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Abstract 
 

 A select few strains of marine microalgae, such as Isochrysis sp., produce high-melting 

(∼70 °C) lipids known as long-chain alkenones that detrimentally affect biodiesel fuel quality. 

A method has been developed for the production of an alkenone-free Isochrysis biodiesel. This 

material was prepared on sufficient scale to allow for extensive analysis according to ASTM 

standards. Results revealed that while cold flow improved by removal of these high-melting 

components, a cloud point was still unattainable due to the fuels dark pigment.  Further effort 

in relating the presence of alkenones and the resulting cloud point of the biodiesel, led to 

decolorization of algal biodiesel in order to obtain a cloud point value.    The decolorization of 

the biodiesel resulted in improved fuel properties and allowed for measurement of the cloud 

point of the fuel.  In parallel to the biodiesel production from Isochrysis sp. value added 

products biosynthesized by the algae have been isolated and investigated for their ability to 

offset fuel prices.   
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Chapter 1:  Background of Biofuels 

 

 

Government mandates to increase biofuel incorporation 

An abundance of research has shown that human activities including fossil fuel use, agriculture and 

land use have been the dominant causes of increased concentrations of greenhouse gases in the 

atmosphere over the past 250 years, thus making it extremely likely that human activities have had a 

net warming effect of the Earth since 17501.  The changing climate has been noticed across disciplines 

and can be seen in nearly every corner of the globe’s regions its ecosystems.  Ocean and polar 

scientists have recorded dramatically higher arctic temperatures, ocean levels, and higher ocean 

acidity, which alter the characteristics of the most fundamental organisms of the ocean food chain.1 

Atmospheric research has shown that CO2 concentrations have increased by more than 40% since 

pre-industrial times, from approximately 280 parts per million by volume (ppmv) in the 18th century 

to 396 ppmv in 2013. In April of 2014, the monthly average CO2 concentration at Mauna Loa exceeded 

400 ppm for the first time in human history (Figure 1). Current CO2 levels are higher than they have 

been in at least 800,000 years.2 The scientific community has responded by calling for renewable 

alternative energy sources that reduce the amount of carbon dioxide we put into the atmosphere. In 

an attempt to halt and reverse damage done to Earth’s atmosphere and environment by 

anthropogenic emissions of greenhouse gases, government mandates have been put in place by many 

nations.  The United States Environmental Protection Agency (EPA) is a federal agency of the U.S. 
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government which was created for the purpose of protecting human health and the environment 

from the impact that human activity can have by writing and enforcing regulations based on laws 

passed by Congress.3 

The Renewable Fuel Standard (RFS) program was created under the Energy Policy Act of 2005 (EPAct) 

by Congress, which amended the Clean Air Act (CAA). The Energy Independence and Security Act of 

2007 (EISA) further amended the CAA by expanding the RFS program. EPA implements the program 

in consultation with U.S. Department of Agriculture and the Department of Energy. The RFS is a 

national policy that requires a certain volume of renewable fuel to replace or reduce the quantity of 

petroleum-based transportation fuel, heating oil or jet fuel. The four renewable fuel categories under 

the RFS are biomass-based diesel, cellulosic biofuel, advanced biofuel, total renewable fuel.  After 

implementation, the 2007 enactment of EISA significantly expanded the size of the program to include 

 

Figure 1.  Atmospheric CO2 increase overtime2 
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boosting the long-term goal to 36 billion gallons of renewable fuel and extending yearly volume 

requirements out to 2022 (Figure 2.)  

 

Distinctions between generations of biofuels 

First Generation  

First Generation biofuels are fuels produced directly from edible arable crops.  The two predominant 

first generation fuels are biodiesel and bioethanol, where the oils or Free Fatty Acids (FFA) are 

extracted from the biomass for use in biodiesel or the sugars are extracted from the biomass and 

fermented to make bioethanol.  Common feedstocks for biodiesel production are soybean in the 

 

Figure 2. Congressional Volume for renewable fuels projection. 
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United States and rapeseed in Europe.  Bioethanol in the United States is industrially produced from 

corn and from sugarcane in Brazil.  Both fuels are attractive replacements for petroleum fuels because 

they can be used in existing engines with little or no modification, and can take advantage of much of 

the existing petroleum fuel infrastructure. For instance, biodiesel can be used directly in a 

conventional diesel engine with no engine modification and makes use of our existing fuel distribution 

network.  Biodiesel compared to petroleum diesel reduces particulates from 30-90% and since it 

contains no sulfur, it also allows for the use of better particulate traps in the exhaust systems of 

vehicles4, which can reduce the particulates even further.  Biodiesel can be used in many blends but, 

the most common are: B100 (pure biodiesel), B20 (20% biodiesel, 80% petroleum diesel), B5 (5% 

biodiesel, 95% petroleum diesel) and B2 (2% biodiesel, 98% petroleum diesel).5  Bioethanol is most 

often used as a biofuel additive for gasoline in conventional engines as E10 (10% ethanol and 90% 

gasoline) and gives a similar octane improvement to the additive methyl tert butyl ether (MTBE), but 

is preferred due to evidence of groundwater contamination by MTBE.  While ethanol is in some 

respects a better substitute for MTBE, blends greater than E15 require modification to conventional 

gasoline engines due to issues of corrosion which must also be addressed for our current fuel 

distribution and storage infrastructure.  First generation biofuels also present a food versus fuel 

dilemma, and controversies associated with diverting farmland or edible crops to biofuels production 

which strains the food supply can create other adverse effects on local and global economies (vide 

infra). 

There has been approximately a 100 million tonne per year increase in the use of corn to produce 

ethanol in the U.S. over the past 10 years, and projections of greater future use have raised concerns 

that reduced exports of corn and other agricultural products would lead to land-use changes and 

cause negative environmental impacts, such as limited CO2 sequestration.  The concerns have been 

bolstered by agricultural and trade models, indicating that large-scale corn ethanol production leads 
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to substantial decreases in food exports, increases in food prices, and greater deforestation globally.6  

Work by the World Bank Policy Research Group from 2008 found that biofuels produced from grains 

have raised food prices by between 70 to 75 percent on the poor in developing countries who, on 

average, spend half of their household incomes on food.7  First generation biofuels also have a 

vulnerability to crop shortfall from extreme weather conditions such as drought. In 2012, the U.S. 

experienced the hottest July and most severe drought in 50 years and this resulted in a 12% decrease 

in corn production. This underscores the vulnerability of food-based feedstocks to extreme 

environmental conditions that could become more frequent and of higher intensity as a result of long-

term climate change.8 

 

Second Generation  

Second generation biofuels, like first-generation biofuels, are considered renewable fuels that can be 

manufactured from various sources of organic carbon using biomass feedstocks that are renewed 

rapidly as part of the carbon cycle. In contrast to first-generation biofuels, second generation biofuels 

are produced from non-edible crops such as wood, organic waste, food crop waste and dedicated fuel 

crops (e.g. switchgrass).  In some cases, these can be waste material from first generation biomass 

feedstocks. One example would be corn stover, or the stalks, cobs, and other plant material that are 

generally left in the field after harvesting corn.  This waste corn material is rich in lignin, cellulose and 

hemicellulose.  The distinction between cellulose and hemicellulose is that where cellulose is a 

homopolymer of glucose, hemicellulose is a heteropolymer of primarily pentoses (xylose and 

arabinose) and hexoses (glucose, galactose, and mannose). The heteropolymer nature of 

hemicellulose makes it easier to degrade into fermentable sugars, which is currently the major 

challenge associated with cellulosic fuels.9 Depending on the treatment of the biomass, other 
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products beside bioethanol can be obtained from second-generation biofuel feedstocks.  Some of the 

most common methods to convert waste plant material into fuel are processes such as gasification, 

pyrolysis, and Fischer–Tropsch reactions.  Pyrolysis describes the thermochemical conversion of 

organic material at elevated temperatures in the absence of oxygen. It involves the simultaneous 

irreversible change of chemical composition of the organic material and its physical phase. Products 

from pyrolysis reactions generally include both gas and liquid phase hydrocarbons as well as solid 

residues that are rich in carbon content.  Flash pyrolysis which operates at a faster rate than traditional 

pyrolysis has been shown to produce high yields (75%) of lower weight liquid fuels from high weight 

bio oil.10 Gasification is a process that aims to convert biomass materials into carbon monoxide, 

hydrogen and carbon dioxide. Like pyrolysis, this is achieved by reacting the material at high 

temperatures (>700 °C), without combustion, within a controlled atmosphere of oxygen and/or 

steam. The resulting gas mixture containing CO and H2 is referred to as syngas and can be further 

transformed into fuel via the Fischer-Tropsch process.  The Fischer–Tropsch method is a process 

where a mixture of carbon monoxide and hydrogen is converted into liquid hydrocarbons by a series 

of complex chemical reactions under heterogeneous catalysis.   

While second generation biofuels address some of the issues associated with first generation biofuels 

such as increasing the cost competitiveness with petroleum by using waste material to produce 

additional fuels and the possible avoidance of the food versus fuel dilemma by only using waste 

biomass,  most still require a large amounts of potable water and cultivatable land. The 

interdependence between energy production and water resources has recently been emphasized in 

several studies.11 When reporting water usage, both evapotranspiration (ET) and withdrawal 

estimates are relevant for metrics of consumption.  ET affects the water supply, because more ET 

translates into less runoff and less local recharge, while withdrawals of water relate to the demand 

(consumption) of water.  A combination of larger ET (temporal reduction of supply) and larger 
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irrigation (more demand) can result in a less sustainable growth enviroment for second generation 

fuels.9  Much like first-generation biofuels, second-generation biofuels are also criticized by limited 

ability to reduce CO2 emissions.  Work recently published by Liska and coworkers in 2014 showed that 

removal of corn residue from biofuels can decrease soil organic carbon (SOC) and increase CO2 

emissions because residue C in biofuels is oxidized to CO2 at a faster rate than when added to soil and 

the net CO2 emissions from residue removal are not adequately characterized in biofuel life cycle 

assessment.12 

 

Third Generation 

The term third generation biofuels has only recently entered the mainstream, and refers to specially 

engineered energy crops such as algae as its feedstock source. The algae are proposed to act as a 

source for low-cost, energy dense fuel, from an entirely renewable source.  Third generation biofuels 

are able to overcome many of the issues that decrease the viability of first- and second-generation 

biofuels.  These include avoidance of food versus fuel controversies along with concerns about using 

drinkable water related land use issues that both first and second generation fuels suffer from since 

they are based on edible arable crops as a feedstock.  Algae has been predicted to be able to sequester 

more CO2 than agricultural crops and is able to avoid the CO2 emitted from SOC as it is not grown in 

soil.  A further benefit of algae based biofuels is that production of fuel per unit biomass are far greater 

than first- second-generation feed stocks. The large diversity of algal species also offers a wide range 

Gasification   C (s) + H2O (g) → H2 (g) + CO (g) 

Fischer-Tropsch (2n + 1) H2 (g) + nCO (g) → CnH(2n+2) (l) + nH2O (l) 

Water-gas shift H2 (g) + CO (g) ↔ CO2 (g) + H2 (g) 

Scheme 1.  Second generation biofuel reactions  
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of fuels that can be manufactured, plus various species of algae capable of being grown in varying 

climates.  In fact, algae have been demonstrated to produce up to 9,000 gallons of biofuel per acre, 

which is 10-fold what the best traditional feedstock have been able to generate. According to the US 

Department of Energy (DOE), yields that are 10 times higher than second generation biofuels mean 

that only 0.42% of the U.S. land area would be needed to generate enough biofuel to meet all of the 

U.S. needs. As with all biofuel feedstocks, algal biofuels have their challenges. Algae, even when grown 

in waste water, require large amounts of water, nitrogen and phosphorus to grow and has been 

criticized for not being entirely carbon neutral (i.e. like all biofuels, combustion produces CO2).  With 

regards to the fuel, through our own work it is becoming clear that biodiesel produced from algae 

tends to be less oxidatively stable than biodiesel produced from soybean. This is largely because the 

oil found in algae tends to be highly unsaturated and thus more prone to degradation13 (algal biodiesel 

fuel properties are discussed at length in Chapter 3). Nonetheless, there remains significant interest 

in algae as a sustainable and domestic source of renewable fuels. 
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Chapter 2: Algal Biofuels 

 

 

DOE Involvement 

The idea of producing fuel from algae is not new. Sparked by the oil shock which affected the U.S in 

1978, the United States Department of Energy (DOE) sponsored a program for nearly 30 years known 

as the Aquatic Species Program (ASP) initially aimed specifically at the development of transportation 

fuel from algae. One conclusion from the study, as detailed in a report by Sheehan et al., was that the 

cultivation of algae solely for the purpose of biofuel production was not cost competitive14 at that 

time, and the program was defunded in 1996. Since that time, the cost of crude petroleum has 

dramatically increased from $18.46 per barrel (42 gallons = 159 L) in 1996 to nearly $47 per barrel in 

2016.15 This has led to a renaissance in algal biofuel research, spurred in part by legislative action. For 

example in January 2010, U.S. Energy Secretary Steven Chu announced $80 million in government 

funding for biofuel research with much of the funding going to algae biofuel research and 

development. Combined with ongoing issues of national security and the increasing number of 

environmental concerns from industrial petroleum extracting and processing, there has been a great 

resurgence of interest in algae as a potential source of biofuels. The DOE has established a new 

National Algal Biofuels Technology Roadmap, and one can now find a large number of reviews and 

commentaries dedicated to the topic.16 
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Fuel Products from Algae 

Algae is a broad term encompassing many different species, from micro algae to macroscopic kelp. 

This diversity of species presents the opportunity to produce many different biofuels in varying global 

regions.  Unique benefits of algae when compared to traditional agricultural biodiesel feedstocks 

include very high reported productivities for some species of algae, simultaneous wastewater 

treatment with algae cultivation, its ability to remove CO2 from industrial flue gases by algae bio-

fixation and the avoidance of certain food versus fuel controversies.17  The unique environmental 

requirements of algae lets it be grown in water unsuitable for human consumption (e.g. brackish or 

wastewater) and flu gas containing CO2 in fluctuating amounts and purity can be feed directly into the 

algae.  Where some combustion products in flu gas (e.g. NOx or SOx) can be effectively directed and 

used as nutrients for microalgae during growth.  To date, the majority of algal biofuel research has 

focused on the production of biodiesel, defined as monoalkyl esters of fatty acids (most commonly 

fatty acid methyl esters, or FAME) prepared by transesterification of acylglycerols.18   Industrially 

produced biodiesel is used to formulate a wide range of blends with petrodiesel that can be used as 

is without any engine modifications or changes to our transportation fuel network.    

Fuel Properties and Standards 

Regardless of the source, biodiesel must conform to the standards described in the documents ASTM 

D6751 or EN 14214 (Table 1) to be approved for commercialization in the U.S or Europe, respectively.  

Table 1.  Specifications in Biodiesel Standards Directly Influenced by the Fatty Acid Profile19 
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These standards include specifications related to physical properties of the fuel such as lubricity and 

kinematic viscosity, combustion characteristics defined by the cetane number (CN), and chemical 

stability in the form of oxidative stability. Additional recommendations for cold flow properties such 

as the cloud point (CP) or cold filter plugging point (CFPP) are also included.  Cloud point is simply 

reported as this property can be allowed to vary depending upon the time of year and geographic 

location of production.19 Kinematic viscosity is a measure of the liquid fuel’s resistance to gradual 

deformation by shear stress or tensile stress.  For liquids, it corresponds to the informal notion of 

“thickness”.  Cetane number (CN), is a measure of a fuel's ignition delay, the time period between the 

start of injection and the first identifiable pressure increase during combustion of the fuel. Fuels with 

a desirable high cetane value will have shorter ignition delay periods than lower cetane fuels in a 

modern diesel engine.  Oxidative stability is a measure of how long it takes for the biodiesel to 

succumb to decomposition when it is exposed to a stream of oxygen at an elevated temperature and 

is measured by the volatiles that come off and are detected. Cloud point is the temperature at 

which solids begin to form in biodiesel and create a cloudy appearance.  Fuels with a low cloud point 

value are desirable.   

Recently the O’Neil group reported on biodiesel produced from the marine microalgae Isochrysis sp.21   

Isochrysis was selected in part because it is one of only a few species of algae that is farmed 

industrially, harvested for purposes of mariculture, and therefore representative of the scale 

necessary for biofuel production. Otherwise Isochrysis species have been cited in reviews related to 

algal biofuels, noted for its for its high lipid content, desirable FFA (Free Fatty Acid) profile, fast growth 

rate, and nontoxicity, which made it an attractive candidate for biodiesel synthesis.20  
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Isochrysis sp. 

