW.  Thus, all 

three hypotheses presented about metabolism were refuted.  That is, 1) null hypothesis 

HM0, predicting no differences among lizards from the three climate zones in metabolism at 

any of the three body temperatures was refuted because of the higher metabolism of CS 
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lizards and 2) HM1 and HM2 were refuted because the RMR of lizards from CRG and GW did 

not differ at 20°C and 28°C Tb.  It can be argued, however, that there is partial support for 

HM2 — which states that S. occidentalis from all three sites will differ in RMR at every Tb 

measured — because RMR of lizards from the cool, coastal CS site is significantly higher at 

all three temperatures than RMR of lizards from the two inland locales, CRG and GW, which 

have warmer daytime temperatures.  When inactive and in refugia (several centimeters or 

more below ground surface) either in leaf litter or under logs (Dr. Roger Anderson, personal 

observation), the lizards at CS are probably passively achieving cooler Tb during the 

inactivity period Tb (i.e. poikilothermic) than inactive lizards at the warmer inland sites.  It is 

well known that cooler Tb results in slower physiological processes, including the sum total 

of metabolism, as is RMR.  Therefore, it seems that S. occidentalis at the coast may exhibit 

elevated metabolism to compensate for the retarding effects of cooler Tb on physiological 

processes, such as the catabolism and anabolism of food in the gut.  Such increases of 

metabolism in response to exposure to cooler environmental temperatures has been 

recorded in other species of Sceloporus populations in response to both seasonal and 

climatic differences among separate populations (Dutton and Fitzpatrick 1975, Tsuji 1988, 

Angilletta 2001). 

 If elevated resting metabolism of Sceloporus occidentalis along the coast does 

compensate for cooler body temperatures in summer, then either of two mechanisms for 

this compensation may have occurred.  First is the phenomenon of phenotypic plasticity 

within a genotype, such as can be seen in many poikilotherms — especially fish and 

amphibians — living in temperate climates (Seebacher and Wilson 2006, Hadamová and 
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Gvoždík 2011, Caruso et al. 2014).  Since S. occidentalis are essentially poikilothermic when 

inactive in refugia, it is possible that the cooler temperatures at CS may have induced a 

similar phenotypically plastic response.  The second possible method of temperature 

compensation is that the elevated RMR of CS lizards could be a result of an evolutionary 

response to cooler summer temperatures.  Based on prevailing opinions about time since 

last glaciation west of the Cascade Range (Porter and Swanson 1998, Mood and Smith 

2015), and the resulting time frame for arrival of the CS population to the shores of the 

Salish Sea during a hypsithermal period (Kuchta and Tan 2005, Leopold et al. 2016), the CS 

population may have had enough time to evolve higher metabolic rate (3,000 — 8,000 

years).   

I have some data that indirectly can compare the two causes for higher RMR in CS 

lizards.  It is known that the metabolic rates of S. occidentalis from inland WA may have 

higher RMR during the cool of spring in late May through early June than they do in late 

summer (Tsuji 1988).  Thus, one may expect that if the cool summer conditions of CS are 

similar to the spring conditions at CRG, then S. occidentalis along the coast exhibited higher 

RMR during their relatively cool summer in a similar way to the CRG lizards during their 

relatively cool spring.  When I compared RMRs of CS lizards from the summer to that of CRG 

lizards from the spring, although there was no significant difference at 20°C Tb, the RMR of 

CS lizards were significantly greater at higher Tb (e.g., 28°C and 36°C).  Thus, it is clear that 

further evaluation will be needed to determine whether the difference in RMR between the 

inland and coastal populations are a function of seasonal plasticity, or if the coastal site has 

indeed evolved elevated RMR in response to cooler climatic conditions.  To effectively begin 
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addressing whether the CS population of S. occidentalis indeed evolved elevated metabolic 

rate, or are simply exhibiting increased metabolic rate as a form of metabolic temperature 

compensation, a simple acclimation study using coastal and inland lizards should be 

conducted.  Furthermore, to evaluate whether evolutionary change has occurred in the 

coastal population, a common garden experiment using lizards from both inland and coastal 

populations should be conducted, while also considering the historical climatic conditions to 

which these separate populations of S. occidentalis have been exposed.  

