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Voltage-Sensitive Gating of the Pannexin-1 Channel 

By, Margaret A. Fuqua 

 

ABSTRACT 

 

Since its discovery just over a decade ago, Pannexin-1 (Px1) has been recognized in a 

number of important physiological and pathophysiological processes such as taste, 

inflammation, and tumor suppression. This large-pore, polymodal ion channel was initially 

identified as ‗voltage-dependent,‘ though there have been no precise studies concerning the 

gating properties of Px1 to date. Because Px1 is expressed in excitable cells, identifying 

voltage-gating properties of Px1 was our primary goal. Using the two-electrode voltage 

clamp technique, we showed for the first time that Px1 is a weakly voltage-gated channel. 

Depolarizing voltages up to +200 mV revealed half-maximal activation at +51 mV and a 

weak voltage-dependence through generation of a complete Boltzmann activation curve. We 

also showed that Px1 activates in < 3.5 ms, consistent with the time frame of action 

potentials (1-4 ms). Opening rates of Px1 also seemed to be very weakly voltage-dependent. 

Further, we showed that Px1 displays consistent current decay at depolarizing voltages 

greater than +100 mV. Additionally, using two cell systems to exogenously express Px1, we 

observed a marked decrease of functional Px1 expression within ~24 hours of injection. 

Taken together, our findings suggest that Px1 is a fast opening, voltage-sensitive channel that 

may have a number of mechanisms in place to prevent uncontrolled conductivity. 
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1. INTRODUCTION 

 

  Pannexin-1 (Px1) has been suggested to play multiple roles in biologically 

important processes such as tumor suppression, taste bud reception, activation of the 

inflammasome, and seizure-like activity in the hippocampus (Lai et al., 2007; Penuela et al., 

2012; Silverman et al., 2009; Pelegrin and Surprenant, 2006; Sandilos et al., 2012; Huang et 

al., 2007). Along with Connexins (Cx) and Innexins (Inx), Pannexin-1 (Px1) is a member of 

the gap junction protein family, which is characterized by pores large enough to pass 

polyatomic ions such as neurotransmitters and ATP (Iglesias et al., 2009; Bao et al., 2004; 

Locovei et al., 2006a). Topologically similar to Cx, Px1 has an anticipated membrane 

topology including four transmembrane segments, two extracellular loops, and intracellular 

N- and C-termini (Wang and Dahl, 2010). Unlike connexins, however, Px1 does not 

participate in canonical gap junction plaque formation. This is likely due to the fact that Px1 

is glycosylated at positions along its extracellular loops and is physically incapable of 

docking with opposing channels(Boassa et al., 2007; MacVicar and Thompson, 2010; 

Penuela et al., 2007). This feature of Px1 thus allows exchange of ions or small molecules to 

occur between the intracellular and extracellular space. 

Px1 has been documented as a ‗voltage-dependent‘ channel, and is ubiquitously 

expressed in both vertebrates and invertebrates (Billaud et al., 2012). Px1 can be opened in 

response to a multitude of factors including caspase cleavage of the intracellular C-terminus 

(Sandilos et al., 2012), mechanical stress (Bao et al., 2004), increased intracellular Ca
2+

 

(Locovei et al., 2006c), as well as depolarization of the cell membrane (Thompson et al., 

2008a). The proposed large pore size of Px1 and its suggested ability to pass ATP, cytokines, 

and other large polyatomic ions in numerous cell types make Px1 a protein of particular 
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interest to addressing questions regarding purinergic cell signaling and the innate immune 

response (Qiu and Dahl, 2009; Sandilos et al., 2012; Li and Banerjee, 2011). Further, the  

suggested voltage-dependent properties and presence of Px1 in excitable cell types such as 

neurons and cardiomyocytes make  the voltage-gating characteristics of Px1 a topic of 

importance for signaling in the cardiovascular and central nervous systems.  

Until recently, the most widely studied of the gap junction proteins were the 

connexins (Cx). Cx hemichannels (or half gap junction channel) demonstrate strong 

inhibition (stabilizing occupancy of the closed state) by divalent cations such as calcium and 

magnesium, as well as complex voltage-dependent gating. These qualities render Cx 

hemichannels to be open only in situations of severe ionic dysregulation, but not in standard 

physiological conditions (Thompson and MacVicar, 2008). Pannexin, seems to be a more 

likely candidate for opening in physiological conditions (Bruzzone et al., 2003). Since 

pannexins have not been found to form gap junctions and display no inhibition by 

extracellular cations (MacVicar and Thompson, 2010), it is suggested that the functional unit 

of pannexin is an unopposed hemichannel (Locovei et al., 2006b). In this regard, it should be 

noted that Px1 has since been referred to as simply a ‗channel;‘ since Px1 does not form gap 

junctions, the ‗hemi‘ form does not technically exist for Px1.  Consistent with this view, it 

has been suggested that Px1 channels can permit fluxes of molecules such as ATP and 

glutamate (Sandilos et al., 2012; Orellana et al., 2011). These molecules are associated with 

cellular tasks involving immune response (Silverman et al., 2009), taste sensation (Huang et 

al., 2007), neural/glial transmission (MacVicar and Thompson, 2010), and paracrine and 

autocrine signaling (Locovei et al., 2006b). For example, Px1 has been suggested to be 

involved in bursting events at postsynaptic sites in the hippocampus (Thompson et al., 
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2008a), as well as involvement in taste bud receptor activation and ATP signaling (Chaudhari 

and Roper, 2010). Because opening the Px1 channel appears to be voltage-dependent under 

physiological concentrations of divalent cations, unlike Cx hemichannels, this suggests 

significant activity of Px1 channels in excitable cells like those in the nervous system. 

Additionally, Px1 has been implicated in activation of the inflammation response by 

triggering a multiprotein complex called the inflammasome in macrophages (Silverman et 

al., 2009). Such activation involves assembly of a complex that ultimately activates caspases 

required for inflammatory response and interleukin-1β (Martinon et al., 2002; Silverman et 

al., 2009; Martinon et al., 2009). Studies suggest that Px1 is involved in formation of the 

inflammasome by interacting with the purinergic receptor P2X7, which can be activated by 

extracellular ATP. Px1 subsequently seems to activate caspase-1, which mediates the 

transition between pro-interleukin1β (pro-Il-1β) to active Il-1β (Silverman et al., 2009). It 

seems that inflammatory responses are additionally present in neurons and astrocytes 

(Bennett et al., 2012) and as a proposed voltage-dependent channel, it seems that voltage-

gating of the Px1 channel is necessary to understand modes of regulating potential 

inflammatory responses in the brain. To better conceptualize the purpose of our study, we 

will briefly review the fundamentals of ion channels and introduce the concept of voltage-

dependent gating. 

