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ABSTRACT 

 

 Sexual dimorphism is the result of a cascade of genes that triggers sex-specific 

development.  The cascade begins with a primary signal that affects a hierarchy of genes and, 

through their selective activation and repression, results in the development of an individual 

of a particular sex.  The genes in this regulatory hierarchy are very divergent, with little 

conservation across taxa.  However, homologs of doublesex, a master regulator in the sex-

determining cascade of Drosophila melanogaster, have been found in organisms ranging 

from nematodes to humans.  These homologs are identified by the DM domain, a DNA-

binding motif found in genes that function as transcription factors.  The DM domain defines 

an entire family of genes, of which only a select few play a role in sex determination.  Here I 

describe a family of four DM-containing genes in the parasitoid wasp Nasonia vitripennis.  

Using molecular and computational techniques, I completed the sequence of two previously 

discovered members of this family and identified two new genes that contain the DM 

domain.  One of these new genes, NvDM4, shows sex-specific expression reminiscent of the 

doublesex gene, suggesting that it is part of the sex-determination cascade in N. vitripennis. 
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Figure 1.  Unequal crossing over of homologous chromosomes.  During 
homologous recombination, if unequal amounts of chromosome are exchanged, 
this can result in the gene duplication (adapted from Brown 2002). 
 
Figure 2.  Potential fates of duplicated genes.  The duplicated gene may (A) 
accumulate mutations and degrade, resulting in a pseudogene, (B) evolve non-
overlapping functions in which the duplicated gene plays a new role in the 
organism, (C) develop complementary functions such that both genes are required 
to fulfill the role of the original gene, referred to as subfunctionalization, (D) or 
incur mutations in the regulatory region, resulting in differential expression and 
either sub- or neofunctionalization (adapted from Louis 2007).  
 
Figure 3.  The steps from genomic DNA to protein in an alternatively 
spliced gene.  A gene is first transcribed into pre-mRNA and then 
processed, removing the exons as well as adding a 5’ cap and a poly-A 
tail (not shown).  The processed product is called mRNA, which is 
then translated into protein. 
 
Figure 4.  Splice site consensus sequences at the donor and acceptor sites of pre-
mRNA.  The subscripts indicate the percent occurrence of a particular nucleotide 
at that location.  Note that the GU at the donor site and AG at the acceptor site are 
conserved in all introns.  The yellow box indicates and intron and the green boxes 
indicate exons.  Please note that, although the GU-AG nucleotides are listed as 
having 100% conservation, in reality a small fraction of the sites, less than 1%, 
have a GC-AG sequence and approximately 0.1% have an AU-AC sequence 
(adapted from Lewin 2004). 
 
Figure 5.  The basic process of intron removal via two transesterfication reactions.  
Exons are in green and introns in blue.  Black arrows represent the nucleophilic 
attack by a hydroxyl group on a phosphodiester bond.  The result of this splicing 
is two exons connected together by a phosphodiester bond, represented by the P 
(adapted from Lewin 2004).   
 
Figure 6.  Watson-Crick base pairing between the 5’ splice site of pre-mRNA and 
three members of the spliceosome, U5 snRNA, U6 snRNA, and U1 snRNA.  The 
pre-mRNA is at the center, with capital letters on a blue background indicating 
the exon and lower-case letters on a yellow background representing the intron.  
The Ψ indicates a pseudo-uridine (adapted from Ast 2004).   
 
Figure 7.  The base pairing of three splice site variants with U1 snRNA.  The pre-
mRNA is the sequence on top, with position three varying between the transcripts.  
(A) In sites with A in positions three, the exon is most often included, (B) while 
sites with a G in that position may or may not be recognized, typically resulting in 
alternative splicing.  In splice sites that have a C at position three, the exon is 
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skipped.  Solid lines indicate Watson-Crick base pairing while dashed lines are 
non-Watson-Crick pairing.  The Ψ represents a pseudo-uridine and N indicates 
non-specific nucleotides (adapted from Ast 2004).   
  
Figure 8.  The different ways in which introns defined.  (A) Exon definition 
requires additional information not contained within the intron called exon splice 
enhancers (ESEs, blue).  SR proteins (purple) are conserved serine- and arginine-
rich proteins that regulate splicing.  These proteins bind to ESEs and instigate a 
cross-exon recognition complex.  (B) While intron definition can also involve SR 
proteins, all the information for splice site excision is contained within the intron.  
Pink rectangles are exons and unlabeled colored circles are various proteins 
involved in splicing (adapted from Ast 2004). 
 
Figure 9.  Assemblage of spliceosome on pre-mRNA and removal of intron, 
illustrating the many different components involved in the splicing process.  The 
two transesterfication reactions are depicted with red arrows.  The snRNPs are 
shown as small nuclear RNA (i.e. U1, U2, etc.) with the surrounding protein 
represented by the shading.  The polypyrimidine region of the intron is shaded in 
blue (adapted from Patel and Steitz 2003).   
 
Figure 10. Patterns of alternative splicing.  Grey boxes are constitutively spliced 
exons and colored boxes represent alternatively spliced exons (adapted from Ying 
and Lee 2006).    
 
Figure 11.  The FC receptor genomic and protein structure.  (A) The FC receptor 
undergoes a form of alternative splicing called polyadenylation.  The constitutive 
exons are in gray while alternatively spliced exons are indicated by colored 
rectangles.  Each Transmembrane domain is indicated by TM and numbered from 
the amino end of the protein..  (B) The different 3’ ends affects the protein 
structure and function, with different transmembrane domains and cytoplasmic 
tails.  Colors of the regions of the protein correspond with colors of the exons in 
(A) (adapted from Modrek and Lee 2002).        
 
Figure 12.  Factors involved in eukaryotic transcription initiation.  For 
transcription of naked DNA in vitro, only the general transcription factors are 
required (dark blue, green, and yellow ovals).  These basal transcription factors 
bind to the core promoter sequence and recruit RNA polymerase II (purple).  
However, due to careful packaging of the DNA in vivo, additional elements are 
required.  These include transcription factors (orange) that bind to regulatory 
sequences (light yellow) of the DNA (dark green).  The effect of transcription 
factors on the core promoter is facilitated by the mediator complex (pink).  
Transcription factors also interact with proteins that are involved in the packaging 
of the DNA, including histone acetyltransferases (peach) and chromatin 
remodelers (burgundy) (adapted from Watson et al. 2008).    
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Figure 13.  The basic structure of three transcription factors showing the modular 
nature of the proteins.  (A) GCN4, found in Saccharomyces cerevisiae, modulates 
the translation of enzymes that are involved in the biosynthesis of amino acids 
(Voet and Voet 2004).  (B) The glucocorticoid receptor is a transcription factor 
that becomes active only when bound to glucocorticoid (Lewin 2004).  (C) The 
transcription factor c-Jun is involved in cell division (Kaiser et al. 2006).  Note 
that the DNA-binding and trans-activating domains are not the same in the 
different proteins, despite their identical depiction.  Not to scale (adapted from 
Latchman 1997).  
 
Figure 14.  Organization and expression of the Hox gene in  fruit fly (D. 
melanogaster) and mouse (Mus musculus) embryos, including details of the 
evolutionary relationship between the Hox genes in both species, with 
hypothetical ancestral genes.  Mice have four different clusters of Hox genes, 
Hoxa – Hoxd, while the fruit fly has only one.  Colors indicate orthologous genes 
(adapted from Carroll et al. 2001).  
 
Figure 15.  Reproduction in haplodiploid insects.  Fertilized eggs develop into 
females while unfertilized eggs become males (adapted from Bull 1983). 
 
Figure 16.  Sex determining cascade of D. melanogaster and C. elegans, both of 
which include a DM-containing gene (green).  Pathways above DM genes are not 
conserved (adapted from Zhu et al. 2000). 
 
Figure 17.  The consensus sequence of the zinc finger motif.  The X stands for 
any amino acid, with subscript indicating the number (adapted from Lewin 2004). 
 
Figure 18.  A series of three zinc fingers contacting DNA.  The α helix is 
represented by the magenta cylinders, the β sheets by the yellow arrows, and the 
associated zinc atoms by green balls.  The DNA is in purple (PDB: 1aay). 
 
Figure 19.  DM domain in DSX.  Conserved cysteines and histidines are colored.  
The green coloration corresponds with the site I Zn-binding sites seen in figure 20 
and the magenta corresponds to site II.  The zinc ions are in blue (PDB: 1plv). 
 
Figure 20.  Alignment of the DM domain from D. melanogaster (DSX), C. 
elegans (Mab-3a and Mab-3b), Apis mellifera (AmDSX), Danio rerio (Terra), 
Homo sapien (Dmrt1 and Dmrt2).  Conserved cysteine and histidine residues are 
outlined.  Site I and Site II refer to Zn-binding sites (adapted from Zhu et al. 
2000). 
 
Figure 21.  Alternative splice patterns of doublesex in D. melanogaster.  (A) The 
gene includes three exons that are constitutively spliced (white), followed by a 
female-specific exon (pink), and two male-specific exons (green).  (B) The 
alternatively splicing results in two different transcripts with different C-termini.  
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The DM domain appears in blue and the oligomerization domain is speckled, with 
the white background indicating the shared region of  this domain present in both 
sexes and the green and pink backgrounds indicate the region and is male- or 
female-specific, respectively (adapted from Zhu et al. 2000). 
 
Figure 22.  The male and female versions of the oligomerization domains and 
carboxyl tails in D. melanogaster.  This region of the protein has different 
protein-protein interactions in males and females, resulting in the sex-specific 
activation and repression of other genes.  The blue and pink high lights indicate 
the male- and female-specific region of the oligomerization domain, respectively.  
Colored text represents the sex-specific carboxyl ends.  
 
Figure 23.  General figure of 5’ and 3’ RACE primers.  The mRNA is in green, 
with the gene specific primer (GSP) represented as a red arrow and the nested 
gene specific primer seen as a blue arrow.  
 
Figure 24.  Flow diagram of RT-PCR beginning with the RNA, represented by 
blue bars.  The RNA is converted into cDNA using reverse transcriptase, shown 
as orange bars.  The portion of the transcript to be amplified is in green and the 
primers appear as pink arrows. 
 
Figure 25.  Overview of the cloning process.  (A, B) Products and vectors are 
combined and the products inserted with the help of the topoisomerase enzyme.  
(C, D) These vectors are put into competent E. coli cells and then (E) screened for 
ampicillin resistance, which is present only in bacteria that have taken up a 
plasmid insert.  After gridding out separate colonies (not shown), 10 to 20 
colonies are chosen and (F) PCR performed to check the size of the product 
inserts using M13R and T7 primers (shown as red arrows) that amplify off the 
plasmid.  (G) Clones with the appropriately sized inserts are then streaked for 
single colonies using the colony off the grid plate.  (H) A single colony is then 
grown up overnight in a broth and plasmids from the resulting clones are isolated 
and sequenced.    
 
Figure 26.  Alignment of the DM domain of NvDM1, NvDM2, and DSX from 
Apis mellifera and Drosophila melanogaster.  The blue background indicates 
identical amino acids in all four sequences, the black background indicates 
identical amino acids in two to three sequences, and gray indicates similar amino 
acids. 
 
Figure 27.  NvDM1 alternative transcripts.  Green numbers indicate transcript 
name.  Each colored box represents a unique sequence of mRNA.  The DM 
domain is indicated by a bracket in exon one of transcript 3.4 and is present in all 
of the transcripts.  The stop sign indicates the end of the longest open reading 
frame for each transcript, with red numbers to right indicating the length of the 
longest open reading frame.  Arrows indicate primer location and direction, with 
primer names indicated above.  The junctions between exons are numbered in 
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purple.  Introns are not to scale.  Numbers inside exons are arbitrary and for 
identification purposes only, not to be considered an indication of genomic 
placement.  Please note that this figure includes information gleaned from my 
work described in this section, including the additional 5’ end sequence added to 
exon 1 and the splitting of exon 4 and 6 into two separate, constitutively spliced, 
exons. 
 
Figure 28.  Alignment of the translated amino acid sequence of DM2 with the 
predicted gene model hmm117054 found by running a BLASTX with the 
nucleotide sequence of DM2 as the query against the ab initio database.  
 
Figure 29.  Amino acid alignment of complete DM domains from N. vitripennis 
DM1 and DM2 with those of D. melanogaster and A. mellifera.  Blue background 
indicates conservation in all four proteins, black indicates identical amino acids in 
two or three proteins, and a gray background means the amino acids are similar. 
 
Figure 30.  The exon structure of NvDM1 and NvDM2.  The NvDM1 transcript 
shown is of the longest transcript with the longest open reading frame (ORF), 
number 3.4.  The blue box indicates the sequence that codes for the DM domain 
while the yellow boxes indicates the region that codes for the DMRTA motif.  
White boxes are ORF and gray boxes indicate 3’ untranslated region (UTR).  
Neither sequence includes 5’ UTR information as this could not be determined 
using available computational methods.   
 
Figure 31.  Alignment of the DM domains of the DM-containing genes in 
Nasonia vitripennis, including the two new genes NvDM3 and NvDM4. 
 
Figure 32.  Exon structure of NvDM3 as predicted by Gnomon.  Blue indicates 
DM domain and orange indicates the DMA (Dmrta) motif.  Arrows are primer 
locations, with the names of the primers shown above.  The first two exons were 
too small to design useful primers and thus represent only a computational 
prediction.  All other exons were confirmed using RT-PCR of the primers shown.  
Because this is a prediction, there are no 3’ or 5’ UTRs.  Thus all exons shown are 
coding exons with open reading frames.  The last three nucleotides of exon six are 
a stop codon.  
 
Figure 33.  RT-PCR of NvDM3 to confirm prediction found in RefSeq.  Note that 
the larger bands in lanes 2 through 8 correspond with genomic product size.  (2 
and 4) Primers LE2 and RE3 in males and females with no reverse transcriptase (-
RT); (3 and 5) LE2 RE3 m and f (+RT); (6 and 8) LE2 RE4 m and f (-RT); (7 and 
9) LE2 RE4 m and f (+RT); (10 and 12) LE2 RE5 m and f (-RT); (11 and 13) LE2 
RE5 m and f (+RT). 
 
Figure 34.  The ab initio prediction of NvDM4 transcript with primers used for 
RACE.  Primers for 3’ RACE are on top of the transcript while those for 5’ 
RACE appear below.  The blue box represents the DM domain.  A stop codon 
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appears at the end of the second exon; the rest of the sequence is an open reading 
frame. 
 
Figure 35.  Nested priming of 5’ RACE.  (2 and 7) 5’ RACE DM4RE1.2 (m, f); 
(3 and 8) DM4RE1.2 only (m, f); (4 and 9) Nested universal primer mix only (m, 
f); (5 and 10) No primers (m, f).   
 
Figure 36.  Check of the sizes of plasmids cloned from male products of 5’ 
RACE.  Lanes 2, 5, 8, and 9 have plasmids of approximately the same size.  The 
plasmid in lane 8 was sequenced.  Lanes 1 and 13 are Hi-Lo and lane 12 is a no E. 
coli control.   
   
Figure 37.  Check of the sizes of plasmids cloned from female products of 5’ 
RACE.  Lanes 9 and 10 have plasmids of approximately the same size.  The 
plasmid in lane 9 was sequenced.  Lanes 1 and 13 are Hi-Lo.   
 
Figure 38.  The location of the T7 (orange) and M13R (green) primers on either 
side of the PCR insert (blue) in the plasmid (black).     
 
Figure 39.  The results of 5’ RACE of NvDM4.  The untranslated region (UTR) is 
in gray, the open reading frame in white, and the DM domain in blue.  No sex-
specificity was expected in the 5’ end of the gene. 
 
Figure 40.  Results of 3’ RACE in males and females.  Lane 7 is 3’ RACE 
products from male RNA and Lane 13 from female RNA.  Note the differences in 
product sizes.  The remaining lanes are as follows: (4 and 10) 3’ RACE DM3 
male and female; (2 and 8) DM3-specific primer only m and f; (3, 6, 9, and 12) 
Universal Primer Mix only m and f; (5 and 11) DM4-specific primer only m and 
f; (1) Hi-Lo. 
 
Figure 41.  Results of nested 3’ RACE in males and females.  Lane 2 is 3’ nested 
RACE products from males and lane 7 is from females.  The remaining lanes are 
size standards and controls as follows: (3and8) 3’ RACE with Nested Universal 
Primer only, male and female; (4 and 9) 3’ RACE with DM4LE2 Primer only; 
(5and10) 3’ RACE without primers; (1, 6, and 11) Hi-Lo. 
 
Figure 42.  Results of checking the clone sizes in males.  Each clone is given a 
particular number in order to keep track of it and these are indicated as follows 
with the lane number in parenthesis: (2) C1, (3) C2, (4) C3, (5) C4, (6) C5, (8) 
C6, (9) C10, (10) C11, (11) C12, (12) C13.  One clone of each size was 
sequenced, except for C12, which was deemed too small.  I sequenced clones C2, 
C4, C5, and C10.  Lanes 1, 7, and 13 are Hi-Lo. 
 
Figure 43.  Results of checking the clone sizes in females.  Clones: (2) C1, (3) C2, 
(4) C3, (5) C4, (6) C5, (7) C8, (8) C13, (9) C14, (10) C20, (11) C21.  One clone 
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of each size was sequenced.  I sequenced clones C1, C2, C8, and C21.  Lanes 1 
and 12 are Hi-Lo. 
 
Figure 44.  Alignment of male and female NvDM4 transcripts and the original ab 
initio prediction with genomic sequence.  Exons appear in peach and introns in 
blue.  There is a stop codon at the end of the ab initio sequence and at the same 
location in male clone 5, but not in the remaining sequences, which are spliced 
just before the stop codon.  The black box indicates the VI, or variable intron, 
which was found excluded from female transcripts and included in male 
transcripts.  A small (12bp) sequence spliced out of male transcripts 2 and 5 
indicated by white line. 
 
Figure 45.  An alignment of the doublesex oligomerization domains (OD) of the 
male and female N. vitripennis transcripts with the Pfam Hidden Markov Model 
for the OD.  Residues conserved in all three sequences have a blue background, 
those that are the same in two sequences have a black background, and similar 
residues have a gray background.  Notice that the N. vitripennis male and female 
proteins are different at the carboxyl end due to the alternative splicing, while the 
amino ends are identical.   
 
Figure 46.  Complete mRNA transcripts of NvDM4 in males (M) and females (F).  
The untranslated regions are in gray, the sequence coding for DM domains in 
light blue, the sequence coding for the shared oligomerization domain is in purple, 
and the sequence of the oligomerization domain unique to OD-A and OD-B are in 
green and yellow, respectively.  Note: Does not show small introns in M5 and 
M2.   
 
Figure 47.  Sequence from doublesex homologs beginning at the start of the 
doublesex oligomerization domain and ending at the end of the protein in D. 
melanogaster (Dm), A. mellifera (Am), and N. vitripennis (Nv).  The text 
highlighted in green is the oligomerization domain shared between the two sexes 
of each organism.  Text highlighted in blue is the male-specific region of the OD 
and text highlighted in pink is the female-specific region.  Note that the tails 
succeeding the OD are considerably shorter in N. vitripennis than in any other 
organism for both males and females.  Underlined portion of A. mellifera male is 
the sequence used to search for additional carboxyl ends.      
 
Figure 48.  Alignment of A. mellifera query sequence with resulting hit from N. 
vitripennis that resulted from a TBLASTN search of the genome.  The E value 
was 0.002, but the hit was on scaffold 23, the same scaffold as the male and 
female NvDM4 transcripts found using 3’ RACE. 
 
Figure 49.  The location of various transcripts relative to the genomic sequence.  
The genomic sequence is in gray.  Predicted sequences are below the genomic 
sequence.  Exons appear as boxes, with introns as connecting lines.  The orange 
exons are the ab initio prediction of NvDM4.  The light green exons are a RefSeq 
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prediction of an elongase protein.  The entire elongase sequence is not shown, but 
continues farther to the 3’ end.  The purple exons above the genomic sequence are 
the male NvDM4 sequence with the new added-on sequence in neon green and 
circled in orange.  
 