Like many potential algal biofuel feedstocks, Isochrysis has been the subject of extensive lipid content 

screening studies18.  Reported “lipid contents” in these studies generally refer to fatty acids (FAs), 

although the term lipid encompasses numerous types of hydrophobic natural products.  This is 

because the target product for algal biofuels has primarily been FAMEs or biodiesel, produced from 

the FAs.  The individual fatty acids (or FAMEs) make up the FA profile, reported as C#:# referring to the 

carbon chain length and number of double bonds, respectively.  The fuel properties of a given biodiesel 

are dependent on the FA profile that comprises the biodiesel fuel.  From the amount of each individual 

FAs in the profile, predictions can be made about the overall fuel properties of a biodiesel. 

 

For example, if we look at industrial biofuel feed stocks such as oil palm tree and rapeseed, we can 

make predictions about, for instance, the cloud point of their corresponding biodiesel based on the 

major FAs present in their profile.  Palm tree oil, which produces a majority (40-50%) of palmitic acid 

 

Figure 3.  Lipid content screening of multiple algal species under nutrient stress. 
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(C:16:0) would lead us to predict that biodiesel produced from this feedstock would have poor cold 

flow properties.  This is because the neat FA palmitic acid, with its long saturated carbon chain has a 

cloud point of 8 °C.  Similar predictions can be made for rapeseed, where the major FA is C18:1 (52-

65%), and has a cloud point of -3 °C.  The difference between these two FAs and their cloud point 

values comes from the presence of the cis double bond that is present in C:18:1 and is absent in C:16:0.  

However, there is an inverse relationship between CP and oxidative stability.  This is because the 

double bond of the carbon chain in C:18:1, that was useful for favorable CP,  is now an unfavorable 

reactive site for oxidation.  The sterics of the double bond in rapeseed oil makes it difficult for the 

carbon chains of the FA to stack on one another and makes it problematic for the FA to become solid 

at low temperature.  If we look to the oxidative stability value for these feed stocks, we will see an 

inverse relationship between CP and oxidative stability.  Similar to CP, kinematic viscosity also 

decreases with an increasing number of cis double bonds in the fatty acid chain.   

 

Table 2. Composition of Isochrysis sp. Crude 

FAME 
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This is often the case for biodiesel fuel properties, where a structural characteristic such as 

unsaturation, gives a favorable value for one test (CP) but, then an unfavorable value (oxidative 

stability) for another.  The FAMEprofile of Isochrysis sp. biodiesel can be seen in Table 2.   From this 

profile we can see that the majority of the FAMEs are unsaturated (72%) in profile, and we would 

predict that the fuel would have favorable cold flow properties, a low kinematic viscosity and poor 

oxidative stability.  However, biodiesel produced directly from Isochrysis (so-called crude FAME), 

suffers from severe cold flow issues (described as a dark-green solid at room temperature).21 The poor 

cloud point of this biodiesel was unexpected based solely on the FAMEs, and was attributed to 

contamination of the fuel by polyunsaturated long-chain alkenones (PULCAs).  As further evidence, 

alkenones were added incrementally to a B20 biodiesel blend. The cloud point of the resulting fuel 

showed a clear correlation between higher cloud points for fuels with a higher alkenone 

concentration. 

 

The initial B20 mixture had a cloud point of −6.1 °C, which increased markedly with the alkenone 

content (Figure 4). In particular for B20 with 0.75−1.13 ppt (w/v) alkenones, the CP temperature 

jumped from −5 to 2.2 °C.The samples that were tested for CP in Figure 4. were also analyzed by GC, 

 

Figure 4. CP temperature (°C) versus total alkenone 

content in B20 mixtures prepared from soybean-

derived B100 and fossil-fuel diesel. 
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to show that a B20 sample with the added amount of 2.25 ppt (w/v) of alkenones, that resulted in a 

CP value change of roughly 20 C (-5 to15 C) was barely detectable in the chromatogram (Figure 8.). 

 

Long chain Alkenones  

Long-chain unsaturated methyl and ethyl ketones are part of a group of unusual compounds, including 

related alkenes and alkenoates, collectively referred to as polyunsaturated long chain alkenones 

(PULCAs) 22, 23 that are biosynthesized by a phylum of algae called the haptophytes.  Members of the 

haptophytes are primarily unicellular, photosynthetic, and are often important sources of food for 

aquatic communities. Prymnesiophyte algae are predominantly marine and are mostly tropical 

species of micro algae. The group occurs worldwide, and several species have global distributions.  

Other species include the widely distributed coccolithophorid Emiliania huxleyi and the closely related 

species Gephyrocapsa oceanica.24, 25 

Alkenone structures consist of an ethyl of methyl ketone connected to a long linear carbon chain 

backbone (typically between 35 and 41 carbons) containing between one and three trans double 

bonds separated by five methylene units. This is in stark contrast to fatty acids containing a carboxylic 

acid connected to a much shorter 14 to 22 linear carbon chain with zero to six cis methylene 

interrupted double bonds.  Melting points (mp) of individual components are a good indicator of the 

cloud point of a biodiesel fuel, with higher mp corresponding to a higher (unfavorable) cloud point. 

For FAMEs, the melting point increases with increasing carbon chain length and decreases with 

increasing unsaturation or number of double bonds (assuming cis-alkene geometry). For this reason, 

certain classes of FAMEs with high melting points, such as those with trans double bonds, are 

undesirable in biodiesel.  Imahara and co-workers demonstrated that even minor amounts of higher 

melting components can have a dramatic impact on biodiesel cold flow properties.26  Specifically, the 
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addition of small amounts of methyl palmitate (C16:0) or methyl stearate (C18:0) to representative 

biodiesel mixtures greatly increased CP values. Importantly, irrespective of the biodiesel composition, 

mixtures with fixed C16 or C18 saturated ester content had nearly identical CPs.  Trans-Methyl oleate 

(C18:1) has a melting point of 45 °C, and would be unsuitable as a component of biodiesel even in 

small quantities.26 Alkeneones, with their even longer chain length and trans double bonds results in 

higher high melting points (pure C36:2 alkenone has a melting point of 58 °C. 27  It therefore seems 

clear that the cold flow problems associated with Isochrysis biodiesel are due to alkenones, yet prior 

to our own work there had been no reports connecting or relating alkenones to biodiesel fuel 

properties. This was surprising given other reports on Isochrysis biodiesel and the long history of 

alkenone-related research (vide infra).27 

 

Alkenones as Biogeochemical Indicators 

Alkenones are arguably the most studied class of lipids found in the marine environment. This is 

because of their ability to be used as proxies for various measurements of environmental conditions, 

such as sea surface temperatures and CO2 concentrations. More recently alkenones have appeared 

as indicators for hydrologic, salinity, and depositional changes. The application of alkenones as a proxy 

requires a full account of the uncertainties, such as the range of other physical and chemical 

parameters that impact the proxy.28  The structural elements mentioned previously that distinguish 

alkenones from fatty acids (e.g  trans non-methylene interrupted double bonds) make these 

compounds resistant to degradation, and therefore accurate proxies for many measurements.  Early 

efforts in understanding the stable carbon isotopes in marine plankton resulted in an appreciation for 

alkenones in regards to determining dissolved CO2 concentrations, their rate of growth, and the 

metabolic pathways effecting the magnitude of carbon isotope fractionation.  The total isotope 
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fractionation between the substrate carbon (δ13CDIC) and the organic carbon (δ13Corg) is 

approximated by the term Δ DIC-org.  (where Δ DIC-org. is defined as the variable ɛp in relation to aqueous 

carbon dioxide (Equation 1)).29  δ13Corg is able to be directly measured in geologic archives, but 

δ13Cco2(aq) cannot, and requires a proxy such as the δ13C value of approximate age of carbonate 

minerals, assuming that conversion of DIC of aqueous CO2 to solid carbonate.  Interpretation of algal 

ɛp values (Equation 1) is based on a model that describes the isotope fractionation, in terms of flow of 

carbon, including movement of carbon into the cell and out of the cell back into the environment 

(leakage).30 

The flow of inorganic carbon is ultimately fixed as organic carbon in the system. In the carbon fluxes 

CO2(e) represents the ambient CO2aq concentration, CO2(i) is the concentration of CO2aq inside the cell, 

k1, k-1 are the rate constants for the flux of carbon into and out of the cell and k2 is the rate constant 

for the fixation of carbon fixed as organic carbon (Scheme 2).  

ɛp is then expressed as the isotope fraction of the carbon in the cell reservoir fixed as organic matter 

or that is lost from leakage occurring during the carbon transport and fixation.30  The terms ɛf and ɛt 

represent the carbon isotope fractionations for carbon fixation and diffusive transport.  Where f is the 

fraction of inorganic carbon that diffuses back into the environment.31 By substitution of flux 

ɛp = ɛt + 𝑓 (ɛ𝑓 + ɛt) ⋯ ⋯ ⋯ ⋯ [1] 

 

Scheme 2.  Rate of carbon entering 

and leaving the cell  
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(Equation 2) into Equation 3, we can now described Equation 3 in terms of CO2 concentrations 

diffusion fractionation Equation 3:  

Taking the carbon demand into account in terms of carboxylation growth rate by redefining the term 

Ci/Ce to its algebraic equivalent leads to Eq. 4.31  

This model for carbon flux was then used as a framework for correlating ɛp to ambient CO2 

concentration in work by Hollander and McKenzie (Figure 5.):32 

 

ɛp = ɛt + (ɛ𝑓 + ɛt) (1 −
𝐶𝑒 − 𝐶𝑖

𝐶𝑒
) ⋯ ⋯ ⋯ ⋯ [4] 

𝑓 =
𝑘−1𝐶𝑖

𝑘1𝐶𝑒
 ⋯ ⋯ ⋯ ⋯ [2] 

 

Figure 5. Compilation of long term ɛp values from alkenones, 

geographies, and bulk organic carbon. 

ɛp = 𝐴⌊𝑙𝑜𝑔(CO2aq)⌋ + 𝐵 ⋯ ⋯ ⋯ ⋯ [5]     

ɛp = ɛt + (ɛ𝑓 + ɛt)
𝐶𝑖

𝐶𝑒
 ⋯ ⋯ ⋯ ⋯ [3] 
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The work by Hollander et. al used marine setting values and from the literature to approximate A and 

B showing that ancient CO2 levels can be approximated from both bulk and biomarker-derived 

(alkenone) ɛp records.32  The data that was calculated from alkenones as a biomarker proxy showed a 

general logarithmic form (Figure 5).  The application of alkenones in CO2 reconstruction was 

recognized as a significant step forward given early recognition that alkenone production is limited to 

few algae, thus reducing diverse algal influences on the expression of ɛp and that the alkenones are 

found in measurable abundances in marine sediments.  While the alkenones have been used to 

elucidate past CO2 concentration through carbon flux and isotope ratios models, the biological 

function still remains unclear.  It is likely that alkenones share a similar role to other neutral lipids and 

are used as energy storage reserves for the organism.  Work by Pond and Harris showed that in the 

species Emiliania huxleyi alkenones are present in all growth phases of the organism, but the cellular 

pools increase during the stationary phase or the phase where growth stops. This is typical for energy 

storage lipids.33, 34 Work by Epstein, Prahl and coworkers found that there is a trend of an increased 

PULCA production under nitrogen or phosphorus depleted environments, across strains of 

alkenonone-producing algae.  While the magnitude of this increased alkenone production varied 

widely across strains of algae, the change resulted in 10-20% increase in the cell in the stationary 

phase on average.35, 36  Research by Prahl et al. showed that under energy depleted growth conditions 

or a dark environment, the PULCA pools in the cell decrease as the PULCAs go through a series 

of metabolic pathways that breaks down the alkenones into smaller units that are either oxidized to 

release energy, or used in other anabolic reactions.  Work by Epstien and coworkers proposed that 

the unsaturation profile of the alkenones affects its melting point and this is used to regulate 

membrane fluidity. However, alkenones were unable to be detected in haptophyte membranes, it 

was therefore proposed that the change in unsaturation and associated melting point affects the ease 

https://en.wikipedia.org/wiki/Molecule
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by which the alkenones are catabolized35 (where more double bonds = higher melting = more easily 

consumed).  

 

Calculating Uk’
37 

Another important role for alkenones is their abiliy to serve essentially as a paleothermometer. 

Alkenone producing species are known to respond to changes in their environment, such as changes 

in water temperature which they are grown in.  The temperature of water results in the algae altering 

the relative ratio of the different alkenones that are biosynthesized. At higher growing temperatures 

the algae produce alkenones that have fewer numbers of double bonds than when the algae is grown 

in colder water. This means that the relative degree of unsaturation of alkenones can be used to 

estimate the temperature of the water in which the alkenone-producing organisms grew.  The relative 

degree of unsaturation is typically described as an Unsaturation Index of di- versus tri- unsaturated 

C37 alkenones.  This gives us the Uk’ 37 value which can be calibrated to the growth temperature 

(Figure 6.).37 From these values, past ocean temperatures are estimated by calculating the Uk’37 at 

different depths within a sediment core representing different time periods.  An enormous number 

of studies over the last 30 years have made use of alkenone Uk’37 calculations to track for instance 

changes in global temperatures.38 

 

 

Figure 6.  Uk’
37 equation for estimating 

past sea surface temperatures based of 37 

carbon alkenone unsaturation. 
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Care must be taken when calculating the Uk’37 because in addition to temperature, the unsaturation 

profile of the alkenones (and FAs), can be altered by certain environmental strains on the organism.  

Specifically, lower CO2 concentrations have been shown to increase the FA 22:6 content in Isochrysis, 

whereas 14:0 FA was found to be dominant when CO2 concentrations return to normal conditions.  

Increased CO2 concentration was also observed to increase the overall amount of fatty acid 

accumulation in work by Salina and coworkers.39 

Nitrogen starvation can have dramatic effects on the biosynthesis of alkenones and other lipids.  In 

fact the effects of nitrogen deficiency in algal culture samples have shown improvements to 

biosynthesis and accumulation of lipids40-43 and triglycerides.44, 45  Nitrogen is an essential part of the 

organism with regard to structural and functional proteins in the cells and accounts for 7%–20% of 

cell dry weight.46  The stress caused by this starvation effects the proteins of the algae in an inversely, 

resulting in a reduction of protein content in the organism.47-52  This skews the lipid/protein ratio 

towards lipids at the expense of growth rate48.  Attempts to increase lipid content with limited 

nitrogen should be evaluated with caution because algae also tend to divert their photosynthetically 

fixed carbon to carbohydrate synthesis while, decreasing oxygen evolution, carbon dioxide fixation, 

and chlorophyll content50.   Nitrogen starvation is also able to change the enzyme balance of cells, and 

increase the synthesis of lipids and decrease in chlorophyll synthesis leading to excess carotenoids in 

the cells Dunaliella sp.53 Certain strains of algae, such as Haemaantococcus pluvialis have also been 

observed to accumulate high amounts of carotenoids, astaxanthin and its acylesters (up to 13% w/w), 

when grown under nitrogen-depleting conditions.56-58 

Similar to nitrogen starvation, phosphorus starvation can also favorably effect lipid production in the 

algae.  It has demonstrated that phosphorus is the primary limiting nutrient for microalgae in many 

natural environments, not nitrogen.57   Phosphorus is a crucial component required for growth and 

development of cells in the algae.58  Phosphorus is approximately 1% of dry weight of algae59, but it is 
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likely required in massive excess, compared to nitrogen, since not all phosphate is bioavailable 

because of the formation of complexes ions with metals.59 Immediate effects of phosphorus limitation 

include a consequential reduction in the rate of light utilization required for carbon and leads to 

accumulation of lipids. In the species Scenedesmus sp. The total lipid content was observed to increase 

from 23% to 53% when phosphorus concentration was reduced by half (2.0 mg/L to 1.0mg/L). 
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Chapter 3: Isochrysis Biofuels 

 

 

Isochrysis is one of only a few species of algae that is currently grown industrially, harvested as a 

primary component of shellfish and shrimp feed. The availability of Isochrysis in multi-kilogram 

quantities has enabled our group to synthesize larger quantities (hundreds of mL) of algal biodiesel.  

This has allowed our group to obtain actual experimental fuel property data for our biodiesel. Many 

biodiesel fuel property tests require large volumes of fuel, for instance cetane requires approximately 

70 mL of the fuel.19  Ideally this is run in duplicate or triplicate, meaning that substantial amounts of 

biodiesel are required. As a result, much of current algal biodiesel research relies on predictions of 

fuel from the FAME profiles of microscale biodiesel synthesis. Others have utilized simulated algal 

biodiesel for their studies (e.g. blends of vegetable and fish oils) because in general algal biodiesel is 

scarce. Knothe recently predicted the fuel properties of algal biodiesel by studying the properties of 

individual polyunsaturated FAMEs (PuFAMEs) that are common to many algal biodiesel fuels. His 

study, however, only included neat C20:4 and C22:6 FAMEs, because other PuFAMEs were not 

available.60 The Industrial production of Isochrysis therefore provides a unique opportunity to perform 

a fundamental study of the fuel properties of algal biodiesel tested against a battery of ASTM 

standards. For our work, Isochrysis has been purchased from the following suppliers: 
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Reed 

Reed Mariculture Inc. is based from San Jose, California, USA.  They produce isochrysis sp. As a wet 

paste which is 80% water by mass.   