1.1 Ion channels 

 

The structural integrity of a cell membrane is essential for all life. Cell membranes 

have exquisite selective permeability, and only allow small molecules such as oxygen and 

carbon dioxide to diffuse into and out of the cell. To bring in nutrients or expel wastes, cells 

must also have tightly regulated ion channels and transporters to control these fluxes. 
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Channels are a necessary component for cells to control osmotic stress, a primary threat to a 

selectively permeable membrane. Should a cell experience an influx of ions, cells can 

respond by expelling other ions through channels to reduce osmotic pressure (Reyes et al., 

2010). Channels can also be a conduit for signaling ions such as calcium, triggering 

important cellular processes in response to changing intracellular and extracellular 

environments (Huang et al., 2007; Silverman et al., 2009; Woehrle et al., 2010). 

Deciphering the specific functions and regulation mechanisms of ion channels is 

essential to understanding their numerous important roles in cell physiology. The ability of a 

cell to survive the constantly fluctuating conditions of living organisms requires very tight 

control of ion channels and transporters; maintaining ionic concentration gradients, 

facilitating exchange of nutrients and waste products, and actively communicating with other 

cells via molecular signaling pathways are all made possible by these crucial membrane 

proteins.  

Typically, ion channels are conduits for single ions to pass through a cell membrane 

to control ionic gradients for a number of purposes. Px1 is a unique channel, as it seems to 

pass not only ions, but also large polyatomic ions and small molecules. The significance of 

Px1 as a channel is that when it is open, select ions or molecules can pass through the 

channel at the rate of electrodiffusion (  ions/sec) down their respective concentration 

gradients. This implies potential for significant efflux of ATP or other signaling molecules at 

rates much faster than exocytosis or transporter-mediated fluxes (Thompson and MacVicar, 

2008). As previously mentioned, channel-mediated fluxes must be tightly regulated to 

maintain proper cellular homeostasis; considering the extent of Px1 involvement in multiple 

biological processes, uncovering how this large-pore channel is regulated is necessary.  
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1.2 Gating of ion channels 

 Ion channels provide a continuous, water-filled conduit for ions and molecules to pass 

through at the rate of electrodiffusion. Ions pass through the channel via the ‗pore‘, 

composed of several identical subunit domains facing each other (Figure 1). Channels open 

and close by means of ‗gating,‘ a series of conformational changes that result in either ‗pore 

dilation‘ or opening or closing of a ‗gate,‘ thus permitting or limiting ion flow.  

 

Figure 1. General ion channel anatomy (Hille, 1992). 
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Gating follows the general scheme depicted in figure 2, which includes Closing, 

Opening, and Inactivation; however, there can be multiple substates to this scheme; for 

example, some channels can inactivate from the closed state, or have multiple open states. 

Channel gating can occur by way of many different processes: they can be gated by binding 

of ligands or small molecules; some are mechanosensitive and respond to processes such as 

cellular swelling;  others are sensitive to changes in pH (ASIC acid sensing channels), and 

many are also  gated by changes in voltage, which is what we focus on in the present study 

(Yellen, 1998).  

These diverse stimuli can alter the rate of occupancy of the channel in each state. One 

can identify these states by the presence, absence, or decrease of current mediated by the flux 

of charged particles through the pore in electrophysiological experiments (see equation 1). 

 

  (Equation 1) 

 

In the case of Px1, it is known that positive membrane voltages > +20 mV increase ionic 

conductance, favoring occupancy of the open state (D‘hondt et al., 2009; Bruzzone et al., 

2003). There is one account in which prolonged depolarizations of Px1 in Xenopus laevis 

Deactivation Recovery from 

Inactivation 

Inactivation 

(Desensitization) Activation 

C   O   I 
 

 

Figure 2. Simple kinetics scheme depicting three 

basic conformation states of ion channels: Closed (C), 

Open (O), and Inactivated (I). Each arrow indicates 

the rate of transition between conformational states. 
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ooctyes seem to promote current decay, which could be evidence of an inactivated state 

(Bruzzone et al., 2003). Inactivation is defined as a non-conductive state, or ‗absorptive‘ 

state, in which the pore can be open or closed, but non-conductive in either case. Inactivation 

is a more complicated state, and in some cases can occur simultaneously with the other states 

if inactivation is dependent on a particular channel conformation.  

Because Px1 channels are seemingly voltage-gated and can be open in the presence of 

divalent cations, it is possible that an action potential is sufficient to open Px1, which could 

allow significant fluxes of neurotransmitters and/or ATP in a short period of time. Evidence 

of Px1 activation has been shown as a direct result of NMDA receptor activation in 

hippocampal neurons (Thompson et al., 2008a). With the relatively recent discovery of Px1, 

not much is currently known about its gating mechanisms. Because an action potential 

depolarizes neuronal membranes to ~ +40 mV (higher than the +20 mV required to activate 

Px1), one question we investigated here is whether the time it takes for an action potential to 

depolarize a membrane and return to resting voltages (~1-4 ms) is comparable to the 

activation rates for Px1 (Kandel and Schwartz, 1985). We have shown that Px1 has a fast 

activation rate comparable to the time-frame of an action potential which could implicate Px1 

as a very important component of voltage-regulated cell signaling pathways. 

 

1.3 Voltage-sensitivity of Px1 

The Px1 channel is raising new questions in cell physiology because it can not only 

function as an ion channel, but it can also allow larger molecules to flow across the 

membrane at rates much faster than transporters. Additionally, Px1 seems to be voltage-

gated, and also potentially activated by a number of other voltage-independent mechanisms. 
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These properties make Px1 largely relevant to excitable cells as well as non-excitable 

immunological cells.  

