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Abstract 

Landslides are an integral process in the development of submarine volcanoes, but 

these events are rarely recorded and observed. Therefore, understanding how the morphology 

of volcanoes evolve requires information on landslides. Hydroacoustic signals were analyzed 

for the purposes of characterizing frequent landslides on West Mata volcano during a 5-

month eruptive period. Over 200 landslide signals have been compared in conjunction with 

hydroacoustic modeling to better understand the dynamics that control them. We used 

interference patterns produced by multipath rays to identify and model these slope failures. 

Landslides were most clearly captured on the north and west stations, suggesting a source on 

the western face of West Mata. This is consistent with a zone of high sediment accumulation 

previously found by bathymetric depth difference mapping. Landslides were found to initiate 

~200-300 m below the summit and travel at speeds of 4-8 m/s, and possibly up to 20 m/s. 

Slope failures were observed during periods of high eruptive activity suggesting failure by 

unstable tephra loading preferentially at sites of previous sliding. Landslides at West Mata 

also tend to occur in clusters with decreasing run out distances over time. It is recommended 

that future studies involve a denser hydrophone network to better locate landslides and model 

slide mechanics.  
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I. Introduction 
 

Submarine landslides are a ubiquitous process that actively shape both continental 

margins and submarine volcanoes. Perhaps the best known event occurred in 1929 as a result 

of the Grand Banks earthquake, which broke a network of cable lines off the coast of 

Newfoundland (Hampton et al., 1996). Submarine landslides range in magnitude from the 

large catastrophic slumps, to the less imposing shallow slope failures (Okal, 2003; Masson et 

al., 2006). Past events are typically studied through bathymetric imaging, but this provides us 

with no indication of how frequently they occur or how they are triggered. Studying an active 

submarine volcano where landslides are common could help to answer those questions.  

Submarine landslides have been identified at West Mata volcano, Lau Basin, with a 

characteristic spectral pattern of interference from multipathing rays (Matsumoto et al., 2011; 

Caplan-Auerbach, Dziak, et al., 2014; Dziak et al., 2015). The goal of this study is to use the 

interference pattern on multiple hydrophones from slides over a 5-month span in conjunction 

with hydroacoustic modeling to interpret landslide source depth and velocity. Connections 

between slope failures and the volcanic eruption are made to help understand the critical role 

landslides have in the development of submarine volcanoes.  
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II. Background 

2.1 Submarine landslides and causes 

Submarine landslides commonly occur on volcanic flanks that are over steepened 

with fragmental material (Masson et al., 2006). Broadly, submarine slope failures are 

influenced by elevated fluid pressures produced by rapid sediment deposition or abrupt 

seismic shaking. Physical models using sand and flour showed that slope failures on volcanic 

cones may be triggered by basal failure, unbuttressing due to the horizontal movement of a 

lateral wall, summit growth from sediment accumulation, and magmatic intrusion (Acocella, 

2005). Experiments by Acocella (2005) showed that the sediment accumulation process 

resulted in shallow, clustered mass wasting that occurred in generally the same location, 

while the other processes produced deeper and more variably oriented tracks. Shallow, 

clustered slope failures were initially influenced by previous landslide scars, but over time 

those scars became less important and slides eventually distributed broadly across the cone. 

Monowai, a submarine volcano in the Kermadec arc (SW to the Tonga arc) 

experiences frequent slope failures ranging from shallow debris avalanches to sector 

collapses during periods of eruption activity, resulting from unstable tephra loading 

(Chadwick et al., 2008). In 2002, a collapse event was captured by near shore seismometers, 

which recorded an unusual swarm of T-phases coming from Monowai volcano. Repeated 

bathymetric surveying helped to visualize where on the volcano these events occurred. It was 

found that slope failures were influenced by the explosive eruption style of Monowai, which 

led to unstable loading of high amounts of fragmental material on its slopes (Chadwick et al., 

2008).  
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NW Rota-1, a Mariana arc submarine volcano produced frequent shallow and narrow 

slope failures with thicknesses and volumes similar to those at Monowai volcano, suggesting 

that this is a common mode of failure on pyroclastic loaded volcanic slopes (Chadwick et al., 

2012). Mass wasting events were recorded on hydrophones and found to occur during high 

intensity volcanic eruption modes, suggesting a link between volcanic output and slope 

failure, consistent with observations at Monowai.  

In the Canary Islands, slope failures were found to result from dike intrusion and 

sediment accumulation from volcanic eruptions (Krastel et al., 2001). Sedimentological 

evidence suggests that submarine landslides on the Canary Islands occur retrogressively 

(headwall is incrementally eroded backward by successive failures) and involve a series of 

failures that take place over the span of hours to days (Masson et al., 2006), but this mode of 

failure has not been observed in real time. More extensive geophysical investigations are 

required to back up or amend this assertion.   

 

2.2. Hydroacoustic approach to studying landslides 

Mass wasting events in the submarine realm have been investigated mainly through 

repeat bathymetric surveying and hydroacoustic approaches (Caplan-Auerbach et al., 2001; 

Chadwick et al., 2008; Clague et al., 2011; Chadwick et al., 2012; Embley et al., 2014; 

Caplan-Auerbach et al., 2014). Bathymetric difference mapping tells us that a slide occurred 

sometime between two surveys, and allows the calculation of slide volume, but this 

technique cannot be used to determine slide duration or whether the event was a single pulse 

or a series of multiple failures in the same region. Hydroacoustics is a more practical 

technique for constraining the timing of slide events. Hydrophones capture T (tertiary) 
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waves, compressional seismic waves that propagate vast distances through water (Ewing et 

al., 1950; de Groot-Hedlin and Orcutt, 1999; Caplan-Auerbach et al., 2001; Okal, 2011). 

Seismic energy from earthquakes couple into the water column at solid-liquid interfaces and 

travel within the SOFAR (SOund Fixing And Ranging) channel in the marine environment 

(Johnson, R, H. et al., 1963). The SOFAR channel is a region within the world’s oceans that 

allows for long range, low velocity sound transmission (Figure 1). Vertical changes in 

temperature and pressure dictate how sound waves travel, with temperature the greater factor 

in the upper layers and pressure the greater factor in the deeper layers (NOAA Ocean 

Explorer website). The SOFAR channel contains the ideal combination of low temperature 

and low pressure that allows for sound waves to travel slowest. Because sound waves tend to 

bend toward regions of low velocity, sound waves then become trapped within this region 

and travel thousands of kilometers with minimal attenuation producing the ringing nature of 

T-phase wavetrains. Because of this, many oceanic sounds are recorded by hydrophones, 

including ship traffic and whale vocalization. The depth of the SOFAR channel varies around 

the world depending on temperature and salinity, but it typically falls between 600 and 1800 

m (Okal, 2001). Placing hydrophones within this channel provides optimal conditions for 

recording long range signals within the world’s oceans.  

Frequent submarine landslides occurring on the submarine flank of Kilauea volcano 

were detected by the Hawaiian Undersea Geo-Observatory (HUGO) and Pacific Marine 

Environmental Laboratory (PMEL) hydrophone arrays (Caplan-Auerbach et al., 2001). 