Figure 50.  Location of primers for the RT-PCR testing whether any exons of the 
putative elongase were connected to NvDM4.  The left primer, NvDM4LE1.6, is 
located in the beginning of the ORF of NvDM4.  Primers for exons 3, 5, 6, 7, 8, 
and 9 of the putative elongase are in black.  These primers are named PERE3, 
PERE5, etc.  Exon 4 was too small for a primer.  Exons are labeled as PE1, PE2, 
etc.  A primer serving as a positive control is located in NvDM4 and is shown in 
burgundy.  Note that the second exon of the PE aligns exactly with the fourth 
exon of OD-B transcripts.  This sequence is also in OD-A and OD-X, but the PE 
excludes the VI seen in OD-A and OD-X.  The genomic length from the 
beginning of the DM4 prediction to the end of the putative elongase is 44kb. 
 
Figure 51.  Results of RT-PCR to check whether exons of the predicted elongase 
were connected to the first coding exon of NvDM4 in males.  The primers (2 and 
3) DM4LE1.6 with DM4RE4  represent a positive control (no reverse 
transcriptase [RT], +RT).  The rest of the lanes contain the following primers with 
in each case the lane representing the no RT control: (4 and 5) DM4LE1.6, 
PERE3; (6 and 7) DM4LE1.6, PERE5; (8 and 9) DM4LE1.6, PERE6; (10 and 11) 
DM4LE1.6 PERE7; (12 and 13) DM4LE1.6, PERE8.  Lane (1) is Hi-Lo.  This 
shows that the third exon of the PE is connected to the first exon of DM4. 
 
Figure 52.  Results of RT-PCR to check whether exons of the predicted elongase 
were connected to the first exon of NvDM4 in females.  (2) DM4LE1.6, DM4RE4 
(+RT); (3) DM4LE1.6, PERE3; (4) DM4LE1.6, PERE5; (5) DM4LE1.6, PERE6; 
(6) DM4LE1.6 PERE7; (7) DM4LE1.6, PERE8; (8) DM4LE1.6, PERE9; (1 and 
9) Hi-Lo.  Again, the results suggest that the third exon of the PE is connected to 
the first exon of NvDM4. 
 
Figure 53.  Results of nested gene-specific priming of original 3’ RACE.  The 
nested primers are designed to target the third exon of the PE, previously shown 
to be connected to the first exon of NvDM4 using RT-PCR (fig. 51 and 52). 
Lanes contain the following: (2) ♂PELE3.1, Nested Universal Primer Mix; (3) ♂ 
PELE3.1; (4) ♀ PELE3.1, NUPM; (5) ♀ PELE3.1; (6) ♂ PELE3.2, NUPM; (7) ♂ 
PELE3.2; (8) ♀ PELE3.2, NUPM; (9) ♀ PELE3.2; (1 and10) Hi-Lo. 
 
Figure 54.  One of the two gels resulting from a check of clone sizes from the 
NGSP seen in fig. 51.  Each clone is given a number identification as follows: (2) 
C2; (3) C3; (4) C4; (5) C5; (6) C7; (7) C8; (8) C10; (9) C11; (10) C12; (11) C13; 
(12) C15; (1, 13) Hi-Lo.  Clones C2, C3, C4, C10, and C11 were sequenced.  
 
Figure 55.  Alignment of clones C2, C3, C4, and C11 with the genome and the 
putative elongase.  Exons are labeled A through D.  C3 lacks exon B.  Exon B 
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contains a stop codon, as does exon C, resulting in two different ORF, one shared 
by C2, C4, and C11 and another seen only in C3.  Note that exons five through 
nine of the PE are very close together and represented by the solid orange box at 
the far right. 
 
Figure 56.  Amino acid sequence of OD-C.1 and OD-C.2 class transcripts 
beginning at the start of the oligomerization domain and ending at the C-terminal 
of the protein.  The difference between the proteins is underlined.  The sequence 
highlighted in green are the region of the OD shared among OD-A, OD-B, and 
OD-C transcripts while the blue is the region of the OD specific to OD-C.  As can 
be seen, OD-C.1 and OD-C.2 share the same oligomerization domain. 
 
Figure 57.  Alignment of the results of sequencing the male and female RT-PCR 
products with primers DM4LE1.6 and PERE3 (rows 4 and 5).  Also included in 
this alignment the incomplete sequences from ODC.1 and ODC.2 (row 2 and 3) 
and representative transcripts from the OD-A and OD-B classes (rows 6 and 7).  
The fourth exon of DM4-PE3 male and female are the same as the fourth exon 
OD-B.   
 
Figure 58. The results of amplification between the first coding exon of NvDM4 
(primer NvDM4LE1.6) and exons A, B, C and D in males and females.  The lanes 
are as follows: (1 and 2) male DM4LE1.6 and DM4RA.1 (-reverse transcriptase 
[RT], +RT); (3 and 4) female DM4LE1.6 and DM4RA.1 (-RT, +RT); (5 and 6) 
male DM4LE1.6 and DM4RB.1 (-RT, +RT); (9 and 10) female DM4LE1.6 and 
DM4RB.1 (-RT, +RT); (11 and 12) male DM4LE1.6 and DM4RC.1 (-RT, +RT); 
(13 and 14) female DM4LE1.6 and DM4RC.1 (-RT, +RT); (15 and 16) male 
DM4LE1.6 and DM4RD.1 (-RT, +RT); (17 and 18) female DM4LE1.6 and 
DM4RD.1 (-RT, +RT); (7, 8 and 19) Hi Lo. 
 
Figure 59.  NvDM4 OD-C transcripts.  DM domain is in blue, the oligomerization 
domain shared among the NvDM4 transcripts is in purple, and the carboxyl end of 
the oligomerization domain unique to the OD-C transcripts is in red.  OD-C.1 and 
OD-C.2 have the same oligomerization domain, but differ at the C-terminal.  
 
Figure 60.  The effect of varying the cycle numbers on the amplification of 
DM4LE1.6 and DM4RA.1.  Lanes 1, 3, and 5 have a male template and lanes 2, 
4, and 6 have a female template.  Lane 7 is Hi-Lo.  A very light band first 
appeared in males at 15 cycles, but no evidence of product was seen in females 
until 25 cycles had been completed.   
 
Figure 61.  Location of primers to determine whether the splicing patterns seen as 
sex-specific in 3’ RACE are indeed transcribed exclusively in one sex of yellow 
pupae.  DM4RMale1 sits entirely in the VI.  Blue arrows indicate primers testing 
for OD-A and OD-X.  Pink arrows indicate primers testing for OD-B.  In both 
cases primer labels appear above arrows.   
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Figure 62.  Amplification to check for presence of VI in females.  VI had 
previously been seen only in males.  Lanes 1 and 2 are male products (-RT, +RT) 
and lanes 3 and 4 are from female template (-RT, +RT).  Lane 5 is Hi-Lo marker.  
The shorter product corresponds to OD-A transcripts (expected size: 667) while 
the larger product is due to amplification off of OD-X (expected size: 1236).   
 
Figure 63.  Amplification to check for the presence of the OD-X transcript.  Lanes 
2 and 3 are amplified off of male cDNA (+RT, -RT).  Lanes 4 and 5 are amplified 
from female cDNA (+RT, -RT).  Lane 1 is Hi-Lo marker.  The darker band is at 
the expected product size of 578bp with the larger, fainter band corresponding 
with the expected size of amplification off of genomic DNA (1011bp).  
 
Figure 64.  Amplification to check for the presence of OD-B transcripts in males.  
OD-B transcripts result in a 192bp product while OD-A and OD-X transcripts 
result in a 300bp product.  Lanes 2 and 3 amplify off of male cDNA (-RT, +RT) 
and lanes 4 and 5 amplify off of female cDNA at 30 cycles, plus a 3 minute 
extension.  Lanes 6, 8, and 10 have male cDNA as a template with 15, 20, and 25 
cycles respectively.  Lanes 7, 9, and 11 have female cDNA as a template.  Lanes 1 
and 12 are Hi-Lo marker.  
 
Figure 65.  The location of the purine rich enhancer (PRE) and dsx repeat 
elements (dsxRE) in the transcript of D. melanogaster doublesex mRNA.  The 
exon structure of doublesex shows the female-specific exon in pink and the male-
specific exons in green.  The female-specific exon is magnified and the dsxREs 
are red and the PRE is yellow (adapted from Lynch and Maniatis 1995).   
 
Figure 66.  Complete exon/intron structure of the NvDM4 gene.  Exons, indicated 
by rectangles, are numbered in black above each exon and introns, indicated by 
lines, are lettered in blue below each intron.  An intron is considered unique if it 
has a distinct combination of donor and acceptor site.  Exons that occupy a subset 
of the sequence of a larger exon are denoted by the name of the larger exon, 
followed by the letters a or b.  The blue rectangle represents the DM domain.  The 
purple represents the beginning of the oligomerization domain shared by OD-A, 
OD-B, and OD-C with the green, yellow, and red representing the C-terminus of 
the OD-A, OD-B, and OD-C transcripts respectively.  The white rectangles 
indicate the open reading frame that is not part of the two motifs and the gray 
represents the untranslated region.  
 
Figure 67.  The location of polyadenylation sites on class OD-A, OD-B, and OD-
C.1 transcripts.  The transcript classes OD-C.2 and OD-X did not show alternative 
polyadenylation sites.   
 
Figure 68.  The exon structure of NvDM1, NvDM2, NvDM3, and NvDM4, 
including the four splicing classes of NvDM4.  White and colored boxes represent 
open reading frames while grey indicates untranslated regions.  Introns are not to 
scale. 
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Figure 69.  The current model of mammalian nonsense-mediated decay (NMD).  
After the transcript is spliced in the nucleus, the exon junction complexes (EJCs) 
associate with each exon-exon junction.  Once moved into the cytoplasm, the 
mRNA is translated for the first time.  However, if a premature termination codon 
(PTC) is present, not all EJCs will be removed and the ribosome will stall, 
resulting in the recruitment of proteins to the exon EJC and the ribosome.  This 
marks the transcript for decay (adapted from Garneau et al. 2007).   
 
Figure 70.  Amino acid sequence alignment of NvDM4 with A. mellifera (Am), 
D. melanogaster (Dm), and B. mori (Bm).  (A) is non-sex specific region of each 
gene, (B) is the female-specific C-terminal, and (C) is the male-specific C-
terminal.  The DNA binding domain (DBD)/oligomerization domain 1 (OD1) and 
non-sex-specific OD2 are indicated with black boxes.  The sex-specific regions of 
OD2 are indicated by pink and blue boxes for males and females respectively.  
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INTRODUCTION 

 

 Among the plans laid out for both mice and men in the early embryo is the decision to 

become male or female.  This is not a matter of a single gene, one marked Boy, the other 

Girl, but instead a series of inter-connected regulators, each one influencing the next.  These 

genes form a regulatory hierarchy, passing the message of sexual differentiation down the 

chain until, at the bottom of this cascade, the verdict of which sex to become is passed on to a 

suite of effectors that specify the differentiation of sexually dimorphic cells and tissues.  

While the overall plan laid out in the embryo, with a hierarchical cascade of regulators, is 

seen in a variety of organisms, the specifics of the cascade itself, what genes are used and 

when and how, varies.  However, the basic structure of one gene, doublesex discovered in the 

fruit fly, has been found to be conserved across taxa.  Homologs of this gene contain a DNA-

binding motif called the DM domain and can be found in the sex determination cascades of 

organisms ranging from mice to men to Musca.  My thesis research used computational and 

molecular techniques to examine a family of DM domain genes in the wasp Nasonia 

vitripennis.  This family has four members and I have shown that one of these is a doublesex 

homolog and likely to be involved in the sex-determination of N. vitripennis.          

  

 

Gene families 

 

 A gene family is a group of genes that, because of the high degree of sequence 

similarity, are thought to have evolved from a single ancestral gene.  The original ancestral 



 2

gene may have duplicated through unequal crossing over during homologous recombination, 

unequal exchange between sister chromatids, or strand slippage during DNA replication 

(fig.1) (Brown 2002).  Gene families are very common in eukaryotes such as Drosophila 

melanogaster, Caenorhabditis elegans, and Arabidopsis thaliana (table 1).   

 With duplicate or multiple copies of a single gene, mutations in a single version of the 

gene can escape selective pressure that would have eliminated such variation had the gene 

not been duplicated.  This enables different forms of a gene to arise.  After duplication, a 

variety of possible fates exist for the now-redundant genes.  The most common is for one 

gene to maintain its original function under purifying selection while the other gene, not 

under such constraints, accumulates mutations (Prince and Pickett 2002).  This usually 

results in the loss of function of one gene, forming a pseudogene (fig.2-A).  Alternatively, the 

duplicated genes can acquire a new function in a process referred to as neo-functionalization 

(fig.2-B).  Another possibility is proposed by the duplication-degeneration-complementation 

(DDC) model in which both genes undergo mutations and there is a loss of function, called 

sub-functionalization, in each (fig.2-C).  Instead of losing function, though, under the DDC 

model the genes work together to carry out the function of the original gene, thus 

complementing each other (Prince and Pickett 2002).  In this scenario, functional copies of 

both genes would remain in the genome as both would be under positive selection.  

Mutations can occur in the regulatory region of the duplicated gene, resulting in differential 

expression of the genes (Louis 2007).  These alterations include changes at cis-acting sites 

and can result in the sub- or neofunctionalization of the gene as the timing and level of 

expression is altered. 
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 A classic example of gene duplication is the globin family which arose from a single 

ancestral gene that duplicated about 1.1 billion years ago (Voet and Voet 2004).  Globin-like 

genes can be found in archaea, bacteria, plants, fungi, and animals, with five distinct types 

occurring in vertebrates alone (Roesner et al. 2005).  The primordial gene, which likely 

served as a simple monomeric protein that stored oxygen, has since evolved into a variety of 

forms that occur as both a monomer (myoglobin) and a tetramer (hemoglobin).  These forms 

appear in different tissues and at different stages in development.  For example, in the first 

eight weeks after conception, the tetrameric hemoglobin of human embryos is made of two ζ 

and two ε subunits (Voet and Voet 2004).  As the embryo develops, a new form of 

hemoglobin called fetal hemoglobin, made of two α and two γ subunits, is produced.  Both of 

these tetramers have a higher affinity for oxygen than adult hemoglobin, which consists of 

two α and two β subunits, enabling the embryonic and fetal hemoglobin to pull oxygen off 

the mother’s hemoglobin, thus providing oxygen for the growing fetus (Voet and Voet 2004).  

All of these variations have arisen due to evolution acting on duplicated genes.      
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Table 1.  The proportion of genes that are members of gene families in D. melanogaster, C. 
elegans, and A. thaliana (adapted from Lewin 2004). 
 

Organism Unique genes Families with >1 member 
Drosophila melanogaster 
(fruit fly) 

72% 28% 

Caenorhabditis elegans  
(nematode) 

55% 46% 

Arabidopsis thaliana  
(plant) 

35% 65% 
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Figure 1.  Unequal crossing over of homologous chromosomes.  During homologous 
recombination, if unequal amounts of chromosome are exchanged, this can result in the gene 
duplication (adapted from Brown 2002). 
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Figure 2.  Potential fates of duplicated genes.  The duplicated gene may (A) accumulate 
mutations and degrade, resulting in a pseudogene, (B) evolve non-overlapping functions in 
which the duplicated gene plays a new role in the organism, (C) develop complementary 
functions such that both genes are required to fulfill the role of the original gene, referred to 
as subfunctionalization, (D) or incur mutations in the regulatory region, resulting in 
differential expression and either sub- or neofunctionalization (adapted from Louis 2007).  
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Alternative splicing 

 

 Another way in which new gene function can arise without interfering with original 

gene function is through alternative splicing.  In order to understand alternative splicing, it is 

necessary to first understand the process of splicing itself.  Eukaryotic genes consist of both 

coding regions, called exons, and non-coding regions, called introns.  When transcribed, this 

complete sequence of exons and introns is called pre-mRNA.  In order for correct translation 

to occur, the introns must be removed and the exons connected together, creating the mRNA 

through a process called RNA splicing (Lewin 2004).  It is the processed mRNA that is then 

translated into protein (fig. 4).    

 The boundary between an intron and exon in the pre-mRNA is called a splice site.  

The splice site at the 5’ end of an intron is referred to as the donor site, while the site at the 3’ 

end is called the acceptor site (fig. 4).  Introns also contain a branch-site adenine located 18 

to 40 nucleotides upstream of the acceptor site (Lewin 2004).  There is a short region of 

conserved sequence at both ends of the intron, although only the GU at the donor site and AG 

at the acceptor site are present in virtually all introns.   

 The process of removing the intron occurs via two transesterfication reactions in 

which the 2’ hydroxyl group of the branch site adenine attacks the phosphodiester bond that 

occurs at the donor site (fig. 5-A) and then the 3’ hydroxyl group of the exon at the donor site 

attacks the phosphodiester bond at the acceptor site (fig. 5-B).  The end product is two exons 

connected by a phosphodiester bond and a separated intron in the lariat structure (fig. 5-C).         

 Splicing of transcripts from protein coding genes is catalyzed by a complex of 

proteins that brings together the donor, acceptor, and branch sites so that the reactions can 
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occur (fig. 6).  This protein machinery, called the spliceosome, assembles sequentially onto 

the pre-mRNA and consists of both proteins and small nuclear RNAs, referred to as snRNP 

for small nuclear ribonucleoprotein particles (Lewin 2004).  The correct assemblage of the 

spliceosome requires the presence of certain consensus sequences in the pre-mRNA.  

Variations in these splice site sequences can result in differences of the relative strength of 

the splice sites, with some being stronger or weaker than others.  The strength of a splice site 

refers to how well the pre-mRNA sequence binds to the spliceosomal machinery (Irimia et 

al. 2007).  For example, there are 9 semi-conserved nucleotides at the 5’ splice site that base 

pair with the 5’ terminus of the U1 SnRNA (figs. 6 and 9), one of the protein-RNA 

complexes that make up the spliceosome, and this base-pairing is critical for the splice site 

detection (Roca et al. 2005).  Splice site strength plays a direct role in alternative splicing, 

with introns containing weaker splice sites more likely to undergo alternative splicing and 

these weaker sites may require exon splice enhancers for splicing to occur (fig. 7) (Zavolan et 

al. 2003). 

 In the most basic form of splicing, both donor and acceptor sites are recognized 

independently of any sequence outside the intron.  This is called intron definition (Lewin 

2004).  However, when introns are long or splice sites weak, sequences downstream of the 

intron are required for correct spliceosome assembly, a mechanism called exon definition 

(fig. 8).  These downstream sites that aid in the binding of the splicing machinery are referred 

to as splicing enhancers (Lewin 2004). 

 While in some cases the same donor and acceptor sites are used in the processing of 

every pre-mRNA from a particular gene, others undergo a process called alternative splicing 

in which the donor and acceptor sites utilized in the removal of introns may vary.  
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Alternative splicing can take a variety of forms (fig. 10).  These can include different 5’ or 3’ 

ends, exon skipping, and mutually exclusive exons.    

 The effect of alternative splicing of mRNA on resulting protein structure varies.  In 

some cases, there may be no change to the protein if the alternative splicing occurs in the 5’ 

or 3’ untranslated region (UTR) of the gene, as can occur when splicing involves alternative 

initiation or polyadenylation (fig. 10).  While this does not affect the resulting protein, 

variations in the UTR can influence transcript regulation by altering the stability or 

translatability of the mRNA.  For example, alternative splicing of the 3’ UTR of a gene 

called maskin, a protein involved in early development of Xenopus laevis, results in the 

repression of maskin in stage four embryos and its activation in stage six, due to different 3’ 

UTRs interacting with different proteins (Meijer et al. 2007).  However, studies in humans 

have indicated that these variations in UTR are in the minority, with 70% - 88% of 

alternatively spliced transcripts resulting in a change in the protein (Modrek and Lee 2002).  

