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ABSTRACT 

Insufficient reference sequence data for annotation of unknown environmental 

sequences and metagenomes has driven efforts to find alternative annotation methods that 

mitigate biases from missing information. The use of phylogenetic-placement algorithms 

shows promise as a robust sequence annotation technique that deals with missing reference 

information by allowing for annotation of sequences at internal nodes of a phylogenetic tree. 

However, using these methods for community level surveys of the thousands of genes found 

in metagenomes requires powerful computational systems and sophisticated software 

workflows. The main goal of this thesis is to outline a phylogenetic analysis pipeline built to 

process environmental metagenomic samples using the pplacer software suite, and a pilot 

study performed with this software pipeline to investigate community-level patterns in gene 

diversity for a marine oxygen minimum zone (OMZ) off the coast of Chile, South America. 

Reference sequence data was used to create a custom database and custom reference 

packages for 9,204 functional housekeeping genes, along with small sub-unit ribosomal 

genes (SSU) by Domain.  A comparative analysis of metagenomic samples from the OMZ 

using our pipeline shows that while functional and SSU genes show similar spatial patterns 

of diversity across the oxygen gradient, higher overall diversity was identified via the 

functional genes. Ecologically relevant functional genes showed higher levels of diversity 

than either the total from all functional genes or SSU ribosomal genes, underlining the 

importance of diversity in ecosystem functions.  
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INTRODUCTION 

The contributions and overall importance of microbial organisms to marine 

ecosystem function is well established (Sunagawa et al (2015), Fuhrman (2009)). However, 

the intricacies of their evolutionary relationships and full extent of functional diversity 

remain largely under-characterized (Vargas et al (2015), Rusch et al (2007), Venter et al 

(2004)). This gap in our understanding has narrowed in the last several decades with 

advances in sequencing and computer technologies (Armbrust and Palumbi (2015), 

Sunagawa et al (2015), Vargas et al (2015), Villar et al (2015), Lima-Mendez et al (2015), 

Iverson et al (2012)). However, work in building computational methods for community-

wide remote homology detection of functional genes and quantification of their overall 

contribution to ecosystem biodiversity is an ongoing field of research. 

High-throughput sequencing using next generation sequencing (NGS) platforms has 

become common practice when characterizing the microbial community in an environment. 

NGS systems are capable of producing extremely large sequence libraries, 106-109 reads of 

100-700 base-pairs in length per run (Logares et al (2012)). Application of NGS to 

environmental DNA samples has led to the emergence of a new type of genomic sequence 

data, a metagenome, and field of study, environmental metagenomics. Creating a 

metagenome forgoes isolation and cultivation techniques used by targeted sequencing 

methods, resulting in an unbiased data-set containing sequences from the entire community.  

These methods are advantageous for surveying under-characterized microbial assemblages; 

however they require sophisticated computational analysis pipelines in order to analyze the 

large and complex data-sets. 
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The field of bioinformatics has responded to the ever-growing biological sequence 

data by producing a multitude of software pipelines capable of robust and efficient data 

handling, processing, and annotation. Typically, processing a metagenome requires multiple 

steps in order to address a research question. It is necessary to build these steps into an 

analysis pipeline, executing each step consecutively and automatically. This allows for the 

larger-scale application of a method on diverse data-sets. In the last several decades, 

numerous annotation methods have been developed and implemented in pipelines to analyze 

metagenomic data. Many of these pipelines are capable of performing large-scale taxonomic 

and functional annotations, some examples of pipelines include: MG-RAST, CARMA, 

MEGAN, and QIIME (Meyer et al (2008), Krause et al (2008), Huson et al (2007), Caporaso 

et al (2010)).  

 Currently the most popular methods for sequence annotation are based on pair-wise 

comparison of query sequences with reference sequence databases of model organisms; the 

most common example being BLAST (Basic Local Alignment Search Tool), (Altschul S.F. 

(1990)). The goal of a pair-wise comparison is to locate a reference sequence that is similar 

to the query sequence. The name of the organism and functional annotation of the best 

match, “hit”, is used to append annotate the query sequence. Although these types of 

analyses are convenient, there are known issues when dealing with the shorter reads of 

metagenomic libraries. A 2008 study found that when BLAST annotation was applied to two 

versions of a data-set, a long read (750 bp) and a short read (100-200 bp), up to 72% of 

annotations for long reads were not identified in the short reads (Wommack et al (2008)). 

This limitation is compounded when BLAST is used to annotate metagenomes containing 

highly divergent organisms with no established model system, as is common with most 
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microbial communities. Insufficient reference information and annotation techniques have 

driven efforts to find alternative comparison methods specifically focused on metagenomic 

data-sets. 

Hidden Markov Model (HMM) based methods designed for detection of remote 

homologies using sequence alignment profiles have helped to address the issue of inadequate 

reference information with respect to annotating metagenomes. HMMER is a software suite 

designed to evaluate sequence comparisons for the purpose of identifying homology using 

profile HMMs (Eddy (1998)). HMMs work by calculating discrete probabilities of each 

nucleotide base or amino acid in a query sequence. Unlike the arbitrary score-based 

algorithms, such as BLAST, these probabilities have a stronger statistical framework and 

therefore can implemented in biological statistical models. Alignments of orthologs, 

homologus genes from multiple organisms sharing a common ancestor and a shared function, 

can be used to create a profile HMM for that gene. This profile is used by HMMER, to 

search against a sequence database to identify new potential orthologs from an unknown set 

of sequences (in this case environmental sequences from a metagenome). HMMER outputs 

matches between queries and HMMs, as well as the probabilities associated with those 

matches, and if a sequence match meets the confidence threshold set by the user, then the 

query sequence is considered an ortholog to the sequences in the profile.  Therefore, 

HMMER is a mathematically robust annotation method for functional assignment of 

environmental reads. However, these analyses do not give information on the taxonomic 

identity of the sequence. Coupling HMM searches with phylogenetic placement methods that 

can identify the taxonomic or phylogenetic affinities of a sequence, further resolving the 

identity of the environmental reads.  
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Phylogenetic-based analysis used for taxonomic assignment improves on annotations 

based on sequence similarity by including assessment of the evolutionary relationships of the 

sequences. Furthermore sequences with no appropriate reference sequence matches can be 

placed on internal nodes of phylogenetic trees, giving some insight into what group they 

might be most closely related. This is currently the best way to deal with the known biases 

that exist from incomplete reference databases. Unlike pair-wise scoring algorithms, which 

only suggest if a query is similar to a single reference sequence or group of sequences; 

phylogenetic placement uses existing reference trees as a map of how multiple sequences 

from the environment relate to each other and to known references. Examples of analysis 

pipelines that allow for phylogenetic or diversity analysis of communities include:  

MOTHUR and MLST ( Schloss et al (2009), Jolley et al (2004)). 

In this thesis I discuss a metagenome or environmental amplicon sequence analysis 

pipeline that uses a combination of HMM searches with phylogenetic placement to annotate 

metagenomes. Although they are a powerful combination, HMMER and phylogenetic 

analyses require significant computational power and high quality pre-built reference 

information. Performing large-scale metagenomic surveys using these methods require 

thousands of genes to be assembled into profile HMMs and a sophisticated analysis pipeline 

to direct processing of samples. The main topic of my thesis is to outline the analysis pipeline 

built to process environmental metagenomic samples using the pplacer software suite and a 

pilot study performed to demonstrate the utility of our pipeline to investigate gene diversity 

in a marine oxygen minimum zone (OMZ) off the coast of Chile, South America. 
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CHAPTER 1: Completion of the Phylogenetic Analysis Workflow 

INTRODUCTION 

A phylogenetic analysis workflow 

Our approach to utilizing the power of phylogenetic analysis for metagenomic 

annotation is to use the well-established program HMMER in combination with the 

phylogenetic placement software pplacer (Matsen et al (2010)). Our phylogenetic analysis 

workflow (PAW) is a powerful and robust series of analyses designed for large-scale, high-

throughput and comprehensive surveys of these important, yet largely unexplored, microbial 

communities. The PAW is a previously created semi-automated high-throughput analysis 

pipeline specifically designed to help investigate uncharacterized, diverse microbial 

communities (Land et al (2015)). It is designed to search short-read shotgun metagenomes 

for potential orthologs of a user specified reference gene or group of genes. The PAW has 

two main components: 1) creating automated workflow for generating reference packages 

and 2) running a large set of reference packages across a metagnome to annotate 

environmental sequence reads.  

Building reference packages 

The PAW first creates reference packages for each gene of interest from available 

multiple sequence alignments (MSAs), profile HMMs, and a custom built reference DB 

containing a tailored collection of sequence information for taxa found in a given MSA. This 

package contains several important components built from reference sequences for that gene. 

The components include: a multiple sequence alignment, hidden Markov model (HMM), un-

rooted phylogenetic tree, taxonomy list, and controls files. In order to scale this project to 

include many thousands of genes the production of packages was built into a semi-

autonomous pipeline inside the PAW, referred to as the reference package pipeline (RPP). 
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We have chosen to generate reference packages from a set of known orthologs from the 

COGs, TIGRfams, and NCBI clusters (Tatusov et al (2012), Haft (2003), Klimke et al 

(2009)).  This reference package pipeline has generated a total of 9,207 reference packages 

that can be used to annotate metagenomic sequences. 

Functional and marker seed data 

 The initial reference information for each gene, identified as a “seed”, must be in the 

form of a profile HMM. This seed is used as the core molecular and taxonomic 

representatives of the gene, so seeds must be carefully selected and built. There are several 

long-term functional gene projects with available HMM seeds via download from FTP sites. 

The projects selected for this study are: Clusters of Orthologous Genes (COGs), TIGRfams, 

NCBI Protein Clusters (CHLs, PTZs, MTHs) (Tatusov et al (2012), Haft (2003), Klimke et al 

(2009)). These genes are well established, with many years of investigative effort contributed 

to support the sequences they contain. Standard marker genes (SSUs) were also included in 

this study, requiring their seeds to be custom built before package building. These genes 

included small sub-unit ribosomal genes for Bacteria, Archaea, and Eukaryotes. 

Building SSUs seeds 

The non-redundant 99% identity SSU reference DB release 119 was downloaded 

from the ARB-SILVA web server to be used to create SSU seeds (Quast et al (2013)). The 

DB was de-duplicated for both identical sequences and taxa to reduce its complexity using 

the seqmagick utility. PhyloSift v1.0.1, a suite of tools for phylogenetic analysis, was used to 

recruit sequences from the DB to one of the three seeds based on included SSU markers 

packages (Darling et al (2014)). The tool was used with default out of the box settings for the 

version and output sequence alignments for the SSU genes containing reads from the ARB-

SILVA reference DB. 
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Reference DB for RPP 

The gene seeds are the sequence core for making packages, but they only contain the 

most well established sequences for each gene. This can affect their usefulness when 

investigating a specific environment or community. This is mitigated by incorporating 

sequences specifically associated with the study setting. A custom reference DB was created 

for this purpose by combining Archaea, Bacteria, fungi, invertebrates, plants, plasmid, 

protozoa, and viral data from RefSeq release 66 (Pruitt et al (2007)). Sequences from the 

Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP), available in 

July 2014, were added to this reference DB to increase resolution of Eukaryotic taxa bringing 

total sequence reads to 35,205,636 (Keeling et al (2014)). RPP requires an NCBI Taxonomy 

DB to be downloaded and installed locally. It was crucial that any taxonomy identification 

numbers (tax ids) be synchronized with this DB version, 4.0, as many downstream functions 

and analyses relied on this assumption. As such, custom file checking scripts were built in 

the Python programming language to rename, delete, and merge tax ids for all reference 

information (Sanner (1999)). 

Running through RPP 

The functional gene seeds, including all sets but the SSUs, were run through the RPP. 

Briefly, the seeds are compared to the reference DB using HMMER 3.0 and the sequences, 

using a threshold of similarity, e-5, are recruited (Finn et al (2011)). RPP then proceeds to 

build all the necessary components of a reference package listed in the first paragraph of the 

“Building Reference Packages” section. 

The SSUs, however, needed to be run in a different fashion as they are not translated 

into protein-space and have a significantly larger data pool from which to draw. Since the 

seeds were built from custom SSU data, there was no need to recruit from the reference DB 



8 

 

using HMMER. Several data preparation steps needed to be modified to handle cDNA 

instead of peptides. Lastly, during the step where each reference tree is pruned to remove 

polytomies at the end of branches, a SSU-specific configuration was required to sufficiently 

trim the trees while preserving their quality.  

All packages were reviewed using package_checker.py, a custom quality checking 

script. The files required for a complete package were counted, if there were missing files the 

package was deemed incomplete and was not used for further analyses. The removed 

packages may lack sufficient reference information or have other computational reasons for 

not completing successfully. A full review of this topic is beyond the topic of this study, but 

this is an on-going area of investigation.  

Once a set of reference packages are established, they are used to annotate 

environmental reads using HMM searches and phylogenetic placement. At the core of the 

PAW is HMMER and pplacer, software that employs phylogenetic placement algorithms on 

short shotgun sequences.  pplacer places metagenomic reads on the fixed branches of each 

reference tree using probability calculations to append a confidence score to each placement 

(Matsen et al (2010)) (Figure 1). 
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.  

Figure 1: Visual representation of phylogenetic placement. The reads (red) are placed on 

different branches of the reference tree (center) until the placement of highest probability is 

determined. (Figure after E. Matsen) 

 

Metagenome annotation using PAW 

 Using the reference packages created by the RPP, the PAW can then annotate 

metagenomes extracted from environmental samples. The hmmsearch function from the 

HMMER suite is used to recruit reads from the metagenomes with a e-value threshold of e-5. 

A read is recruited to the reference package with the lowest e-value from the hmmsearch 

comparison. The recruited reads are then aligned to the MSA for that reference package 

using hmmalign from the HMMER suite and this output is piped into a pplacer analysis. The 

recruitment process is run in parallel to improve run-time and each pplacer analysis per gene 

is performed in parallel when multiple gene reference packages are being used. 
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 The resulting output from the PAW is an un-rooted phylogenetic tree for each gene 

with query reads, likely orthologs, placed on its branches (Matsen et al (2010)). Reads may 

have several possible placements on the tree, each of which can be assessed by an associated 

probability score. The file format of a post-PAW tree containing placements is a subtype of 

the JavaScript Object Notation (JSON) format, referred to as a jplace file in this study. The 

PAW outputs one jplace file per gene for each sample. Due to the architecture of the PAW, 

large-scale gene surveys quickly produce a quantity of jplace files, unmanageable by manual 

manipulation methods. As part of my thesis, I created a downstream analysis pipeline (DAP) 

for the purpose of managing and analyzing PAW output of large-scale projects (Figure 2). 

 

Figure 2: Visual breakdown of the PAW and DAP. The PAW is everything outside of the 

shaded region labeled as DAP (Figure from R. Kodner). 
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METHODS 

The downstream analysis pipeline 

I built a series of scripts into a downstream analysis pipeline (DAP) in the Python 

computer language to help with the handling of the PAW output, as the jplace files are 

complex and tend to be numerous. For each jplace file, the DAP performs: 1) initial quality 

filtering, 2) parse jplace files by sample and taxonomic criteria, 3) run general statistics and 

calculations, 4) visualize summary data for further investigation (Figure 2). These functions 

are designed to be run autonomously, to allow for large amounts of data to be processed in a 

consistent and efficient way. 

Pre-filtering, quality control 

The first pre-stats script is built to extract only the placements within a specific 

threshold of confidence based on the maximum-likelihood weight ratio score (MLWR) 

appended to each score by the PAW. The threshold is defined as: “If the difference between 

the MLWR of the first and the second placement on a branch of a tree is > 0.05, then the first 

placement is marked as confident and the others are discarded as junk or bad placements. If, 

however, the first and second placements MWLR are within 0.05 of each other, then all 

placements on that branch are marked as fuzzy or uncertain.” This function is combined with 

others in the lineage.py script, described in the next paragraph. 

