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Abstract 

 
All known living organisms use DNA to store genetic templates used for development, proper 

function and reproduction. The structural integrity of DNA is therefore of extreme importance 

and cellular machinery continuously regulates our DNA either through addition of covalent 

molecules to regulate the transcription of genes or the removal of DNA lesions propagating from 

the exposure to reactive molecules. One of the most common DNA lesions, 8-oxoguanine (8OG), 

is a prominent, pro-mutagenic DNA adduct present at a baseline level from consistent generation 

of reactive oxygen species through oxidative metabolism or at greater concentrations through 

exposure to ionizing radiation and other toxins. Its mutagenic potential is attributed to its ability 

in the syn- conformation, to mimic thymine during DNA replication, resulting in a mispair with 

adenine. In contrast, 5-methylcytosine (5MC), occurs from the covalent addition of a methyl 

group to a cytosine base by a DNA methyltransferase. 5MC acts as an epigenetic gene regulator, 

often found densely packed within CpG islands upstream of transcriptionally inactive genes. It 

can be estimated that each human diploid cell contains hundreds of CpG dinucleotides 

undergoing active methylation while also harboring 8OG. Previous results obtained by Kasymov 

et al, showed reduced endonuclease activity by hOGG1 for substrates containing 5MC adjacent 

and cross strand from 8OG. In addition, the work presented by Maltseva et al, conveyed that the 

enzymatic methylation rates by maintenance DNA methyltransferases were severely impacted 

when 8OG is adjacent to the methylation target. These results prompted us to investigate the 

clustering of these two modifications in greater detail.  

 We present the results of solution NMR structure determination, thermodynamic stability 

analysis and molecular dynamics simulations on the DNA sequence 5’-d(CGCGAATTCGCG)-3’ with 
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clustered 5MC and 8OG in CpG dinucleotides. NMR spectroscopy and restrained molecular 

dynamics were used to refine the structure of 11 DNA duplexes containing different methylation 

and oxidation patterns. The results reveal that 8OG induces local unwinding 5’ to itself and 31P 

chemical shifts indicate an increase in the BII phosphate backbone conformation 3’ relative to 

8OG. Melting temperatures of the duplexes was shown to decrease with the addition of 8OG in 

all contexts. Surprisingly, the addition of 5MC in two separate instances led to lower Tm values of 

already oxidized DNA samples. 1D-1H NMR linewidths indicate 8OG increases the base dynamics 

while incorporation of 5MC leads to a stabilizing effect. Our results indicate that addition of 8OG 

to a fully-methylated CpG induces a sequence dependent stabilizing effect. Molecular dynamics 

trajectories were analyzed for BI/BII phosphate conformation populations, conformational 

flexibility and local dynamics. Comparison of helical geometries and backbone angles indicated 

that our MD simulations accurately and reliably reproduced our NMR structures within one 

standard deviation. Principal component analysis was carried out to highlight the most dominant 

modes of motion for CpG sites with clustered 5MC and 8OG. Particularly, we report significant 

differences in concerted atomic displacements, with the 8OG:5MC base pair displaying the 

greatest dynamic effects.  
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Chapter I – Introduction to DNA and DNA modifications 
 
Canonical Deoxyribonucleic acid. Deoxyribonucleic acid (DNA) is a molecule that contains vital 

information for the proper development and function of all known living organisms and some 

viruses. DNA is classified as a nucleic acid and is a type of biopolymer, comprised of a string of 

monomers called nucleotides. There are four nucleotides in DNA each defined by a specific 

nitrogenous base: the purines, guanine (G) and adenine (A) and the pyrimidines, thymine (T) and 

cytosine (C) (Figure 1.1a).  

 
 
Figure 1.1 (a) The four nitrogenous bases in DNA shown hydrogen-bonded to their canonical 

base pair partner.  (b) Depiction of the DNA backbone and deoxyribose sugars. Highlighted 
are the 5’-phosphate and 3’hydroxyl as well as the phosphodiester bond that connect two 

sugar molecules. 

 

The chemical makeup of these nucleotides is broken into three fundamental components: a 

pentose sugar ring called 2’-deoxyribose, a phosphate group and a nitrogenous base. The DNA 

backbone of each strand is comprised of identical, repeating sugar and phosphate groups. Each 



2 
 

nucleotide unit is covalently linked to the next through a phosphodiester bond between the 5’-

phosphoryl group of one sugar and the 3’-hydroxyl group of the next (Figure 1.1b). This 

orientation gives the strand directionality where the starting nucleotide will have a protruding 

5’-phosphate and the terminus of the chain will contain a free 3’-hydroxyl. The nitrogen-

containing base defining the nucleotide is attached to the 1’-position of the sugar through an N-

glycosidic bond (Figure 1.1a).  

 

The tertiary structure of DNA, as its simplest definition, is a double helix. The helix contains two 

antiparallel nucleotide strands twisting around each other to form a spiral. The two strands 

associate favorably due to two stabilizing forces derived from individual bases. First, the 

nitrogenous base of each nucleotide within the strands are oriented towards each other forming 

specific hydrogen bonds, creating a base pair. This interaction is highly specific, with typical 

Watson-Crick hydrogen bonding occurring between a purine from one strand and a pyrimidine 

from the opposing strand (Watson and Crick, 1953). Guanine pairs with cytosine forming three 

hydrogen bonds and thymine pairs with adenine forming two hydrogen bonds (Figure 1.1a). 

Second, π- π stacking between the aromatic rings on each nucleobase stabilize the individual 

strands (Matta et al., 2006).  

 

The macromolecular structure of double stranded DNA can exist in numerous conformations with 

B-DNA, A-DNA and Z-DNA being the prominent structures. The strands can twist in either 

direction, giving rise to either right- or left-handed helices. Due to the twisting of the strands and 

the consistent positioning of the N-glycosidic bond of each nucleotide (oblique with respect to 
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one another) two grooves form, denoted the major and minor groove.  Both B-DNA and A-DNA 

exhibit right-handedness with A-DNA being more compressed, causing the major groove to 

narrow and the minor groove to widen (Figure 1.2). Z-DNA twists in the opposing direction from 

A- and B-form DNA, exhibiting a left-handed conformation. DNA conformation and stability is 

directly associated with electrostatic interactions, hydration level and the addition of chemical 

modifications. In physiological conditions, the prevalent conformation is B-DNA, however, 

transient Z-DNA conformations have been documented during DNA transcription as the helix is 

unwound and in negative supercoiling (Lafer et al., 1983). In addition, certain chemical 

modifications such as cytosine methylation have been demonstrated to enhance Z-DNA 

characteristics for helices in vivo (Zacharias et al., 1990). The third major conformer, A-DNA, is 

found in living cells only in enzyme-DNA complexes where otherwise buried atoms are exposed 

for enzymatic attack.  This is due to the high energetic barrier of the B-DNA to A-DNA transition 

in hydrated environments (Lu et al., 2000). However, A-form double helices are the predominant 

secondary structure of RNA. 

 

http://dx.doi.org/10.1006/jmbi.2000.3690
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Figure 1.2. 3D representations of “perfect” B- and A- DNA shown top-down (top) and side-

view (bottom). Both are right handed helices with A-DNA exhibiting a narrow major groove 
and widened minor groove with respect to B-DNA. Structures were generated using nucleic 

acid builder from AmberTools 15. 
 
 

DNA torsion angles. The torsion angles of the DNA backbone are flexible and defined by six 

covalent bonds (α, β, γ, δ, ε and ζ) (Figure 1.4). In B-DNA, the backbone conformation is frequently 

described by two sets of torsion angles. First, the phosphate can adopt two major conformations , 

called BI and BII (Figure 1.3) (Schneider et al., 1997). These conformations are dictated by the 

torsion angle values of ε (C4’-C3’-O3’-P) and ζ (C3’-O3’-P-O5’). Each conformation corresponds to 

a range of values determined from the difference between ε and ζ (ε – ζ). For BI, the range is -
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160° to -20° with an average value being approximately -90°. For BII, the range is 20° to 200° with 

an average value of approximately 90°. Transitions between BI and BII sub-states have been 

frequently observed to occur on the nanosecond timescale (Winger et al., 1998; Isaacs and 

Spielmann, 2001).   

 

 

Figure 1.3. Illustration of the BI (left) and BII (right) phosphodiester conformations. BI and BII 

conformations are defined by the difference between ε and ζ (ε – ζ). 
 

 
Second, fluctuations in α (O3’-P’-O5’-C5’) and γ (O5’-C5’-C4’-C3’) angles are used to define 

the canonical and non-canonical backbone states. NMR and X-ray crystal structures solved on 

free, unmodified B-DNA show almost exclusive preference for the canonical α/γ conformation: 

g-/g+ (Schneider et al., 1997). However, non-canonical α/γ angles present themselves in DNA-

protein complexes (Castagné et al., 2000; Olson et al., 1998), as nucleotide flipping is directly 

associated with changes in the α/γ torsion angles. An investigation of crystal structures for DNA-

protein complexes revealed that up to 10% of 1245 dinucleotide steps analyzed display non-

canonical α/γ conformations. (Várnai et al., 2002).  
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Five torsion angles define the pucker of the ribose sugar ring which can exist in ten 

possible configurations with each configuration occupying a range of 36° (pseudorotation range 

is 360°/10). In unmodified B-DNA, the sugar primarily adopts the C2’-endo (144°-180°) 

configuration. Analysis of internal sugar pucker distributions in crystal structures reveal that the 

uncompressed and flexible structure of B-DNA allows a broad range to be defined (60°-210°) 

(Dickerson and Ng, 2001). Finally, the N-glycosidic bond connecting the sugar and base of each 

nucleotide is defined by the angle χ. The relative orientation of the base and sugar are grouped 

into two conformations, anti and syn, with the former being most prominent in A- and B-DNA. 

 

Figure 1.4. The six dihedral angles (α, β, γ, δ, ε and ζ) that define the DNA backbone. The 

angle χ, which defines the N-glycosidic bond, dictates the orientation of the base. 

 

Helical geometries. The local structure of the DNA molecule is often defined by base-pair and 

base-pair step geometries measured by their relative position and orientation to cross-strand 

and successive bases, respectively (Figure 1.3). In B-DNA, the helical parameters are highly 
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sequence specific and polymorphic (Dans et al., 2014). Specifically, the tetranucleotide (four 

sequential base pairs) sequence is tightly correlated with the dynamics of the helical parameters 

and backbone sub-state transitions for the internal dinucleotide steps. Specifically, fluctuations 

in the helical parameters shift, slide and twist for tetranucleotide sequences are often l inked 

directly to the BI/BII phosphate transition equilibrium (discussed in detail in subsequent 

sections). Furthermore, dinucleotide steps comprised of purine-purine or pyrimidine-purine 

exhibit correlation between BII backbone conformation and the formation of a base-backbone 

hydrogen bond (Dans et al., 2014). This hydrogen bond stabilizes a low twist value when the 

dinucleotide step is flanked by a 3’ purine.  These dinucleotide steps promote a high twist/low 

twist helical transition. The cause of this transition is believed to be initiated by penetration of 

ions into the minor groove.  

 

 
 
Figure 1.5. Representation of base-pair and base-pair step helicoidal geometries. Adapted 

with permission (Lu et al., 2003). 
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Oxidative Stress. Oxidative stress is characterized as an imbalance in a system between oxidants 

and antioxidants. In living systems, the primary source of this imbalance is the production of 

reactive oxygen species (ROS) either through endogenous or exogenous routes. ROS are 

molecules involving oxygen that are reactive with biological molecules such as DNA, proteins and 

lipids. Endogenously, ROS manifest from a response to inflammation and during oxidative 

phosphorylation in the form of superoxide (•O2
−), hydrogen peroxide (H2O2) and hydroxyl  

radical (•OH) (Apel and Hirt, 2004). Two distinct enzymes of the electron transport chain are 

responsible for production of superoxide radicals: at complex I (NADH dehydrogenase) and at 

complex III (ubiquinone-cytochrome c reductase), with complex III generating the bulk (Turrens, 

1997). These partially reduced species can leak from the mitochondria where they are free to 

react with essential biological molecules. Experiments completed in vitro reveal that the upper 

limit of molecular oxygen converted to superoxide anions by the mitochondria is approximately 

3% when exposed to an environment of excess oxygen (Boveris and Chance, 1973).  However, 

exposure to UV or ionizing radiation, prooxidants and transition metals  have the potential to 

dramatically increase the cellular concentration of ROS species  (Azzam et al., 2012; Shah et al., 

2001) 

 

Oxidation of nuclear and mitochondrial DNA, as well as free nucleotide pools, is well 

documented, with more than 20 oxidatively damaged DNA bases successfully identified (Cooke 

et al., 2003). Without removal or repair, these damaged nucleotides can lead to an increase in 

mutations or cell death. Mutations caused by oxidative damage to DNA have been linked to a 

multitude of degenerative diseases including cancer, cardiovascular disease, nervous and 
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immune-system decline as well as brain dysfunction (Ames et al., 1993). Guanine bases are the 

most susceptible to oxidation as they have the lowest redox potential of the four nucleotides 

(Jovanovic and Simic, 2001).  

 

Oxidation of guanine bases. 8-oxo-7,8-dihydroguanine (8OG) is recognized as one of the most 

prominent forms of DNA damage resulting from ROS oxidation of a guanine base (Floyd, 1990). 

8OG differs from native guanine nucleotides by two atoms: the introduction of an oxygen at 

carbon 8 (C8) and a hydrogen at nitrogen 7 (N7), effectively converting a hydrogen bond 

acceptor, N7, into a hydrogen bond donor (Figure 1.5).  

 

 

 
 
Figure 1.6. Native guanine (left) and 8-oxoguanine (right) after ROS oxidation of the guanine 

base.  
 

 
This DNA lesion has been demonstrated to be both cytotoxic and mutagenic (Kozmin et al., 2005). 