Considering the physiological importance of the ions and molecules able to pass 

through Px1 channels, we decided to examine the role of voltage in the opening kinetics of 

this yet uncharacterized channel. As a proposed ‗voltage-dependent‘ channel, it is highly 

possible that Px1 could be opened by membrane depolarization caused by action potentials or 

receptor graded potentials. Due to its suggested capability to be opened by N-methyl-D-

aspartate (NMDA) receptor activation as well as being a proposed conduit for ATP release, it 

seems that Px1 could play a role in voltage-mediated purinergic signaling in the central 

nervous system. Px1 channels are thought to play various roles in taste sensation, seizure and 

stroke, and activation of the inflammasome (Huang et al., 2007; Thompson et al., 2008a; 

Silverman et al., 2009), so a better understanding of how Px1 functions can provide 

information for potential treatment of neurological or immune disorders. It seems plausible 

that the kinetics of Px1 channels are comparable to that of physiological changes in 

membrane potentials, so we aimed to better understand the extent to which voltage plays a 

role in the activation of Px1. Here we exogenously expressed mouse Px1 (mPx1) in Xenopus 

laevis oocytes and utilized standard two electrode voltage clamp techniques to identify gating 

properties of Px1. The present study is the first report of the relative voltage-sensitivity and 

activation rate of Px1. We found very little difference in activation rates at different voltages 

and discovered that Px1 requires large inputs of voltage to achieve maximal activation; 

together with evidences supporting polymodal gating, these findings have led us to conclude 

that Px1 is more appropriately termed ‗voltage-sensitive,‘ rather than its previous distinction 

as a voltage-dependent channel.  
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2. METHODS 

2.1 In vitro transcription 

 

Mouse pannexin-1 (mPx1) cDNA was graciously provided by Dr. Gerhard Dahl, 

University of Miami (Miami, FL). The mPx1 cDNA was inserted into a PCS2 plasmid and 

linearized using Not1 restriction enzyme (New England Biolabs
®
 Inc.). Additional clean-up 

of linearized cDNA was performed using DNA Clean and Concentrator™ (Zymo Research 

Corporation, Irvine, CA). Purified mPx1 cDNA was transcribed into mPx1 mRNA using 

mMessage mMachine
®
 in vitro transcription kit with SP6 RNA polymerase (Ambion

®
). 

Pannexin-1 mRNA was injected into Xenopus laevis ooctyes at a final concentration of 1 

μg/μL. Concentration of mRNA was assessed using a NanoDrop™ 1000 spectrophotometer 

(Thermo Fisher Scientific). Presence of full-length transcript was confirmed by gel 

electrophoresis. 

 

2.2  Microinjection of Oocytes 

 

Defolliculated, stage 5-6 Xenopus laevis oocytes were generously supplied to us by 

Dr. William Zagotta, University of Washington (Seattle, WA). Oocytes were microinjected 

with 50-80 nL of mPx1 mRNA (1μg/ μL) using a Drummond
®
 Digital Microdispenser and 

incubated at 18°C for 18-36 hours before testing. Oocytes were stored in 12-well culture 

dishes with standard ND96 media, [in mM]: 96 NaCl, 2 KCl, 1.8 CaCl2, 1 MgCl2, 5 HEPES 

with 100 U/mL Penicillin and 100 ug/mL Streptomycin. The medium was changed daily 

post-injection. 
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2.3 Solutions 

 

Pannexin-1 Control solution [in mM]: 90 NaCl, 2 KCl, 1 MgCl2, 3 CaCl2, 5 HEPES, 

pH 7.4. To confirm presence of Px1 current, the Px1 inhibitor, carbenoxolone (CBX, Sigma-

Aldrich
®
), was added to this solution to a final concentration of 50 μM.  

 

2.4 Two-Electrode Voltage Clamp (TEVC) 

 

Two-electrode recordings were performed with an OC-725C Oocyte Clamp (Warner 

Instruments) and a Digidata 1440A amplifier (Molecular Devices). Individual oocytes were 

placed in an acrylic recording chamber and continuously perfused via gravity flow with 

Pannexin-1 Control solution. Glass capillary microelectrodes (Drummond, #3-000-210-G) 

were pulled with a vertical PC-10 pipette puller (Narishige, Japan) to a resistance of 0.2-0.3  

M  and filled with 3 M KCl. Upon entry of the pipette tips into cell membrane, membrane 

potential was allowed to stabilize for 10-15 minutes before the voltage protocol was applied. 

Cells were clamped at a holding potential of -40 mV and taken through one of two voltage 

excursions ranging from 100 mV to +60 mV or -100 to +200 mV in 10 mV or 25 mV steps, 

respectively. Each voltage-pulse had a duration of 500 milliseconds. After each step-pulse, 

the membrane potential was returned to resting potential (-40 mV). To confirm the presence 

of a Px1 current, CBX solution was perfused for 5 minutes before voltage protocols were 

applied. After CBX application, Px1 Control solution was perfused to wash out CBX as a test 

of reversibility of CBX inhibition.  
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2.5 Data Analysis 

 

Subtractions of currents were performed using AxoGraph X. Tau and Boltzmann fit 

lines were done with SigmaPlot using equations referenced in this text. Student t-tests were 

used to perform statistical analyses. 
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3. RESULTS 

3.1 Isolation of Px1 current 

 

To investigate Px1 gating as a function of voltage, Px1-injected Xenopus laevis 

oocytes were tested using the two-electrode voltage clamp (TEVC) technique. Applying the 

voltage protocol illustrated in Figure 3, large currents (1-2 μA) were elicited that appear to 

have some level of voltage-dependence (Fig. 3A, B). Uninjected oocytes were also tested 

using the same method and yielded current amplitudes less than 300 nA. To further isolate 

Px1 current from oocyte-specific currents, we used the Px1 inhibiting drug, carbenoxolone 

(CBX). After treatment with 50 µM CBX, approximately 20% of the original current 

remained (Fig. 3B), suggesting roughly 80% of the original current was current generated by 

Px1. Px1-resistant current (Fig. 3B) was subtracted from the original current (Fig. 3A) to 

yield isolated Px1 current for further gating analysis (Fig. 3C). Isolated Px1 currents 

exhibited characteristic small currents (<100 nA) from -100 mV to 0 mV, and then a marked 

increase in current amplitude from 0 mV to +60 mV (Fig. 4).  We also saw an average 

reversal potential that was 1 
+
/- 5mV. From isolated Px1 current-voltage patterns (I-V), Px1 

channels seemed to be closed at negative voltages, and showed outward rectification at 

voltages >20 mV. 

