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ABSTRACT 
The recently discovered Zetaproteobacteria represent a novel class of Proteobacteria which oxidize 

Fe(II) to Fe(III), driving CO2 fixation at hydrothermal vents. These chemolithoautotrophs are the 

dominant bacterial population in iron-rich microbial mats, and represent a unique opportunity to 

investigate the connection between deep-sea geochemical processes and the dark microbial world. 

Zetaproteobacteria were first discovered at Loihi Seamount, located 35 km southeast off the big 

island of Hawaii and characterized by low-temperature diffuse hydrothermal venting. These vents are 

surrounded by luxuriant, iron-rich microbial mats that are colonized and often dominated by 

Zetaproteobacteria. Five novel non-degenerate QPCR assays were designed using sequence data 

derived from microbial iron-mat samples collected at Loihi in March 2013. Genes of interest were 

nifH, nirK, and arsC, associated with microbial nitrogen fixation, denitrification and arsenic 

detoxification, respectively. We also examined carbon fixation genes cbbM and aclB, which are 

indicators for the Calvin Benson Bassham (CBB) and reductive tricarboxylic acid (rTCA) cycles, 

respectively. All functional genes were found to be present at Loihi Seamount with the exception of 

nifH, which was undetectable with our method. Functional genes arsC and nirK were detected in all 

samples assayed, indicating that both arsenic detoxification and denitrification processes are likely 

occurring across all hydrothermal mat habitats. cbbM and aclB were also detectable in all samples 

assayed, indicating the co-occurence of these two modes of carbon fixation. T-RFLP analysis 

indicates that the communities in iron-rch mat samples collected in 2013 are very similar to one 

another. T-RFLP Group 1 had high Zetaproteobacteria abundance and low aclB relative to cbbM, 

indicating that the CBB cycle is the major mode of carbon fixation in Zetaproteobacteria-rich mat 

communities. T-RFLP Group 2 had low Zetaproteobacteria abundance and high aclB gene copy 

numbers, suggesting that the rTCA cycle is operating in non-Zetaproteobacteria taxa and plays an 

important role in carbon fixation in these communities. Based on these results, we conclude that aclB 

may be an important functional gene indicator of community composition. QPCR variance was 

explained by mat morphology but not temperature or sample site. Gene aclB was significantly 

associated with mat morphology, and may contribute to the significant relationship between the 

QPCR data and mat type. Fe(II) was significant with mat morphology. Geochemistry data was 

significantly associated with sample site and mat morphology, indicating that there is a range of 

chemistries in which these iron-rich microbial communities can thrive, and/or that the abundance of 

functional genes in these mat communities changes gradually in response to more dynamic chemical 

variation over time. Together, these QPCR assays constitute a ‘functional gene signature’ for iron mat 

samples across a broad array of temperatures, mat types, chemistries, and sampling sites in and 

around Pele’s Pit at Loihi Seamount.  
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INTRODUCTION 

Deep-sea hydrothermal vents are dynamic and extremely productive biological 

ecosystems supported by chemosynthetic microbial primary production. In the absence of 

photosynthesis, microorganisms derive energy via the oxidation of reduced chemicals (such 

as H2, H2S, Fe(II), and CH4) emitted in hydrothermal fluids (Jannasch and Mottl, 1985). In 

contrast to other strategies for microbial chemosynthesis at hydrothermal vents, iron 

oxidation has only more recently been studied (Emerson and Moyer, 2002). By weight, iron 

is the most abundant element in the earth, and has vast potential as an energy source for 

microbes via chemolithoautotrophy coupled to Fe(II) oxidation (Hedrich et al., 2011). 

However, iron’s ability to act as an electron donor for the biotic fixation of CO2 in 

neutrophilic environments is limited by the rapid abiotic oxidation of Fe(II) to Fe(III) in the 

presence of oxygen (Druschel et al., 2008; Weber et al., 2006). Despite the ephemeral nature 

of iron as an energy source, iron-oxidizing bacteria (FeOB) have been identified in a wide 

array of freshwater and marine habitats, and can flourish at circumneutral deep-sea vents 

with sharp redox gradients and hydrothermal fluids high in CO2 and reduced iron (Emerson et 

al., 2007; Glazer and Rouxel, 2009; Holland, 2006; Soblev et al., 2004). The recently 

described Zetaproteobacteria represent a novel class of marine Proteobacteria that are 

diverse and abundant contributors to deep-sea FeOB communities (Emerson and Moyer, 

2010). 

Zetaproteobacteria were first discovered at iron-rich low-temperature hydrothermal 

vents at Loihi Seamount, Hawaii (Emerson and Moyer, 2002) and have been demonstrated to 

be significant microbial colonizers of seamounts (Emerson and Moyer, 2010; Rassa et. al 

2009). Loihi Seamount is a seismically active submarine hotspot volcano approximately 35 
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km southeast of the big island of Hawaii. It is the youngest seamount of the Hawaiian island 

chain and actively emits Fe(II) and CO2-rich hydrothermal vent effluent, which supports 

luxuriant rust-colored mats formed during microbial iron oxidation (Emerson and Moyer, 

2010; Glazer and Rouxel, 2009; Sakai et al., 1987). In 1996 a major eruption event occurred 

at Loihi and formed Pele’s Pit (Fig. 1), a 300m caldera near the summit with several active 

hydrothermal venting sites (Dunnebier et al., 1997).  

The Zetaproteobacteria to have a relatively high phenotypic diversity, yet only a 

single species, Mariprofundus ferrooxydans, has been described thus far (Emerson et al., 

2007; McAllister et al., 2011; Singer et al., 2011). M. ferrooxydans is a 

chemolithoautotrophic microaerophilic FeOB, with few genomic similarities to other 

hydrothermal vent Proteobacteria or other well-characterized freshwater iron-oxidizers 

(Singer et al., 2011). There is compelling evidence to suggest that additional phylogenetic 

and functional diversity may exist within the Zetaproteobacteria, as shown by McAllister et 

al. (2011).This study analyzed a number of iron-rich microbial biomes in a global survey of 

SSU rDNA sequences, and identified 28 unique operational taxonomic units (OTUs) based 

on 97% minimum sequence similarity. Of these, 13 OTUs were endemic to a specific region 

and 2 were found to be ubiquitous throughout the Pacific Ocean. M. ferrooxydans was not 

represented in any of these cosmopolitan OTUs, suggesting that Mariprofundus sp. strains 

may be a comparatively minor lineage of Zetaproteobacteria from an ecological perspective 

(Emerson and Moyer, 2010).  