 

Necton  

Necton produces Isochrysis sp. In Belamandil Natural Park of Ria Formosa, in Olhão, Portugal.  The 

Isochyrsis biomass is processed by drying and milling the biomass into a fine powder. 

 

One Step Processing of Commercial Isochrysis sp.  

To investigate the extent of the impact of alkenones on biodiesel cold-flow properties, Reed algal 

biomass was dried and the triacylglycerides were extracted from the biomass with boiling hexanes in 

a Soxhlet apparatus.  The resulting hexane extract (“hexane algal oil”) was esterified in the presence 

of an acid to produce the corresponding crude FAME (i.e. biodiesel, Scheme 3).   

 

 

 

Scheme 3. One step esterification of algal Biodiesel 
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Extraction of Isochrysis sp.  

 

The elemental composition of the dry biomass was tested before n-hexanes extraction, after n-

hexanes extraction and the resulting hexane algal oil.  The carbon, hydrogen, and nitrogen content 

for the dry Isochrysis sp. biomass were 47.7, 6.95, and 6.26% (Table 3).   

 

The post hexane extraction biomass had an elemental composition of the carbon, hydrogen, and 

nitrogen contents of the remaining were 39.6, 6.19, and 8.41%, respectively.  Concentration of the 

hexane algal oil was performed by rotary evaporation of n-hexanes and yielded a dark-green/near-

black “grease-like” material that could be handled as a liquid and poured from flask to flask when 

heated to 40 °C.  The elemental composition of the hexane algal oil had carbon, hydrogen, and 

nitrogen contents of 74.3, 10.4, and 0.82%.  The algal biomass was 19.1% w/w of the dry algal biomass 

compared to the advertised 17% by Reed mariculture for their Isochrysis sp.  The proton NMR 

spectrum of the algal oil showed the presence of lipid material.  The ultraviolet absorbance spectrum 

showed maxima at 410 nm, 505, 534, 609, and 665 nm, which are key indicators of chlorophyll 

degradation products pheophytin and pheophorbide (Figure 7).  An additional red shoulder at 410 

showed the presence of additional carotenoid pigments. 

 

Table 3. Isochrysis Dry Biomass Content 
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Acid-Catalyzed Esterification of the Algal Oil to Produce a Crude Biodiesel.  

The esterification of the algal oil yielded a dark forest green substance which was solid at room 

temperature.  The reaction converted 90% of the algal oil to crude FAME, which is in the same range 

as many recent studies.  The crude FAME had and elemental composition of carbon, hydrogen, and 

nitrogen were 78.2, 11.2, and 1.13%, respectively.  The proton NMR spectrum of the product showed 

a strong singlet peak at 3.7 ppm, a signal for methyl ester protons of the product FAMEs during the 

acid catalyzed esterification.  The absorbance spectrum of the algal biodiesel was indistinguishable 

from that of pure pheophorbide and pheophytine (Figure 7). 

 

 

 

Figure 7.  Ultraviolet (UV) absorbance spectra 

of algal oil and crude biodiesel in acetone 

compared to pheophorbide a. 
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Analysis of Isochrysis Crude Methyl Esters. 

The profile for the composition of the lipids in the Isochrysis sp. crude biodiesel indicated major 

FAME’s present were 18:4n3, with a concentration of 104 mg/g and the fatty acid 22:6n-3, or 

docosahexaenoic acid (DHA) with a concentration of 74.6 mg/g of crude biodiesel Other FAME’s in 

the profile can be seen in (Table 4).  The GC-FID of the crude biodiesel showed the presence of FAME’s 

accompanied by late running peaks corresponding to the PULCA’s.  The presence of the alkenones in 

the biodiesel indicates that they are released from the lipid bodies in the cell during solvent extraction.  

This is not a complete surprise as it is well known that Isochrysis sp. and other members of 

prymnesiophyte taxa biosynthesize PULCA’s.  Our crude FAME sample had an alkenone concentration 

of 141 mg/g of crude FAME, made up of mostly 37:2 and 37:3 alkenones.  The total lipid content of 

the sample was 67.5% of the crude product and was similar to literature values.  There was no 

presence of free sterols or alcohols detected, and the 1.13% nitrogen in the crude biodiesel likely 

indicates the presence of chlorophyll-based pigments (Table 2). 

 

Production of an Alkenone-Free Biodiesel. 

 

Alkenones represent a significant proportion of the Isochrysis total lipid extract (TLE), are unaffected 

by transesterification, and remain a component of the resulting biodiesel. Their presence 

detrimentally affects the biodiesel cold flow fuel properties due to the high-melting points of these 

compounds.  Otherwise, Isochrysis sp. is attractive as a biodiesel feedstock under the aspects of 

favorable growth properties and history of commercial mariculture. We therefore set out to devise a 

method for producing an alkenone-free Isochrysis biodiesel. It was thought that in addition to creating 

an improved biodiesel fuel, the method would also allow for the isolation of alkenones as a secondary 
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product stream.  A traditional method for removing high-melting components and improving cold 

flow properties of biodiesel is winterization.  In this method, the sample is cooled and the high melting 

point compounds are removed through filtration.  We decided to investigate an alternative method 

for cold flow improvement by the removal of the alkenones from our crude FAME taking advantage 

of the different functionality of the acyl glycerols and that of the alkenones.  Triglycerides esters are 

prone to saponification under aqueous basic conditions, which produces water-soluble FA salts (i.e. 

soaps).  Alkenones remain unchanged during saponification which would allow for the alkenones (and 

other neutral lipids) to be selectively removed from the soaps by serial extraction in a seperatory 

funnel with a nonpolar organic solvent such as hexanes. In the event, saponification of the algal oil 

was performed by first dissolving in a solution of MeOH (50 mL), CHCl3 (25 mL), and H2O (20 mL).   

 

 

Scheme 4.  Synthesis of Alkenone Free Biodiesel (two step) 
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To this, KOH (4.0 g) is added to the solution and the mixture is then heated under reflux for 3 h at 60 

°C (Scheme 4).  Once separated, the isolated soaps can then be re-acidified with 6 M HCl and extracted 

from the aqueous phase to give the free fatty acids (FFAs).  The FFAs are subsequently converted to a 

now alkenone-free FAME via acid catalyzed Fischer-esterification.  Specifically, the free fatty acids (2 

g) are dissolved in equal volumes of MeOH and CH3Cl (8 mL ea.) and transferred to a high pressure 

flask.  Sulfuric acid (1ml) is then added, the flask is sealed and heated for 1 h at 90 °C under pressure.  

The reaction mixture is then washed with deionized water, the layers are separated, and CH3Cl is 

removed from the organic layer by rotary evaporation. In this way, and alkenone-free biodiesel is able 

to be collected in a 92% yield from the FFAs. This method for removal of alkenones from crude FAME 

proved to be remarkably efficient with consistent quantitative mass recoveries (60% FFAs and 40% 

neutral lipids) and a biodiesel free of alkenone contamination Figure 8).  

 

 

 
Figure 8. GC-FID chromatograms of alkenone-free biodiesel (front, red) and purified alkenones 

(blue) showing complete removal of the alkenones by the saponification/separation procedure. 
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Fuel Properties 

The FAME profile of our alkenone-free biodiesel is given in Table 6. From this we can predict certain 

fuel properties. For instance due to the high amount of unsaturated FAMEs, we would predict a low 

kinematic viscosity, favorable cloud point, and a poor oxidative stability. Unfortunately, these types 

of predictions are considered state of the art for most experimental algal biofuel research.  This is due 

to the challenges associated with making sufficiently large amounts of material required for 

performing the various tests. As a result, many of these studies rely on calculations or simulations. As 

an example Fisher et al. recently published a report entitled “Measurement of Gaseous and 

Particulate Emissions from Algae-Based Fatty Acid Methyl Esters”, wherein exhaust emissions of an 

algal biodiesel were simulated by mixing vegetable oil and fish oil FAMEs.  The authors go on to state 

that this was done because of the scarcity of authentic algal biodiesel in a volume required to perform 

testing with.61  Recently Knothe investigated the fuel properties of neat FAME derived from two (C20:4 

and C22:6) highly polyunsaturated fatty acids (HiPUFA) in connection with algal biodiesel.62  Other 

unsaturated algal FAMEs were excluded for testing due to problems associated with cost and 

availability of pure standards. The commercial availability of multi-kilogram quantities of Isochrysis 

and efficiency of our processing allowed us to prepare sufficient quantities of our alkenone-free 

biodiesel with which to perform the various fuel tests contained in the document ASTM D6751. The 

results presented in Table 4 were published in the ACS journal Energy & Fuels, and represents to date 

one of the most complete reports on the fuel properties of a biodiesel made from algal oils.63 As 

mentioned, many of the values listed in Table 4 are dependent on the fatty acid profile (e.g., cetane, 

kinematic viscosity, viscosity, and oxidative stability) and can be predicted as shown in Table 5.  Since 

we were able to obtain actual data for these properties, by comparison we could therefore assess the 

accuracy of those predictions. The results for each of the fuel properties are discussed in detail in the 

following sections. 
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Table 5. Comparison of fuel properties for alkenone-free Isochrysis FAME (Iso-ME) and values 

for methyl esters from soybean (SME) and canola (CME). 

 

 Iso-ME SME CME 

Cetane number 36.5  

(40.3)A 

 

52.1B  

(49-50)C 

50.4D  

(54)E 

Kinematic viscosity  

(40°C, mm2/s) 

2.46  

(3.2)A 

4.12F 4.42F 

Oxidative stability (h) 0.06 5.0F 6.4F 

Lubricity (μm; HFRR) 260 136F 169F 
 

ACalculated value according to reference 31. BExperimental value for commercial SoyGold (AEP; 

Omaha, NE). CCalculated value from reference 52, the range is due to slightly differing fatty acid 

profiles given in numerous references not cited. DReported value for optimized CME from 

reference 53. ECalculated according to reference 31 from the fatty acid profile given in reference 

54. FReported values from reference 54. 

 

Table 4. Fuel Properties of the Alkenone-Free Isochrysis Biodiesel. 

Property Result ASTM D6751 EN 14214 

Cetane number 36.53 47 min 51 min 

Kinematic viscosity (40°C, mm2/s)a) 2.46 1.9-6.0 3.5-5.0 

Oxidative stability (h) 0.06 3 min 6 min 

Density (15°C, kg/m3) 934.92 --- 860-900 

Lubricity (μm; HFRR) 260 520 max  

( ASTM D975) 

460 max  

( EN 590) 

Free glycerol (mass %) 0 0.020 max 0.02 max 

Total glycerol (mass %) 0.029 0.240 max 0.250 max 

Monoglycerides (mass %) 0.034 0.40 max 0.70 max 

Na (ASTM D6751: ppm (μg/g) / EN 14214: 

mg/.kg) 

3.5 5 max combined 5.0 max 

combined 

K (ASTM D6751: ppm (μg/g) / EN 14214: 

mg/.kg) 

0.2 

Mg (ASTM D6751: ppm (μg/g) / EN 14214: 

mg/.kg) 

0 5 max 5.0 max 

combined 

Ca (ASTM D6751: ppm (μg/g) / EN 14214: 

mg/.kg) 

1.1 

P (ASTM D6751: % mass / EN 14214: mg/.kg) 0 0.001 maxb) 4.0 maxb) 

S (ASTM D6751: % mass (ppm) / EN 14214: 

mg/kg) 

170 0.0015 (15) maxb) 

mass (for 

blending with 15 

ppm sulfur diesel 

fuel 

10 maxb) 

a) Determined on an individual batch (~10 g) prior to blending. b) Limits listed as given in the 

standards. 
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Cetane number 

CN is an indicator of the combustion characteristics of diesel, where a higher value is desirable.  Higher 

CN equates to a shorter delay between the injection event and combustion, resulting in reduced 

engine knock which also improves exhaust emissions.  CN values for biodiesel can be estimated by the 

sum of the CNs for each individual neat or pure methyl ester in the FAME profile (Table 6) by 

application of the CN equation.  Where CNmix is the CN for the biodiesel sample, AC is the concentration 

or the % volume of the individual FAME in the biodiesel sample, and CNc is the CN of the individual 

neat methyl ester.  

 

The predicted CN value by application of the CN equation to the data in Table 6 would be 

approximately 40.08 (eq. 6).  This value is slightly higher than the measured value of 36.5 (Table 4).  

One must keep in mind when comparing CN values, that these values are not absolute and the result 

can often vary.  Regardless, from our measured CN and our predicted CN value, it can be concluded 

that the CN value for the alkenone-free Isochrysis biodiesel is below the required minimum 

specification in the ASTM D6751 (47 min) and even more so for the stricter EN 14214 (51 minimum).  

Alkenones themselves would most likely have a high CN value because of the of their long carbon 

chain and by their removal this may decrease the overall CN of the fuel. However if one were to try 

to use alkenones to increase the CN value for our algal biodiesel, it would likely require large quantities 

to meet the minimum ASTM, and of course this would be at the expense of cold-flow.  Nonetheless, 

the effect of alkenone content in fuel and the corresponding CN effect is of interest and may be 

investigated in future research. 

CNmix = ∑AC × CNC    … … … … …  [6] 
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Table 6. FAME Composition of Alkenone-Free Isochrysis Biodiesel Samples. 

FAMES Sample-1 (%) Sample -2 (%)C Sample -3 (%)H 

14:0 16.7 13.7 11.3 

15:0 0.3 0.2 0.2 

16:0 12.9 10.8 9.4 

16:1 Δ9 6.9 5.3 5.5 

16:2 0.8 0.7 0.4E 

16:3 2.1 ND ND 

17:1 Δ9 ND ND 0.1 

18:0 0.1 ND ND 

18:1 11.8A 11.8A 10.5A 

18:2 8.0B 6.4 7.9 

18:3 5.2 7.2C 8.0F 

18:4 18.2 22.2 21.8 

18:5 ND 2.6 2.2G 

20:5 2.9 0.8 1.1 

22:5 ND 1.7 1.5 

22:6 7.9 11.65 12.1 

Σ 93.8 95.0 92 

ACombined 18:1 Δ9 + 18:1 Δ11. BIncluding a likely 18:2 with double bond positions not 

determined (1.4%). CNote that a fatty acid profile of the hexanes extract (“algal oil”) used to 

produce this FAME was also determined and the values were very similar. DLikely a mixture of 

two double bond positional isomers. ECombined % of two double bond positional isomers (Δ6,9 

and Δ9,12). FCombined Δ6,9,12 and Δ9,12,15 isomers. GSlight ambiguity with assignment. 
HLarger volume blended sample (## mL) prepared by combining individual batches and used for 

fuel testing. 
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Kinematic Viscosity  

 

The kinematic viscosity (KV) of biodiesel has a general trend where the KV decreases with an 

increasing number of cis double bonds present in the FAME.  Algal biodiesel is characterized by high 

polyunsaturated fatty acid methyl ester content and we would therefore expect the biodiesel to have 

low KV.  Similarly to the way that a CN value can be estimated from individual component FAMES that 

make up the total sample, KV can also be predicted from the individual KVs of individual neat FAMEs.  

With the ratio of the FAMEs that is present in the sample and their KV, a KV for the total sample can 

be predicted.  From the values listed in Table 6, the KV of our alkenone-free biodiesel is calculated to 

be approximately 3.2 mm2 /s.  A KV of 2.46 mm2/s at 40°C was measured, which was lower than this 

calculated value. Two additional samples of algal Isochrysis FAME were prepared (~10 mL) to check 

the accuracy of the KV value, but regrettably no reliable data could be collected as these later samples 

tended to plug various viscometer tubes that were tried during analysis.  After further inspection, it 

was found that some insoluble material in the samples were to blame for the failed runs.  This is 

possibly accredited to the fact that the FFA profile in Table 6 only tallies up to a value slightly higher 

than 90%.  The remaining approximate 10% material is composed of numerous unidentifiable 

components that are each present in small amounts.  This unidentified material may also contribute 

to the difference between the calculated and measured values for KV.  Inhomogeneity has been 

recently reported in the literature for blended biodiesel sample produced from Isochrysis galbana, 

where the collected sediment had a similar FFA profile.63 The measured KV for this sample was 

reported to be 4.10 mm2 /s and was tested with the same ASTM Standard D445 method.  Interestingly 

this value is higher than both our measured and calculated value for our Isochrysis sp. FAME.  No 

FAME profile was reported in this work by Kumar and coworkers making comparison of predicted fuel 

properties not possible.  If our measured KV of our algal biodiesel is in fact accurate, this would 
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potentially be advantageous and falls into the prescribed range that is mandated by the ASTM D6751.  

While it is below the range specified by the EN 14214 where the minimum of viscosity specification is 

3.5 mm2 /s, there is no technical reason for this value as conventional petrodiesel fuels tend to exhibit 

KV values below 3.5 mm2/s. 