HUGO was stationed about 35 km from Kilauea and the PMEL array sat ~ 5000 km away 

(Caplan-Auerbach et al., 2001). It was found that lava entering the sea accumulated a layer of 

hyaloclastites that would eventually fail and slide down the submarine coastal slope (Caplan-
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Auerbach et al., 2001). The spectral signal associated with these slide events began with a 

low frequency rumble followed by a broadband coda often lasting minutes. The low 

frequency rumble was interpreted as the movement of large blocks and the broadband section 

caused by the downslope movement of unconsolidated material (Caplan-Auerbach et al., 

2001).  

Study on the fatal 1998 tsunami in Papua New Guinea revealed that a seismically 

induced submarine slump likely produced the devastating wave (Okal, 2003). Hydroacoustic 

waves generated by the landslide were detected by near shore seismometers through the 

conversion of hydroacoustic energy to seismic energy, allowing for the landslide to be well 

recorded on land. Based on source timing, tsunami dynamics, and signal character the most 

likely cause for the tsunami was a large underwater slump. A shipboard bathymetric survey 

later revealed evidence for a large, recent slump exactly in the proposed failure area. 

Understanding submarine landslide dynamics is a critical aspect of quantifying and 

anticipating coastal hazards.  

NW-Rota-1 is the only other submarine volcano where a submarine landslide was 

recorded by an in situ hydrophone (Chadwick et al., 2012). Landslides were marked by high 

amplitude, broadband hydroacoustic signals lasting up to a couple of hours (Figure 2). Low 

frequency activity during these landslide signals suggests a link between the volcanic 

eruption and subsequent slope failures (Chadwick et al., 2012). 
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2.3. West Mata geologic setting and eruption history 

West Mata volcano offers a good opportunity to study submarine landslides over the 

course of a prolonged eruption sequence (Caplan-Auerbach et al., 2014). West Mata sits in 

the NE Lau Basin, between the Tonga trench and the NE Lau Spreading Center (Figure 3). 

The tectonic regime is dictated by the westward subduction of the Pacific Plate under the 

Indo-Australian Plate (Baumberger et al., 2014). The presence of boninite lava suggests that 

West Mata lava is the result of direct partial melt of the upper mantle as a consequence of 

subduction (Kuroda et al., 1978; Resing et al., 2011). The Mata volcanoes appear slightly 

elongate resulting from en-echelon tear faulting within the basin and conical from clastic 

debris fans (Resing et al., 2011; Clague et al., 2011). Fine clastic debris produced by frequent 

pyroclastic eruptions coats the smooth flanks of the volcano with slopes up to 34-35° on the 

upper reaches (Clague et al., 2011). The smooth flanks relative to the rocky rift zones suggest 

the presence of thick sediment deposits. Chutes of volcanic sand are present on the upper 

slopes suggesting previous slope failures have occurred there (Clague et al., 2011). A May 

2009 ROV dive revealed that slopes were covered with pyroclastic debris, sand, and broken 

and intact lava pillows (Merle, 2009). 

From 2008 to 2012, West Mata experienced a complex, multiphase period of 

continuous eruptive activity that produced much of the observed hydroacoustic signal 

(Clague et al., 2011; Embley et al., 2014; Baumberger et al., 2014; Dziak et al., 2015). 

Eruption from two vents produced most of the volcanic output: Hades at 1200 m depth and 

Prometheus at 1174 m depth (Resing et al., 2011), (Figure 4). Observations from ROV dives 

have shown that Hades is associated with low lava fountains and Strombolian-style bubble 

bursts, and Prometheus with more explosive hydrothermal degassing, and fragmentation 
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(Dziak et al., 2015). Fragmentation from Prometheus results in a widespread distribution of 

clastic material on the upper slopes (Clague et al., 2011). Although, active secondary 

eruptive vents have been found and evidence exists of previous explosive pyroclastic activity 

deep down the volcanic flank (Clague et al., 2011). ROV investigations revealed lava flow, 

pillow formation, and vigorous effusive eruptions as all part of the eruptive process (Merle, 

2009). Major avalanches of blocks and pyroclastic material were also seen bombarding the 

slopes just below the eruptive cone near the Hades vent, although acoustic data is not 

available for this time frame. Periods of harmonic acoustic tremor (20 – 100 Hz) are 

suggested to be associated with episodic fragmentation gas release events (Dziak et al., 

2015). Signals <30 Hz are dominated by continuous eruption and volcanic tremor along with 

magma bubble bursts (Resing et al., 2011; Mack, 2014; Dziak et al., 2015). Repetitive, 

explosive degassing eruptions (Figure 5) dominate the hydroacoustic record suggesting an 

abnormally gas-rich activity at this depth (Resing et al., 2011). Diffuse periods of explosion 

tremor (lower panel Figure 5) were caused by violent degassing at Prometheus, which stops 

abruptly due to the formation of a magma quench cap (Mack, 2014; Dziak et al., 2015). 

 

2.4 West Mata submarine landslides 

The 2009-2010 West Mata hydroacoustic network included four stations recording 

for 5 months (Figure 3; Table 1). Each hydrophone was anchored to the ocean bottom with 

its receiver suspended within the SOFAR channel and recorded continuously at a sample rate 

of 1000 Hz. Volcanic and tectonic activity were recorded as well as ship traffic and whale 

vocalization, but those events were rare and easily distinguishable from geologic activity.  
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Caplan-Auerbach et al. (2014) were the first to use landslide spectral content as a 

means of locating the events and estimating average velocities. Submarine landslides at West 

Mata were identified as harmonic signals between 1 and 400 Hz lasting up to two minutes. 

The hydroacoustic signals from these landslides are comparable to those at Kilauea, which 

display a similar broadband, 100-200 s duration signal (Caplan-Auerbach et al., 2001). It was 

determined that slides traveled down the northern flank at average speeds between ~10-25 

m/s based on depth difference mapping and hydroacoustic modeling using data from the 

north hydrophone (Caplan-Auerbach et al., 2014). This project extends and revises the work 

of Caplan-Auerbach et al. (2014) by comparing signals between multiple hydrophones to 

better interpret slide velocities and dynamics. Understanding why these landslides occur and 

how they relate to the eruption sequence provides further motivation for research. 

	

III. Methods 

3.1. Spectrogram analysis 

 The West Mata hydroacoustic data were visualized through 1-hour duration 

spectrograms, which allow the signal to be represented in terms of time, amplitude, and 

frequency up to 500 Hz (Figure 6). Frequencies above 400 Hz, however, were excluded due 

to the attenuation effects of the anti-aliasing filter. Hydroacoustic spectrograms clearly 

display dominant frequencies, allowing clear interpretation the type of process that generated 

the signal.  