Its mutagenic potential has been well characterized due to its ability to form a stable base pairing 

in both anti- and syn- conformations. In the former conformation, 8OG retains its ability to 

correctly form Watson-Crick hydrogen bonds with cytosine. However, when assuming the syn 
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conformation, 8OG can form a Hoogsteen base pair with adenine, effectively acting as a mimic 

to thymine (Figure 1.6). While many forms of DNA damage reduce or remove the function of 

proper DNA replication, the structural features of 8OG allow it to be erroneously bypassed by 

high-fidelity polymerases (Hsu et al., 2004). As a result, 8OG can mismatch with adenine during 

DNA replication forming an A∙8OG intermediate. Consequently, 8OG becomes a direct source of 

G:C  T:A transversion mutations (Shibutani et al., 1997). Immunoaffinity-based urinalysis 

detected the formation and excision of approximately 100,000 8OG lesions per rat cell per day 

(Park et al., 1992). Furthermore, analysis of 2,500 somatic point mutations in the p53 gene of 

human tumors uncovered GT transversion hotspots and established it as one of the most 

represented mutations (Hollstein et al., 1996).  
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Figure 1.7. (Top) 8OG in the syn conformation highlighting the two stable hydrogen bonds 

that make up the Hoogsteen base pair with adenine. (Bottom) 8OG correctly forming Watson-
Crick hydrogen bonds with cytosine.  
 
 
8OG repair mechanisms. Due to the various endogenous routes giving rise to 8OG, an extensive 

cellular repair pathway exists functioning to maintain the integrity of the genome. 8OG is 

repaired through the base excision repair (BER) pathway (Michaels and Miller, 1992). This cellular 

defense mechanism is catalyzed by three enzymes and has been well characterized in bacteria 

and humans. In bacteria, MutT, MutM and MutY constitute the BER repair pathway, with the 

corresponding human enzymes being MTH1, OGG1 and MUTYH. In the first step, MutT (or MTH1 

in humans), acts to cleanse the free nucleotide pool by hydrolyzing 8O-dGTP, rendering it 

incapable of incorporation into the genome by DNA polymerases (Setoyama et al., 2011; 

Nakabeppu et al., 2006). The two remaining steps utilize DNA glycosylases that attempt to 
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recognize and excise their target nucleotide leaving an apurinic/apyrimidinic site that is identified 

and subsequently repaired by DNA repair machinery. The substrate for MutM (or OGG1 in 

humans) is the 8OG:C base pair, where after recognition, 8OG is everted from the DNA duplex 

and inserted deep into the catalytic pocket allowing hydrolysis of the N-glycosidic bond (David et 

al., 2007). The third enzyme, MutY (MUTYH in humans) acts on the 8OG:A mismatch as its 

substrate, inducing extraction by catalyzing hydrolysis of the N-glycosidic bond between the 

adenine base and its sugar (David et al., 2007). The initiation and subsequent excision of the 8OG 

nucleotide rely heavily on the ability to rotate the DNA backbone and formation of stable 

contacts with neighboring and cross-strand bases.  

 

DNA methylation. DNA methylation is a biological mechanism involving the enzymatic addition 

of a methyl group to a DNA base. In eukaryotes, this chemical modification is essential and is an 

established epigenetic gene regulator. Additionally, DNA methylation has been demonstrated to 

be an important component in cell differentiation, genomic imprinting and X-chromosome 

inactivation. For instance, experiments disrupting DNA methylation caused divergent regulation 

in developmental processes such as X-chromosome inactivation and genomic imprinting (Li, 

2002). Disruption and errors in the methylation process have been linked to numerous  

degenerative diseases, including cancer (Robertson and Jones, 2000). The most frequent 

methylation process occurs at the 5-carbon of a cytosine base, resulting in 5-methylcytosine 

(5MC) (Figure 1.7). Single base resolution maps from human embryonic stem cells and fetal 

fibroblasts reveal 5MC accounts for ~1.5% of genomic bases (Lister et al., 2009). In mammals, 

5MC most commonly occurs at a CpG dinucleotide (shorthand for cytosine-phosphate-guanine), 
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with approximately 70-80% of CpG dinucleotides methylated (Ehrlich et al., 1982). Further, 

methylation of CpG dinucleotides in humans is highly symmetrical, with 99% of dinucleotides 

being methylated on both strands (Lister et al., 2009). DNA methylation is regulated by various 

enzymes, with more than 95% of genomic methylation controlled by two DNA 

methyltransferases (DNMTs): DNMT1, a maintenance DNMT, and DNMT3b, a de novo DNMT 

(Rhee et al., 2002; Balada et al., 2008). Both enzymes catalyze a reaction between cytosine and 

S-adenosyl-L-methionine (SAM) to produce 5MC. DNMT1 is responsible for maintaining DNA 

methylation patterns post DNA replication (Jeltsch, 2006). Following DNA replication, CpG sites 

will only contain a single methylated cytosine. Consequently, hemimethylated CpG sites are the 

preferred substrate for DNMT1, with an approximate 24-fold preference over unmethylated CpG 

sites (Hermann et al., 2004). In contrast, DNMT3b does not hold preference over hemimethylated 

CpG and is responsible for methylation during embryogenesis and early development sites 

(Okano et al., 1998).  
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Figure 1.8. Cytosine methylation occurs when a DNMT catalyzes a reaction between SAM and 

cytosine. As seen on the right, the methyl group is attached to the 5-carbon of the cytosine 
base.  
 

From the earliest nearest neighbor base sequence analysis, it has been apparent that in 

vertebrates, the frequency of genomic CpG distribution is lower than expected from statistical 

prediction (Josse et al., 1961; Swartz et al., 1962). Initial DNA sequencing of the human genome 

detected an average CG content of 41%, therefore, the expected frequency of CpG dinucleotides 

would be ~4.2% (Lander et al., 2001; Venter et al., 2001). However, the observed frequency is 

underrepresented, showing the frequency to be ~1%. This discrepancy can in part be rationalized 

due to spontaneous deamination of 5MC to thymine in vivo (Shen et al., 1994)  

CpG dinucleotides are commonly found in clusters of several hundred base pairs and are referred 

to as CpG islands. In humans, CpG islands are distributed at the 5’-untranslated regions, upstream 

of over 70% of genes. Most often, CpG islands are unmethylated; which is particularly apparent 

in genes which are ubiquitously expressed and required for cellular function (Zhu et al., 2008). 

Consequently, the methylation status of a CpG island is associated with the regulation of 

expression of the downstream gene (Jones et al., 1999). Without proper CpG island 

hypomethylation, expression of essential genes such as tumor suppressor genes can become 
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compromised (Esteller, 2005). Alternatively, genes natively suppressed through CpG island 

hypermethylation can become aberrantly over-expressed.  

 

Enzymatic implications of clustering 8-oxoguanine and 5-methylcytosine. The enzymatic 

reaction between OGG1 and 8OG creates multiple, stable reaction intermediates (Kuznetsov et 

al., 2005). Accordingly, the kinetics of the OGG1 mediated reaction (Figure 1.8) cannot be 

described by a classical Michaelis-Menten scheme.  

 

 
 

Figure 1.9. Kinetic scheme for catalysis by OGG1. k2 is the rate constant for cleavage of the N-
glycosidic bond and k3 is the rate-limiting β-elimination step.  
 

 
The enzymatic rates of 8OG removal by OGG1 have been determined with numerous methylated 

CpG substrates (trans-, cis- and fully-methylated). OGG1 effectively removed 8OG from all 

methylation contexts (Kasymov et al., 2013). However, when the CpG dinucleotide was cis-

methylated, that is, 8OG and 5MC are adjacent; the rate of excision (k2) was reduced by half while 

the rate of product release (k3) showed no significant deviation from unmethylated control. In 

contrast, when OGG1 was introduced to DNA substrate with 5MC opposite to 8OG (both trans- 

and fully-methylated contexts), the rate of k2 was unchanged while k3 was reduced by half. The 

rates for the fully-methylated substrate are consistent with the trans-methylated substrate.  
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The introduction of 8OG into a CpG site has been determined to drastically affect the in vitro 

methylation rates of murine DNA methyltransferase DNMT3a (Maltseva et al., 2009) and 

bacterial HpaII methylase (Weitzman et al., 1994). The introduction of 8OG immediately 

downstream of the target cytosine on a hemimethylated CpG substrate reduced the rate of 

methylation 25-fold. On the other hand, when 8OG was inserted directly across from the target 

cytosine, a 1.8-fold acceleration in methylation rates was observed. In human DNMT1, a similar 

but less drastic effect was observed; with up to a 13-fold reduction in methylation rates in the 

presence of downstream 8OG (Turk et al., 1995). It is hypothesized that the downstream 8OG 

inhibits selective binding from steric repulsion between O8 of 8OG and key binding residues of 

the methyltransferases. (Maltseva et al., 2009) 

 

Under physiological conditions, the steady state level of 8OG in the human genome is estimated 

to be 0.5-5 8OG per 106 guanine nucleotides (ESCODD, 2002). This level may dramatically increase 

with exposure to environmental oxidative stress and as a result of many diseases. As CpG 

dinucleotides represent a frequency of ~1% of all nucleotide pairs and the magnitude of each 

human diploid cell is estimated to be ~6x109 nucleotide pairs, each cell would, therefore, contain 

6x107 CpG dinucleotides. Consequently, each diploid cell can be estimated to have several 

hundred CpG dinucleotides that harbor 8OG lesions. In mammals, up to 80% of all CpG sites are 

methylated, making the introduction of 8OG to a methylated CpG a biologically significant 

occurrence.  
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Importance of DNA structure and dynamics for enzymatic recognition. The capacity for proteins 

to selectively recognize DNA sequences is the foundation for biological regulation and repair. 

Sequence-specific recognition was found to occur through hydrogen bonding on the amino acid-

DNA base interface (Seeman et al., 1976). It is acknowledged that proteins can distinguish base-

sequence identity in the major groove utilizing at minimum two hydrogen bond interactions 

(Seeman et al., 1976). Analysis of 3D structures of protein—DNA interfaces within the last decade 

revealed that binding specificity is often reliant on insertion of positively charged side chains into 

the narrower minor groove, which interact with the negatively charged phosphate groups (Rohs 

et al., 2009). Although protein—DNA interfaces most often rely on positively charged contact 

surfaces, some proteins use helix-dipole interactions to stabilize phosphates along the DNA 

minor groove. Figure 1.9a displays the full crystal structure solved by (Bruner et al., 2000) of 

OGG1 bound to its 8OG-containing DNA substrate. Four residues (Cys 253, Gln 315, Phe 219 and 

Gly 42) make up the catalytic pocket, which sample the everted nucleotide (Figure 1.9b). The 

phosphate backbone is stabilized by a lone basic residue (His 270). Unlike many other DNA-

protein complexes, helix-dipole interactions form the bulk of the protein—phosphate contacts.  

Tyr 203 is inserted into the middle of the duplex acting as a wedge, helping increase the total 

bend and kink of the DNA substrate. Finally, Asn 149 directly stabilizes the cytosine cross-strand 

from the everted 8OG.  
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Figure 1.10. (a) Full crystal structure (2.1 Å resolution) of OGG1 bound to 8OG containing 
substrate (PDB ID 1EBM). 8OG is seen everted out of the DNA duplex and into the catalytic 
pocket of OGG1 (b) Depiction of the OGG1—DNA interface. 8OG is in red, 5MC in blue. 
Hydrogen bonds are shown with blue lines. Helix-dipole interactions include Gly 245, Val 250 

and Gln 249 Both images were produced using the UCSF Chimera package. 
 
 
DNA regulatory glycosylases and methyltransferases seek out their respective substrates 

through facilitated diffusion, in a Brownian manner, sliding along the DNA backbone and 

sampling stretches of DNA during a single binding event (Hedglin et al., 2014; Jeltsch, 2006). 

Therefore, the hydrogen bonding stability, solvation, ion-directed contacts, electrostatics, steric 

hindrance, base-pair/-step geometries and conformational dynamics of the DNA duplex at the 

local level are all important determinants for enzyme substrate discrimination. For instance, the 

base pair and backbone dynamics are integral features for recognition of uracil in DNA by uracil 

DNA glycosylase (Parker et al., 2007), which are hypothesized to play critical roles for damage 

recognition by similar DNA glycosylases.  
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The introduction of 8OG has been shown to decrease the thermal stability of the DNA duplex, 

with only minor local structural perturbations located on the backbone (Singh et al., 2011). 

Nevertheless, 8OG is efficiently detected and repaired through the BER pathway. While the 

reaction intermediates of base excision have been well characterized (Kim and Wilson III, 2012), 

it remains unclear how DNA N-glycosylases are able to locate the 8OG nucleotides within the vast 

sea of undamaged G bases. Solid-state NMR experiments previously determined that structural 

alterations from cytosine methylation are somewhat more pronounced. This includes narrowing 

of the minor groove and reduction in the amplitudes of motions in the sugar-phosphate 

backbone (Geahigan et al., 2000). Furthermore, it has been demonstrated that the thermal 

stability of the DNA duplex is increased with the addition of 5MC (Rodríguez López et al., 2010).  

It is apparent that DNA binding proteins are able to establish specificity using a unique variety of 

stabilizing interactions, all dependent on the local and global conformations of the DNA 

substrate. As DNA is a highly flexible molecule, these conformations fluctuate, on different 

timescales. Motions such as backbone transitions and fluctuations in helicoidal geometries are 

fast and happen on the picosecond to nanosecond timescale (Trieb et al., 2004; Pérez et al., 

2007). In contrast, fluctuations in base-pair openings, which are critical for base flipping, are 

much slower, occurring on the millisecond timescale (Coman and Russu, 2005). Fast motions in 

DNA on the femtosecond to nanosecond timescale have been probed by a multitude of 

experiments including FTIR spectroscopy (Rüdisser et al., 1997) and fast field cycling NMR 

relaxometry (Roberts et al., 2004). Millisecond timescales can be probed with NMR, evaluating 

imino proton dynamics (Coman and Russu, 2005; Bhattacharya et al., 2002). Results from these 

experiments have all been corroborated with molecular dynamics simulations on DNA sampling 
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motions from nanosecond to more recently millisecond timescales (Dans et al., 2016; Galindo-

Murillo et al., 2014).  