 A factor corroborating high metabolic rates of Sceloporus occidentalis along the 

coast may be related to the higher availability of food.  Lizards along the coast have shorter 

activity seasons than those inland, but consume significantly more food energy and have 

heavier BCIs (Powers 2010).  That is, because S. occidentalis along the coast are consuming 

larger quantities of food and should be converting that food energy into a larger body mass 

in a shorter period than apparently occurs in the lizards at the drier, warmer inland CRG 

site, then perhaps the coastal lizards have a higher specific dynamic action (SDA) — they 

may have increased metabolic effort at digesting, absorbing, and assimilating food stuffs, 

and may also include building tissue as in growth and storage.  A comparison of SMR to 

RMR within each site supports this claim.  When compared at a body mass of 9.5g, lizards 

from the two inland sites, CRG and GW, increase oxygen consumption rates 24.5% and 

22.5% from unfed SMR to fed RMR.  However, lizards from the coastal site increase oxygen 

consumption rates 53.6% when comparing unfed SMR to red RMR.  Furthermore, because 

the only significant differences in metabolism I found between spring CRG lizards and 

summer CS lizards were in RMR at higher body temperatures, there may be differences in 
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the SDA between lizards in these two populations, despite having presumably similar 

amounts of food in their guts.  The SMR data for spring CRG lizards is considered unusable 

and should be ignored because the unfed CRG lizards had the absurd outcome of higher 

SMR than the fed lizards did for RMR, indicating the CRG lizards were not calm enough 

during the SMR trials.  Recall that the RMR data from CRG lizards at 36°C suffered the same 

activity-induced data error (see “Seasonal Effect on Metabolism” in Results).  Note also that 

when compared within-season (i.e. in the summer) both RMR and SMR were higher in CS 

lizards than CRG lizards.  Because there does appear to be seasonally related variation in 

RMR of CRG lizards (i.e., spring CRG lizards have elevated RMR), then a greater response of 

SDA in summer CS lizards could be a reversible acclimation response similar to that seen in 

spring CRG lizards.   
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Conclusions 
 
 In summary, lizards from all three sites were capable of effectively thermoregulating 

within the known preferred Tb range for Sceloporus occidentalis while active in the field 

during summer.  However, lizards at the hotter sites (CRG and GW) had to accept hotter 

body temperatures during activity than those along the coast.  Furthermore, more research 

is needed to understand the cause for lizards from the GW population thermoregulating at 

unexpectedly high body temperatures on the thermal gradient.  The coastal population of S. 

occidentalis had higher RMR than lizards from the two inland sites, which may allow the 

lizards from the cooler coastal site to digest and assimilate larger amounts of food more 

quickly and at cooler body temperatures than those at the inland sites.  Further research is 

required to assess whether the higher RMR and SMR of lizards along the coast is related to 

a higher SDA per gram of food, and whether higher RMR, SDA and SMR are a function of 

seasonal acclimation, evolution, or a combination of these factors.  Determining and 

understanding the mechanistic causes of metabolic rate differences and lab Tb differences 

among lizards from these different climate zones may further our understanding of the 

thermal ecophysiology of terrestrial ectotherms, and may provide useful perspectives when 

investigating how ectotherms with broader geographic ranges will respond to changing 

climatic conditions as compared to the responses of ectotherms with much narrower 

geographic ranges.  
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APPENDIX A — PHOTOS AND SUPPLEMENTAL FIGURES 
 
 

 
 

Photos 1-4.  Pictured about are photos (starting from the top left) of a 1) male 
Sceloporus occidentalis captured in the field, 2) the ventral coloration of a male 
Sceloporus occidentalis, 3) a Sceloporus occidentalis housed in the laboratory at WWU, 
and 4) Sceloporus occidentalis lizard perched on a substrate with its back to the sun 
(basking). 
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Photo 5.  Rock beaches, driftwood, and cliffs characterize the Puget Sound habitat.  
Sceloporus occidentalis typically inhabits areas where driftwood is located next to a sandy, 
open patch of south-facing cliff.   
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Photo 6.  The Columbia River Gorge habitat is characterized by the transition from pine-oak 
woodlands to shrub-steppe.  Sceloporus occidentalis inhabit open areas with enough fallen 
logs to provide cover.   
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Photo 7.  The North Cascades habitat is characterized by the transition 
from pine-to-fir forests, steep southern-facing slopes, and abundant 
boulders/rocks.  Sceloporus occidentalis typically inhabit open areas with 
amble boulders or logs to provide cover. 
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Figure 10.  Graphical representations of hypotheses about thermoregulation behavior of 
Sceloporus occidentalis.  Graphs in A represent the HT0 (i.e. populations at all sites can 
effectively thermoregulate to the known, narrow range of field-active body temperature of 
S. occidentalis), Graphs in B represent HT1 (i.e. challenging conditions force lizards to 
thermoregulate to the edges of the acceptable field-active body temperature range of S. 
occidentalis).  Graphs in C represent HT2 (i.e. conditions at each site prohibit lizards from 
being able to maintain body temperatures within the field-active body temperature range 
of S. occidentalis).  Slash lines indicate the mean Tb value.  
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Photo 8.  The terraria in which lizards were house while in lab.  Each terrarium contained a 
small refugium, water bowl, and heating rock, and were heated by a heating lamp 
suspended above the terrarium.  
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Photo 9-10.  Pictured are (from top to bottom) 1) the thermal gradient (center), including 
the ethylene glycol cooling pump (right) and heating coil device (left), and 2) the interior of 
the thermal gradient. 
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APPENDIX B — EQUIPMENT PHOTOS AND SPECIFICATIONS 
 