All four stations record alternating spectral bands of loud and quiet signal resulting 

from interference from multipath acoustic rays, a product of the Lloyd’s Mirror effect (Figure 

6). Direct and sea-surface reflected waves combine at the receiver to either enhance or 

diminish the captured signal (Matsumoto et al., 2011; Caplan-Auerbach, Dziak, et al., 2014). 
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Waves reflected off the sea surface experience a 180° phase inversion (Wilson, 2007) (Figure 

7). Surface reflected waves travel further overall than direct waves between the source and 

receiver. Because the reflected wave is inverted, if the total distance traveled between those 

two ray paths differs by whole number wavelengths, the arrival of the two waves results in 

destructive interference, and the receiver will experience net transmission loss. The result is a 

spectrogram with alternating high and low amplitude signals. Equation 1a relates ray path 

difference to wavelength, a critical component to this interference effect: 

 

Equation 1a.       dx = nλ  

 

where dx is the added distance a surface reflected wave travels relative to a direct wave, λ is 

wavelength, and n is any integer value. Alternatively, interference can be determined by the 

time delay between direct and surface reflected waves:  dt = dx/v = n/v, where v is velocity. 

Since  λ = v/f, where f is frequency, this effect is dependent on the frequency of the 

propagating waves. Equation 1b relates frequency to differential travel time between rays:  

 

Equation 1b.      ! = 	 $%& 

 

A long travel time delay between a surface reflected ray and a direct ray will result in 

interference at small increments of frequency, where detection depends on the sample rate. In 

contrast, slight differences in travel time would produce large frequency intervals of 

interference. Because interference bands are dependent on source receiver geometry, they are 

expected to remain constant with time at integer multiples of a certain frequency if the 
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distance between the source and receiver remain constant as well. Short term changes in 

interference frequency must indicate changes in the distance between the source and receiver. 

Matsumoto et al. (2011) observed constant interference bands recorded by a stationary 

hydrophone, but bands were not constant when recorded by an acoustic glider. As the glider 

moved toward West Mata, the frequency spacing between interference bands decreased due 

to increasing travel time delay between direct and surface reflected waves. If the receiver 

array is fixed, as is the case in this paper, changing interference frequencies must mean a 

moving source.  

At West Mata, signals coming from the summit contain a constant pattern of 

interference frequencies, or spectral banding. But periodically, short term signals with a 

pattern of changing frequencies with time are recorded (Figure 8). All observed periods of 

changing interference bands exhibit a decrease in frequency. Because this spectral banding 

pattern is a result of an increase in travel time delay between direct and surface reflected 

waves, and because the hydrophone is anchored in place, the hydroacoustic source must be 

traveling towards the receiver, in this case downslope. Short term changes in interference are 

consistent with the occurrence of submarine landslides on West Mata (Caplan-Auerbach et 

al., 2014). Interference that increases in frequency would theoretically indicate a source 

moving away from the receiver. It is important to note that broadband peaks and nulls are 

intrinsic to the Lloyd’s mirror phenomenon, not the Doppler effect. Narrow band tonal shifts 

is a consequence of the Doppler effect as a source moves past the receiver, which is not 

observed here (Wilson, 2007). Although spectral banding has been observed on submarine 

volcanoes other than West Mata, its pattern has not been used to study submarine landslides 

elsewhere (Johnson and Norris, 1972). 
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3.2. Cataloging landslide signals 
 

Beginning in December 2009, each 1-hour segment of hydroacoustic data was studied 

to identify and catalog possible landslide signals. For selection, the signal must contain 

interference bands throughout the majority of the signal, and be clear enough to calculate the 

frequency spacing between bands. Additionally, the signal should be clear of noise which can 

decrease the clarity of the signal. Catalog details included event dates and signal arrival 

times, clarity of the interference bands, signal duration, interference spacing at the start of the 

signal, and interference spacing at the end of the signal (Appendix 3a). This process was 

performed for both the north and west hydroacoustic datasets. Although many landslides 

were documented for both hydrophones, only those captured clearly by both hydrophones 

were considered further. Rarely, slides were captured by the north station and absent on the 

west suggesting that those events were occurring in a different location than those detected 

by both instruments. Throughout the 5-month hydroacoustic record, landslide signals were 

ubiquitous on all hydrophones, but interference patterns were absent on the south and east 

hydrophones (Figure 9). Without spectral bands, landslides captured on the south and east 

hydrophones were not included in the cataloging process.  

 

3.3. Confirming West Mata as a source for landslides 

Because signals traveling in the SOFAR channel arrive from multiple localities and 

great distances, it is important to confirm that these landslides were in fact coming from West 

Mata (Ewing et al., 1950; Caplan-Auerbach et al., 2001). Ideally, arrival times are identified 

from the time series data, but landslide signal onsets are typically weak and difficult to 

identify with precision. Instead, approximate signal onsets were found by calculating the 
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envelope for a landslide on each hydrophone (Pulli and Upton, 2002). Signal arrivals were 

more easily compared by relative timing within the hydrophone array to confirm that they 

were coming from West Mata. Calculating the envelope first required applying a high pass 

filter (cutoff frequency = 100 Hz) to remove unrelated low frequency signals such as 

earthquake T-phases. Landslide signals are broadband so low frequencies can be cut out 

without significantly affecting the overall signal. Thus, the landslide becomes the dominant 

signature in the data. Next a low pass filter (cutoff frequency = 0.01 Hz) was applied to the 

absolute value of the previously filtered data to capture the wave envelope (Figure 10). This 

procedure was repeated for the same event on all four hydrophones. The arrivals for each 

station were plotted together to confirm that this particular landslide is consistent with a 

source on West Mata (Figure 11). Arrival times were calculated based on timing within data 

files and compared between the hydrophones. For selected events (Table 2), the southern 

hydrophone received the signal first, then the eastern, followed by the western, and last by 

the northern hydrophone. These delays are consistent with a source at West Mata with some 

degree of uncertainty due to lack of information about the local sound speed profile.  

 

3.4. Inferring the general landslide location 

West Mata volcano spans approximately 20 km2 so narrowing down the general 

landslide source location is the primary goal of this study. The variable character of landslide 

signals on different hydrophones can be used to evaluate possible slide areas (Figure 9). 

Bathymetry can impact how well a signal is received by a given hydrophone; the volcano 

itself can block a signal, causing diminished wave amplitude resulting in weak signal 

capture. This would occur when a landslide is located on an opposite face of the volcano 



13 
	

relative to the hydrophone (Figure 12). Lack of interference pattern from particular 

hydrophones can help narrow down possible source locations. Only the north and west 

hydrophones record clear spectral banding during landslides. The south and east hydrophones 

lack the interference pattern during most of the events and the south hydrophone recorded the 

weakest signal of all four stations (Figure 9). Source-receiver geometry is not optimal for 

spectral banding on the south and east hydrophones when the source is on the opposite side 

of the volcano. If landslides were occurring on the SE flank, the southern hydrophone would 

clearly capture the signal first and display spectral bands in the hydroacoustic data (Figure 

13). Interference bands were not observed during landslides from the southern station, which 

suggests that slope failures were not occurring on the SE flank, consistent with Caplan-

Auerbach, et al., (2014).  