3.2 Voltage-dependence of Px1 currents 

 

Px1 seemed to have some level of voltage dependence based on rectification seen in 

the I-V patterns; however, current (I) is generated by two main components as shown in the 

following equation: 

  (Equation 2) 
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Figure 3. Pharmacological isolation of Px1 current. A, Voltage protocol ranging from +60 mV to -120 mV used with TEVC. Clamped 

oocytes were held at a resting potential of -40 mV. B-D, Current traces recorded from Xenopus laevis oocytes either injected with 80 ng 

of mPx1 mRNA (c,d), or uninjected (b) using TEVC mode. B, Voltage-dependence was seen by unequal current responses to various 

voltages. C, 50 µm CBX-insensitive current shown in Px1-injected oocyte. D, subtraction of ‗CBX-insensitive‘ current from ‗Px1-

injected‘ revealed CBX-sensitive current, or ‗isolated Px1‘ current. 

0 nA 

D C B 

A 
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Figure 4. Current-voltage (I-V) relationship of Px1 with +60 mV protocol. Values are given 

as means 
+
/- SEM, n=22.  
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in which G is conductance, and Vrev is the reversal potential. The first component, G, is 

proportional to , where N is the number of channels, Po is the open probability of each 

channel, and γ is the unitary conductance of each channel. The second component, V-Vrev, is 

a measure of the driving force created by electrochemical gradients present at the time of 

channel opening. To separate driving force (permeation) from intrinsic voltage-dependent 

properties of Px1 channel opening (gating), we calculated G according to equation 3, and 

plotted normalized conductance (G/Gmax) values as a function of voltage (Fig. 5).  

        (Equation 3) 

At voltages between -100 and +60 mV, conductance seemed to be continually 

increasing, suggesting Px1 did not approach maximal opening at these voltages. We thus 

extended the voltage protocol to +200 mV, at which Px1 current increased 2- to 5-fold 

compared to activation at +60 mV. Plotting G/Gmax values as previously described, relative 

conductance seemed to reach a plateau, indicating maximal opening of Px1 channels started 

at approximately +150 mV (Fig. 6). Fitting average normalized G-V values with the 

Boltzmann equation (Equation 4), V0.5 , or the voltage at which half-maximal activation 

occurred, was calculated to be 51 
+
/- 8.3 mV, with a slope factor k = 35.2 

+
/- 2.9 mV.  

   (Equation 4) 

3.3 Activation Kinetics of Px1 

 

No differences in activation rates were observed at voltages up to +60 mV (not 

shown), so we utilized the extended voltage protocol to +200 mV to characterize activation 

kinetics as well. 
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Figure 5. Activation curve of Px1 with +60 mV protocol. Average normalized conductance-

voltage relations. Values are given as means +/- SEM, n=22.
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Figure 6. Px1 current and activation curve with 
+
200mV protocol. A, isolated Px1 current 

traces using +200 mV protocol. B, Average normalized conductance-voltage relations fit 

with Boltzmann equation as described in Materials and Methods. Px1 maximal activation 

shown by presence of plateau with extended voltage protocol to +200 mV. Values are given 

as means 
+
/- SEM, n=8.  

B 

A 
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The rising phases of isolated Px1 currents (Fig. 7A, inset) were normalized to peak values at 

+150 mV. These values were then averaged and superimposed to visually demonstrate 

differences in activation rate (Fig. 7b). Normalized 100mV and 50mV currents showed no 

visible difference, so for clarity only 150 and 50mV are shown for comparison. Isolated Px1 

current traces at 175 and 200mV were not used for analysis due to a large increase in oocyte-

specific currents. Average normalized current data (Fig. 7b) were fitted using a single-

exponential function (equation 5) to estimate the time constant of activation (τact).  

  (Equation 5) 

Time constants of activation for 150, 100, and 50mV were estimated to be 2.4 
+
/- 0.3ms, 3.0 

+
/- 0.3ms, and 3.5 

+
/- 0.3ms, respectively (Fig. 7c). Though differences in τact were small, Px1 

activated 20% and 26% faster at 150mV than 100mV and 50mV, respectively. Differences in 

τact at 150mV and 50mV were found to be significant (p < 0.05), using a student t-test.  

 

3.4 Large oocyte-specific current elicited at high voltages 

 

When examining currents elicited by the 
+
200mV protocol, we noticed an apparent 

level of inactivation at higher voltages (Fig. 9). However, we also noted that there seems to 

be a decrease in CBX inhibition of currents at higher voltages, particularly at steady state 

(late current). To investigate whether the apparent inactivation could be an artifact of 

potential decreased CBX efficacy, we compared the  %CBX block at low vs. high voltages 

(Fig. 8A), as well as compared CBX-resistant current traces from both Px1-injected and 

uninjected oocytes (Fig. 8B, C). The %CBX block was calculated by dividing isolated Px1 

current (net  
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Figure 7. Activation rates of Px1 at 150mV, 100mV, and 50mV. A, Rates were calculated by  

fitting simple two- or three-component exponentials to current sections ranging from initial 

rise phase to peak (inset). Exponentials were fitted using SigmaPlot. B, Normalized current 

sections were superimposed to visually demonstrate differences in activation rate at 150 mV 

and 50 mV. 100 mV and 50 mV were almost identical; for clarity of presentation, normalized 

100mV trace is not shown. C, Time constants calculated for 150 mV, 100 mV, and 50 mV. 

Values are given as means +/- SEM, n=8. Significance was determined using student t-test 

(*p < 0.05).

A 

B 
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Figure 8. Oocytes exhibited increased outward current at high voltages. A, Percent CBX 

block of Px1 in injected oocytes showed an apparent decrease at voltages >100mV. B-C,  

Uninjected oocyte current with 50uM CBX (B) showed similar kinetics and shape to Px1 

injected oocyte current with 50uM CBX (C). Values are given as means 
+
/- SEM, n=8. 