Applying lineage annotations 

The National Center for Biotechnology Information (NCBI) has an online resource 

for taxonomic annotations, including taxonomic and lineage information for all established 

lineages of described organisms. When the lineage of an organism is established but not 

officially described at a level in the classical hierarchical taxonomy such as genus or phylum, 

it is designated as a “no rank” by NCBI Taxonomy (Sayers et al (2011), Benson et al (2015)). 



12 

 

This is common for microeukaryote taxonomic categories that have been more recently 

established due to molecular phylogenetics but have not yet been officially described in the 

literature.  Due to this naming convention, most of the taxa-based annotations during the 

PAW analysis are unable to be used by pplacer’s built-in classification functionality. To 

remedy this we built lineage.py, a script that appends the correct annotations to the PAW 

outputs so that taxonomic information can be used for comparisons. The lineage.py script: 

accepts the standard output of PAW in jplace file format, creates a full lineage of all known 

taxa from the NCBI Taxonomy database, accesses taxonomy identification codes (taxids) 

from the jplace files, adds specified levels of the lineage, and utilizes the previously stated 

filtering functions to output to confident, fuzzy or junk files. The taxonomic levels 

automatically appended are the top three under cellular organism, referred to as Domain, 

Division, and Clade. The outputs of lineage.py are comma-separated variable files for 

confident, fuzzy, and junk placements, all with associated taxonomic annotations appended 

to them. 

Mapping Domain and splitting jplace files 

It is very useful for a variety of analyses to split jplace files by a taxonomic level or 

group, such as Domain or Division. We built taxmapper.py, a taxon mapping tool, for the 

purpose of separating each jplace by any specified taxonomic level. In each jplace file there 

are reads that have been placed on the reference tree. Those reads, known as placements, 

have names that pplacer can uses to run other functions. The pplacer suite includes a program 

called guppy, which can split jplace files by sub-strings in each placements name. The 

taxmapper.py script utilizes this function by first appending the taxon annotations from 

lineage.py output to each of their respect placement names in each jplace file. After the 

taxonomic information is added to the name of each placement, guppy is used to split the 
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jplace files by Domain name via a wrapper script called guppy_quick_split.py. This then 

allows for all following calculations to be easily performed separately for each Domain of 

life.  

Basic calculations and stats 

A traditional method for initially describing a microbial community structure is to 

quantify read counts for each organism by gene. This is achieved in the DAP by countbot.py, 

a simple quantifying script for calculating gene abundances for specified groups of data. For 

this study each gene was quantified by sample, Domain, Division, Clade, and functional 

category. The countbot.py script utilizes the standard output of lineage.py, counting the 

occurrences of each previously mentioned category in the confident output file. 

 There are many possible statistical measures and calculations that could be useful 

when investigating microbial communities. Several calculations have been incorporated into 

the DAP to give a starting point for more in depth analyses. The DAP utilizes pplacer 

functions like edge-principle components analysis (edge-PCA), quadratic entropy, 

phylogenetic entropy, faith phylogenetic diversity (PD), abundance-weighted phylogenetic 

diversity (AWPD), expected distance between placements (EDPL) (Matsen and Evans 

(2013), McCoy and Matsen (2013), Matsen et al (2010)). Each of the previously mentioned 

pplacer functions has a wrapper script built around it in order to manage the input and output 

data. 

The DAP can also calculate the Shannon Diversity Index (SDI) (Hamilton (2005)) 

(1), paired/unpaired student t-tests from the scipy pythonic library, and determine differential 

abundance between communities using the DESeq2 R package. The SDI calculation is run by 

a custom script called SDI_calc.py that uses countbot.py standard output. The count data for 
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the lowest possible taxids are used for the SDI calculation and the diversity measures are 

collected by gene, sample, and Domain. 

(1)    𝑺𝑫𝑰 =  − ∑
𝑐

𝐶
𝑅
𝑖=𝑙 ln (

𝑐

𝐶
) 

    c = count of lowest taxa 

C = total count for gene/sample/Domain 

 

Differential abundances are calculated using the DESeq2 R package and custom data 

prep script called deseq_prep.py, which accept the standard output from countBot.py. 

DESeq2 was originally built to compare transcriptome data to identify whether differences in 

expression levels between data sets from different conditions could be explained by simply 

biological variance (Love et al (2014)). Using these same principles and functions this 

analysis can be applied to metagenomes, given that there are two testable condition types 

present in the data (Jonsson et al (2016), Xu et al (2015)). An added advantage to this 

analysis method is that it does not require sequence libraries to be normalized before-hand, a 

commonly required pre-analysis step (McMurdie and Holmes (2014)). For this study 

differential abundance was calculated between oxic and suboxic zones using an R control 

script, DESeq2_cmds.R. The genes found to be differentially abundance were then visualized 

to explore the functional diversity of each sample.  

Visualizations 

After the filtering, collecting, and calculating scripts have been run, the DAP can then 

output a series visualizations. There are many base functionalities for visualization in the 

DAP. The functionalities include: scatter plots, bar charts, pie charts, histograms, heatmaps, 
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and phylogenetic trees. Several scripts were built to use these base functions to automatically 

build report graphs for this project. They scripts include: bar_bell.py, scat_man.py, 

heating_up.py, histo_listo.py, and guppy (last script from pplacer suite) 

All of the scripts were built using the Python programming language in a Linux 

environment and are built to be run from the command-line.  

Computational resources 

 The PAW and DAP are housed on the computer cluster located in the computer 

science department at Western Washington University. The cluster has 8 nodes capable of 

running 24 single thread jobs per node for a total of 192 parallel processes. We also used the 

Computer Science department data storage facilities for all input and output data for this 

project. 

Code repository 

All code associated with the PAW and the DAP are freely available on the Kodner 

lab repository located on GitHub (https://github.com/McGlock/cluster_pipeline, 

https://github.com/McGlock/DAP). 

 

RESULTS 

The Downstream analysis pipeline 

 The DAP performs multiple functions required to mass process thousands of jplace 

files for a community analysis. The jplace files are collected and read into a single data file 

allowing for quality filtering, parsing to be performed on the entire data-set. Once the data 

checks are completed, there are many other post PAW functions to help with further 

investigation including: sorting by a specified taxonomic levels, basic statistics such as edge 

https://github.com/McGlock/cluster_pipeline
https://github.com/McGlock/DAP
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PCA, EDPL, AWPD, and other phylogenetic analyses, and data report visualizations. All of 

these scripts are freely available at the Kodner lab Github repository, along with 

documentation for running the PAW and DAP (https://github.com/McGlock/cluster_pipeline, 

https://github.com/McGlock/DAP).  

Reference package production 

A total of 9,207 genes were successfully run through the RPP to produce reference 

packages for use in the PAW placement analysis. This included 9,204 functional from COGs, 

TIGRfams, and NCBI clusters and 3 custom built SSU genes. There were 122 functional 

genes that did not pass the inspection stage of the RPP due to lack of reference sequences or 

insufficient quality. 

On average, bacteria comprise over 50% of the taxa recruited for each gene, with the 

exception being the MTHs (Figure 3). It is not surprising that the MTHs have less than 50% 

contribution from bacteria because these are mitochondrial gene packages. However, it is 

also puzzling that the CHL (chloroplast) genes do not show the same trend. Evolutionary 

studies for mitochondrial and chloroplast origins have suggested that the endosymbiosis of 

the former was much earlier and that the latter is a more modern addition. Over time more 

gene transfer and hybridization may have occurred in the mitochondrial genome, effectively 

masking its bacterial signal. This effect would be weaker for the younger relationship of 

chloroplasts, preserving the bacterial signal in the gene packages. It must also be noted that 

the MTHs had the smallest number of genes overall, a possible source of bias for the 

taxonomic representation in the packages. 

Eukaryotes had a range between 14%-50% of taxa and Archaea made up less than 7% 

of taxa for all projects. The project with the highest average taxa per gene was the SSUs, 

https://github.com/McGlock/cluster_pipeline
https://github.com/McGlock/DAP
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with a total of 5118 taxa. Then CHLs, PTZs, COGs, TIGRs, and MTH in descending order 

(Figure 3). The average length for reference sequences in gene trees was highest for the SSUs 

genes at 1941 base pairs (bp) (Appendix: Table 1). The other averages in descending order 

were: MTHs, TIGRs, PTZs, COGs, CHLs at 216, 212, 197, 190, 165 bp. 

 

Figure 3: Average number of taxa by Domain contributing to each gene project. Archaea 

(gray), Eukaryotes (orange), and Bacteria (blue). 

 

 Originally, the standard RPP was to be used to create the SSU packages using a 

custom built reference sequence library including SSU sequences Bacteria, Eukaryotes and 

Archaea. However, software and hardware limitations did not allow RPP to complete 

successfully. It was discovered that the cluster computer did not have a sufficient amount of 

RAM to complete the more intensive steps of the package creation, namely multiple 
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sequence alignment (MSA) with MUSCLE (Edgar (2004)). In order to remedy this issue the 

PhyloSift step was incorporated in the SSU package production, and this seemed to allow for 

the creation of the reference packages. In future studies, if higher resolution is needed for 

SSUs, packages for specific groups should be created, allowing for the inclusion of more 

SSU information for that group. Improving on the limitations of current MSA software is not 

a simple undertaking, so for biologists refining the reference sequence selection process 

through the use of software like PhyloSift is a very important pre-analysis step.  

Efficient computer usage is currently one of the biggest issues in bioinformatics. The 

majority of analysis software is built to handle small numbers of files at a time, i.e., one 

profile-hmm or one MSA. In the building of the DAP and the running of the PAW these 

programs needed to be executed many thousands of times in order to complete the processing 

of the entire data-set. This requires many wrapper scripts to be built and a protocol for the 

format and content of input data to be created. While the scripts built in this project perform 

their function properly, due to limits of time and software development resources, 

optimization would be a necessary next step. There are many processes during the PAW and 

DAP that could benefit from a more mathematics-based or parallel-computing-based 

approach. The majority of wrapper scripts are built in Python, but many functions could be 

migrated to a lower-level language to improve efficiency and therefore overall run-time. 

Currently, the DAP have a package checking function to quickly identify packages 

that have not be correctly created. A further investigation of the genes that did not pass the 

quality checking should be performed. It is unclear as to why these packages are not 

successfully created, although a cursory check showed that many of them had a limited 

number of reference sequences, which could have effects on the quality of the package. In 
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the future, it would be helpful for the DAP user to be able to read out a report on each 

package, providing statistics for the quality of the build. This would require a significant 

effort to review the building process and possible weak points in the production of packages. 

CONCLUSIONS 

 Reference packages are a valuable resource for studying metagenomes, but require 

computational infrastructure and specialized software to create on a large-scale. This is not 

ideal for all research projects; however availability of pre-built packages from this project 

can provide a solution for researchers who lack the expertise or budget to create their own. 

Taxonomic, functional, and phylogenetic information is contained in these packages is a 

more accessible format and in combination with pplacer, can provide high quality sequence 

annotations for any study with a metagenomic component. 

The DAP successfully completed the PAW, making it more user friendly for 

biologists in future sequence-based analyses. The semi-autonomous workflow of the 

PAW/DAP allow for large-scale high-throughput surveys of metagenomic libraries against 

thousands of genes. The DAP collects large output volumes and presents the user with 

manageable analysis files, more easily accessible for further manual investigation into 

possible biological signals. The combination of methods in this pipeline allow for a query 

sequence to be annotated with both taxonomic and functional information, further improving 

on current annotation standards. Direct connection of organisms to ecosystem functions will 

lead to better understanding of the structure and interactions of microbial communities as a 

whole. 
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CHAPTER 2: PAW/DAP Capabilities & A New Study on Diversity 

INTRODUCTION 

Studying biodiversity 

  Biodiversity has been shown to influence an ecosystems ability to resist and recover 

from environmental variation (Norberg (2013), Hillebrand et al (2007), Loreau et al (2001)). 

However, a consensus of the most suitable methods for measuring diversity in microbial 

systems has not yet been reached (Caron et al (2009), Rosselló-Mora and Amann (2001)). 

Traditional diversity components of a microbial study include a gene survey using the small 

sub-unit ribosomal RNA genes (SSUs) and a functional richness (FR) measure, commonly 

identification and quantification of unique functional genes. Although, these methods can 

give insight into both evolutionary relationships of organisms and the total functional 

capabilities of a community, there are inherent problems with both when investigating 

microbial groups. 

SSU surveys have been used extensively to investigate the evolutionary relationships 

between many groups including Bacteria and macro-Eukaryotes. These highly conserved 

genes can be helpful when looking at ancient lineages and distantly related organisms, but 

definitions of evolution are largely based on macro-Eukaryotic biology, much of which 

cannot be directly applied to microbes. Genetic recombination from lateral gene transfer is 

suggested to be a major influence of the genetic diversity in bacterial groups (Ochman et al 

(2000)). Genomic plasticity can lead to organisms with identical or similar SSU sequence 

identity having significantly different genomic content and distinct ecological influences 

(Thompson et al (2005)). The propensity of some groups to have more than a single copy of 

the SSU gene can also lead to artifacts in diversity measurements (Acinas et al (2004)). The 
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implications of these findings are that phylogenetic diversity (PD) analyses based on SSUs 

do not directly represent the functional diversity (FD) of the community, and in some cases 

could drastically underestimate the overall evolutionary diversity.  

A review study containing data from 29 grassland plant experiments found that PD 

and FD were both predictors of the influence of biodiversity on ecosystem function (Flynn et 

al (2011)). FR had the lowest predictive power of all measures, indicating that it shows less 

utility in understanding the relationship between biodiversity and ecosystem function. 

Similar studies support these findings and also suggest that both FR and species richness 

(SR) are the least informative predictors (Cadotte et al (2009), Petchey et al (2004)). 

Utilizing the PAW/DAP effectively combines PD and FD into one analysis allowing for both 

taxonomic and functional traits to be examined and directly linked with each other. 

Functional phylogenetic diversity (FPD) incorporates sequence similarity information and 

functional annotations to get a high resolution of a community’s functional stability and 

architecture. 

There are large repositories of functional housekeeping genes currently available 

from online resources. Along with their high conservation among divergent lineages, the 

functions of these genes have been studied and are curated. This makes them a valuable 

annotation resource for a phylogenetic study of an under-characterized community. The 

Clusters of Orthologous Genes (COGs) represent a well-studied set of conserved functional 

genes. These genes can give insight into the present community’s functional capabilities as 

well as the evolutionary relationships for the organisms contributing to these functions. 
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Understanding the relationship between microbial biodiversity and ecosystem 

function is a critical component when attempting to characterize a community. 

Understanding the evolutionary history of organisms and the functions they perform can give 

insight into current global distributions and how that might change in the coming years. 

Diversity can also be used as a metric to find members or functions, which may be under 

selective pressure in an ecosystem. 

Applying the analysis to an oxygen minimum zone data-set 

Oxygen minimum zones (OMZs) influence global biogeochemical processes and 

have a significant influence on community structure in the oceans. Naturally occurring 

OMZs are found in areas of nutrient upwelling allowing for high levels of photosynthetic 

primary production. The resulting biomass is decomposed by microbial heterotrophs via 

aerobic respiration. This, in conjunction with insufficient ventilation and low circulation, can 

lead to large areas of the mesopelagic having reduced levels of dissolved oxygen (Ulloa et al 

(2012), Stewart (2011), Stramma et al (2008), Diaz and Rosenberg (2008), Wyrtki (1962)). 

OMZs are defined as having dissolved oxygen concentrations of <20uM, necessitating the 

use of alternative terminal electron acceptors during cellular respiration, such as nitrate, 

nitrite, manganese, iron, sulfate, and carbon dioxide. Current research estimates that OMZs 

make up approximately 7% of the total volume of the oceans and contribute to over 33% of 

fixed nitrogen loss in this global ecosystem (Hawley et al (2014), Wright et al (2012),  

Paulmier and Ruiz-Pino (2009), Galloway et al (2004), Codispoti et al (2001)).  