 

Research aims. Recognizing the apparent alteration of kinetic rates for 8OG base extraction by 

OGG1 (Kasymov et al., 2013) on trans-, cis- and fully-methylated CpG substrates, as well as the 

perturbation of methylation efficiency of DNA methyltransferases (Weitzman et al., 1994; 

Maltseva et al., 2009), presents the need to investigate clustering of these modifications in more 

detail. Specifically, the lack of information regarding the thermal stability, structural 

perturbations and all-atomic motions of DNA duplexes containing clustered 8OG and 5MC 

prompted this investigation. We probed for structural perturbations as well as base dynamics 

with solution NMR spectroscopy and evaluated the thermodynamic stability through UV 

spectrophotometry of duplexes with CpG sites containing all biologically relevant methylation 

and oxidation patterns. Finally, to investigate dynamics differences on the ps -ns timescale, we 

evaluated the all atomic motions of the duplexes using free molecular dynamic simulations.  
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Chapter II – Methodology 
 
Sample Design. In total, twelve synthetically constructed DNA duplexes based on the Drew-

Dickerson dodecamer (DDD) (Drew et al., 1981), a de facto A/B DNA standard were analyzed. 

Each sample contains a different oxidation, methylation or oxidation+methylation pattern. The 

list of samples is presented in Table 2.1. This table includes the naming convention that will be 

used for each sample throughout the remainder of the manuscript along with the associated PDB 

deposition ID solution NMR structure determination. Oligonucleotides mC3, mC9 and mC3/mC9 

were purchased from Midland Certified Reagent Co. whereas the remaining were synthesized 

using commercially available phosphoramidites (Glen Research, Sterling, VA) in the lab of our 

collaborator Dr. Dmitry Zharkov (Institute of Chemical Biology and Fundamental Medicine, 

Novosibirsk, Russia). The samples were designed to gain insight for clustering of oxidation and 

methylation. Due to the palindromic nature of the DNA sequence, the designed modification 

exists twice for each sample. Sample logic is presented in Figure 2.1.  

 
Sample name methylation with respect to 

8OG 

PDB 

ID 

Sequence 

DDD*  1BNA d(C1 G2 C3 G4 A5 A6 T7 T8 C9 G10 C11 G12) 
oxoG4 - 5IV1 d(CGC(oxoG4)AATTCGCG) 

oxoG10 - 5IZP d(CGCGAATTC(oxoG10)CG) 
mC3 - 5L06 d(CG(mC3)GAATTCGCG) 
mC9 - 5L2G d(CGCGAATT(mC9)GCG) 

mC3/mC9 - 5TMI d(CG(mC3)GAATT(mC9)GCG) 
mC3/oxoG10 trans  5UZ1 d(CG(mC3)GAATTC(oxoG10)CG) 
mC9/oxoG4 trans 5TRN d(CGC(oxoG4)AATT(mC9)GCG) 
mC3/oxoG4 cis  d(CG(mC3)(oxoG4)AATTCGCG) 

mC9/oxoG10 cis 5UZ3 d(CGCGAATT(mC9)(oxoG10)CG) 
mC3/mC9/oxoG4 full  d(CG(mC3)(oxoG4)AATT(mC9)GCG) 

mC3/mC9/oxoG10 full 5UZ2 d(CG(mC3)GAATT(mC9)(oxoG10)CG) 
 
Table 2.1. Sequences of oligonucleotides used in this study.  
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Figure 2.1. Sample logic highlighting the methylation and oxidation pattern for each control 

and target sample. Blue is oxidation; red is methylation. 
 

 
Thermal denaturation. Melting temperatures for all sampled duplexes were determined by UV-

Vis spectrophotometry in the lab of Dr. Dmitry Zharkov.  



23 
 

NMR spectrometers. NMR data were recorded on Bruker AVANCE III and Avance III HD 

spectrometers operating at proton Larmor frequencies of 500, 600, 700 and 850 MHz and 

equipped with 5 mm probes (Prodigy TCI cryoprobes and room temperature SmartProbes).  

NMR sample preparation. DNA samples were prepared from lyophilized solid with a buffer 

comprised of 10 mM sodium phosphate (pH 6.8), 50 mM NaCl, 1 mM EDTA and 0.3-1.1 mM 

oligonucleotide. The pH of the solution was adjusted to 6.8 with NaOH and HCl without regard 

for the DHO effect. The aqueous solvent consisted of either H2O + D2O at a 9:1 ratio or 99.9% 

D2O. When required, solvent exchange between D2O and H2O was performed on either an Air 

Products CSW-202 Displex Cryogenic Refrigerator or a Labconco FreeZone 2.5 freeze dryer. 

Approximately 500 µL DNA samples were prepped for lyophilization by flash freezing in liquid 

nitrogen. Freeze drying was completed overnight or until visual inspection revealed no remaining 

ice in the sample tube. Following lyophilization, rehydrated DNA samples were annealed to 

ensure proper hybridization. A microfuge tube containing the DNA sample was incubated on a 

heat block at 95 °C for 5 minutes. Following incubation, the sample was left to cool to room 

temperature prior to data collection.  

DNA purification. Trace impurities from chemical synthesis were commonly found through initial 

1D-1H NMR experiments. To remove residual impurities, samples were loaded onto a HiPrep 

16/60 Sephacryl S-100 HR size exclusion column (GE Healthcare Life Sciences) and fractionated 

at a flow rate of 0.5 mL/min using fast protein liquid chromatography (FPLC—ÄKTA Prime Plus). 

The buffer used during FPLC was 10 mM sodium phosphate (pH 6.8), 50 mM NaCl and 1 mM 

EDTA. Following FPLC, fractions containing DNA were pooled and concentrated to receive 

adequate NMR signature. Concentration was achieved using pre-rinsed (to remove trace 
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glycerin) 3 kDa MW cutoff 15-mL Amicon centrifugal filters. Centrifugation was carried out at 

4000 x g in 8 min intervals. DNA concentration was determined at 260 nm using micro-volume 

UV-Vis spectrophotometry on a BioTek Epoch Microplate Spectrophotometer.  

1-Dimensional NMR spectroscopy. 1D 1H spectra for temperature profiles were recorded for 

each sample starting from 333 K to 278 K in 5 K decrements. Phase correction, baseline correction 

and NMR line width analysis was conducted using MestReNova version 10.0. The resonance line 

position of H2O was used as chemical shift reference for all proton spectra with the values 

corrected for each temperature (Gottlieb et al., 1997). For the 1D 1H data recorded at 500 MHz, 

600 MHz and 700 MHz experiments, 65536 (64K), 98304 (96K) and 131072 (128K) data points 

respectively were collected to deliver a digital resolution of 0.11 - 0.15 Hz per data point; For 

each spectrum, 1024 scans were acquired to obtain sufficient sensitivity (S/N). Solvent peak-

suppression was performed using excitation sculpting with the pulse program ‘zgesgp’. The 

homogeneity of the magnetic field was optimized at each temperature point by shimming along 

x, y and z axes. In total, 132 individual experiments were conducted. With each experiment taking 

approximately 2 hours to complete, manual adjustment at each temperature point was 

impractical. Therefore, a TopSpin AU macro was written to automate the process (Appendix 

Script 1). 

2-Dimensional NMR spectroscopy. The standard set of 1H-1H and 1H-31P 2D data was collected 

and utilized for the solution NMR structure determination (Hare et al., 1983). A combination of 

TOCSY and NOESY (70/90, 140, 200 and 260 ms mixing times) allowed us to perform the NMR 

resonance assignment. For the solution structure determination, the NOE distance restraints and 

backbone conformational restraints (BI vs. BII ranges) from 1H-31P HETCOR were utilized. Watson-
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Crick hydrogen bonding was verified using 1H-1H NOESY spectra recorded in 10% D2O. NMR data 

were processed with NMRPipe (Delaglio et al., 1995) and visualized using NMRDraw from the 

NMRPipe package and NMRViewJ (Johnson, 2004).  Figures of NMR spectra were produced using 

MestReNova. NOESY cross-peak assignment was performed using the standard procedure (Hare 

et al., 1983).  

Nuclear Overhauser effect H-H distance calibration. Generation of distance restraints were 

derived from NOESY cross-peak intensities. NOE peak volumes were obtained through 

integration in NMRViewJ. The CYANA 2.1 (Güntert, 2004) program was used to calibrate 

conformational distances. The fixed cytosine H5-H6 distance (2.5 Å) was used as internal 

reference to determine the quality of the calibration. Following calibration of each of the four 

mixing time NOESY experiments, cross-peaks present to sufficient intensity in > 1 NOESY spectra 

had their associated distances averaged. Cross peaks not present in multiple NOESY spectra were 

kept as non-averaged distances.  

Conformational restraints for simulated annealing. Calibrated NOE derived distances were 

binned into four groups based on distance: < 3.0 Å, 3.0-5.0 Å, > 5.0 Å, and a fourth group 

contained distances involving methyl groups as their NOE peak volumes are saturated with three 

proton resonances. Each grouping was assigned an upper and lower distance tolerance. Distances 

less than 3.0 Å were given a tolerance of 0.50 Å, those between 3.0-5.0 Å were assigned 0.70 Å 

and 0.90 Å for distances greater than 5.0 Å. Methyl groups were treated as heteroatoms . 

Grouped distances were transformed into AMBER input format with an in-house python script. 

Watson-crick hydrogen bonding distances were obtained from (Saenger, 1984) and given a 

tolerance of 0.10 Å. Dihedral angle values were taken from (Arnott and Hukins, 1972). Epsilon 
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and zeta torsion angles for 3’-phosphates of 8OG nucleotides were restrained in BII conformation 

(ε-ζ > 20°) when 1H-31P resonances indicated BII phosphate conformation. Angles defining sugar 

rings were not restrained. 

AMBER driven simulated annealing. NMR refinement was performed using the sander program 

in AMBER 14 (Case et al., 2005; Pearlman et al., 1995) in which minimization and simulated 

annealing were carried out in the generalized Born (Still et al., 1990) electrostatic continuum. A-

form and B-form starting structures for each system were built using nucleic acid builder (NAB) 

from AmberTools 15 and parameterized using the AMBER ffOL15 force field (Zgarbova et al., 

2015). The libraries for parameters and topology were generated in-house for 8OG (Cheng et al., 

2005) and 5MC (Lankaš et al., 2002) nucleotides. 8OG and 5MC nucleotides were manually edited 

in the starting structure PDB files and the resulting structure was subjected to 1000 cycles of 

energy minimization with 500 steps using the steepest decent algorithm. The force constant for 

lower and upper bounds of 32 kcal mol-1 deg-2 was set to all restraints excluding the backbone 

angles epsilon and zeta which were set to 512 kcal mol -1 deg-2. A total of 18 (9 for each A- and B- 

form starting structures) restrained molecular dynamics simulations were performed with 

varying target temperatures (580 K, 600 K and 620 K) and simulation times (205 ps, 215 ps and 

225 ps). Temperature was controlled using the Berendsen coupling algorithm (Berendsen et al., 

1984). The temperature of the system was increased rapidly from 0 K to the target temperature 

and held for 5 ps with a coupling constant of 0.4 ps. The weight of the restraints was gradually 

increased from 0.1 to 1.0 over the first 3 ps. The system remained at the target temperature 

(coupling constant of 4 ps) for 90 ps, 100 ps or 110 ps dependent for increasing total simulation 

times. The temperature bath was gradually cooled from the target temperature to 100 K over 
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100 ps with a coupling constant of 4 ps. To complete the simulated annealing the system was 

then rapidly cooled to 0 K over 10 ps while tightening the coupling constant from 1.0 to 0.05 ps. 

The refined structures were subjected to a final 1000 cycles of energy minimization. The 

ensemble of structures was determined based on lowest conformational penalty/energy values. 

A representative structure was built by averaging the lowest energy models and subjecting the 

resulting structure to energy minimization. Ensemble visualizations and RMSD calculations were 

carried out in VMD (Humphrey et al., 1996). Ensemble models were built using the UCSF Chimera 

package (Pettersen et al., 2004).  

 

Free molecular dynamics simulations 

System initialization. The starting structure for each system was the B-form initial structure used 

for NMR refinement. Each structure was parameterized with the AMBER ffOL15 force field: a 

recently developed force field that combines ff99bsc0 with three angle modifications (ε/ζOL1, χOL4, 

and βOL1). Each system was neutralized with 22 Na+ ions using CPPTRAJ (Roe et al., 2013) from 

AmberTools 15. Approximately 5000 explicit solvent molecules were added using the SPC/E 

water model (Berendsen et al., 1987) in truncated octahedral boxes. Additional Na + and Cl- ions 

were added for a final excess salt concentration of approximately 150 mM using Joung and 

Cheatham parameters (Joung and Cheatham III., 2008). Initial placement of excess ions was 

randomized using CPPTRAJ by swapping water and ion positions such that no ion was closer than 

4 Å to another ion and that all ions were at least 6 Å away from the DNA duplex. 

System minimization and equilibration. Each system followed the same minimization and 

equilibration protocol. Initially, the DNA atoms were held fixed. To eliminate Van der Waals 
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clashes, the solvent molecules and ions were subjected to 500 steps of the steepest descent 

minimization. Subsequently, 500 steps of conjugate gradient minimization, with a force constant 

of 500 kcal/mol-Å2 applied to the solute molecule. Next, the whole system was minimized with 

1000 steps of the steepest descent followed by 1500 steps of conjugate gradient minimization 

without restraints. Heating was completed over 20 ps at constant volume from 0 K to 300 K with 

weak positional restraints (10 kcal/mol-Å2) applied to the DNA molecule. A 2 fs time step was 

used and a weak coupling thermostat were used to control temperature, with a collision 

frequency of 1.0 ps-1. SHAKE (Ryckaert, 1977) was used to constrain bonds involving hydrogen 

atoms, with a tolerance of 0.002. A 9 Å cutoff was used for non-bonded interactions and Particle 

Mesh Ewald (PME) was used to handle long range electrostatics. Final ly, 100 ps of MD was run at 

300K with no restraints and constant pressure to relax the density of water. All other parameters 

were retained from the previous equilibration.  