  

B 

A 

C 

+200 

mV 
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current as described previously) by original current amplitudes at +150, 100, and 50 mV, 

yielding averages of 63.2 
+
/- 3.4%, 78.0 

+
/- 2.2%, 82.4 

+
/- 1.2%, respectively. Though 

statistical differences were found between the %CBX block for t-test comparisons at [+50 

mV, 150 mV; p < 0.001] and [100 mV, 150 mV; p < 0.001], comparisons between ‗Px1-

injected + CBX‘ and ‗uninjected + CBX‘ current traces (Fig. 8B, C) showed similar kinetics 

and shape, suggesting that the apparent decrease in CBX efficacy can likely be attributed to 

the exaggerated increase in endogenous oocyte currents at high voltages. Comparing control 

cells using the same +200 mV voltage protocol, oocytes seemed to express endogenous 

channels that were activated at high voltages >75 mV. Further, CBX showed marginal (< 

10%) change in these oocyte-specific currents, suggesting that the isolated Px1 currents at 

high voltages were predominantly attributable to Px1, and that the apparent decrease in 

%CBX inhibition was likely due to an increase in steady-state (late) current from endogenous 

oocyte channel populations. Therefore, we proceeded to examine the level of Px1 

inactivation at high voltages. 

 

3.5 Current Decay of Px1 

 

To detect whether current decay (CD) occurs in Px1, we divided current amplitudes at 

500ms (I500ms) by peak current amplitudes (Ipeak). Currents shown in Figure 9A displayed a 

peak to 500 ms for +150, 100, and 50 mV traces; respective CD ratios were calculated to be 

0.71 +/- 0.05, 0.86 +/- 0.05, and 1.05 +/- 0.06. CD ratios (Fig. 9B) showed a decreasing 

Ipeak/I500ms ratio with increasing voltage, suggesting that CD was more prevalent at higher 

voltages. No significant differences were found between Ipeak/I500ms at 100 and 150mV, 

however, Ipeak/I500ms between [50, 100 mV] and [50, 150 mV] were found to be significant (p 
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<0.05, p < 0.001, respectively). Therefore, our data suggests Px1 currents exhibit current 

decay at high positive voltages. 
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Figure 9. Isolated Px1 current showed slow current decay. A, Current traces at +150 mV, 

100 mV, and 50 mV. CD ratios were calculated by dividing I500ms by Ipeak. B, I500ms/Ipeak ratios 

measured at +150 mV, 100 mV, and 50 mV. Significant differences between indicated pairs 

determined by student t-tests, *p < 0.05, **p < 0.001. Values given are means 
+
/- SEM, n=8. 
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4. DISCUSSION 

 

In the present study, we investigated previously uncharacterized gating properties of 

the Pannexin-1 channel. Prompted by previous accounts of Px1 being a voltage-dependent 

channel, we plotted normalized conductance values against voltage, and discovered that Px1 

reaches maximal activation at voltages +150 mV. For the first time, we have shown Px1 

Boltzmann activation parameters, redefining Px1 as a weakly voltage-gated channel. Further, 

through kinetic analysis, we have identified Px1 activation rates (τact) at half-maximal and 

maximal activation voltages, uncovering fast and weakly voltage-dependent activation 

kinetics of Px1. Additionally, we noticed a consistent current decay at high positive voltages, 

which we hypothesize to be indicative of either inactivation or entrance of Px1 into a sub-

conductive state(s). We also noticed a short (> 24 hrs) window of Px1 expression in both 

Xenopus laevis oocytes and the mammalian Neuro2a cell line (data not shown). Taken 

together, the results of our study portray Px1 to be a very tightly regulated, if not ‗reluctant,‘ 

channel. 

 

4.1 Px1 is a voltage-sensitive channel 

 

 Gating of a channel can occur in many different ways; however, voltage-dependent 

gating relies on conformational changes in protein structure brought about by shifts in 

membrane voltage (Vm). Voltage-sensing domains (VSD) containing select charged or polar 

residues that respond readily to changes in membrane potential translate small 

conformational changes in subunit tertiary structure to open the ‗gate‘ of a channel, thus 

permitting ion access to the pore. This study was prompted by Px1 current-voltage 

relationships (I-V) that suggested some level of voltage-dependent activation, exhibiting an 
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apparent current threshold, with minimal current amplitudes at negative voltages and 

increased current amplitudes at positive voltages. Also, Px1 currents showed large outward 

rectification, or graded, unequal increases in current amplitude with increasing voltages > 

+20 mV. Visual inspection of current traces and current-voltage relationships has previously 

been the only way that Px1 has been characterized in terms of voltage-dependence (Bruzzone 

et al., 2003). To quantitatively evaluate voltage-dependent activation specific to Px1, it was 

necessary to isolate changes in conductance that are a consequence of the channel itself, and 

not of the driving force. Equation 2 shows that current (I) is generated by both conductance 

(G) as well as the driving force (V-Vrev); by dividing current by the driving force, we isolated 

intrinsic properties of the channel, since G  = NPoγ (see equation 2). By plotting normalized 

conductance values (G/Gmax) against voltage (V) as in Figure 6B, we showed that Px1 was 

maximally activated at voltages higher than +120 mV, and had a Boltzmann fit slope k = 35 

mV. This large slope suggested very weak voltage-dependence, as large increases in voltage 

were required to further activate the channel. Strongly voltage-dependent channels such as 

select K
+
 and Na

+
 channels are fit with much smaller slope values, illustrating greater 

voltage-sensitivity through a steeper slope (Table 1). The large slope for Px1 activation by 

voltage can be compared to the temperature- and voltage-dependent TRPM4 channel, which 

is also considered to be weakly voltage-dependent (Nilius et al., 2005).  

Table 1. Boltzmann parameters of select voltage-gated channels. 