 

 
 
 

Thermocron iButtons, Model DS1921G (Maxim Integrated) 

Power Requirements: 

• Internal battery provided. Battery life, depending on usage rate, is approximately 8-10 years.  

Accuracy and Resolution: 

• Accurate to within 1°C when measuring from -30 to 70°C; resolution of 0.5°C.  

Measurement Range: 

• Time Interval of Measurements: 1-255 minutes.  

• Operative temperature range: -40 to 85°C.  

 
 
 
 
 
 



 

76 
 

 
 

HOBO Temperature and Relative Humidity Logger, H8 Family (Onset Computer Corporation) 

Dimensions (W x D x H) and Weight: 

• 4.8 x 2 x 6 cm (1.9 x 0.8 x 2.4 in.); approximately 28 g (1 oz.). 

Power Requirements: 
• 1 CR-2032 (lithium) user-replaceable battery 

Accuracy and Resolution: 
• Temperature:  Accuracy better than within 2°C; resolution of 1°C.  

• Relative Humidity (RH):  Accuracy better than within 5% RH; resolution of 1% RH. 

Measurement Range: 
• Temperature:  -20°C to 70°C. 

• RH:  25 to 95% RH, over the operating temperature range of 5°C to 50°C.
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FoxBox Field Gas Analysis System (Sable Systems International, Inc.) 
Dimensions (W x D x H) and Weight: 

• 28 x 25 x 18 cm (11 x 10 x 7 in.); 15 kg (7 lbs.)  

Power Requirements: 

• 12-24 volts of direct current. 

Accuracy and Resolution: 

• Oxygen:  Accuracy better than 0.2% of full scale (1 — 100%); resolution 0.001%. 

• Carbon Dioxide:  Accuracy better than 1% of calibrated span; resolution to 1 ppm/0.0001%. 

• Barometric Pressure:  Accuracy better than 0.1% of full scale; resolution 0.001 kPa 0 -10%. 

Measurement range: 

• Oxygen:  0 — 100% of air sample, with best accuracy occurring above 1%. 

• Carbon Dioxide:  0-5% of air sample. 

• Barometric Pressure:  30-110 kilopascals. 

Flow Range:  

• 20 — 1,500 milliliters per minute. Measured and controlled by linearized mass flow meter, with 

accuracy within 2% of the reading. 

 
 
*Note: The data readouts on the equipment in this appendix are examples of the user interface of the devices 
and are not related to my research. 
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RH-300 Water Vapor Analyzer (Sable Systems International, Inc.) 
Dimensions (W x D x H) and Weight: 

• 15.2 x 15.2 x 10.2 cm (6 x 6 x 4 in.); 1.4 kg (3 lbs.)  

Power Requirements: 

• 12-24 volts of direct current. 

Accuracy and Resolution: 

• Relative Humidity (RH):  Accuracy better than 1% RH from 0 — 95%, and better than 2% from 0 to 

100% RH; Resolution 0.001 RH%.  

• Water Vapor Density (WVD):  Resolution up to 0.0001 µg ml-1. 

• Water Vapor Pressure (WVP):  Resolution of 0.01 Pa (to 1000 Pa); 1 Pa from 1000 — 20,000 Pa.  

Measurement range: 

• RH:  0-100%  

• WVD:  0-10 µg ml-1 

• WVP:  0 to 20,000 Pa 
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*Photo showing the FoxBox and RH-300 connected via an analog cable.  A temperature 
probe (measuring air temperature in the Percival temperature cabinet) is connected to the 
FoxBox via another analog cable.  The FoxBox then sends RH, %CO2, %O2, barometric 
pressure, and temperature data to the lab computer via a serial cable.  The serial data is 
read on the lab computer using a serial daemon program before being recorded by 
Expedata software (Sable Systems International, Inc.).  
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Biological Incubator, I-35 Series (Percival Scientific, Inc.) 
Exterior Dimensions (W x D x H): 

• 87.6 x 80 x 198.1 cm (34.5 x 31.5 x 78 in.) 