Production molecular dynamics. Production MD simulations were run for 600 ns using graphics 

processing (GPU) code with the PMEMD.cuda implementation of SANDER from Amber14 on an 

NVIDIA GTX 970 GPU. Simulations were held at constant pressure (1 atm) periodic boundaries  

and 300K using Berendsen coupling constants of 5.0 ps. Long-range interactions were calculated 

with PME.  A 2 fs integration time step was used. Simulation coordinates were recorded every 1 

ps. Twelve 600 ns simulations accumulated approximately 800 gigabytes of raw data before any 

post production processing occurred.  

Trajectory analysis. The first stage of trajectories analysis was performed with CPPTRAJ, where, 

the structural stability of the simulation was examined in terms of RMSD vs simulation time. 

RMSD figures were generated and running averages were calculated using  the XMGRACE 
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program (http://plasma-gate.weizmann.ac.il/Grace/). RMSF per nucleotide was calculated using 

CPPTRAJ and plotted with GNUPLOT (Williams et al., 2012). After, the first 45 ns of each 

simulation was removed as equilibration giving 555 ns total s imulation time for each sample to 

analyze. This step also worked to remove water molecules from the trajectory. Next, the raw 

angle data for backbone and sugar pucker torsions was retrieved using CPPTRAJ. Raw ε and ζ 

angle data was further processed and the BI/BII phosphate conformation ratio was calculated 

using an in-house python script. Average residence times and transition occurrences were 

calculated with respective in-house python scripting. The dihedral angles α and γ ratios were 

calculated using pytraj. Sugar puckers angles were binned, normalized and graphed using 

XMGRACE. The truncated trajectory was further analyzed to extract raw base-pair and base-pair 

step geometries followed by an in-house python script. The CpG site (C3-G22pG4-C21) was 

analyzed by PCA for each sample using CPPTRAJ. Only heavy atoms were used in the analysis by 

removing all other nucleotides outside of the target CpG. Global rotational and translational 

movements were removed by subjecting each frame of the trajectory to a RMS-fit against the 

overall average CpG coordinates. Psuedo-trajectories were built by projecting the averaged CpG 

coordinates over each principal component. Visualization of the pseudo-trajectory was 

accomplished using the UCSF Chimera package (Pettersen et al., 2004). Porcupine plots were 

generated using the normal mode wizard plugin for VMD. 
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Chapter III – NMR solution structure, thermal stability and 
base dynamics of DNA duplexes 
 

Introduction to NMR 
 
Solution nuclear magnetic resonance (NMR) is a technique used to gain site-specific insight at the 

atomic resolution on biomolecules. Since 1967, NMR has been used to study proteins and nucleic 

acids. Trends from the protein data bank (PDB) (Bernstein et al ., 2000) indicate that the number 

of biomolecular structures solved using NMR increased substantially within the last two decades. 

The reliability of NMR for determining 3D structures was significantly increased with the 

development and rapid improvements of heteronuclear (e.g., 13C, 15N, 2H) NMR applications (Bax, 

1994). One of the major advantages of solution NMR is that it allows detection of behaviors of 

biomolecules that are more synonymous to in vivo conditions. NMR relies on the magnetic 

moment proportional to the spin of atomic nuclei. Upon delivery of a constant external magnetic 

field by the spectrometer, two spin energy states exist. “spin +1/2” nuclei are lower energy and 

are aligned with the magnetic field while the higher energy “spin -1/2” nuclei oppose it. Then, 

the sample is irradiated by a radio frequency pulse sequence that corresponds to the energy 

difference (proportional to the magnetic moment) between the two spins, inducing an energy 

transfer between the +1/2 spin -1/2 spin states. Free induction decay, or the nuclear magnetic 

resonance signal, is generated from the precession of the excited spins around the magnetic field 

axis. This signal is recorded as electric current in detection coils and decomposed into a spectrum 

of frequencies through Fourier transformation (Cavanagh et al., 1995).  Structural information 

about the sample of interest can be obtained from various nuclear spin interactions  affecting the 

spectral features, which include: 
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Chemical shift. The chemical shift is defined as the resonance frequency of the nucleus and is 

dependent on the type of nucleus that is resonating and its covalent and local magnetic 

environment. Therefore, chemical shift values help to uncover the geometry of the dihedral 

angles. 

J-coupling interactions. J-couplings arise from through-bond (“scalar”) interactions between two 

nuclear spins which propagate via the shared electrons of the covalent bonds. These interactions 

help to delineate the covalent structure of the biomolecule and assign NMR chemical shift values 

to specific atoms. TOCSY and COSY and their heteronuclear analogs (e.g. HETCOR) are typical 

NMR experiments reporting J-coupling interactions. 

Dipole-dipole interactions. Dipole-dipole coupling refers to the magnetic interaction of two spins 

that are in close proximity. The internuclear interaction between two spins is  proportional to 
1

𝑟6
 , 

where r is the distance between two nuclei undergoing cross-relaxation (nuclear Overhauser 

effect, NOE). Thus, these interactions are highly valuable in obtaining internuclear distance 

information as restraints for structural determination. NOESY and ROSY are typical NMR 

experiments reporting dipolar-coupling interactions. 
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Results 
  
NMR characterization of the DNA duplexes. Our lab has determined solution structures of 11 

duplex DNA samples derived from the Drew–Dickerson dodecamer sequence listed in Table 2.1. 

This thesis will focus on the NMR refinement statistics for all samples presented in Figure 2.1, 

specifically looking for effects of clustering 5MC and 8OG. The composition of the 2D 1H and 31P 

resonance lines on the recorded NMR spectra indicates that each sample adopts a single A/B-

DNA conformation. The peak patterns for the 2D NOESY spectra recorded in 99.9% D2O for all 

the samples are analogous to the NMR signature of d(CGCGAATTCGCG)2 (Hare et al., 1983). 

 

Exchangeable proton resonances. The 2D NOESY spectra recorded in 90% H2O confirmed 

Watson-Crick type hydrogen bonding within all the base pairs for all samples. Shown in Figure 

3.1 are the internal G-C and A-T imino resonances for mC3/oxoG4 (spectra for all other samples 

was omitted). The terminal GC pairs were either low intensity or absent due to fast exchange 

with H2O. The imino protons were assigned by referencing cytosine H5/H6 and adenine H2 base 

protons in the D2O NOESY. Additionally, a low intensity NOE between G4 H1 and A5 H2 allows 

discrimination between adenine 5 and adenine 6 resonance signatures  as well as allow 

independent assignment of guanine 4 (Figure 3.1). Watson-Crick base pairing for GC pairs was 

substantiated from NOE connectivities between guanine H1 protons and cytosine H41/H42 

protons. Moreover, canonical hydrogen bonding for TA pairs was verified by NOE connectivities 

between thymine H3 and adenine H2 protons.   
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Figure 3.1. 1H-1H NOESY in 10% D2O. The experiment was conducted on mC3/oxoG4 at 600 MHz 
at 279 K with a 200ms mixing time. G-C and A-T NOE patterns indicate Watson-Crick base 

pairing. Red bar highlights the G4-A5 NOE. 
 
 

Non-exchangeable proton resonances. The 2D NOESY spectra recorded in 99.9% D2O (Figure 

3.2a) delivered a sufficient density of 1H-1H NOE restraints for every sample and target CpG site 

within the samples (Table 3.1). NOE assignment was initiated with the identification of cytosine 

H5-H6 NOEs and mapping the connections between non-exchangeable H8/H6 base protons and 

sugar H1’ protons (Figure 3.2b), in a region deemed the “walk”. Beginning with the cytosine H5-

H6 NOE, H8/H6 base protons to H1’ sugar NOEs were identified in the sequential manner 

(n)H8/H6-(n)H1’-(n+1)H8/H6-(n+1)H1’, where n is the nucleotide number. Sequential base-H1’ 

connectivities involving 8OG were disrupted for all samples containing 8OG due to the loss of the 
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aromatic H8 proton. The remaining NOEs involving base-sugar protons were then assigned by 

moving stepwise upfield along the base proton signal and assessed based on NMR statistics for 

DNA in the Biological Magnetic Resonance Data Bank (BMRB). All remaining cross peaks were 

then assigned based off the initial base-sugar assignments. Adenine A5 showed cross-peaks 

involving its H2 to H1’ protons belonging to A5 and A6. The presence of these NOEs further 

indicates the DNA duplex samples adopt right-handed conformations.  All intra-residue H5-H6 

cross-peaks were high intensity, dominating the “walk” region and at lower mixing times these 

NOEs displayed COSY-like patterns. Of the base-sugar proton interactions, the H8/H6-H2’ cross 

peaks were the highest intensity indicating all bases were in the anti-conformation. All 8OG-

containing samples presented the characteristic spectral features: absence of purine H8 NOESY 

cross-peaks, downfield shift of H2″ (> 2.33 ppm), and presence of peaks involving HN7. Samples 

containing 5MC displayed the following unique attributes: absence of the cytosine H5-H6 NOE in 

the “walk region”, an upfield shift on the base H6 1H signal and additional high intensity methyl 

NOEs present upfield.  
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Figure 3.2. (a) 1H-1H NOESY of mC3/oxoG4 in 99.9% D2O at 298 K. Data collected at 600 MHz. Red 
arrow indicates the order of analysis during NOE assignment. (b) The “walk” base—sugar 
proton connectivities. Blue arrows indicate inter-base—sugar NOEs. Red arrows show intra- 
sugar—Base NOEs. Circled is the cytosine 1 H5-H6 NOE. 
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Sample  NOEs for entire sample NOEs for target CpG sites 

oxoG4 379 140 

oxoG10 462 188 

mC3 404 154 

mC9 328 138 

mC3/mC9 329 112 

mC3/oxoG10 404 134 

mC9/oxoG4 372 124 

mC3/oxoG4 336 108 

mC9/oxoG10 348 120 

mC3/mC9/oxoG4 376 130 

mC3/mC9/oxoG10 416 172 

 

Table 3.1. Number of assignable NOEs from 1H-1H NOESY recorded in 99.9 % D2O for each 
sample 
 

Insights into backbone conformation populations with 31P NMR. The backbone conformation 

was probed with 1D 31P and 2D 31P-1H NMR for all samples. Figure 3.3 displays the 31P-1H HETCOR 

for mC3/mC9/oxoG4 (spectra for remaining samples excluded). Assignment of the phosphorous 

signals between the sugar protons H3’/H4’ and the backbone P was established with reference 

to the D2O NOESY and TOCSY (omitted) spectra via J-coupling. Both 1D (not shown) and 2D 31P-

1H NMR spectra show the majority of 31P resonances clustered within ~0.5 ppm (Table 3.2, Figure 

3.3) for all samples as previously reported for the unmodified sequence (Ott and Eckstein, 1985). 

The 31P peaks from the 8OG phosphate groups were shifted downfield by ~0.15-0.44 ppm from 

the cluster of other 31P lines in every 8OG-containing sample (Table 3.2).  The downfield chemical 
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shift value of the 8OG 31P resonance indicates a significant population of BII backbone 

conformation (Nikonowicz et al., 1989; Thiviyanathan et al., 2003) unlike the BI conformation of 

all other nucleotides. This prompted our restraints for the 8OG epsilon and zeta angles, and all 

refined structures exhibit the BII conformation for nucleotides containing 8OG.  

 

 

Figure 3.3. 2D 1H-31P NMR spectrum on mC3/mC9/oxoG4. The spectrum was recorded at 295 K 
on a spectrometer operating at 600 MHz. The shifted 31P signature from 8OG is observed 
downfield from the major spread of phosphorous resonances.  
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Sample 31P spread excluding 8OG 

(ppm) 

8OG  31P chemical shift from spread 

(ppm) 

oxoG4 0.57 0.15 

oxoG10 0.47 0.35 

mC3/oxoG10 0.50 0.37 

mC9/oxoG4 0.57 0.24 

mC3/oxoG4 0.74 0.14 

mC9/oxoG10 0.52 0.44 

mC3/mC9/oxoG4 0.81 0.27 

mC3/mC9/oxoG10 0.54 0.44 

 

Table 3.2. 31P chemical shift spread for all samples with an oxidized guanine. A downfield shift 
of at least 0.14 ppm for all 8OG 31P resonances.  

 
 
Solution NMR structures of control and target duplexes. For each sample, an ensemble of 

lowest-energy structures was derived from rMD simulations and all eleven NMR ensembles are 

displayed in Figure 3.4a and 3.4b. The overall statistics for the final structural refinements for all 

samples is provided in Table 3.3.  The greatest NOE restraint violation observed for any model 

was 0.35 Å and dihedral violations did not exceed 17.6°. Within each refined ensemble, the 

largest pairwise backbone RMSD value did not exceed 1.06 Å. Overall, our structures are highly 

homologous to one other, with an average backbone RMSD of 1.07 Å between the representative 

models, as well as to known DDD structures (PDB 1BNA, 355D and 1NAJ) with a backbone RMSD 

range of 1.26–3.8 Å across all samples. All samples containing 8OG show their backbone 

conformation 3’ to 8OG in the BII conformation in accordance with 31P NMR resonances.  
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Analysis of the base-pair step geometries showed structural differences between target and 

control samples were minor and generally localized at and near their respective modification. 