While McAllister et al. (2011) described the biogeography and phylogenetic diversity 

of Zetaproteobacteria, little is known about how this diversity may translate to functional 

and/or morphological variations across deep-sea hydrothermal vent habitats and microbial 
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communities. In addition to the Zetaproteobacteria, bacterial clone library analysis has 

identified several other members of the microbial communities at Loihi. Consistently 

observed counterpart microorganisms include members of the Gammaproteobacteria, 

Deltaproteobacteria, Epsilonproteobacteria, and Chloroflexi (Flemming et al., 2013; 

McAllister et al., 2011). The presence of these diverse taxa suggests great metabolic and 

functional diversity may exist within Zetaproteobacteria-dominated microbial mat 

communities. 

Both marine and freshwater FeOB secrete filamentous Fe(III)-oxyhydroxides during 

iron oxidation. FeOB likely produce these structures in order to avoid encrustation as Fe(II) 

is oxidized to insoluble Fe(III) at circumneutral pH (pH 5.5-7.4). These distinctive secretions 

are instrumental in the formation of microbial iron mats supplied by Fe(II)-rich vent fluids, 

and are thought to be important in determining fluid flow, dispersion, colonization, and biotic 

geochemical cycling throughout the ecosystem (Chan et al., 2011). Distinct mat 

morphologies associated with varying forms of Fe(III)-oxyhydroxides (e.g. tubular sheaths 

vs. twisted helical stalks) have been consistently observed at Loihi. Fine-scale microscopy 

and terminal-restriction length polymorphism (T-RFLP) analyses of distinct mat 

morphotypes (Flemming et al., 2013) provide evidence that various mat types may represent 

phylogenetically distinct distributions of microbial populations. We hypothesized that this 

variation in iron mat morphology and community structure would translate into unique 

metabolic and functional signatures.  

This study describes the use of five novel, non-degenerate quantitative PCR (QPCR) 

assays to estimate key functional gene sequences for carbon and nitrogen fixation, 

denitrification, and arsenic detoxification in Zetaproteobacteria-rich microbial mat 
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communities at Loihi Seamount, Hawaii. The goal of this research was to use QPCR in 

conjunction with chemical analyses and T-RFLP DNA fingerprinting to analyze microbial 

mat samples across a range of environmental parameters. Previous studies have used QPCR 

to quantify functional genes at hydrothermal vents and in other microbial biomes. Wang et al. 

(2009) used QPCR data to verify a GeoChip analysis of functional genes in microbial 

communities at the Juan de Fuca Ridge hydrothermal vent system. QPCR has also been 

utilized to study denitrification in soils (Sonia et al., 2004), sulfate-reduction in a solid-waste 

digestor (Tang et al. 2004), pollutant degrader genes (Beller et al., 2002; Kikuchi et al., 

2002), and in many other functional capacities in a wide array of microbial communities and 

habitats. However, many of these studies have utilized degenerate primers designed using 

sequence data from databases and other sources. Our unique approach to non-degenerate 

primer design for QPCR using sequence data for samples collected from these iron-rich 

microbial mats has enabled us to quantify an array functional genes specific to these habitats 

and communities. Little is known about mineral cycling in the Zetaproteobacteria habitats at 

Loihi, and this work constitutes the first effort to develop a non-degenerate QPCR approach 

to functional gene analysis in deep-sea FeOB-rich communities. 
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METHODS 

Sampling for T-RFLP and QPCR 

Microbial iron mat samples were collected within Pele’s Pit hydrothermal venting 

sites Hiolo North (Markers 31, 36, 39), Hiolo South (Markers 34, 38), and on the caldera rim 

at Pohaku (Marker 57) at Loihi Seamount, Hawaii (Fig. 1). Samples were collected using a 

biomat syringe (BMS) sampler, a custom-designed tool for fine-scale microbial mat sampling 

(Breier et al., 2012). The BMS sampler was operated by the ROV Jason II from the R/V 

Thomas G. Thompson during a March 2013 cruise to Loihi. Gross mat morphology was 

assigned based on consistently observed iron mat morphotypes at these sites (Fig. 2). Sample 

names reflect ROV dive number (e.g., 671-676), sample type and number (e.g., BMS1-3), 

and the sampler and syringes used (e.g., samplers A-D, syringes 1-6). Mat samples were 

brought onboard and either directly frozen at -80˚C or extracted for genomic DNA (gDNA). 

For comparison, a single scoop sample, PV340, was analyzed. Scoop sample PV340 was 

collected in 1997 using the submersible DSRV Pisces V at Jet Vents (Marker 11), which is 

now dormant. This mat community was not indicative of an FeOB-dominated mat 

community, but rather contained only a few populations of known sulfur-cycling 

Epsilonproteobacteria (Emerson and Moyer 2010).  

gDNA extraction  

Genomic DNA (gDNA) was extracted using the Fast DNA SPIN kit for soil 

(Qbiogene, Carlsbad, CA) according to the manufacturer’s protocol. A FastPrep instrument 

(Qbiogene) was used at speed 5.5 for 30 s to optimize cellular lysis, and gDNA was eluted in 

10 mM Tris at pH 8.0. A NanoDrop ND-1000 spectrophotometer was used to determine the 

purity and concentration of all nucleic acid samples.  
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Metagenomic sequencing and assembly 

Syringe sample J2-470-BS3 (81.8% Zetaproteobacteria by QPCR) was collected 

from a microbial iron mat at Pohaku (Fig. 1) on the 2009 using the ROV Jason II. Scoop 

sample SB13 (13% Zetaproteobacteria) was directly collected from an intertidal microbial 

iron mat at Site 13, Soda Bay, Alaska in a 50 mL centrifuge tube and immediately preserved 

with RNA later. The HiSeq Illumina platform was used to sequence gDNA from these 

samples. Illumina reads were assembled using MetaVelvet, a freeware short-read assembler 

for metagenomics (Namiki et al., 2012). Genes of interest were identified using MG-RAST 

annotations of metagenome assemblies (Meyer et al., 2008). 