 

3.5. Bellhop modeling for source depth calculations 

Hydroacoustic modeling of interference patterns was used for the purposes of 

identifying landslide depths. Bellhop is a hydroacoustic model that allows for users to trace 

beams and model far-field marine transmission loss (Porter, 2011). Bathymetric profile, 

source depth, source frequency, sound speed profile, seafloor material parameters are all 

variables within the model. No sound speed profile local to West Mata exists, so a standard 

model was used (NOAA NODC). An average marine sediment density of 1.66 g/cc was 

implemented in all models (Tenzer and Gladkikh, 2014). Bathymetric profiles were extracted 

from GMRT (Global Multi Resolution Topography synthesis) through GeoMapApp using a 

100 m resolution bathymetric grid (“GeoMapApp”; Ryan et al., 2009). Data point spacing 

along profiles was extrapolated from the bathymetric grid assuming a simplified slope face. 
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Coherent pressure beams were used for transmission loss modeling assuming a vacuum 

above the marine surface and an acoustic half space for the seafloor. Virtually 100% of sound 

energy reflects off the water-air interface so it is safe to assume a vacuum above the sea 

surface (Wilson, 2007). Sea surface roughness also affects the capture of surface reflected 

beams, which ultimately affects signal interference at the receiver. Because interference 

bands appear clear and discrete on the hydrophones, it is safe to assume that sea surface 

roughness is not a factor in signal capture at West Mata.  

Over 200 landslides from the north and west hydrophones were modeled based on 

their changing interference frequencies (Figure 14). Using spectral band spacing at the 

beginning and end of the landslide signal, Bellhop was used to calculate source depths that 

would generate this pattern. After calculation, Bellhop produces an image spatially depicting 

how sound at a given frequency would propagate in the local submarine environment. Due to 

the effects of multipath ray interference, zones of loud signal (low transmission loss, bright 

colors) and quiet signal (high transmission loss, dark blue) are banded through the water 

column (Figure 15). If the receiver is located in a zone of high transmission loss, it would 

have recorded a quiet signal at that frequency and integer multiples of that frequency. For 

better clarity, sources were modeled using the second overtone, rather than the fundamental 

frequency. Doubling the signal frequency achieves the same transmission loss pattern, but 

with tighter depth resolution. An easier approach was to create an interference catalog by 

testing which frequencies would be quiet at depths along the slope of the volcano (Appendix 

3b). Then spectral band spacing for each landslide was compared with known quiet 

frequencies to infer source depth. Modeling this way characterizes the relationship between 

interference spacing and depth: interference spacing decreases with depth (Caplan-Auerbach, 
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Dziak, et al., 2014). This approach is best used for small landslides, which can be modeled as 

point sources traveling downslope. Large landslides would behave as multiple point sources 

emitting from different depths and wouldn’t produce the observed interference pattern by the 

addition of many ray path geometries.  

 

3.6. Comparing north and west models 

The technique described above can yield a variety of possible source depths.  

However, comparing the results between the two hydrophone models can eliminate some of 

these source locations. For example, a signal with interference spacing of ~30 Hz on the 

north station could be caused by a source at either ~1590m or ~1840m depth. The same 

signal on the west station has ~31 Hz spectral banding yielding a source depth of ~1570 m, 

but could not generate a source deep enough to produce a second possibility. Therefore, a 

source at 1840 m depth can be eliminated, increasing confidence in a source around ~1570 m 

and ~1590 m. Source depths between models were not averaged, rather kept separate to 

reduce averaging error. This same methodology was used for all documented landslides to 

help narrow down source depths. 

 

3.7. Calculating landslide velocities 

Velocity was calculated for each landslide using the time duration of the 

hydroacoustic signal and the total predicted distance that landslide traveled down the western 

slope based on modeling. Because modeling landslides resulted in a range of failure depths 

and termination depths for each event, minimum and maximum velocities were calculated. 
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The duration of the landslide signal was derived from the north station data because it 

captured a slightly clearer signal than the west station.  

 

IV. Results 
 

4.1. Depth difference bathymetric maps 

Documented morphologic changes on West Mata helped narrow down a region for 

slope failures. Depth difference mapping between 2009 and 2010, the time period for 

landslides in this study, revealed a clear area of positive depth change on the western face 

interpreted as sediment accumulation from the eruption (Clague et al., 2011; Embley et al., 

2014). Tephra and lava deposits accumulated just north of the WSW Rift Zone (WSWRZ), 

between 1400 m and 1700 m depth, an area referred to as the eruption period III (PIII) 

eruptives region (Embley et al., 2014). Figure 16 displays the small region of sediment 

accumulation used for hydroacoustic modeling. Additionally, high resolution bathymetry 

detailed steep slopes (~35°) at this depth range, approximately the angle of repose (Clague et 

al., 2011). 

 

4.2. PIII site models 

Bellhop models were oriented from the PIII eruptives region based on the fact that 

continuous material accumulation provides conditions optimal for slope failure. This region 

also contains pre-existing topographic channels through which sediment can more easily 

travel (Embley et al., 2014). Figure 17 displays the bathymetric transects used for 

hydroacoustic modeling. Landslide signals arriving at the east hydrophone do not display 

interference patterns, but are comparable in signal strength to the north and west 
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hydrophones. Slope failures in the PIII region could explain the lack of interference during 

slides on the east hydrophone because acoustic rays traveling northeast are shielded by the 

volcano. Prior to constraining depths, a proposed slide area was marked on the western flank, 

which contains the PIII region (Figure 18). This differs from the area proposed by Caplan-

Auerbach et al. (2014) who hypothesized that landslides were occurring at the PI eruptive 

deposit on the northern flank (Figure 16). Landslides on the northern flank would display 

clear spectral banding on the eastern hydrophone, which is rarely observed. However, a few 

signals on the eastern hydrophone do exhibit spectral banding, suggesting that those events 

were occurring elsewhere on the volcano, possibly on the northern face. The proposed slide 

area containing PIII would also generate the weakest overall signal and lack of spectral bands 

on the southern hydrophone which is consistent with model results (Figure 19) and observed 

data.  

 

4.3. Constraining landslide source depths 

Landslides were modeled for a range of source depths. To constrain the proposed 

slide area, the maximum range of depths was calculated based on both north and west 

hydroacoustic models. Both models predict that the shallowest failure depth during this 

period occurred at ~1450 m. The furthest termination depth was to ~2280 m based on the 

north model and ~2070 m based on the west model (Figure 20). On average, landslides were 

contained within ~1550 m and ~1800 m (location errors are +/- 20 m, see section 4.6) 

consistent with the location of the PIII region. Landslide failure depths and termination 

depths were modeled for 214 events throughout the 5-month eruptive period, organized by 

date (Figure 21). A “threshold” separated failure depths from termination depths for each 
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model. At least 90% of landslides initiated above 1660 m based on the north hydrophone 

models and 1620 m based on the west hydrophone models. No evidence of slope change 

exists at these threshold depths. North models show the most common failure depths occur 

between 1530 m and 1571 m and west models show that the most common failure depths are 

between 1550 m and 1582 m (Figure 22). Landslide were compared overall between the 

north and west models for initiation depths and termination depths. Models were in better 

agreement for initiation depths than termination depths (Figure 23). The north models 

predicted slightly deeper termination depths than the west models. Each data point may 

represent a number of landslides that initiated at the same depth resulting in a plot appearing 

to have fewer samples. 