Oxidative Stability 

 

Fatty acids with high amounts of unsaturation, cis double bonds that are interrupted by methylene 

units, yield fuels with a poor oxidative stability.  Algal biodiesel produced from Isochrysis sp. has 

significant amounts of HiPUFAMEs and would therefore be expected to have poor oxidative stability.).  

This prediction was found to be true as the measured oxidative stability was found to be only 0.06 h, 

whereas the minimum prescribed in the standards is 3 h.  For perspective, the oxidative stabilities by 

Rancimat induction times of neat FAMES C20:4 and C22:6 were recently found to be 0.09 and 0.07 h, 

respectively.62  From this comparison, it is not surprising algal biodiesel produced from Isochrysis 

would have poor oxidative stability.   

 

Density and Lubricity 

 

Lubricity and density of any liquid fuel are important because of the effect they can have on engine 

performance.  Lubricity values for biodiesel are often not problematic.  This is likely credited to the 

ester carbonyl functional group and biodiesel has even been shown to restore lubricity to low value 

blends of low sulfur (1− 2%) petrodiesel.  The measured lubricity for our alkenone-free biodiesel was 

similar to biodiesel fuels from other feedstocks, being well below the maximum wear scars of 460 and 

520 μm prescribed in the petrodiesel standards EN 590 and ASTM D975, respectively.64  In regards to 

density of biodiesel, this value is dependent on the raw material used in the production of resulting 
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fuel profile.  Work by Pratas and coworkers demonstrated that density could be accurately predicted 

for 10 biodiesel samples using linear mixing rules provided that the composition of the fuel and the 

densities of the neat FAMEs are known.  Knothe has measured the densities of neat FAMES C20:2, 

C20:3, C20:4, and C22:6.  Each of these individual FAMEs exceeded the maximum specification of 

European standards, EN 14214, but it was concluded that other FAMEs present in an algal biodiesel 

with lower density would likely offset the higher density of the HiPUFAMEs producing a mixture within 

the specified range.  The measured density of alkenone-free Isochrysis biodiesel at 15 °C was found 

to be 934.92 kg/m3, which is higher than the maximum prescribed value in EN 14214 (900 kg/m3).  If 

the high density is accredited to the HiPUFAMEs in our biodiesel sample (42% ≥ 4 double bonds, Table 

6) then our Isochrysis biodiesel might be used a  gauge to compare with other algal biodiesel mixtures.  

For example, from a recent publication, 12 algal classes were reported to have a range of 26 to 59%65, 

where half of these samples had a HiPUFA content greater than 42%. These may then be expected to 

exhibit densities greater than that of the EN 14214 maximum.   

 

Glycerol and Heteroatom Content 

 

The amount of glycerol (total and free) in the biodiesel was much lower than the allowed maximum 

levels of the ASTM. The low glycerol content is not surprising as our method extracts and separates 

the FFAs from the glycerol in the aqueous layer, with a nonpolar solvent.  Sulfur was the only 

hetroelement that exceeded specification of the ASTM.  It is thought that the high sulfur content in 

the Isochrysis biodiesel is due to the high amount of inorganic sulfates present in the F/2 algal culture 

medium that in which the algae is grown.66  The elemental analysis results appear to support this 

source of sulfur as the highest content was found in the starting algal biomass (Table 7).  Analysis of 

the algal oil and FFAs only showed trace amounts (<0.1% w/w) with most of the sulfur remaining in 
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the biomass after extraction with hexanes.  However, maximum allowable sulfur levels are 

exceedingly low (15 ppm/ 10 ppm, ASTM D6751/EN 14214) making the alkenone free biodiesel fail 

(170 ppm) the strict sulfur specifications. 

 

Cold Flow Properties of the Alkenone-Free Isochrysis Biodiesel 

Previous work by the O’Neil group demonstrated the dramatic and detrimental effect of high melting 

alkenones on the cold flow property of biodiesel.63 As predicted, removal of alkenones from the 

biodiesel markedly improved the cold flow properties compared to the alkenone-containing FAME 

mixture (liquid vs. solid at room temperature).  A significant amount of solids (40% w/w) that were 

originally present in the algal oil were removed by the saponification and extraction procedure (Table 

2.). Unfortunately, the dark color of the alkenone-free biodiesel prevented us from obtaining CP or PP 

values due to limitations in seeing when the fuel starts to solidify. 

Table 7. Elemental Analysis. 

Sample %Carbon %Hydrogen %Nitrogen %Sulfur %Ash 

Freeze-dried Isochrysis 

sp. biomass 

50.49 6.83 7.24 1.15 5.8 

Hexane-extracted 

Isochrysis. biomass 

43.94 6.18 8.67 1.02 9.2 

Algal oil of Isochrysis   70.69 10.18 - trace* - 

Isochrysis FFAs 76.02 11.05 - trace* - 

Isochrysis Alkenone-Free 

Biodiesel 

78.55 10.96 0.77 trace* - 

Isochrysis Neutral Lipids 70.55 10.37 0.55 - 6.5 

* < 0.1%  Note:  The biodiesel would still exceed the sulfur specification in biodiesel standards 

according to our analysis as the specification for sulfur is well below 0.1%.   
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Decolorization of algal Biodiesel from Isochrysis sp. 

While the CP of our alkenone-free biodiesel clearly improved, our inability to measure a CP prevented 

us from confirming and quantifying our original hypothesis connecting alkenones to the obvious poor 

cold-flow properties of our crude biodiesel.  In an effort to measure the CP of our alkenone-

freeIsochrysis biodiesel, we investigated a method to remove pigments using MK10 clay. This 

procedure had been previously reported by Kulkarni and coworkers.71 Additionally, a comparison of 

fuel properties for our decolorized vs. non-decolorized biodiesel revealed insights into the impact of 

pigments like chlorophylls on fuel properties.  

 

Decolorization of the biodiesel using montmorillonite K 10 

Decolorization of our green alkenone-free biodiesel was performed by stirring over 20% (w/w) MK10 

for 1 h at 60 °C, which proved to be an efficient method in removal of pigments.  This could be seen 

qualitatively by the color change of biodiesel from dark green to a bright orange. During this process 

the MK10 changes from a white powder to black.  Upon storage of the decolorized fuel a small amount 

of grainy material precipitated out of the fuel (<10% w/w) and this material could be easily removed 

by decanting of if necessary through centrifugation.  The mass recovery for the particulate-free 

biodiesel were typically 85–95% (w/w). 

 

FAME analysis of decolorized Isochrysis biodiesel  

The FAME profile of the decolorized and non-decolorized biodiesel were nearly identical showing 

viability in the application of the decolorization process (Table 1).  For each biodiesel sample tested 

(one non-decolorized and three decolorized) the major fatty acid in the profile was 18:4, at 
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approximately 21 mg/g of crude FAME.  The non-decolorized biodiesel samples had the highest 

amount of polyunsaturated fatty acid content (Non-D, 42.4%) but, the decolorized all four samples 

were in a similar range (e.g. 39.7% = 10.3 (18:3) + 21.0 (18:4) + 8.4 (22:6) for D-Iso-1).  Other individual 

FAMEs for each of the individual batches are listed in Table 8.   

 

The D-iso-2 sample had been produced from an algal oil that was stored for two years at 20 °C and 

was found to have a slightly higher proportion of saturated algal FAMEs (30.6% vs. 26.5% for D-Iso-3) 

Table 8. Fuel Properties of Non-decolorized (Non-D) and Decolorized Isochrysis (D-Iso) 

Biodiesel Fuels.  

Property Non-D D-Iso-1 D-Iso-2d ASTM D6751 EN 14214 

Cetane number 36.53 42.3 48.4 47 min 51 min 

Kinematic 

viscosity (40°C, 

mm2/s)a 

2.46 3.38 3.76 1.9-6.0 3.5-5.0 

Oxidative 

stability (110C; 

h) 

0.06 0.35 0.05 3 min 6 min 

Cloud Point (°C) ND -6.0, -6.0c -5.8, -5.6c Report  

Pour Point (°C) ND -8.6, -8.4c -6.0, -6.0c Report  

Density (15°C, 

kg/m3) 

934.92 895.52 898.54 --- 860-900 

Lubricity (μm; 

60C; HFRR) 

260 131, 125c 136, 133c 520 max 

( ASTM D975) 

460 max 

(EN 590) 

Free glycerol 

(mass %) 

0 0.004 0.0045 0.020 max 0.02 max 

Total glycerol 

(mass %) 

0.029 0.025 0.033 0.240 max 0.25 max 

Monoglycerides 

(mass %) 

0.034 0.029 0.020 0.40 max 0.70 max 

Acid Value (mg 

KOH·g-1) 

ND 3.029 5.139  0.50 max 0.50 max 

Moisture  ND 345 ppm ND 0.05% max 

(v/v) 

500 max 

mg/kg 
aDetermined on an individual batch (~10 g) prior to blending. bLimits listed as given in the 

standards. cDuplicate measurements.dPrepared from an older algal oil, stored at ~20 °C for two 

years (ref. Table 1). eND = Not determined. 
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and a lower unsaturated FAME content, which is consistent with stability trends for these compounds.  

For all samples that were tested, 95% of the sample was identified as FAME.  It is worth noting that 

none of the FAME would meet the EN 14214 requiring <1% FAMEs with more than three double 

bonds.  The ASTM D6751 does not have this stringent limitation as the addition of antioxidants are 

used to overcome this issue in American markets.19 

 

Pigment removal and cloud point analysis of an Isochrysis biodiesel 

With regard to cold flow properties, the most stringent is the cloud point, which can be correlated to 

other tests such as cold filter plugging point.  Experimental data on CP values for algal biodiesel are 

quite rare with the exceptions being work by Suganya T., Rao YR and coworkers.67, 68  For example, the 

fairly extensive testing of a biodiesel from the microalgae Schizochytrium limacinum lacked a CP 

value.69  It could be that the overall unavailability of CP data for algal biodiesel is due to similar 

difficulties we have encountered with our initial Isochrysis  biodiesel being too dark to measure a CP.  

Like all photosynthetic organisms, Isochrysis also contains the chlorophylls and pheophytins pigments 

that have potential to degrade into compounds like pheophorbides.  It has been reported70 that 

chlorophyll and its derivatives have a detrimental effect on the stability of the vegetable oils.71   

Methods utilizing solid materials such as clays and activated carbon have been used to selectively 

chlorophylls and pheophytins from these mixtures.  The work by Issariyakul and Dalai is an example 

who showed the effectiveness of montmorillonite K 10 (MK10) clay for selectively removing pigments 

from greenseed canola oil for use in biodiesel production.72  

Application of Issariyakul and Dalai method using MK10 at a 20% (w/w) ratio to our green non-

decolorized biodiesel resulted a notable reduction in pigment content by visual inspection of color 

change (Figure 8).  Further UV-vis analysis of decolorized algal biodiesel showed an absence of 
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chlorophylls and pheophytins peaks in the absorbance spectrum of the now orange/red biodiesel.  

Likely the selective (90% mass recovery) interaction between the acidic MK10 and the pigments 

involves the Lewis basic site of the porphyrin structure.73 The CP values for our decolorized biodiesel 

fuels were expected to be low, but the actual values that were obtained (-6.0 and -6.0, duplicate 

analysis for D-Iso-1; -5.8 and -5.6 C duplicate analysis for D-Iso-2) were even lower than what would 

be predicted based on the FAME profile.  The pour points (PP) were also remarkably low taking into 

account the large amounts of saturated FAMEs in the profile (e.g. 15% C16:0).  For comparison, 

soybean biodiesel (SME) contains roughly 10% methyl palmitate (C16:0) and has CP and PP values of 

1 C and 0 C.  SME on the other hand also contains approximately 5% of even a higher melting point 

compound, methyl stearate (C18:0), where Isochrysisis only has trace amounts.  The CPs are easily 

influenced by small amounts of high melting point compounds and the difference between SME and 

our Isochrysisis biodiesel can be partially explained by the methyl stearate.  Efforts to explain the 

discrepancy between our biodiesel and refined predictive methods continue. 

 

Cetane number 

Prescribed minimum values of CN for commercial biodiesel are 47 and 51 according to the ASTM 

D6751 and EN 14214, respectively.  Our initial green Isochrysisis or non-decolorized biodiesel had a 

measured CN value of 36.5 (Table 2).  The decolorized samples both had higher CN values than the 

non-decolorized samples, where one meet the standards for the ASTM standards (42.3 and 48.4).  

When comparing and calculating values of CN care must be taken, as these values are not absolute 

and often variable.  For example, in a recent comprehensive evaluation of this value, the CN of methyl 

oleate was at best estimated to be within a range of 56-58 using data collected from 23 different CN 
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tests.74  Regardless, pigment removal from our Isochrysisis biodiesel improved the CN to a value very 

close to meeting US standards (avg. for samples = 45).  

 

 

Kinematic viscosity 

Biodiesel derived from algae with HiPUFAME content is expected to have low kinematic viscosity, 

although some with higher KV have been reported.75  For our non-decolorized fuel we reported a 

viscosity of 2.46 mm2/s at 40 °C, which was lower that the predicted kinematic viscosity of 3.2 mm2/s, 

calculated from our FAME profile.76  Attempts to check this value were not fruitful, as samples tested 

for accuracy of our original sample, consistently plugged viscometer tubes due to the presence of 

some insoluble material.  However, our final decolorized biodiesel product was free of these 

problematic particulate and we were able to collected data from two samples.  We measured 

kinematic viscosities of 3.38 and 3.76 mm2/s which were similar to the predicted value based on the 

FAME profile (3.2 mm2/s).  Our decolorized samples kinematic viscosity are on the low end of the 

range for the ASTM D6751 prescribed standards and close to the minimum required value in EN 

14214.  While our sample did not meet the minimum viscosity of 3.5 mm2/s in the EN 14214, it is not 

clear as a why this is a prescribed requirement, as conventional petrodiesel fuels generally exhibit 

viscosity values below 3.5 mm2/s. 

 

Oxidative stability 
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Non-decolorized Isochrysis biodiesel suffers from poor oxidative stability with values well below the 

ASTM minimum specification.  The reason for this is the presence of the primarily high PuFAME in the 

fuel, where fatty acids with greater unsaturation results in lower oxidative stability (Table 9)62, 

although pigments have also been shown to have an adverse effect on biodiesel oxidative stability.77  

The highest oxidative stability among all of the samples tested would therefore be predicted to be D-

Iso-2, which had a higher proportion of saturated fatty acids and also lacked the presence of harmful 

pigments.  D-Iso-2 in fact had a lower oxidative stability than D-Iso-1 (0.05 h vs. 0.35 h) and essentially 

the same value as the non-decolorized biodiesel (0.06 h).  All of the oxidative stability for the samples 

Table 9. FAME Composition of Non-Decolorized (Non-D),23 and Decolorized Isochrysis Biodiesel 

(D-Iso) Samples. 

FAMES Non-DA  D-Iso-1 D-Iso-2D D-Iso-3 

14:0 13.9 14.3 17.1 16.4 

15:0 0.2 ND 0.4 trace 

16:0 11.0 10.1 12.4 10.1 

16:1 Δ9 5.9 7.0 6.6 7.6 

16:2 0.6 NDF trace ND 

16:3 0.7 ND ND ND 

18:0 Trace ND 1.1 Trace 

18:1 11.4B 10.8B 11.0B 12.1 

18:2 7.4 9.9 6.5 8.1 

18:3 6.8C 10.3C 6.9C 8.5 

18:4 20.7 21.0 18.3 19.8 

18:5 1.6 ND ND ND 

20:5 1.6 ND ND ND 

22:5 1.1 ND ND ND 

22:6 10.6 8.4 8.2 6.9 

Σ 94.9 91.8E 88.5E 89.8E 

AAverage values from three separate samples. BCombined 18:1 Δ9 + 18:1 Δ11. CCombined 

Δ6,9,12 and Δ9,12,15 isomers. DPrepared from an older hexane algal oil that was stored at ~20 °C 

for two years before being used for this study. EThe remaining material is roughly 50:50 other 

FAMEs and non-FAME components (Total ~95% FAME).FND = Not detected. 
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where however quite low, so the difference would likely not have a major effect on any practical 

applications of the fuel production.  D-Iso-2 also had the lowest percentage of Identified FAMEs 

(88.5%).  Minor undetermined components in the sample might have a greater effect on the oxidative 

stability than predicted. 