 

 

 

V0.5 (mV) ka (mV) 

Pannexin-1 51 
+
/- 8.3 35.2 

+
/- 2.9 

TRPM4
1 

92 32 

Kv3.3
2 

19.5 
+
/- 0.3 9.4 

+
/- 0.2 

 Kv4.3
3 

-7.9 12.34 
1
 (Nilius et al., 2005); 

2 
(Minassian et al., 2012); 

3
 (Patel et al., 2004) 
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Though it has been suggested that voltage alone can open Px1 (Thompson et al., 

2008a), there seem to be other voltage-independent ways of opening Px1. Cleavage of the C-

terminus of human Px1 (hPx1) by caspase induces current from Px1 independent of voltage, 

and thus has been shown to be sufficient to open Px1 (Sandilos et al., 2012), however Px1 

currents still retain voltage-sensitivity. Therefore, a re-thinking of Px1 as being solely a 

‗voltage-dependent‘ channel is required. We propose that while currents generated by Px1 

seemed to have voltage-dependent qualities, the channel itself seems more appropriately 

termed ‗voltage-sensitive,‘ as its gating seems not to rely only on changes in voltage; further, 

our data suggests Px1 is weakly gated by voltage alone. While hPx1 can be opened simply by 

caspase cleavage, it seems that truncated hPx1 current still retains similar voltage-sensitivity 

with increasing depolarizations, as caspase-induced cleavage of the C-terminus produced an 

I-V relationship almost identical to intact hPx1 in Jurkat cells, with little current at negative 

voltages, and graded current increases at depolarizing voltages. Differences between C-

terminally truncated hPx1 and mPx1 were minimal, however hPx1 showed more of a 

decrease in current at hyperpolarizing voltages (Sandilos et al., 2012).  

It is still unclear if cleavage of the Px1 C-terminus is necessary to activate Px1, or if 

this potential C-terminal gating mechanism may operate separate from, or in conjunction 

with, voltage-gating. Additionally, since changes to Px1 voltage-sensitivity are not 

immediately apparent through visual inspection of I-V relationships, it is possible that the 

residues conferring voltage-sensitivity to Px1 are not located in the C-terminus. Due to 

similarities in currents elicited from caspase-cleaved hPx1 and mPx1 (Sandilos et al., 2012), 

and that many C-terminal residues were determined to be in the mPx1 pore through 

substituted cysteine accessibility method (SCAM) analysis (Wang and Dahl, 2010),  it is 
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possible that gating residues may be present in the C-terminus of mPx1. Further, it seems that 

residues that confer voltage-sensitive activation of mPx1 are not located in the C-terminus. It 

is worth investigating the role of caspase cleavage in conjunction with studies of activation 

rate and Boltzmann activation curves to identify differences, if any, in activation once C-

terminal cleavage occurs. Further investigating these properties of Px1 could be very helpful 

in determining selective treatments for immune disorders or neurological (voltage-mediated) 

conditions.  

Identifying Px1 as a voltage-sensitive channel is consistent with current published 

data, and we consider it to be a more accurate portrayal of the role voltage plays in Px1 

gating. It is possible that Px1 voltage-sensitivity could be governed or altered by other 

mechanisms that have yet to be investigated, or may be coordinated by initial cleavage of the 

C-terminus by caspase. The new findings we present here may aid in identification of other, 

perhaps allosterically regulated, modes of Px1 gating.  

 

4.2 Activation of Px1 

In order for a channel to be sensitive to voltage, there must be present in the structure 

of the protein charged or polar residues that can effectively respond to changes in membrane 

potential and influence the structure or availability of the pore. Though the crystal structure 

of Px1 has not yet been determined, SCAM analyses have led to predictions of pore-lining 

residues, and key components to channel activity in intracellular/extracellular domains have 

been proposed (Wang and Dahl, 2010). It seems that multiple C-terminal residues are 

modified by thiol reagents indicating potential presence in the pore. Serial deletion 

experiments showed that the C-terminus is required for Px1 inhibition, which might indicate 
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a possible gating mechanism intrinsic to the Px1 C-terminus (Sandilos et al., 2012). This is 

consistent with the aforementioned evidence of Px1 activation by caspase cleavage (Wang 

and Dahl, 2010; Sandilos et al., 2012). Further, C346S mutation generated Px1 channel that 

has increased current at all voltages, which might be an indicator that this particular residue 

plays a key role in Px1 inhibition (Wang and Dahl, 2010; Bunse et al., 2010). 

Our G-V data suggested that there is some level of voltage-dependence intrinsic to 

Px1 channels. Px1 is a multimeric protein, composed of six four-transmembrane monomers. 

Based on studies of other voltage-dependent channels, the voltage-dependent changes in Px1 

current are theoretically due to conformational changes of the channel caused by protein-

protein interactions between Px1 subunits. Though there are multiple ways to trigger 

cooperative movement of monomers in multimeric membrane proteins (ligand binding, 

mechanosensitivity, etc.), the changes we showed in the present study were due to changes in 

voltage. Voltage-sensitive constituents of a channel are typically charged or polar residues 

that are affected by shifts in membrane voltage (Vm). In turn, changes in Vm can confer 

overall conformational modifications to the channel, thus allowing opening, closing, or 

inactivation to occur. These voltage-sensing regions have been illustrated through x-ray 

crystallographic studies of many well-documented channels to document a variety of 

voltage-sensing domains.  

The slope determined by the Boltzmann fit of Px1 activation is related to the number 

of charges required to move in order to open the channel (Table 1). A large slope implies low 

level of gating charges present, minimal contribution to channel opening conferred by said 

charges, or a combination of both. Thus, large inputs of voltage are necessary to create 

measurable changes in channel opening or to increase channel open probability. Consistent 
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with data shown in Table 1, K
+
 channels generally have steep activation slopes (low k value 

in Boltzmann fit of activation curve) and also typically have arginine-rich domains, which 

assume the role of a canonical ‗voltage-sensor‘ in K
+
 channels. Voltage-sensing domains of 

ion channels are dense with charged residues that allow sections of the protein to respond 

readily to changes in membrane voltage. There are no domains of Px1 that are immediately 

apparent as voltage-sensors, which is consistent with our findings that Px1 is a weakly 

voltage-gated channel (shown by the activation curve in Figure 6B). 

Charge-dense regions are not required to confer voltage-sensitivity to a channel, 

however. A recent study showed that altering one residue conferred voltage-dependence to a 

channel that lacked a canonical ‗voltage-sensing domain‘ (Kurata et al., 2010). The Px1 

relative, Connexin43, also lacks a canonical VSD, though neutralization of one charged 

residue in the C-terminus changed voltage-dependent junctional gating, and neutralizing two 

charged residues eliminated all voltage-dependent junctional gating (Revilla et al., 2000). 

Connexin26 (Cx26), also seems to lack a canonical voltage sensor, though it displays 

voltage-dependent activation as well (González et al., 2006), suggesting that voltage-

sensitivity without a traditional voltage-sensor is plausible in Px1.  