 

4.4. Landslide velocities 

Bellhop models predict velocities ranging from 1 – 11 m/s with a majority of slides 

traveling between 4-6 m/s (Figure 24). Because slides initiating at the summit cannot be 

ruled out, landslides may have traveled up to 15-20 m/s. A number of landslide velocities 

were in agreement between north and west models, with some events deviating by up to 7 

m/s (Figure 25). 

Average submarine landslide velocities have previously been modeled by Ward and 

Day (2002) using the following equation: 

 

Equation 2.     ' = 	 ()*+,$-./0 
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where g is the acceleration due to gravity (9.8 m/s^2), Lc is the length of the slide from the 

block toe to the slide toe and βo is the average slope angle in degrees. Using this equation, a 

slide length of ~400 m on a 35° slope, comparable to one on West Mata, should have an 

average velocity of ~20 m/s. From modeling, slide velocities were within the same order of 

magnitude, but at least 10 m/s slower than the equation estimates.  

 It was also noteworthy to examine whether a size relationship to slide velocity existed 

in the dataset. Ward and Day calculated slide velocities for large, tsunami generating 

submarine landslides, which could explain the higher velocities.  Because slide area and 

volume for West Mata events were unknown, maximum slide length was plotted against 

velocity (Figure 26). Larger landslides (landslides that traveled further in this case) tend to 

move faster based on models from both the northern and western stations.  

 

4.5. Slide cluster models 

Throughout the 5-month monitoring period, landslides tended to occur in clusters, 

sometimes up to 35 events in a day (Figure 27). Slides have also been observed occurring 

just minutes apart (Figure 28). In an effort to understand the dynamics that control slide 

clusters, days with >10 landslides were examined closer. During these days, slides tended to 

initiate at a similar depth (~1550 m, +/- 20 m), but decrease in run out distance throughout 

the day (Figure 29).  

 

4.6. Uncertainties 

The 100 m bathymetric grid used for modeling provided some error when extracting 

profiles. Data point spacing was less than grid resolution so data points were inferred using 
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GeoMapApp (Ryan et al., 2009) assuming a simplified slope face. In addition, interference 

bands were most clearly visible in the middle of the event. They were often ambiguous at the 

beginning and end of the signal as sound levels dropped below background noise. 

Calculations of interference spacing were based on an average of visible quiet frequency 

bands. For example, if only three bands of quiet signal were clearly visible, frequency 

spacing was averaged over those three bands (Figure 30). Bellhop models can only be used 

for landslide signals that contained interference bands. Depths were modeled based on the 

first indication of interference, not the onset of the landslide signal. There is possibly a lag 

between when the landslide actually starts and when its signal rises above background noise 

to produce interference bands. Thus, the actual depth of landslide initiation in this study may 

be higher up the volcano flank. The same is true for the slide terminus: as the slide loses 

energy, its signal blends in with background noise, causing the interference bands to 

disappear. The overall broadband signal continues up to a minute after the disappearance of 

interference bands, which means material is probably still moving. Therefore, the actual 

terminus of the landslides could be further down the volcano flank, though its full extent isn’t 

clear. 

Changes in interference frequency controlled how precisely source depths could be 

modeled, as an acoustic source could produce the same hydroacoustic interference pattern 

within a given depth range. An acoustic source between 1571 m and 1608 m depth would 

display the same interference pattern on the north hydrophone (Figure 31). Therefore, 

Bellhop models are precise at this frequency to a depth range of about 40 m. On average, 

source depths for each modeled frequency have an error of approximately +/- 20 m. This 

error is probably due to the resolvability of wavelength when considering interfering acoustic 
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waves. Considering a 36 Hz acoustic wave in this marine environment (v = ~1482 m/s), its 

wavelength is approximately 41 m. Bellhop model resolution depends on the wavelength of 

the acoustic wave, meaning it cannot resolve source depth better than ~41 m in this case. 

However, no local sound speed profile exists so it is impossible to know exactly how well 

source depths can be resolved.  

Maximum slide velocity was calculated using the maximum possible slant distance 

that landslide traveled, and a similar approach was taken to calculate the minimum slide 

velocity. At times, the maximum velocity of a slide differed from minimum velocity by up to 

2 m/s, which reflects the sensitivity of source depth within models. However, velocity is 

more sensitive to the uncertainty of signal duration than source depth. Landslide signals 

ultimately blend in with background noise when they lose enough energy. Interference bands 

disappear quicker than the overall landslide signal causing error in event duration. Because 

landslide signals are present both before and after the appearance of interference bands by as 

long as 60 seconds, significant motion could have occurred that cannot be modeled. 

However, when comparing slide velocities this is a negligible effect because the distance and 

duration for each slide was determined by the presence of interference bands. For 

consistency, the duration of each landslide was determined by the presence of interference 

bands on the north station.  
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V. Discussion 

5.1. Landslide source location 

Repeat depth difference mapping by Embley et al. (2014) suggest that the most likely 

landslide source is on the western flank rather than the northern flank as was proposed by 

Caplan-Auerbach et al. (2014). However, the northern flank can’t be entirely ruled out as 

some landslide signals lacked the interference pattern required for modeling. Signals lacking 

clear interference bands could be caused by sources from other locations on the volcano or 

from landslides large enough to reduce the effects of multi-path rays. Interference 

frequencies were also different between slides, meaning they initiated at various depths. 

Slight differences in source depths between models may have been caused by the lack of 

local sound speed profile, by assuming that sound wave propagation is uniform across the 

hydrophone network.  

Broadly, landslides were found to occur between 1450 m and 2280 m depth, 

assuming they occurred on the western face, based on the interference patterns at the 

beginning and end of 214 landslide signals. Although slides initiating at depths below 1450 

m are consistent with the PIII region, summit initiated slides cannot be ruled out. At times, 

landslide signals begin with a ~36 Hz interference pattern similar to that of eruption activity 

at the summit, but the same interference pattern could result from a source ~200 m down the 

flank in the PIII region. During the eruption, sediment is accumulating at the summit, which 

means mass wasting from there is possible. However, during the time frame of this study, 

significantly more material is accumulating in the PIII region than the summit (~ +25 m 

depth difference). For that reason, it is more likely that slides are occurring in PIII than at the 

summit. However, it is hard to justify mass wasting from the PIII region when the area 
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experienced an addition of 25 m of material. This suggests that there was an even greater 

initial deposition of material in the upper flank region of PIII. It is clear that modeling 

landslide source depths on West Mata proved more challenging than presumed. 