These variations can alter the function of the protein by changing the domains for which an 

mRNA codes.  A domain is sequence of amino acids within a protein that forms a self-

stabilizing structure that often folds independently from the rest of the protein.  These 

domains, also called protein motifs, are often highly conserved due to pleiotropy, by which 

one sequence interacts with a number of others, making co-evolution difficult because a 

change in the conserved sequence will affect all the sequences with which it interacts.  When 

alternative splicing affects the domains of a protein, it can alter the role of the protein within 

the organism.  For example, one member of the FC receptor family, a group of proteins that 

sit on the outside of some immune cells and are involved in antibody binding, undergoes 

alternative polyadenylation (fig. 11).  This results in the replacement of the transmembrane 
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domain and cytoplasmic tail, involved in signal transduction, with another transmembrane 

domain and tail, thereby changing the specificity of the protein (Modrek and Lee 2002).  It is 

this modularity, with domains that can often fold and function independently of one another, 

that enables the great variation in proteins through alternative splicing.      
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Figure 3.  The steps from genomic DNA to protein in an alternatively spliced gene.  A gene 
is first transcribed into pre-mRNA and then processed, removing the exons as well as adding 
a 5’ cap and a poly-A tail (not shown).  The processed product is called mRNA, which is 
then translated into protein.
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Figure 4.  Splice site consensus sequences at the donor and acceptor sites of pre-mRNA.  The 
subscripts indicate the percent occurrence of a particular nucleotide at that location.  Note 
that the GU at the donor site and AG at the acceptor site are conserved in all introns.  The 
yellow box indicates and intron and the green boxes indicate exons.  Please note that, 
although the GU-AG nucleotides are listed as having 100% conservation, in reality a small 
fraction of the sites, less than 1%, have a GC-AG sequence and approximately 0.1% have an 
AU-AC sequence (adapted from Lewin 2004). 
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Figure 5.  The basic process of intron removal via two transesterfication reactions.  Exons are 
in green and introns in blue.  Black arrows represent the nucleophilic attack by a hydroxyl 
group on a phosphodiester bond.  The result of this splicing is two exons connected together 
by a phosphodiester bond, represented by the P (adapted from Lewin 2004).   
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pre-mRNA 
 
 
 
 
 
 
 
Figure 6.  Watson-Crick base pairing between the 5’ splice site of pre-mRNA and three 
members of the spliceosome, U5 snRNA, U6 snRNA, and U1 snRNA.  The pre-mRNA is at 
the center, with capital letters on a blue background indicating the exon and lower-case 
letters on a yellow background representing the intron.  The Ψ indicates a pseudo-uridine 
(adapted from Ast 2004).   
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A.  Mostly constitutive       
 
 
 
 
 
 
 
 
 
 
 
 
B.  Mostly alternative               
 
 
 
 
 
 
 
 
 
 
 
C.  Exon skipped  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.  The base pairing of three splice site variants with U1 snRNA.  The pre-mRNA is 
the sequence on top, with position three varying between the transcripts.  (A) In sites with A 
in positions three, the exon is most often included, (B) while sites with a G in that position 
may or may not be recognized, typically resulting in alternative splicing.  In splice sites that 
have a C at position three, the exon is skipped.  Solid lines indicate Watson-Crick base 
pairing while dashed lines are non-Watson-Crick pairing.  The Ψ represents a pseudo-uridine 
and N indicates non-specific nucleotides (adapted from Ast 2004).   
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A.  Exon definition              B.  Intron definition 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8.  The different ways in which introns defined.  (A) Exon definition requires 
additional information not contained within the intron called exon splice enhancers (ESEs, 
blue).  SR proteins (purple) are conserved serine- and arginine-rich proteins that regulate 
splicing.  These proteins bind to ESEs and instigate a cross-exon recognition complex.  (B) 
While intron definition can also involve SR proteins, all the information for splice site 
excision is contained within the intron.  Pink rectangles are exons and unlabeled colored 
circles are various proteins involved in splicing (adapted from Ast 2004). 
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Figure 9.  Assemblage of spliceosome on pre-mRNA and removal of intron, illustrating the 
many different components involved in the splicing process.  The two transesterfication 
reactions are depicted with red arrows.  The snRNPs are shown as small nuclear RNA (i.e. 
U1, U2, etc.) with the surrounding protein represented by the shading.  The polypyrimidine 
region of the intron is shaded in blue (adapted from Patel and Steitz 2003).   
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Figure 10. Patterns of alternative splicing.  Grey boxes are constitutively spliced exons and 
colored boxes represent alternatively spliced exons (adapted from Ying and Lee 2006).    
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Figure 11.  The FC receptor genomic and protein structure.  (A) The FC receptor undergoes a 
form of alternative splicing called polyadenylation.  The constitutive exons are in gray while 
alternatively spliced exons are indicated by colored rectangles.  Each Transmembrane 
domain is indicated by TM and numbered from the amino end of the protein..  (B) The 
different 3’ ends affects the protein structure and function, with different transmembrane 
domains and cytoplasmic tails.  Colors of the regions of the protein correspond with colors of 
the exons in (A) (adapted from Modrek and Lee 2002).        
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Transcription factors 

 

 For a gene to be transcribed, RNA polymerase II must first bind stably to the 

promoter region of the gene.  However, RNA polymerase will not bind efficiently and 

precisely without the aid of other proteins.  On naked DNA in vitro, this suite of helper 

proteins required for the accurate transcription initiation of RNA polymerase consists of 

general transcription factors.  The general transcription factors bind to specific recognition 

elements in the core promoter region (Watson et al. 2008).  The core promoter region is a 

sequence 40 to 60 nucleotides in length that extends upstream or downstream of the 

transcriptional start site.  These general transcription factors then recruit RNA polymerase to 

bind to the promoter (fig. 12).   

 In the cell, additional factors play a regulatory role and can act as repressors or 

activators, dictating whether or not a gene will be expressed (Taneri et al. 2004).  Because 

DNA in vivo is complexed into chromatin, additional regulatory sequences are required to 

ensure efficient transcription.  These regulatory regions all bind to proteins that act as 

activators or repressors, by interacting with proteins associated with the core promoter.  Such 

sequence elements can be located near the promoter or hundreds of kilobases away, 

interacting with the other proteins via loops in the DNA (Watson et al. 2008).   

 Transcription factors generally contain both a transcription activating (trans-

activating) domain and a DNA-binding domain (fig. 13).  While the name might imply the 

activating of transcription, the trans-activating domain is the portion of the protein that 

effects transcription, and can have either a positive of negative impact on transcriptional 

levels (Gilbert 2006).  The DNA-binding domain serves as the recognition site, binding only 
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to specific DNA sequences.  In some cases, these two domains will not be part of the same 

protein, but instead reside on two separate proteins that work together to bind and activate 

transcription.  Thus transcription factors can provide precise, combinatorial control of genes. 

This makes these transcription factors critical for organismal development, as they control 

entire cascades of genes that must be properly regulated to ensure normal growth and 

specialization of cell and tissue identity. 

 Transcription factors can be classified by their specific DNA-binding domain, the 

short sequence of amino acids that are required for the protein to associate with DNA.  

Classic examples of these domains include the zinc finger, steroid receptor, helix-turn-helix, 

helix-loop-helix, and leucine zipper, all of which interact with DNA via unique structural 

motifs.  Entire gene families are defined by their specific DNA-binding motifs despite the 

fact that it comprises a relatively small portion of the protein.  In some cases, two members 

of a gene family may only share the binding domain with little or no homology in the rest of 

the gene (Carroll et al. 2001). 

 The domains alone do not dictate whether a transcription factor will act as an 

activator or repressor, however.  Because each transcription factor binds in a specific context, 

interacting with a number of other proteins, the impact any one factor has can vary depending 

on what other proteins it interacts with. The specific array of regulatory sites associated with 

a particular gene will determine with which proteins a transcription factor will interact, thus 

modulating its effects.  Therefore, a single transcription factor may act as an activator in one 

context, but a repressor in another, due to differences in associated proteins. 

 One family of transcription factors is the Hox gene family that is found in all 

metazoans and is characterized by a 180 base pair sequence called the homeobox.  The 
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homeobox sequence encodes the homeodomain, a DNA-binding domain of 60 amino acids 

that is a slight variation on the standard helix-turn-helix motif found in Escherichia coli and 

bacterial phage lambda (Brown 2002).  Hox genes, which occur in the genome in clusters, 

have been conserved in species extending from flies to humans (fig. 14).  They control the 

organization of the body along the anterior-posterior axis; different Hox genes are expressed 

in different segments of the embryo and result in the proper development of that specific 

region (Lewin 2004).  For example, the Hox gene Antennapedia (Antp) dictates the 

transcription of a cascade of genes that result in development of thoracic segments.  Gain-of-

function mutations of Antp in the head can result in the fly growing legs where the antennae 

should be (Carroll et al. 2001).   

 Because transcription factors like Antp act as regulators of other genes, their activity 

in turn must be carefully controlled.  The regulation can occur either pre-transcriptionally or 

post-transcriptionally.  One type of post-transcriptional control can be orchestrated by 

alternative splicing, with differently spliced versions of a single gene being produced at 

different locations in the organism and changing throughout development.  The Antp gene 

undergoes a variety of different splice patterns that are both spatially and temporally specific 

(Stroeher et al. 1988).  Such changes in the splice patterns of a transcription factor can 

influence the regions of DNA to which it binds, alter protein-protein interactions, or change 

the effect of the transcription factor once bound, all of which would influence which genes a 

transcription factor regulates.  In addition to changes in the effect of a transcription factor due 

to alternative splicing, the effect of a specific binding protein depends on the sequence 

context in which it binds.  The homeobox protein Ultrabithorax (UBX) can act as either an 

activator or repressor.  UBX activates the transcription of decapentaplegic (dpp) in the 
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visceral mesoderm of fruit flies, but represses Antp (Tour et al. 2005).  This ability to 

function as either activator or repressor is the result of binding to different locations in the 

genome and interacting with different proteins.  For example, UBX binds cooperatively with 

ABD-A to repress Antennapedia P1.  In other genes, there are multiple UBX binding sites, 

enabling several UBX proteins to interact via a looping mechanism that enhances 

transcriptional activation (Brody 1996).  Therefore, the effect of a transcription factor can 

vary greatly depending both on the specific domains it contains as well as the context in 

which it binds. 
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Figure 12.  Factors involved in eukaryotic transcription initiation.  For transcription of naked 
DNA in vitro, only the general transcription factors are required (dark blue, green, and 
yellow ovals).  These basal transcription factors bind to the core promoter sequence and 
recruit RNA polymerase II (purple).  However, due to careful packaging of the DNA in vivo, 
additional elements are required.  These include transcription factors (orange) that bind to 
regulatory sequences (light yellow) of the DNA (dark green).  The effect of transcription 
factors on the core promoter is facilitated by the mediator complex (pink).  Transcription 
factors also interact with proteins that are involved in the packaging of the DNA, including 
histone acetyltransferases (peach) and chromatin remodelers (burgundy) (adapted from 
Watson et al. 2008).    
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Figure 13.  The basic structure of three transcription factors showing the modular nature of 
the proteins.  (A) GCN4, found in Saccharomyces cerevisiae, modulates the translation of 
enzymes that are involved in the biosynthesis of amino acids (Voet and Voet 2004).  (B) The 
glucocorticoid receptor is a transcription factor that becomes active only when bound to 
glucocorticoid (Lewin 2004).  (C) The transcription factor c-Jun is involved in cell division 
(Kaiser et al. 2006).  Note that the DNA-binding and trans-activating domains are not the 
same in the different proteins, despite their identical depiction.  Not to scale (adapted from 
Latchman 1997).  
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Figure 14.  Organization and expression of the Hox gene in  fruit fly (D. melanogaster) and 
mouse (Mus musculus) embryos, including details of the evolutionary relationship between 
the Hox genes in both species, with hypothetical ancestral genes.  Mice have four different 
clusters of Hox genes, Hoxa – Hoxd, while the fruit fly has only one.  Colors indicate 
orthologous genes (adapted from Carroll et al. 2001).  
 
 

 

Drosophila 
melanogaster Hox C 

Hypothetical     
common ancestor 

Mus musculus Hoxa 

Mus musculus Hoxb 

Mus musculus Hoxc 

Mus musculus Hoxd 

Drosophila melanogaster  
embryo 

Head Thorax Abdomen

Mus muculus embryo 



 27

Sex determination and the DM domain 

 

 Transcription factors function as activators and repressors throughout the life of the 

organism, ensuring that the proper genes are turned on and off.  One area of development 

which must be carefully regulated is the determination of the sex.  In sexually dimorphic 

organisms, an initial signal is present that triggers the regulation of a whole cascade of genes, 

resulting in a particular animal developing into a male or female.  This initial switch varies 

greatly.  Just among vertebrates, for example, some organisms use a genetic cue as the initial 

signal, while others are dependent upon the environment.  For most land turtles, all 

crocodilians, and all sea turtles, the sex of an animal is the result of the temperature at which 

the egg is incubated during the thermosensitive period (Manolakou et al. 2006).  In contrast, 

it is the presence or absence of certain sex chromosomes in the embryo that determine its 

sexual development in mammals, snakes, and birds.  Even here, however, the system varies, 

with mammals following the XX/XY system in which the presence of the Y chromosome 

results in male development and birds and snakes following the ZW/ZZ system, where ZZ 

organisms become male (Manolakou et al. 2006).  It is unclear in the ZW/ZZ system whether 

it is the numbers of Zs or the presence W that determines the sex.   

 Significant differences are seen in invertebrates as well.  The initial signal in D. 

melanogaster and C. elegans is the ratio of sex chromosomes to sets of autosomes.  In 

contrast, the order hymenoptera, which includes bees, ants, sawflies, and wasps, exhibits 

haplodiploidy whereby fertilized diploid eggs usually become female and unfertilized, 

haploid eggs develop into males (fig. 15).  However, it is not ploidy itself that is the primary 

signal and the molecular mechanism by which sex determination is accomplished varies 
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(Manolakou et al. 2006).  Much research has examined the molecular mechanism by which 

sex is determined in the honeybee, Apis mellifera.  In A. mellifera, the initial signal depends 

on a gene called the complementary sex-determiner (csd) that codes for an arginine serine-

rich (SR) type protein (Beye 2004).  It is interesting to note that the SR type proteins also 

include TRA, a protein involved in sex-determination in D. melanogaster, which is not 

haplodiploid (see below).  There are at least 19 different alleles of the csd gene and 

individuals that are heterozygous at the csd locus develop into females while those that are 

hemizygous or homozygous become male (Beye et al. 2004).  In honeybees, homozygous 

males are eaten by workers shortly after hatching and, if allowed to mature, are sterile (Cho 

et al. 2006).  These results suggest that the protein product of the csd allele acts as a dimer, 

with only the heterodimer being functional.  This specific molecular mechanism results in 

unfertilized, hemizygous eggs developing into males, while fertilized, heterozygous eggs 

develop into females.   

 At least 50 different species of hymenopterans use this system of complementary sex 

determination (Cook and Crozier 1995; Haig 1998).  However, in an order consisting of over 

200,000 species, that leaves plenty of room for variety (van Wilgenburn 2006).  One 

hymenopteran that appears to have a different master signal is the wasp Nasonia vitripennis.  

Although little is known with respect to the molecular basis of sex determination in N. 

vitripennis, various lines of genetic evidence suggest that the primary sex determining signal 

in this species involves an imprinted gene, a novel mechanism not previously linked to sex 

determination (Trent et al. 2006).  Imprinted genes bear epigenetic instructions that are 

established in the parental germ cells (Reik and Walter 2007).  These epigenetic marks then 

affect gene expression in the offspring.  In the system of sex determination proposed in N. 
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vitripennis, an active paternal copy of a gene is required for female sexual development, 

while the maternal copy of this gene is silenced by imprinting.   

 Whatever this initial signal, it triggers a cascade of genes that result in the 

morphological differences that distinguish the sexes.  However, unlike many other signaling 

pathways that are highly conserved between organisms, the genes involved in sex-

determination vary greatly.  In fact, none were thought to be conserved between phyla until 

the discovery of a small domain shared by a gene in the cascades of D. melanogaster and C. 

elegans (Hodgkin 2002).  At the bottom of the sex-determining cascade in both organisms is 

a transcription factor, called doublesex in D. melanogaster and mab-3 in C. elegans (fig. 16).  

These two proteins share a conserved DNA-binding, named the DM domain.    

 Since discovering the presence of the DM domain in flies and nematodes, researchers 

have found that this motif is involved in the sex-determination of species that vary from the 

Queensland fruit fly (Zarkower 2001) and honey bee (Cho et al. 2007) to humans (Homo 

sapiens) (Hodgkin 2002).     

 The DM domain belongs to a family of transcription factors called zinc fingers.  A 

zinc finger consists of a short sequence of conserved amino acids that bind to a zinc ion in a 

tetrahedral structure (fig. 17).  Zinc fingers are about 23 amino acids in length and commonly 

occur as part of a series of zinc fingers with seven to eight amino acids linking them together 

(Lewin 2004).  The structure of this DNA-binding motif consists of short double-stranded β 

sheet followed by an α helix in which the zinc ion is bound.  This is followed by another β 

sheet.  Typically, this structure wraps around the DNA in the major groove (fig. 18).  Over 

1,000 distinct zinc fingers have been identified via sequence analysis (Luscombe et al. 2000).          
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 In the DM domain, a series of cysteine and histidine residues interact with two Zn2+ 

atoms (fig. 19).  While other regions of DM-containing genes vary widely, these cys and his 

residues are highly conserved (fig. 20) and define this class of zinc fingers called the DM 

domain.  In addition to the Zn2+-binding site, the DM domain has a disordered tail.  When 

this tail comes in contact with the DNA it forms an α-helix that serves to recognize the 

proper binding site (Zhu et al. 2000).  As noted above, a zinc finger typically interacts with 

the major groove of the DNA.  However, the DM domain binds to the minor groove of DNA 

(Zhu et al. 2000).   

 The way in which the DM containing gene influences the sex-determination varies 

between organisms.  For example, the mab-3 gene in C. elegans is turned on in males, but off 

in hermaphrodites.  In contrast, the D. melanogaster gene dsx undergoes alternative splicing 

at the 3’ end, producing one transcript specific to males and another specific to females (fig. 

21).  While the 5’ ends of both transcripts are identical, including the region that codes for 

the DM domain, the alternative splicing results in differences in the C-terminus of the 

protein.  This includes variation in the oligomerization domain, a motif present in DSX that 

enables these proteins to form dimers (Schutt and Nothiger 2006).  While both transcripts 

contain identical DM domains and therefore bind to identical sequences, their effects differ 

due to differences in the carboxyl region.  DSX-M represses the genes required for female 

differentiation and activates those necessary for male differentiation while DSX-F activates 

female-specific genes and represses those that are male-specific (Yang et al. 2008).   

 This raises two questions.  First, how can one gene act as both a repressor and an 

activator, and, second, how can two transcription factors bind to the same regulatory 

sequence but have differing effects on transcription?  The answer to both is context.  
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Specifically, what other regulatory sequences are located nearby and how DSX-M and DSX-

F interact with both the proteins that bind to these regulatory sequences and to co-activators 

influences whether the transcription factor will act as an activator or repressor at a specific 

site.  For example, the regulatory region of the yolk protein gene includes three regulatory 

sequences, aef1, dsxA, and bzip1, which bind the AEF1 repressor, DSX-M and DSX-F, and, 

possibly, the DmC/EBP activator, respectively (An and Wensink 1995).  The yolk protein 

gene is turned on in females because DSX-F binds to dsxA and sterically excludes the AEF1 

repressor while also working with a protein bound to bzip1 to activate transcription.  In 

contrast, because the DSX-M has a longer carboxyl tail making it larger than DSX-F (fig. 

22), it represses transcription by interfering with the protein that binds at the bzip1 site, either 

though physically obstructing the regulatory sequence or inactivating the protein once bound 

(An and Wensink 1995).  Therefore, although both DSX-M and DSX-F bind to the same 

regulatory sequence, they have opposite effects, resulting in the sex-specific expression of 

the yolk protein.   

 While most work on DM genes focuses on those that are involved in sexual 

differentiation, the presence of the DM domain does not guarantee that the gene has a role in 

sex-determination.  As is common in gene families, once duplicated, DM genes have 

diverged in function.  For example, terra, a well-characterized gene in zebrafish (Danio 

rerio), is involved in somatic mesoderm development, and is expressed identically in both 

sexes (Meng et al. 1999).  The teleost Medaka (Oryzias latipes) has a group of DM-

containing genes called the dmrt family (Winkler et al. 2004).  One member of this family, 

dmrt1by, regulates male development.  However, paralogs of dmrt1by, such as dmrt1a, 

dmrt2, dmrt3, and dmrt4, are expressed in a non-sex-specific manner.  The genes dmrt2, 3, 
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and 4 are involved in embryogenesis and all four genes show differing temporal patterns of 

expression (Winkler et al. 2004).   
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Figure 15.  Reproduction in haplodiploid insects.  Fertilized eggs develop into females while 
unfertilized eggs become males (adapted from Bull 1983). 
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Figure 16.  Sex determining cascade of D. melanogaster and C. elegans, both of which 
include a DM-containing gene (green).  Pathways above DM genes are not conserved 
(adapted from Zhu et al. 2000). 
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Cys - X2-4 - Cys - X3 - Phe - X5 - Leu -X2 – His - X3 - His 

 
Figure 17.  The consensus sequence of the zinc finger motif.  The X stands for any amino 
acid, with subscript indicating the number (adapted from Lewin 2004). 
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Figure 18.  A series of three zinc fingers contacting DNA.  The α helix is represented by the 
magenta cylinders, the β sheets by the yellow arrows, and the associated zinc atoms by green 
balls.  The DNA is in purple (PDB: 1aay). 
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Figure 19.  DM domain in DSX.  Conserved cysteines and histidines are colored.  The green 
coloration corresponds with the site I Zn-binding sites seen in figure 20 and the magenta 
corresponds to site II.  The zinc ions are in blue (PDB: 1plv). 
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Figure 20.  Alignment of the DM domain from D. melanogaster (DSX), C. elegans (Mab-3a 
and Mab-3b), Apis mellifera (AmDSX), Danio rerio (Terra), Homo sapien (Dmrt1 and 
Dmrt2).  Conserved cysteine and histidine residues are outlined.  Site I and Site II refer to 
Zn-binding sites (adapted from Zhu et al. 2000). 