Specifically, incorporation of 8OG at either G4 or G10 induces local unwinding (as indicated by 

twist and tilt) at the C3pG4 and C9pG10 base pair steps. Previous reports on DNA structures  

containing 8OG present mixed results in regard to local unwinding. For instance, 8OG has been 

shown to cause local unwinding at the site of modification (Thiviyanathan et al., 2003) while 

others were unable to detect significant local distortions (Crenshaw et al., 2011). All other base-

pair steps did not show noteworthy structural differences. A general trend can be identified 

where 8OG lowers the twist (Figure 3.5a) value by up to 10° versus samples containing solely 

cytosine methylation (samples mC3, mC9 and mC3/mC9). The twist value for mC3/oxoG4 is divergent 

from the trend, showing an elevated twist value by several degrees above the res t. In addition, 

values of tilt (Figure 3.5b) within the target CpG base pairs are generally decreased for the C3pG4 

step and increased for the C9pG10 step upon clustering 8OG and 5MC, with respect to 

methylated only samples.  
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Sample Number 

of models 

in 

ensemble 

Greatest 

backbone 

RMSD  

within 

ensemble 

(Å) 

Backbone 

RMSD range 

between  

representative 

models (Å) 

Greatest 

NOE  

Violation 

(Å) 

Greatest angle 

violation (deg.) 

oxoG4 13 0.66 1.20-1.86 0.07 7.49 

oxoG10 14 0.87 1.13-2.05 0.10 10.19 

mC3 8 0.89 0.62-2.22 0.03 17.6 

mC9 8 0.69 0.62-2.34 0.17 13.5 

mC3/mC9 10 0.71 0.89-2.10 0.04 13.2 

mC3/oxoG10 11 0.80 1.07-2.23 0.08 15.1 

mC9/oxoG4 11 0.85 1.52-2.35 0.14 12.5 

mC3/oxoG4 10 0.80 1.08-2.26 0.19 11.3 

mC9/oxoG10 9 1.06 0.88-2.36 0.07 13.7 

mC3/mC9/oxoG4 10 0.68 1.17-1.96 0.35 8.9 

mC3/mC9/oxoG10 13 0.84 0.90-1.82 0.09 15.9 

 

Table 3.3. Statistics for final structural refinements on all control and target samples.  
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Figure 3.4a. Solution NMR ensembles of oxoG10, oxoG4, mC9, mC3, mC3/mC9. 5MC nucleotides are 
colored blue and 8OG nucleotides are colored red. The ensembles display high regularity 

between samples. 
 

 
 



42 
 

 
Figure 3.4b. Solution NMR ensembles of mC9/oxoG4, mC3/oxoG10, mC3/oxoG4, mC9/oxoG10, 
mC3/mC9/oxoG4 and mC3/mC9/oxoG10. 5MC nucleotides are colored blue and 8OG nucleotides 

are colored red. The ensembles display high regularity between samples.  
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Figure 3.5. Twist (a) and tilt (b) base-pair step parameter measured for all solution NMR derived 

structures. The base-pair steps C3pG4 and C9pG10 are shown. 
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Thermodynamic stability of the DNA samples by UV absorbance. The thermal denaturation of 

all samples was monitored optically through UV spectrophotometry at 260 nm. The melting 

temperatures (Tm) for all samples are shown in Table 3.4. The Tm values generally follow an 

expected trend: incorporation of 8OG drives Tm down while addition of 5MC increases the 

thermal stability of the DNA duplexes. However, in some instances, clustering of 8OG and 5MC 

results in novel effects. For example, single-methylation of oxidized CpG (trans- for G4 and cis- 

for G10) lowers the overall thermodynamic stability versus the control samples containing lone 

8OG.  

 

Sample  Tm (°C) 

DDD*  66.6 ± 0.6 
oxoG4  49.6 ± 1.1 

oxoG10  51.3 ± 1.1 
mC3  68.0 ± 0.4 
mC9  68.1 ± 0.2 

mC3/mC9  66.3 ± 1.1 
mC3/oxoG10  51.6 ± 0.5 
mC9/oxoG4  46.6 ± 0.3 
mC3/oxoG4  50.4 ± 0.7 

mC9/oxoG10  48.3 ± 0.4 
mC3/mC9/oxoG4  56.9 ± 3.0 

mC3/mC9/oxoG10  56.0 ± 2.5 
 

Table 3.4. Thermodynamic stability of the duplex DNA samples determined by UV absorbance. 

Addition of single methylation in trans- (bold) and cis- (underlined) configurations lowers Tm 

versus respective controls containing lone 8OG modifications.  

 
 
Imino proton NMR line widths and base dynamics. Imino proton resonance assignment for each 

oligonucleotide was verified using imino-imino cross peaks from 90% H2O/10% D2O 1H-1H NOESY 

(Figure 3.1). A 1H-NMR spectrum highlighting the imino NH resonances and the 8OG NH7 
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resonance is shown in Figure 3.6. Five resonances were detected between 12.5 and 13.7 ppm for 

all samples. The two most downfield shifted peaks belong to thymines T7 and T8 while the 

remaining three belong to guanines G2, G4 and G10. Guanine G4 and G10 imino proton NMR 

linewidths (Hz) were analyzed as a function of temperature (5-60 °C) for all target and control 

samples. The imino proton resonance temperature series of oxoG10 (all other sample series 

omitted) is presented in figure 3.7. The line-broadening effect is pronounced for guanine G2 due 

to its proximity with the duplex termini. The oxidized guanine displays a similar profile to G2, 

suggesting that oxidation increases the dynamics (frequency of opening) of the base. Imino lines 

for internal bases (T7 and T8) are stable to ~55-60 °C, a trend that is consistent for all samples.  

 
Figure 3.6. 1D-1H NMR spectrum at 298 K on sample mC3/mC9/oxoG10 recorded at 500 MHz. NH7 

of 8OG is seen shifted upfield from the group of imino NH resonances. 
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Figure 3.7. 1H NMR imino proton resonances for oxoG10 as a function of temperature. All 

imino resonance lines are labelled for their respective bases. The upfield resonance of NH7 

belonging to 8OG appears at ~ 10.3 ppm.   

 

The linewidth (Hz) as a function of temperature for guanines G4 and G10 in all control and target 

samples is shown in Figures 3.8a/c and Figure 3.9a/c. Consistent with prior published work, 

guanine oxidation leads to the imino proton line broadening for the oxidized base (Singh et al., 

2011). As expected, oxidation of guanine within the fully-methylated CpG sites lead to the imino 

proton line broadening for the oxidized guanine base for mC3/mC9/oxoG4 and mC3/mC9/oxoG10 

(Figures 3.8d and 3.9d, respectively). Surprisingly, the imino proton line width for the non-

oxidized G4 or G10 within mC3/mC9/oxoG4 and mC3/mC9/oxoG10 were narrower than those for the 

same base within their respective oxidized controls (oxoG4 and oxoG10) (Figures 3.9b and 3.8b). 
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Further, the non-oxidized guanine within mC3/mC9/oxoG10 displayed narrower lines than the fully-

methylated control mC3/mC9, a result not as distinguishable with mC3/mC9/oxoG4. 

 

For all the hemi-methylated samples (mC3/oxoG10, mC9/oxoG4, mC3/oxoG4 and mC9/oxoG10) 

oxidation of guanine causes the expected line-broadening for the oxidized G base (Figures 3.8c 

and 3.9c, respectively). In addition, we observed line-narrowing for the oxidized guanine caused 

by the addition methylation of a single cytosine within the CpG site (for both cis- and trans-  

methylation vs lone oxidation). The effects of oxidation on the non-oxidized (G4 or G10) are 

mixed: methylation of C3 causes line broadening for mC3/oxoG10 (Figure 3.8a) for the non-

oxidized guanine bases whereas methylation of C9 causes line-narrowing for the non-oxidized 

guanine in mC9/oxoG4 (Figure 3.9a) 
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Figure 3.8. Imino proton linewidths as a function of temperature for guanine G4. The G4 

linewidths for samples with incorporated 8OG at position G10 are shown in (a) and (b). The G4 

linewidths for samples with incorporated 8OG at position G4 are shown in (c) and (d).   
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Figure 3.9. Imino proton linewidths as a function of temperature for guanine G10. The G10 

linewidths for samples with incorporated 8OG at position G4 are shown in (a) and (b). The G10 

linewidths for samples with incorporated 8OG at position G10 are shown in (c) and (d). 
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Chapter IV – Molecular dynamics simulations 
 

Introduction to molecular dynamics simulations. Molecular dynamics (MD) is a method of 

simulating the physical motions of an N-particle system by monitoring atom coordinates in the 

course of time. This is accomplished by numerically solving Newton’s equations of motion. 

Specifically, Newton’s second law is solved, which for a simple atomic system is described in 

Equations 1a and 1b (Karplus and Petsko, 1990).  

 
 

Here, all forces, Fi, acting upon the atoms are derived from the potential energy function of the 

system V(ri), where ri represents the complete set of Cartesian coordinates for each atom.  

 

Traditionally, the time steps for MD simulations are on the order of 1 femtosecond (fs). 

Combining each of the time steps generates an overall time-sequenced trajectory of dynamic 

events which can be used to observe important biological events at the atomic level. At each time 

step, the starting coordinates and velocities as well as the instantaneous forces acting upon each 

atom are provided. Integration of Newton’s equation of motion is completed to determine the 

position, velocity and acceleration of each particle over the course of time. For ri atoms in a 

system, this calculation quickly becomes complex. In large systems, this commonly gives rise to 

a many-body problem. Therefore, there is no analytical solution to the function, meaning it must 
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be solved numerically. The two most commonly used numerical integrators are the Verlet and 

Leap-frog algorithm, both using finite difference methods to solve the differential equation. The 

leap-frog algorithm is implemented in AMBER while many other popular MD codes such as NAMD 

use Verlet. 

 
  

Numerical integration using the leapfrog algorithm consists of two functions calculating velocity 

and position separately. Firstly, position (x) is sampled in a sequence of discrete time points at 

where h is the interval between time steps (Equations 2a, 2b). Secondly, velocity (v) is calculated 

at staggered time points relative to position. This scheme has advantages over other numerical 

integration methods as it is less error prone, time reversible and less demanding of system 

memory (does not store previous time step information).  

 
AMBER Force Field. The assisted model building with energy refinement (AMBER) force field in 

its purest definition is a combination of several parameters defining the total potential energy of 

the system (Cornell et al., 1995). The derivative of the sum of multiple functions relative to 

position is taken, giving a total potential energy function (Equation 3). 
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Each of these terms is defined as follows. The first term is the sum of the energy associated with 

all covalently bonded atoms; with all covalent bonds being described as ideal harmonic springs. 

Here, Kr is the bond force constant which alters the stiffness of the bond, r is the bond length and 

req is the equilibrium bond length. The second term describes the summation energy associated 

with all angles of covalently bonded atoms, effectively modeling the interaction of electronic 

orbitals. All angles are treated harmonically. In this term, Kθ is the valence angle force constant, 

θ is the valence angle and θeq is the equilibrium angle. The third function is a calculation of the 

sinusoidal torsion a bond experiences, whether that be from bond order or the electrostatics of 

neighboring groups such as lone pairs. Similarly, to the previous terms, Vn is the force constant 

for the dihedral angle, n is the multiplicity, φ is the dihedral angle value and γ is the phase angle. 

The final function represents Van der Waals and electrostatic interactions. Rij represent the 

distance between two atoms; Aij and Bij are constants describing the Van der Waals interactions; 

ε is the dielectric constant and qi and qj are the point charges associated with atoms i and j, 

respectively. The force constants used in each potential energy function were derived from a 

compilation of structural, vibrational frequency and quantum mechanical calculations on small 

fragments of proteins and nucleic acids. Further, all bonds and atoms are assumed to be 

represented as springs and individual point charges, respectively. If any experimental data is 

available (e.g. NOESY distances) they can be added as components to the basic force field. 
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MD simulations are often used to investigate the structure, thermodynamics and kinetics of a 

biological system. MD simulations are employed extensively to complement structural biology, 

targeting of efficacious new drugs to combat diseases and obtaining specific particle motions as 

a function of time. Therefore, MD provides a convenient avenue for comparing time-averaged 

results from traditional structural biology experiments as well as providing insights for details of 

biomolecular function. The initial 3D coordinates for MD simulations are most commonly derived 

from traditional structural biology techniques such as NMR or X-Ray crystallography. However, if 

there is no high-resolution structure available, software such as nucleic acid builder (NAB) and 

Phyre2 for proteins can provide a suitable predicted starting structure. 

 

Analyzing the raw trajectories to extract information that is relevant to the investigation is always 

the most time-consuming aspect of any MD experiment. As such, many statis tical methods exist 

to help guide analysis towards dynamics events more important than random diffusion within 

the system. Once such approach is principal component analysis (PCA), a statistical method used 

to determine patterns in a series of potentially coordinated observables. In order to extract these 

motions, the dimensionality of the simulation data is reduced through a linear transformation of 

a coordinate covariance matrix (3 N x 3 N where N is number of atoms analyzed). The PCs are 

obtained by diagonalizing, or decomposing, the coordinate covariance matrix into a set of 

orthogonal modes (eigenvectors). The PCs correspond to concerted atomic motions and major 

conformational changes of the molecule of interest (Amadei et al., 1993; Yamaguchi et al., 1998; 

Amadei et al., 1996; Haider et al., 2008) and reveal the most dominant motions in the system of 

interest. Each resulting eigenvector indicates the direction of motion of the atom and the 
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corresponding eigenvalue represents the energetic contribution of the component to the 

motion. The eigenvector with the largest eigenvalue would therefore account for the highest 

proportion of variance. 
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Results 

Molecular dynamics simulation stability and convergence. The backbone root mean square 

deviations (RMSD) of each 600 ns simulation were monitored as a function of simulation time to 

assess stability and divergence from the initial starting structure. As shown in Figure 4.1a and 

4.1b, the backbone RMSD from the initial starting structure for all twelve simulations was stable, 

fluctuating between 1.0 and 2.5 Å when monitoring the 8 internal residues of the duplex. The 

upper limit of this RMSD measurement extends to 3.5 Å when all 12 residues are included in the 

calculation. Spikes in the running average of the full-length duplex attributed to loss of base 

pairing at one or both termini. This effect is caused by direct interaction with the water solvent 

at the termini. Although loss of base pairing occurs fairly regularly, the bases renature on the ns 

timescale. The average backbone RMSD for each sample over 600ns is shown in Table 4.1. 

Removing the termini from the calculation reduced the average backbone RMSD 0.19-0.40 (Å) 

with respect to the full-length duplex RMSD.  