Recently, studies have concluded that agricultural nutrient runoff and climate change 

are contributing to the expansion of OMZs on a global scale (Stewart (2011), Stramma et al 

(2008), Diaz and Rosenberg (2008)). OMZ expansions driven by anthropogenic sources can 
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potentially have large ecologic and economic implications as they have distinct biochemical 

properties, distinct from oxygen-rich zones. Correctly identifying natural variation in an 

OMZ community will allow for future studies to investigate and understand the 

consequences of human input into these systems. 

Eastern tropical south Pacific oxygen minimum zone (ETSP OMZ) 

The ETSP OMZ is a permanent low oxygen zone located off the western coast of 

Chile. The OMZ is located at 100-500m, with seasonal variation of the boundaries. The data-

set was collected from the high dissolved oxygen (>200µmol/L) surface through the low 

dissolved oxygen (<5µmol/L) core (Bryant et al (2012)). 

 The ETSP OMZ dataset has shown that redox pathways in sulfur-cycling bacteria 

may contribute to up to 30% of the organic carbon mineralization (Canfield et al (2010)). 

High abundance of crenarchaeal-like Archaea were identified in the nitrification transitional 

zone between oxic and suboxic regions of the water column (Stewart et al (2012)). Finally, a 

2012 study found that taxonomic richness, faith phylogenetic diversity, and functional 

richness all decreased as oceanic depth increased (Bryant et al (2012)). 

This bacteria-centric data-set is interesting because it was collected across the oxygen 

gradient in the OMZ over a period of three years with increasing sequencing effort each year. 

This allows for an investigation of a highly dynamic physiochemical environment with a 

diverse uncharacterized community, but also an investigation of the influence of sequencing 

effort on diversity measurements. The goal of this work is to investigate the utility of 

functional genes for exploring community function and diversity as well as the influence of 

sequencing effort on patterns of diversity.  
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This study will use the previously reviewed bioinformatics pipeline (chapter 1) to 

investigate the utility of functional gene for calculating diversity in comparison to the current 

standard, which utilizes SSU marker genes. We calculate phylogenetic diversity (PD) using 

the PAW/DAP pipline, and functional gene PD measurements will then be compared to 

SSUs and information about sequencing effort. The sub-set of genes found through DA 

analysis will be compared to the patterns for the full set of genes. These analyses and 

comparisons will help to test the pipeline and functional genes utility in community-level 

functional and diversity studies using metagenomes. 

 

METHODS 

OMZ metagenome preparation 

The raw data was collected and processed by the Microbial Oceanography of Oxygen 

Minimum Zones (MOOMZ) project and stored in the NCBI Sequence Read Archive (SRA) 

(Leinonen et al (2011)). This study included 17 previously published metagenomic samples 

collected from Station #3 (20°07’S, 70°23’W) off the coast of Iquique (Appendix: Table 2), 

Chile during the austral fall (June 2008), winter (August 2009), and summer (January 2010) 

as part of the Microbial Oceanography of Oxygen Minimum Zone (MOOMZ) cruises aboard 

the R/V Vidal Gormaz (Bryant et al (2012), Stewart (2011), Canfield et al (2010)). Specific 

collection methods can be found in previous publications on the data-set (Stewart (2011), 

Canfield et al (2010)). The samples were pre-filtered through 1.6µm filters and collected on 

0.22µm filters, making the size fraction 0.22-1.6µm. Genomic DNA extraction and 

sequencing methods can be found in Stewart (2011) and Canfield et al (2010). The HTS 

technology used for the pyrosequencing was a Roche Genome Sequencer FLX instrument 
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using either FLX or Titanium series reagents, see previous methods for specifics (Appendix: 

Table 2). 

 The raw nucleotide sequence reads for each OMZ sample were downloaded from the 

NCBI SRA database. The data was de-duplicated by sequence and by read name using the 

seqmagick command line utility available via GitHub (https://github.com/fhcrc/seqmagick). 

The European Molecular Biology Open Software Suite (EMBOSS) program getorf was used 

to translate the metagenomes into protein-space (Rice et al (2000)). After deduplication the 

raw nucleotide dataset equated to 15,832,111 reads and after translation 438,239,102 open 

reading frames (ORFs). The SRA identification codes for each sample library were added to 

their respective reads for later use in the DAP (Appendix: Table 2). 

Running PAW/DAP on OMZ 

The 3 SSU and 4,425 COG reference packages were used for this study, as they 

represent well studied groups for both marker and functional genes. The PAW was used with 

the OMZ data-set and reference packages as input, producing 4,428 jplace files. The output 

jplace files were then run through the DAP, using scripts outlined in chapter 2. Briefly, 

taxonomic annotations were mapped to each read, allowing for abundance and diversity 

measures to be calculated for functional, taxonomic, spatial, and temporal groups. The 

diversity measure used for this study was AWPD defined and employed by the pplacer suite 

(2,3,4) (McCoy and Matsen (2013)).  
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(2)   𝑃𝐷𝑢(𝑠) = ∑ 𝑙𝑖𝑔(𝐷𝑠(𝑖))𝑖  

(3)   𝑔𝜃(𝑥) = 𝑚𝑖𝑛(𝑥𝜃 , (1 − 𝑥)𝜃) 

(4)   𝐴𝑊𝑃𝐷𝜃(𝑠) =  ∑ 𝑙𝑖𝑔𝜃(𝐷𝑠(𝑖))𝑖  

   where 𝜃 = 1 

 

Abundance Statistics 

 Differential count analysis is a commonly used method in transcript-level 

investigations to find genes that have statistically significant differential expression in 

samples or treatments. However, it may also be useful in metagenomic analyses in the form 

of differential abundance (DA). The output from our analysis of the OMZ metagenomes 

presented thousands of genes for further comparisons. Because of the size and complexity of 

this data, a sub-set of candidate genes showing different patterns of abundance between oxic 

and suboxic zones were identified using DA analysis. This sub-set of functional genes for 

oxic and suboxic zones are supported by statistical measures of the DA analysis and can be 

directly linked to ecologically important functions for their respective zones. 

Differential abundance (DA) between oxic and suboxic zones was determined using 

DESeq2 (described in chapter 1). Metagenomes were grouped by the zone, oxic (>5ug/L) 

and suboxic (<5ug/L) and by year. Gene abundances were compared between the zones for 

each year and stats collected on those comparisons. If a gene showed higher abundance in 

one zone it was passed on to undergo quality filtering. DESeq2 also gave a magnitude of the 

difference in abundance and two probability scores, a standard p-value and an adjusted p-
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value (padj). The padj is a p-value adjusted using the Benjamini-Hochberg procedure to 

control for false discovery rates, R function p.adjust. A threshold of the significance of DA 

genes was set at less than or equal to 0.05 padj. The functional and taxonomic annotations for 

each of these genes were investigated to identify important community features for each 

zone.  

A pythonic implementation of the students t-test was used to identify diversity 

differences between the all COGs and DA COGs (Oliphant (2007)). 

Visualizations were created with a combination of DAP functions and standard 

graphing tools, i.e., R-stat and Microsoft Excel 2013 (Hunter (2007)). All scripts used are 

available via the GitHub open repository, along with a workflow document 

(https://github.com/McGlock/cluster_pipeline, https://github.com/McGlock/DAP). 

 

RESULTS & DISSCUSSION 

 To show the capabilities of the PAW/DAP, an overall observations section is 

included below. These results outline the taxonomic and functional information extracted 

from the raw OMZ metagenomes using the PAW/DAP scripts and features. While none of 

this section’s results are new or novel, they show the successful testing and provided output 

that is made available through the use of the semi-autonomous execution of the PAW/DAP 

on raw metagenomic data. 

Package placement distributions 

 The majority of reads from the OMZ data-set were confidently recruited and placed in 

the COGs. A combined total of 5,505,404 reads for SSUs and COGs met the “confident” 

quality threshold, constituting 34.77% of 15,832,111 open-reading frames (ORFs) from the 

data-set. There were 5,319 reads placed in SSUs and 5,500,085 placed in COGs, which are 

https://github.com/McGlock/cluster_pipeline
https://github.com/McGlock/DAP
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0.1% and 99.9% of total confident placements for SSUs and COGs respectively (see chapter 

1: pre-filtering and quality control for confidence threshold). 

Taxonomic packages comparison 

 The confident placement distribution by Domain for all genes in total is seen in 

Figure 4 . Bacteria made up 87.95% of the placements for SSUs and COGs combined, with 

Eukaryotes and Archaea making up 6.03% and 5.29% respectively (Figure 4, Bar 1). 

Bacteria were most abundant for the SSU total confident placements at 84.68%, with 

Archaea at 8.14% and Eukaryotes at 6.52% (Figure 4, Bar 3). A previous study on this data 

reported an average of 3.8% Eukaryotes for SSUs, suggesting our methods have an increased 

sensitivity for that Domain (Bryant, 2012). This increased coverage may be influenced in-

part by the inclusion of the MMESP transcriptomes as reference information. The COGs had 

the same distribution as the combined genes for Bacteria, Eukaryotes, and Archaea at 

87.95%, 6.03%, and 5.29% (Figure 4, Bar 2). 
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Figure 4: Distribution of confident placements from ETSP OMZ data-set across biological 

Domain and virus.  

 

 The observed distribution of the confident placements is not surprising because 

bacteria: 1) have higher abundance than both Archaea and Eukaryotes in marine systems, 2) 

have more reference information and sequenced genomes, 3) were the focus for the original 

OMZ project and therefore dictated the sampling methods (Heike, 2008). There is also the 

possibility of bias due to the reference sequences used in the creation of the reference 

packages. The COG reference packages contain an average of >70% bacterial sequences per 

gene. However, it is currently unknown to what extent the results are influenced by the 

taxonomic distribution of the reference packages. 

 The taxonomic annotations for the COG placements showed a similar distribution to 

SSUs for biological Domain. This is evidence that using functional housekeeping genes 

when taken together gives similar taxonomic information as traditional marker genes. 

However, functional genes are rarely used for diversity based studies. The following analyses 
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investigate the application of functional housekeeping genes for a study in community 

diversity, in comparison to diversity of traditional marker genes. 

Bacteria SSU 

There were 16 Division level groups contributing to the observed trends in diversity, 

3 of which contributed to 79% of the placements, in descending order: Proteobacteria (48%), 

environmental samples (21%), and Fibrobacteres/Acidobacteria group (10%). Other groups 

contributing less than 10% but more than 1% were: Bacteroidetes/Chlorobi group, 

unclassified bacteria, Actinobacteria, and Planctomycetes. Groups with 1% or less of total 

placements were: Cyanobacteria, Chlamydiae/Verrucomicrobia group, Spirochaetes, NO 

MATCH group, Chloroflexi, Firmicutes, Gemmatimonadetes, Tenericutes, and 

Deferribacteres (Figure 5, Bar 1). 

Bacteria COG 

There were 26 Division level groups annotated as COGs, but only Proteobacteria, at 

67%, contributed more than 10% on its own (Figure 5, Bar 2). Groups which contributed less 

than 10% but more than 1% were: Bacteroidetes/Chlorobi group, Firmicutes, Actinobacteria, 

Chlamydiae/Verrucomicrobia group, and Cyanobacteria (Figure 5, Bar 2). The remaining 20 

groups contributed 1% or less and included: Spirochaetes, Planctomycetes, NO MATCH 

group, unclassified bacteria, Chloroflexi, Fibrobacteres/Acidobacteria group, Deinococcus-

Thermus, Nitrospirae, Aquificae, Tenericutes, Thermotogae, Deferribacteres, Fusobacteria, 

Synergistes, Thermodesulfobacteria, Elusimicrobia, Dictyoglomi, Armatimonadetes, 

Chrysiogenetes, Caldiserica (Figure 5, Bar 2). 

Bacteria DA COGs 

A total of 24 Division level groups contributed to the AWPD for the DA COGs 

(Figure 5, Bar 3). The Proteobacteria made up 67% of the placements for DA COGs, also the 
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only group contributing over 10% (Figure 5, Bar 3). Groups with more than 1% but less than 

10% were: Bacteroidetes/Chlorobi group, Firmicutes, Actinobacteria, and Cyanobacteria 

(Figure 5, Bar 3). Groups with 1% or less of total placements for DA were: Planctomycetes, 

Chlamydiae/Verrucomicrobia group, Spirochaetes, NO MATCH group, unclassified bacteria, 

Chloroflexi, Fibrobacteres/Acidobacteria group, Deinococcus-Thermus, Aquificae, 

Nitrospirae, Synergistes, Tenericutes, Thermotogae, Deferribacteres, Fusobacteria, 

Thermodesulfobacteria, Elusimicrobia, Dictyoglomi, and Chrysiogenetes (Figure 5, Bar 3).  

 

Figure 5: Taxonomic breakdown of confidently placed reads at Division level for bacterial 

SSU. Taxa contributing <1% in all 3 columns were grouped into the “other” category. 
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Conclusion for analysis of taxonomic data 

The results for SSUs, COGs, and DA COGs all show the Proteobacteria as the 

dominant Division in the overall data-set. This supports previous work in this region (Stevens 

and Ulloa (2008)) and importance of this group in dynamic and disturbed systems (Yeo et al 

(2013)). The presence in the DA COGs also illuminates the metabolic breadth and 

importance of this group. There were three Divisions shared between the three gene packages 

that made up more than 1% of the placements: Proteobacteria, Bacteroidetes/Acidobacteria 

group, and Actinobacteria. The top 4 groups for COGs and DA COGs were shared and 

similarly ranked. This included the previously stated 3, along with the Firmicutes. The less 

understood environmental sample group found to contribute a large percentage (21%) to 

SSUs suggests that there are still many unknown groups present in the bacterial community, 

but also the lack of resolution when using only a small portion of the sequence reads. The 

relative proportions of taxa for DA COGs are very similar to the total COGs, suggesting that 

the DA COGs provide similar taxonomic representation of the community. The COGs and 

DA COGs did not have the environmental sample or the unknown bacteria as major 

contributions to confident placements. Also, COGs and DA COGs included all Division level 

taxonomic annotations found for SSUs, as well as several additional groups. This outcome 

suggests that COGs may provide more taxonomic information when SSUs give little insight 

into the source of the more abundant reads. 

New analysis of OMZ data: An exploration of diversity measures 

It is currently unknown how overall phylogenetic functional diversity compares to 

measures of diversity for SSU marker genes in metagenomes. The OMZ data was explored 

using the AWPD metric to compare SSU diversity to that of COGs. This was preformed to 

investigate the utility of functional genes for studies in microbial diversity. 
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SSU PD 

 The traditional diversity measure used in current studies is the Faith PD applied to 

SSU OTUs (Faith (1992)). As a reference, PD was calculated for the overall SSUs by year 

and depth (Figure 6). The average PD for SSUs was highest, 9.5, in 2010 at 150m and 

lowest, 4.25, in 2008 at 200m, both of which are located in the suboxic zone. In 2008, 

average PD decreased from surface samples through the oxic-suboxic transition, although an 

increase at 500m was observed. Conversely, 2009 and 2010 showed apparent increases in 

diversity from oxic to suboxic, with the highest being in suboxic (Figure 6).  

 

Figure 6: Average PD for 3 SSU genes by depth; color = year, shape = zone, size = read 

count for library. Suboxic threshold = <5umol/L dissolved O2. 

 

 Traditional PD does not normalize for abundance in its calculation and therefore does 

not give an accurate representation of the diversity of a community. This is particularly 

important when characterizing highly dynamic microbial systems, which tend to be 

dominated by a small subset of taxa the majority of time, have episodic blooms, and a diverse 

rare biosphere contributing to overall community processes (Sogin et al (2006)). Community 
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unevenness must be incorporated in diversity measures via abundance information if a true 

understanding of these biomes is to be achieved. Abundance-weighted phylogenetic diversity 

(AWPD, see methods equation 4) incorporates abundance information into traditional Faith 

phylogenetic diversity (PD) calculations to account for shifts in community evenness.  