 

 
Dsx       NCARCRNHGLKITLKGHKR-YCKFRYCTCEKCRLTADRQRVMALQTALRRAQAQDEQRAL 67 
Mab-3a    YCQRCLNHGELKPRKGHKP-DCRYLKCPCRECTMVEQRRQLNNLLSKKKIHCTPATQTR- 66 
Mab-3b    HCARCSAHGVLVPLRGHKRTMCQFVTCECTLCTLVEHRRNLMAAQIKLRRSQQKSRDGKE 68 
AmDSX     NCARCLNHRLEITLKSHKR-YCKYRTCTCEKCKITANRQQVMRQNMKLKRHLAQDKVKVR 119 
Terra     KCARCRNHGVVSCLKGHKR-FCRWRDCQCANCLLVVERQRVMAAQVALRRQQATED---- 63 
HsDmrt1   KCARCRNHGYASPLKGHKR-FCMWRDCQCKKCNLIAERQRVMAAQVALRRQQAQEEELGI 67 
HsDmrt2   KCARCRNHGVVSCLKGHKR-FCRWRDCQCANCLLVVERQRVMAAQVALRRQQATEDKKGL 67 

Site I Site II 
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Figure 21.  Alternative splice patterns of doublesex in D. melanogaster.  (A) The gene 
includes three exons that are constitutively spliced (white), followed by a female-specific 
exon (pink), and two male-specific exons (green).  (B) The alternatively splicing results in 
two different transcripts with different C-termini.  The DM domain appears in blue and the 
oligomerization domain is speckled, with the white background indicating the shared region 
of  this domain present in both sexes and the green and pink backgrounds indicate the region 
and is male- or female-specific, respectively (adapted from Zhu et al. 2000). 
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LGQDVFLDYCQKLLEKFRYPWELMPLMYVILKDADANIEEASRRIEEARVEINRTVA
QIYYNYYTPMALVNGAPMYLTYPSIEQGRYGAHFTHLPLTQICPPTPEPLALSRSPS
SPSGPSAVHNQKPSRPGSSNGTVHSAASPTMVTTMATTSSTPTLSRRQRSRSATPTT
PPPPPPAHSSSNGAYHHGHHLVSSTAAT 
 
LGQDVFLDYCQKLLEKFRYPWELMPLMYVILKDADANIEEASRRIEEGQYVVNEYSR
QHNLNIYDGGELRNTTRQCG 

 
Figure 22.  The male and female versions of the oligomerization domains and carboxyl tails 
in D. melanogaster.  This region of the protein has different protein-protein interactions in 
males and females, resulting in the sex-specific activation and repression of other genes.  The 
blue and pink high lights indicate the male- and female-specific region of the oligomerization 
domain, respectively.  Colored text represents the sex-specific carboxyl ends.  
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Hymenopterans: Nasonia vitripennis 

 

 My research examines the molecular basis of sex determination in Nasonia 

vitripennis, a diminutive parasitoid wasp from the order hymenoptera.  Unlike honeybees, N. 

vitripennis do not use variation at a csd locus as their primary signal.  Highly inbred strains 

of N. vitripennis still produce males and females, which would not be the case sex-

determination required heterozygosity of a specific allele (Trent et al. 2006).  While both 

honeybees and wasps are hymenopterans, they vary in life history patterns, and thus, as seen 

in vertebrates, it is not surprising that their primary sex-determining signal varies as well.  As 

discussed previously, genomic imprinting has been proposed as the primary signal for sex 

determination in which female development requires the presence of an imprinted gene that 

is expressed only from the paternal copy (Trent et al. 2006).   

 Despite the incredible variation in primary sex-determining signal and resulting 

cascades, the conservation of DM-containing genes at the bottom of the cascade in organisms 

as varied as nematodes and humans led Carol Trent and members of her lab at Western 

Washington University to focus on searching for a DM-containing gene involved in sex-

determination in N. vitripennis.  Studies in genetics, evolutionary biology, development, 

behavior, and ecology have utilized N. vitripennis and, because of its importance as a model 

organism, this wasp was chosen for complete genomic sequencing and now has its own 

genome project.  However, the search for DM-containing genes in N. vitripennis began in the 

Trent lab before the initiation of the genome project and used a PCR-based approach with 



 42

degenerate primers that targeted the conserved amino acids of the DM domain.  Two N. 

vitripennis genes containing the DM domain were identified by Andrea Llewellyn.    

 In this thesis, I detail the results of my work in the Trent lab with the DM gene family 

in N. vitripennis.  My research, which utilized both genetic and computational techniques, 

included the addition of two new genes, bringing the total number of genes in the DM gene 

family of N. vitripennis to four.  Beginning with the partial sequences of two DM-containing 

genes found previously by the Trent lab called NvDM1 and NvDM2, I completed the DM 

domains of both genes using computational methods.  I also confirmed the alternative 

splicing pattern seen previously in NvDM1 and showed that this was not sex-specific in 

yellow pupae, the first stage at which males and females can be easily differentiated 

anatomically.  By computational analysis of these two genes, I confirmed that neither were 

homologs of dsx.  Then, using a combination of computational and molecular techniques 

including RACE and RT-PCR, I found two more members of the N. vitripennis DM gene 

family, which I named NvDM3 and NvDM4.  Further analysis revealed that NvDM4 

undergoes extensive alternative splicing that results in four different classes of transcripts, 

two of which appear to be sex-specifically spliced.  I concluded that NvDM4 is the closest 

homolog to dsx in N. vitripennis and is likely involved in the sex-determination pathway.         
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METHODS 

 

Nasonia vitripennis genome 

 

 As an important model organism, the complete genome of Nasonia vitripennis, in 

addition to those of humans, bees, flies, and various other organisms, is available to the 

public through GenBank, which is managed by the National Institute of Health (NIH) 

through the National Center of Biotechnology Information (NCBI).  GenBank provides an 

annotated collection of DNA, RNA, and protein sequences that can be analyzed using a wide 

range of publicly available computational tools (Benson et al. 2006).  The Human Genome 

Sequencing Center (HGSC) at Baylor College of Medicine sequenced the N. vitripennis 

genome, and version 1.0 of the release was published in April 5, 2007, version 0.5 having 

been released less than a year earlier on July 9, 2006 (Appendix A).  Version 1.0 consists of 

5936 scaffolds of genomic DNA that have yet to be placed on chromosomes (NCBI).   

 In addition to a searchable nucleotide database, the NCBI N. vitripennis database 

includes an official gene set, referred to as RefSeq.  Genes included in the RefSeq database 

were predicted using a gene prediction program called Gnomon that uses a Hidden Markov 

Model (HMM)-based algorithm to find genes within a genome in a multi-step process 

(NCBI).  Gnomon uses both ab initio predictions and sequence homology as part of its 

predictive process (Rice Annotation Project et al. 2008).  In the case of the N. vitripennis 

gene set, Gnomon used a set of approximately 80,000 expressed sequence tags (ESTs) from 

N. vitripennis in addition to homology with curated proteins from Drosophila melanogaster, 

other insects, Homo sapiens, Mus musculus, Caenorhabditis elegans, and Saccharomyces 
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cerevisiae.  This gave rise to a dataset of 9254 sequences.  Predicted genes that lacked 

homology or EST support were placed in the ab initio database, which includes a total of 

27,287 predicted genes.  Therefore, while genes in the RefSeq dataset often have proposed 

biological function, predicted genes in the ab initio database lack such information.  These 

databases can also be accessed through the HGSC. 

 Effective use of a database requires the ability to search through it effectively and, in 

the case of the genome, this can be done using the Basic Local Alignment Search Tool 

(BLAST) (Altschul et al. 1990).  Different types of BLAST programs allow for different 

searches, varying by query sequence used and database to be searched (table 2).  BLAST 

uses the same basic three stage algorithm regardless of the type of search performed.  First, 

the program looks for short exact matches of length W between the query and the database.  

These matches are referred to as seeds.  Then, BLAST attempts to extend the match in both 

directions from the seed.  Finally, if the first two steps have resulted in a high-scoring un-

gapped alignment, a variation on the Smith-Waterman algorithm is used to perform a gapped 

alignment (Altschul, et al. 1990).  The resulting alignments are then displayed to the user in 

order of increasing E-value.       

 The HGSC also provides access to the N. vitripennis genome with corresponding 

BLAST capabilities.  BLAST results from the HGSC are linked directly to a program called 

Geneboree.  Among other capabilities, Geneboree allows the user to retrieve segments of the 

genome corresponding to the BLAST hit.  For example, the user can access the genomic 

material to the 5’ of an alignment for further analysis. 
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Table 2.  Description of BLAST types used in this project. 
 

BLAST Type Query Type Database Type 
megaBLAST nucleotide nucleotide 
BLASTP protein protein 
BLASTX nucleotide protein 
TBLASTN protein nucleotide 
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Sequence analysis 

 

 I used a variety of programs to analyze both sequences retrieved from the databases 

and the sequences that I acquired through my experiments (see below).  These programs gave 

me the ability to align mRNA transcripts with the genome to establish exon boundaries, to 

measure the strength of the splice sites at these boundaries, to translate the sequence into 

amino acids, to scan the resulting protein for known motifs, and to align and compare 

different transcripts.    

 For Spidey, a program available through the NCBI, the user provides a number of 

mRNA transcripts and the corresponding genomic sequence and the program aligns the 

transcripts with the genome.  This enabled me to assess exon boundaries and see how 

splicing patterns varied between alternatively spliced transcripts. 

 To measure the relative strengths of the alternative splice sites, I looked at the 

similarity between each site and the consensus splice site sequence (fig. 4).  For this, I used 

the Splice Site Prediction by Neural Network program (NNSPLICE) available through the 

Berkley Drosophila Genome Project which runs NNSPLICE version 0.9 (Reese et al. 1997) 

as well as the Alternative Splicing Prediction program (ASPIC) available through the 

Research Network of Bioinformatics and Comparative Genomics (Bonizzoni et al. 2005).  In 

NNSPLICE, splice sites are scored on a scale from 0 to 1 with 1 being the most likely to be 

an actual splice site.  ASPIC also scores each predicted splice site, but on a scale from 0 to 

100, with higher numbers again indicating a higher probability of an actual splice site.  For 

NNSPLICE, the input consists of the genomic sequence that contain the exon-intron 

boundary of interest, with the output providing a list of donor and acceptor sites with their 
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sequence, location, and strength/probability.  ASPIC, on the other hand, requires both 

genomic sequence and my various NvDM4 transcripts for input.  The output consists of the 

inferred full length isoforms, with various viewing options, one of which, “Alignment View,” 

provides scores for splice sites donors and acceptors.  NNSPLICE and ASPIC produce 

results using different algorithms.  In ASPIC, the user-submitted transcripts are aligned with 

the genomic sequence and the program attempts to produce the most parsimonious set of 

splice sites that correspond to the various sequences.  With NNSPLICE, a Hidden Markov 

Model is used for splice site prediction.  This model is based upon neural networks that use 

dinucleotide frequencies  

 When first using ASPIC, I copied in all of the NvDM4 transcripts – three from class 

OD-A, four from OD-B, one from OD-X, two from OD-C.1, and one from OD-C.2 – and the 

complete genome sequence that incorporates all of these transcripts, which is the reverse 

complement of base pairs 134000 to 185000 on scaffold 23 as defined by HGSC.  This, 

however, did not result in the splicing scores of introns G, H, and I (fig. 66).  In order for it to 

predict these, I entered only the OD-C transcripts and included only the genome sequence 

that spans 134000-178000, eliminating all but the OD-C-specific region. 

 For using NNSPLICE, I pasted in small pieces of the genome that contained my 

splice site of interest.  I chose to do this instead of searching the entire genomic sequence 

corresponding to a particular transcript at once in order to limit the number of possible splice 

sites I needed to search through to find the site of interest. 

 In addition to analyzing the nucleotide sequences, I also examined the resulting 

proteins.  To translate mRNA to protein, I used Translate algorithm from the web-based 
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program Expert Protein Analysis System (ExPASy) (Gasteiger et al. 2003).  ExPASy 

translates all six frames of possible amino acids.    

 I then used Pfam to search the amino acid sequences for protein motifs.  Pfam is a 

database of 9318 protein families, each defined by a specific sequence motif (version 22.0, 

July 2007).  Every protein family contains a seed alignment of representative sequences of a 

particular domain (Sonhammer et al. 1998).  This alignment, which is verified manually, 

serves as the basis for the creation of an HMM-profile.  The HMM-profile is then used to 

search SwissProt, a protein database, for all proteins that align with the HMM-profile, below 

a certain E-value (the “gathering threshold”).  These proteins are then aligned to make a full 

alignment, which is updated regularly as new proteins are added to SwissProt (Sonhammer et 

al. 1998).  The user can search the Pfam database with a novel protein and the program will 

return a list of domains that are present in that sequence and fall within a statistical threshold 

that can be set by the user.   

 Both protein and nucleotide sequences were compared using the alignment programs 

Malign (Nikolaev et al. 1997) and ClustalW (Chenna et al. 2003).  I used Mobyle to create 

color-coded alignments (Neron et al. 2005).  

 

 

Primer design 

 

 Primers were designed using the web-based Primer3 program (Rozen and Skaletsky 

2000).  I used default parameters except for those listed in table 3.  If no acceptable primers 

could be found using these stipulations, parameters were further modified.  I used these 
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specifications for RT-PCR, RACE PCR, and sequencing experiments.  Acceptable primers 

were ordered from Integrated DNA Technologies.  Upon receiving the primers, I re-

suspended them in TE to 50 or 100μM concentrations.  The TE was 10mM tris at pH of 7.5 

and 0.1mM of EDTA in molecular grade water.  Aliquots were further diluted in molecular 

grade water to 10μM working stocks before use. 

 

 

Agarose gel electrophoresis 

 

 I analyzed PCR products using gels cast with out on molecular grade agarose in beds 

made by Jordan Scientific.  I used Fisher Scientific Genetic Analysis Grade Agarose for the 

majority of the gels.  An EC135 from the E-C Apparatus Corporation was used to apply 

constant voltage.  I ran most gels at 80V for about an hour in a 1.2% agarose gel, although 

these conditions were modified as needed due to expected product size.  While initial RT-

PCR experiments were stained for half an hour with Invitrogen’s SyBr Gold (1μl/10mL or 

1:10,000), equally good results were obtained by staining for an equal time in ethidium 

bromide (0.5μg/ml), a much less expensive option.  Gels were illuminated using the Ultra-

Lum Electronic UV Transilluminator with the UV intensity set to Max.  I captured the image 

using a 10 Megapixil Canon PowerShot A640 camera set to remote capture with the macros 

on.  Images automatically opened in the Canon Utilities ZoomBrowser EX version 5.7.  I 

took a number of images, choosing the one with the clearest image.  I saved the best image 

and then used Photoshop to modify it, inverting the colors and using the auto-contrast 

function to better observe the bands.  Images were then printed and thoroughly labeled.   
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Table 3.  Parameters used for Primer3 that were not default.  
 

 Minimum Optimum Maximum 
Primer Size 23 25 27 
Primer Melting Temperature (°C) 65 70-72 75 
Primer GC 40  60 
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Rapid amplification of cDNA ends PCR 

 

 I conducted all rapid amplification of cDNA ends (RACE) PCR experiments using 

the Clontech SMART™ RACE cDNA Amplification Kit.  RACE PCR allows the user to use 

a single gene specific primer and amplify the region of the mRNA from that primer to the 

end of the transcript.  Therefore, if only a portion of the transcript is known, primers can be 

designed for that region and amplification of both 3’ and 5’ RACE performed (fig. 23).  The 

products of these reactions can then be sequenced, enabling the user to learn the entire 

sequence of the gene.    

 

 

Synthesizing cDNA 

 

 In all cases, I prepared separate female and male batches of RACE-ready cDNA.  The 

RNA I used was total RNA that had been previously isolated from the B2 strain of Nasonia 

by Carol Trent from male and female yellow pupae on 7/21/00 and 7/18/00 respectively.  

This strain had been acquired from Mary Ann Pultz.  The male RNA, designated J2.1, had 

concentration of 2.2μg/μl and the female RNA, called K1, had a concentration of 4.4μg/μl as 

determined by optical density.  An aliquot of female RNA was diluted to 2.2μg/μl on 

12/1/06.  All RNA had been kept at -80°C prior to conversion to cDNA.  I followed the 

protocol as described in the SMART™ RACE cDNA Amplification Kit User Manual.  For 

both males and females, I used 2.2ng of RNA to make the cDNA.  For the preparation, all 

incubations not on ice were done using the Perkin Elmer GeneAmp 9700 thermocycler.  I 
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then diluted the cDNA in 100μl of tricine-EDTA buffer included in the kit.  Prepared cDNA 

was stored in the freezer and -20°C until used for RACE PCR. 

 

 

RACE 

 

     For the Rapid Amplification of cDNA Ends PCR, all reactions were reduced to 2/5th 

of the recommended volume, resulting in a 20μl of product instead of a 50μl PCR reaction.  I 

used the recommended Advantage 2 Polymerase from Clontech.  Unless noted otherwise, 

gene-specific primers (GSPs) had melting temperatures above 70°C and the touchdown PCR 

protocol described in the manual was used.  Products were run on a gel and visualized.  To 

decrease the presence of background or nonspecific amplification, I then used the initial 

products as my template for nested gene-specific primers (NGSPs).  NGSPs were designed to 

sit inside the original GSPs (fig. 23).  These products were also run out on agarose gels and 

visualized.  The products of the GSPs were then compared to the products of the NGSPs for 

expected shifts. 
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Figure 23.  General figure of 5’ and 3’ RACE primers.  The mRNA is in green, with the gene 
specific primer (GSP) represented as a red arrow and the nested gene specific primer seen as 
a blue arrow.  
 

AAAAAA

NGSP GSP 

NGSP GSP 

5’ RACE 

3’ RACE 



 54

RT-PCR 

 

 Reverse transcriptase polymerase chain reaction (RT-PCR) uses an enzyme found in 

retroviruses such as HIV to turn RNA into complementary DNA (cDNA).  This mixed pool 

of cDNA can then be used as a template for PCR, which uses primers designed to amplify a 

portion of DNA of interest (fig. 24).    

 

Synthesizing cDNA 

 I made first strand cDNA following the protocol described in Invitrogen’s 

SuperScript First-Strand Synthesis System for RT-PCR.  For both males and females, 2.2ng 

of RNA were used.  As in RACE-PCR, the J2.1 and K1 RNA preparations served as the 

template.  All incubations not on ice were done using the Perkin Elmer GeneAmp 9700 

thermocycler.  Once made, cDNA was stored at -20°C until use.  I could then use one batch 

of first strand cDNA for a number of RT-PCR experiments, with the cDNA thawed and 

refrozen with each use.  Whenever I made cDNA, I also made male and female controls that 

lacked reverse transcriptase.  These were made as described in the protocol, following the 

exact same steps as done for making the cDNA except for omitting the reverse transcriptase.  