 

 

 

 

 

 

 

 

 



56 
 

Sample Ave. backbone RMSD (Å)  Ave. backbone RMSD (Å) excluding 

termini 

unmodified 1.91 ± 0.31 1.57 ± 0.31 

oxoG4 1.72 ± 0.32 1.46 ± 0.32 

oxoG10 1.94 ± 0.37 1.73 ± 0.37 

mC3 1.75 ± 0.31 1.59 ± 0.31 

mC9 2.00 ± 0.37 1.78 ± 0.37 

mC3/mC9 1.93 ± 0.35 1.74 ± 0.35 

mC3/oxoG10 1.89 ± 0.37 1.70 ± 0.37 

mC9/oxoG4 2.02 ± 0.35 1.81 ± 0.35 

mC3/oxoG4 1.72 ± 0.33 1.50 ± 0.33 

mC9/oxoG10 2.04 ± 0.34 1.64 ± 0.34 

mC3/mC9/oxoG4 2.04 ± 0.36 1.76 ± 0.36 

mC3/mC9/oxoG10 2.02 ± 0.35 1.76 ± 0.35 

 
Table 4.1. Average backbone RMSD for the full-length duplex and excluding termini over the 
course of 600ns simulations time for each sample.  
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Figure 4.1a. Backbone RMSD (Å) as a function of frame number (each frame represents 2 ps of 
simulation time) for all control samples (grey). The plots show two running averages calculated 
in 2 ns intervals for all backbone atoms (green) and excluding terminal residues (red). 
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Figure 4.1b. Backbone RMSD (Å) as a function of frame number (each frame represents 2 ps of 
simulation time) for all target samples (grey). The plots show two running averages calculated 
in 2 ns intervals for all backbone atoms (green) and excluding terminal residues (red). 
 
The average atomic root mean square fluctuations (RMSF) over 555 ns simulation time for each 

nucleotide are shown in Figure 4.2. The reference structure provided the initial coordinates. Base 
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pairs at each terminus exhibit the greatest range in fluctuations from 1.75-3.25 Å. As previously 

stated, the source of the variability is due to base pair opening events. The internal base pairs 

display greater stability, with nucleotide fluctuations in the range of 0.2-0.4 Å. There were no 

discernible differences in average fluctuations within CpG sites or neighboring nucleotides of the 

control and target duplexes.  

 
 
Figure 4.2. RMSF (Å) as a function of nucleotide for each of the twelve 555ns MD simulations. 

Each sample is labelled by individual colors and symbols. 
 

 
Principal component analysis (PCA) was used to assess the convergence of dynamic properties  

between each of the twelve simulations. Shown in Figure 4.3 is the projection of the predominant 

(greatest eigenvalue) principal component (PC). All heavy atoms were used in the calculation, 
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including the termini. Although PCA cannot quantify the convergence of the independent 

simulations with respect to each other, it allowed us to determine whether the simulations 

sampled the same overall motions in 3D Cartesian space. From figure 4.3, we notice that the first 

PC projections for all twelve systems overlap, indicating the motions for PC 1 are highly similar. 

The PC 2 and PC 3 were also examined (not shown) and yielded overlapping projections. Visual 

inspection of principal component trajectories (pseudo-trajectories) generated from the first PC 

indicate that the most dominant motions are global bending and twisting of the duplex.  

 

 
Figure 4.3. Principal component projection of PC 1 for all samples. All heavy atoms were used 
in the calculation. Overlap of PC 1 indicates that dynamics properties samples within all twelves 
simulations were highly similar. 
 

 
Comparison DNA inter- and intra-base helical structural geometries. Average values for all inter- 

and intra-base pair helicoidal parameters for each system were calculated from each 555ns 
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simulation and are shown in Appendix Figures A1-A4. The terminal base pairs were not included 

in the analysis as loss of base pairing events led to increased variability between all samples. 

Average values for the unmodified duplex yielded similar results to those recently reported on 

µs-timescale dynamics for the same sequence (Dans et al., 2016).  The averaged base-pair 

geometries displayed were highly similar for all base-pairs, including those within the target CpG 

sites. However, when monitoring base-pair step geometries, dissimilarities between systems 

were detected. These conformational perturbations were located explicitly on base-pair steps 

incorporated within the target CpG site or immediately flanking it. Appendix Tables A1-A4 display 

average and standard deviations for the base-pair steps C3G4, G4A5, C9G10 and G10C11. 

Specifically, we observed a local unwinding effect caused by the incorporation of 8OG for base-

pair step parameters twist and tilt within one standard deviation of the values observed in our 

solution NMR structures.  

 
Dynamics of the DNA backbone. The MD simulations revealed differences in the bimodal 

distributions of the backbone phosphate conformation (BI or BII). The phosphate step 

conformation for each system is displayed in Figure 4.4. Phosphate conformations outside of  

either target CpG site were highly similar. The introduction of 5MC to the 3rd or 9th nucleotide 

stabilizes the trailing 3’-phosphate (C3pG4 or C9pG10 respectively) in the BI conformation 

increasing the observed fraction BI to > 0.90. Incorporating 8OG to the 4th nucleotide on the 

duplex destabilizes BI conformation for the trailing 3’-phosphate (G4pA5), driving the observed 

BI fraction from ~0.50 without 8OG to 0.10-0.29. Similarly, when 8OG is introduced to the 10th 

position, the BI conformation of the 3’-phosphate (G10pC11) is disrupted, reducing the BI 

fraction from ~0.75 to 0.1-0.4. For instances of high BII conformation the following phosphate is 
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always followed by a high BI population. Furthermore, one notices that the most profound 

increases in observed BII fraction originate from systems containing clustered 8OG and 5MC. 

Specifically, duplexes that contain 8OG in a fully-methylated CpG have the greatest increase in 

BII phosphate conformation followed closely by trans-methylated CpGs and then cis-methylated 

CpGs. Additionally, the effect of clustering on phosphate conformation is apparent when 

monitoring both the transition frequencies (Table 4.2) and average residence times (Table 4.3).  

 

The transitions between BI and BII conformation on target CpG phosphates without 5MC or 8OG 

modification were high frequency, contributing to similar average residence times for BI and BII. 

Upon addition of 8OG at the 4th or 10th position, the frequency of transitions between BI and BII 

sub-states of G4pA5 and G10pC11 decreases from 10584 to 3686 and 6772 to 2424, respectively. 

Furthermore, the average time spent in the BII conformation increased from 51 ± 101 ps to 240 

± 417 ps and 43 ± 102 ps to 316 ± 644 ps. When 8OG is contained within a fully-methylated CpG 

site, the time spent in the BII conformation for G4pA5 was 323 ± 581 ps and G10pC11 was 407 ± 

769 ps. The average time spent in BII increases in a step-wise manner from cis-, trans- and finally 

fully-methylated CpG for both phosphates that are 3’ to 8OG. Methylation at C3 or C9 yielded 

dramatically increased stiffness to the downstream phosphate conformation. This effect is in 

agreement with previously published simulation data on samples containing a single methylation 

(Temiz et al., 2012). BI conformation residence times for C3pG4 increased from 42 ± 152 ps to 

377 ± 891 ps upon methylation at C3. A similar effect is observed with methylation of C9 as BI 

conformation for C9pG10 was increased from 31 ± 125 ps to 260 ± 746 ps. These effects are 

compounded when the number of modifications to the CpG site is increased. mC3/mC9/oxoG4 and 

https://doi.org/10.1371/journal.pone.0035558
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mC3/mC9/oxoG10 systems observed the greatest impact on residence times and transitions 

frequencies versus the unmodified duplex.  

 

Sample C3pG4 G4pA5 C9pG10 G10pC11 

unmodified 16374 10584 17016 6772 

oxoG4 2558 3686 21138 5388 

oxoG10 17246 9004 3892 2424 

mC3 2734 10902 19280 6192 

mC9 14764 11420 3696 9744 

mC3/mC9 2802 10772 3360 9534 

mC3/oxoG10 2396 9914 11472 2604 

mC9/oxoG4 700 3376 3694 8490 

mC3/oxoG4 1066 3286 22398 6534 

mC9/oxoG10 17196 9940 776 4566 

mC3/mC9/oxoG4 460 3074 4358 9814 

mC3/mC9/oxoG10 3346 10324 230 2354 

 
Table 4.2. Transition frequency between the BI and BII phosphate conformation over the 

course of 555ns for each system.  
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Figure 4.4. Fraction of each phosphate (excluding termini) occupying the BI conformation. 
Compares a selection of controls with target samples that include an oxidized guanine on G4 

(top) and G10 (bottom) 
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Sample Conformation C3pG4 G4pA5 C9pG10 G10pC11 

unmodified BI 42 ± 152 53 ± 192 31 ± 125 120 ± 307 

BII 25 ± 48 51 ± 101 34 ± 67 43 ± 102 

oxoG4 BI 420 ± 1564 60 ± 243 21 ± 97 154 ± 381 

BII 13 ± 34 240 ± 417 31 ± 65 51 ± 119 

oxoG10 BI 41 ± 161 59 ± 207 256 ± 1333 141 ± 476 

BII 22 ± 42 63 ± 129 29 ± 77 316 ± 644 

mC3 BI 377 ± 891 25 ± 87 22 ± 108 134 ± 329 

BII 28 ± 68 76 ± 137 34 ± 79 44 ± 109 

mC9 BI 43 ± 154 47 ± 156 260 ± 746 47 ± 159 

BII 31 ± 59 49 ± 108 39 ± 117 65 ± 134 

mC3/mC9 BI 361 ± 804 25 ± 90 305 ± 943 43 ± 119 

BII 34 ± 74 77 ± 142 25 ± 59 72 ± 147 

mC3/oxoG10 BI 436 ± 934 21 ± 74 90 ± 782 96 ± 288 

BII 26 ± 64 90 ± 167 5 ± 20 329 ± 675 

mC9/oxoG4 BI 1576 ± 2924 33 ± 116 267 ± 720 50 ± 157 

BII 9 ± 24 295 ± 496 33 ± 135 80 ± 154 

mC3/oxoG4 BI 1036 ± 4384 68 ± 280 20 ± 92 129 ± 355 

BII 4 ± 14 268 ± 515 28 ± 52 40 ± 100 

mC9/oxoG10 BI 39 ± 138 51 ± 179 1396 ± 7020 91 ± 283 

BII 25 ± 50 59 ± 127 33 ± 131 151 ± 331 

mC3/mC9/oxoG4 BI 2399 ± 6471 37 ± 127 226 ± 638 49 ± 142 

BII 13 ± 40 323 ± 581 28 ± 73 63 ± 140 

mC3/mC9/oxoG10 BI 301 ± 718 27 ± 93 4799 ± 11359 63 ± 195 

BII 30 ± 83 79 ± 154 27 ± 96 407 ± 769 

 

Table 4.3. Average residence time (ps) spent in the BI or BII conformation over 555ns simulation 
time for target CpG site phosphates. 
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Effects of 8OG and 5MC on sugar puckering. Minor differences on sugar puckering were 

observed with the incorporation of 8OG and 5MC on target CpG sugars. The cytosine 3 sugar 

pucker observed a minor increase in the frequency of C1’-exo configuration in systems that have 

been methylated on C3 (Figure 4.5a). Introducing either 5MC to C3 and/or 8OG to G4 narrowed 

the sugar pucker distribution of guanine 4 in the C2’ endo configuration while samples without 

these modifications on C3 or G4 observed greater sugar flexibility, with a minor increase in 

population towards C3’-exo configuration (Figure 4.5a). The sugar puckering on cytosine 9 was 

shifted towards C1’-exo configuration in samples with a methylated C9 and non-oxidized G10. 

Finally, the sugar pucker conformation for G10 was dependent on whether G10 was oxidized, C9 

was methylated or both. Incorporation of either of these modifications increased the stiffness of 

the sugar, leading to a narrow distribution around C2-endo configuration. When neither of these 

modifications was present, the G10 sugar pucker displayed a split population between C2’-endo 

and C3’-exo configurations (Figure 4.5b).  
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Figure 4.5a. Sugar pucker distributions for cytosine 3 (top) and guanine 4 (bottom) for all twelve 
simulations.  
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Figure 4.5b. Sugar pucker distributions for cytosine 9 (top) and guanine 4 (bottom) for all 
twelve simulations.  
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Effects of 8OG and 5MC clustering on the internal dynamics of CpG sites. Principal component 

analysis was applied to all heavy atoms of the CpG site C3pG4-C21pG22. The resulting low-

frequency eigenvectors were sorted by magnitude of their associated eigenvalues to determine 

the most dominant modes of motion of the system (Teeter and Case, 1990). The proportion of 

variance that each principal component (PC) contributes to the overall dynamic movement in 

Cartesian space is presented as scree plots ranked by the magnitude of eigenvalues in Figure 4.6. 

The first PC dominates the overall variance for the CpG sites in all samples analyzed, contributing 

26-38 % of the overall variance. Together, the first five modes (PC1 – PC5) contribute >69 % of 

the overall variance. 
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Figure 4.6. Scree plots indicating the proportion of variance that each principal component 
contributes to the overall dynamics movement of the CpG site. (top) all control samples, 
(bottom) all target samples. 
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Due to the contribution to the dynamic movements being dominated by the first five PCs, we 

plotted the principal component projections as histograms to determine if the dynamics had 

been altered with the addition of 8OG, 5MC or both to the CpG site. The PC 1 projections for the 

CpG sites in all samples are displayed in Figure 4.7. As depicted, the projection distributions 

exhibit minimal overlap, indicating the most dominant dynamic movements have been altered 

with the incorporation and clustering of modifications in distinct sequence contexts. We also 

analyzed the projections of PC2-5 for all twelve samples. Shown in Figure 4.8 is the PC 2 

projection for all samples. As one can see, the histograms display reasonable overlap, indicating 

the motions are highly similar. Histograms for PC3-5 are not shown, however, the also displayed 

overlap similar to PC 2. To elucidate the nature of change of these dynamic movements, we relied 

on two separate visualization techniques.  
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Figure 4.7. Principal component projections for PC 1 for all samples. (top) comparison of DNA 

duplexes containing oxidized G4 with controls. (bottom) comparison of DNA duplexes 
containing oxidized G10 with controls. 
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Figure 4.8. Principal component projection for PC 2 for all samples. Overlap of projections 

indicate PC2 displays highly similar motions between samples.  
 