Primer design 

 Non-degenerate QPCR primers for arsenate reductase (arsC) and nitrite reductase 

(nirK) were designed using annotated functional gene sequences from our Pohaku (J2-479-

BS3) metagenomic assembly. These genes are associated with arsenic detoxification and 

denitrification, respectively (Braker et al., 2000; Mukhopadhyay and Rosen, 2002). 

Nitrogenase (nifH) primers were based on an annotated functional gene sequence from the 

Soda Bay (Site 13; SB13) metagenomic assembly. nifH is an indicator gene for microbial 

nitrogen fixation (Gaby and Buckley et al., 2012; Mehta et al., 2002). 

 Non-degenerate QPCR primers were designed for carbon fixation genes using PCR-

cloned sequences. PCR primers for ribulose-1,5-bisphosphate carboxylase (RuBisCO) type II 

(cbbM) were first obtained from Kato et al. (2012). RuBisCO is associated with carbon 

fixation via the Calvin Benson Bassham (CBB) cycle (Tabita et al., 2007). Primers from 

Campbell et al. (2003) were used to amplify ATP citrate lyase (aclB), an important gene for 

carbon fixation via the reductive tricarboxylic acid (rTCA) cycle. These degenerate primer 
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sets for cbbM and aclB were then used to amplify and sequence PCR products from BMS 

samples collected at Loihi in March 2013. Sequence data for PCR cloned amplicons were 

used to generate non-degenerate nested primer sets for QPCR that are specific for the 

microbial communities at Loihi. All functional gene primer sequences and sources are 

summarized in Table 1. 

Cloning for QPCR standards 

Linearized plasmid standards for all functional gene analyses were constructed via 

PCR. PCRs were optimized for 3 ng gDNA template using a reaction mixture of 1 µM (each) 

forward and reverse primer, 2.5 mM MgCl, 1 µM Taq, 1X PCR buffer, 10 ug BSA, and 200 

µM of each dinucleoside triphosphate. PCR conditions were as follows: initial 2-minute hot 

start at 94˚C, 35 cycles of denaturation (94˚C for 1 min), annealing (50-60˚C for 90 seconds), 

and elongation (72˚C for 3 min), and a final elongation step at 72˚C for 3 min. Annealing 

temperature varied for each primer set as outlined in Table 1. No template controls were 

maintained for each PCR run. Amplified products were examined against the 1-kb DNA 

ladder (New England Biolabs, Ipswich, MA) using 2% agarose gel electrophoresis to 

determine size and specificity of the amplicon for each primer set. PCR reactions were 

purified using the QIAEX II gel extraction kit (Qiagen, Valencia, CA) according to the 

manufacturer’s protocol for desalting and concentrating DNA solutions.  

PCR amplicons were then cloned into the pCR4-TOPO E. coli vector using the TOPO 

TA cloning kit for sequencing with One Shot TOP10 chemically competent cells according 

to the manufacturer’s instructions (Life Technologies, Carlsbad, CA). Randomly selected 

colonies were streaked to isolation and grown in 5 mL LB broth medium in a shaking 

incubator at 200 rpm for 24h at 37˚C. Plasmids were extracted and purified from cloned cells 
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using the QIAprep miniprep system (Qiagen) and PCR screened for correct insert size using 

the M13F and M13R primers (Moyer, 2001). Plasmid amplicons were checked against a 1kb 

ladder using 2% gel electrophoresis to ensure correct insert size.  

Cloned amplicons were sequenced in both directions with M13F and M13R primers 

on an ABI 3130xl genetic analyzer (Life Technologies). Forward and reverse sequences were 

aligned and trimmed using BioNumerics v.7.1 (Applied Maths, Saint-Martens-Latem, 

Belgium). Nucleotide sequences were checked using multiple sequence alignments to 

confirm that the sequence of the cloned vector insert was correct and that primers were 

targeting desired functional gene sequences for all cloned amplicons. Plasmids were 

linearized using the restriction enzyme NotI (New England Biolabs). 

Functional gene QPCR 

 Functional genes were quantified using absolute quantitation for gDNA against 

linearized plasmid standards. All QPCR assays were run in a 96 well plate format on a Step 

One Plus Real Time PCR System (Life Technologies). Samples were run in triplicate using 

2X Power SYBR Green Mastermix (Life Technologies). For all assays, 0.3 µM each forward 

and reverse primer was used in a total reaction volume of 20 µL. One nanogram gDNA 

template was run for each unknown sample using absolute quantitation against a 10-fold 

dilution series of one nanogram linearized plasmid (10-1-10-7). Samples were run in triplicate 

alongside negative controls at 95˚C for 10 min (initial denaturation), and 40 cycles of 95˚C 

for 15 seconds (denaturation) and 50-60˚C for 1 min (annealing). Annealing temperature for 

each functional gene primer set is summarized in Table 1. Melt curve analysis was performed 

after each assay to check PCR specificity. QPCR outputs were manually checked to ensure 

that default baseline and threshold settings were correct and consistent across all plates. 
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Standard curves and linear regression data for each assay were calculated, as well as standard 

deviation for each range of cross threshold (Ct) values produced. Gene copy number per 

nanogram gDNA was determined based on the size of the linearized plasmid used as the 

QPCR standard (Ritalahti et al., 2006). A nonparametric Kruskal-Wallis one-way analysis of 

variance (ANOVA) was run for all functional gene QPCR data using the program SigmaPlot 

v.12.5 (Systat Software, San Jose, CA) 

 A non-parametric multidimensional scaling (NMDS) plot was created between 

variables for log-transformed functional gene QPCR data and Zetaproteobacteria abundance 

QPCR data using a Pearson product correlation resemblance matrix using Primer v6 (Clarke 

and Gorley, 2006). nifH gene amplification was low or undetectable by our method and was 

not included in the NMDS plot.  

Zetaproteobacteria QPCR  

Nearly complete Zetaproteobacteria SSU rRNA gene sequences from the NCBI 

database were aligned with the SILVA SINA web aligner (Pruesse et al., 2007) and imported 

into the SILVA 102 NR database operated by the ARB sequence program (Ludwig et al., 

2004). Zetaproteobacteria-specific QPCR primers Zeta542F (GAA AGG DGC AAG CGT 

TGT T) and Zeta658 (TGC TAC ACD CGG AAT TCC GC) were built using the PROBE 

MATCH tool. Total bacterial SSU rRNA copies were quantified with bacterial primers 

Bact533F (GTG CCA GCA GCC GCG GTA A) and Bact684R (TCT ACG SAT TTY ACY 

SCT AC).  