 

5.2. Landslides caused by volcanic activity 

Landslides at West Mata are only observed to occur during periods of high 

background hydroacoustic activity, consistent with observations on NW Rota-1 (Chadwick et 

al., 2012). At times, the landslide itself marks a change in background hydroacoustic 

character (Figures 10, 32). This suggests a correlation between landslides and increased 

hydroacoustic noise, but it’s unclear as to what the noise represents. This increase in 

background noise could be caused by an increase in the overall eruptive energy release, 

changing from low frequency tremor to diffuse explosive degassing. Explosive eruption 

activity could indicate higher sediment production, increasing the likelihood for sliding. 

Slope failure can also depressurize the volcanic edifice allowing for magma to reach the 

surface more easily (Masson et al., 2006). But these hydroacoustic episodes lack the 

interference patterns expected with volcanic activity at West Mata summit suggesting either a 

collection of noise from a variety of sources or these signals are coming from a place other 

than the summit. Because of this, no concrete connection can be made between the volcanic 

eruption and the occurrence of landslides. 

Submarine landslides have also been found to be caused by seismic activity (Masson 

et al., 2006). Earthquakes are marked by short duration, high amplitude hydroacoustic signals 

with frequencies < 100 Hz. Although the West Mata hydroacoustic record is riddled with 

earthquakes of variable magnitudes, it is difficult to correlate these two processes. It is often 
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unclear whether seismic activity is local or regional, as SOFAR moored hydrophones can 

pick up long range signals. Because earthquake locations are unknown it is impossible to 

constrain magnitude or how strongly the earthquake may have shaken the volcano. T-phase 

amplitudes can be used to estimate earthquake magnitude, but it is unclear how much 

shaking is required to produce submarine slope failures (Johnson and Northrop, 1966; Dziak, 

2001). Not enough evidence exists to determine a clear relationship between these landslides 

and seismic activity. What is clear is that earthquakes do not occur before every slide, and the 

majority of landslide signals are not preceded by seismic activity.   

Landslides can also result from over steepening by sediment accumulation. (Caplan-

Auerbach et al., 2001; Acocella, 2005; Chadwick et al., 2008; 2012). The smooth slopes of 

West Mata suggest thick sediment accumulation by means of consistent gravitational settling. 

The western face appears smooth, which is consistent with a slope comprised of fragmental 

pyroclastics. At Monowai volcano, sediment accumulations downslope from collapses lack 

hummocks or levees and are generally smooth, which is only possible if fragmental 

pyroclastics are being mobilized (Chadwick et al., 2008). Broadband hydroacoustic signals at 

West Mata are interpreted as the chaotic flow of pyroclastic fragments, similar to the process 

at Monowai volcano. In this case, the process is not considered a “slide” in the classic sense 

where a coherent block of rock is moving down the slope on a failure plane. Rather, the term 

“landslide” is used loosely by referring to the mobilization of fragmental pyroclastic material 

down slope, losing energy with distance as is the case with a debris avalanche (Masson et al., 

2006). Average velocity calculations are affected by this slow down and may not capture the 

top speed of West Mata slope failures. Theoretically, calculating slide velocity during the 

greatest change in frequency banding would result in the top speed for that particular 
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landslide. However, small changes in speed are not discernable given the uncertainty in 

modeling (+/- 20 m between source depths that change the spectral banding pattern). In 

comparison with landslides studied by Ward and Day (2001) West Mata slides appear overall 

slower. However, other limitations to their velocity formula exists. Ward and Day assume a 

block slide, which helps to constrain slide length (Lc). At West Mata, it’s likely that 

fragmental material is cascading down the slopes which differs in terms of mass, velocity, 

and momentum. 

The PIII region identified by Embley et al., (2014) is thought to represent sediment 

accumulation resulting from the volcanic output of West Mata. The additional zone of 

accumulation downslope of PIII (~1900 m – 2100 m depth, Figure 16) was inferred to be 

mass wasted material funneled downslope by local topography. Localized mass wasting 

deposits in the PIII region is consistent with experimental observations of slope failure by 

sediment accumulation (Acocella, 2005). The upper reaches of West Mata are sloping near 

the angle of repose requiring only minimal loading to trigger slope failure (Embley et al., 

2014). Constant tephra output would likely trigger many slope failures over the long term. It 

should be noted, however, that if slope failures were occurring in the PIII region, there 

should be a zone of sediment deficit comparable in size to the zone of sediment 

accumulation. But this is not apparent in the Embley et al., 2014 investigation. Perhaps more 

material is accumulating in PIII than is failing, which would only display a positive depth 

change in this region. 
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5.3. Landslide processes and slide clusters 

Landslides at West Mata tend to occur around the same depth (~1550 m) within the 

PIII region and cluster during periods of high background hydroacoustic activity. It is 

possible that voids caused by previous mass wasting provide grounds for sequential slope 

failures (Chadwick et al., 2008; Masson et al., 2006). On the Canary Islands, voids, or scars, 

trap sediment produced by volcanic eruptions which creates local instability, increasing the 

likelihood for sliding (Masson et al., 2006). Acocella (2005) experimentally showed that 

sequential sliding tended to occur either within these voids or along the boundaries, which 

act to guide the sliding material. Freshly deposited sediment from a slope failure can act as a 

weak layer, which also increases the likelihood for more slides (Masson et al., 2006). 

Landslide clusters at West Mata are consistent with this process. Sediment from West Mata 

eruptions likely get trapped within these voids, leading to repeated failure at a common area 

and depth. Pre-existing topographic channels could aide in the transport of the PIII eruptive 

material downslope (Embley et al., 2014). 

Modeling slide clusters also revealed a pattern of decreasing run out distances 

throughout the day (Figure 29). Run out distance reduction suggests a decrease in sediment 

volume, or decrease in local slope with each successive failure. Correlating run out distance 

with slide velocity throughout each day did not reveal a true reason for the reduction in run 

out distance. Less striking is the observation of decreasing failure depth throughout the day. 

However, the hydroacoustic model used in this study may not be precise enough to reveal a 

true pattern of failure and with no way to locate the events on a map, this is approach is 

additionally challenging.  
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VI. CONCLUSIONS 

The eruption of West Mata represents only the second time active submarine 

volcanism has been observed. Hydroacoustic monitoring allowed for clear recording of 

dynamic eruption processes and frequent submarine landslides. This study explored the detail 

to which these submarine landslides could be modeled using the principles of interference by 

multipath rays. Hydroacoustic modeling revealed that during a 5-month eruptive period, 

landslides frequently bombarded the western flank, 200-300 m below the Hades eruptive 

vent, traveling between 4-8 m/s on average with speeds possibly reaching 20 m/s. Slides on 

West Mata are suggested to be caused by the unstable loading of tephra near sites of previous 

mass wasting during periods of high intensity eruptions. Landslides also tend to cluster with 

some days producing >35 events. Run out distances tend to decrease over the course of a 

cluster suggesting either a decrease in slide volume or local slope. Seismic shaking may 

influence when these landslides occur, although no evidence suggests that this is always the 

case. West Mata represents a well recorded relationship between active volcanism and 

frequent submarine landslides that together are critical processes in the development of 

submarine volcanoes.  
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Fig. 1. SOFAR channel illustration. Sound waves tend to bend toward a region of low velocity within the world’s oceans. They 
become trapped within this channel and travel thousands of kilometers with minimal attenuation. Figure from “Discovery of 
Sound in the Sea” website (www.dosits.org).  