Porcupine plots have been used as a convenient method to visually describe concerted motions  

of principal components in various MD studies (Haider et al., 2008; Tai et al., 2001; Tai et al., 

2002). In Figures 4.9-4.11, we present porcupine plots on one set of trans- cis- and fully modified 

samples to highlight perturbations in dynamic movements for clustering of 5MC and 8OG. In 

addition, we have generated porcupine plots for each CpG (Appendix Figure A5) site to visualize 

the motions of the most dominant PC. The eigenvectors (direction of motion) and associated 

eigenvalues (magnitude of motion) for are presented for each of the ~44 (dependent on 

modification) heavy atoms present in the CpG site.  
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When 8OG and 5MC are incorporated into the CpG site in the trans-methylated configuration 

(mC9/oxoG4 and mC3/oxoG10), the strand containing 5MC showed altered amplitudes and 

directionality of motion both in the base and backbone (Figure 4.9 and Figure A5). Introducing 

5MC and 8OG together so that the CpG site is cis-methylated (mC3/oxoG4 and mC9/oxoG10) gives 

rise to dynamic movements that are similar to those of the oxidized CpG sites and very different 

from those of the methylated-only sample (Figure 4.10 and Figure A5). In the fully-methylated 

and oxidized samples, the directions of atomic motions are altered with respect to the 

methylated–only control and amplitudes of motions are increased noticeably with respect to the 

oxidized control (Figure 4.11).  

 

To further probe the differences in dynamics of PC 1, we visually inspected the resulting pseudo-

trajectories and analyzed them for differences in helicoidal geometries and backbone angle 

transitions, for each CpG site. As a quality control, visual inspection of PC 2 pseudo-trajectories 

resulted in indistinguishable motions. The range of motion, minimum and maximum values for 

selected base-pair geometries present in the PC 1 motions are shown in Tables 4.4 and 4.5. 

Certain combinations of 5MC/8OG clustering display strong effects on the ranges of change of 

helical parameters. For example, the range of variation of slide for the mC3/oxoG10 sample (0.56 

Å) is much smaller than the corresponding variations for the sample with single oxidation oxoG10 

(2.31 Å) or only methylated mC3 (3.28 Å) samples. Similar reduction of slide variability in PC1 is 

observed for mC9/oxoG4 (1.61 Å) when compared to single oxidation oxoG4 (2.19 Å) and single 

methylation mC9 (0.74 Å). Likewise, the mC3/mC9/oxoG10 CpG site leads to a reduction of the range 
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of variation of slide from 1.60 Å to 1.25 Å observed in the lone oxidation control oxoG10. This 

effect is sequence-specific as the effect is not observed with mC3/mC9/oxoG4. Another helical 

parameter showing considerable sensitivity to 5MC/8OG clustering is tilt, as its range is reduced 

dramatically from ~10° to ~ 2° (depending on sequence context) upon clustering of 8OG and 

trans-methylated 5MC with respect to only oxidized and only methylated control samples. This 

trend is continued to full-methylated and oxidized samples but is not present on cis-methylated 

duplexes.  
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Figure 4.9. Porcupine plots highlighting the dynamic effect of the 8OG:5MC base-pair on the 

CpG site. Each arrow projected from each heavy atom indicates the direction of the eigenvector 

while the length of the arrow indicates the magnitude of the associated eigenvalue. Atom 
coloring is by mobility, with red being lowest mobility atoms and blue being highest mobility. 
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Figure 4.10. Porcupine plots highlighting the dynamic effect of adjacent 8OG and 5MC on the 
CpG site. Each arrow projected from each heavy atom indicates the direction of the eigenvector 

while the length of the arrow indicates the magnitude of the associated eigenvalue. Atom 
coloring is by mobility, with red being lowest mobility atoms and blue being highest mobility. 
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Figure 4.10. Porcupine plots highlighting the dynamic effect of fully-methylated and oxidized 
CpG. Each arrow projected from each heavy atom indicates the direction of the eigenvector 

while the length of the arrow indicates the magnitude of the associated eigenvalue. Atom 
coloring is by mobility, with red being lowest mobility atoms and blue being highest mobility. 
 



79 
 

 
Table 4.4. Base-pair helicoidal geometry ranges for twist, roll and tilt. Values were calculated 

from the pseudo-trajectory of PC 1 for each sample.  
 
 
 
 
 
 
 

 
 
 
 

 
 

 

 
 
 

Sample Twist (deg.) Roll (deg.) Tilt (deg.) 
 

range min max range min max range min max 

unmodified 1.2 34.0 35.2 0.6 5.0 5.6 17.4 -6.3 11.1 

oxoG4 33.5 12.2 45.6 6.7 4.5 11.2 12.9 -1.1 11.9 

oxoG10 36.5 7.3 43.7 3.3 6.1 9.4 10.4 -6.7 3.7 

mC3 30.3 16.1 46.4 6.4 4.5 11.0 12.4 -0.9 11.5 

mC9 22.3 18.3 40.6 5.0 4.3 9.3 12.5 -7.3 5.2 

mC3/mC9 37.9 5.8 43.7 8.0 6.1 14.2 3.9 0.7 4.6 

mC3/oxoG10 36.7 2.3 39.0 4.6 7.7 12.4 1.9 0.5 2.4 

mC9/oxoG4 34.0 4.3 38.3 6.4 7.2 13.6 4.4 0.6 5.0 

mC3/oxoG4 33.4 12.8 46.2 5.8 5.4 11.3 12.0 0.0 11.9 

mC9/oxoG10 36.3 7.3 43.6 5.8 4.6 10.3 9.5 -6.5 3.0 

mC3/mC9/oxoG4 33.9 4.7 38.6 6.5 7.5 14.0 5.1 0.8 5.9 

mC3/mC9/oxoG10 37.4 2.1 39.5 4.7 7.8 12.5 3.8 -2.0 1.8 
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Table 4.5. Base-pair helicoidal geometry ranges for rise, slide and shift. Values were calculated 
from the pseudo-trajectory of PC 1 for each sample. 

 
 

 

 

 

 

 

 

 

 

 

Sample Rise (Å) Slide (Å) Shift (Å) 
 

range min max range min max range min max 

unmodified 0.31 3.05 3.36 0.54 0.10 0.64 4.62 -2.02 2.60 

oxoG4 0.59 2.90 3.49 2.19 -0.89 1.3 2.62 -0.35 2.27 

oxoG10 0.85 2.76 3.61 1.25 -0.78 0.47 2.31 -1.74 0.57 

mC3 0.53 2.90 3.43 2.05 -0.69 1.36 3.28 -0.91 2.37 

mC9 0.52 2.82 3.34 0.74 -0.20 0.55 4.11 -2.19 1.92 

mC3/mC9 0.76 2.75 3.51 2.04 -1.04 1.00 1.84 -0.79 1.06 

mC3/oxoG10 0.82 2.69 3.51 2.11 -1.33 0.78 0.56 -0.55 0.01 

mC9/oxoG4 0.79 2.69 3.48 1.61 -1.05 0.56 2.07 -0.54 1.53 

mC3/oxoG4 0.53 2.91 3.45 2.36 -0.93 1.42 2.75 -0.45 2.31 

mC9/oxoG10 0.76 2.79 3.55 1.70 -0.9 0.80 2.33 -1.72 0.61 

mC3/mC9/oxoG4 0.72 2.71 3.43 1.93 -1.09 0.84 2.35 -0.64 1.71 

mC3/mC9/oxoG10 0.83 2.71 3.54 1.60 -1.05 0.55 1.01 -0.84 0.18 
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Chapter V—Discussion 

In this study, we examined DNA duplexes containing clustered patterns of two modifications with 

the goal of unveiling effects in structure, thermodynamics, base dynamics and conformational 

flexibility upon clustering of these modifications. We characterized the effects with a 

combination of experimental approaches including 1D-1H NMR, 2D homo- and hetero- nuclear 

NMR, UV-vis spectrophotometry and molecular dynamics.  

Overview of experimental results 

In most regards, the conformational properties of the DNA duplexes determined through 

solution NMR were analogous to one another. All duplexes were right-handed B-form structures  

with absent or minor structural deviations located at the site of modification, depending on the 

modification. This result is consistent with numerous reports on DNA duplexes containing 8OG 

(Thiviyanathan et al., 2003), 5MC (Theruvathu et al., 2013) as well as many other modifications 

such as 5-chlororcytosine (Theruvathu et al., 2013), 5-formylcytosine (Hardwick et al., 2017) and 

phosphorothioate oligonucleotides (Lan et al., 2016). Structural perturbations were found to be 

induced by 8OG, with and without the presence of 5MC, and were localized around the lesion in 

all 8OG containing structures. Specifically, downfield 31P chemical shifts for the phosphodiester 

3’ to 8OG indicated an increased population of BII conformation relative to undamaged bases. 

This altered phosphodiester conformation 3’ to 8OG caused related unwinding of the helicoidal 

geometries twist and tilt. The most plausible explanation for this result is that the addition of an 

electronegative and bulky O8 atom causes intra-nucleotide steric repulsion with the O4’ sugar 

atom. These results are corroborated by previous MD simulations and solution NMR structures 
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of duplexes containing a lone 8OG modification, but never for these modifications clustered with 

5MC (Thiviyanathan et al., 2003; Fujimoto et al., 2005; Naômé et al., 2010).  

 

The thermal denaturation experiments using UV-vis spectrophotometry confirmed that lone 

5MC modification increased the Tm of the DNA while lone 8OG decreases the overall stability 

versus previously reported Tm of DDD. However, clustering of 8OG and 5MC for samples 

mC9/oxoG4 and mC9/oxoG10 was shown to lower the Tm of the duplex by up to 3 °C versus lone 

8OG modifications.  Therefore, the addition of 5MC at the 9th position to either oxoG4 or oxoG10 

samples induces a destabilizing effect. Furthermore, the effect seems to be sequence specific as 

the flanking bases for each of these respective samples differ.  

 

1D-1H NMR experiments confirmed previously reported data that oxidation of guanine bases 

leads to imino proton line broadening of the oxidized base (Singh et al., 2011). This was consistent 

throughout all oxidized samples, as such, the clustering of 5MC with 8OG does not perturb the 

localized destabilization of the 8OG:C base pair. However, we observed the stabilization of non-

oxidized guanines within samples mC3/mC9/oxoG4 and mC3/mC9/oxoG10 vs their respective 

controls, although the effect observed with mC3/mC9/oxoG4 was less dramatic than that in 

mC3/mC9/oxoG10.  In addition, methylation at C3 destabilized the non-oxidized base pair in 

mC3/oxoG10 and stabilization for the non-oxidized base pair in mC9/oxoG4. 

 

Statistical investigation of free MD simulations on each DNA sample revealed that our simulations 

were stable and reproduced the conformational aspects of our solution NMR structures. 
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Specifically, the helicoidal geometries were all within one standard deviation of our reported 

averaged structure for each DNA sample. Local structural perturbations observed from 8OG in 

our NMR structures were reproduced by MD including BII phosphodiester conformations for 

oxidized bases. Principal component analysis was used here to illuminate how clustering of 5MC 

and 8OG in a CpG site effects motions along eigenvectors with large eigenvalues . We analyzed 

the most prominent motions as the first five eigenvectors for each simulation accounted for no 

less than 69% of the overall variance. It was found that significant differences in motion were 

provided in the first principal component, therefore, the others were excluded from the analysis. 

For samples that were trans-methylated, (mC9/oxoG4 and mC3/oxoG10), the strand containing 5MC 

displayed altered amplitudes of motion in the 5MC:8OG base pair as well as the backbone. 

Analysis of internal dynamics of cis-methylated samples, mC3/oxoG4 and mC9/oxoG10, showed 

dynamic movements similar to that of oxidized only and significantly different to that of 

methylated only CpG sites. In samples containing a fully-methylated and oxidized CpG 

(mC3/mC9/oxoG4 and mC3/mC9/oxoG10), directionality and magnitude of atomic motions on the 

bases and backbone were altered with respect to methylated only control (mC3/mC9).  

 

Possible implications on enzymatic removal of 8OG 

Although hOGG1 is able to excise 8OG from the CpG sites containing all methylated contexts  

investigated in this work, the efficiency of enzymatic repair at two steps (k2, corresponding to 

cleavage of the N-glycosidic bond and k3, associated with product release) is reduced depending 

on orientation of 5MC to 8OG. A twofold hypothesis has been proposed to explain the reduction 

in k3 when the CpG is trans-methylated with respect to 8OG (Kasymov et al., 2013). First, that the 
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bulky methyl group opposite 8OG may cause steric clashes with the highly conserved Asn149 

residue (Figure 1.9b) that stabilizes the cytosine opposite of 8OG. Second, that a water molecule 

observed in crystal structures of OGG1 near C5 of the opposing cytosine is displaced (Bruner et 

al., 2000; Fromme et al., 2003; Chung and Verdine 2004). Crystal structures containing the 

OGG1—DNA substrate do not contain cytosine adjacent to 8OG so the reduction in k2 cannot be 

explained in the same manner. However, one plausible explanation for this is conformational 

restraint caused by close proximity between O8 on 8OG and the bulky methyl group while 

rotating the 8OG base out of the helix. 

 

Our results derived from PCA on trans-methylated CpGs indicate that the addition of 5MC alters 

the dominant mode of motion for the CpG cross strand from the 8OG. The reduced structural 

flexibility may make it more difficult to stabilize the unpaired cytosine when the OGG1 everts 

8OG from the duplex. Results from our NMR and MD simulations were unable to detect major 

differences in structures or dominant motions for cis-methylated samples, so the reduction in k2 

remains unanswered.  

 

Effects of clustering 5MC and 8OG on DNA methylation 

The previously reported consequences of the 8OG on DNA methylation show the lesion severely 

interferes with maintenance methylation but not de novo methylation (Maltseva et al., 2008; 

Turk et al., 1995). The report of Maltseva, et al, concluded that the introduction of 8OG adjacent 

to the target cytosine (analogous to mC3/oxoG10 and mC9/oxoG4 samples presented in this thesis) 

by the catalytic domain of murine DNMT3a caused a 25-fold decrease in methylation rates. In 
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contrast, their data disclosed that 8OG placed opposite of the target cytosine (corresponding to 

mC3/oxoG4 and mC9/oxoG10 in this manuscript) promoted methylation, leading to a 1.8-fold 

increase.  