QPCR conditions were as described for functional genes with an annealing 

temperature of 60˚C. Percent Zetaproteobacteria were calculated by dividing 
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Zetaproteobacteria gene copy numbers per nanogram gDNA by copy numbers calculated 

against the bacteria-specific primer set. 

Chemistry and temperature measurements 

 End-member hydrothermal fluids were collected from chimneys and microbial mats 

using a titanium major sampler deployed from the ROV Jason II (Von Damm et al., 1985). 

Background samples were collected away from venting sites using Niskin bottles attached to 

the side of ROV Jason II. Hydrothermal fluid samples were filtered through 0.2 µm 

polycarbonate filters and then frozen immediately. 

 Fluid temperatures were measured using the temperature probe on ROV Jason II. NOx 

was measured using the chemiluminescent method with a NOx box, which has a detection 

limit of <0.010 µM NOx (Garside et al., 1982). NH4
+ was measured using the fluorescence 

method (Holmes et al., 1999) post-cruise. The detection limit for NH4
+ is 0.030 µM. 

Dissolved inorganic phosphorus (Pi) and dissolved silica (mostly silicate, dSi) were measured 

using colorimetric methods, with a detection limit of 0.030 µM Pi and 0.30 µM for dSi 

(Grasshoff et al., 1999). Fe(II) concentrations in mat samples were determined using the 

ferrozine method with a detection limit of <1 µM (Stookey et al., 1970).  

T-RFLP DNA Fingerprinting 

T-RFLP was completed as described by Flemming et al. (2013). Triplicate PCR 

reactions with a 5’ end-labeled 6-FAM fluorescent dye were pooled, concentrated, and 

diluted in Tris buffer. PCR products were equally divided between eight overnight restriction 

digest treatments: AluI, BstUI, HaeIII, HhaI, HinfI, MboI, MspI, and RsaI (New England 

BioLabs). All reactions were run at 37˚C, with the exception of BstUI, which was incubated 

at 60˚C. The restriction fragments were desalted with Sephadex G-75 (Amersham 
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Biosciences, Uppsala, Sweden) and dried down. Fragments were rehydrated in 15 µL of a 

1/30 solution of LIZ-500 internal size standard in formamide. Reactions were denatured at 

95˚C for ten minutes and separated via capillary electrophoresis using an ABI 3130x1 

genetic analyzer with 50-cm capillary array and POP-6 polymer (Life Technologies). 

Electropherograms were imported into BioNumerics v.7.1 (Applied Maths) and sized against 

the internal standard. Only fragments between 50 and 500 bp were included in the analysis. 

Community fingerprints were compared using average Pearson product moment correlation 

and unweighted pair group method with arithmetic mean (UPGMA) cluster analysis for all 

eight digests using the relative fluorescent proportions of each electropherogram. Cophenetic 

correlation coefficient values were calculated for all nodes with 3 or more branches. All T-

RFLP analyses were performed in BioNumerics as previously described. 

Statistical Analyses 

 Four non-parametric one-way multivariate analyses of variance (MANOVA) were 

run for QPCR gene abundance numbers (cbbM, aclB, arsC, nirK, nifH) for the following 

independent variables: mat morphology, temperature range (10˚C intervals), percent 

Zetaproteobacteria range (5-10% intervals), and sample site. Three one-way MANOVA 

were run for chemistry data with the independent variables of mat morphology, temperature 

range, and sample site. Wilke’s lambda p-values below 0.05 were considered statistically 

significant. For significant results, test between subjects effects (univariate ANOVA) results 

were examined to determine which variables were statistically significant for a given 

independent variable (p<0.05). These analyses were completed using the statistical software 

SPSS v.17 (IBM, Armonk, NY).  
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RESULTS 

QPCR analysis for 17 Loihi 2013 BMS samples across various mat morphologies, 

vent effluent and mat temperatures, fluid chemistries, and sample sites revealed unique 

functional gene signatures for each fine-scale microbial mat community sampled by the 

biomat syringe (BMS) sampler (Fig. 3). There was substantial variation in functional gene 

abundances across communities. Overall, Calvin Benson Bassham (CBB) carbon fixation 

gene cbbM was the most abundant gene sequence per ng DNA, followed by arsC, nirK, and 

aclB, based on cumulative averages. Gene copy numbers for nifH were either very low or 

undetectable by our method. Two mat samples from Hiolo South (675-BM2-A123 and 675-

BM1-A123) had relatively higher numbers of arsC. Pohaku sample 674-BM2-D12456 had 

the greatest number of cumulative gene copy numbers across the five QPCR assays (>107). 

Hiolo North sample 672-BM1-B123456 had the fewest gene copy numbers (<103) and had 

high aclB gene copies per ng gDNA relative to the other mat samples. Nonparametric 

Kruskal-Wallis one-way ANOVA showed that differences in the median abundance between 

functional genes was greater than would be expected by chance (p<0.001). The non-

parametric multidimensional scaling plot (NMDS) (Fig. 4) for QPCR functional gene 

variables and for Zetaproteobacteria abundance clustered cbbM, nirK, and arsC with >60% 

Pearson correlation coefficient similarity. This group was also associated with 

Zetaproteobacteria abundance. aclB did not group with any other QPCR variable.  

 T-RFLP DNA fingerprinting (Fig. 5A) revealed that the microbial communities at 

hydrothermal vents near the summit region of Loihi Seamount were very similar to each 

other (>40% similarity between samples). T-RFLP clusters were assigned membership in 

two distinct groups. T-RFLP Group 1 had 33% Zetaproteobacteria on average and low aclB 
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abundance relative to Group 2. T-RFLP Group 2 had 9.1% Zetaproteobacteria, much higher 

aclB, and was grouped more closely with the comparator sample PV340. Pohaku BMS 

samples were all clustered in T-RFLP Group 1. Hiolo North and Hiolo South samples formed 

distinct clusters within Group 1 according to vent type and temperature, though 672-BM1-

D123456, a Hiolo North curd-like mat, grouped more closely with the Pohaku mat samples. 