	



32 
	

 
Fig. 2. Landslide signals during high intensity volcanic eruption at NW-Rota-1 (Chadwick et 
al., 2012). These landslide signals are interpreted as a series of smaller landslides occurring 
during overall high background hydroacoustic activity. 
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Fig. 3. West Mata is part of a complex of elongate volcanoes in the NE Lau Basin. The yellow stars indicate the locations of the 
hydrophones used for this investigation. The inset figure is a smaller scale representation of West Mata in the Tonga arc, east of 
Australia and north of New Zealand. Each border segment length is about 12.5 km. Bathymetric grid (100 m) curtesy of Susan 
Merle, NOAA.  
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Fig. 4. High resolution (20 m grid size) bathymetry of West Mata (figure from Embley et al., 
2014). Inset image shows eruptive vents Hades (H) and Prometheus (P), and Luo (L) as well 
as other eruptive and hydrothermal vents (white circles). High resolution bathymetry data 
collected by EM122 multibeam system on the R/V Kilo Moana in 2011. Underlying 
bathymetry data collected by multibeam sonar on the MBARI D. Allan B. AUV (Clague et 
al., 2011).   
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Fig. 5. Spectral character for common volcanic processes of West Mata (figure from Dziak et al., 2015). Bright colors represent 
high intensity activity while dark blue represents relative quiescence. Magma bubble bursts are short low frequency pulses and 
explosion tremors are longer broadband signals. Diffuse signals end abruptly suggesting the formation of a magma quench cap 
(Mack, 2014). 
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Fig. 6. Sample spectrogram from the north hydrophone. Sample displays time (seconds) on the x-axis, frequency (Hz) on the y-axis. 
Bright colors indicate a stronger relative signal; dark colors represent quiet signal. The time series is plotted above the spectrogram. 
A high pass filter (cutoff = 10 Hz) was applied here to limit the influence of low frequency noise. The vertical pulses here are 
suggested to be pulsating periods of volcanic activity (Dziak et al., 2015). 
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Fig. 7. Basic principles of wave interference. Waves in phase add constructively, but waves perfectly out of phase cancel one another 
out resulting in a quiet signal at the receiver. Interference is dependent on wavelength and phase. Image from imgarcade.com. 



38 
	

 

Fig. 8. Noteworthy signal recorded by the northern hydrophone. The signal is broadband and contains spectral bands that decrease 
in frequency with time. Spectral bands are visible for ~75 seconds until the signal blends in with background activity and the spectral 
bands are no longer visible. Changing interference frequencies indicates a moving source
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Fig. 9. Landslide captured by all four hydrophones. Only the north and west hydrophones display clear changing interference bands 
throughout the duration of the signal. The southern station receives the weakest overall signal relative to the other stations. The 
eastern and southern hydrophones display background interference from volcanic activity, but not during landslides.
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Fig. 10. Filtered data displaying signal envelopes for three separate landslides recorded by the 
north station. Signal envelopes were produced by first applying a high pass filter to remove 
low frequency noise, calculating the absolute value of the resulting waveform, and then 
applying a low pass filter to capture the entire landslide events. Overall background noise is 
higher following the initial landslide. 
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Fig. 11. Landslide signal delays for the entire array using waveform envelopes. Peak signal 
amplitudes were compared in this figure for easier interpretation of signal delay. Note that the 
southern station received a significantly weaker signal, so its amplitude was artificially 
increased to compare with the other stations. Signal delays are consistent with a landslide on 
West Mata.  
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Fig. 12. Ray paths emitting from a hypothetical source on West Mata’s northern flank captured 
by the southern hydrophone. Of the 50 rays produced, only 1 ray is captured by the hydrophone 
suggesting that the southern station would record signals occurring on the NW/W side of West 
Mata, but not clearly. Bathymetric profile is not to scale. 

	



43 
	

 

Fig. 13. A hypothetical 70 Hz sound source on the SE flank (top) and NW flank (bottom) 
captured by the southern hydrophone. A clear pattern of transmission loss zones are shown 
near the receiver with a source of the SE side. Interference bands are not observed during 
landslides on the southern hydrophone so they cannot be occurring on the SE side. Bathymetric 
profiles are not to scale. 
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Fig. 14. Landslide signal captured on the north station. The signal is broadband with spectral bands that decrease in spacing with 
time. The beginning of the signal contains spectral bands spaced every ~32 Hz and ends with band spacing every ~15 Hz. These 
bands are overtones of the fundamental frequency. 
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Fig. 15. Source depths tested using the second overtone of the observed spectral band spacing 
(f = 2*Δf) at the beginning of the landslide signal and the end of the landslide signal. Starting 
with the observed frequency spacing of the interference bands, source depths were tested ~40 
m until the receiver was floating in a quiet zone. When the receiver is in the quiet zone, it will 
record a signal with frequency spacing at integer multiples of half the tested frequency. This 
example shows a source beginning at ~1570 m depth and traveling downslope to ~2010 m 
depth, based on the changing spectral band spacing on the north hydrophone. 
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Fig. 16. Bathymetric difference maps (Modified from Embley et al., 2014). Color scale is depth 
in meters. Map c) displays an increase in depth during the period of hydrophone deployment 
for this study. PIII is interpreted as an accumulation tephra and lava from the volcanic eruption. 
PIII downslope deposits are interpreted as mass wasted material from the PIII upper region. 
Caplan-Auerbach et al. 2014 assumed the landslide origin was at the PI site, but that location 
is inconsistent with modeling results. 
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Fig. 17. Bathymetric transects used to model landslides. Transects were oriented through the 
PIII region on the western face of West Mata. Transects were extracted from GeoMapApp 
using a 100 m bathymetric grid. Figure is modified from PMEL media outlet on the NOAA 
ocean explorer website.  
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Fig. 18. Proposed slide area on the western flank of West Mata containing PIII. Landslides are suggested to occur on the western 
face, within the region outlined by the dashed white line. Figure is modified from NOAA, PMEL media outlet and PIII region is 
used from Embley et al., 2015.  
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Fig. 19. Bellhop models generated for a source at 1480 m depth in the PIII region. a. north 
station; b. west station; c. east station; d. south station. Modeling shows a predictable pattern 
of transmission loss (TL) zones near the north and west stations. The east station shows a 
random arrangement of transmission loss zones and the south station lacks a pattern of TL 
zones. Bathymetric profiles are not to scale. 
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Fig. 20. 3D depiction of West Mata volcano showing the extent of modeled landslides on West Mata including the PIII eruptives 
region and downslope deposits mapped by Embley et al., 2015. Slides were found to occur on the western face between the summit 
and ~2280 m depth, consistent with the PIII eruptives region. These depths are based on 214 modeled landslides. Figure modified 
from NOAA ocean explorer website.
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a. North station (figure caption continued on next page). 