Power Requirements: 
• 115/1/60 volts.  

Interior Space  
• 0.71 m3 (25 ft3) 

Temperature Range and Accuracy: 
• -18 — 60°C; Accuracy within 0.5°C.  

Sample Chamber (Scientific Technical Services, WWU) 
Dimensions (Length by Diameter): 

• 16 x 4.5 cm 

Volume: 
• 180 ml without rubber stoppers inserted; 170 ml with rubber stoppers inserted. 
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*Photo showing the sample chambers in the Percival cabinet while connected to the 
respiration system. The wooden rack holding the chambers was designed and constructed 
by Scientific Technical Services at Western Washington University.  
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Mass Flow Meter/Controller Electronics (2-Channel) v1.0 (Sable Systems International, Inc.) 
Power Requirements: 

• 11-15.5 volts of direct current. 

Accuracy and Resolution: 

• Within 1% of the requested mass flow unit output.  

Side-Trak Mass Flow Meter, 840 Series (Sierra Instruments, Inc.) 
Weight: 

• 2.00 lbs. (.91 kg) 

Power Requirements: 

• 15 volts of direct current.  

Accuracy: 

• Within 1% of the full scale including linearity over 15-25°C and 10-60 psia. 

Flow Range: 

• 0-10 standard cubic centimeters per minute, to 0-15 standard liters per minute.  
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Air Pump (Get the Model) (Gast Manufacturing, Inc.) 
Dimensions (W x D x H) and Weight: 

• 13.6 x 19.9 x 19.5 cm (5.35 x 7.88 x 7.6 in.); 14.5 lbs. (6.58 kg).  

Power Requirements: 
• 115 volts of AC 

Max Flow: 
• 45.3 dm3/min (1.6 ft3/min) 
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APPENDIX C — FOXBOX/EXPEDATA USER GUIDE 
 
NOTE: ExpeData should be setup after the respirometry system is already turned on and fully 
operational, as I’ve written the follow instructions using the assumption that the system will 
already be communicating with the lab computer. For instructions regarding the setup of the 
FoxBox and RH300, please refer to the set-up guide provided by Sable Systems International. 
 
DATA COLLECTION: 
 
1. First, you must open the “Serial Daemon” program. Click on the Windows icon at the bottom left 

of the screen, and type “Serial Daemon” into the search bar to find the program.  

 

2. Once the program is opened, you’ll notice a dropdown menu that initially reads “9600N981”. 

Click on that menu, and select “115200N81” from the drop-down options. Then click “Monitor 

Instrument”. If everything is working properly, a string of data will populate the text bar. You 

will leave the Serial Daemon program running until you are done with data collection.  

 

3. Now open the desktop icon for ExpeData v.1.9.8 (the user agreement may pop up; just click the 

box for “I’ve read and understand…” and then “accept”).   

 

4. Select “Acquire” from the toolbar at the top of the window, and then select “Setup Data 

Acquisition…” from the dropdown menu.  

 

5. When the window entitled “Connect to Data Acquisition System(s)” appears, just click “OK”.  

 

6. When the “Acquisition Parameters” window appears, click “Setup…”, and then select “Load 

setup…” from the dropdown menu.  

 

7. From the “EXPEDATA Load Setup” window, select the “FoxBox Setup File.stp” and then click 

“Open”. Upon hitting “Open”, a window should appear that reads “The setup file matches the 

acquisition system(s) currently active. Setup file accepted & OK for use”. Click “OK”.  

 

8. To ensure that the system is working correctly, click “Monitor” on the “Acquisitions Parameters” 

window. A smaller window entitled “Channel Monitor” should appear with six channels showing 

values. The values are:  

 
 
 

9. Confirm that all six channels are reading 

correctly by comparing the values in the “Channel Monitor” window with those being shown on 

the interfaces of the FoxBox, RH-300, and the Percival cabinet. Some minor differences between 

these values can be expected, as ExpeData is reading the information from the respirometry 

o BP – Barometric Pressure                                                     

o O2 – Percent Oxygen 

o FR – Flow Rate 

o CO2 – Percent Carbon Dioxide 

o WVP – Water Vapor Pressure 

o Temp – Temperature  
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system on a one-second delay; however, the values should still be very similar. Once it has been 

confirmed that the values in ExpeData are correct, click “OK”. Then select the green check mark 

on the “Acquisition Parameters” window. 