Because an RNAse was used as part of the cDNA preparation, the resulting control pools 

contained only genomic DNA and served as a negative control for the PCR experiments, 

with all resulting bands presumably arising from priming off genomic DNA. 
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PCR 

 

 For PCR, I used Platinum Taq DNA Polymerase, a hot-start enzyme from Invitrogen, 

unless otherwise noted.  I used the protocol described in the SuperScript First-Strand 

Synthesis System for RT-PCR manual, except I reduced all reactions to 2/5th of their original 

volume, or 20μl.  All amplifications were done using the Perkin Elmer GeneAmp 9700 

thermocycler.  Optimal cycling conditions were determined empirically, with the following 

protocol providing consistently high amounts of product with minimal background using a 

wide range of primers: 

 

94ºC   2 min  

35 cycles   

• 94ºC 30 sec 

• 68ºC  3 min  

68ºC  3 min   

8ºC hold 

 

Any time that I used a different protocol, these variations are noted.  Primers were designed 

using the Primer3 program.  This program, along with Sequence Extractor, was used to 

determine predicted products of both mRNA and genomic DNA.  All products were 

visualized using the gel running protocol described elsewhere in this section. 
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Figure 24.  Flow diagram of RT-PCR beginning with the RNA, represented by blue bars.  The RNA is converted into 
cDNA using reverse transcriptase, shown as orange bars.  The portion of the transcript to be amplified is in green and 
the primers appear as pink arrows. 
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Cloning 

 

 All cloning was carried out using pCR®8/GW/TOPO® TA Cloning® Kit from 

Invitrogen and following the directions in the product manual.  I cloned sequences from both 

RACE PCR and RT-PCR reactions.  First, products to be cloned were ligated with vector 

DNA.  To do this, I added 0.5μL of taq to each reaction and incubated the reactions at 72°C 

for 10 minutes in the Perkin Elmer GeneAmp 9700 thermocycler (fig. 25).  The taq added a 

non-template adenine to the 3’ end of the PCR product, enabling it to base pair with the 

vector, which had a thymine overhang.  Recommended values were reduced by half to 3μl 

reactions.  The amount of PCR product added to the reaction varied from 1-2μl depending on 

the amount of product as seen previously on a gel.  Vector reactions were then kept at -20°C 

until the next step. 

 I then transformed One Shot® Competent E. coli following the protocol described in 

the manual, although the volumes of reactions were reduced by half.  Competent cells were 

stored at -80°C and an aliquot was used only once to avoid damage from repeated 

freeze/thaw cycles.  Once transformed, cells were shaken horizontally at approximately 

200rpm in the Lab-Line Orbit Environ Shaker at 37°C for 45 minutes to an hour in order to 

allow the transformed E. coli sufficient time to recover and express ampicillin resistance.  I 

then plated the transformed cells onto L agarose plates with ampicillin (100μg/mL).  Each 

product was plated on two plates with different amounts on each, typically between 5μl and 

30μl.  These plates were grown up overnight at 37°C.  Single colonies were dotted on another 

agar plate in a grid pattern with 50 single colonies to a plate unless otherwise noted.   
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 I then did PCR with plasmid-specific primers (T7 and M13R) to determine the size of 

the inserts in a particular clone.  For the primer-size checks, I typically used BioLabs Taq 

DNA Polymerase.  I used the following cycling protocol on the Perkin Elmer GeneAmp 

9700 thermocycler for amplification: 

 

94ºC   8 min  

25 cycles   

• 94ºC 15 sec 

• 45ºC 30 sec 

• 72°C 2 min  

72ºC 5 min   

8ºC hold 

 

From each grid of clones, I checked the size of the inserts in 10 to 20 colonies.  Products 

were run out on an agarose gel and, from these, sizes of interest for sequencing were chosen.   

 Having determined which clones contained products I wanted to sequence, I then 

streaked these for single colonies using the E. coli colony from the grid plate.  While 

gridding was not always done on plates with ampicillin, streaking for single colonies was.  

These plates then grew up overnight at 37°C.  Using a sterile Fisher bacterial loop, I 

inoculated 4μl of LB broth that contained ampicillin (100μg/mL) which had been put in 

sterile 20mL centrifuge tubes.  These tubes were then placed on their side and put in the 

shaking incubator set at 37°C and about 200rpm overnight.  The resulting turbid broth would 

contain many, many E. coli, all containing the identical plasmid of interest. 
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Plasmid purification 

 

 To purify the plasmids, I used the QIAprep Spin Miniprep Kit by Qiagen.  I collected 

E. coli cells by placing 1.3mL of the culture into a 1.5mL Eppendorf tube, centrifuging at 

14,000rpm for 3min and then repeating with another 1.3mL of culture in the same tube.  The 

rest of the purification was carried out as described in the QIAprep Miniprep Handbook.  

Plasmids eluted from the column using molecular grade water, which is preferred by Nevada 

Genomics for sequencing. 

 The concentration of each plasmid was determined by loading ½ to 1μl on an agarose 

gel and comparing the band intensity after staining with known amounts of plasmid that had 

been quantified using a Nanodrop that measures A260 absorbance.  In preparation for 

sequencing, DNA of the proper quantity was dried using the Savant Speed Vac Concentrator. 

 

 

Sequencing 

 

 All sequencing was done by the Nevada Genomics Center based at the University of 

Nevada, Reno.  Sequencing at Nevada Genomics is carried out using the ABI BigDye 

Terminator Cycle Sequencing Ready Reaction Kit v3.1.  Reactions are then run on the 

ABI3730 DNA Analyzer.   
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C.      D. 
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  G.         H. 
 
 
 
 
 
 
 
 
Figure 25.  Overview of the cloning process.  (A, B) Products and vectors are combined and 
the products inserted with the help of the topoisomerase enzyme.  (C, D) These vectors are 
put into competent E. coli cells and then (E) screened for ampicillin resistance, which is 
present only in bacteria that have taken up a plasmid insert.  After gridding out separate 
colonies (not shown), 10 to 20 colonies are chosen and (F) PCR performed to check the size 
of the product inserts using M13R and T7 primers (shown as red arrows) that amplify off the 
plasmid.  (G) Clones with the appropriately sized inserts are then streaked for single colonies 
using the colony off the grid plate.  (H) A single colony is then grown up overnight in a broth 
and plasmids from the resulting clones are isolated and sequenced.    
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COMPLETION AND CHARACTERIZATION OF NVDM1 AND NVDM2 

 

 Using PCR-based techniques, Andrea Llewellyn in the Trent lab had previously 

identified two genes in Nasonia vitripennis that include a DM domain, naming them NvDM1 

and NvDM2 (fig. 26).  Typical of DM-containing genes, NvDM1 and NvDM2 show a high 

degree of homology within the DM domain, but not outside of this motif.  All of the 

sequences were obtained from 3’ RACE PCR that used primers complementary to the DM 

domain to amplify the portion of the transcripts between the DM domain and the 3’ end.  

Attempts to obtain the 5’ end of the transcripts via 5’ RACE PCR had proved unsuccessful.  

Therefore, the sequences did not include the 5’ ends, including part of the DM domain.  

Comparing the original sequence of DM1 and DM2 to the sequence of the DM domain 

defined by Pfam, a domain-finding program that uses Hidden-Markov Models to identify 

protein motifs, along with the doublesex genes from D. melanogaster and A. mellifera, one 

can see that the both DM1 and DM2 are missing the N-terminal of their DM domains.  

Therefore, one of my goals was to complete the DM domain for both NvDM1 and NvDM2.  

In addition, I wanted to locate these two genes in the genome using newly available tools of 

the N. vitripennis Genome Project. 

 As discussed in the introduction, doublesex in D. melanogaster achieves sex-

specificity through alternative splicing, making any evidence of such patterns of particular 

interest.  The Trent lab found that NvDM2 was constitutively spliced, creating only one 

mRNA transcript in yellow pupae.  In contrast, NvDM1 displayed considerable alternative 

splicing, and the lab documented four different transcripts in yellow pupae (Fig. 27).  Of the 

NvDM1 transcripts, the longest open reading frame (ORF) occurs in transcript 3.4 with 415 
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amino acids.  Despite being the longest transcript, 3.46 has an ORF of only 75 amino acids, 

slightly less than 3.42 with an ORF of 83 amino acids, but more than 2.9 that has only 59 

amino acids in its ORF.   

 Although no sex-specificity in NvDM1 and NvDM2 transcription was seen in 3’ 

RACE PCR experiments by previous members of the Trent lab, I chose to check this 

independently using RT-PCR with primers designed to span specific exon splice sites to 

check for products in both male and female yellow pupae.  The results of this experiment 

could serve two purposes.  First, it would be an independent affirmation of the complex 

splicing pattern found via RACE PCR and, second, it would use a different technique to 

check for sex-specificity of the transcripts. 
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Figure 26.  Alignment of the DM domain of NvDM1, NvDM2, and DSX from Apis mellifera 
and Drosophila melanogaster.  The blue background indicates identical amino acids in all 
four sequences, the black background indicates identical amino acids in two to three 
sequences, and gray indicates similar amino acids. 
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Figure 27.  NvDM1 alternative transcripts.  Green numbers indicate transcript name.  Each 
colored box represents a unique sequence of mRNA.  The DM domain is indicated by a 
bracket in exon one of transcript 3.4 and is present in all of the transcripts.  The stop sign 
indicates the end of the longest open reading frame for each transcript, with red numbers to 
right indicating the length of the longest open reading frame.  Arrows indicate primer 
location and direction, with primer names indicated above.  The junctions between exons are 
numbered in purple.  Introns are not to scale.  Numbers inside exons are arbitrary and for 
identification purposes only, not to be considered an indication of genomic placement.  
Please note that this figure includes information gleaned from my work described in this 
section, including the additional 5’ end sequence added to exon 1 and the splitting of exon 4 
and 6 into two separate, constitutively spliced, exons. 
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Locating NvDM1 and NvDM2 in the genome 

 

 A great deal about the structure of DM1 and DM2 could be gleaned from the N. 

vitripennis Genome.  The database includes a number of different search programs based on 

the basic BLAST algorithm (see Methods).  I used one of the search programs, called 

megaBLAST, set to default parameters to search version 1.0 of the genome using the 

nucleotide sequence of DM1 and DM2 that had previously been sequenced by the Trent lab.   

 From this, I discovered that portion of the NvDM2 sequenced by the Trent lab is 

located on scaffold 62 and consists of only two exons, which previous research indicated are 

constitutively spliced.  The two exons are separated by an intron 63 nucleotides in length.  

Previous research relied on alternative splicing to establish the presence of separate exons 

and so had been unable to establish the number of exons that are constitutively spliced.    

 In contrast, DM1 is not located on a single scaffold, but instead spans at least six 

(table 4).  Both sequences 3.4 and 3.46 are on at least 4 different scaffolds.  In both 

sequences, the 3rd exon is on scaffold 413.  These two different exons on scaffold 413 are 

separated by an intron of 43,570 base pairs.  Exon 5 is slightly problematic as the Blast 

search provides two different possibilities for its genomic location.  The entirety of exon 5 

aligns with 100% identity with a 747 nucleotide long stretch of scaffold 413.  The same 

sequence, in two separate portions, align also with scaffolds 313 (E value: 8e-138, 97% 

identity) and 287 (E value: 6e-139, 87% identity).  While scaffold 413 appears to be the 

better match, the other should not be ignored.  Genomic information suggests that exon 4, 

which 3.4 and 3.46 share, is not one exon, but two that are separated by an intron of 155,076 

base pairs.  Similar to exon 4, while molecular work indicated exon 6 in transcript 3.42 could 
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be one exon, genomic sequence shows that it is two exons separated by a 76 nucleotide 

intron.  Also noteworthy, exon 2, which appears in all four transcripts, is on the same 

scaffold as exon 6 of transcript 3.42.  There is a 21806 base pair intron between exons 6a and 

2.  Transcript 2.9 is located on three scaffolds, with exon 7 being a single exon as predicted 

molecularly.            
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Table 4. Scaffold locations of various NvDM1 exons.  Exon number refers to those given in 
figure 27.  Scaffold numbers are those assigned by NCBI.   An * means that what was 
thought to be a single exon looking at cDNA transcripts is actually two exons that were 
constitutively spliced in the transcripts sequenced. 
 

Exon Number Transcript Scaffold Number Relative Location to Other Exon 
1 All 68 –  
2 All 168 21807bp from exon 6a 
3 3.4 413 43571 from exon 5 

4(a and b) 3.4, 3.46 138* 155075 between 4a and 4b 
5 3.46 413  

or 287 and 313 
43571 from exon 3 

 
6(a and b) 3.42 168* 76bp between 6a and 6b 

21806bp between 6a and 2  
7 2.9 583 – 
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Completing the DM domain of NvDM1 and NvDM2 

 

 When I started work on this project, the sequence of the N-terminal regions of the 

DM domain of DM1 and DM2 had not been established.  I first looked for these genes in the 

set of predicted proteins in both the ab initio and RefSeq datasets using BLASTX which 

compares a nucleotide sequence to a protein database.  Neither was present in the RefSeq 

database.  However, DM2 did have a match in the ab initio database called hmm117054.  

The match was highly significant with an e-value of 2e-112.  Because of the 96% identity 

between the two sequences, I concluded this was the computational prediction of DM2 

(differences to be addressed in the discussion) (fig. 28).   

 The first amino acid of DM2 aligns with the 49th amino acid of the computational 

prediction.  Thus, the prediction can provide more information about the N-terminal of the 

DM2 protein.  Comparing the new sequence with the model defined by Pfam, I found that 

this new sequence completed DM domain (fig. 29).   

 However, different tactics were needed to determine the complete DM domain of 

DM1 because it was not present in either of the protein databases.  Instead, I returned to the 

genome database.  The known region of the DM domain of NvDM1 is on scaffold 68.  If the 

DM domain were not broken up by an intron, it should be possible to complete the DM 

domain by looking at the 5’ end of the aligned sequence.  I performed a search of version 1.0 

of the Nasonia Genome using the BLASTn tool at Baylor College of Medicine’s Human 

Genome Sequencing Center with the DM1 nucleotide sequence as my query.  I then used the 

provided link to Geneboree to fetch sequence to the 5’ end of where my sequence aligned 

with scaffold 68.  I took that nucleotide sequence and translated it.  Selecting the sequence 
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that was in the same reading frame as the rest of the DM domain on scaffold 68, I found there 

was an open reading frame of 33 amino acids in addition to the previously determined 

sequence.  Had there been an intron, I would not have expected an open reading frame of any 

significant length.  Furthermore, comparing this additional sequence to the DM domain 

model using Pfam, I found that the new sequence completed the DM domain of NvDM1 (fig. 

29). 

 It is important to note that, while I was able to complete the DM domain and some 

additional sequence, I did not identify the 5’ end of the gene for any of the transcripts of 

NvDM1 or NvDM2.  While the genes remain incomplete, these added sequences likely 

contain the N-terminal of the protein.  In A. mellifera, the closest relative of N. vitripennis in 

which a doublesex ortholog has been documented, the DM domain is in the first coding exon 

of the gene (Cho et al. 2007).  Although there is an exon to the 5’ end of the one containing 

the DM domain, it is a non-coding exon.  The same is true for the canonical dsx in D. 

melanogaster (Zhu et al. 2000). 
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Figure 28.  Alignment of the translated amino acid sequence of DM2 with the predicted gene 
model hmm117054 found by running a BLASTX with the nucleotide sequence of DM2 as 
the query against the ab initio database.    
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Figure 29.  Amino acid alignment of complete DM domains from N. vitripennis DM1 and 
DM2 with those of D. melanogaster and A. mellifera.  Blue background indicates 
conservation in all four proteins, black indicates identical amino acids in two or three 
proteins, and a gray background means the amino acids are similar. 
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Searching for other domains in NvDM1 and NvDM2 

 

 In my analysis of DM1 and DM2, I wanted to address whether they contained any 

domains besides the DM domain.  As described in the introduction, DM-containing genes 

that are associated with sex determination contain an oligomerization domain.  I used Pfam 

to search for other domains in both genes, leaving the parameters on default for both.   

 The resulting search showed that DM2 contained only the DM domain, even when 

the threshold was raised to an E-value of 1.0.  The E-value, or expect value, is the probability 

of finding the searched for sequence by chance in the database, taking into consideration the 

size of the sequence used to search and the size of the database.  Thus, the higher the E-

value, the more likely that any matches are the result of simple chance and do not have 

biological significance.  The DM domain of DM2 has an E value of 4.8e-19.   

 For NvDM1, I searched Pfam using all four transcripts depicted in figure 27.  For all 

but 3.4, the only significant domain found was the DM domain with an E value of 9.22e-30.  

In addition to the DM domain, transcript 3.4 has a second domain called DMA or DMRTA.  

Proteins containing this additional domain are called DMRTA proteins.  This domain of 

unknown function is associated with the DM domain, occurring towards the C-terminal end 

in the DM-containing proteins in a variety of organisms.  The DMRTA motif in transcript 3.4 

has an E value of 1.7e-14 (fig. 30). 
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Figure 30.  The exon structure of NvDM1 and NvDM2.  The NvDM1 transcript shown is of 
the longest transcript with the longest open reading frame (ORF), number 3.4.  The blue box 
indicates the sequence that codes for the DM domain while the yellow boxes indicates the 
region that codes for the DMRTA motif.  White boxes are ORF and gray boxes indicate 3’ 
untranslated region (UTR).  Neither sequence includes 5’ UTR information as this could not 
be determined using available computational methods.   
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Confirming alternative splicing with RT-PCR 

 

 The Trent lab had established the presence of four different mRNA transcripts all 

coded for by the NvDM1 gene.  Due to the alternative splicing seen in doublesex, this 

presented the possibility of sex-specific expression.  However, the Trent lab’s previous work 

using 3’ RACE PCR had shown no such specificity in yellow pupae.  In order to test this, I 

designed primers to span various exon boundaries (fig. 27) and then did RT-PCR to check for 

products of the expected sizes following protocol described in Methods.  A complete list of 

primer sequences is located in the appendix.  In each run, I did PCR on a single primer pair 

with separate male and female cDNA templates, including no reverse transcriptase controls 

for each.  When running the products out on a gel, a space was left between male and female 

reactions in order to prevent contamination due product spilling over into the next lane. 

 Results of RT-PCR confirmed exon boundaries one through seven (fig. 27) with 

products of the expected size seen in both male and female pools.  Gels from this experiment 

can be found in the appendix.  In some cases, such as with the primers S11 and A12, bands in 

addition to the expected size were present (Appendix B).  However, in all primer pairs 

checking boundaries one through eight, these products were not sex-specific; the extra bands 

appeared to be the same in both sexes.  Therefore, even if these are actual transcripts and not 

artifacts, I did not consider them worthy of pursuit.  The splice junction between exons two 

and seven proved problematic (fig. 27).  With my first set of primers, I ran the reaction a 

number of times and had a different result in each.  I then decided to design a new right 

primer and repeated the RT-PCR, but this time had no amplification.  I decided not to pursue 

this further because of the very short ORF provided by transcript 2.9, that only one with this 
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b9 exon junction.  Because the ORF codes for only 59 amino acids, it is not likely to result in 

a functional protein.  

  

 

Conclusion 

 

 While both NvDM1 and NvDM2 are members of the broader DM gene family, 

neither appears to be a functional ortholog of doublesex.  Two significant lines of evidence 

support this conclusion.  First, no sex-specific expression was seen in either gene.  Although 

NvDM1 did undergo significant alternative splicing, none of the splice forms examined 

showed sex-specific expression in yellow pupae.  Second, neither NvDM1 nor NvDM2 

contain the oligomerization domain that is critical for the recruitment of other proteins that 

lead to sex-specific expression in D. melanogaster.  A more detailed analysis of these 

findings appears in the Discussion.  
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DISCOVERY OF NEW GENES: NVDM3 AND NVDM4 

 

 While NvDM1 and NvDM2 did not display sex-specific transcription, this did not 

preclude another, undiscovered DM-containing gene from acting in a sex-specific manner.  

Precedent suggested that N. vitripennis was likely to contain more members of the DM gene 

family than the two previously discovered by the Trent lab.  The genome of C. elegans, for 

example, has eleven different DM-containing genes and D. melanogaster has four (Hodgkin 

2002).  Another member of the order Hymenoptera, A. mellifera, contains at least four genes 

in the DM family (Cristino 2006).  Furthermore, personal correspondence with John Werren 

suggested the presence of a third DM-containing gene discovered by his lab.   