 

Lubricity and density 

Lubricity is becoming an increasingly important and recognized property in the field of biodiesel with 

more stringent limitations on sulfur content due to environmental implications.  The HFRR wear scars 

of the decolorized Isochrysis biodiesel samples were well below the maximum wear scars of 460 μm 

and 520 μm prescribed in the standards EN 590 and ASTM D975, respectively.  The values collected 

(131 and 125 μm, duplicate analysis for D-Iso-1; 136 and 133 μm, duplicate analysis for D-Iso-2) show 

improvement from the non-decolorized biodiesel (260 μm), and  values are now more in line with 

measured lubricities for other commercial biodiesel from other feedstocks (e.g. soy-derived biodiesel 

around 130 μm).78   

The value of fuel density relates to fuel performance (e.g. within the injection system).  Biodiesel and 

petrodiesel have different densities which raises concerns about potential mismatching of engine 

parameters when using biodiesel in engines optimized for petrodiesel.79 As a result, the European 

standard EN-590 232 establishes a density range for diesel fuels of 820–845 kg/m3 at 15 °C.  Biodiesel 

fuels usually have higher density values than petroleum. Care must therefore be taken in measuring 

accurate densities to calculate appropriate blend ratios that will meet this specification.  Again, the 

availability of experimental density data for algal biodiesel fuels is limited.80-82 While data is limited, 

density values can be predicted from FAME profiles using linear mixing rules and the known densities 

of neat FAMEs.62 Our measured density for non-decolorized Isochrysis biodiesel at 15 °C was 934.92 
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kg/m3, above the maximum (900 kg/m3) prescribed value in EN 14214.  After decolorization, the 

densities measured were 895.5 and 898.5 kg/m3 for D-Iso-1 and D-Iso-2 respectively, which now just 

fall within the EN 14214 range (max. = 900 kg/m3).76  The FAME profiles for the decolorized and non-

decolorized samples were essentially the same, which would suggest that the change in density 

observed between the decolorized and non-decolorized is related to the pigments present in the fuel 

(ref. Table 1).  Additional experiments are needed to understand how such low levels of these 

compounds could cause these changes.  

  

Glycerol and FFA and moisture content 

Glycerol, FFA, and moisture content (345 ppm for D-Iso-1) have not been an issue for the fuel that we 

produce through our method according to ASTM D6751 and EN-14214.  On the other hand, the acid 

values exceed the limitations according to these specifications.  The reason for this specification is 

that acidity of diesel fuel can cause corrosion that could result in the formation of engine deposits.83 

In our processing we first convert all of the triglycerides to FFAs. The acid value therefore represents 

the percent yield for the esterification step, or 98.6% (Acid Value = 3.029 = 1.383% FFAs) and 97.7% 

(Acid Value = 5.139 = 2.347% FFAs) for D-Iso-1 and D-Iso-2, respectively.  The ASTM D6751 and EN-

14214 acid value limit of 0.50 corresponds to an exceedingly low FA content of approximately 0.25%, 

meaning we would need to achieve an esterification yield of 99.75%. Alternatively we might reduce 

the acid value of the final product by other means.84 Future work on the project will include efforts in 

optimization of this parameter toward the production of a commercially viable Isochrysis biodiesel. 
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Comparison of Biodiesel Production with Isolation of Alkenones from Two 

Commercial Isochrysis Sources 

 

Isochrysis is one of only a select number of algal species farmed commercially and is harvested as a 

major component of shellfish food.  The availability of the algae used and the standard methods 

employed in this work, are in efforts to make this protocol presented widely accessible to other groups 

for further investigations.  It is expected that the yields may differ as a result of different strains and 

cultivation methods used in the growth period33.  Yields may also be impacted by the nature of the 

product and any additional processing (e.g. drying or freezing) methods by the supplier.  To test this, 

we purchased two different types of commercial Isochrysis products: a wet paste (80% water) from 

Reed Mariculture (San Jose, CA) and a dry (95% dry) milled powder from Necton S.A (Olhão, Portugal).   

 

The starting dry biomass material from Reed and Necton has stark differences in color (Figure 9), 

however after extraction,the corresponding hexane algal oils (i.e. Iso-paste-hAO and Iso-powder-

hAO) were indistinguishable, both dark green/near black solids with melting points of approximately 

50 °C. Yields of the algal oils were however different, 12% w/w of the Iso-paste-hAO and 7% w/w of 

 

Figure 9.  Comparison of algal biomass from commercial 

sources (Nekton left and Reed right) 
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the Iso-powder-hAO.  Another difference was the ratio of FFAs to neutral lipids within the two hexane 

extracts.   After the algal oil was saponified and the neutral lipids were separated, we typically obtain 

60% (w/w) FFAs and 40% (w/w) neutral lipids from the Iso-paste-hAO. The Iso-powder-hAO produced 

on average 46% (w/w) FFAs and 54% (w/w) neutral lipids.  This leads us to believe that the starting 

algal powdered biomass either contains higher amounts of neutral lipids or Soxhlet extraction of the 

biomass with hexanes is somewhat selective for neutral lipids.  In addition to the product yields from 

the two commercial biomasses being different, there were also differences within the fatty acid 

profiles of the resulting biodiesel.  This is important because the fuel properties of the biodiesel are 

directly dependent on the nature and contents of individual FAMEs.85 As previously mentioned, to be 

commercialized, all biodiesel must conform to the standards described in the documents ASTM D6751 

or EN 14214 in the U.S or Europe respectively.  Overall, the FAME profile of biodiesel produced from 

the Necton biomass was similar to those previously tested, such that we can predict that certain fuel 

properties will be similar for both biodiesel fuels. For instance the polyunsaturated fatty acids 

(PuFAMEs, more than two double bonds) account for approximately 40% of both FAME mixtures 

(35.2% and 39.9%, Table 10). This will empirically result in poor oxidative stability and favorable cold-

flow values.85 While there are many similarities, there are slight differences in the FAME profiles of 

the two biodiesel samples. Algal biodiesel produced from the powdered Necton contained higher 

amounts of 14:0 (19.4 mg/g vs. 16.4 mg/g), 18:3 (13.5 mg/g vs. 8.5 mg/g), and 22:6 (11.0 mg/g vs. 6.9 

mg/g) FAMEs, and lower amounts of 18:4 (10.4 mg/g vs. 19.8 mg/g).  The extent to which these 

differences effect the ASTM properties of the fuel remains to be investigated.  Both biodiesel samples 

from Reed and Necton were similarly dark green in color, which is explained by the presence of 

pigments, such as chlorophyll.86 Chlorophyll, its derivatives and degradation products have been 

shown to have a negative effect on the stability of vegetable oils and their corresponding biodiesel.71,72  

Again using the previously mentioned method of Issariyakul and Dalai,72 stirring our green biodiesel 
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over 20% (w/w) MK10 at 60 °C for 1 h resulted in a dramatic reduction in pigment content by visual 

inspection (Figure 10). Mass recoveries for the decolorization process were on average 90%.  Yields 

of the alkenones from Iso-paste-hAO and Iso-powder-hAO neutral lipids were comparable at 40% and 

46% w/w respectively.  Since neutral lipids represent a higher proportion of material contained in the 

Necton algal oil, the alkenone yield from the Necton exceeds the Reed yield by approximately 10% 

(25% w/w vs. 16% w/w). Though, we taking into consideration that yields of the Necton algal oil were 

lower than Reed algal oil (15% vs. 20% w/w), overall yields of alkenones from both dry Isochrysis 

biomasses are more similar (0.2 x 0.4 x 0.4 = 3.2% w/w from dried Reed and 0.15 x 0.54 x 0.46 = 3.7% 

from Necton).  

 

  

Table 10.  FAME composition of 

biodiesel produced from 

commercial Iso-Paste and Iso-

Powder Isochrysis sp.  

 

 

 

Figure 10. Comparison of non-decolorized (left) and 

decolorized (right) Isochrysis biodiesel fuels. 
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Chapter 4:  Isolation of value added products from Isochrysis sp. 

 

 

 

Our work has demonstrated that high-quality biodiesel can be produced from a common algae in large 

volumes, and that has passed a battery of ASTM standards. Nonetheless, challenges remain for the 

production of a commercial product.  Critics of algal biofuel programs tend to focus on projected costs 

of the overall process, echoing one conclusion from Sheehan’s report on the United States 

Department of Energy-sponsored Aquatic Species Program (ASP).14  For instance in a recent 

perspective on microalgal transportation fuels,91 van Beilen argues that “only if the algal biomass is a 

byproduct of the production of high-value compounds such as astaxanthin or β-carotene, 

commercially viable energy production from algal biomass might be feasible.” Many others including 

Chisti92 and Wijffels93 have stressed the importance of value added coproducts as a necessary 

component of algal biofuel production.  

 

Scheme 5.  Introduction of functionality to alkenone subunit via cross metathesis. 
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In fact, the United States Department of Energy (DOE) “National Algal Biofuels Technology Roadmap” 

(NABTR) identifies valuable coproducts as one of the key reasons for exploring algae as a source of 

biofuels.94 Our processing of Isochrysis into biodiesel involves separation and isolation of alkenones. 

In addition to improving the fuel properties of the biodiesel, these alkenones could represent a 

secondary product stream. Alkenones contain a number of trans-double bonds. As shown in Scheme 

5, reaction of these double bonds via cross-metathesis would produce smaller fragments. Depending 

on the choice of cross-metathesis partner, different size products could be formed which would 

represent different fuel ranges (e.g. C10 – C16 = kerosene/jet fuel).  

 

Production of Jet Fuel Range Hydrocarbons as a Coproduct of Algal Biodiesel 

by Butenolysis of Long-Chain Alkenones 

We decided to investigate jet fuel as a potential alkenone-derived cross-metathesis product. 

Alternative aviation fuels are an important target due to the fuel requirements for high performance 

jet engines95. Before attempting any reactions, we isolated and purified the alkenones from the 

neutral lipid fraction containing other compounds including pigments such as chlorophylls and 

carotenes.96 This was a challenging due to the low solubility of the alkenones in a wide variety of 

organic solvents (e.g., hexanes, diethyl ether, acetone, ethyl acetate).  After optimization and 

investigation of the method, the dark colored pigment containing material, could be removed.  This 

was done by applying the decolorization technique previously used on non-decolorized biodiesel to 

the neutral lipids.  Where the neutral lipids were dissolved in minimal amount of hexanes, heated to 

60 °C and to the solution MK10 was added as a 20% w/w ratio.  The MK10 was then removed by 

filtration and the resulting material was then further purified by flushing it through silica using a 

minimal amount of dichloromethane (DCM) as eluent.  The eluent, now containing mostly alkenones 
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with minimal pigments, was then decolorized once more.  Upon removal of the solvent, the resulting 

orange-colored solid was further purified by recrystallization with hexanes affording analytically pure 

alkenones as a white solid.  This procedure generally resulted in 40% isolated yield (w/w) from the 

neutral lipids or 3.2% of the Isochrysis dry biomass (Figure 11), which is close to the total alkenone 

content of 5% that we determined previously.   

 

Analysis of the purified alkenones by gas chromatography and comparison to standards revealed the 

presence of C37:3 (42%), C37:2 (27%), C38:2 (23%), and C38:3 (5%) alkenones with the small 

remainder accounted by C39:3 (1%) and C39:2 (2%) (Using nomenclature defined in Chapter 2). 

 

Cross-Metathesis of Alkenones with 2-Butene 

Olefin metathesis has long been embraced by the synthetic organic and polymer communities97, often 

used to create larger molecules from small alkene-containing starting materials as in the case of cross-

 

Figure 11.  Isochrysis extraction and 

fractionation scheme with yields given in 

parentheses for the different products obtained 

from each step. 
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metathesis.  These reactions typically occur with the release of ethylene gas, which serves as an 

entropic driving force. The opposite process, which is, the addition of ethylene across a double bond 

(“ethenolysis”), would result in creating two smaller subunits. Ethenolysis of FAMEs and other fatty 

acid derivatives using Grubbs’-type ruthenium initiators has been reported, as a method for producing 

valuable smaller hydrocarbon mixtures from renewable feedstocks.98−105 One challenge associated 

with ruthenium-catalyzed ethenolysis is that this reaction requires propagation of a ruthenium 

methylidene species that is prone to decomposition (X = H, Scheme 6).106 

 

 

 

 

 

 

 

Additionally, the products containing terminal alkenes have a tendency to undergo the reverse self-

metathesis and yields tend to be modest (∼40−60%).106 One strategy to improve this approach is to 

use 2-butene in place of ethylene (X = Me), thus avoiding formation of a ruthenium methylidene and 

producing methyl capped alkene products that are less reactive toward selfmetathesis.107  Recent 

work by Patel and co-workers reported the rapid and high-yielding cross-metathesis reaction of 

methyl oleate (methyl (9Z)- octadecenoate) with 2-butene in the presence of the second-generation 

Hoveyda−Grubbs catalyst (Ru-HG) to produce methyl 9- undecenoate and 2-undecene (Scheme 7).107   

Scheme 6. Mechanism of Ethenolysisa and Butenolysisb 
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Certain fundamental structural differences between long chain alkenones and FAMEs need to be 

considered when applying these reaction conditions to alkenenones.  The alkenones contain trans 

alkenes as opposed to the more metathesis reactive cis-reactive configured double bonds found in 

FAMEs.  Secondly, the limited solubility of the alkenones in organic solvents used in olfin metathesis, 

especially the cold temperatures required to condense 2-butene (trans-2-butene, bp = 0 °C).  This 

made it uncertain whether the alkenones would even dissolve in solution and, if so would the trans 

double bonds be reactive enough to engage with the catalyst at low temperatures.  Results from the 

cross-metathesis reactions of isolated alkenones with 2-butene using Grubbs’ first- (Ru−I) and second-

generation (Ru−II) catalysts 42 and Ru-HG 43 are summarized in Table 2.   

All of the performed butenolysis reactions were done with an excess of 2-butene (15 equiv, calculated 

as 5 equivalents per alkene for the most abundant (37:3) alkenone in the starting mixture) to drive 

the equilibrium toward products using 2 mol % of the catalyst.  After 18 h at 4 °C, the alkenones were 

consumed when using both catalysts Ru−II and Ru-HG (Entries 1− 3, Table 11), whereas Ru−I gave only 

70% conversion under these same conditions (Entry 4).  Interestingly Patel and coworkers reported 

very low conversion (>1%) for the butenolysis of methyl oleate with cis-2-butene (10 equiv) using both 

Scheme 7. Alkenone Butenolysis Reaction 
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Ru−I and Ru− II.  This is likely due to the differences in reaction conditions, as the reaction with methyl 

oleate was conducted at a lower temperature (−5 °C), catalyst loading (0.1 ppt), and times (2 h).107   

 

Patel’s work with methyl oleate using Ru-HG at −5 °C for 2 h gave nearly quantitative conversion was 

reported and upon closer examination was essentially complete within 30 min.107  Butenolysis of 

alkenones using either cis- or trans-2- butene in the presence of Ru-HG appeared similarly rapid with 

100% conversion observed after 1 h (Entries 6 and 7).  1H NMR was not remarkably effective at 

monitoring the alkenone butenolysis reactions as the measured spectra were essentially identical.  

Table 11. Results from Butenolysis Reactions of 

Alkenone Mixtures Isolated from Isochrysis 

 

aAll reactions were performed by adding alkenones (100 mg) to 

condensed 2-butene (15 equiv) at −78 °C followed by solvent (1 mL) 

and catalyst. The flask was then sealed and placed in a refrigerator (4 

°C, Entries 1−7) or ice bath (0 °C, Entries 8−17) for the indicated time 

before quenching with ethyl vinyl ether (50 equiv) and concentrating 

in vacuo. bSamples were completely dissolved in DCM before analysis 

by GC−FID. bPercent conversions for the butenolysis reactions were 

determined by comparing the integration ratios for combined 

alkenones to methyl stearate (inert internal standard) relative to a 

starting alkenone/methyl stearate reference mixture. For those 

reactions reported as 100% conversion, no alkenone signal was 

detectable by GC−FID. 
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GC-FID, however was useful for monitoring the reaction mixture as it showed 100% consumption of 

the alkenones (Figure 11). 

 

What was equally diagnostic of reaction completion was the dramatic change in reaction appearance 

upon successful butenolysis.  At the beginning of the reaction, the white alkenones seem to be 

completely insoluble and after conversion to butenolysis products using RU-II or Ru-HG the mixture 

becomes homogenous and takes on a dark brown to black color.  In an attempt to understand the 

kinetics of the reaction, we made efforts to monitor the progress of the reaction using the standard 

method employed by Patel and coworkers for their buteneolysis of methyl oleate107.  Aliquots were 

 

Figure 12. GC−FID chromatograms for starting alkenones (a) and butenolysis products (b) 

obtained by reaction with cis-butene and catalyst Ru-HG 

for 1 h (Entry 6, Table 2) showing complete consumption of the alkenones. For those reactions 

giving incomplete conversion, undissolved 

alkenones could be observed in the reaction mixture (inset). 
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removed from the reaction mixture via syringe that were then quenched by addition of ethyl vinyl 

ether108 and analyzed by GC−FID (Result in Figure 13).  