SCAM analyses have provided preliminary estimates for locations of crucial residues 

in the membrane, though without the crystal structure of Px1, only inferences can be made 

about key voltage-sensing residues. As previously mentioned, it seems the C-terminus of Px1 

might play a role in initial gating of Px1, though this has only been shown through C-

terminal cleavage by either caspase or other proteases in vitro (Sandilos et al., 2012). It is 

unclear whether truncation or other structural modifications to the C-terminus are necessary 

to gate Px1, however, removal of the C-terminus does not seem to eliminate voltage-
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sensitivity of Px1. From this, we can predict that residues contributing to Px1 voltage-

sensitivity are not present in the C-terminus, but further studies are required to determine key 

voltage-sensitive residues. Considering the weak voltage-sensitivity of Px1 shown in this 

study, it is likely that there are either relatively few gating charges present (as opposed to a 

VSD), or that the charges present contribute minimally to gating as a response to voltage. To 

determine these features of Px1 in future studies, the protein structure must be solved in order 

to identify key voltage-sensing residues. 

In Figure 7, we show asymmetric increases amplitude and also speed (activation rate, 

τact) of Px1 currents with increasing voltages. Activation of channels in general requires 

transient modifications to protein structure to allow access to the pore from one or both sides 

of the membrane.  Px1 is thought to be a hexameric channel composed of six four-

transmembrane proteins with a large intracellular loop and intracellular N- and C-termini 

(Fig. 10). Access to the pore is likely permitted by charged residues in the protein that, with 

increasingly positive voltage conditions, undergo slight alterations to tertiary structure of the 

Px1 monomers, which can cooperatively affect quarternary structure of the Px1 hexamer.  

Though large increases of voltage were necessary to elicit maximal channel opening 

as shown in Figure 6B, the rate at which Px1 opens seemed to remain relatively unchanged 

with increasing voltages (Fig. 7B). Px1 seemed to show high cooperativity between subunits 

based on fast activation rates, however, the small changes in τact suggest this cooperativity 

was very weakly voltage-sensitive; it is still possible, however, that additional protein 

modifications can modulate this parameter. Though the rate of activation did seem to 

increase by approximately 26%, compared to channels that have very strong voltage-

dependent activation rates, such as Na
+
 channels that exhibit logarithmic increases in 
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activation rates, our data suggests that Px1 activation rates are weakly voltage-sensitive, 

consistent with our G-V data showing limited voltage-sensitivity. 
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Figure 10. Proposed arrangement of Px1 monomer (Wang and Dahl, 2010). Charged 

residues are indicated in blue and red.  
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4.3 Current decay of Px1 

 

We showed that Px1 appeared to display decaying currents at higher voltages and 

long depolarizations, though further investigation is necessary to determine whether current 

decay is due to decreasing availability of Px1 channels (inactivation) or entrance into a 

subconductive state. Single channel experiments have shown that Px1 does have multiple 

subconductive states at +60 mV, so it is certainly possible that this may be the case (Bao et 

al., 2004). Connexins display a subconductive state that resembles macroscopic inactivation 

(Boassa et al., 2007). Since Pannexins and connexins have been found to be topologically 

and functionally similar, it seems plausible that Px1 could display similar behavior at high 

positive voltages. No inactivation seems to be present, however, at lower voltages. Perhaps 

this could be interpreted as a lack of subconductive states at lower voltages, or a lack of 

inactivation due to low open probability at +60 mV. Single-channel experiments must be 

done to decipher whether the decreasing current at high voltages is due to subconductive 

states or rather a voltage-dependent inactivation. For the purposes of analysis, there are three 

primary hypotheses for the apparent inactivating current seen in Px1.  

One possibility is state-dependent inactivation, or inactivation that is reliant on 

another state to occur. For example, some channels must be open in order to undergo 

inactivation response, such as sodium channels. Na
+
 channels have well-documented 

accounts of open-state inactivation, where inactivation is reliant on prior opening of the 

channel (Armstrong and Bezanilla, 1977; Groome et al., 2011). So, if a channel is more 

likely to be open at a certain voltage (i.e., higher open probability), the channel is then more 

likely to inactivate. Because Px1 only reaches maximal activation at voltages higher than 100 

mV, then inactivation would be unlikely to occur unless those voltages are reached. This 
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explanation fits with our data showing maximal opening of Px1 channels at high positive 

voltages. At +60 mV, no inactivation has been detected, and perhaps it is because +60 mV is 

only approximately the voltage at half-maximal activation (Fig. 6B).  

Another option is that Px1 has an intrinsic voltage-dependent inactivation state, which 

is only triggered at voltages >+100 mV. The Cav1.2 calcium channel exhibits voltage-

dependent inactivation, whereby the C-terminus is a crucial part of regulating voltage-

dependent inactivation (Cohen-Kutner et al., 2012). The C-terminal region of the Cav1.2 

channel acts as a binding domain for the regulatory molecule calcineurin, which negatively 

regulates inactivation at low positive voltages. Considering data regarding potential 

regulatory domains of Px1 suggested by constitutive opening of the channel through cleavage 

of the C-terminus, the question arises about the role of the C-terminus in gating Px1. In 

future studies, investigating presence of Px1 current decay at voltages >+100 mV in 

conjunction with modifications to the C-terminus could potentially shed light on inactivation 

possibilities for Px1.  

The third possibility is that Px1, like Connexins, displays a macroscopic 

subconductance state that resembles slow inactivation. Subconductance states occur when a 

channel is open and conductive, however the conductance is lower than maximal. 

Connexin26 shows a macroscopic subconductance state at high voltages, and as a relative of 

these gap junction proteins, it is also plausible that Px1 could display a similar macroscopic 

subconductive state (González et al., 2006). 
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4.5 Deactivation 

 Typically, gating studies include deactivation rates and characterization by using an 

‗open I-V‘ protocol and measuring tail currents at negative potentials. It is worth mentioning 

that through our trials we were not able to sufficiently conclude that our data was not 

contaminated by transient activity in our recordings. Often, current amplitudes are quite large 

(>10 μA), but with Px1, our current amplitudes were only around 1-2 μA for +60 mV. This 

made it so our transient was large enough to contaminate our deactivation rising phase, 

making it difficult to isolate Px1-specific activation rates. When attempts were made to plot 

open-iv current relationships, the reversal potential was extremely positive >35 mV. 