SSU & COG AWPD 

The overall AWPD by depth, as well as by zone, for SSUs and COGs did not share 

similar trends (Figure 7, 8). Average AWPD for SSUs was highest and lowest in 2008, 1.0 at 

65m (oxic) and 0.61 at 200m (suboxic), respectively. Both 2008 and 2009 have an increase in 

diversity at the transition between oxic and suboxic, where 2010 have no increase present. 

The 2009 and 2010 highest average AWPD were in suboxic samples, 110m and 150m 

respectively. The same increase in diversity observed in PD for the 2008 500m sample was 

also present in AWPD (Figure 7). COGs average AWPD did not share overall trends with 

SSUs (Figure 8). The maximum and minimum AWPD was observed in 2009 at 50m, 1.84, 

and 2008 at 800m, 1.56. AWPD decreased steadily with depth, with the decrease being more 

rapid through the transition from oxic to suboxic. An outlier in 2008 at 500m showed an 

increase in AWPD from the 200m sample in that same year. Finally, all samples had higher 

average AWPD for COGs than SSUs, in some cases over 2x the AWPD for COGs (Figure 7, 

8). 
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Figure 7: Average AWPD for 3 SSU genes by depth; color = year, shape = zone, size = read 

count for library. Suboxic threshold = <5umol/L dissolved O2. 

 

 

Figure 8: Average AWPD for 4,425 COG genes by depth; color = year, shape = zone, size = 

read count for library. Suboxic threshold = <5umol/L dissolved O2. 
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The AWPD for COGs shows an increase in AWPD for all samples when compared to 

SSUs and does not show similar trends with respect to depth. The clear trend in diversity 

with respect to depth is observed for COGs agrees with previously published trends in 

diversity for this data-set (Bryant et al (2012)). However, the AWPD for each SSU package 

should not be averaged to get an overall AWPD for all Domains due to the properties of 

AWPD itself. When averaged, the diversity scores were unevenly weighted towards the less 

abundant Archaea and Eukaryotes. SSU reference packages are Domain specific, not 

allowing for a direct comparison to the combined Domain SSU diversities of Bryant et al 

(2012). In fact, the direct comparison of SSU results to COGs was not possible either, as the 

COGs were not built to be Domain specific. To compare diversity measures across Domain 

for a specific sample, Domains were separated in jplace files using DAP functions to allow 

for Domain specific calculations of community diversity. 

Bacteria: SSU & COG AWPD 

The average AWPD for bacterial SSU showed a range from 0.81 to 1.07 which was 

observed in the 15m to 150m samples. A spike was seen in 2008 and 2009 from 110m to 

200m and then decreases again for 2008 at 500m. The deep oxic AWPD is higher than all 

2008 suboxic samples (Figure 9).  

Average AWPD for COGs was higher than SSUs for all samples, with the lowest for 

COGs (800m) being higher than the highest (15m) SSU. The maximum and minimum 

AWPD were 1.83 and 1.54, for the 2009 35m and 2008 800m samples. COG AWPD 

decreased from surface to 200m samples, with an increase at 500m and then dropping back 

down at 800m (Figure 10).  
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 The SSU and COG AWPD for Bacteria (Figure 9, 10) show a similar trend of 

decreasing diversity from surface to the transition between oxic and suboxic. The main driver 

of this trend is the Division Proteobacteria, making up the majority of placements for both 

SSUs and COGs. A notable difference between SSU and COG is that COGs have higher 

diversity for all libraries, in some cases over 2x the average AWPD score. So, while the 

spatial and physiochemical trends in diversity are similar, the higher average AWPD for 

COGs indicates a higher overall genetic diversity found in this set of functional genes. 

 

Figure 9: Bacterial average AWPD for SSU genes for the 2008-2010 data by depth; color = 

year, shape = zone, size = read count for library. Suboxic threshold = <5umol/L dissolved 

O2. 
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Figure 10: Bacterial average AWPD for COG genes for the 2008-2010 data by depth; color = 

year, shape = zone, size = read count for library. Suboxic threshold = <5umol/L dissolved 

O2. 

 

DA COGs 

Although the previous reviewed results give insight into the advantages of functional 

genes in diversity studies, another goal of this study was to test a method for the 

identification of important functions for specific environments. The DESeq2 analysis was 

employed in order to identify genes that possibly play an important role in oxic or suboxic 

processes. The differentially abundant (DA) analysis with DESeq2 returned a subset of 

COGs for each year that showed differential abundance, defined as having an adjusted p-

value of less than 0.05, between oxic and suboxic zones. In the 2008 samples 60 DA genes 

were identified, 31 in oxic and 29 in suboxic (Appendix: Table 3, Figure 11). For 2009, 174 

genes were found to be DA, 126 in oxic and 48 suboxic (Appendix: Table 4, Figure 12). The 

2010 samples had the most DA genes at 214, 64 oxic and 150 suboxic (Appendix: Table 5, 

Figure 13). For the scope of this project a specific DA COG for Bacteria was  compared to 
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functional analyses from previous work on the ETSP OMZ, followed by a diversity analysis 

for the complete set of DA genes.. 

 

Figure 11: DESeq2 analysis for 2008 bacterial data. x-axis is geometric mean of abundance 

for genes across libraries. y-axis is the log base 2 of the fold change between oxic and 

suboxic zones. Greater than 0 on y-axis indicates higher expression in suboxic zones, less 

than 0 indicates higher abundance in oxic zones. Each point represents a COG or SSU gene; 

blue circles = padj > 0.05 (not significant), red squares padj < 0.05 (significant). 
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Figure 12: DESeq2 analysis for 2009 bacterial data. x-axis is geometric mean of abundance 

for genes across libraries. y-axis is the log base 2 of the fold change between oxic and 

suboxic zones. Greater than 0 on y-axis indicates higher expression in suboxic zones, less 

than 0 indicates higher expression in oxic zones. Each point represents a COG or SSU gene; 

blue circles = padj > 0.05 (not significant), red squares padj < 0.05 (significant) 

 

Figure 13: DESeq2 analysis for 2010 bacterial data. x-axis is geometric mean of abundance 

for genes across libraries. y-axis is the log base 2 of the fold change between oxic and 

suboxic zones. Greater than 0 on y-axis indicates higher expression in suboxic zones, less 

than 0 indicates higher expression in oxic zones. Each point represents a COG or SSU gene; 

blue circles = padj > 0.05 (not significant), red squares padj < 0.05 (significant). 
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Comparison of previous results for narG gene 

 Previous work on the ETSP OMZ has highlighted specific functional pathways when 

transitioning from the oxic to suboxic zone including: ammonia oxidation, ammonium 

transport, anaerobic nitrogen metabolism, and sulfur energy metabolism (Stewart et al 

(2012), Stewart (2011), Canfield et al (2010)). To advocate for the reliability of our pipeline 

for functional annotations, we included a brief comparison of one of the DA COGs from the 

suboxic zone. Transcripts of narG (COG5013), a gene that codes for the alpha sub-unit of 

dissimilatory nitrate reductase, increased with depth and transition to the OMZ-core (Stewart 

et al (2012)). Our DA analysis found that narG had the highest base mean of any DA gene 

for the suboxic zone as compared to oxic samples (Table 5). As expected from the overall 

taxonomic distribution of DA genes, narG annotations were primarily placed under the 

Proteobacteria Division, approximately 84% of reads. The Class breakdown of 

Proteobacteria for oxic and suboxic revealed that a major contributor to the differences in 

gene abundance between zones were the Gammaproteobacteria, supporting the previous 

findings for this data-set (Figure 14)(Stewart et al (2012), Stewart (2011)). Yet, the 

abundance distributions alone do not paint a clear picture of the significance of 

Gammaproteobacteria, due to the similar increases in abundance for all other Classes from 

oxic to suboxic zones. Visualizing the phylogenetic information in a KR heat tree, a function 

from the pplacer suite, for narG gave a better perspective on key taxonomic groups for oxic 

versus suboxic (Figure 15)(Evans and Matsen (2012)). A KR heat tree visualizes only the 

areas of a tree which differ in placement distribution between zones. In both oxic and 

suboxic, Gammaproteobacteria contributed to the overall differences in placement 

distributions on the tree. The highest abundance classifications in the suboxic zone from the 

Gammaproteobacteria were the Family Ectothiorhodospiraceae (purple sulfur bacteria) and 
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unclassified Gammaproteobacteria (Table 6). This investigation of the narG gene in this 

data-set has supported the previous studies, highlighting the importance of sulfur oxidizing 

bacteria in anaerobic nitrogen metabolisms. However, reads for the suboxic zone were placed 

in high-level internal nodes, observable on the KR heat tree, underlining the need for further 

investigation of the functional contributions of this Class in OMZ anaerobic nitrogen 

metabolism and how this functional pathway might be coupled with sulfur oxidation (Figure 

15). 

 

Figure 14: Confident read counts of oxic and suboxic zones for the DA gene narG 

(COG5013), broken down into Proteobacterial Classes.  Counts normalized to largest sample 

library. 
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Figure 15: KR heat tree of narG gene for oxic (orange) vs suboxic (blue). Thickness of edges 

indicates number of placements from ETSP OMZ.   

 

Diversity analysis of DA COGs 

DA analysis revealed patterns of diversity for DA COGs differing from that of all 

COGs combined. A paired student t-test showed that the DA COGs had significantly lower 

average AWPD when compared to total COGs for 2008 and 2009, with p-values of 0.015 

and 0.036 respectively (Figure 15). The 2010 samples showed higher average AWPD in the 

DA COGs when compared to total COGs, with a p-value of 0.017 (Figure 15).  
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Figure 16: Bacterial average AWPD for all COG genes and DA genes from DESeq2 analysis 

for the 2008-2010 data by depth; color = All or DA COGs, shape = zone, size = read count 

for library. Suboxic threshold = <5umol/L dissolved O2. 

 

The average AWPD for DA genes was different than all COGs, but the differences 

were not the same for each year. The 2010 DA COGs had the least number of sample depths 

and the highest sequencing effort, which contributed to a diversity trend similar to the 

combined COGs. The range of AWPD for the DA COGs is 1.45 to 1.82 with both minimum 

and maximum located in the oxic zone, 2008 and 2010 respectively. Overall AWPD 

decreases with depth, with 2010 showing the most uniform trend. In both 2008 and 2009 

AWPD increases at the oxic-suboxic transition, 110m, then decrease until their lowest 

sample (Figure 15). The trend in diversity for DA COGs is also similar to total COGs, 

although all depths have a higher diversity for DA COGs. Differentially abundant genes may 

represent functions with a higher diversity than the average diversity of all functional genes. 
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Conversely, this may be evidence that functional genes with high diversity are likely to 

pertain to important functions in a specific environment.  

 

Figure 17: Bacterial average AWPD for significant COG genes found to be significantly 

differentially abundant for the 2008-2010 data by depth; color = year, shape = zone, size = 

read count for library. Suboxic threshold = <5umol/L dissolved O2.  

 

Effects of sequencing effort  

The PD for SSUs showed evidence of influence by sequencing effort, with the least 

effort (2008) having the lowest diversity, followed by medium effort (2009), and finally most 

effort (2010) with the highest overall AWPD (Figure 6). Neither the SSU nor the all COG 

average AWPD showed signs of being influenced by sequencing effort (Figure 7, 8, 9, and 

10). The DA COGs for Bacteria, however, did have the 2010 samples grouping in the higher 

AWPD region of the graph. The lower sampling effort years had lower AWPD for all 

samples, with the exception being the 35m and 50m samples for 2009 (Figure 15). Variation 

of AWPD between years seemed to be reduced for the overall COGs, while the DA COGs 
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were influenced by sequencing effort. The fact that the 2010 bacterial DA COGs are very 

similar to the diversity scores for overall COGs in Bacteria, might hint at the possibility of an 

identifiable sequencing threshold for this data-set. 

CONCLUSIONS 

The analysis of AWPD for three gene-sets has produced promising results supporting 

the use of functional housekeeping genes for studies in diversity. Measures in bacterial 

diversity for the SSU genes supported previously published trends of the OMZ community 

(Bryant et al (2012)). The trends in overall and bacterial diversity for all COGs are similar to 

SSUs suggesting that the functional genes used in this analysis can serve to answer the same 

question of diversity as the traditional marker genes. In the 2010 samples, diversity was 

highest in DA COGs, followed by all COGs, and finally SSUs, hinting at untapped novel 

diversity in the functional genes. This is also supported by the findings in the sequencing 

effort section, where increased effort leads to identification of increase diversity. These 

results are evidence that suggests the DA COGs not only have more ecological significance 

to community function, but may also be more sensitive to novel diversity. 

The functional and taxonomic annotations, as well as the DA analysis results, for the 

narG gene agree with previous work supporting the efficacy of the PAW/DAP. High 

abundance of sulfur oxidizing bacteria, such as Ectothiorhodospiraceae stresses the 

importance of these organisms in anaerobic regions of the OMZ. 

The DESeq2 comparison method identified functional genes to be differentially 

abundant between the oxic and suboxic regions of the ETSP OMZ. This is an important 

result, as these genes represent ecologically important functions. The AWPD of DA genes 
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was lower for the lower sampling efforts, but higher for the highest effort when compared to 

the all COGs AWPDs. This may support a minimum sequencing threshold for the functional 

genes in this community somewhere between the 2009 and 2010 sampling effort.  

Phylogenetic diversity of functional genes shows promised as a alternative method to 

measure the total diversity of an ecosystem. In all cases the functional AWPD was higher 

than the SSU AWPD, although the trends for Bacteria remained similar for both gene 

categories. This suggests that by using the COGs for measuring AWPD, more novel diversity 

of the community is detected. As biodiversity can be directly related to ecosystem stability 

and recovery, characterizing novel diversity is an important step to understanding the overall 

ecology of a community.   

 

FUTURE DIRECTIONS 

 This study included an in-depth analysis of bacteria in an OMZ because the available 

data-set and reference packages were bacteria-centric. A future study that would add 

significantly to further testing of the PAW/DAP would be to use metagenomes sampled 

equally for all three Domains of life and viruses. This would allow for a more inclusive and 

encompassing test of the methods and capabilities of the pipeline. 

 The reference packages remain mostly generalized to the available reference 

information, but could be customized for very specific questions. An interesting experiment 

could include an organism specific package or a package built on a single protein domain 

instead of an entire gene. The ability to customize the packages via the included reference 

information allows for a large degree of flexibility in experimental design. 
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 A deeper investigation of the functions of the Proteobacteria would be the next logical 

step for the functional aspect of this study. It was shown that Proteobacteria dominated the 

oxic and suboxic and that different Classes contributed to that overall primary position in the 

community. Further resolving the community composition by including more DA functional 

genes for alpha, beta, and gamma-proteobacterial classes could shed light on the community 

dynamics in an oxic versus suboxic zone. 