 

 

Percent conversions were calculated by comparing the GC−FID area ratio of alkenones to methyl 

stearate as an inert internal standard relative to an alkenone/methyl stearate reference mixture.  The 

kinetics were quite unexpected for the reaction first showing an apparent decrease during the first 10 

mins and then a return to near completion 25 min later. We interpret these results to represent a 

 

Figure 13.  Results from butenolysis kinetic experiments by analyzing 

aliquots from a single reaction. Percent conversions were calculated 

by comparing the GC−FID area ratio of alkenones to methyl stearate 

(inert internal standard) relative to an alkenone/methyl stearate 

reference mixture. The apparent decrease during the first 10 min is 

due to initial alkenone solvation. 
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dynamic system of alkenone solvation and butenolysis.  Initially, the alkenone concentration in the 

solvent sampled is low due to poor solubility. Over time the dissolved alkenone concentration 

increases resulting in a lower calculated percent conversion. After 10 min where the decrease in seen, 

the rate of butenolysis appears to exceed the rate of alkenone solvation and the calculated percent 

conversion increases.  In efforts to acquire accurate rate data, it was found necessary to perform 

multiple individual butenolysis reactions quenched at different time increments.  Entries 8-17 in Table 

11 show the results from the individual reactions.  After sampling and quenching, samples from each 

reaction mixture were completely dissolved in DCM prior to analysis by GC−FID to avoid any solubility 

issues.   Several interesting observations were made during the course of this somewhat laborious 

process. As expected, catalyst Ru-HG outperformed catalyst Ru−I, with only 16.7% conversion 

recorded for Ru−I after 6 h (Entry 12).  The reaction with Ru-HG was exceptionally fast and gave 

greater than 90% conversion after only 20 min.  The reaction was essentially complete within 30 min 

(Entries 9 and 10). These results are very similar to those reported by Patel and co-workers for the 

butenolysis of methyl oleate.107 This is quite remarkable with consideration of the structural 

differences noted earlier between the alkenones and this FAME.  The reaction with trans-2-butene 

had significantly lower conversion at the 15 min mark (Entry 16) and this may result due to a more 

rapid initiation of cis-2-butene by the parent catalyst.  After 30 min the reaction still gave >95% 

conversion (Entry 17).  The solvent selected for these reactions was DCM, as it had demonstrated the 

greatest solubility, despite its use being undesirable for any “green” processing.109 With this concern 

in mind we examined the reaction in toluene (PhMe), a more tolerated solvent, that showed some 

alkenone solubility and is often used in olefin metathesis reactions. Reactions performed in toluene 

gave lower conversions at 10 and 20 min when compared to those in DCM (Entries 8 and 9 vs 13 and 

14), likely a reflection of diminished alkenone solubility.  Regardless, the butenolysis in toluene was 

still very efficient giving comparable conversion (98%) after 30 min at 0 °C (Entry 15).   
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Scheme 8 shows the expected products from complete butenolysis of the major alkenone (methyl 

37:3) out of the PULCA’s isolated from Isochrysis.  The actual product mixture is much more complex 

as our butenolysis reactions use a mixture of alkenones not just the pure 37:3, but the complete set 

of alkenones extracted from the biomass that ranged from 37 to 39 carbons with 2−3 double bonds 

and methyl or ethyl ketones.  Plus, there is also the potential for incomplete butenolysis products 

along with cis- and transisomers. The actual product mixture is therefore quite complex.  For this 

reason, we chose to use comprehensive two-dimensional gas chromatography (GC×GC) to analyze 

select butenolysis reactions.  

Like one dimensional GC, GCxGC works by separating gaseous compounds based on their affinity with 

the solid stationary phase.  However, GCxGC employs two serial joined columns, which each have 

different stationary phases and allows for greater separation of similar compounds.  GCxGC has higher 

 

Scheme 8. Comparison of Methyl Oleate and Alkenone Butenolysis Reactions 
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chromatographic resolution increases the signal-to-noise ratio and compounds are separated based 

on two physical properties (e.g., vapor pressure and polarity depending on choice of column 

stationary phase), which results in grouping of chemical classes in a GC × GC chromatogram.  

Combining of both GC × GC with a flame ionization detector (FID) allows for the quantification of 

numerous unidentified compounds because most hydrocarbons have similar response factors.110 

The specific alkenones present in the samples were able to be identified by comparison of their mass 

spectra with published elution order on GC columns111, textbooks, and recent studies detailing 

alkenone structure analyisis.112, 113 Relative amounts of individual alkenones were determined by 

GC−FID, which had results that correlated well with those previously reported for the same Isochrysis 

strain used in our study (Table 3).114 

 

Based on the alkenone profile the products of the buteneolysis reaction can be predicted.  For 

instance each of the C37 and C38 alkenones should produce 2-heptadecene (2) and two equivalents 

of 2,9-undecadiene (3) (Scheme 8). The buteneolysis product of C37 and C39 would give 3 along with 

8-decen-2-one (1).  With consideration to the relative alkenone percentages, this would give a 

distribution outlined in Table 12, where compounds 1, 2, and 3 represent 83% of the products.  A 

typical GCxGC chromatogram of the butenolysis products obtained by reaction of our alkenone 

Table 12. Alkenone Composition and Expected Butenolysis Products 
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mixture with cis-2-butene using catalyst Ru-HG, can be seen in Figure 5.  The butenolysis was complete 

in times under 30 mins in DCM at 0 °C (refer to Entry 3, Table 11).115  

 

Each of the major products predicted of 1, 2, and three are clearly identifiable in the GCxGC spectrum.  

For both 1 and 3, two peaks are clearly visible with integration ratios from the GC × GC−FID of 3.9:1 

that were able to be assigned as the trans- and cis-isomers, respectively. Patel and co-workers also 

 

 

 

Figure 14. GC × GC−FID chromatogram of the alkenone butenolysis product mixture obtained 

after 30 min using cis-2-butene and catalyst Ru-HG. Molecular ion identifications were made by 

analyzing equivalent peaks in the GC × GC−TOF chromatogram. Note the exceptional resolution 

allowing for identification and quantification of E,Z isomers. 
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reported a 4:1 trans:cis ratio for 2-undecene obtained by butenolysis of methyl oleate.107 Three peaks 

in our alkenone butenolysis product mixture were identified with m/z = 152 in a ratio of 17.9:7.5:1 

that have been assigned to the three possible isomers for 2 (E, E-, E, Z- and Z, Z-).  Other signals include 

cis- and trans-9-undecen-3-one (m/z = 168) obtained from the 38:3 ethyl alkenone contained in our 

sample and catalyst-derived 1-isopropoxy-2-(propenyl) - benzene (m/z = 176).  The ratio of the 

butenolysis products 1:2:3 by GCxGC FID analyisis was found to be 1:2.0:2.5 respectively.  This is 

slightly different than what would be predicted from the alkenone profile (1:2.3:3.4).Upon closer 

inspection of the GC × GC−TOF chromatogram data showed the presence of multiple unexpected 

products compared to those shown in Table 12 that could be responsible for this discrepancy.  In the 

“n-alkene” region of the chromatogram, in addition to expected products C17 and C19, there were 

also unexpected minor products with shorter chain hydrocarbons (C16 and C18).  For each of these 

there were two peaks with area ratios of approximately 1:4, consistent with our previous cis- and 

transisomer assignments107.   

2-octadecene (C18) could have arisen from our sample containing very small amounts of a 38-methyl 

or 39-ethyl alkenone.  Extending the argument futher, hexadecene formation could have been formed 

from a methyl C36 alkenone that we did not detect in our sample nor has a C36 alkenone been 

reported for Isochrysis elsewhere.  However, this could also be explained by double bond 

isomerization which occurred during the cross-metathesis reaction.  However, it is interesting that 

only C16−C19 alkenes were detected for our butenolysis conducted at both short (e.g., 30 min) and 

longer (18 h) reaction times rather than the larger range of alkenes that could be envisioned from an 

isomerization process.  Yet another possible reason is that Isochrysis biosynthesizes trace amounts of 

alkenones with differing double bond positions.  This would also a possible explain the peak with m/z 

= 166 present in the diene region of the chromatogram that we have identified as 2,10- dodecadiene.    

 



 

 62 

 

Synthesis of an alkenone-derived polyester monomer via cross metathesis 

 

With continuing efforts towards investigating reactions that convert alkenones into a value added 

product, we decided to use cross metathesis to introduce ester or carboxylic acid functionality 

(Scheme 10). One product from these reactions would be a diester (or diacid) that could presumably 

be polymerized to to make new materials (e.g. polyester) (Scheme 9.)  To test this, isolated alkenones 

were treated with the Hoveyda-Grubbs catalyst (Ru-Z) in the presence of an excess of methyl acrylate 

(15 equiv) in DCM at room temperature.  

 

Figure 15. GC × GC−TOF chromatogram “plan view” of the alkenone butenolysis products 

mixture showing separation of compounds into different subclasses and identification of several 

trace unexpected products including hexadecane (C16), octadecene (C18), and 2,10-dodecadiene 

(m/z 166). 
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Figure 16 is the GC×GC-TOF chromatogram from this reaction, showing complete consumption of the 

alkenones and formation of the three expected subclasses of cross-metathesis products (diesters, 

ketoesters, and mono-esters).  While the reaction appeared to have proceeded cleanly, the ratio of 

 

Scheme 9.  Diacid and diol formation of polyester 

 

Figure 16. GC×GC-TOF chromatogram of product mixture obtained by cross-metathesis of 

alkenones with methyl acrylate catalyzed by the Hoveyda-Grubbs catalyst. Due to differences in 

polarity, the three subclasses of compounds (dimethyl esters, methyl ester ketones, and mono 

methyl esters) appear in different regions within the chromatogram. 
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products we obtained was different than what would be expected based on our alkenone profile.  

Specifically, from each of the alkenones identified, we can predict their corresponding cross-

metathesis products and determine the overall product distribution based on their relative 

contributions (Scheme 10).  From this analysis, we would predict that the major component would be 

the diester dimethyl (2E,9E)-undeca-2,9-dienedioate at 38%. However the major product proved to 

be methyl (E)-heptadec-2-enoate (42%, Figure 17). Other values were however close to what was 

predicted.  Recall that the butenolysis reaction also gave a slightly different ratio of products that 

what was predicted (1:2.0:2.5 vs. 1:2.3:3.4) that we explained by the possibility of alkene 

isomerization occurring during the reaction. In an attempt to suppress isomerization during the 

methyl acrylate metathesis reaction, we set out to investigate the use of additives that had been 

reported to do so.  

 

Figure 17. Comparison of predicted vs. actual amounts of methyl acrylate alkenone cross-

metathesis products. 
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While the exact mechanism(s) responsible for this isomerization are unknown (metal-based hydride, 

ð-allyl, or other pathways)116, 117 recent reports indicate that the ruthenium hydride species (Figure 

  

Scheme 10. Methyl acrylate cross-metathesis from the major alkenone components in our sample 

(value in parentheses is the relative percent composition). 
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18), formed from the decomposition of the ruthenium metathesis catalysts can catalyze the migration 

of olefins under metathesis conditions.118  

 

Work by Soon Hyeok Hong and coworkers, showed that moderate pKa acids, such as acetic acid or 1,4-

benzoquinone, work well in preventing olefin migration during olefin metathesis reactions.  They 

demonstrated that both acetic acid and 1,4-benzoquinone were effective in preventing the 

isomerization during the ring-closing metathesis of diallyl Ether.  Soon et al. also investigated radical 

scavengers as additives, such as BHT, TEMPO, phenol, and 4-methoxyphenol, but in general these 

were not as effective in preventing isomerization.119  Recently it has been reported that quinones are 

reduced to the corresponding hydroquinones upon reacting with ruthenium hydrides and abstracting 

the proton.120  For the purpose of our work with alkenones we decided to use phenol and 1,4-

benzoquinone as isomerization inhibitors of olefin metathesis.  In this study we performed CM 

reactions between alkenones with methyl acrylate using Grubbs’ second-generation catalyst (137) or 

the Hoveyda catalyst (138) with our without phenol (Ph) or benzoquinone (Bz). These reactions were 

also performed using acrylic acid instead of methyl acrylate as the cross-metathesis partner. Data 

from these reactions obtained by GC×GC-TOF are presented in the Tables 13-15.   

 

 

 

Figure 18.  Ruthenium hydride species formed 

from decomposition of Ruthinium metathesis 

catalyst. 
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As can be seen, the ratio of products from each of these reactions was essentially identical. An 

examination of the GC×GC-TOF chromatograms, however, revealed that those reactions containing 

benzoquinone gave many additional high molecular weight compounds products (Figure 19).  

  

 

Table 13-15.  Comparison of monomer products from influences of metathesis additives. 

137 no add 137 no add 137 Ph 137 Ph 137 BZ 137 BZ

Name peak area % total area peak area % total area peak area % total area

methyl (E)-9-oxadec-2-enoate 446699506 6.79 462495334 5.49 354349099 8.26

dimethyl (2E,9E)-undeca-2,9-dienedioate 1368095447 20.79 1906440342 22.63 687041439 16.01

methyl (E)-heptadec-2-enoate 3015503000 45.83 3859547294 45.82 2212443949 51.56

methyl (E)-16-oxoheptadec-2-enoate 1270451072 19.31 1599570420 18.99 760631498 17.72

methyl (E)-16-oxooctadec-2-enoate 478742201 7.28 595881052 7.07 276874574 6.45

total area 6579491226 8423934442 4291340559

138 no add 138 no add 138 Ph 138 Ph 138 BZ 138 BZ

Name peak area % total area peak area % total area peak area % total area

methyl (E)-9-oxadec-2-enoate 476629325 5.45 396840081 4.60 402003579 4.61

dimethyl (2E,9E)-undeca-2,9-dienedioate 2403934684 27.49 2343267901 27.16 2374700918 27.23

methyl (E)-heptadec-2-enoate 3666398346 41.93 3755814671 43.54 3718915461 42.64

methyl (E)-16-oxoheptadec-2-enoate 1602979228 18.33 1558761369 18.07 1626437823 18.65

methyl (E)-16-oxooctadec-2-enoate 593947661 6.79 571901112 6.63 600279998 6.88

total area 8743889244 8626585134 8722337779

139 no add 139 no add 139 Ph 139 Ph 139 BZ 139 BZ

Name peak area % total area peak area % total area peak area % total area

methyl (E)-9-oxadec-2-enoate 515438812 6.33 487636534 6.58 264772357 6.94

dimethyl (2E,9E)-undeca-2,9-dienedioate 2216710201 27.22 1933768155 26.09 497693993 13.04

methyl (E)-heptadec-2-enoate 3518474397 43.21 3287068480 44.35 2033973227 53.30

methyl (E)-16-oxoheptadec-2-enoate 1382895239 16.98 1246380382 16.82 752971036 19.73

methyl (E)-16-oxooctadec-2-enoate 509574115 6.26 455978607 6.15 275679448 7.22

total area 8143092764 7410832158 3825090061
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Some of the products obtained can be explained by incomplete metathesis (e.g. m/z = 378) while 

others such as the C30 – C32 n-alkenes are not as clear. Future work will be aimed at better 

understanding the formation of these products and the impact of benzoquinone as an additive (Figure 

20).  

 

 

 

Figure 19. GC×GC-TOF chromatogram of the alkenone/methyl acrylate cross-metathesis reaction 

using Grubbs’ second-generation catalyst conducted in the presence of benzoquinone. The boxed-in 

area shows higher molecular weight compounds that were not observed in the reaction without the 

additive (see Figure 16) 

 



 

 69 

 

Fucoxanthin Isolation from Waste Algal Biomass as an Added Coproduct to 

Isochrysis Biofuels 

Based on our previous work with algal biodiesel synthesis (Chapter 3), we have developed a method 

for the isolation of a valuable carotenoid fucoxanthin in parallel with the production of two liquid fuel 

streams from the marine microalgae Isochrysis based on selective extractions. The fucoxanthin is 

 

Figure 20. GC×GC-TOF chromatogram of the alkenone/methyl acrylate cross-metathesis reaction 

using Grubbs’ second-generation catalyst conducted in the presence of benzoquinone showing 

identification of incomplete metathesis products and n-alkenes. 
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extracted after the dry algal biomass is first extracted with hexanes in a Soxhlet apparatus to extract 

lipids containing both triglycerides and long-chain alkenones (C36-C39). The residual waste biomass 

is then extracted with ethanol to afford a fucoxanthan-rich algal oil (~20% w/w) representing near 

total amounts of fucoxanthin contained within the initial biomass. This technique gives near 

quantitative isolation of a valuable coproduct to potentially and has potential to offset algal biofuel 

production costs. 