Two veil-type samples from different sites (672-BM1-B12345 and 672-BM2-A56C456) 

clustered tightly with >80% similarity in the community fingerprint analysis. Group 2 was 

comprised of Hiolo South samples 675-BM3-D12346 (surface mat; 48.1˚C) and 676-BM2-

C34 (streamers; 33.1˚C).  

Functional gene data for key carbon fixation enzymes aclB (Fig. 5B) and cbbM (Fig. 

5C) are compared with the T-RFLP community analysis (Fig. 5A). Jet Vents scoop sample 

PV340 had very high aclB gene copy numbers relative to the Loihi 2013 samples. Group 2 

was most closely associated with PV340, and overall Group 2 samples had high aclB gene 

copy numbers compared to Group 1. Group 1 T-RFLP samples had the highest average 

percent Zetaproteobacteria (33%) by QPCR. Group 2 T-RFLP samples had substantially 

lower numbers of Zetaproteobacteria (9.1%). Zetaproteobacteria were only just detectable in 

PV340 (0.21%). Both PV340 and 676-BM2-C34 are classified as ‘streamers’, filament-like 

bits of mat in actively venting orifices (Fig. 2B). In general, samples low in aclB generally 

had much higher cbbM. cbbM was ubiquitous in all samples, regardless of where they were 

in the T-RFLP cluster analysis, though it is interesting to note that 674-BM2-D12456 (Group 

1) had exceptionally high cbbM. 

One-way MANOVA for functional gene QPCR data indicated that mat morphology 

was a significant factor for QPCR variance across samples (p<0.0005). Temperature, sample 



14 
 

site and percent Zetaproteobacteria did not significantly describe the QPCR data. Univariate 

ANOVA revealed that aclB gene copy numbers were significantly explained by changes in 

mat type (p<0.0005). Functional gene abundances for cbbM, arsC, nirK, and nifH were not 

significantly associated with mat morphology.  

Geochemical measurements were collected for 14 of our 17 Loihi BMS samples. Mat 

morphology and sample site showed a significant effect with vent chemistry (one-way 

MANOVA, p<0.0005 for both). Univariate ANOVA showed that Fe(II) levels were 

significant with mat type (p=0.003), and that NH4, NOx, dSI, and PO4 were significant with 

sample site (p=0.019, 0.03, 0.001, <0.0005, respectively). Mat temperature was not 

significant with any chemistry measure (one-way MANOVA, p=0.087).  
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DISCUSSION 

These novel QPCR assays were designed to target annotated gene sequences from 

microbial mat communities living around the vents at Loihi Seamount, but may also be 

useful in similar iron-dominated hydrothermal systems. Because our primers were designed 

to be non-degenerate, we have enhanced confidence in the sequence identity of our PCR 

amplicons. We are reporting on the amplification of functional gene via primers designed to 

target sequences unambiguously identified in communities dominated by iron-oxidizing 

bacteria (FeOB) at our study sites. Most QPCR approaches to functional gene amplification 

in environmental samples have utilized degenerate primers, and have largely focused on the 

amplification of one or two genes associated with a single pathway or group of organisms 

(Agrawal and Lal, 2009; Church et al., 2005; Henry et al., 2004). Use of degenerate primers 

increases the risk of non-specific amplification, largely due to primer bias as primers not 

used during amplification are available to prime non-specific sites (Rose et al. 1998). As 

QPCR is an exceptionally sensitive molecular tool, we chose to be conservative in our 

strategy for probe design, using either annotated metagenomic functional gene sequences or 

cloned sequence representatives of microbial mat communities present at Loihi to design 

primers (Table 1).  

Sequencing and QPCR detection of an arsenic reductase (arsC) gene sequence 

comprises the first look at an arsenic detoxification gene in the microbial communities 

supported by the hydrothermal vents in and around Pele’s Pit. Bacterial arsenic 

resistance/detoxification is conferred by arsC. This enzyme catalyzes the intracellular 

reduction of arsenate to arsenite, which is then extruded from the cell via an arsenite-specific 

protein pump (Jackson and Dugas, 2003; Mukopadhyay and Rosen, 2002). The results of this 
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study indicate that arsC is present and quantifiable in all iron-rich mat communities assayed 

(Fig. 3). Though there is presently no data on arsenate/arsenite chemistry at Loihi or other 

Zetaproteobacteria-rich venting sites, Meyer-Dombard et al. found both arsC and 

Zetaproteobacteria SSU gene sequences in vent fluids and colonized slide community 

experiments in arsenic-rich waters at shallow hydrothermal vents at Tutum Bay, Papua New 

Guinea (2012). We identified several samples high in arsC that are intriguing candidates for 

continued investigations into the presence and expression of arsenic cycling genes. Samples 

675-BM2-A123, and 675-BM1-A123 had exceptionally high arsC relative to the other Loihi 

2013 mat communities analyzed. These samples were both collected at Hiolo South and 

came from microbial mats that were >40˚C. 

We developed a new QPCR assay to quantify nitrogenase (nifH) identified in a 

Zetaproteobacteria-rich iron cold seep at Soda Bay, Alaska. Biological fixation of nitrogen 

gas occurs via nitrogenase. nifH, which encodes the nitrogenase reductase subunit, is the 

most commonly used molecular marker for microbial nitrogen fixation (Gaby and Buckley et 

al., 2012). nifH sequence abundance was either very low or undetectable in the samples 

analyzed and was not present in the Pohaku metagenomic assembly. This assay may be best 

suited to the amplification of nifH from iron mats exposed to sunlight and undergoing 

photosynthesis in addition to chemosynthesis, such as those in the iron-rich cold seeps at 

Soda Bay. However, based on the absence of an annotated gene sequence in the 

metagenomic assembly from Pohaku Vents and the negligible QPCR amplification of nifH 

using a wide array of both degenerate and non-degenerate primer sets (data not shown), it is 

possible that nitrogen fixation via the nifH subunit of nitrogenase is not an important function 
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of hydrothermal iron-based microbial mat communities. Additional investigations into the 

presence and expression of nif genes are needed to confirm this hypothesis.   