 Overall this study has helped to test a method built for rapid hypothesis testing on a 

large scale. Creating an analysis that combines taxonomic, functional, and phylogenetic 

annotation methods, such as the PAW/DAP, is vital to gaining a better understanding of the 

incredible diversity of microbial ecosystems. Resolving the role of biodiversity in the 

underlying mechanisms driving community functions will assist in future efforts to predict 

the effects of environmental variation on global ecosystems.  
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APPENDIX: 

Table 1: Reference package sequence count and stats by gene project and domain-level, 

domain columns are number of taxa. 

  stat Bacteria Eukaryota Archaea seq_len num_seqs 

CHL 

average 870.955056 322.803371 52.258427 165.342697 1247.8427 

max 2860 1604 204 1857 3540 

min 0 10 0 6 39 

COG 

average 611.184994 121.526044 44.4913187 190.312112 779.920628 

max 3170 1638 288 2219 3909 

min 0 0 0 5 4 

MTH 

average 106.869823 117.159763 10.0769231 216.852071 234.106509 

max 979 737 130 534 1413 

min 0 0 0 32 1 

PTZ 

average 515.402655 279.84292 54.0199115 197.225664 852.325221 

max 2613 1058 261 1584 3245 

min 0 1 0 8 1 

SSU 

average 3078.33333 1827.66667 211.666667 1941 5127.33333 

max 9234 5206 568 2733 9595 

min 0 2 0 1508 580 

TIGR 

average 587.006168 104.320998 37.1376507 212.186992 730.319596 

max 2728 1658 251 3162 3281 

min 0 0 0 5 1 
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Table 2: Metadata for OMZ metagenomes 

sra_id year depth(m) seq_type lib_size ave_read_len zone 

SRR304684 2008 15 DNA 771623 238 oxic 

SRR064444 2008 50 DNA 341163 256 oxic 

SRR304656 2008 65 DNA 382821 251 oxic 

SRR064446 2008 85 DNA 569046 253 oxic 

SRR064448 2008 110 DNA 380764 243 suboxic 

SRR064450 2008 200 DNA 485911 249 suboxic 

SRR304668 2008 500 DNA 515676 248 suboxic 

SRR304683 2008 800 DNA 173051 242 oxic 

SRR304671 2009 35 DNA 937420 333 oxic 

SRR304672 2009 50 DNA 1042057 339 oxic 

SRR070081 2009 70 DNA 1147856 385 oxic 

SRR304673 2009 110 DNA 905059 403 suboxic 

SRR070082 2009 200 DNA 930359 246 suboxic 

SRR304674 2010 50 DNA 1530891 386 oxic 

SRR070083 2010 80 DNA 1359823 428 suboxic 

SRR304680 2010 110 DNA 1456854 409 suboxic 

SRR070084 2010 150 DNA 1301664 431 suboxic 
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Table 3: Bacteria 2008 differentially abundant genes w/ padj < 0.05, green are oxic, blue are 

suboxic 

gene zone baseMean log2FoldChange functional_description Padj 

COG4338 oxic 6.715856171 -2.616524044 Uncharacterized_protein_conserved_

in_bacteria 

7.67E-04 

COG3067 oxic 23.67836869 -2.342707063 Na+/H+_antiporter 4.95E-03 

COG3476 oxic 8.845768204 -2.131064639 Tryptophan-

rich_sensory_protein__mitochondrial

_benzodiazepine_receptor_homolog 

1.02E-02 

COG3223 oxic 12.01465024 -2.120301553 Predicted_membrane_protein 8.70E-03 

COG3496 oxic 20.64512487 -2.002298323 Uncharacterized_conserved_protein 1.25E-02 

COG5454 oxic 5.627329439 -1.960376118 Predicted_secreted_protein 1.61E-02 

COG3380 oxic 3.303176453 -1.950106751 Predicted_NAD/FAD-

dependent_oxidoreductase 

2.28E-02 

COG3564 oxic 9.466037371 -1.928383393 Uncharacterized_protein_conserved_

in_bacteria 

2.28E-02 

COG2907 oxic 33.28331514 -1.873376171 Predicted_NAD/FAD-

binding_protein 

2.28E-02 

COG1485 oxic 26.65717818 -1.821086455 Predicted_ATPase 5.28E-03 

COG2509 oxic 5.035571655 -1.810211967 Uncharacterized_FAD-

dependent_dehydrogenases 

3.34E-02 

COG4635 oxic 3.225175535 -1.790133692 Flavodoxin 4.36E-02 

COG0586 oxic 2.648603235 -1.789178593 Uncharacterized_membrane-

associated_protein 

4.36E-02 

COG4787 oxic 3.112455405 -1.785289398 Flagellar_basal_body_rod_protein 4.36E-02 

COG1733 oxic 10.7604238 -1.711144289 Predicted_transcriptional_regulators 2.28E-02 

COG2941 oxic 23.88544273 -1.676737876 Ubiquinone_biosynthesis_protein_C

OQ7 

8.30E-03 

COG2249 oxic 8.335793376 -1.667900675 Putative_NADPH-

quinone_reductase__modulator_of_d

rug_activity_B 

3.14E-02 

COG3752 oxic 18.08386226 -1.664861956 Predicted_membrane_protein 1.02E-02 

COG2855 oxic 29.10266248 -1.525323104 Predicted_membrane_protein 3.63E-02 

COG1054 oxic 29.69075752 -1.516026679 Predicted_sulfurtransferase 6.06E-03 

COG1805 oxic 43.49485151 -1.244912271 Na+-

transporting_NADH_ubiquinone_oxi

doreductase__subunit_NqrB 

3.53E-02 

COG3565 oxic 24.56484925 -1.220783937 Predicted_dioxygenase_of_extradiol

_dioxygenase_family 

1.37E-02 

COG4531 oxic 36.27232983 -1.099535756 ABC-

type_Zn2+_transport_system__peripl

asmic_component/surface_adhesin 

3.49E-02 

COG2076 oxic 29.89720607 -1.046457166 Membrane_transporters_of_cations_

and_cationic_drugs 

3.23E-02 

COG0397 oxic 74.74743312 -1.041359996 Uncharacterized_conserved_protein 3.38E-02 

COG1953 oxic 59.50706095 -1.007925726 Cytosine/uracil/thiamine/allantoin_pe

rmeases 

7.74E-03 

COG2609 oxic 224.1616686 -0.814590538 Pyruvate_dehydrogenase_complex__

dehydrogenase__E1__component 

9.31E-03 
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Table 3: continued 

COG1233 oxic 62.83422785 -0.805517302 Phytoene_dehydrogenase_and_relate

d_proteins 

3.30E-02 

COG1194 oxic 69.01690221 -0.66708947 A/G-specific_DNA_glycosylase 3.36E-02 

COG0765 oxic 109.1960823 -0.649182573 ABC-

type_amino_acid_transport_system_

_permease_component 

7.74E-03 

COG0508 oxic 218.6666299 -0.438193382 Pyruvate/2-

oxoglutarate_dehydrogenase_comple

x__dihydrolipoamide_acyltransferase

__E2__component__and_related_enz

ymes 

3.93E-02 

COG0635 suboxic 62.52438079 0.690322406 Coproporphyrinogen_III_oxidase_an

d_related_Fe-S_oxidoreductases 

3.19E-02 

COG2870 suboxic 43.64629637 0.763395678 ADP-

heptose_synthase__bifunctional_sug

ar_kinase/adenylyltransferase 

3.57E-02 

COG0007 suboxic 36.0892051 1.028693842 Uroporphyrinogen-III_methylase 9.31E-03 

COG1883 suboxic 34.52441487 1.071121238 Na+-transporting_methylmalonyl-

CoA/oxaloacetate_decarboxylase__b

eta_subunit 

1.73E-02 

COG0674 suboxic 103.3065075 1.076267254 Pyruvate_ferredoxin_oxidoreductase

_and_related_2-

oxoacid_ferredoxin_oxidoreductases

__alpha_subunit 

1.25E-02 

COG3347 suboxic 55.06728128 1.112597673 Uncharacterized_conserved_protein 3.25E-03 

COG0053 suboxic 26.40438016 1.193031752 Predicted_Co/Zn/Cd_cation_transpor

ters 

2.08E-02 

COG1013 suboxic 75.94231288 1.239968961 Pyruvate_ferredoxin_oxidoreductase

_and_related_2-

oxoacid_ferredoxin_oxidoreductases

__beta_subunit 

6.74E-03 

COG0758 suboxic 16.16644126 1.257415417 Predicted_Rossmann_fold_nucleotid

e-

binding_protein_involved_in_DNA_

uptake 

4.36E-02 

COG4864 suboxic 15.48721428 1.285924419 Uncharacterized_protein_conserved_

in_bacteria 

1.61E-02 

COG2170 suboxic 44.95652611 1.330778505 Uncharacterized_conserved_protein 1.61E-02 

COG1994 suboxic 16.02906553 1.371172331 Zn-dependent_proteases 3.30E-02 

COG0685 suboxic 47.38101277 1.426752736 5_10-

methylenetetrahydrofolate_reductase 

6.31E-05 

COG0658 suboxic 10.47666326 1.539667328 Predicted_membrane_metal-

binding_protein 

3.57E-02 

COG1254 suboxic 6.041619138 1.591377104 Acylphosphatases 3.30E-02 

COG2826 suboxic 19.4784619 1.618605454 Transposase_and_inactivated_derivat

ives__IS30_family 

2.06E-02 

COG3039 suboxic 12.71244391 1.662380016 Transposase_and_inactivated_derivat

ives__IS5_family 

2.32E-02 

COG1271 suboxic 14.07241765 1.677148862 Cytochrome_bd-

type_quinol_oxidase__subunit_1 

1.37E-02 
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Table 3: continued 

COG4660 suboxic 6.658052413 1.703851759 Predicted_NADH_ubiquinone_oxido

reductase__subunit_RnfE 

3.35E-02 

COG3328 suboxic 22.66493098 1.74680062 Transposase_and_inactivated_derivat

ives 

1.02E-02 

COG0826 suboxic 37.41398446 1.774496093 Collagenase_and_related_proteases 8.70E-03 

COG3243 suboxic 43.75412262 1.833301409 Poly_3-

hydroxyalkanoate__synthetase 

5.62E-03 

COG2180 suboxic 16.26969621 1.857372068 Nitrate_reductase_delta_subunit 1.86E-02 

COG1964 suboxic 8.693461413 1.85776998 Predicted_Fe-S_oxidoreductases 2.28E-02 

COG1355 suboxic 9.008339013 1.923933491 Predicted_dioxygenase 8.30E-03 

COG3676 suboxic 9.71094718 2.103708295 Transposase_and_inactivated_derivat

ives 

7.95E-03 

COG5394 suboxic 10.36715833 2.290896028 Uncharacterized_protein_conserved_

in_bacteria 

7.67E-04 

COG2963 suboxic 5.885282022 2.397067331 Transposase_and_inactivated_derivat

ives 

1.08E-03 

COG4656 suboxic 15.71582672 2.450677216 Predicted_NADH_ubiquinone_oxido

reductase__subunit_RnfC 

6.31E-05 
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Table 4: Bacteria 2009 differentially abundant genes w/ padj < 0.05, green are oxic, blue are 

suboxic. 

gene zone baseMean log2FoldChange functional_description Padj 

COG0376 oxic 137.1072874 -3.076361504 Catalase__peroxidase_I 3.75E-05 

COG3241 oxic 14.48784985 -2.815262514 Azurin 2.07E-04 

COG1201 oxic 101.4558476 -2.74149716 Lhr-like_helicases 5.76E-05 

COG3651 oxic 69.95687864 -2.571904296 Uncharacterized_protein_conserved_

in_bacteria 

1.33E-04 

COG3489 oxic 16.4616228 -2.548161126 Predicted_periplasmic_lipoprotein 6.92E-04 

COG2907 oxic 112.852164 -2.541280771 Predicted_NAD/FAD-

binding_protein 

4.95E-04 

COG3496 oxic 59.16164737 -2.467059451 Uncharacterized_conserved_protein 1.09E-03 

COG3670 oxic 38.15844913 -2.453281582 Lignostilbene-alpha_beta-

dioxygenase_and_related_enzymes 

6.78E-04 

COG3476 oxic 34.38619977 -2.316578828 Tryptophan-

rich_sensory_protein__mitochondrial

_benzodiazepine_receptor_homolog 

3.60E-03 

COG1054 oxic 62.15334171 -2.283870939 Predicted_sulfurtransferase 1.43E-03 

COG1398 oxic 46.50417567 -2.283803949 Fatty-acid_desaturase 3.75E-05 

COG5135 oxic 25.29738858 -2.278474569 Uncharacterized_conserved_protein 1.48E-03 

COG4121 oxic 18.94850999 -2.2325597 Uncharacterized_conserved_protein 4.84E-03 

COG3502 oxic 20.19448329 -2.222745258 Uncharacterized_protein_conserved_

in_bacteria 

5.26E-03 

COG2409 oxic 51.90738446 -2.191752744 Predicted_drug_exporters_of_the_R

ND_superfamily 

7.47E-04 

COG1562 oxic 79.67186414 -2.129900568 Phytoene/squalene_synthetase 2.73E-03 

COG0369 oxic 44.00514783 -2.12725443 Sulfite_reductase__alpha_subunit__f

lavoprotein 

8.98E-03 

COG3239 oxic 50.40008309 -2.12034945 Fatty_acid_desaturase 3.82E-04 

COG0346 oxic 17.09400805 -2.108412358 Lactoylglutathione_lyase_and_relate

d_lyases 

3.70E-03 

COG4989 oxic 20.63737294 -2.10629536 Predicted_oxidoreductase 6.00E-03 

COG2326 oxic 47.60345272 -2.061399828 Uncharacterized_conserved_protein 1.82E-04 

COG3380 oxic 14.69728839 -2.055817419 Predicted_NAD/FAD-

dependent_oxidoreductase 

1.27E-02 

COG2124 oxic 102.284878 -2.044517658 Cytochrome_P450 6.78E-04 

COG3733 oxic 6.692635994 -2.022027557 Cu2+-containing_amine_oxidase 1.43E-02 

COG1705 oxic 14.91634806 -2.009407639 Muramidase__flagellum-specific 1.45E-02 

COG0397 oxic 180.9737162 -1.968356181 Uncharacterized_conserved_protein 4.48E-04 

COG0415 oxic 149.9830568 -1.963552146 Deoxyribodipyrimidine_photolyase 1.81E-02 

COG3752 oxic 53.13815051 -1.958491486 Predicted_membrane_protein 4.17E-03 

COG2855 oxic 83.36148022 -1.95596418 Predicted_membrane_protein 8.70E-03 

COG2107 oxic 35.08101877 -1.937165388 Predicted_periplasmic_solute-

binding_protein 

1.23E-02 

COG4338 oxic 27.6528933 -1.906923046 Uncharacterized_protein_conserved_

in_bacteria 

2.27E-02 

COG4270 Oxic 23.50059187 -1.875476875 Predicted_membrane_protein 2.08E-02 
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Table 4: continued 

COG0387 oxic 16.85277934 -1.872291745 Ca2+/H+_antiporter 1.92E-02 

COG1448 oxic 29.87376795 -1.851822648 Aspartate/tyrosine/aromatic_aminotr

ansferase 

2.33E-02 

COG4454 oxic 6.439637977 -1.823010975 Uncharacterized_copper-

binding_protein 

3.29E-02 

COG2717 oxic 45.69982685 -1.807816205 Predicted_membrane_protein 1.25E-02 

COG3128 oxic 21.16418631 -1.793604383 Uncharacterized_iron-

regulated_protein 

2.54E-02 

COG2941 oxic 62.58435197 -1.79227569 Ubiquinone_biosynthesis_protein_C

OQ7 

6.44E-03 

COG1914 oxic 17.72057849 -1.786979919 Mn2+_and_Fe2+_transporters_of_th

e_NRAMP_family 

8.06E-03 

COG2268 oxic 34.88004032 -1.779338172 Uncharacterized_protein_conserved_

in_bacteria 

7.93E-03 

COG5515 oxic 9.936259101 -1.761326965 Uncharacterized_conserved_small_pr

otein 

3.87E-02 

COG5184 oxic 106.0794387 -1.759579424 Alpha-

tubulin_suppressor_and_related_RC

C1_domain-containing_proteins 

2.73E-02 

COG2035 oxic 59.44920501 -1.756877418 Predicted_membrane_protein 3.82E-04 

COG2309 oxic 43.25508618 -1.74933687 Leucyl_aminopeptidase__aminopepti

dase_T 

1.33E-02 

COG1679 oxic 22.93664303 -1.730260972 Uncharacterized_conserved_protein 3.60E-03 

COG0027 oxic 25.12619856 -1.700180508 Formate-

dependent_phosphoribosylglycinami

de_formyltransferase__GAR_transfo

rmylase 

3.58E-02 

COG4772 oxic 72.95230794 -1.692668211 Outer_membrane_receptor_for_Fe3+

-dicitrate 

2.57E-02 

COG3046 oxic 192.7187622 -1.686133579 Uncharacterized_protein_related_to_

deoxyribodipyrimidine_photolyase 

4.79E-02 

COG3104 oxic 66.13878427 -1.680733262 Dipeptide/tripeptide_permease 8.98E-03 

COG1222 oxic 14.99639651 -1.679412846 ATP-

dependent_26S_proteasome_regulato

ry_subunit 

3.58E-02 

COG4445 oxic 12.08945386 -1.668251623 Hydroxylase_for_synthesis_of_2-

methylthio-cis-ribozeatin_in_tRNA 

4.79E-02 

COG1786 oxic 11.09642335 -1.64964576 Uncharacterized_conserved_protein 4.07E-02 

COG0855 oxic 54.63169784 -1.640392656 Polyphosphate_kinase 3.41E-03 

COG3509 oxic 32.52527483 -1.632595617 Poly_3-

hydroxybutyrate__depolymerase 

3.58E-02 

COG4623 oxic 21.18953963 -1.630571317 Predicted_soluble_lytic_transglycosy

lase_fused_to_an_ABC-

type_amino_acid-binding_protein 

4.61E-02 

COG4067 oxic 17.03410523 -1.626317902 Uncharacterized_protein_conserved_

in_archaea 

3.81E-02 

COG3540 oxic 25.35299684 -1.597451318 Phosphodiesterase/alkaline_phosphat

ase_D 

4.59E-02 

COG2802 oxic 55.92329593 -1.589304817 Uncharacterized_protein__similar_to

_the_N-

terminal_domain_of_Lon_protease 

1.43E-02 
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Table 4: continued 