Many critics state that algal biodiesel is not feasible91 in competition with petroleum fuels.  For 

instance van Beilen who echoes the sentiments of many opponents of algal biofuels and argues that 

“only if the algal biomass is a byproduct of…the production of high-value compounds such as 

astaxanthin or β-carotene, commercially viable energy production from algal biomass might be 

feasible.”  Our investigation of fucoxanthin and its extraction conditions from waste biomass are in 

efforts to answer these concerns. There has been an increased emphasis on opening dialog about the 

potential for the isolation/production of value added coproducts to augment and offset the cost of 

algal biofuel production (the so-called “biorefinery” concept), 121-123 to the best of our knowledge this 

is the first report with experimental data from a successful process for the parallel production of 

multiple liquid fuels and co-isolation of a high-value metabolite from an algae feedstock.  This 

processing of biomass has the potential to be quite fruitful as we are able to produce a biodiesel of 

high quality and in addition we are the recovery of a neutral lipid fraction from the original h-AO as a 

potential secondary product stream in line with recommendations from the U.S DOE NABTR”.124  Our 

main focus in this body of work has been on the alkenones which comprise approximately 40% (w/w) 

of the neutral lipids.  We argue that alkenones represent a potentially underdeveloped renewable 
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carbon feedstock especially in light of the recent demonstration of their conversion to jet fuel range 

hydrocarbons by cross-metathesis with 2-butene (ref. Scheme 11).125 

 

While investigating the isolation and purification of alkenones via silica gel chromatography, we 

obtained a few fractions that appeared as bright red solutions.  There have become an increasing 

number of reports describing the isolation and quantification of the carotenoid fucoxanthin from 

Isochrysis.126,127  Fucoxanthin is a structurally complex oxidized form of β-carotene (a xanthophyll) that 

has received significant interest for its range biological activities including anti-inflammatory,128 anti-

angiogenic,129 anti-diabetic,130 anti-obesity,128 and anti-carcinogenic effects.131  The red colored 

fractions showed a UV-Vis spectrum with characteristic peaks at 428, 446, and 475 nm that were 

consistent with the spectrum obtained for a fucoxanthin standard and reported elsewhere (Figure 

21).132 

 

Scheme 11. Schematic with yields of fucoxanthin isolation as a coproduct of parallel biodiesel 

and jet fuel production from the marine microalgae Isochyrsis. The Isochrysis used in this study 

was purchased from Reed Mariculture (San Jose, CA) and was received as a frozen paste (80% 

water). Prior to processing the algae was freeze-dried which gave dry Isochrysis as a greenish 

near black flaky material. 
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Remarkably, hexanes, the solvent that was used for chromatography has been shown a poor solvent 

for fucoxanthin extraction from algal biomass.  The ideal solvent for such extractions, is alcoholic 

solvents, like ethanol and methanol proving far superior to hexanes in recent studies.126, 133 A study by 

Kim et al extracted biomass with hexanes produced 1.04 mg of fucoxanthin from 1 g of dry Isochrysis 

biomass (1.04 mg/g DW) whereas gave 19.76 mg/g DW under identical conditions (1 h, room 

temperature).126 These results are highly suggestive that after our hexanes extraction that we 

ultimately use to make biodiesel and alkenone-derived fuels, the majority of fucoxanthin remains in 

what was previously waste biomass and is still likely recoverable.  We wanted to investigate and 

compare if we would have similar results to the literature with hexanes. A hexanes extraction of 30 g 

of dry Isochrysis biomass was performed as previously described which produced 5.85 g h-AO, 

consistent with our prior reports (Table 16).123,63  Post hexanes-extracted biomass was collected from 

the cellulose thimble and was place in an Erlenmeyer flask and then submerged in ethanol.  Due to 

 

Figure 21. UV absorbance spectra of red fractions obtained by chromatography of the neutral lipids 

(left) and a fucoxanthin standard solution (right) showing characteristic maxima at 446 and 475.  
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the photosensitivity of the fucoxanthin and other carotenes,134 the ethanol extraction along with all 

subsequent steps was performed in the dark to minimize exposure to light.  The yield of e-AO after 

24 h at room temperature was 7.3% (w/w starting dry Isochrysis) and fucoxanthin content was 19% 

(w/w e-AO) compared to only 3% (max.) fucoxanthin content for the h-AO by HPLC analysis (Table 16 

and Figure 22). 

 

Table 16. Yields and corresponding fucoxanthin content for 

algal oils obtained by sequential hexanes/ethanol extraction of 

dry Isochrysis biomass 

Isochrysis DW (g) 30.0 50.6 

h-AO (g) 5.86 8.09 

e-AO (g) 2.18 2.22 (24 h) B 

0.97 (1 h) B 

e-AO Fucoxanthin 

Content (% w/w)A 

18.9 21.5 (24 h)B 

20.0 (1 h) B 

h-AO Fucoxanthin 

Content (% w/w)A 

3.2* 2.9 

Footnotes for Table 16: ADetermined using HPLC by comparison to a 

calibration curve obtained from serial dilution of a standard fucoxanthin 

solution (R2 = 0.9987). BThe post-hexanes extracted biomass was split (2 x 

22.5 g) followed by extraction with ethanol at room temperature for 24 h or 

1 h as indicated.*Values are calculated from the sum of non-resolved peaks 

in the HPLC chromatogram. 

 

 

 

Figure 22.  HPLC chromatogram of e-AO (A) and 

fucoxanthin standard (B, Inset). Conditions: column, 

Waters C18 5 μm, 250 mm x 4.6 mm i.d.; detection at 

447 nm; flow rate 1.0 mL/min; 90:10 methanol:H2O 

elution. 

 



 

 74 

 

By comparing the UV-Vis spectra for our h-AO and e-AO showed selectivity in our sequential 

extraction process, with both the h-AO and e-AO exhibiting peaks corresponding to pheophorbide a 

and pheophytin A (410 and 665 nm).123 The selectivity of ethanol for fucoxanthin and other carotenes 

extraction was elucidated by the e-AO spectrum, which contained the characteristic carotene peak in 

the 450-500 nm region (Figure 23).132 

 

 

 

Figure 23.   UV absorbance spectra of Isochrysis 

hexane extract (h-AO, black) and subsequent 

ethanol extract (e-AO, blue) in acetone (both 

samples were prepared at a concentration of 10 

mg/100 mL). The maxima in the Soret band (410 

nm) and Qy band (665 nm) in both the h-AO and 

e-AO are characteristic of chlorophyll a 

degradation products pheophorbide a and 

pheophytin a.21 Only the e-AO exhibited a 

shoulder between 450-500 nm corresponding to 

fucoxanthin.31degradation products 

pheophorbide a and pheophytin a.21 Only the e-

AO exhibited a shoulder between 450-500 nm 

corresponding to fucoxanthin.31 
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In efforts to further confirm the differences in extraction conditions, a fucoxanthin-enriched ethanol 

algal oil could be obtained by chromatography on silica to produce an ethanol oil (0.54 g from 1.89 g 

e-AO) that was now 44% fucoxanthin according to HPLC analysis.  Here, the 1H NMR spectra for both 

the e-AO and this enriched-AO showed peaks consistent with the presence of fucoxanthin standard 

(Figure 24). 

 

Work by Kim and coworkers showed a strong correlation between the duration of ethanol extraction 

and the amount of fucoxanthin obtained.126 Especially, with regards to maximum yields, that were 

reported after only 5 mins at room temperature (20.28 mg/g DW after 5 minutes vs. 17.38 mg/g after 

24 h).  This difference is explained in the report by the sensitivity of fucoxanthin toward 

decomposition.  With efforts in testing the degradation of fucoxanthin with different extraction times, 

we first extracted lipids from the dry Isochrysis biomass (50.6 g) with in a Soxhlet apparatus.  The post-

extracted biomass was then split (2 x 22.5 g), with one half extracted in ethanol for 1 h and the other 

 

Figure 24.  1H NMR spectrum (500 MHz, CDCl3) of e-AO (a, top), enriched-AO (b, middle), 

and fucoxanthin standard (c, bottom). 

(c) fucoxanthin 
standard 

 (a) e-AO 

(b) enriched-AO 
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extracted for 24 h (both at room temperature).  In contention of the work by Kim et.al126, the yield of 

fucoxanthin we obtained was substantially higher for the 24 h extraction (Table 16).  This was not due 

to one e-AO being more enriched in fucoxanthin (21.5% w/w and 20.0% w/w for the 24 h and 1 h 

extractions respectively), but rather the amount of algal oil that was obtained from the different 

extraction times (2.22 g vs. 0.97 g).  This could be due to the method by which the biomass is 

processed and how the material interacts with the solvent.  Kim et al. described using dried biomass 

“powder” for their fucoxanthin extraction study compared to ours which was a flaky material we 

obtained after freeze drying Reed Isochrysis paste (ref. Scheme 1).126  It is also worth noting that the 

scale Kim and coworker preformed extractions on was substantially smaller scale (100 mg vs. 20 – 30 

g dry biomass) which might also contribute to the discrepancy between our extraction time data and 

theirs.  The amount of total fucoxanthin present in the biomass is 21.73 mg/g DW, if we combine the 

fucoxanthin contained in the h-AO and data obtained from the 30 g biomass extraction.  This value is 

in the range of the maximum value reported by Kim et al. by extraction with ethanol for (5 min at 

room temperature 20.28 mg/g DW)126 as well as the total fucoxanthin content in Isochrysis biomass 

reported by Crupi and coworkers (19.82 ± 3.72).127  On average, our e-AO contained 75% of the total 

fucoxanthin contained in the biomass, which is similar to that obtained by Kim et al. using a 

complimentary two-phase lipid/fucoxanthin separation procedure.126  Our method seems less labor 

intensive than two-phase separation procedure employed by Kim et. al, as it does not disrupt or alter 

the biomass-to-biofuels process nor do we introduce water that would presumably need to be 

removed at a later stage. Rather it is the biodiesel waste-stream to which value is being added, not 

unlike other reports describing the use of residual algal biomass as feed34 or its gasification to fuel.135 

Microalgae are established sources of commercially produced high-value chemicals such as 

carotenoids and polyunsaturated fatty acids (e.g. docosahexaenoic acid (DHA)).  To accurately assess 

these compounds value, it is necessary to consider how the value might be impacted if incorporated 
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into a fuel-production strategy.  We recently estimated that to replace 10% of the petroleum fuel 

needs in the U.S would require producing approximately 1 L biofuel/person/day.125 If we are able to 

convert algal biomass to fuel with a 15% total yield (12% from fatty acids + 3% from alkenones), this 

would require approximately 6.5 kg Isochrysis/person/day.  Appling our fucoxanthin content value of 

20 mg/g DW to this would correspond to 160 g fucoxanthin/person/day.  For fucoxanthin to be able 

to offset the cost of fuel production by $1/L, the profit associated with fucoxanthin sales would then 

have to be $6/kg (calculated from $1/0.16 kg).  If we assume that the net profit that could be made 

to be 10-20% of production cost, the retail value would be required to be $30-$60/kg.  Fucoxanthin is 

primarily as sold as a weight-loss supplement using extracts from several edible brown seaweeds.135 

Products of this type, use compound content in approximately 5 mg/dose at a cost of $0.25/dose or 

$500/g fucoxanthin, which far exceeds the $1 fuel offset benchmark.  However, the recommended 

doses of Fucoxanthin is only 15 mg/person/day, so supply of fucoxanthin as a biofuel coproduct would 

greatly outstrip the demand of its current market. With increased supply there is the potential for an 

increase in its commercial applications thus maintaining its value and a not-insignificant offsetting of 

the fuel cost.  

Necton biomass was also used in addition to initial work with Reed.  In contrast to the to the wet (80% 

water) black paste from Reed, the Necton product is a light brown dry milled powder (Figure 9).  When 

previously comparing yields of lipid extracts of these two commercial sources of Isochrysis to be very 

similar.  While the resulting biodiesel and algal oil had similar appearances, it was not clear whether 

the stark differences in appearance of the biomass would result in different fucoxanthin contents.  To 

investigate this, Necton Isochrysis was processed into h-AO and e-AO as previously described. Once 

again, the resulting e-AO was highly enriched in fucoxanthin compared to the corresponding h-AO by 

HPLC analysis (21.3 % w/w fucoxanthing for e-AO vs. 1.4% w/w for h-AO, Table 17).  Surprisingly, both 

Necton and Reed e-AO had very similar fucoxanthin amounts (21.3% w/w for Necton vs. 20.2 % (avg.) 
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w/w for Reed) and appearance, despite the noted different physical properties of the starting algal 

biomass.  Again, the Yields of e-AO were also similar (7.9% from Necton vs. 8.3% (avg.) from Reed), 

meaning that total fucoxanthin amounts in the starting biomass were very close (21.7 mg/g DW Reed 

Isochrysis vs. 19.6 mg/g DW Necton Isochrysis).  One area of uncertainty that requires caution in this 

comparison, is that the moisture contents of the different starting dry Isochrysis biomasses were not 

rigorously determined. As, Necton advertises their product as containing 5% water and was used 

without further drying.  It is also assumed that the freeze dried Reed paste has approximately the 

same water content, such that we conclude fucoxanthin amounts in both commercial products is 

similar (Table 17).  

 

Other polar solvents such as acetonitrile and acetone were also explored for their efficiency in 

extracting fucoxanthin from post-hexanes extracted Isochrysis biomass. Ethanol gave the highest 

overall yields, while acetonitrile produced the most fucoxanthin-rich e-AO. 

In summary, there is currently great interest in the coproduction of value added chemicals to improve 

the economic viability of algal biofuels. By exploiting differences in solvent extraction efficiencies, a 

Table 17. Comparison of fucoxanthin recoveries from 

Reed and Necton Isochrysis. 

Isochrysis  ReedA Necton 

h-AO (% DW) 17.3 15.0 

e-AO (% DW) 8.0 8.3 

e-AO Fucoxanthin 

Content (% w/w)B 

20.2 21.3 

h-AO Fucoxanthin 

Content (% w/w)B 

3.05 1.04 

Total Fucoxanthin 

Content (mg/g DW)  

21.7 19.6 

AAverage values from Table 17.  BDetermined by 

HPLC. 
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tandem biomass extraction protocol has been developed that allows for the parallel production of 

two separate lipid-based fuels and isolation of a high-value carotenoid fucoxanthin from two 

commercial sources of marine microalgae Isochrysis.  Quantification of the amount of fucoxanthin in 

the ethanol algal oil revealed that this sequential extraction is quite selective, with total values near 

the maximum found in other reports describing fucoxanthin from Isochrysis. Efforts are ongoing to 

optimize and analyze this procedure as a general strategy for the coproduction of fuel and high value 

natural products from Isochrysis and other algae feedstocks. 

 

Investigation of Heterogeneous Catalysis for Isochrysis biofuel production 

 

There have been a number of reports describing the production of biofuels from an algae feedstock 

by heterogeneous catalytic upgrading.136−138   Most of studies have focused on algal triglycerides139, 

which can be converted to for instance hydrogenated biodiesel (HBD).140 Our group was drawn to 

heterogeneous catalysis as a potentially more industrially relevant method for converting alkenones 

to fuel than our previous butenolysis reaction. That cross-metathesis reaction employs a homogenous 

metathesis initiator which is not easily recovered/regenerated and is fairly expensive.  Also, we 

thought that a heterogeneous catalyzed reaction might be able to be performed on the total lipid 

extract containing both alkenones and triglycerides leading directly to various fuel products. For these 

reasons we decided to investigate the hydrocracking of alkenones isolated from Isochrysis sp. as a 

compliment to the hydrocarbon products formed by our butenolysis reaction. 
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Catalysis Systems 

 

Kazuhisa Murata and coworkers recently reported the hydrocracking of algal Botryococcus braunii oil 

(Bot-oil) with a Pt−Re/SiO2−Al2O3 (SA) catalyst. The hydrocarbon product distribution from the 

cracking of Bot-oil at 330 ºC/797 psi H2 with a 1 wt% Pt−3 wt% Re SA catalyst was found by GCMS 

analysis to be 4.63% C1−C4, 17.2% C5−C9, 50.2% C10−C15, 16.7% C16−C20, and 10.9% C21+.141 Based on the 

product selectivity attained (50.2% aviation fuel hydrocarbons, C10−C15) by Murata et al. and the feed 

chosen, this catalyst system was chosen for cracking of the alkenones.  Bot-oil is unique in that it is 

composed of non-oxygenated triterpenic hydrocarbons (C30 – C34, e.g. squalene),142−144 and 

therefore similar to the alkenones with their long (C36-C39) unsaturated carbon chains (Figure 25). It 

might be expected therefore that this catalytic system would similarly produce primarily aviation 

range hydrocarbons from alkenones. 

 

Catalyst Preparation and Characterization 

 

Fresh 1Pt-3Re/SiO2−Al2O3 was prepared by incipient wetting SA support (45% SiO2: 55% Al2O3) with 

aqueous tetra-amine platinum (II) chloride and ammonium perrhenate sequentially.  The catalyst was 

then dried at 100 C and calcined for 5 hr at 500 C.  .  Powder X-ray diffraction (XRD) patterns of the 

fresh catalysts were collected on a PanAnalytical X’Pert Pro MRD diffractometer using a 

 

Figure 25.  Structural comparison of alkenone and squalene 
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monochromatic Cu Ka with a wave length of (λ) of 0.15418.  Catalyst samples (15 mg) were ground to 

a fine powdered and mounted on glass slides by saturating the sample with methanol followed 

tapping with a scoopula to develop an evenly dispersed layer which is allowed to air dry.  The samples 

were then scanned over a Brag angle of (2Ɵ) range of 35-65 with a step size of 0.015° and a dwell time 

of 25 s.   By application of the Scherrer equation to the width at half maximum signal for peaks 

corresponding to metals present in the support, the average particle size was determined to be 41.4 

nm.  The XRD pattern for 1Pt-3Re/SiO2−Al2O3 and its reference metals and can be seen in (Figure 26). 