The presence of a dissimilatory copper-containing nitrite reductase (nirK) at Loihi is 

suggestive of denitrifying activity (Fig. 3). Often used as a molecular probe for microbial 

denitrification, the enzyme products of nir enzymes are responsible for reducing a 

mineralized form of nitrogen to gas through the reduction of nitrite to NO (Bothe et al., 2000; 

Braker et al., 1998; Braker et al., 2000; Smith et al., 1992). Though previous studies have 

identified denitrification genes at hydrothermal vents (Wang et al., 2009; Xie et al., 2011), 

they were only recently detected at Loihi and in the Zetaproteobacteria via an annotated 

metagenomic assembly of a fosmid library (Singer et al., 2013). nirK was amplified by 

QPCR in all samples described here, confirming the presence of denitrification genes in a 

wide array of iron mat communities. The presence of nirK is notable as nitrite reduction may 

open up new ecological niches for these organisms within iron-rich microbial mat habitats 

with nitrogen oxides acting as electron acceptors in anoxic mat environments.  

The Calvin Benson Bassham (CBB) cycle is thought to be the most prevalent mode of 

carbon fixation on earth and has been identified at hydrothermal vents (Nakagawa and Takai, 

2008). Ribulose-1,5-bisphosphate carboxylase (RuBisCO) enzymes catalyze the 

carboxylation of ribulose-1,5-bisphosphate with CO2 in the essential step of the CBB cycle. 

RuBisCOs are organized into four groups, with RuBisCO type I (cbbL) and RuBisCO type II 

(cbbM) most often identified in deep-sea chemolithoautotrophs (Minic and Thongbam, 2011; 

Nakagawa and Takai, 2008; Shively et al., 1998). RuBisCO types I and II are used by 

hydrothermal vent microbes under varying oxygen and carbon dioxide conditions. A dimer 

of large subunits, cbbM is considered most effective in higher carbon dioxide environments 
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(Tabita et al., 2007). High levels of CO2 (>300 mM) have been detected in vent effluents at 

Loihi (Wheat et al., 2000), and metagenomic assemblies (data not shown) from Loihi mats 

have found that cbbM is much more prevalent than cbbL. The ubiquity of cbbM in the 17 

fine-scale mat communities collected with the BMS sampler and assayed herein (Fig. 3; Fig. 

5C) suggests that the CBB cycle via cbbM is likely the most important mode of carbon 

fixation in this habitat. Both cbbL and cbbM have been identified in M. ferrooxydans 

(Emerson et al., 2007; Singer et al., 2011). Though the presence of a gene is not a guarantee 

of activity, the discovery of considerably more cbbM sequences relative to cbbL in 

metagenomic studies at Loihi may indicate that M. ferrooxydans is not an ecologically 

suitable representative of the Zetaproteobacteria that act as ecosystem engineers in these 

iron-mat ecosystems, as suggested by Emerson and Moyer (2010). Future culturing 

endeavors should focus on those communities high in cbbM using enrichments with elevated 

CO2 in an attempt to isolate the more ecologically relevant Zetaproteobacteria, which have 

an extremely broad distribution (McAllister et al., 2011).  

The reductive tricarboxylic acid (rTCA) cycle represents another major mode of 

carbon fixation at hydrothermal vents and is effectively a reversal of the TCA cycle. The 

rTCA cycle enables chemolithoautotophic organisms to convert two molecules of CO2 to 

acetyl-CoA. ATP citrate lyase (aclB), which catalyzes the ATP-dependent cleavage of citrate 

to acetyl-CoA and oxaloacetate in a key reaction step, is one of only two enzymes unique to 

the rTCA cycle (Campbell et al., 2006; Hugler and Sievert, 2011; Nakagawa and Takai, 

2008). M. ferrooxydans does not have aclB, and the rTCA cycle is not thought to be an 

important contributor to carbon fixation in the Zetaproteobacteria. Though it has been 

hypothesized that Zetaproteobacteria primarily fix carbon through the CBB cycle, other 
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known hydrothermal vent microorganisms, including well-characterized members of the 

Epsilonproteobacteria and Aquificales, are known to utilize the rTCA cycle (Beh et al., 1993; 

Campbell et al., 2008; Hugler et al., 2005; Singer et al., 2011). These organisms have been 

identified in microbial communities at Loihi and are likely important contributors to carbon 

fixation there. Relative to cbbM, aclB was less abundant in our 17 BMS samples (Fig. 3; Fig. 

5B/5C), suggesting that, while the gene sequence for aclB is present at Loihi, the rTCA cycle 

may not be as widely used as the CBB cycle. The Epsilonproteobacteria and/or the 

Zetaproteobacteria can be considered the most common members of surface microbial mat 

communities at active seamounts (Emerson and Moyer, 2010). As the rTCA cycle operates in 

the Epsilonproteobacteria and generally at higher temperature deep-sea vents, the large 

amount of cbbM relative to aclB supports the hypothesis that, while aclB genes are present, 

Zetaproteobacteria and other associated taxa at Loihi’s hydrothermal vents use the CBB 

cycle as their primary means of carbon fixation (Emerson and Moyer, 2010; Hugler and 

Sievert, 2011; Kato et al., 2013).  

Scoop sample PV340 was collected just after the 1996 eruption event at a now 

dormant hydrothermal venting site known as Jet Vents (Tmax = 196˚C). At this time, the 

microbial mats within and around Pele’s Pit were characterized by much higher temperatures 

and sulfur-dependent microbial communities. Jet Vents mats were sampled in 1997 after a 

major eruption event and had high aclB, lower Zetaproteobacteria, and low cbbM relative to 

iron-rich samples collected in 2013 (Fig. 5B/5C). Based on T-RFLP data, the Jet Vents 

community (PV340) also had a very different community than any of the 2013 Loihi iron 

mats (Fig. 5A). This observation is consistent with well-documented temporal changes in 

microbial community composition at seamounts and gradual shifts from 
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Epsilonproteobacteria-dominated communities to Zetaproteobacteria-dominated 

communities as hydrothermal vents cooled over time (Emerson and Moyer, 2010). Loihi 

2013 streamer sample (676-BM1-C34) was contained in the T-RFLP cluster (Group 2) 

nearest PV340 and also had high aclB. As Zetaproteobacteria depend largely on the CBB 

cycle for carbon fixation, the presence of aclB indicates that these streamer-type mats may be 

supporting less Zetaproteobacteria-impacted microbial communities relative to the other mat 

types. This idea is supported by Zetaproteobacteria abundance data; we found that the Group 

1 cluster had an average of 33% Zetaproteobacteria, whereas the Group 2 cluster had only 

9.1% Zetaproteobacteria. The post-eruption microbial mat community from Jet Vents PV340 

had only 0.21% Zetaproteobacteria, suggesting that percent Zetaproteobacteria is inversely 

associated with aclB. These data, in conjunction with the observation that T-RFLP 

communities are influenced by mat morphology and the statistically significant relationship 

between aclB and mat morphology (univariate ANOVA p<0.0005), may indicate that both 

Zetaproteobacteria abundance and aclB, representing the Epsilonproteobacteria, affect the 

observed community structure.  