COG1796 oxic 21.16584281 -1.585171249 DNA_polymerase_IV__family_X 4.07E-02 

COG3491 oxic 103.6562566 -1.583968339 Isopenicillin_N_synthase_and_relate

d_dioxygenases 

4.95E-04 

COG3000 oxic 101.7443279 -1.578374193 Sterol_desaturase 3.40E-03 

COG3565 oxic 73.18501609 -1.576601628 Predicted_dioxygenase_of_extradiol

_dioxygenase_family 

1.22E-02 

COG2041 oxic 62.66954538 -1.549710893 Sulfite_oxidase_and_related_enzyme

s 

3.33E-03 

COG3825 oxic 70.28410493 -1.549234883 Uncharacterized_protein_conserved_

in_bacteria 

4.09E-03 

COG0464 oxic 45.86456253 -1.545248657 ATPases_of_the_AAA+_class 1.49E-02 

COG0561 oxic 26.12619784 -1.543978756 Predicted_hydrolases_of_the_HAD_

superfamily 

1.51E-02 

COG4276 oxic 28.25098652 -1.531917757 Uncharacterized_conserved_protein 1.41E-02 

COG4558 oxic 24.30019811 -1.531045714 ABC-

type_hemin_transport_system__perip

lasmic_component 

4.79E-02 

COG3555 oxic 29.00662316 -1.529253346 Aspartyl/asparaginyl_beta-

hydroxylase_and_related_dioxygenas

es 

3.71E-02 

COG3425 oxic 43.97079448 -1.525751206 3-hydroxy-3-

methylglutaryl_CoA_synthase 

4.85E-02 

COG1443 oxic 18.10983095 -1.517967816 Isopentenyldiphosphate_isomerase 2.27E-02 

COG2317 oxic 98.62611875 -1.516025417 Zn-dependent_carboxypeptidase 1.02E-02 

COG2820 oxic 25.13682214 -1.484381129 Uridine_phosphorylase 1.65E-02 

COG1946 oxic 32.77331547 -1.473191309 Acyl-CoA_thioesterase 1.42E-02 

COG2013 oxic 14.76661248 -1.468266033 Uncharacterized_conserved_protein 4.40E-02 

COG4233 oxic 24.40063333 -1.452086263 Uncharacterized_protein_predicted_t

o_be_involved_in_C-

type_cytochrome_biogenesis 

2.54E-02 

COG2947 oxic 86.29830123 -1.437941819 Uncharacterized_conserved_protein 1.66E-03 

COG2115 oxic 30.42395996 -1.435257631 Xylose_isomerase 4.94E-02 

COG5524 oxic 117.7191333 -1.40198752 Bacteriorhodopsin 3.58E-02 

COG1279 oxic 62.33103903 -1.380948654 Lysine_efflux_permease 4.79E-02 

COG3340 oxic 18.46720694 -1.378415039 Peptidase_E 4.90E-02 

COG1363 oxic 35.14085134 -1.348772664 Cellulase_M_and_related_proteins 4.97E-02 

COG2301 oxic 130.1932271 -1.336675111 Citrate_lyase_beta_subunit 1.66E-03 

COG3818 oxic 32.72921656 -1.319542818 Predicted_acetyltransferase__GNAT

_superfamily 

3.81E-02 

COG2175 oxic 117.6353099 -1.304611103 Probable_taurine_catabolism_dioxyg

enase 

1.23E-02 

COG2308 oxic 25.52670055 -1.295569113 Uncharacterized_conserved_protein 3.98E-02 

COG1629 oxic 323.1643759 -1.293835276 Outer_membrane_receptor_proteins_

_mostly_Fe_transport 

4.07E-02 

COG0523 oxic 31.27058677 -1.269460248 Putative_GTPases__G3E_family 1.90E-02 

COG1292 oxic 89.35340448 -1.266083793 Choline-glycine_betaine_transporter 2.08E-02 

COG1164 oxic 69.44206938 -1.257666348 Oligoendopeptidase_F 4.20E-03 
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Table 4: continued 

COG1726 oxic 84.53905328 -1.232487308 Na+-

transporting_NADH_ubiquinone_oxi

doreductase__subunit_NqrA 

3.58E-02 

COG1404 oxic 188.8421269 -1.215956666 Subtilisin-like_serine_proteases 4.85E-02 

COG1233 oxic 234.2388274 -1.199042528 Phytoene_dehydrogenase_and_relate

d_proteins 

8.32E-03 

COG0507 oxic 23.58587363 -1.19835905 ATP-

dependent_exoDNAse__exonuclease

_V___alpha_subunit_-

_helicase_superfamily_I_member 

4.07E-02 

COG0657 oxic 36.89778486 -1.171914732 Esterase/lipase 1.05E-02 

COG1070 oxic 39.10833661 -1.138215521 Sugar__pentulose_and_hexulose__ki

nases 

2.57E-02 

COG1172 oxic 154.2736484 -1.128584123 Ribose/xylose/arabinose/galactoside_

ABC-

type_transport_systems__permease_

components 

2.90E-04 

COG2070 oxic 128.057176 -1.124508908 Dioxygenases_related_to_2-

nitropropane_dioxygenase 

1.32E-02 

COG4760 oxic 60.99938002 -1.121651147 Predicted_membrane_protein 1.27E-02 

COG2165 oxic 36.15407341 -1.106763001 Type_II_secretory_pathway__pseudo

pilin_PulG 

3.06E-02 

COG4638 oxic 209.6333487 -1.10344989 Phenylpropionate_dioxygenase_and_

related_ring-

hydroxylating_dioxygenases__large_

terminal_subunit 

6.96E-03 

COG0733 oxic 120.1585029 -1.09761573 Na+-

dependent_transporters_of_the_SNF

_family 

1.24E-02 

COG4341 oxic 80.18589875 -1.096736193 Predicted_HD_phosphohydrolase 1.12E-02 

COG2076 oxic 104.7638217 -1.083190552 Membrane_transporters_of_cations_

and_cationic_drugs 

3.96E-02 

COG2154 oxic 59.62985004 -1.082617535 Pterin-4a-carbinolamine_dehydratase 3.79E-02 

COG4147 oxic 276.0213096 -1.007464626 Predicted_symporter 2.08E-02 

COG1879 oxic 55.238737 -1.002966152 ABC-

type_sugar_transport_system__peripl

asmic_component 

3.58E-02 

COG4152 oxic 125.8760091 -0.975567556 ABC-

type_uncharacterized_transport_syste

m__ATPase_component 

9.09E-03 

COG0423 oxic 152.9377641 -0.964835898 Glycyl-tRNA_synthetase__class_II 3.70E-03 

COG1953 oxic 132.0447677 -0.952363214 Cytosine/uracil/thiamine/allantoin_pe

rmeases 

1.82E-02 

COG3396 oxic 61.52562261 -0.931121423 Uncharacterized_conserved_protein 4.79E-02 

COG3962 oxic 154.8974778 -0.85899205 Acetolactate_synthase 4.87E-02 

COG1301 oxic 115.0774498 -0.808503907 Na+/H+-dicarboxylate_symporters 1.61E-02 

COG1129 oxic 127.5751008 -0.764920441 ABC-

type_sugar_transport_system__ATPa

se_component 

3.71E-02 

COG3119 oxic 542.6716379 -0.750995946 Arylsulfatase_A_and_related_enzym

es 

1.35E-04 
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Table 4: continued 

COG1344 oxic 105.8107444 -0.745546064 Flagellin_and_related_hook-

associated_proteins 

1.61E-02 

COG1834 oxic 130.8456495 -0.719878374 N-

Dimethylarginine_dimethylaminohyd

rolase 

1.22E-02 

COG1429 oxic 93.78589314 -0.685696 Cobalamin_biosynthesis_protein_Co

bN_and_related_Mg-chelatases 

4.57E-02 

COG4102 oxic 112.0837573 -0.673199135 Uncharacterized_protein_conserved_

in_bacteria 

4.79E-02 

COG5285 oxic 188.9103311 -0.646116524 Protein_involved_in_biosynthesis_of

_mitomycin_antibiotics/polyketide_f

umonisin 

1.41E-02 

COG0765 oxic 294.6073657 -0.528933362 ABC-

type_amino_acid_transport_system_

_permease_component 

3.06E-02 

COG1508 oxic 169.4686571 -0.519586895 DNA-

directed_RNA_polymerase_specializ

ed_sigma_subunit__sigma54_homol

og 

2.00E-02 

COG0811 oxic 222.5661822 -0.447863761 Biopolymer_transport_proteins 4.94E-02 

COG0667 oxic 282.0770751 -0.425709515 Predicted_oxidoreductases__related_

to_aryl-alcohol_dehydrogenases 

3.44E-02 

COG1960 oxic 1204.516428 -0.366749414 Acyl-CoA_dehydrogenases 4.79E-02 

COG1024 oxic 744.7151203 -0.350588055 Enoyl-

CoA_hydratase/carnithine_racemase 

1.43E-02 

COG0001 suboxic 367.5134247 0.387110313 Glutamate-1-

semialdehyde_aminotransferase 

2.45E-02 

COG0574 suboxic 588.7338647 0.415598406 Phosphoenolpyruvate_synthase/pyru

vate_phosphate_dikinase 

4.79E-02 

COG0542 suboxic 670.7159898 0.427353197 ATPases_with_chaperone_activity__

ATP-binding_subunit 

3.81E-02 

COG1560 suboxic 192.0948594 0.463243712 Lauroyl/myristoyl_acyltransferase 4.87E-02 

COG0696 suboxic 173.0740538 0.50760073 Phosphoglyceromutase 4.79E-02 

COG2951 suboxic 182.5706231 0.514552204 Membrane-

bound_lytic_murein_transglycosylas

e_B 

4.94E-02 

COG1932 suboxic 262.996577 0.577540373 Phosphoserine_aminotransferase 1.12E-02 

COG0559 suboxic 560.8681826 0.591473657 Branched-chain_amino_acid_ABC-

type_transport_system__permease_c

omponents 

1.10E-02 

COG0347 suboxic 145.7350338 0.636262142 Nitrogen_regulatory_protein_PII 4.07E-02 

COG0135 suboxic 105.1454596 0.643501408 Phosphoribosylanthranilate_isomeras

e 

2.54E-02 

COG3914 suboxic 287.851967 0.646391341 Predicted_O-linked_N-

acetylglucosamine_transferase__SPI

NDLY_family 

5.99E-03 

COG0156 suboxic 240.5946558 0.654882147 7-keto-8-

aminopelargonate_synthetase_and_re

lated_enzymes 

4.79E-02 

COG1066 suboxic 179.9788785 0.764767933 Predicted_ATP-

dependent_serine_protease 

1.99E-04 
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Table 4: continued 

COG2878 suboxic 66.03230251 0.769065737 Predicted_NADH_ubiquinone_oxido

reductase__subunit_RnfB 

4.79E-02 

COG5016 suboxic 138.5053282 0.807010885 Pyruvate/oxaloacetate_carboxyltransf

erase 

5.19E-03 

COG0352 suboxic 92.46047248 0.82142053 Thiamine_monophosphate_synthase 3.33E-03 

COG2918 suboxic 117.7390477 0.851158 Gamma-glutamylcysteine_synthetase 3.34E-02 

COG3347 suboxic 163.6583151 0.92726746 Uncharacterized_conserved_protein 4.79E-02 

COG0422 suboxic 103.5591409 0.92762105 Thiamine_biosynthesis_protein_Thi

C 

3.33E-03 

COG0635 suboxic 199.2551618 0.929891691 Coproporphyrinogen_III_oxidase_an

d_related_Fe-S_oxidoreductases 

1.23E-02 

COG0213 suboxic 118.4905159 0.930672145 Thymidine_phosphorylase 2.76E-02 

COG4108 suboxic 134.829429 0.93200336 Peptide_chain_release_factor_RF-3 1.43E-03 

COG1883 suboxic 109.3316013 0.960667175 Na+-transporting_methylmalonyl-

CoA/oxaloacetate_decarboxylase__b

eta_subunit 

3.65E-02 

COG2518 suboxic 143.8435222 0.982033567 Protein-L-

isoaspartate_carboxylmethyltransfera

se 

2.54E-02 

COG1636 suboxic 39.54697878 0.996919163 Uncharacterized_protein_conserved_

in_bacteria 

2.65E-02 

COG1015 suboxic 63.42150289 1.073107241 Phosphopentomutase 1.23E-02 

COG4137 suboxic 46.19293641 1.127437197 ABC-

type_uncharacterized_transport_syste

m__permease_component 

1.82E-02 

COG2046 suboxic 127.6963248 1.130558542 ATP_sulfurylase__sulfate_adenylyltr

ansferase 

3.32E-02 

COG3954 suboxic 51.78636757 1.146036705 Phosphoribulokinase 8.00E-03 

COG4579 suboxic 85.67333296 1.21747386 Isocitrate_dehydrogenase_kinase/pho

sphatase 

3.34E-02 

COG2923 suboxic 21.81877353 1.252034539 Uncharacterized_protein_involved_i

n_the_oxidation_of_intracellular_sul

fur 

4.29E-02 

COG1469 suboxic 54.51446857 1.260516861 Uncharacterized_conserved_protein 6.92E-04 

COG3114 suboxic 20.48984122 1.274777367 Heme_exporter_protein_D 4.59E-02 

COG2920 suboxic 41.74110579 1.344661902 Dissimilatory_sulfite_reductase__des

ulfoviridin___gamma_subunit 

8.98E-03 

COG3205 suboxic 49.32580561 1.347736661 Predicted_membrane_protein 4.17E-03 

COG5014 suboxic 13.67067112 1.486426231 Predicted_Fe-S_oxidoreductase 2.84E-02 

COG2914 suboxic 21.27433656 1.486947366 Uncharacterized_protein_conserved_

in_bacteria 

1.51E-02 

COG2922 suboxic 31.12777782 1.488516511 Uncharacterized_protein_conserved_

in_bacteria 

3.58E-02 

COG3931 suboxic 29.83612838 1.491455525 Predicted_N-

formylglutamate_amidohydrolase 

1.09E-03 

COG2833 suboxic 29.34471327 1.496031665 Uncharacterized_protein_conserved_

in_bacteria 

1.48E-02 

COG3749 suboxic 48.45335335 1.54103816 Uncharacterized_protein_conserved_

in_bacteria 

3.02E-02 

COG1415 suboxic 21.90563438 1.589279069 Uncharacterized_conserved_protein 1.73E-02 
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COG2168 suboxic 16.95437432 1.652663361 Uncharacterized_conserved_protein_

involved_in_oxidation_of_intracellul

ar_sulfur 

3.65E-02 

COG1687 suboxic 8.379195063 1.658458447 Predicted_branched-

chain_amino_acid_permeases__azale

ucine_resistance 

4.79E-02 

COG3260 suboxic 7.767104255 1.676314423 Ni_Fe-

hydrogenase_III_small_subunit 

4.32E-02 

COG5456 suboxic 15.26804473 1.745471804 Predicted_integral_membrane_protei

n_linked_to_a_cation_pump 

1.43E-02 

COG4660 suboxic 41.01660852 1.897123397 Predicted_NADH_ubiquinone_oxido

reductase__subunit_RnfE 

1.12E-02 

COG2069 suboxic 6.480769712 2.045273734 CO_dehydrogenase/acetyl-

CoA_synthase_delta_subunit__corrin

oid_Fe-S_protein 

1.31E-02 
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Table 5: Bacteria 2010 differentially abundant genes w/ padj < 0.05, green are oxic, blue are 

suboxic. 