 

The 1Pt-3Re/SiO2−Al2O3 catalysts were subjected to temperature programmed reduction (TPR) to 

form the final catalyst. Approximately 0.100 g of the precursor was placed into a quartz U-tube above 

approximately 0.1 g of quartz wool. The precursor was then purged in 60 mL/min He (Airgas, 

 

Figure 26.  XRD pattern of prepared catalyst (blue), Platinum reference (black), and Rhenium 

reference (red) 
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99.9999%) for 30 min at room temperature.  The precursor was then reduced in 100 mL/min H2 

(Airgas, 99.9999%) while heating from room temperature to 473.15 K at a rate of 5 K/min at which 

point the temperature was held for 5 h. The catalyst was then cooled to room temperature, purged 

with 60 mL/min He for 30 min followed by passivation in 60 mL/min 1 mol% He/O2 (Airgas, 99.9999%) 

for 2 hr. Brunauer−Emmett−Teller (BET) surface area for the pure support and the impregnated 

catalyst were determined by N2 physisorption using a Micromeritics Autochem 2950HP equipped with 

a thermal conductivity detector (TCD) and liquid-N2 at a temperature of −196 °C.   The pure support 

surface area was found to be 400 m²/g which decreased to 296.6 m²/g after impregnation, calcination 

and reduction.   

 

Product Analysis 

 

With the characterized catalysts in hand, we could then begin investigating their use in cracking the 

alkenones. First, however, we wanted to compare results obtained with our catalyst to those reported 

by Murata for the hydrotreatment of squalene. In a high temperature/high pressure Parr batch 

reactor, our Pt-Re/SA catalyst was reduced to the active catalyst form under 290 psi H2 at 200 C for 5 

hours. After cooling the autoclave to room temperature, 200 mg squalene was then introduced under 

an argon atmosphere. The reactor was then pressurized with H2 (797 psi) and heated to 310 C and is 

held at that temperature for 12 hours. Once the reactor had once again cooled to room temperature, 

the hydrogen pressure was carefully released, and the reactor autoclave containing catalyst and 

reaction mixture was rinsed with DCM. This DCM solution was separated from the catalyst by filtration 

and was then analyzed by GC-MS.  
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 Results from GC-MS analysis showed overall very trace amounts of product, suggesting that the 

majority of components were either converted to gaseous products or coke (Figure 27). One major 

peak in the GC-MS chromatogram was at m/z = 138, which we have identified as compound 2,7-

dimethylocta-2,6-diene that would result from cracking at the allylic positions of squalene. Formation 

of 2,7-dimethylocta-2,6-diene would also suggest that 2-methyl-2-butene was produced from 

squalene by a similar mechanism. This might also explain the low mass recovery (0.1%) due to the low 

boiling point of 2-methyl-2-butene (b.p = 39 C).  Based on the results obtained from squalene, we can 

predict that cracking of the alkenones might also occur at the allylic positions. From our major 

alkenone component (methyl C37:2), this would then give the products outlined in Scheme 12.  To 

test this, alkenones (200 mg) were subjected to identical cracking conditions used for squalene. Mass 

recovery from the alkenone cracking was 2.8%. The GC-MS chromatogram showed many more peaks 

 

Figure 27.  Overlay of GC-MS spectrum for alkenone with 1Pt-3Re-ASA (black) and squalene 

with 1Pt-3Re-ASA (blue) 
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than the mixture obtained from squalene (including what appears to be an unresolved complex 

mixture between 4.5 - 11 min), perhaps suggesting many different cracking events.  This could be due 

to presence of the oxygen atom in the alkeones, as this is the major structural difference between the 

alkenones and squalene.  Further investigation into the products will include analysis by GCxGC, 

amounts of coke formed on the catalyst and cracking of various algal biofuel products (algal oil and 

biodiesel).  

 

 

 

 

 

Scheme 12.  Proposed cracking products of squalene and alkenone (37:2)  
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Experimental 

 

Microalgae and Sample Preparation 

 

The marine microalgae Isochrysis sp. “T-iso” used in the one step processing was obtained from Reed 

Mariculture (strain CCMP1324) (Santa Cruz, CA). The algae were grown in greenhouse ponds under 

natural sunlight in a modified F/2 media. Average water temperatures were 18−20 °C. Approximately 

2 kg of wet biomass was poured into large crystallizing dishes and freeze-dried. These efforts led to 

∼290 g of dry Isochrysis sp. biomass, which was a greenish, dark-brown waxy amorphous solid. 

 

Extraction and Quantification of Lipids 

 

The dry Isochrysis sp. biomass obtained from Reed Mariculture was extracted in 50−150 g batches 

with n-hexane in a large Soxhlet extraction apparatus. The Soxhlet was allowed to cycle for 48 h 

(approximately 60 cycles) until the color of the solvent was a faint yellow. Hexane was removed with 

a rotary evaporator, and the remaining material was transferred to a pre-weighed vial with 

dichloromethane and evaporated to dryness with a gentle stream of N2. The weight of the hexane-

extractable material (typically ∼10 g from a 50 g dry biomass extraction event) was recorded and will 

be referred to as “algal oil”. 

1-Step Acid-Based Esterification of Algal Oil and Production of “Crude 

Biodiesel”  

 

Following the method of Johnson and Wen, a mixture of methanol (3.4 mL), concentrated sulfuric acid 

(0.6 mL), and chloroform (4.0 mL) was added to of the algal oil (1 g ) in a 40 mL glass vial containing a 
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small magnetic stir bar. The mixture was then heated to 90 °C for 40 min while stirring. After cooling, 

the reaction mixture was transferred to a separatory funnel and washed with deionized water (10 

mL). Once the phases had separated, the bottom layer was drained into a preweighed vial and dried 

under a stream of N2 and the resulting crude biodiesel was weighed [∼0.9 g, 90% (w/w) of algal oil].  

 

Saponification of Algal Oil and Separation of Neutral and Polar Lipids 

To a solution of the algal oil (5−10 g) in MeOH (50 mL), CHCl3 (25 mL) and H2O (20 mL) was added KOH 

(4.0 g), and the mixture was heated with stirring to 60 °C for 3 h with a reflux condenser. The reaction 

was cooled to room temperature, and solvents were removed by rotary evaporation.  

 

Isolation of Alkenones from Soap 

 

The remaining aqueous mixture containing the algal soaps was then extracted with hexanes (3 × 25 

mL). Concentration of the combined organic extracts gave the neutral lipids (typically, 40% w/w of the 

algal oil) as a green-yellow solid, which contains the nonpolar alkenones. Alkenones present in the 

collected neutral lipids can be isolated by various solvent systems with flash column chromatography 

on silica gel.   Initial isolation of alkenones were performed using 20:1 hexanes/ethyl acetate but, 

required numerous recrystallizations to yield pure alkenones by 1HNMR and GC-FID.   
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Acidification of Soaps to Free Fatty Acids  

 

The aqueous phase containing the algal soaps was then acidified with a 1:1 ration of DI H2O:HCl (6 M) 

until the aqueous layer has a pH ≈ 2.  After the soaps are converted to the resulting free fatty acids 

(FFAs) they were then extracted with hexanes (3 × 25 mL). Removal of the solvent from these 

combined organic extracts gave the FFAs as a dark green near-black oily residue (typically, 60% w/w 

of the algal oil) 

 

Acid-Catalyzed Esterification of Free Fatty Acids and Production of Biodiesel 

 

To the FFAs obtained above (2.0 g) was added methanol (8.0 mL), concentrated H2SO4 (1.0 mL), and 

CHCl3 (8.0 mL), and the mixture was heated to 90 °C while stirring for 1 h. After cooling, the reaction 

product was transferred to a separatory funnel and mixed with 10 mL of distilled water. Once the 

phases separated, the bottom layer was drained into a preweighed round-bottom flask and dried in 

vacuo, and the resulting biodiesel was weighed (1.84 g, 92% w/w of FFAs). Samples were stored at 4 

°C before being combined into batches as needed for analysis. During this time, some settling of 

insoluble material occurred that was generally not included in the analysis. Nonetheless, some fine 

precipitates remained suspended in the biodiesel 

Decolorization of Algal Biodiesel 

To the dark green colored biodiesel obtained above (15 g) at 60 C was added montmorillonite K 10 

(MK10) powder (3.0 g, 20% w/w of the biodiesel) and the mixture was stirred for 1 h. The solution 

was then filtered through Celite with hexanes and the hexanes were removed on a rotary evaporator 



 

 88 

to produce an orange/red biodiesel (13 g, on average 90% w/w mass recovery). Samples were stored 

at 4 C during which time some settling of insoluble material (<10% w/w) occurred. Decanting gave a 

clear homogeneous biodiesel that was analyzed separately. 

 

Isolation and Purification of Alkenones from the Neutral Lipids 

 Neutral lipids (10 g) were dissolved in a minimal amount of dichloromethane and flushed through 

silica gel (230−400 mesh, 100 g) with pressure using dichloromethane (approximately 150 mL) as 

eluent. Solvent was then removed on a rotary evaporator and the resulting orange-colored solid was 

recrystallized in hexanes to give pure alkenones (typically 4 g) as a white solid.  

 

Alkenone Butenolysis, General Procedure 

2-Butene (0.2 mL, 15 equiv) was condensed in a reaction flask at −78 °C under a nitrogen atmosphere. 

Alkenones (100 mg), methyl stearate (methyl octadecanoate) (56 mg), dichloromethane or toluene 

(1.0 mL), and catalyst (2 mol %, 2−3 mg) were then added and the resulting heterogeneous mixture 

was placed in a refrigerator (4 °C) or ice bath (0 °C) for the allotted time. Reactions conducted were 

quenched with ethyl vinyl ether (0.9 mL, 50 equiv) and stirred for 15 min before concentrating on a 

rotary evaporator and analyzing by 1H NMR and gas chromatography.  
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Analysis by One-Dimensional Gas Chromatography with Flame Ionization 

Detection (GC−FID) and Gas Chromatography− Mass Spectrometry (GC−MS) 

The purified alkenones and butenolysis reactions were analyzed on a Hewlett-Packard 5890 Series II 

GC−FID. Samples (1 μL) were injected cool-on-column and separated on a 100% dimethyl polysiloxane 

capillary column (Restek Rtx-IMS, 30 m length, 0.25 mm I.D., 0.25 μm film thickness) with H2 as the 

carrier gas at a constant flow of 5 mL min−1. The GC oven was programmed from 70 °C (7 min hold) 

and ramped at 6 °C min−1 to 320 °C (15 min hold). Percent conversions for the butenolysis reactions 

were determined by comparison of integration ratios for combined alkenones (rt = 44−48 min) to 

methyl stearate (retention time = 27.5 min) relative to a starting alkenone/methyl stearate standard 

mixture. Select samples were also analyzed by GC−MS on an Agilent 6890 GC with a 5973 MSD. 

Splitless 1 μL sample injections, were separated on a DB-XLB capillary column (60 m × 0.25 mm × 0.25 

μm film thickness) using helium as the carrier gas (10.5 psi constant pressure), and the following GC 

temperature program: 4 min at 40 °C and ramped to 320 at 5 °C/min (held 15 min).  

 

Analysis by Comprehensive Two-Dimensional Gas Chromatography with 

Flame Ionization Detection (GC×GC−FID) and Time-of-Flight Mass 

Spectrometer (GC × GC−TOF).  

Select butenolysis reaction mixtures were analyzed by GC × GC−FID and GC × GC−TOF MS according 

to previous described methodologies (Chapter 4). 
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Fucoxanthin extraction of the post-hexanes extracted Isochrysis biomass.  

After the final Soxhlet cycle with hexanes, the apparatus was allowed to cool to room temperature. 

The residual biomass remaining in the cellulose thimble was dry at this point and could be easily 

removed from the extraction thimble and added to a 500 mL Erlenmeyer flask. To the waste biomass 

was then added ethanol, acetonitrile, or acetone (volume = 5 x mass of algal biomass, e.g. 200 mL for 

50 g algae) in a static vessel for various time increments. Care was taken at this stage to ensure that 

the samples and subsequent materials were exposed minimally to light. The biomass was then 

removed by filtration into a tared round bottom flask and the ethanol removed with a rotary 

evaporator. The masses of the ethanol extracts were recorded and will be referred to as “ethanol algal 

oil” (e-AO). 

 

Isolation and purification of fucoxanthin by normal phase chromatography on 

silica.  

Fucoxanthin from the h-AO neutral lipids and ethanol algal oil (e-AO) was purified by flash 

chromatography on silica using an automated Combiflash Rf system (Teledyne Isco): Approximately 

2.0 g of either the h-AO neutral lipids or e-AO was loaded with DCM (~2-3 mL) onto a 24 g pre-packed 

silica gel cartridge (230-400 mesh). The chromatography was programmed as follows: 15-minute run 

time, gradient from 100% hexanes to 100% ethyl acetate. For preparation of the fucoxanthin-enriched 

algal oil (enriched-AO), fractions that were bright red in color and mostly pure by TLC (1:1 hexanes 

ethyl acetetate, Rf fucoxanthin = 0.36) were combined into a tared round bottom flask and 

concentrated on a rotary evaporator in the dark. The weight of enriched-AO was recorded and the 

fucoxanthin content analyzed by 1H NMR and HPLC. 
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Analysis and quantification of fucoxanthin by HPLC. 

 Fucoxanthin contents in the hexane- and ethanol algal oils were quantified using a Varian ProStar 

HPLC system. The system consisted of a binary pump, 410 autosampler, and photodiode array 

detector. A reverse-phased C18 column (Waters length 250 mm x i.d 4.6 mm x particle size 5μm) was 

eluted with a mobile phase (100% methanol) at a flow rate of 1 mL/min. Detection wavelength was 

set at 446 nm. Fucoxanthin content was determined based on the comparison to a calibration curve, 

constructed by analyzing fucoxanthin (purchased from Sigma-Aldrich) samples at concentrations of 

0.016 – 1.0 mg/mL with R2 = 0.9987.  

 

Hydrogenation and cracking of PULCA’s in presence of Pt-Re ASA catalyst 

For the batch reaction, the catalyst (0.02 g) was introduced into a 100 cm3 autoclave-type reactor and 

first pretreated by reduction with 2 MPa of H2 at 473 K for 5 h. After the reduction, 0.200 g alkenones 

or squalane was introduced and the autoclave was pressurized with 5.5 MPa of a H2. The reaction was 

carried out at the prescribed temperature for 12 h.  The autoclave was then rinsed with CH2Cl2 solvent, 

the catalyst is filtered off by pipet column and the solution is then analyzed by GCMS. 

 

Conclusions 

A method has been developed for the efficient synthesis of a decolorized alkenone-free biodiesel 

along with the quantitative recovery of an alkenone-rich neutral lipid fraction from the industrially 

produced microalgae Isochrysis sp. using standard saponification, extraction, esterification and 



 

 92 

decoloroization techniques. The process provided sufficient quantities of biodiesel to allow for 

comprehensive fuel testing of this material.  Further processing of biodiesel to remove pigments, such 

as chlorophylls and other derivatives can be efficiently seperated from Isochrysis biodiesel using 

montmorillonite K10 clay.  Pigments such as chlorophylls and other derivatives can be efficiently 

removed from Isochrysis biodiesel using montmorillonite K10 clay. The process was performed on 

sufficient scale to allow for comprehensive fuel testing of the resulting decolorized biodiesel. This was 

made possible in part due to the commercial availability of Isochrysis in multi-kilogram quantities from 

several suppliers. Results from the fuel tests provided important experimental data that can be used 

to validate and refine often used predictive models for algal biodiesel fuel properties. For instance, 

oxidative stability remains an issue for our Isochrysis (and presumably other algal) biodiesel, and 

appears highly sensitive to even minor amounts of PUFAMEs. Through the decolorization process we 

were now able to obtain a CP, with the measured CP for our decolorized biodiesel lower than what 

would be predicted based on the FAME profile. A comparison of the fuel testing results for our 

decolorized sample to that previously obtained for a non-decolorized Isochrysis biodiesel also revealed 

certain impacts of pigments on fuel properties. Specifically, pigment removal resulted in a 24% 

increase in CN (from 36.5 to 45.4 (avg.)), 40% increase in kinematic viscosity (from 2.5 to 3.5 mm2/s), 

a 50% decrease in lubricity (from 260 to 131 µm), and 4% decrease in density (from 935 to 897 kg/m3). 

Work is therefore ongoing to fully characterize these mixtures, and the isolation of fine chemical 

products in parallel with continued studies toward the production of an ASTM-certified Isochrysis 

biodiesel. 
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