Geochemistry data was significantly affected by mat morphology, suggesting that the 

chemistry of the mat environment is important for determining mat morphology. Fe(II) levels 

were also significantly described by mat type, and reduced iron availability is likely be 

important for determining mat morphology. As variance in the abundance of the five target 

genes was significantly associated with mat type via a one-way MANOVA, Fe(II) may also 

play a role in variation across functional gene abundance. This is unsurprising given the vital 

role of iron as an electron donor in the mat habitats at Loihi. QPCR-measured abundances for 

cbbM, arsC, nirK, and nifH were not associated with any independent variable in the 
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univariate ANOVA, suggesting that these functional genes are not affected by vent 

temperature or site. Conversely, aclB gene copy numbers were significantly affected by mat 

type, lending additional support to the idea that this gene may be an indicator of community 

composition. Location of the vents within the caldera is important for some chemical factors, 

as seen by the significant relationship between sample site and measures of NH4, NOx, dSi, 

and PO4. This relationship between sample site and vent chemistry was not reflected in the 

QPCR data. Changes in gene template abundance occur gradually, while chemical changes in 

the vent environment may happen rapidly. It is also likely that the microorganisms living in 

these iron-rich habitats are able to function within a range of chemistries that is not extremely 

variable between our sampling sites. Surprisingly, we did not see an effect of temperature on 

geochemistry or QPCR data. This is likely due to the relatively narrow temperature range 

(20-50˚C) of iron-dominated microbial mat communities.  

In order to better understand the relationships among functional genes, an NMDS plot 

was created for log transformed QPCR functional gene data across genes and 

Zetaproteobacteria abundance using a Pearson correlation resemblance matrix (Fig. 4). nifH 

was not included in this analysis. The NMDS analysis grouped cbbM, nirK, and arsC 

functional genes. These genes were also clustered with Zetaproteobacteria abundance 

indicating that the number of Zetaproteobacteria within the mat community may affect the 

abundance of these functional genes. Both nirK and cbbM have been identified in PV-1 as 

well as other uncharacterized strains of Zetaproteobacteria (Singer et al., 2011, Singer et al., 

2013). Arsenic species have been associated with Fe(III) iron-oxyhydroxides, such as those 

formed by Zetaproteobacteria at Loihi, in both shallow and deep-sea hydrothermal vent 

systems (Breier et al., 2012; Feely et al., 1991; Pichler et al., 1999). Meyer-Dombard et al. 
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(2012) found both arsC functional genes and Zetaproteobacteria SSU rRNA gene sequences 

in vent fluids and slide colonization experiments in a shallow-sea vent system at Tutum Bay, 

Papua New Guinea. The rTCA cycle gene aclB did not cluster with any other QPCR variable 

(arsC, nifH, nirK, or cbbM). This is unsurprising as it is widely accepted that the rTCA cycle 

is not associated with Zetaproteobacteria, but with other taxa at vents, such as the 

Epsilonproteobacteria (Singer et al., 2011; Beh et al., 1993). It seems likely that while Group 

2 aclB gene sequence abundances at Loihi may be indicators of mat community structure, 

they are not associated with Zetaproteobacteria-impacted microbial communities, such as 

those in T-RFLP Group 1. Additional samples from the T-RFLP Group 2 cluster are needed 

to confirm these hypotheses, as most mat communities analyzed fall into the Group 1 cluster 

(Fig. 5A).  

The identification of arsC and nirK gene sequences across the fine-scale mat 

communities assayed here has major implications for the capacity of FeOB communities to 

participate in denitrification and arsenic detoxification. Amplification of a major nirK gene 

across all samples is notable as the capacity for denitrification may expand the habitat range 

of Zetaproteobacteria or other denitrifying microorganisms in these iron mats. This study 

represents a first look at arsenic cycling genes at Loihi and opens the door for further 

investigations into the relationship between chemical arsenic species and the microorganisms 

living in deep-sea iron-oxidizing communities. Comparison of cbbM (CBB cycle) and aclB 

(rTCA cycle) carbon fixation genes revealed that while cbbM was ubiquitous in the iron-rich 

microbial mat habitats, aclB was present at appreciable amounts only in the 

Epsilonproteobacteria-rich Jet Vents mat community (PV340) from 1997, along with the T-

RFLP Group 2 cluster of iron mat communities from 2013. We conclude that microbial 
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communities high in aclB (T-RFLP Group 2) are likely undergoing the rTCA cycle and may 

be rich in taxa such as Aquificales and/or Epsilonproteobacteria. In contrast, T-RFLP Group 

1 communities had higher Zetaproteobacteria abundance, low aclB, and utilize the CBB 

cycle almost exclusively for carbon fixation. This is also supported by the statistically 

significant relationship between aclB and mat type (univariate ANOVA, p<0.0005). Mat 

morphology was significant with Fe(II) measures in the mats, leading us to hypothesize that 

reduced iron availability is a forcing function for functional gene abundances, community 

composition, and mat type. 