gene zone baseMean log2FoldChange functional_description Padj 

COG3502 oxic 16.45184745 -1.907140039 Uncharacterized_protein_conserved_

in_bacteria 

1.02E-03 

COG3476 oxic 24.41989512 -1.63304352 Tryptophan-

rich_sensory_protein__mitochondrial

_benzodiazepine_receptor_homolog 

9.27E-03 

COG2907 oxic 124.8300223 -1.611874721 Predicted_NAD/FAD-

binding_protein 

2.19E-03 

COG3651 oxic 50.29077522 -1.608118027 Uncharacterized_protein_conserved_

in_bacteria 

1.74E-04 

COG1953 oxic 147.8817945 -1.384624891 Cytosine/uracil/thiamine/allantoin_pe

rmeases 

3.11E-05 

COG0376 oxic 74.39333801 -1.381095211 Catalase__peroxidase_I 3.43E-02 

COG5135 oxic 31.82656426 -1.366967171 Uncharacterized_conserved_protein 3.72E-02 

COG3489 oxic 15.32295356 -1.319586772 Predicted_periplasmic_lipoprotein 4.63E-02 

COG4240 oxic 55.80466612 -1.314532507 Predicted_kinase 3.54E-03 

COG5524 oxic 108.9713356 -1.271498692 Bacteriorhodopsin 2.15E-04 

COG2249 oxic 32.41772427 -1.251691104 Putative_NADPH-

quinone_reductase__modulator_of_d

rug_activity_B 

3.72E-02 

COG2941 oxic 65.01396516 -1.19782361 Ubiquinone_biosynthesis_protein_C

OQ7 

7.58E-03 

COG4341 oxic 143.031502 -1.154204475 Predicted_HD_phosphohydrolase 1.06E-02 

COG4365 oxic 34.06363455 -1.149949508 Uncharacterized_protein_conserved_

in_bacteria 

4.44E-02 

COG2175 oxic 196.9267431 -1.13850384 Probable_taurine_catabolism_dioxyg

enase 

5.95E-03 

COG2820 oxic 53.65622034 -1.135630429 Uridine_phosphorylase 7.03E-03 

COG0346 oxic 24.74381319 -1.122170372 Lactoylglutathione_lyase_and_relate

d_lyases 

4.77E-02 

COG1562 oxic 75.72129148 -1.118995878 Phytoene/squalene_synthetase 4.32E-02 

COG3492 oxic 70.12517138 -1.088919887 Uncharacterized_protein_conserved_

in_bacteria 

3.23E-03 

COG0266 oxic 109.365358 -1.051690517 Formamidopyrimidine-

DNA_glycosylase 

1.49E-02 

COG3491 oxic 148.9145457 -1.041185554 Isopenicillin_N_synthase_and_relate

d_dioxygenases 

1.54E-02 

COG3104 oxic 137.2305561 -0.978681835 Dipeptide/tripeptide_permease 3.53E-02 

COG2072 oxic 212.7532155 -0.96555752 Predicted_flavoprotein_involved_in_

K+_transport 

1.06E-02 

COG2076 oxic 121.9908127 -0.937651822 Membrane_transporters_of_cations_

and_cationic_drugs 

6.18E-03 

COG3000 oxic 194.4879837 -0.932666914 Sterol_desaturase 4.41E-02 

COG0386 oxic 153.0790618 -0.903062248 Glutathione_peroxidase 4.14E-02 

COG1794 oxic 82.22762088 -0.892828258 Aspartate_racemase 1.38E-02 

COG2154 oxic 95.72597631 -0.854659638 Pterin-4a-carbinolamine_dehydratase 2.24E-02 

COG1194 oxic 272.5556876 -0.845816982 A/G-specific_DNA_glycosylase 3.06E-05 
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COG2130 oxic 161.7892751 -0.772690569 Putative_NADP-

dependent_oxidoreductases 

3.31E-02 

COG0408 oxic 283.3632177 -0.763722383 Coproporphyrinogen_III_oxidase 7.21E-03 

COG0678 oxic 101.2833765 -0.719479088 Peroxiredoxin 3.72E-02 

COG0232 oxic 201.3670187 -0.718042872 dGTP_triphosphohydrolase 3.56E-02 

COG4147 oxic 392.9028765 -0.674447737 Predicted_symporter 3.22E-02 

COG0235 oxic 156.0032756 -0.665976004 Ribulose-5-phosphate_4-

epimerase_and_related_epimerases_a

nd_aldolases 

3.05E-02 

COG0785 oxic 120.580467 -0.629922123 Cytochrome_c_biogenesis_protein 4.94E-02 

COG2609 oxic 913.9550409 -0.626472821 Pyruvate_dehydrogenase_complex__

dehydrogenase__E1__component 

2.04E-02 

COG0694 oxic 200.7499083 -0.611303236 Thioredoxin-

like_proteins_and_domains 

2.38E-02 

COG4215 oxic 143.7527902 -0.605076648 ABC-

type_arginine_transport_system__per

mease_component 

4.96E-02 

COG1494 oxic 229.7747878 -0.589773758 Fructose-1_6-

bisphosphatase/sedoheptulose_1_7-

bisphosphatase_and_related_proteins 

1.46E-02 

COG0489 oxic 316.0303291 -0.57185993 ATPases_involved_in_chromosome_

partitioning 

1.54E-02 

COG0423 oxic 321.5372874 -0.569880783 Glycyl-tRNA_synthetase__class_II 2.29E-02 

COG2352 oxic 369.7466633 -0.539840749 Phosphoenolpyruvate_carboxylase 6.22E-03 

COG4642 oxic 290.6401361 -0.508153353 Uncharacterized_protein_conserved_

in_bacteria 

1.83E-02 

COG0114 oxic 593.3703787 -0.498181937 Fumarase 8.81E-04 

COG1192 oxic 354.4559971 -0.472409421 ATPases_involved_in_chromosome_

partitioning 

2.78E-02 

COG3288 oxic 475.0244479 -0.450077929 NAD/NADP_transhydrogenase_alph

a_subunit 

2.08E-02 

COG2021 oxic 430.4294555 -0.442556986 Homoserine_acetyltransferase 2.93E-02 

COG0667 oxic 507.0632302 -0.434042231 Predicted_oxidoreductases__related_

to_aryl-alcohol_dehydrogenases 

3.74E-02 

COG1282 oxic 672.0045554 -0.424380069 NAD/NADP_transhydrogenase_beta

_subunit 

3.34E-03 

COG0206 oxic 507.6555745 -0.421264162 Cell_division_GTPase 1.28E-02 

COG0044 oxic 815.3592287 -0.413897777 Dihydroorotase_and_related_cyclic_

amidohydrolases 

3.57E-03 

COG0036 oxic 455.9160584 -0.401697368 Pentose-5-phosphate-3-epimerase 2.38E-02 

COG1178 oxic 639.5047681 -0.388921704 ABC-

type_Fe3+_transport_system__perm

ease_component 

1.15E-02 

COG4221 oxic 1137.057779 -0.37421169 Short-

chain_alcohol_dehydrogenase_of_un

known_specificity 

1.54E-02 

COG0074 oxic 606.5618638 -0.366048226 Succinyl-

CoA_synthetase__alpha_subunit 

2.08E-02 

COG5009 oxic 931.7567334 -0.364334253 Membrane_carboxypeptidase/penicill

in-binding_protein 

6.41E-03 
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COG0504 oxic 931.5906825 -0.34342577 CTP_synthase__UTP-

ammonia_lyase 

1.12E-02 

COG0719 oxic 815.9843183 -0.336931365 ABC-

type_transport_system_involved_in_

Fe-

S_cluster_assembly__permease_com

ponent 

1.08E-02 

COG0652 oxic 611.8840658 -0.336457607 Peptidyl-prolyl_cis-

trans_isomerase__rotamase__-

_cyclophilin_family 

4.41E-02 

COG0495 oxic 1026.64821 -0.318513053 Leucyl-tRNA_synthetase 1.06E-02 

COG4770 oxic 1166.801798 -0.261357012 Acetyl/propionyl-

CoA_carboxylase__alpha_subunit 

2.96E-02 

COG0187 oxic 1657.225141 -0.26053036 Type_IIA_topoisomerase__DNA_gy

rase/topo_II__topoisomerase_IV___

B_subunit 

2.25E-02 

COG1012 oxic 3814.07097 -0.213872678 NAD-

dependent_aldehyde_dehydrogenases 

3.13E-02 

COG1529 suboxic 1506.963773 0.366724196 Aerobic-

type_carbon_monoxide_dehydrogena

se__large_subunit_CoxL/CutL_hom

ologs 

9.59E-04 

COG3894 suboxic 414.2557923 0.405695755 Uncharacterized_metal-

binding_protein 

4.41E-02 

COG0156 suboxic 617.813662 0.411701666 7-keto-8-

aminopelargonate_synthetase_and_re

lated_enzymes 

4.63E-02 

COG1410 suboxic 1013.598062 0.412248805 Methionine_synthase_I__cobalamin-

binding_domain 

1.20E-03 

COG5598 suboxic 959.0046854 0.415223082 Trimethylamine_corrinoid_methyltra

nsferase 

3.09E-03 

COG5557 suboxic 397.251433 0.429082532 Polysulphide_reductase 3.41E-02 

COG1319 suboxic 396.4344012 0.437136582 Aerobic-

type_carbon_monoxide_dehydrogena

se__middle_subunit_CoxM/CutM_h

omologs 

3.20E-02 

COG0790 suboxic 320.7576996 0.452572136 FOG__TPR_repeat__SEL1_subfamil

y 

4.63E-02 

COG0146 suboxic 594.6966492 0.478104737 N-

methylhydantoinase_B/acetone_carb

oxylase__alpha_subunit 

1.06E-02 

COG0635 suboxic 455.200649 0.489772632 Coproporphyrinogen_III_oxidase_an

d_related_Fe-S_oxidoreductases 

3.67E-02 

COG0243 suboxic 548.1506924 0.505698088 Anaerobic_dehydrogenases__typicall

y_selenocysteine-containing 

1.78E-02 

COG2217 suboxic 598.4696138 0.510670642 Cation_transport_ATPase 2.72E-03 

COG0659 suboxic 610.5423588 0.512501203 Sulfate_permease_and_related_trans

porters__MFS_superfamily 

1.60E-02 

COG1778 suboxic 252.6044303 0.512742274 Low_specificity_phosphatase__HAD

_superfamily 

3.53E-02 
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COG0145 suboxic 776.2733359 0.514511172 N-

methylhydantoinase_A/acetone_carb

oxylase__beta_subunit 

4.10E-04 

COG2010 suboxic 289.4116283 0.537857005 Cytochrome_c__mono-

_and_diheme_variants 

3.31E-02 

COG1760 suboxic 280.5414124 0.543493632 L-serine_deaminase 3.56E-02 

COG4231 suboxic 399.6133853 0.563476116 Indolepyruvate_ferredoxin_oxidored

uctase__alpha_and_beta_subunits 

7.58E-03 

COG4106 suboxic 232.2189414 0.574499114 Trans-aconitate_methyltransferase 3.70E-02 

COG1066 suboxic 417.1613065 0.587199393 Predicted_ATP-

dependent_serine_protease 

2.08E-02 

COG0502 suboxic 158.7820999 0.596337698 Biotin_synthase_and_related_enzym

es 

4.51E-02 

COG1858 suboxic 233.5938014 0.59693419 Cytochrome_c_peroxidase 2.26E-02 

COG3213 suboxic 266.4371037 0.600398635 Uncharacterized_protein_involved_i

n_response_to_NO 

4.69E-02 

COG0422 suboxic 284.5969897 0.60417653 Thiamine_biosynthesis_protein_Thi

C 

1.21E-02 

COG5012 suboxic 167.1682998 0.607009844 Predicted_cobalamin_binding_protei

n 

3.70E-02 

COG1042 suboxic 375.3384912 0.612156472 Acyl-

CoA_synthetase__NDP_forming 

2.16E-03 

COG0007 suboxic 268.5297405 0.621903838 Uroporphyrinogen-III_methylase 4.13E-02 

COG2518 suboxic 310.6653871 0.627705086 Protein-L-

isoaspartate_carboxylmethyltransfera

se 

4.41E-02 

COG0339 suboxic 399.7791648 0.633949747 Zn-dependent_oligopeptidases 7.91E-03 

COG0612 suboxic 578.9170866 0.643035323 Predicted_Zn-dependent_peptidases 2.03E-02 

COG2956 suboxic 148.3480687 0.64344995 Predicted_N-

acetylglucosaminyl_transferase 

3.56E-02 

COG4145 suboxic 796.5793699 0.647016637 Na+/panthothenate_symporter 6.42E-03 

COG0674 suboxic 873.255474 0.668637692 Pyruvate_ferredoxin_oxidoreductase

_and_related_2-

oxoacid_ferredoxin_oxidoreductases

__alpha_subunit 

7.58E-03 

COG1030 suboxic 212.5016291 0.673449296 Membrane-

bound_serine_protease__ClpP_class 

1.28E-02 

COG4191 suboxic 186.2750941 0.675545483 Signal_transduction_histidine_kinase

_regulating_C4-

dicarboxylate_transport_system 

1.09E-02 

COG1251 suboxic 222.1254689 0.683675436 NAD_P_H-nitrite_reductase 1.65E-02 

COG0804 suboxic 248.290185 0.695323805 Urea_amidohydrolase__urease__alph

a_subunit 

4.63E-02 

COG0043 suboxic 451.2269262 0.712500379 3-polyprenyl-4-

hydroxybenzoate_decarboxylase_and

_related_decarboxylases 

7.59E-05 

COG3401 suboxic 117.9036394 0.719235005 Fibronectin_type_3_domain-

containing_protein 

3.72E-02 

COG0053 suboxic 248.4150535 0.725944158 Predicted_Co/Zn/Cd_cation_transpor

ters 

7.58E-03 
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Table 5: continued 

COG3316 Suboxic 207.8142561 0.72640592 Transposase_and_inactivated_derivat

ives 

3.87E-03 

COG1013 suboxic 652.3044364 0.748813684 Pyruvate_ferredoxin_oxidoreductase

_and_related_2-

oxoacid_ferredoxin_oxidoreductases

__beta_subunit 

1.02E-02 

COG0701 suboxic 182.5127819 0.772032073 Predicted_permeases 1.11E-02 

COG1541 suboxic 130.8895193 0.784876551 Coenzyme_F390_synthetase 1.46E-02 

COG1797 suboxic 175.7123278 0.786240911 Cobyrinic_acid_a_c-

diamide_synthase 

4.46E-02 

COG2186 suboxic 155.4553112 0.787437696 Transcriptional_regulators 4.49E-02 

COG1199 suboxic 309.7791696 0.797733103 Rad3-related_DNA_helicases 4.72E-04 

COG1015 suboxic 156.1982838 0.79885878 Phosphopentomutase 3.67E-02 

COG0378 suboxic 76.77630945 0.81174172 Ni2+-

binding_GTPase_involved_in_regula

tion_of_expression_and_maturation_

of_urease_and_hydrogenase 

4.65E-02 

COG3164 suboxic 143.7388404 0.815873822 Predicted_membrane_protein 2.82E-02 

COG1951 suboxic 174.3655571 0.834743632 Tartrate_dehydratase_alpha_subunit/

Fumarate_hydratase_class_I__N-

terminal_domain 

6.18E-03 

COG4977 suboxic 127.1539037 0.837069898 Transcriptional_regulator_containing

_an_amidase_domain_and_an_AraC-

type_DNA-binding_HTH_domain 

1.28E-02 

COG0062 suboxic 147.9576459 0.84679905 Uncharacterized_conserved_protein 1.68E-02 