 

10. Once the “Recording: ExpeData” window is open, take a moment to find both the red arrow 

icon, the pause symbol icon, the disk icon, and the notepad icon (the notepad icon should be 

greyed out). The red arrow begins your data recording, the pause icon pauses it (of course), the 

disk icon saves your recording, and the notepad icon allows for you to place markers in your 

data set with labels that you write into the text box (for reference, the text box should read 

[MARKER NOTE TEXT] when you first see it).  

 

11. Click the red arrow to start recording data (Reminder: you want to record a baseline value 
before you record any data involving an organism). Once you begin recording data, use the 
notepad icon to place a marker that you will label as “Baseline”. When you are done recording 
your baseline value (about two minutes is enough time), click the pause button. 
 
NOTE: Do not save or exit the data collection window yet, as you will be recording both the 
organism’s respiration data and a follow-up baseline measurement onto that same data file.  
 

12. Next you will connect the tubing for the organism you wish to measure onto the respirometry 
pathway. Once done, repeat the previous steps used to record the baseline for recording the 
organism’s respiration rate. This time, however, label your maker as “Organism 1”, or whatever 
identifying label you’ve assigned to that individual.  

 

13. Once you’ve finished recording the organism’s respiration rate (usually 10 minutes is enough 

time), you will want to again record a baseline measurement.  

 

14. When finished recording data, save the file using the disk icon. The first screen to appear is a 

note pad that allows for you to write information about the data file. Once you’ve written (or 

not written) your notes, click the green check button. Then, save the file to the desktop using a 

descriptive format, such as: 

“OrganismID_BodyMass_Date.exp” 
 

DATA ANALYSIS:  
 
1. Open desktop icon for ExpeData v.1.9.8 (you will not need Serial Daemon, so do not open it).  

 

2. Click “File” and then select “Analyze Data Now!” from the dropdown menu. 

 

3. In the “Automated Data Analysis” window, select “Choose File(s)”. Select whichever data file 

you wish to analyze and then click “Open”. Once you have selected a file, click “Run Macro” on 

the “Automated Data Analysis” window.  

 

4. Left-click on the beginning of the graph and drag the mouse across the entire graph. This will 

result in a smaller window opening. In that smaller window, you will see a drop-down menu that 
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is displaying “BP”. Click on the menu and select “O2”. Doing so should change the figure from 

displaying BP to displaying O2. Now everything done henceforth is going to specifically be done 

to the percent oxygen data. Exit the smaller window.  

 

5. Click “Transform” on the window displaying the graphed data. From the drop-down menu, 

select “General…” and enter this exact equation into the text box: 

 

O2*BP/(BP-WVP)  

 

This equation corrects for water vapor in the air sample that dilutes the oxygen value. Once 

entered, click “OK”. 

 

6. Again select “Transform” from the task bar, and then select “Corrections”. From the dropdown 

list, select “Drift Correction…”. For the “Correct from” menu select “Start & End”, and for the 

“Scan for” menu select “Most level”. Also, click the box that reads “Span to this value: .2095” 

(make sure the value in the dropdown menu there is in fact .2095 before doing this). With your 

parameters set for your drift correction, click “Try It!” to apply the drift correction. Once the 

drift correction is complete, click “Done”.  

 

7. Now the data is prepared for analysis. Select the data for the first baseline by left-clicking at the 

beginning of the recording and dragging to the end of the baseline measurement. The smaller 

pop-up window should only display the data you selected. Click “Mean”. Under “SELECTION A 

RESULTS” in the resulting pop-up window, find the calculated mean value. Record the mean into 

an Excel file.  

 

8. Repeat this process to get the mean value of the second baseline measure and the organism 

respiration measure. Once you have these values, you can calculate the respiration rate of the 

organism (in mLO2 min-1) using the following equation: 

 

 

 

Where “BL1” is the mean of the percent oxygen of the first baseline, “BL2” is the mean of the 

percent oxygen of the second baseline, “Org” is the mean of the percent oxygen of the 

organism’s oxygen consumption measurement, and “FR” is the flow rate (mL min-1).  

 

9. To get a mass-specific oxygen consumption value, divide the above calculated respiration rate 

value (which is in mLO2 min-1) by the mass of the organism. The resulting value will be in units of 

(mLO2 min-1 unit mass-1).   
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