 

Here we report three tenable explanations to the decrease in methylation rates for DNMT 

substrates mC3/oxoG10 and mC9/oxoG4. One such explanation relies on protein—DNA recognition. 

Our PCA results suggest that for these samples containing trans-methylated CpG sites, we 

observed increased amplitudes and directionality of motions for both the backbone and bases 

relative to their respective methylated controls. This increase in dynamic flexibility may reduce 

the favorability of initial protein—DNA recognition. The second explanation is that the enzyme 

can simply recognize its DNA substrate containing guanine better than its DNA substrate 

containing 8OG. A third explanation pertains to results from solution NMR derived structures and 

MD trajectories which indicate that conformational perturbations exist on the 3’-phosphodiester 

relative to 8OG as well as related unwinding (lower twist and tilt) of base pairs directly 5’ of 8OG. 

These conformational alterations could hinder the recognition of the DNA substrate by DNMTs 

or the subsequent DNA kinking necessary for enzymatic activity. Specifically, in the case of murine 

DNMT1, analysis of the crystal structure (Song et al., 2012) reveals a wealth of hydrogen bonding 

and electrostatic interactions stabilizing the enzyme-DNA interface along the sugar—phosphate 

backbone as well as intra-helically (Figure 1). Of specific interest, are the interactions between 

Y1243 and the phosphodiester 3’ of 8OG, and amino acid side chains which probe the base pairs 

on the at the 5’ end of 8OG. The 3’-phosphodiester relative to 8OG favoring the non-canonical 

BII conformation could reduce the capacity for Y1243 to stabilize the backbone in preparation for 
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the target cytosine to be everted extra-helically. Further, the untwisted nature of the base pairs 

5’ to 8OG could also interrupt a number of interactions that stabilize the guanine opposite to the 

target cytosine.   

 

 
Figure 5.1. Schematic representation of the murine DNMT1-DNA complex. This minimalistic 
representation highlights interactions that could be interrupted in the case where 8OG is 
incorporated adjacent to the target cytosine to become methylated by maintenance DNMTs.  
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Appendix 

Script 1. AU program used for automated collection of 1D-1H NMR experiments.  

 

 

 

 

 

 

 

 

 

 

 

/* Description/Usage:      */ 
/* AU program which set the temperature before the   */ 
/* acquisition is started. The temperature is taken from  */ 
/* the parameter TE.      */ 
/***********************************************************/ 
/* Authors: Hla Win-Piazza and David R. Gruber  */ 
/***********************************************************/ 
*/ 
f1=333.15; 
TIMES(12) 
STOREPAR(“TE”, f1); 
TESET 
TEREADY(1200, 0.1) 
IEXPNO 
LOCK 
ATMA; 
XCMD(“topshim 3dfast”); 
XCMD(“topshim 1d”); 
XAU(“pulsecal”, “quiet”); 
RGA; 
ZG; 
F1=f1-5; 
END 
QUIT 
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Figure A1. Average helical base-pair geometries for propeller, opening and buckle obtained 

from 555ns MD simulation on each DNA sample.  
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Figure A2. Average helical base-pair geometries for shear, stagger and stretch obtained from 

555ns MD simulation on each DNA sample.  
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Figure A3. Average helical base-pair step geometries for rise, roll and shift obtained from 555ns 

MD simulation on each DNA sample.  
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Figure A4. Average helical base-pair geometries for slide, tilt and twist obtained from 555ns 

MD simulation on each DNA sample.  
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Legend for Figures A1-A5 

 

C3-G4 Twist (deg) roll (deg) tilt (deg) rise (Å) slide (Å) shift (Å) 

unmodified 34.9 ± 6.8 5.4 ± 6.3 2.5 ± 5.8 3.29 ± 0.30 0.37 ± 0.55 0.29 ± 1.00 

oxoG4 29.1 ± 7.2 7.2 ± 6.3 4.4 ± 5.1 3.26 ± 0.32 0.20 ± 0.63 0.99 ± 0.72 

oxoG10 25.5 ± 8.0 7.6 ± 5.8 -0.6 ± 5.0 3.19 ± 0.34 -0.15 ± 0.59 -0.60 ± 0.72 

mC3 31.5 ± 7.1 7.2 ± 6.4 3.9 ± 5.1 3.28 ± 0.30 0.34 ± 0.58 0.76 ± 0.83 

mC9 29.7 ± 8.0 6.8 ± 6.2 0.5 ± 5.2 3.22 ± 0.31 0.17 ± 0.57 -0.15 ± 0.93 

mC3/mC9 24.7 ± 7.6 9.8 ± 5.9 1.4 ± 4.6 3.16 ± 0.29 -0.03 ± 0.54 0.14 ± 0.76 

mC3/oxoG10 20.5 ± 6.5 9.5 ± 5.5 0.8 ± 4.5 3.09 ± 0.30 -0.28 ± 0.56 -0.28 ± 0.65 

mC9/oxoG4 21.2 ± 6.3 10.2 ± 5.4 1.6 ± 4.4 3.13 ± 0.31 -0.26 ± 0.51 0.50 ± 0.59 

mC3/oxoG4 29.7 ± 7.3 7.7 ± 6.2 4.7 ± 5.0 3.26 ± 0.31 0.25 ± 0.62 0.95 ± 0.77 

mC9/oxoG10 25.4 ± 8.0 7.1 ± 5.7 -1.0 ± 4.9 3.17 ± 0.32 -0.06 ± 0.60 -0.57 ± 0.77 

mC3/mC9/oxoG4 21.6 ± 6.9 10.4 ± 5.4 2.1 ± 4.5 3.13 ± 0.30 -0.14 ± 0.54 0.54 ± 0.68 

mC3/mC9/oxoG10 20.6 ± 6.8 9.9 ± 5.4 0.1 ± 4.4 3.09 ± 0.30 -0.25 ± 0.52 -0.34 ± 0.65 

 

Table A.1 Average values and standard deviations for C3G4 base pair step geometries 

obtained from 555ns MD simulation. 
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G4-A5 twist (deg) roll (deg) tilt (deg) rise (Å) slide (Å) shift (Å) 

unmodified 34.8 ± 6.3 2.7 ± 5.3 -0.3 ± 4.6 3.34 ± 0.3 0.23 ± 0.66 -0.46 ± 0.71 

oxoG4 36.6 ± 6.5 2.0 ± 5.4 -1.4 ± 4.5 3.31 ± 0.3 0.49 ± 0.60 -0.52 ± 0.70 

oxoG10 38.5 ± 5.5 2.6 ± 5.6 0.3 ± 4.4 3.38 ± 0.29 0.19 ± 0.61 -0.24 ± 0.65 

mC3 35.0 ± 6 2.2 ± 5.3 -1.0 ± 4.5 3.30 ± 0.30 0.43 ± 0.58 -0.65 ± 0.62 

mC9 36.5 ± 5.4 1.0 ± 4.7 -0.8 ± 3.9 3.34 ± 0.28 0.06 ± 0.58 -0.50 ± 0.64 

mC3/mC9 37.6 ± 4.9 0.5 ± 4.7 -1.1 ± 3.8 3.35 ± 0.27 0.18 ± 0.52 -0.66 ± 0.56 

mC3/oxoG10 39.4 ± 4.8 2.2 ± 5.3 0.1 ± 4.3 3.39 ± 0.28 0.37 ± 0.54 -0.47 ± 0.56 

mC9/oxoG4 39.3 ± 4.7 -0.2 ± 4.7 -1.6 ± 3.8 3.35 ± 0.28 0.26 ± 0.48 -0.70 ± 0.57 

mC3/oxoG4 36.3 ± 6.2 2.1 ± 5.4 -1.3 ± 4.4 3.33 ± 0.30 0.45 ± 0.57 -0.52 ± 0.71 

mC9/oxoG10 37.3 ± 5.2 0.7 ± 4.7 -0.8 ± 3.9 3.36 ± 0.28 0.06 ± 0.56 -0.48 ± 0.60 

mC3/mC9/oxoG4 38.8 ± 4.8 -0.1 ± 4.7 -1.3 ± 3.8 3.37 ± 0.27 0.25 ± 0.46 -0.71 ± 0.56 

mC3/mC9/oxoG10 37.8 ± 4.8 0.9 ± 4.9 -1.2 ± 3.8 3.35 ± 0.27 0.15 ± 0.52 -0.59 ± 0.57 

 

Table A.2 Average values and standard deviations for G4A5 base pair step geometries obtained 

from 555ns MD simulation. 
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C9-G10 twist (deg) roll (deg) tilt (deg) rise (Å) slide (Å) shift (Å) 

unmodified 34.5 ± 6.9 2.5 ± 6.3 -2.6 ± 5.8 3.29 ± 0.30 0.39 ± 0.56 -0.35 ± 0.99 

oxoG4 28.8 ± 7 1.6 ± 6.3 -4.4 ± 5 3.26 ± 0.31 0.21 ± 0.62 -1.04 ± 0.69 

oxoG10 25.3 ± 8.1 2.4 ± 5.8 0.2 ± 5 3.16 ± 0.33 -0.07 ± 0.64 0.42 ± 0.80 

mC3 31.2 ± 7.3 2.3 ± 6.4 -3.7 ± 5.1 3.27 ± 0.30 0.33 ± 0.58 -0.69 ± 0.85 

mC9 29.4 ± 8.2 0.8 ± 6.1 -0.4 ± 5.2 3.22 ± 0.31 0.13 ± 0.57 0.14 ± 0.91 

mC3/mC9 24.2 ± 7.2 0.6 ± 5.8 -1.1 ± 4.5 3.14 ± 0.29 -0.07 ± 0.52 -0.04 ± 0.74 

mC3/oxoG10 20.4 ± 6.4 2.4 ± 5.4 -0.6 ± 4.5 3.10 ± 0.30 -0.33 ± 0.52 0.33 ± 0.61 

mC9/oxoG4 22.1 ± 6.8 0.1 ± 5.6 -1.8 ± 4.6 3.15 ± 0.31 -0.24 ± 0.54 -0.54 ± 0.64 

mC3/oxoG4 28.8 ± 7.2 2.0 ± 6.2 -4.3 ± 4.9 3.26 ± 0.31 0.23 ± 0.60 -1.00 ± 0.76 

mC9/oxoG10 27.6 ± 7.8 1.0 ± 5.9 1.0 ± 4.9 3.20 ± 0.31 -0.09 ± 0.61 0.65 ± 0.80 

mC3/mC9/oxoG4 24.1 ± 8.1 0.3 ± 5.5 -2.3 ± 4.5 3.14 ± 0.30 -0.12 ± 0.61 -0.33 ± 0.74 

mC3/mC9/oxoG10 19.7 ± 6.1 1.4 ± 5.3 -0.1 ± 4.3 3.09 ± 0.29 -0.28 ± 0.49 0.39 ± 0.61 

 

Table A.3 Average values and standard deviations for C9G10 base pair step geometries 

obtained from 555ns MD simulation. 
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G10-C11 twist (deg) roll (deg) tilt (deg) rise (Å) slide (Å) shift (Å) 

unmodified 33.3 ± 6.3 5.4 ± 5.4 0.3 ± 4.5 3.24 ± 0.29 -0.05 ± 0.52 0.00 ± 0.70 

oxoG4 36.9 ± 5.1 7.1 ± 5.4 0.2 ± 4.2 3.32 ± 0.28 -0.13 ± 0.55 0.13 ± 0.61 

oxoG10 36.7 ± 6.4 7.5 ± 5.8 -0.4 ± 4.5 3.30 ± 0.31 0.10 ± 0.52 -0.17 ± 0.69 

mC3 34.6 ± 5.1 7.3 ± 4.8 -0.9 ± 4 3.29 ± 0.28 -0.32 ± 0.48 -0.18 ± 0.6 

mC9 34.3 ± 6.1 7.1 ± 5.5 -0.5 ± 4.5 3.26 ± 0.29 0.03 ± 0.51 -0.27 ± 0.66 

mC3/mC9 35.5 ± 4.7 10.0 ± 5.1 -1.4 ± 3.9 3.31 ± 0.27 -0.18 ± 0.47 -0.43 ± 0.59 

mC3/oxoG10 37.1 ± 5 9.4 ± 5.2 -1.3 ± 4 3.32 ± 0.27 -0.08 ± 0.45 -0.45 ± 0.61 

mC9/oxoG4 37.8 ± 4.6 10.0 ± 5.5 -0.2 ± 4.2 3.33 ± 0.27 0.03 ± 0.55 -0.07 ± 0.60 

mC3/oxoG4 34.8 ± 4.9 8.0 ± 4.8 -1.1 ± 3.9 3.29 ± 0.27 -0.31 ± 0.47 -0.12 ± 0.58 

mC9/oxoG10 35.4 ± 5.9 7.4 ± 5.8 1.1 ± 4.4 3.26 ± 0.29 0.36 ± 0.49 0.19 ± 0.63 

mC3/mC9/oxoG4 34.2 ± 5.3 10.3 ± 5.1 -1.1 ± 4 3.29 ± 0.27 -0.17 ± 0.48 -0.42 ± 0.62 

mC3/mC9/oxoG10 37.7 ± 4.7 9.9 ± 5.1 -1.5 ± 3.9 3.34 ± 0.27 -0.05 ± 0.44 -0.5 ± 0.58 

 

Table A.1 Average values and standard deviations for G10C11 base pair step geometries 

obtained from 555ns MD simulation. 
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Figure A5. Principal component projections 3-5 of target CpG sites from MD simulations. 
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Figure A6. Porcupine plots for CpG sites of the first eigenvectors for the MD simulation on the 
all twelve samples. The arrows attached to each heavy atom indicates the direction of the 
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eigenvector and the arrow length depicts the magnitude of the associated eigenvalue. The 
models are colored according to mobility where red is least mobile and blue is highest mobility.  
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