COG0671 suboxic 83.6319824 0.848438329 Membrane-

associated_phospholipid_phosphatas

e 

2.96E-02 

COG3001 suboxic 113.8486973 0.870359436 Fructosamine-3-kinase 2.56E-02 

COG2210 suboxic 165.7991287 0.888940586 Uncharacterized_conserved_protein 7.58E-03 

COG0641 suboxic 138.1125677 0.907343286 Arylsulfatase_regulator__Fe-

S_oxidoreductase 

2.69E-02 

COG1148 suboxic 166.0609196 0.907905465 Heterodisulfide_reductase__subunit_

A_and_related_polyferredoxins 

3.72E-02 

COG0651 suboxic 276.6482051 0.912883136 Formate_hydrogenlyase_subunit_3/

Multisubunit_Na+/H+_antiporter__

MnhD_subunit 

1.61E-02 

COG3243 suboxic 379.4735139 0.914183256 Poly_3-

hydroxyalkanoate__synthetase 

1.28E-02 

COG1002 suboxic 59.44249907 0.915914671 Type_II_restriction_enzyme__methy

lase_subunits 

4.63E-02 

COG3039 suboxic 134.868933 0.924900075 Transposase_and_inactivated_derivat

ives__IS5_family 

6.41E-03 

COG1139 suboxic 237.2191588 0.926201461 Uncharacterized_conserved_protein_

containing_a_ferredoxin-

like_domain 

1.99E-04 

COG3155 suboxic 77.75538437 0.927800181 Uncharacterized_protein_involved_i

n_an_early_stage_of_isoprenoid_bio

synthesis 

4.75E-02 

COG4585 suboxic 65.85110555 0.941359883 Signal_transduction_histidine_kinase 3.31E-02 

COG0829 Suboxic 62.8967203 0.953136069 Urease_accessory_protein_UreH 3.56E-02 
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Table 5: continued 

COG2374 suboxic 78.06394976 0.958304317 Predicted_extracellular_nuclease 2.56E-02 

COG3696 suboxic 450.9244539 0.97366906 Putative_silver_efflux_pump 9.59E-04 

COG1014 suboxic 242.9620063 0.981798185 Pyruvate_ferredoxin_oxidoreductase

_and_related_2-

oxoacid_ferredoxin_oxidoreductases

__gamma_subunit 

1.78E-02 

COG0370 suboxic 303.3672546 0.991191426 Fe2+_transport_system_protein_B 2.15E-04 

COG1838 suboxic 115.6404773 1.002226553 Tartrate_dehydratase_beta_subunit/F

umarate_hydratase_class_I__C-

terminal_domain 

5.55E-03 

COG3301 suboxic 72.49782226 1.011923562 Formate-

dependent_nitrite_reductase__membr

ane_component 

3.05E-02 

COG2223 suboxic 575.0062344 1.019643168 Nitrate/nitrite_transporter 4.58E-04 

COG4674 suboxic 121.2999159 1.035369729 Uncharacterized_ABC-

type_transport_system__ATPase_co

mponent 

1.28E-02 

COG3415 suboxic 94.41625548 1.03670787 Transposase_and_inactivated_derivat

ives 

1.13E-02 

COG2861 suboxic 90.83896747 1.039564212 Uncharacterized_protein_conserved_

in_bacteria 

1.28E-02 

COG2206 suboxic 136.6817329 1.040839304 HD-GYP_domain 7.58E-03 

COG0758 suboxic 155.2698765 1.049203483 Predicted_Rossmann_fold_nucleotid

e-

binding_protein_involved_in_DNA_

uptake 

6.18E-03 

COG2221 suboxic 191.9724321 1.075623697 Dissimilatory_sulfite_reductase__des

ulfoviridin___alpha_and_beta_subun

its 

8.19E-03 

COG3850 suboxic 112.4809307 1.079756847 Signal_transduction_histidine_kinase

__nitrate/nitrite-specific 

2.42E-02 

COG2963 suboxic 126.4690493 1.080008709 Transposase_and_inactivated_derivat

ives 

6.78E-04 

COG1648 suboxic 155.5009503 1.095081896 Siroheme_synthase__precorrin-

2_oxidase/ferrochelatase_domain 

1.46E-02 

COG3481 suboxic 92.74974046 1.101667806 Predicted_HD-

superfamily_hydrolase 

1.49E-02 

COG1140 suboxic 321.8660829 1.117921282 Nitrate_reductase_beta_subunit 7.65E-07 

COG1964 suboxic 112.6226843 1.123464201 Predicted_Fe-S_oxidoreductases 1.21E-03 

COG0622 suboxic 68.24352888 1.128567231 Predicted_phosphoesterase 6.42E-03 

COG3524 suboxic 47.25687665 1.133216962 Capsule_polysaccharide_export_prot

ein 

4.17E-02 

COG5013 suboxic 2361.237269 1.144758361 Nitrate_reductase_alpha_subunit 1.09E-05 

COG3676 suboxic 111.971246 1.148608125 Transposase_and_inactivated_derivat

ives 

6.32E-04 

COG3328 suboxic 228.9558027 1.152886629 Transposase_and_inactivated_derivat

ives 

6.22E-05 

COG2003 suboxic 57.13911599 1.160601924 DNA_repair_proteins 1.72E-02 

COG1661 Suboxic 45.07518707 1.189298432 Predicted_DNA-

binding_protein_with_PD1-

like_DNA-binding_motif 

3.46E-02 
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Table 5: continued 

COG3945 suboxic 22.03104666 1.223695751 Uncharacterized_conserved_protein 4.68E-02 

COG2048 suboxic 79.23952308 1.228781183 Heterodisulfide_reductase__subunit_

B 

4.22E-03 

COG4656 suboxic 241.785204 1.229024765 Predicted_NADH_ubiquinone_oxido

reductase__subunit_RnfC 

1.14E-03 

COG1032 suboxic 576.6975848 1.23019254 Fe-S_oxidoreductase 3.06E-03 

COG0095 suboxic 77.75025456 1.230560664 Lipoate-protein_ligase_A 2.16E-03 

COG3323 suboxic 29.0726488 1.240801074 Uncharacterized_protein_conserved_

in_bacteria 

4.49E-02 

COG2826 suboxic 206.822268 1.247347866 Transposase_and_inactivated_derivat

ives__IS30_family 

2.96E-07 

COG5441 suboxic 95.68145721 1.264665206 Uncharacterized_conserved_protein 2.80E-03 

COG0648 suboxic 42.8376689 1.272137302 Endonuclease_IV 2.08E-02 

COG4284 suboxic 25.69276313 1.275193149 UDP-glucose_pyrophosphorylase 3.46E-02 

COG1896 suboxic 16.84528006 1.282161727 Predicted_hydrolases_of_HD_superf

amily 

4.77E-02 

COG4520 suboxic 28.32527676 1.297901089 Surface_antigen 3.65E-02 

COG4242 suboxic 20.06456017 1.302361186 Cyanophycinase_and_related_exope

ptidases 

4.17E-02 

COG2362 suboxic 79.63971849 1.306790352 D-aminopeptidase 9.07E-04 

COG2516 suboxic 46.27274902 1.306851518 Biotin_synthase-related_enzyme 7.83E-03 

COG4659 suboxic 95.73665748 1.311396147 Predicted_NADH_ubiquinone_oxido

reductase__subunit_RnfG 

5.69E-03 

COG3303 suboxic 49.93692765 1.314327879 Formate-

dependent_nitrite_reductase__peripla

smic_cytochrome_c552_subunit 

8.92E-03 

COG3260 suboxic 13.59829708 1.322049201 Ni_Fe-

hydrogenase_III_small_subunit 

4.63E-02 

COG0658 suboxic 107.360061 1.339754167 Predicted_membrane_metal-

binding_protein 

1.81E-03 

COG1413 suboxic 40.41823611 1.352684392 FOG__HEAT_repeat 7.50E-03 

COG0826 suboxic 478.6845573 1.354997288 Collagenase_and_related_proteases 4.86E-06 

COG3439 suboxic 36.41033064 1.356867509 Uncharacterized_conserved_protein 3.05E-02 

COG3154 suboxic 27.59338471 1.357406389 Putative_lipid_carrier_protein 3.72E-02 

COG2069 suboxic 12.62828972 1.370670716 CO_dehydrogenase/acetyl-

CoA_synthase_delta_subunit__corrin

oid_Fe-S_protein 

3.72E-02 

COG4657 suboxic 122.739191 1.385849016 Predicted_NADH_ubiquinone_oxido

reductase__subunit_RnfA 

6.32E-04 

COG1882 suboxic 98.13976482 1.386247725 Pyruvate-formate_lyase 4.72E-04 

COG2044 suboxic 39.18647592 1.387488208 Predicted_peroxiredoxins 6.83E-03 

COG4113 suboxic 18.07121119 1.388200009 Predicted_nucleic_acid-

binding_protein__contains_PIN_dom

ain 

2.77E-02 

COG2414 suboxic 85.56275727 1.394289645 Aldehyde_ferredoxin_oxidoreductase 3.09E-03 

COG0374 suboxic 29.07884994 1.404687724 Ni_Fe-hydrogenase_I_large_subunit 1.54E-02 

COG0282 suboxic 30.22152521 1.406979951 Acetate_kinase 2.29E-02 

COG3531 suboxic 70.63568242 1.409256014 Predicted_protein-

disulfide_isomerase 

6.21E-03 
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Table 5: continued 

COG2333 suboxic 79.03643895 1.439971843 Predicted_hydrolase__metallo-beta-

lactamase_superfamily 

3.21E-03 

COG1180 suboxic 119.7231802 1.496415311 Pyruvate-formate_lyase-

activating_enzyme 

7.59E-05 

COG2703 suboxic 31.02874044 1.5109909 Hemerythrin 7.03E-03 

COG0831 suboxic 55.2880772 1.518225579 Urea_amidohydrolase__urease__gam

ma_subunit 

3.34E-03 

COG1150 suboxic 75.35961457 1.519993624 Heterodisulfide_reductase__subunit_

C 

2.89E-04 

COG3261 suboxic 23.05788963 1.55419918 Ni_Fe-

hydrogenase_III_large_subunit 

1.46E-02 

COG1614 suboxic 21.89084621 1.573270628 CO_dehydrogenase/acetyl-

CoA_synthase_beta_subunit 

1.28E-02 

COG3379 suboxic 48.5569514 1.590475169 Uncharacterized_conserved_protein 3.54E-03 

COG2316 suboxic 47.07975878 1.616106625 Predicted_hydrolase__HD_superfami

ly 

3.45E-03 

COG1775 suboxic 358.3925684 1.616770782 Benzoyl-CoA_reductase/2-

hydroxyglutaryl-

CoA_dehydratase_subunit__BcrC/Ba

dD/HgdB 

1.38E-10 

COG2354 suboxic 44.84232354 1.651988062 Uncharacterized_protein_conserved_

in_bacteria 

7.03E-03 

COG1924 suboxic 316.9554153 1.654092584 Activator_of_2-hydroxyglutaryl-

CoA_dehydratase__HSP70-

class_ATPase_domain 

3.62E-07 

COG2116 suboxic 113.0338457 1.675504953 Formate/nitrite_family_of_transporte

rs 

6.32E-05 

COG4658 suboxic 182.4340933 1.677706026 Predicted_NADH_ubiquinone_oxido

reductase__subunit_RnfD 

3.70E-05 

COG1856 suboxic 69.13946379 1.696312061 Uncharacterized_homolog_of_biotin

_synthetase 

1.47E-04 

COG3464 suboxic 26.00858162 1.750322739 Transposase_and_inactivated_derivat

ives 

3.57E-03 

COG3581 suboxic 25.3009934 1.768534398 Uncharacterized_protein_conserved_

in_bacteria 

3.69E-03 

COG4584 suboxic 309.7622515 1.779214372 Transposase_and_inactivated_derivat

ives 

2.65E-18 

COG0426 suboxic 71.02463753 1.820637208 Uncharacterized_flavoproteins 7.27E-05 

COG3436 suboxic 101.9972679 1.831889282 Transposase_and_inactivated_derivat

ives 

3.62E-07 

COG3580 suboxic 20.88635146 1.875946284 Uncharacterized_protein_conserved_

in_bacteria 

2.19E-03 

COG0650 suboxic 18.72650354 1.918835406 Formate_hydrogenlyase_subunit_4 1.56E-03 

COG2403 suboxic 61.5800439 2.011418954 Predicted_GTPase 3.22E-04 

COG2006 suboxic 73.46082711 2.024429482 Uncharacterized_conserved_protein 4.77E-06 

COG3005 suboxic 47.4838218 2.141415988 Nitrate/TMAO_reductases__membra

ne-

bound_tetraheme_cytochrome_c_sub

unit 

7.28E-05 

COG3335 suboxic 56.09394728 2.184973525 Transposase_and_inactivated_derivat

ives 

9.08E-06 
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Table 6: Counts Proteobacterial Classes (columns) by lowest taxonomic classification (rows) 

for suboxic zone, counts are normalized by largest sample library. 

Lowest classification Alpha Beta delta/epsilon Gamma NO 

MATCH 

Acetobacteraceae 30     

Acidovorax  2    

Alcaligenaceae  1    

Alcanivoracaceae    11  

Alcanivorax    1  

Alphaproteobacteria 29     

Alteromonadaceae    14  

Alteromonadales    1  

Anaeromyxobacter   6   

Betaproteobacteria  38    

Bradyrhizobiaceae 1     

Brucellaceae 3     

Burkholderia  30    

Burkholderiaceae  2    

Burkholderiales  2    

Burkholderiales 

Genera incertae sedis 

 0    

Caulobacteraceae 1     

Chromatiales    0  

Chromobacteriaceae  3    

Comamonadaceae  1    

Cronobacter    1  

Cupriavidus  1    

delta/epsilon 

subdivisions 

  179   

Deltaproteobacteria   75   

Desulfobacteraceae   10   

Dickeya    0  

Ectothiorhodospiraceae    527  

Enterobacter    2  

Enterobacter cloacae    1  

Enterobacteriaceae    3  

Gammaproteobacteria    27  

Geobacter   14   

Geobacteraceae   69   

Hahella    1  
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Table 6: continued 

 

Halomonas    6  

Hyphomicrobium 2     

Hyphomicrobium 

denitrificans 

34     

Hyphomonadaceae 4     

Marinobacter    3  

Methylobacterium 1     

Microbulbifer    47  

Oxalobacteraceae  1    

Pandoraea  0    

Proteobacteria     42 

Providencia    1  

Pseudomonadales    0  

Pseudomonas    3  

Ralstonia solanacearum  1    

Rhizobiales 6     

Rhodobacteraceae 5     

Rhodocyclaceae  133    

Rhodospirillaceae 5     

Rhodospirillales 48     

Roseobacter 1     

Serratia    1  

Shewanella    2  

Sutterellaceae  30    

Thioalkalivibrio    25  

Thiobacillus  256    

Thiomonas  1    

unclassified 

Gammaproteobacteria 

   221  

Vibrionaceae    4  

Xanthomonadaceae    6  
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