QPCR can be utilized to efficiently screen large numbers of samples for distinctive 

functional gene patterns in ecological contexts (Smith and Osborn, 2009). While other 

molecular studies of functional gene abundance have focused primarily on a single sample or 

strain, our QPCR approach has enabled the quantitative analysis of gene sequences across a 

temporal, chemical, morphological, and spatial range of mat samples. The cumulative result 

of these five QPCR assays is the construction of a unique ‘functional gene signature’ for 

discrete, fine-scale microbial mat communities (Fig. 3). These functional gene signatures can 

be compared across a broad range of environmental parameters and can be used to identify 

exceptional samples for culturing efforts or additional molecular analyses. To our 

knowledge, this is the first non-degenerate QPCR approach to the study of functional genes 

at hydrothermal vents. The five assays we developed can potentially be utilized in the 

continued study of the functional capacities of iron-dominated hydrothermal systems with 

regard to carbon and nitrogen fixation, denitrification, and arsenic detoxification. QPCR is a 

sensitive and valuable molecular tool and is best used in conjunction other assessments and 

measures, such as the phylogenetic and chemical measures presented here. This study 
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demonstrates the use of environmentally-derived sequence data to design habitat-specific 

non-degenerate QPCR analyses, a strategy which can be applied across a variety of microbial 

communities in a wide range of ecosystems.  
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Fig. 1: Bathymetric map of sampling sites in Pele’s Pit at Loihi Seamount, HI.  
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Fig. 2: Microbial iron mats at Loihi Seamount, HI formed by 
Zetaproteobacteria during the oxidation of Fe(II) to insoluble Fe(III) 
oxyhydroxides at circumneutral pH. Distance between lasers is 10 cm. (A) 
Iron mats formed over venting chimneys at Hiolo North. The light-colored top 
layer of the mat, termed ‘veil’, has peeled back revealing the ‘under-mat’. (B) 
‘Cauliflower’ iron mats surrounding an actively venting orifice at Hiolo 
South. Filamentous ‘streamers’ are also visible in the orifice. (C) The biomat 
syringe (BMS) sampler operated by the ROV Jason II sampling a ‘curd’-like 
mat layer at Pohaku.  
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Fig. 3: Stacked bar graphs showing functional gene copy numbers by QPCR 
for cbbM, aclB, arsC, nirK, and nifH for 17 BMS samples collected at Loihi 
in 2013. Functional gene copy numbers are represented on a logarithmic y-
axis. See FIG. S1 for linear representation of this data.  
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Fig. 4: Pearson correlation non-parametric multidimensional scaling (NMDS) plot 
generated using a group average resemblance matrix of log-transformed functional gene 
and Zetaproteobacteria abundance QPCR data for 17 BMS samples. Contours indicate 
clusters with 15 and 60 percent Pearson correlation. 
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TABLE 1. Summary of functional gene QPCR primers. 
  

Gene Function Primer 
names Primer sequences 5’-3’ Sequence 

source 
Annealing 
temp. 

 
Nitrogenase 
(nifH) 
 

 
Nitrogen 
fixation 

 
nifH5F/ 
nifH5R 

 
GGTAAATCCACTACTACCCAGAA/ 
GAAGGATCAGACGTGTGGAA 

 
Soda Bay, 
Alaska 
metagenomic 
assembly 
 

 
55˚C 

Nitrite reductase 
(nirK) 
 

Denitrification nir2F/ 
nir2R 

CGTGCGATAATACGGTGAT/ 
CCTTCTGCCAATGGTCCTT 

Loihi, Hawaii 
metagenomic 
assembly 
 

60˚C 

Arsenate 
reductase (arsC) 
 

Arsenic 
detoxification 

arsC2F/ 
arsC2R 

GCGTACAGGCGAAGATGAATA/ 
ACAACAACAGGACGTCAA 

Loihi, Hawaii 
metagenomic 
assembly 
 

60˚C 

ATP citrate lyase 
(aclB) 
 

Carbon fixation 
via rTCA cycle 

aclB3F/ 
aclB3R 

GCTTTGGCAAATGGTTCAGG/ 
ACCGACTTCTGGAAAGTATTGG 

Amplified with 
primers from 
Campbell et al. 
(2003) 
 

53˚C 

RuBisCO type II 
(cbbM) 
 

Carbon fixation 
via CBB cycle 

cbbM7.3F/ 
cbbM7.3R 

GCTTTGGCAAATGGTTCAGG/ 
ACCGACTTCTGGAAAGTATTGG 

Amplified with 
primers from 
Kato et al. 
(2013) 
 

60˚C 
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Fig. S1: Stacked bar graphs plotted on a linear scale showing functional gene 
copy numbers by QPCR for cbbM, aclB, arsC, nirK, and nifH.  
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Fig. S2: Bar graphs plotted on a linear scale showing functional gene 
copy numbers by QPCR for (A) cbbM and (B) aclB. 
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TABLE S1. Chemical measurements for BMS samples taken at Loihi Seamount. 
Site Sample Temp. Gross mat 

morphology 
NH4

+  
(µM) 

NO2
- 

(µM) 
NOx 
µM) 

dSi 
(µM) 

PO4 
(µM) 

Fe(II) 
(µM) 

          
Pohaku 
 

671-BM1-A12 25.9°C Under-mat 4.211 0.333 17.70 160.6 3.209 166 

Pohaku 
 

671-BM1-A456 25.9°C Mat surface 4.235 0.124 30.01 210.6 0.448 101 

Pohaku 676-BM2-A123 25.6°C Curds 2.096 0 4.020 456.6 3.761 ND 

Hiolo South 
 

675-BM1-A123 46.3°C Cauliflower 1.925 0.215 4.528 700.6 6.215 42.3 

Hiolo South 
 

675-BM1-A456 46.3°C Cauliflower 1.925 0.215 4.528 700.6 6.215 20.0 

Hiolo South 
 

675-BM1-B123456 47.4°C Veil 1.925 0.215 4.528 700.6 6.215 0 

Hiolo South 
 

675-BM2-A123 43.0°C Veil 2.528 0 2.789 477.6 6.521 11.0 

Hiolo South 
 

675-BM2-A456 43.0°C Cauliflower 2.528 0 2.789 477.6 6.521 118 

Hiolo South 
 

675-BM3-A23456 48.1°C Under-mat 1.925 0.215 4.528 700.6 6.215 232 

Hiolo South 
 

675-BM3-D12346 48.1°C Mat surface 1.925 0.215 4.528 700.6 6.215 180 

Hiolo North 
 

676-BM1-C12 33.0°C Curds 3.032 0.236 11.82 352.6 2.718 0 

Hiolo North 
 

676-BM1-C34 33.0°C Streamers 3.032 0.236 11.82 352.6 2.718 46.2 

Hiolo North 
 

676-BM1-C56 33.0°C Curds 3.032 0.236 11.82 352.6 2.718 18.3 

Hiolo North 
 

672-BM1-B123456 40.7°C Veil 2.096 0.093 1.859 218.6 3.699 0 
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