 

 

A computational approach to gene discovery 

 

 The search for a doublesex homolog in N. vitripennis began well before the initiation 

of the genome project.  The availability of the sequenced genome enabled me to approach 

this problem of gene discovery from a new direction.  In addition to a the sequenced genome, 

the genome project also included two sets of predicted genes, the Reference Sequence 

(RefSeq) database and the ab initio database, both of which were predicted using a program 

called Gnomon (for further details, see Methods).  The RefSeq database contains genes that 

have homologs in curated proteins, while the ab initio database includes predicted genes that 

lack homology or expressed sequence tag (EST) support.  Both of gene sets provide 

predictions only of the open reading frame (ORF) and so do not include either 5’ or 3’ 
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untranslated regions (UTRs).  I used all three databases to search for additional members of 

the DM family. 

 Because the DM-containing proteins are poorly conserved outside of the DM domain, 

I searched the RefSeq and ab initio databases using just the amino acid sequence of the DM 

domain from NvDM1.  Using the default parameters for both, I ran a BLASTP search which 

compares protein sequences.  The RefSeq database provided no matches, even when the E-

value was raised to 1.0.  In contrast, the search of the ab initio proteins resulted in three hits: 

hmm117054, hmm336964, and hmm284494.  These hits, relative to the DM1 sequence, had 

E-values of 3e-18, 1e-17, and 1e-09 respectively.  The first hit, hmm117054, corresponded to 

NvDM2.  The two other predicted proteins, hmm336964 and hmm284494, had not been 

previously identified and represent two additional genes in the DM gene family.  I named 

them NvDM3 (hmm336964) and NvDM4 (hmm284494).  An alignment of all four DM-

containing genes shows that the two new genes have the highly conserved cysteines and 

histidines characteristic of the DM domain (fig. 31). 
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Figure 31.  Alignment of the DM domains of the DM-containing genes in Nasonia 
vitripennis, including the two new genes NvDM3 and NvDM4. 
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CHARACTERIZATION OF NVDM3 

 

 The new gene NvDM3 was predicted to have an open reading frame 1053 nucleotides 

long, resulting in a protein 351 amino acids in length.  It was predicted to consist of six 

exons, although the first contains a very short reading frame of only 5 nucleotides (fig. 35).  

The gene is located on scaffold 53.  In order to learn more about this gene, I searched for 

domains in the amino acid sequence using Pfam.  In addition to the DM domain, it also 

contained a DMRTA motif, as seen in NvDM1.   

 The computational prediction is just that, a prediction.  Thus, I needed to confirm my 

findings using molecular techniques.  To do this, I designed primers to amplify across the 

different exon boundaries.  The first two exons were too small to design useful primers and 

thus represent only a computational prediction that, as of yet, has not been confirmed by 

molecular work.  However, all of the exon pairs checked did confirm the gnomon model, 

resulting in products of the expected sizes in both sexes (fig. 36). 

 As with DM1 and DM2, it appears that NvDM3 is not sex-specific on the level of the 

entire organism during the yellow pupa stage.  It is possible, as discussed previously, that this 

gene could show sex-specificity on the tissue-level or at different stages in development.   
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Figure 32.  Exon structure of NvDM3 as predicted by Gnomon.  Blue indicates DM domain 
and orange indicates the DMA (Dmrta) motif.  Arrows are primer locations, with the names 
of the primers shown above.  The first two exons were too small to design useful primers and 
thus represent only a computational prediction.  All other exons were confirmed using RT-
PCR of the primers shown.  Because this is a prediction, there are no 3’ or 5’ UTRs.  Thus all 
exons shown are coding exons with open reading frames.  The last three nucleotides of exon 
six are a stop codon.  
 
 
 
 
 
 
 
 
 
 
 

DM3LE2 DM3RE3 DM3RE4 DM3RE5 



 81

 
 
        1     2     3    4     5     6     7     8     9    10   11  12   13        

 
 
Figure 33.  RT-PCR of NvDM3 to confirm prediction found in RefSeq.  Note that the larger 
bands in lanes 2 through 8 correspond with genomic product size.  (2 and 4) Primers LE2 and 
RE3 in males and females with no reverse transcriptase (-RT); (3 and 5) LE2 RE3 m and f 
(+RT); (6 and 8) LE2 RE4 m and f (-RT); (7 and 9) LE2 RE4 m and f (+RT); (10 and 12) 
LE2 RE5 m and f (-RT); (11 and 13) LE2 RE5 m and f (+RT). 
    
 
 
 
 

500 
300 

  750 

♂ ♂ ♂♀ ♀ ♀ 



 82

COMPLETION AND ANALYSIS OF NVDM4 

 

 Of the four DM genes in N. vitripennis, DM4 contained a DM domain that looked the 

least like the others (fig. 31).  While NvDM4 contained all of the conserved cysteines and 

histidines that characterize a DM domain, there were eight amino acids conserved in all three 

of the other N. vitripennis DM genes that were absent from NvDM4, only two of which were 

substitutions of similar amino acids.  In contrast, there were only two amino acids conserved 

in NvDM1, NvDM2, and NvDM4 but not in NvDM3 and, in both cases, the substitution was 

for a similar amino acid.  In addition, the predicted length of NvDM4 was markedly shorter 

that the rest with only two exons and an open reading frame of just 363 nucleotides that 

coded for a protein of 120 amino acids.  I used molecular techniques to assess whether the 

prediction of NvDM4 was correct. 

 

 

5’ RACE of NvDM4 

 

 In order to obtain the beginning of the gene, I did 5’ RACE on cDNA prepared from 

yellow pupae.  For this experiment, I used separate pools of male and female RNA as the 

templates.  In the first set of reactions, I used the gene-specific primer DM4RE1.2 (fig. 34).  

This primer was designed to sit outside the DM domain to avoid picking up other members 

of the DM gene family.  Analysis of the products by agarose gel electrophoresis revealed a 

complex series of bands (not shown).  To reduce artifacts, I did a second RACE reaction, 
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using a nested gene-specific primer and the products from the first 5’ RACE reaction as the 

template (fig. 34).  Once again, there was a complex pool of products (fig. 35).  

 I then cloned the products of the nested 5’ RACE reaction (see materials and 

methods) and checked the insert sizes of 20 male (fig. 36) and 20 female clones (fig. 37).  

Because there is no precedent for alternative splicing in the 5’ end of DM-containing genes, I 

chose to sequence just the longest transcripts, one from males and one from females.  In 

support of this decision, there was no evidence of a consistently-sized product of shorter 

length that might have indicated an alternatively spliced form.  Instead, sizes of smaller 

products varied and were likely artifacts, the result of the enzyme disassociating before the 

entire transcript had been copied, or the result of slightly degraded RNA transcripts. 

 Plasmids from the indicated clones were sequenced.  To sequence my PCR products 

inserted in the plasmids, I used primers called M13R and T7 that were located in the plasmid 

on either side of the inserted sequence (fig. 38).  The resulting sequence reads showed that 

male and female 5’ ends are identical.  In both, the first exon does not contain an open 

reading frame and the second exon contains a short untranslated region, following by the 

start of the gene (fig. 39).  The first methionine of the open reading frame in the second exon 

corresponds with the beginning of the ab initio prediction.  
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Figure 34.  The ab initio prediction of NvDM4 transcript with primers used for RACE.  
Primers for 3’ RACE are on top of the transcript while those for 5’ RACE appear below.  
The blue box represents the DM domain.  A stop codon appears at the end of the second 
exon; the rest of the sequence is an open reading frame. 

DM4LE1 DM4LE2

 

DM4RE1.3DM4RE1.2
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Figure 35.  Nested priming of 5’ RACE.  (2 and 7) 5’ RACE DM4RE1.2 (m, f); (3 and 8) 
DM4RE1.2 only (m, f); (4 and 9) Nested universal primer mix only (m, f); (5and 10) No 
primers (m, f).   

♂ ♀
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Figure 36.  Check of the sizes of plasmids cloned from male products of 5’ RACE.  Lanes 2, 
5, 8, and 9 have plasmids of approximately the same size.  The plasmid in lane 8 was 
sequenced.  Lanes 1 and 13 are Hi-Lo and lane 12 is a no E. coli control.   
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Figure 37.  Check of the sizes of plasmids cloned from female products of 5’ RACE.  Lanes 
9 and 10 have plasmids of approximately the same size.  The plasmid in lane 9 was 
sequenced.  Lanes 1 and 13 are Hi-Lo.   
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Figure 38.  The location of the T7 (orange) and M13R (green) primers on either side of the 
PCR insert (blue) in the plasmid (black).     
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Figure 39.  The results of 5’ RACE of NvDM4.  The untranslated region (UTR) is in gray, 
the open reading frame in white, and the DM domain in blue.  No sex-specificity was 
expected in the 5’ end of the gene. 

ab initio    
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New sequence 
from 5’ RACE 
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3’ RACE of NvDM4 

 

 For the 3’ RACE, I designed both a gene-specific (GSP) and a nested gene specific 

primer (NGSP) (fig. 34).  To avoid amplifying other members of DM gene family, I used 

primers that were positioned outside the DM domain.  As with 5’ RACE, I used separate 

pools of male and female total RNA prepared from yellow pupae as template for the primary 

PCR.  I analyzed the products of the primary RACE on an agarose gel and observed PCR 

products of different sizes in males and females (fig. 40).  In an attempt to decrease the 

presence of artifacts, I then repeated the 3’ RACE using the NGSP and the products from the 

first 3’ RACE as templates.  Again, once run out on a gel, the results showed a mixed pool of 

products with distinctly different bands in males and females (fig. 41).  Both of these gels 

would suggest sex-specific splicing of NvDM4 at the 3’ end. 

 Because both males and females had a mixed pool of products, I cloned the nested 

products (see Methods).  I checked the size of 10 clones in each sex using PCR and anaylzed 

these products as described previously (fig. 42 and 43). 

 The gels showed that there were a number of different sized clones in each sex (fig. 

42 and 43).  In some cases, there were two or more amplifications that resulted in products of 

the same size.  I sequenced one clone of each size, excluding the very short male clone C12.  

From the males, I decided to sequence C2, C4, C5, and C10.  Of the female clones, I 

sequenced C1, C2, C8, and C21.  In the first round of sequencing, I was able to complete 

female clones C1 and C8 and male clones C2 and C4.  For the remainder, I then designed 

internal primers and was able to complete the rest of the clones in the second round of 

sequencing.   
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 I then aligned these sequences and the ab initio prediction with the genomic transcript 

using Spidey in order to determine the exon structure of the transcripts (fig. 44).  Spidey is a 

program provided by NCBI that aligns genomic sequence with mRNA transcripts, enabling 

the user to examine exon size and location.  Upon examination, I found that, although the 

second exon of the transcripts appears to be the same as the ab initio sequence, on all but the 

male 5 transcript, the exon actually ends four nucleotides earlier, eliminating the premature 

stop codon.  Another important feature was that, at the 3’ end of these transcripts, there was a 

sequence present in males but absent in females (see box in Fig. 44).  I named this short 

sequence VI for variable intron.  Within the VI was a stop codon.  In the female transcripts, 

the stop codon appeared shortly after the spliced out VI.  There were also significant 

differences in the length of the untranslated regions among the transcripts.  While male 

transcripts 10 and 5 and female transcript 21 all end with a base pair or two of the other, the 

rest vary; these differences in length are not due to variation in the length of the poly-A tail.  

Also, although it cannot be seen on the resolution provided by Spidey, a closer look at the 

male clones 2 and 5 revealed that they both have 12 base pairs spliced out of the second 

exon.  However, this is an in-frame deletion so it does not result in a frame-shift and the rest 

of the protein remains the same. 



 92
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Figure 40.  Results of 3’ RACE in males and females.  Lane 7 is 3’ RACE products 
from male RNA and Lane 13 from female RNA.  Note the differences in product sizes.  
The remaining lanes are as follows: (4 and 10) 3’ RACE DM3 male and female; (2 and 
8) DM3-specific primer only m and f; (3, 6, 9, 12) Universal Primer Mix only m and f; 
(5 and 11) DM4-specific primer only m and f; (1) Hi-Lo. 
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Figure 41.  Results of nested 3’ RACE in males and females.  Lane 2 is 3’ nested 
RACE products from males and lane 7 is from females.  The remaining lanes are size 
standards and controls as follows: (3and8) 3’ RACE with Nested Universal Primer 
only, male and female; (4 and 9) 3’ RACE with DM4LE2 Primer only; (5and10) 3’ 
RACE without primers; (1, 6, and 11) Hi-Lo. 
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Figure 42.  Results of checking the clone sizes in males.  Each clone is given a particular 
number in order to keep track of it and these are indicated as follows with the lane number in 
parenthesis: (2) C1, (3) C2, (4) C3, (5) C4, (6) C5, (8) C6, (9) C10, (10) C11, (11) C12, (12) 
C13.  One clone of each size was sequenced, except for C12, which was deemed too small.  I 
sequenced clones C2, C4, C5, and C10.  Lanes 1, 7, and 13 are Hi-Lo. 

 1    2    3    4    5    6    7   8    9   10  11  12  13 
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Figure 43.  Results of checking the clone sizes in females.  Clones: (2) C1, (3) C2, (4) C3, (5) 
C4, (6) C5, (7) C8, (8) C13, (9) C14, (10) C20, (11) C21.  One clone of each size was 
sequenced.  I sequenced clones C1, C2, C8, and C21.  Lanes 1 and 12 are Hi-Lo. 
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Figure 44.  Alignment of male and female NvDM4 transcripts and the original ab initio 
prediction with genomic sequence.  Exons appear in peach and introns in blue.  There is a 
stop codon at the end of the ab initio sequence and at the same location in male clone 5, but 
not in the remaining sequences, which are spliced just before the stop codon.  The black box 
indicates the VI, or variable intron, which was found excluded from female transcripts and 
included in male transcripts.  A small (12bp) sequence spliced out of male transcripts 2 and 5 
indicated by white line. 
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Complete transcripts 

 

 I combined information from the 5’ and 3’ RACE experiments to build complete 

mRNA transcripts of each clone (fig. 46).  For this, I assumed that each transcript had the 

same 5’ end.  While I have not tested this assumption, there is no precedent for alternative 

splicing at the 5’ end of doublesex as well as its orthologs. 

 Counting from the first methionine, the male transcripts translate to 219 or 223 amino 

acids (with or without 12bp) and the female transcripts translate to a protein 235 amino acids 

in length.   

 I then put these amino acid sequences into Pfam to look for functional domains.  Both 

male and female transcripts showed two domains (fig. 46).  The first was the DM domain, as 

seen in the ab initio prediction.  The second was the doublesex oligomerization domain 

(OD).  Unlike the DMA domain seen in NvDM1 and NvDM3, the OD is specifically 

associated with doublesex and its homologs involved in sex determination.  Also, as seen in 

both D. melanogaster and A. mellifera along with a number of other doublesex homologs, 

males and females share the amino end of the OD, but differ in the carboxyl region (fig. 45).  

This difference contributes to the sex-specificity of the doublesex transcription factors, with 

the female-specific OD interacting with other proteins that in turn influence transcription 

(Bayrer et al. 2005).  Compared to the Pfam Hidden Markov Model of the OD, the male 

sequence had an E value of 9.96e-6 and the female sequence had an E value of 2.9e-10.   

 I have categorized the transcripts into 3 classes: OD-A, OD-B and OD-X.  Class OD-

A refers to the transcripts that code for polypeptides containing the oligomerization domain 

originally found in males (table 5).  Transcripts coding for the oligomerization domain 
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originally found in females are classified as OD-B transcripts and the single transcript found 

in the males that lacks an oligomerization domain due to an early stop codon is classified as 

OD-X.     
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Figure 45.  An alignment of the doublesex oligomerization domains (OD) of the male and 
female N. vitripennis transcripts with the Pfam Hidden Markov Model for the OD.  Residues 
conserved in all three sequences have a blue background, those that are the same in two 
sequences have a black background, and similar residues have a gray background.  Notice 
that the N. vitripennis male and female proteins are different at the carboxyl end due to the 
alternative splicing, while the amino ends are identical.   
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Table 5.  The classification of transcripts according to the oligomerization domain contained 
in their polypeptides.  The e-value is calculated using the Pfam Hidden Markov Model. 
 

Classification Clones OD E-value
OD-A M2, M4, M10 9.96e-6 
OD-B F1, F2, F8, F21 2.9e-10 
OD-X M5 None 
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Figure 46.  Complete mRNA transcripts of NvDM4 in males (M) and females (F).  The 
untranslated regions are in gray, the sequence coding for DM domains in light blue, the 
sequence coding for the shared oligomerization domain is in purple, and the sequence of the 
oligomerization domain unique to OD-A and OD-B are in green and yellow, respectively.  
Note: Does not show small introns in M5 and M2.   
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Carboxyl terminal conundrum 

 

 One way in which the NvDM4 transcripts differed considerably from the doublesex 

gene its orthologs in other species including A. mellifera was the length of the sequence 

following the oligomerization domain (OD).  The N. vitripennis male protein, OD-A, had no 

amino acids following the OD while the female protein, OD-B, had only one (fig. 47).  In 

contrast, other dsx orthologs have a number of amino acids after the OD.   

 The shortness of the male transcript was of particular concern.  In D. melanogaster, 

there are 137 amino acids following the oligomerization domain in the DSX-M.  The length 

of this tail has been correlated with male-specific function.  For example, research suggests 

that the long tail of DSX-M interferes with neighboring cis-regulatory sites in the regulation 

of the yolk protein gene, resulting in its repression, as discussed previously (An and Wensink 

1995).  With such a truncated C-terminal, OD-A would be unable to act in this way.   

 The short female transcript was less of a problem biologically.  One protein with 

which DSX-F interacts is INTERSEX (IX).  Only DSX-F associates with IX and this seems 

to be dependent on the female-specific region of the oligomerization domain, but not the C-

terminus that follows (Yang et al. 2008).  Mutagenesis work has shown that the entire female 

carboxyl tail following the oligomerization domain can be deleted without interfering with 

the interaction between IX and DSX-F (Yang et al. 2008).  This would suggest that OD-B 

would also be able to interact with IX, despite the abbreviated tail.  Thus, my main concern 

was the short male-specific oligomerization domain and C-terminal tail coded for by the OD-

A protein.    
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>DmDSX-M 
LGQDVFLDYCQKLLEKFRYPWELMPLMYVILKDADANIEEASRRIEEARVEINRTVAQIYYN
YYTPMALVNGAPMYLTYPSIEQGRYGAHFTHLPLTQICPPTPEPLALSRSPSSPSGPSAVHNQ
KPSRPGSSNGTVHSAASPTMVTTMATTSSTPTLSRRQRSRSATPTTPPPPPPAHSSSNGAYHH
GHHLVSSTAAT 
 
>DmDSX-F 
LGQDVFLDYCQKLLEKFRYPWELMPLMYVILKDADANIEEASRRIEEGQYVVNEYSRQHNL
NIYDGGELRNTTRQCG 
 
>AmDSX-M 
NVEILLEHSSKLVELFQYPWEALLLMYINLKYAGANPEEVVRRMVDASNEIRNMHFLKAIR
MSQPSRAFRCTAACAAPTGPPTGPPTYEGDVPFIGVGPPPNPIHFRPFLHPENAHIPATRLPSSP
DGPPKHT 
 
>AmDSX-F 
VEILLEHSSKLVELFQYPWEALLLMYINLKYAGANPEEVVRRMVDALIIFCSKNFIWNSILNKI
VSFINLLPT 
 
>NvDM4-M4 
VEELLGYSVKLLQRFGYHWQTLTLMYVILKDSRADVEVAMRRITQGNQS 
 
>NvDM4-F1 
VEELLGYSVKLLQRFGYHWQSLTLMYVILKDSRADVEVAMRRITQAKNVWQPELYSRIISV 
 
Figure 47.  Sequence from doublesex homologs beginning at the start of the doublesex 
oligomerization domain and ending at the end of the protein in D. melanogaster (Dm), A. 
mellifera (Am), and N. vitripennis (Nv).  The text highlighted in green is the oligomerization 
domain shared between the two sexes of each organism.  Text highlighted in blue is the 
male-specific region of the OD and text highlighted in pink is the female-specific region.  
Note that the tails succeeding the OD are considerably shorter in N. vitripennis than in any 
other organism for both males and females.  Underlined portion of A. mellifera male is the 
sequence used to search for additional carboxyl ends.      
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Looking for a longer carboxyl terminus1 

 

 This significant difference between the male and female transcripts of NvDM4 and 

the other DSX homologs made me wonder if there were more alternatively spliced NvDM4 

transcripts that had not been pick up by the 3’ RACE and subsequent cloning.  I decided to 

try a computational approach.  To do this, I used a portion of the A. mellifera male DSX 

homolog after the oligomerization domain (fig. 47) to search to genome of N. vitripennis 

using a TBLASTN search (amino acids v. nucleotides).  This resulted in one hit.  Although 

the E-value was fairly high, 0.002, the newly found sequence was on scaffold 23, the same 

scaffold as the rest of the NvDM4 transcripts (fig. 48).   