Considering other data (Ma et al., 2012) and unpublished data from our lab, Px1 seems to be 

an anionic-selective channel, which would logically have a reversal potential close to that of 

chloride, or -20 to -30 mV. The prediction we have is that the contribution of transient to this 

data is such that the observed reversal potential is close to the opening voltage of the protocol 

in question (i.e., opening channels at +60 mV). This hypothesis was prompted by observed 

reversal potentials around 
+
60 ± 20 mV. At this time, we do not feel it is correct to report 

estimates on closing rates, however, future studies will include using patch clamp 

experiments, which will provide a more precise means of detecting deactivation kinetics. 

 

4.4 Px1 turnover rate suggests possible regulation mechanism 

 

The availability and expression of Px1 is a unique feature of Px1—this channel has 

proven to be quite difficult to study not only because of its reluctance to open maximally, but 

also due to variations in time-dependent expression levels. We consistently observed a 

drastic decrease in Px1 current amplitudes >24 hours post-injection of mPx1 mRNA into X. 
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laevis oocytes (approximately 300-500 nA, compared to ‗full‘ expression levels of 1-2 μA), 

and >18 hours post-transfection with mPx1-eGFP in the mammalian Neuro2a cell line (data 

not shown). Currents expressed in these cells did retain sensitivity to CBX inhibition (see 

Figure 6) and displayed similar voltage responses, though smaller current amplitudes 

produced ‗noisier‘ subtractions that were not suitable for analysis of gating. This apparent 

rapid loss of Px1 functionality gave us a window of testing oocytes of about 12-24 hours 

post-injection to use cells with the greatest expression levels. 

Trafficking studies suggest a long half-life of Px1 that is presumably comparable to 

P2X7R with a half-life of 54 hours (Gehi et al., 2011; Penuela et al., 2007). Functionality of 

Px1 for the duration of this proposed life-span, however, has yet to be determined. Since 

application of inhibitors to the secretory pathway revealed slow reduction in cell surface Px1 

expression (Penuela et al., 2007), our observations seem contrary to prolonged functional 

Px1 expression. Because it also seems that the C-terminus is involved in gating of Px1 as 

well as trafficking to the cell membrane, it is plausible that cleavage or modification to the C-

terminus can trigger the endocytic pathway involved in Px1 internalization and degradation 

(Gehi et al., 2011). Further, the Px1 C-terminus has been found to directly bind F-actin, 

which is thought to influence cell motility (Bhalla-Gehi et al., 2010), but also could 

potentially be a step that may render Px1 non-functional as a possible initiation of Px1 

endocytosis.  

Not much is currently known about the triggers associated with possible endocytosis 

of Px1 channels, however, it is possible that its diffuse expression could effect slower 

turnover rates compared to Cx43. Exogenous Px1 expression has shown limited levels of 

clustering, contrary to the cell surface expression profile of many connexins (Penuela et al., 
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2007; Goodenough et al., 1996). This could be a potential reason for the apparent prolonged 

Px1 surface expression when compared to Cx43; perhaps multiple connexin channels can be 

targeted for endocytosis at once, where Px1 may undergo more random targeting.  

 One possibility for decreased Px1 expression over time is simply the exogenous 

expression in heterologous systems (oocytes and N2a cells). Since this is a large hexameric 

protein that must be properly assembled in the membrane, it is possible that exogenous 

expression would be less reliable. However, significantly larger channels, like the cystic 

fibrosis transmembrane conductance regulator (CFTR)—have been expressed in both 

systems without any indication of decreased expression over periods of 3-5 days (Serrano et 

al., 2006). The peculiarity of such a fast loss of function suggests that tight regulation of Px1 

is important, and could be a result of intrinsic regulation of Px1 expression levels. 

 

4.5 Conclusion 

 

We suggest that Px1 is a weakly voltage-gated channel, that displays fast, yet weakly 

voltage-sensitive activation rates. There is certainly the potential that allosteric regulation of 

this channel may play a part in Px1 activation, but these aspects are not yet known. It is 

important to note that in nearly all experiments, Px1 has been tested at voltages at or below 

+80 mV. We have shown that Px1 is at half-maximal activation at +51 mV, yet Px1 still 

seems to play a significant role in multiple biological functions even without being 

maximally activated. Considering involvement of Px1 in seizure-like activity in the 

hippocampus, ATP signaling, and role in formation of the inflammasome, our data seems to 

match up with the characteristics of a channel that can play various important biological 

roles, and logically would be tightly regulated.  
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As Px1 has such widespread connections to various physiological processes, it is 

difficult to classify Px1 in terms of supposed function. Px1 has a unique ability to permit 

fluxes of large polyatomic ions, some cytokines, and various neurotransmitters to the 

extracellular space, setting it apart from typical ion channels. It is possible that Px1 has 

diverged from connexins and innexins to assume a role mediating fast purinergic or paracrine 

signaling. Select small molecules and polyatomic ions that would otherwise be released by 

slower, vesicular or transporter-mediated mechanisms can pass through the ubiquitously 

expressed Px1 at much faster rates, allowing more efficient physiological and pathological 

signaling between cells. With a growing body of evidence supporting fast ATP signaling, it 

seems fitting that one important role of Px1 is to act as a conduit for fast ATP release (Bao et 

al., 2004). Further studies about chemically modifying Px1 gating sensitivity could aid in 

ameliorating Px1-related disease, such as inflammatory bowel diseases, which show 

decreased Px1 activity in human colon (Diezmos et al., 2013). The link of Px1 to seizure-like 

activity (Thompson et al., 2008b), neuronal death in response to ischemic stroke (D‘hondt et 

al., 2009; Bargiotas et al., 2011; Thompson et al., 2006), or even its connection to memory 

formation and synaptic plasticity (Prochnow et al., 2012) make functional characterization of 

Px1 gating a topic of high importance. 

Identifying Px1 as a voltage-sensitive channel is still consistent with current 

published data, and we consider it to be a more accurate portrayal of the role voltage plays in 

Px1gating. It is possible that Px1 voltage-sensitivity could be governed or altered by other 

mechanisms that have yet to be investigated, but the new findings presented here may aid in 

identification of other, perhaps more prominent modes of Px1 gating.  
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