 

  



52 
	

b. West station 

 

Fig. 21. Spread of landslide depths modeled by the north station (a) and west station (b). Slides 
initiated at depths marked in blue and ended at depths marked in orange. A greater range of 
end depths is observed in comparison to the start depths. The black dotted line represents a 
threshold that separates at least 90% of start depths from end depths. This threshold is slightly 
shallower based on western station models than northern station models.  
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a. North station 

	
	
b. West station 

 

Fig. 22. Number of landslides per failure depth as modeled by the north station (a) and west 
station (b). North models show the most common failure depths occur between 1530 m and 
1571 m. West models show the most common failure depths are between 1550 m and 1582 
m. Bins were limited to the minimum data point spacing along bathymetric transects. 
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a. Initiation depths (figure caption continued on next page). 
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b. Termination depths 

 

Fig. 23. Initiation depths and termination depths for landslides were compared between north 
and west models. Depths were modeled at best to +/- 20 m. Initiation depths appear to agree 
better than termination depths. The north models predict slightly deeper termination depths 
than the west models, which could be caused by the lack of local sound speed profile for 
modeling. Each data point may represent a few landslides with the same source depth, which 
is why there appears to be fewer samples for initiation depth.  
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a. North station 

 

b. West station 

 

Fig. 24. Landslide velocities modeled from the north station (a) and the west station (b). 
Velocities typically hover between 4-6 m/s for both north and west models. 
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Fig. 25. Slide velocities compared between north and west models. Each data point may 
represent a number of slide velocities with the same value. Perfect agreement between models 
is represented by the blue line. Slide velocities differ between models by up to 7 m/s.  
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a. North station models. 

	

 

b. West station models. 

	

Fig. 26. Plots displaying landslide size (slide length) vs velocity. Large slides tend to travel 
fastest for both station models. Red lines represent best fit. 
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Fig. 27. Daily landslides occurring on West Mata (modified from (Caplan-Auerbach, Chadwick, et al., 2014)). Many days contain 
>30 separate events. Landslides during this 5-month period tend to cluster during active eruptive modes. These clusters were 
investigated further in an effort to interpret smaller scale landslide kinematics. 
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Fig. 28. Two landslides occurring ~4 minutes apart recorded by the north station. Each slide has roughly the same duration with 
similar interference patterns. Hydroacoustic similarity suggests that they occurred around the same location. It is not unusual for 
landslides to occur minutes apart during cluster events.   
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(a)  January 2, 2010 (figure caption continued on next page). 

 

(b) January 23, 2010 
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(c) February 26, 2010 

 

Fig. 29. Landslide run-outs during slide clusters modeled from the north station. (a) January 
2, 2010. (b) January 23, 2010. (c) February 26, 2010.  Blue dots are failure depths and orange 
dots are termination depths. Lines connecting points mark total run out distance for each 
slide. Slides tend to initiate at similar depths (~1550 m), but decrease in run out distance 
throughout the day. Even with +/- 20 m uncertainty in modeled depths, run out distances 
clearly decrease throughout the duration of these clusters.   
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Fig. 30. Frequency spacing was calculated by taking an average of visible band spacing at the beginning of the signal and at the end 
of the signal. This method was used to calculate source depths for all landslide models. Low frequency pulses are not related to the 
landslide signal, but can sometimes affect its clarity.  
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Fig. 31. Hypothetical acoustic sources (36 Hz) at 1571 m and 1608 m depth. Models show that 
there is a range of depths that would display the same interference pattern on the hydrophone. 
Acoustic sources occurring between 1571 m and 1608 m depth would place the hydrophone 
within the same zone of transmission loss, displaying the same spectral band pattern. On 
average, spectral bands change with every ~40 m depth change.    
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Fig. 32. A landslide signal here marks an increase in overall hydroacoustic background noise. Low background activity is 
dominated by frequencies <100 Hz whereas high background activity shows overall higher amplitude signal on a broadband scale. 
Landslides have been observed during periods of high activity and at times cause a change from low to high background activity.
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Table 1: Hydrophone network (December 2009 - April 2010).  
 

 North West East South 

Distance from West 
Mata summit (m) 

18600 14000 10000 5630 

Hydrophone depth 
(m) 

912 955 897 230 

	
	
	
Table 2. Real time arrivals for selected landslides. Arrivals for each station are delayed 
relative to the southern station due to varying distances from West Mata. Expected delays are 
based using a hydroacoustic velocity of 1482 m/s. 

Station Slide 17 Slide 96 Slide 164 Avg. Delay (s) Expected 
Delay (s) 

South 4:55:28 3:24:34 14:39:05 - - 
East 4:55:31 3:24:37 14:39:08 3.0 3.1 
West 4:55:36 3:24:39 14:39:12 6.7 5.8 
North 4:55:40 3:24:42 14:39:16 10.3 8.8 

 

	
Table 3a. Statistical analysis for landslide velocities, north station. 

  
  

Slide Velocity (m/s) 
Minimum Maximum 

Mode 4.0 5.0 
Median 4.0 6.0 
Mean 4.5 5.8 

St. Dev. 2.0 2.1 
	
	
Table 3b. Statistical analysis for landslide velocities, west station. 

  
  

Slide Velocity (m/s) 
Minimum Maximum 

Mode 4.0 6.0 
Median 4.0 5.0 
Mean 4.3 5.5 

St. Dev. 1.8 1.8 
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VIII. APPENDICES 

APPENDIX 1 – MATLAB SCRIPTS 
 

• hydrophone_mata.m – reads in .DAT files from the hydrophone network to be 
analyzed on a hydroacoustic spectrogram. Courtesy of Jacqueline Caplan-Auerbach. 
 

• hydrophone_corr.m – Converts raw hydrophone data from counts to Pascals. 
Courtesy of Del Bohnenstiehl. 

 
• jspecgram2.m – generates a hydroacoustic spectrogram from .DAT files recorded by 

the hydrophone network. Courtesy of Jacqueline Caplan-Auerbach. 
 

• jfiltfilt.m – filters the signal (high, low, bandpass), courtesy of Jacqueline Caplan-
Auerbach.. 

 
• slidetime.m –calculates arrival time and duration of landslide signals. 

 
• avg_interference.m – calculates average spacing of interference bands on a number 

of selections.  
 

• bty_shift.m – converts bathymetric .txt file to a form readable by Bellhop 
hydroacoustic modeling program. Bathymetric profiles were extracted from 
GeoMapApp. 

 
 
APPENDIX II – BELLHOP HYDROACOUSTIC MODEL 
 

• Bellhop is a program that models hydroacoustic wave propagation by beam scattering 
and transmission loss (Porter, 2011). Transmission loss models were generated using 
environmental files that contained information regarding the sound field environment. 
Bellhop was called in Matlab using the command <<bellhop ‘.envfilename’, which 
then called the environmental and bathymetry files to calculate transmission loss, 
illustrated by a sound field image.  

 
APPENDIX III – OTHER 
 

a. The landslide catalog containing source depths and velocities calculated by 
interference spacing is on an Excel file available by request. 

 
b. An Excel catalog of source depths modeled by interference pattern is available by 
request.  

 
c. Hydrophone coordinates are available by request. 
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