 I needed to establish whether this hit was oriented in the correct direction to splice 

with the beginning exons of NvDM4.  In order to serve as a potential new 3’ end, the 

sequence had to be located to the 3’ end of the ab initio sequence and oriented in the same 

direction.  To determine this, I attached the new sequence onto the end of my NvDM4 male 

protein and repeated a TBLASTN search of the genome.   

 The results revealed that the new sequence was oriented correctly to be attached to 

the rest of the NvDM4 sequence.  Also, the new sequence, along with the preceding two 

exons of NvDM4, aligned with another predicted protein, this one in RefSeq 

(XM_001602495.1) (fig. 49).  According to NCBI, the RefSeq hit was predicted to be similar 

to an elongase, which is involved in fatty acid synthesis (Oh et al. 1997).  When I took this 

predicted protein and searched for domains within it using Pfam, I found that it had two 

domains.  In addition to the elongase domain, which had an E value of 1.5e-9 and was 

                                                 
1 Please note that all references to OD1 and OD2 exon numbers do not include the results of 5’ RACE, but 
instead begin with the coding region that corresponds with the beginning of the ab initio prediction. 
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located towards the carboxyl terminus, the protein contained a DSX oligomerization domain 

at the amino end with an E value of 2e-11, a better value than seen in either the OD-A or 

OD-B transcripts.  Also, a search of the literature as well as the Pfam architecture revealed no 

previous example of a doublesex oligomerization domain being associated with an elongase 

domain.  This raised a tantalizing possibility: could the predicted RefSeq be incorrect and, 

instead, could the exons that coded for the OD domain be associated with alternative 

transcripts of NvDM4? 

 To pursue this possibility, I returned to the lab to do RT-PCR.  For this, I used 

Primer3 to design right primers for each of the exons unique to the putative elongase (PE).  

The PE consists of 9 transcripts, with the first two exons being shared with the NvDM4 

sequence (fig. 50).  Exon four of the PE was too small for a primer.  I also designed a primer 

to be used as a positive control that sat in the in the fourth coding exon of NvDM4.  I 

conducted RT-PCR following the protocol described in the methods section, using 35 cycles. 

 I first conducted the RT-PCR in males, then in females.  Both produced the same 

results.  While the primers PERE5 – PERE9 resulted in no strong bands, the combination of 

DM4LE1.6 with PERE3 produced a thick band in both males and females (fig. 51 and 52).  

In addition, the size of the products were consistent with the first two coding exons of 

NvDM4 being connected to the first three exons of the putative elongase.  While exon three 

of the PE codes for the new carboxyl terminal of the OD, it does not include any of the 

elongase domain.  These results would suggest the existence of a third transcript containing 

both a DM domain and an oligomerization domain distinct from OD-A and OD-B.  I named 

this class of transcripts OD-C.    
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 My next question was whether transcripts with this third OD were present in the pool 

of 3’ RACE products from the first priming with the GSP.  To do this, I created a new NGSP, 

this one in the third exon of the PE.  In an attempt to have at least one working primer, I 

designed four different nested gene-specific primers and tested all of them in both males and 

females.  The results of two of these primers, along with single primer controls for the new 

NGSPs are shown in figure 53.  In all male lanes, there was a faint band between 750 and 

1000 nucleotides which was not present in females.  This band shifted in a size consistent 

with the location of the different primers, suggesting it was not an artifact.  Both males and 

females had a larger band at between 3 and 6kb.  While not seen in figure 53, at other times 

the nested universal primer mix has resulted in a band of about this size when alone, so this 

larger band may have been an artifact. 

 To determine the sequence of the smaller, male band, I cloned only the male products 

from the nested priming of PELE3.1 using protocol described in the methods section.  I then 

performed a check of clone sizes on 20 clones (fig. 54).  This revealed bands of five different 

main sizes, and I decided to prepare and sequence one clone from each. These were clones 

C2, C3, C4, C10, and C11.   

 With only one round of sequencing, I was able to complete clones C2, C3, and C11, 

using the sequence from M13R and T7 primers (fig. 38).  Before designing internal primers 

for the remaining two clones, I looked more closely at the partial sequence reads.  I found 

that C10 appeared to be an artifact, with all exons of the sequenced transcript residing on 

scaffold 62.  To be a legitimate transcript, it would have to rest at least partially on transcript 

23, where the primer was located.  Taking a closer look at C4, I noticed that, although the 

trimmed sequence read from the T7 primer was extremely short, looking at the quality of the 
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chromatogram, I felt I could trust more of the sequence than would be suggested by the 

trimmed read.  Also, although the untrimmed sequence read of T7 still did not overlap with 

M13R, I found by aligning both transcripts with the genome using Spidey, that the ends were 

separated by only five nucleotides.  I determined these five nucleotides – AAAAG – by 

referring to the genomic sequence.  I decided to assume that this was not an extremely short 

intron and glued the two sequence reads together with the AAAAG between them.  Also, 

even if this were an intron, it would not affect the resulting protein as further analysis 

revealed this region of the transcript was in the UTR.  Therefore, I had four new transcripts 

to investigate further: C2, C3, C4, and C11. 

 I aligned all four of these sequences against the genome using Spidey (fig. 55).  I also 

used BLAST to search for each sequence in version 1.0 of the N. vitripennis genome and 

found that the last part of clone C11 was on scaffold 10, while the rest of the transcript, along 

with all the other sequences, was on scaffold 23.  As can be seen in figure 55, while the new 

sequences align with exon three of the putative elongase, they do not align with the 

succeeding exons four through nine.  Transcripts C2, C4, and C11 all have their stop codon 

in exon B, resulting in the same ORF for all three, but C3 is missing exon B and thus does 

not have a stop codon until exon C.  Therefore, these new clones actually represent two 

different carboxyl ends (fig. 56).  To reflect these differences in the polypeptide, I subdivided 

class OD-C into OD-C.1, containing C2, C4, and C11, and OD-C.2, consisting of only C3.     

 This left the question of what was happening to the 5’ end of these transcripts.  To 

assess this, I cloned and sequenced the RT-PCR products from the primer DM4LE1.6 and 

PERE3 in both males and females (fig. 51 and 52).  Checking clone sizes revealed that all 

products were the same size, so I sequenced one from each sex.  After sequencing was 
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complete, I aligned the results, labeled DM4-PE3 ♂ and DM4-PE3 ♀, with each other and 

with the genome (fig. 57).  The sequences are the same in males and females.  They 

correspond to the first four exons of the OD-B transcripts, using the splice site that the OD-A 

transcripts skip.    

 With the PE exon 3 appearing in both males and females, it raised the question as to 

whether exons A, B, C, and D were also in both sexes, despite the fact that I only saw 

product in the 3’ RACE using male RNA as the template.  I designed primers for each of the 

exons, and did RT-PCR using primer DM4RE1.6 as the left primer to check for the presence 

of these exons in both males and females.  I ran the RT-PCR following the protocol 

described in the methods section, using 35 cycles.  The primer in exon D did not result in any 

product in either males of females, suggesting that this exon, the only exon not on scaffold 

23, was an artifact.  In contrast, all of the other primers resulted in products of the expected 

sizes in both sexes (fig. 58 and 60).  This would suggest that exons A, B, and C are present in 

females as well as males (fig. 59). 

    Amplifications off of both male and female templates result in a high quantity of 

products.  This does not agree with the nested 3’ RACE in which a band could be seen only 

in males, with no product apparent in the female RACE (fig. 53).  However, while my 

protocol of 35 cycles for RT-PCR is excellent for showing presence versus absence of a 

particular transcript, it does not provide a quantitative look at the transcripts.  By the time the 

reaction has gone through 35 cycles, it is likely that differences in original template 

quantities would be reduced considerably as other factors, such as beginning to use up 

nucleotides, becomes more limiting than amount of transcript.  In an attempt to make a semi-

quantitative examination of these new exons, I varied the number of cycles.  To do this, I set 
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up a number of reactions that all contained the primers DM4LE1.6 and DM4RA1.  I then 

took one tube with male template and one tube with female template out of thermocycler 

after 15 and 20 cycles, leaving in two tubes to run for a full 25 cycles and the 3 minute 

extension.  It should also be noted that, because I was running other experiments in the same 

thermocycler, I lowered the annealing and extension temperatures to 63°C.  Previously, the 

annealing and extension temperatures were kept at 68°C as described in Methods.   

 The resulting gel revealed noticeable differences between males and females (fig. 60).  

While a very light band first appears in males at 15 cycles, no evidence of product is seen in 

females until 25 cycles have been completed.  This would strongly suggest that this 

transcript, belonging to the OD-C class, is transcribed at a higher level in males than in 

females in yellow pupae.  There is one significant caveat to this observation.  Although the 

RNA was quantified and the same amount used in each cDNA preparation, the resulting 

cDNA has not been quantified.  Therefore, these same differences could be the result of male 

cDNA being more concentrated than the female.  The results of this semi-quantitative RT-

PCR coincide well with the 3’ RACE results (fig. 53).   
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Figure 48.  Alignment of A. mellifera query sequence with resulting hit from N. vitripennis 
that resulted from a TBLASTN search of the genome.  The E value was 0.002, but the hit 
was on scaffold 23, the same scaffold as the male and female NvDM4 transcripts found using 
3’ RACE. 
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Figure 49.  The location of various transcripts relative to the genomic sequence.  The 
genomic sequence is in gray.  Predicted sequences are below the genomic sequence.  Exons 
appear as boxes, with introns as connecting lines.  The orange exons are the ab initio 
prediction of NvDM4.  The light green exons are a RefSeq prediction of an elongase protein.  
The entire elongase sequence is not shown, but continues farther to the 3’ end.  The purple 
exons above the genomic sequence are the male NvDM4 sequence with the new added-on 
sequence in neon green and circled in orange.  
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Figure 50.  Location of primers for the RT-PCR testing whether any exons of the putative 
elongase were connected to NvDM4.  The left primer, NvDM4LE1.6, is located in the 
beginning of the ORF of NvDM4.  Primers for exons 3, 5, 6, 7, 8, and 9 of the putative 
elongase are in black.  These primers are named PERE3, PERE5, etc.  Exon 4 was too small 
for a primer.  Exons are labeled as PE1, PE2, etc.  A primer serving as a positive control is 
located in NvDM4 and is shown in burgundy.  Note that the second exon of the PE aligns 
exactly with the fourth exon of OD-B transcripts.  This sequence is also in OD-A and OD-X, 
but the PE excludes the VI seen in OD-A and OD-X.  The genomic length from the 
beginning of the DM4 prediction to the end of the putative elongase is 44kb. 
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Figure 51.  Results of RT-PCR to check whether exons of the predicted elongase were 
connected to the first coding exon of NvDM4 in males.  The primers (2 and 3) DM4LE1.6 
with DM4RE4  represent a positive control (no reverse transcriptase [RT], +RT).  The rest of 
the lanes contain the following primers with in each case the lane representing the no RT 
control: (4 and 5) DM4LE1.6, PERE3; (6 and 7) DM4LE1.6, PERE5; (8 and 9) DM4LE1.6, 
PERE6; (10 and 11) DM4LE1.6 PERE7; (12 and 13) DM4LE1.6, PERE8.  Lane (1) is Hi-
Lo.  This shows that the third exon of the PE is connected to the first exon of DM4. 
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Figure 52.  Results of RT-PCR to check whether exons of the predicted elongase were 
connected to the first exon of NvDM4 in females.  (2) DM4LE1.6, DM4RE4 (+RT); (3) 
DM4LE1.6, PERE3; (4) DM4LE1.6, PERE5; (5) DM4LE1.6, PERE6; (6) DM4LE1.6 
PERE7; (7) DM4LE1.6, PERE8; (8) DM4LE1.6, PERE9; (1 and 9) Hi-Lo.  Again, the results 
suggest that the third exon of the PE is connected to the first exon of NvDM4. 
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Figure 53.  Results of nested gene-specific priming of original 3’ RACE.  The nested primers 
are designed to target the third exon of the PE, previously shown to be connected to the first 
exon of NvDM4 using RT-PCR (fig. 51 and 52). Lanes contain the following: (2) 
♂PELE3.1, Nested Universal Primer Mix; (3) ♂ PELE3.1; (4) ♀ PELE3.1, NUPM; (5) ♀ 
PELE3.1; (6) ♂ PELE3.2, NUPM; (7) ♂ PELE3.2; (8) ♀ PELE3.2, NUPM; (9) ♀ PELE3.2; 
(1 and 10) Hi-Lo. 
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Figure 54.  One of the two gels resulting from a check of clone sizes from the NGSP seen in 
fig. 51.  Each clone is given a number identification as follows: (2) C2; (3) C3; (4) C4; (5) 
C5; (6) C7; (7) C8; (8) C10; (9) C11; (10) C12; (11) C13; (12) C15; (1, 13) Hi-Lo.  Clones 
C2, C3, C4, C10, and C11 were sequenced.  
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Figure 55.  Alignment of clones C2, C3, C4, and C11 with the genome and the putative 
elongase.  Exons are labeled A through D.  C3 lacks exon B.  Exon B contains a stop codon, 
as does exon C, resulting in two different ORF, one shared by C2, C4, and C11 and another 
seen only in C3.  Note that exons five through nine of the PE are very close together and 
represented by the solid orange box at the far right. 
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>NvDM4OD-C.1 
VEELLGYSVKLLQRFGYHWQSLTLMYVILKDSRADVEVAMRRITQANSEIQATAQF
NATFGGYYRGGYYPPSAFTNSLANIGNLGNPTYFGQVPYVGMASPSDTAGLGLLPY
AFGTHVVSPKVPSSPDSPPERPSSYPGGTSFPRSKQASIHS 
 
>NvDM4OD-C.2 
VEELLGYSVKLLQRFGYHWQSLTLMYVILKDSRADVEVAMRRITQANSEIQATAQF
NATFGGYYRGGYYPPSAFTNSLANIGNLGNPTYFGQVPYVGMASPSDTAGLGLLPY
AFGTHVVGPKVPSSPDSPPERPSSYPETSMSHRFKIEKSEDTD 
 
Figure 56.  Amino acid sequence of OD-C.1 and OD-C.2 class transcripts beginning at the 
start of the oligomerization domain and ending at the C-terminal of the protein.  The 
difference between the proteins is underlined.  The sequence highlighted in green are the 
region of the OD shared among OD-A, OD-B, and OD-C transcripts while the blue is the 
region of the OD specific to OD-C.  As can be seen, OD-C.1 and OD-C.2 share the same 
oligomerization domain. 
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Figure 57.  Alignment of the results of sequencing the male and female RT-PCR products 
with primers DM4LE1.6 and PERE3 (rows 4 and 5).  Also included in this alignment the 
incomplete sequences from ODC.1 and ODC.2 (row 2 and 3) and representative transcripts 
from the OD-A and OD-B classes (rows 6 and 7).  The fourth exon of DM4-PE3 male and 
female are the same as the fourth exon OD-B.   
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Figure 58. The results of amplification between the first coding exon of NvDM4 (primer 
NvDM4LE1.6) and exons A, B, C and D in males and females.  The lanes are as follows: (1 
and 2) male DM4LE1.6 and DM4RA.1 (-reverse transcriptase [RT], +RT); (3 and 4) female 
DM4LE1.6 and DM4RA.1 (-RT, +RT); (5 and 6) male DM4LE1.6 and DM4RB.1 (-RT, 
+RT); (9 and 10) female DM4LE1.6 and DM4RB.1 (-RT, +RT); (11 and 12) male 
DM4LE1.6 and DM4RC.1 (-RT, +RT); (13 and 14) female DM4LE1.6 and DM4RC.1 (-RT, 
+RT); (15 and 16) male DM4LE1.6 and DM4RD.1 (-RT, +RT); (17 and 18) female 
DM4LE1.6 and DM4RD.1 (-RT, +RT); (7, 8 and 19) Hi Lo. 
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Figure 59.  NvDM4 OD-C transcripts.  DM domain is in blue, the oligomerization domain 
shared among the NvDM4 transcripts is in purple, and the carboxyl end of the 
oligomerization domain unique to the OD-C transcripts is in red.  OD-C.1 and OD-C.2 have 
the same oligomerization domain, but differ at the C-terminal.  
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Figure 60.  The effect of varying the cycle numbers on the amplification of DM4LE1.6 and 
DM4RA.1.  Lanes 1, 3, and 5 have a male template and lanes 2, 4, and 6 have a female 
template.  Lane 7 is Hi-Lo.  A very light band first appeared in males at 15 cycles, but no 
evidence of product was seen in females until 25 cycles had been completed.   
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Another look at OD-A and OD-B 

 

 My original 3’ RACE resulted in two clearly different classes of doublesex 

oligomerization domains that divided neatly between the sexes: all males containing an OD 

fell into the OD-A class while all females were classified as OD-B, lacking the VI.  

However, especially in light of finding a third class of transcripts that I had missed in the first 

round of nested RACE, I was concerned that I had only seen a sex-specific pattern by chance, 

and that the OD-A and OD-B classifications might not be exclusively male or exclusively 

female as initially observed.  Therefore, I attempted to confirm what I had found using RT-

PCR.  I designed primers to check whether OD-X and OD-A were male-specific and whether 

OD-B was female-specific. 

 To test whether OD-A was present exclusively in males, I designed a primer called 

DM4RMale1 to sit in the VI, which is spliced out of OD-B (fig. 61).  Because the primer 

would amplify off of both OD-X and OD-A, I could expect to see two bands of product in 

the gel, one at 667 base pairs that would correspond with OD-A transcripts, and the other at 

1236 to correspond to the OD-X transcript.  The results showed these products in both males 

and females (fig. 62).  This indicates that neither OD-X nor OD-A are male-specific, but 

instead are expressed in both sexes. 

 The presence of OD-X in both sexes was confirmed when I used the ODX-specific 

primer DMR-M5-1 along with DM4LE1.6.  A band appears in both sexes at the expected 

size (fig. 63).  A second, larger band is also seen, but it corresponds with the size of 

amplification off of the genomic DNA.  
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 I then wanted to check whether OD-B was female specific.  To do this, I designed 

primers to sit on either side of the VI.  In those transcripts containing the VI, all those in 

classes OD-A and OD-X, the expected product would be 300bp in length.  For transcripts in 

class OD-B, which do not contain the VI, the product should be 192bp long.  At 30 cycles, 

males have only one product, corresponding with the longer transcript, while females display 

products of both sizes (fig. 64).  This suggests that OD-B is a female-specific splice pattern.  

 Looking at the results as a whole, it appears that class OD-B transcripts are present 

exclusively in females and OD-C transcripts are at considerably higher levels in males, 

making OD-B the female-specific transcript and OD-C the male-specific transcript.  On the 

other hand, OD-A and OD-X, while initially found only in males, are actually present in both 

sexes.    
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Figure 61.  Location of primers to determine whether the splicing patterns seen as sex-
specific in 3’ RACE are indeed transcribed exclusively in one sex of yellow pupae.  
DM4RMale1 sits entirely in the VI.  Blue arrows indicate primers testing for OD-A and OD-
X.  Pink arrows indicate primers testing for OD-B.  In both cases primer labels appear above 
arrows.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DM4FLE3 DM4FRE5.1 

DM4LE1.6 

Oligomerization Domain DM Domain 

OD1   

ODX   

OD2    

DM4RMale1 

DMR-M5-1 

X



 126

 
     1         2         3         4        5  

 
 
             ♂            ♀ 
 
 
 
 
 

            1400 
            1000 
              750 
 
 
 
 
 
 
 
 
 
Figure 62.  Amplification to check for presence of VI in females.  VI had previously been 
seen only in males.  Lanes 1 and 2 are male products (-RT, +RT) and lanes 3 and 4 are from 
female template (-RT, +RT).  Lane 5 is Hi-Lo marker.  The shorter product corresponds to 
OD-A transcripts (expected size: 667) while the larger product is due to amplification off of 
OD-X (expected size: 1236).   
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Figure 63.  Amplification to check for the presence of the OD-X transcript.  Lanes 2 and 3 
are amplified off of male cDNA (+RT, -RT).  Lanes 4 and 5 are amplified from female 
cDNA (+RT, -RT).  Lane 1 is Hi-Lo marker.  The darker band is at the expected product size 
of 578bp with the larger, fainter band corresponding with the expected size of amplification 
off of genomic DNA (1011bp).  
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Figure 64.  Amplification to check for the presence of OD-B transcripts in males.  OD-B 
transcripts result in a 192bp product while OD-A and OD-X transcripts result in a 300bp 
product.  Lanes 2 and 3 amplify off of male cDNA (-RT, +RT) and lanes 4 and 5 amplify off 
of female cDNA at 30 cycles, plus a 3 minute extension.  Lanes 6, 8, and 10 have male 
cDNA as a template with 15, 20, and 25 cycles respectively.  Lanes 7, 9, and 11 have female 
cDNA as a template.  Lanes 1 and 12 are Hi-Lo marker.  
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Splice-site analysis 

 

 In N. vitripennis, I found four different classes of transcripts in NvDM4, OD-A, OD-

B, OD-C, and OD-X, that all arise from the same pre-mRNA.  Of these, OD-C appears to be 

male-specific, with significantly higher levels of transcript in males, while OD-B seems to be 

female-specific, expressed in only females at the yellow pupal stage.  Because males and 

females share an identical pre-mRNA, signals have to be present in the primary transcript to 

result in the differential splicing that can be seen in doublesex orthologs, including NvDM4.  

How this alternative splicing is carried out varies between organisms.  In D. melanogaster, 

there are two cis-regulatory elements that work in concert with a protein complex that 

includes the transformer (tra) and transformer-2 proteins and result in the production of the 

female mRNA.  One of these elements is called the dsx repeat element (dsxRE) and it 

consists of 6 repeats of a 13-nt (Inoue et al. 1992).  This 13-nt sequence varies slightly (table 

6a) and is found in the fourth exon of D. melanogaster doublesex (fig. 65).  The second 

element is the purine-rich enhancer (PRE) which sits within the dsxRE between the fifth and 

sixth repeat elements (for sequence, see table 6b; for location, see Fig. 65).  These two 

elements work together to bind the protein complex and result in the female-specific 

transcript (Lynch and Maniatis 1995).   

 Using Microsoft Word’s find function, I searched for all four variations of dsxRE in 

all of the NvDM4 transcripts, but found no examples in any of my sequences.  There were 

also no examples of the complete PRE sequence.  

 In addition to the presence of cis-regulatory elements, another consideration in 

splicing is the strength of the splice sites themselves.  To measure the relative strengths of the 
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alternative splice sites, I used the Splice Site Prediction by Neural Network program called 

NNSPLICE version 0.9 (Reese et al. 1997) as well as the Alternative Splicing Prediction 

(ASPIC) program (Bonizzoni et al. 2005).     

 For the construction of each transcript, there are three splicing “decisions” that must 

be made in terms of alternative splicing.  Considering these from 5’ to 3’, the first is whether 

or not to splice out intron C (see Fig. 66), which contains donor and acceptor scores of 

0.76/74 and 0.62/77 respectively (table 7).  Note that the donor site is at the 5’ end of an 

intron and the acceptor site is at the 3’ end.  While these scores are lower than for some of 

the other introns, in only one of the transcripts sequenced – the single transcript in the class 

OD-X – is this intron left in.  The second “choice” is following exon 4a, whether to splice out 

intron E (shorter, seen in OD-B) or F (longer, seen in OD-C) or to not splice out any intron 

(seen in OD-X and OD-A).  For E, the donor and acceptor scores are 0.63/79 and 0.89/96, 

while for F the donor score is the same and the acceptor score is 0.47/72, making F a weaker 

splice site according to both programs.  Finally, for those transcripts that are destined to fall 

under the class OD-C, there is a final “decision” to be made as to whether to splice out 

introns G and H, leaving in exon 6, or to splice out the longer intron I, which removes exon 

6.  Intron G has donor and acceptor scores of 0.94/85 and 0.99/92 and intron H has scores of 

0.87/82 and 0.84/94.  Intron I shares the same donor as G and the same acceptor as H, giving 

it scores of 0.94/85 and 0.84/94 for donor and acceptor sites, respectively.         
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Figure 65.  The location of the purine rich enhancer (PRE) and dsx repeat elements (dsxRE) 
in the transcript of D. melanogaster doublesex mRNA.  The exon structure of doublesex 
shows the female-specific exon in pink and the male-specific exons in green.  The female-
specific exon is magnified and the dsxREs are red and the PRE is yellow (adapted from 
Lynch and Maniatis 1995).   
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Table 6.  (A) 13-nt sequences that are repeated six times in the fourth exon of doublesex in 
D. melanogaster and make up the dsx repeat elements (dsxRE).  The dsxRE is involved in 
binding tra and other proteins that result in female-specific splicing.  (B) Sequence of the 
purine-rich enhancer (adapted from Inoue et al. 1992).. 
             
A. 
 
 
 
  
 
 
 B. 
 
 
 

dsxRE Sequence  
TCTTCAATCAACA 
TCTACAATCAACA 
TCAACAATCAACA
TCAACGATCAACA

PRE Sequence 
AAAGGAC AAAGGAC AAAA
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Table 7.  Splice site scores (higher is stronger) of alternatively spliced NvDM4 exons.  For 
names of introns, refer to figure 66. 
 

Intron:  
d=Donor; a=Acceptor 

NNSPLICE (0 – 1) ASPIC (0 – 100) 

C: d 0.76 74 
C: a 0.62 77 
D: d 0.94 87 
D: a 0.95 92 
E: d 0.63 79 
E: a 0.89 94 
F: d 0.63 79 
F: a 0.47 72 
G: d 0.94 85 
G: a 0.99 92 
H: d 0.87 82 
H: a 0.84 94 
I: d 0.94 85 
I: a 0.84 94 
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Figure 66.  Complete exon/intron structure of the NvDM4 gene.  Exons, indicated by 
rectangles, are numbered in black above each exon and introns, indicated by lines, are 
lettered in blue below each intron.  An intron is considered unique if it has a distinct 
combination of donor and acceptor site.  Exons that occupy a subset of the sequence of a 
larger exon are denoted by the name of the larger exon, followed by the letters a or b.  The 
blue rectangle represents the DM domain.  The purple represents the beginning of the 
oligomerization domain shared by OD-A, OD-B, and OD-C with the green, yellow, and red 
representing the C-terminus of the OD-A, OD-B, and OD-C transcripts respectively.  The 
white rectangles indicate the open reading frame that is not part of the two motifs and the 
gray represents the untranslated region.  
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Transcript variety 

 

 Previously, the highest number of doublesex transcripts had been found in honeybees, 

with a total of four transcripts (Cho et al. 2007).  Of these, the two found primarily in 

females vary only in the 3’ UTR, resulting in the same sequence of amino acids.  Thus, if one 

compares merely the polypeptides, the N. vitripennis doublesex ortholog appears to code for 

four different proteins, while the A. mellifera ortholog codes for three.  In honeybees, one of 

these proteins is found in both males and females, with amounts varying throughout 

development (Cho et al. 2007).  In contrast, in N. vitripennis, I found two classes of 

transcripts, OD-X and OD-A, that are present in both sexes.   

 When considering differences in 3’ UTR, N. vitripennis has nearly three times the 

number of transcripts compared with A. mellifera, with 11 versus 4.  This raises the question 

as to whether all 11 represent legitimate transcripts or whether the shorter transcripts from 

any particular class are simply artifacts.  Because the variation among transcripts within a 

class occurs due to variations in the length of the last exon, this is very difficult to tease out 

using RT-PCR, as primers cannot be specifically designed for shorter transcripts that will not 

also amplify off of the longer transcript.   

 One possibility for addressing this is to look for polyadenylation signals that might 

help to confirm the 3’ ends of the shorter transcripts.  For polyadenylation to occur, there are 

both upstream and downstream signals.  The best conserved is the upstream signal AATAAA 

that occurs 10 to 30 bases upstream of the cleavage site.  Note that, in the mRNA, this would 

read AAUAAA, with thymine replaced by uracil in RNA.  In one study of 2084 genes in D. 

melanogaster, this signal appeared in over 47% of the genes, with the second-most common 
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sequence being ATTAAA at a little over 10.3% of the genes (Retelska et al. 2006).  There is 

also often a less-well conserved T or TG-rich region within 30 nucleotides downstream of the 

cleavage site (Retelska et al. 2006).  Examining the shorter OD-A transcripts for upstream 

signals, I found an ATTAAA motif 30 base pairs upstream of the polyadenylation site for the 

DM4-M2 transcript.  Also, 15 base pairs after the cleavage site for DM4-M2, there is a 

TTTGTTT, which is the most common of the T-rich motifs (Retelska et al. 2006).  None of 

the other OD-A transcripts has these motifs near to their cleavage sites, although DM4-M4 

does have the a TATAAA sequence, the third most-common upstream motif in flies at a little 

less than 5%, about 60 base pairs upstream of its polyadenylation site.  Among the shorter 

OD-B transcripts, DM4-F1 has an ATTAAA motif less than 20 base pairs upstream of the 

polyadenylation site and a TTTGTTT site 40 base pairs downstream.  The rest of the shorter 

transcripts do not have these motifs nor does the shorter OD-C.1 transcript.  However, a lack 

of such motifs cannot be seen as certain evidence of artifact.  In their analysis of over 2000 

fly genes, Reteleska and his colleagues showed that over 22% lacked any previously 

identified upstream motif (2006).   

 Another possibility is to look for ways in which artifacts could be formed.  For 

example, in 3’ RACE there are two primers used: one is gene-specific and the second, used 

in the first round of RACE, consists primarily of a poly-T region that binds to the poly-A tail 

of mRNA.  However, this poly-T primer could feasibly bind at least partially anywhere in a 

transcript where there is a run of As.  If the binding was sufficient, this could result in 

amplification of an artificially shortened transcript.  Thus, I looked at the sequence directly 

following the cleavage site of the shorter transcripts (fig. 67, table 8).  From this table, it is 

apparent that all polyadenylation sites are followed by at least one A and include poly-A runs 
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up to 8 base pairs in length.  The presence of an A itself after a cleavage site is not unusual.  

At least in humans, there is a significantly higher frequency of adenines at this position than 

would be expected at random (Retelska et al. 2006).  While having one or two As in a row is 

of little concern, a string of 8, as seen in DM4-M2, might be enough to result in aberrant 

priming and an artificially shortened transcript.  Interestingly, as noted previously, DM4-M2 

has the best surrounding motifs of the shortened male transcripts to indicate it is legitimate.  

Thus, while looking more closely at the sequences surrounding the polyadenylation sites of 

shortened transcripts may provide some insight, it cannot indicate with certainty whether any 

of these transcripts are artifacts.   
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Figure 67.  The location of polyadenylation sites on class OD-A, OD-B, and OD-C.1 
transcripts.  The transcript classes OD-C.2 and OD-X did not show alternative 
polyadenylation sites.   
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Table 8.  Examination of the 10 base pairs immediately following the cleavage site in 
shortened transcripts, assuming that the nucleotide preceding the cleavage site is not an 
adenine.  
  

Transcript 10bp following cleavage site 
DM4-M2 AAAAAAAATT 
DM4-M4 AAAAAACGTC 
DM4-F1 AAACAAAGTG 
DM4-F2 AAAAAATTAT 
DM4-F8 AGTAAGTTCC 
DM4-C2, DM4-C3 AAAAAACGAC 
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DISCUSSION 

 

The DM gene family 

 

 My research shows that the DM gene family of N. vitripennis has four members, 

consistent with the number found in A. mellifera and D. melanogaster (Cristino et al. 2006).  

In addition to the DM domain, three of these transcripts show additional protein motifs (fig. 

57).  Both NvDM1 and NvDM3 contain a DMRTA motif at their C-terminal ends while 

NvDM4 has an alternatively spliced doublesex oligomerization domain, also at the C-

terminal.   

 In some gene families, the genes remain close together.  The Hox genes, for example, 

appear in clusters (Carroll et al. 2001).  However, following duplication, it is possible for a 

gene to be transferred to another location in the genome via translocation (Lewin 2004).  

Because there are at present nearly 6000 scaffolds in the N. vitripennis genome that have not 

yet been placed on chromosomes, it is not within the scope of this study to say whether the 

DM gene family in N. vitripennis has remained clustered or has spread throughout the 

genome.  While the chromosomal locations cannot yet be determined using computational 

techniques, scaffold locations show that NvDM2, NvDM3, and NvDM4 are present on single 

scaffolds while the sequence of NvDM1 stretches across at least five scaffolds.  No two 

genes reside on the same scaffold.   
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Figure 68.  The exon structure of NvDM1, NvDM2, NvDM3, and NvDM4, including the 
four splicing classes of NvDM4.  White and colored boxes represent open reading frames 
while grey indicates untranslated regions.  Introns are not to scale. 
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Transcripts from NvDM1, NvDM2, and NvDM3 lack obvious sex-specificity in the 
yellow pupal stage 

 

 NvDM1, NvDM2, and NvDM3 are all members of the DM gene family in N. 

vitripennis.  However, my results combined with previous work done in the Trent lab suggest 

that none of these genes serve as a doublesex homolog.  Both NvDM2 and NvDM3 are 

constitutively spliced in yellow pupae and neither show sex-specific expression in this stage.  

Although NvDM1 is alternatively spliced, molecular evidence showed the same splicing 

patterns in both males and females during the yellow pupae stage of development.    

 Computational analysis of the protein domains of each gene product confirmed the 

molecular evidence that none of these three genes are doublesex homologs.  Neither the 

many alternative transcripts of DM1 nor the single transcripts of DM2 and DM3 contained 

the doublesex oligomerization domain (OD) (Pfam accession: PF08828).  The 

oligomerization domain serves two roles in sex-determination.  First, DSX functions as a 

dimer in vivo, binding to palindromic sequences of DNA, and this domain allows it to form 

those dimers (Erdman et al. 1996).  Second, in most DSX orthologs, it is the differences in 

the C-terminal region of the protein that includes the carboxyl end of the OD that confers the 

sex-specific properties via protein-protein interactions (Zhu et al. 2000).   

 Instead of an OD, both transcript 3.4 of NvDM1 and the single transcript of NvDM3 

contained a DMRTA motif, also referred to as a DMA domain (Pfam accession: PF03474).  

This domain, named because it was found in the DMRTA proteins in humans, has an 

unknown function, but has been found in a wide range of organisms in association with the 

DM domain (Miller et al. 2003).  One C. elegans and two D. melanogaster proteins contain 

both the DM and DMRTA domains.  Of particular importance is that none of these genes are 
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homologs of doublesex or the C. elegans gene mab-3.  In A. mellifera, of the four DM-

containing genes, two have DMRTA motifs, but neither of these occurs in the honeybee’s dsx 

homolog (Cristino et al. 2006).   

 Interestingly, unpublished work by Wen suggests that one of these DMRTA-

containing genes in D. melanogaster, Dmdmrt93B, does have a sex-specific function in flies, 

playing a role in early female development and male fertility (2002).  Differences in the 

expression between the sexes are tissue-specific, with major transcripts found in the heads of 

males and females but only in the bodies of males (Wen 2002).  Similarly, Daphnia magna, a 

tiny crustacean that switches between sexual and asexual reproduction, contains a homolog 

to dmrt93B that is only transcribed in the testis (Kato et al. 2008).  Both of these studies 

suggest that, although it is less well-documented, genes with a DMRTA domain can also play 

a sex-specific role.  In my own work, I used RNA isolated from the entire wasp.  Thus, 

differences in spatial expression of NvDM1, NvDM2, and NvDM3 have not been addressed; 

if one of the genes is transcribed in a tissue specific manner similar to Dmdmrt93b, my 

techniques would have not been able to detect such differences.  Future research should 

consider the possibility that sex-specific expression of DM1, DM2, or DM3 could be tissue-

specific.  Also, because I looked at only one stage in N. vitripennis development, these 

transcripts may show sex-specificity at either earlier or later stages.  While it is certainly 

possible that these genes are showing sex-specificity at earlier stages, in A. mellifera sex-

specific splicing of the doublesex homolog occurs in embryos, small larvae, large larvae, and 

pupae (Cho et al. 2007).  In that particular study, adults were not tested.  From these results, 

we would likely expect to see the sex-specific splicing occurring in the yellow pupa stage of 
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N. vitripennis.  However, there is the possibility that differences occur only in early 

development before the sexes become morphologically distinct.     

 

 

Alternative splicing and regulation of expression in NvDM1 

 

 Of the four NvDM1 transcripts analyzed, three code for proteins less than 150 amino 

acids in length, suggesting that they may not even be functional (fig. 27).  This raises the 

question as to the biological role of these transcripts.  It is possible that these shortened 

forms, with their early termination codons, have a regulatory role despite not coding for 

biologically active protein. 

 There are other examples of alternative splicing with early stop codons serving as a 

way to turn genes off or on.  One example of this is the transformer (tra) gene in the sex-

determination pathway in D. melanogaster (Schütt and Nöthiger 2000).  In fruit flies, the tra 

gene regulates the alternative splicing of dsx and is, itself, alternatively spliced.  Both males 

and females produce identical pre-mRNAs of tra.  However, the male pattern of alternative 

splicing, which results from the absence of sex-lethal (sxl) expression in this sex, includes a 

stop codon in the second of four exons, which is spliced out of females (Schütt and Nöthiger 

2000).  This premature stop codon prevents the formation of an active TRA protein in males, 

resulting in the default male-specific splicing of dsx.  In females, SXL causes the second 

exon of tra to be skipped, resulting in a full-length, active TRA protein.  The female TRA 

protein then causes female-specific splicing of doublesex (Schütt and Nöthiger 2000).  
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 While tra is an example of sex-specific inclusion of a premature termination codon 

(PTC), this also can occur in a spatial- or temporal-specific manner.  Glutamic acid 

decarboxylase (GAD) is expressed at high levels in the GABAergic neurons of the central 

nervous system (Bond 1990).  In rodents, GAD is alternatively spliced such that in embryos 

there is an early stop codon that is then spliced out of adults.  This results in a truncated 

protein in embryos.  Unlike tra, in this instance the shortened protein is also active.  It should 

be noted that whether the shortened transcripts of NvDM1 code for functional proteins has 

not been addressed.     

 The cell has a vested interest in assuring that only the proper mRNA resulting in 

functional protein are translated and those with mistakes are quickly found and destroyed.  In 

eukaryotic organisms, a system called nonsense-mediated decay is capable of detecting 

transcripts that contain a PTC that would result in a shortened protein (fig. 69) (Wagner and 

Lykke-Andersen 2002).  In order to successfully remove transcripts with PTCs, the cell must 

have an accurate way of detecting these transcripts.  In mammals, exon junction complexes, a 

multi-protein complex, sit near the exon-exon boundaries of new transcripts.  When the 

transcript undergoes translation for the first time, these complexes are removed (Metzstein 

and Krasnow 2006).  However, if the stop codon appears at least 50 base pairs to the 5’ end 

of the last exon-exon junction, an exon complex will remain attached to the transcript, 

resulting in the recruitment of other proteins that mark this transcript for decay (Garneau et 

al. 2007).   

 According to this model, only transcript 3.46 of NvDM1 would be subject to NMD, 

meeting the requirement of having the stop codon more than 50 nucleotides to the 5’ end of 
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the last exon junction.  The other transcripts, while short, have their stop codon in the final 

exon.   

 However, while the previously described model can explain some of the NMD seen, 

it is incomplete because some transcripts with early stop codons are translated normally and 

others that have a stop codon in the very last exon are still subject to NMD.  A second model, 

called the faux UTR model, argues that NMD occurs when the translation by the ribosome 

fails to terminate near a correctly configured 3’-UTR.  This model can help explain why, in 

both yeast and D. melanogaster, premature stop codons can be detected by the cell 

machinery even in transcripts that lack introns, and thus lack exon junction complexes 

(Metzstein and Krasnow 2006).  Our ability to detect the various NvDM1 transcripts at any 

significant level suggests that they may not be linked closely with NMD as they are present 

at high enough levels to be identified.   

   According to work done by Lewis et al. premature stop codons may be an 

underappreciated form of protein expression regulation (2003).  NMD is thought to primarily 

target transcripts that result from genetic mutations, with several human diseases associated 

with this phenomenon, or those that are the result of transcription errors or abnormal RNA 

splicing events (Metzstein and Krasnow 2006).  However, evidence also suggests that it is 

involved in the normal regulation of protein levels via alternative splicing (Lewis et al. 

2003).  In a study of alternative splicing in humans, Lewis and colleagues found 1,106 

alternatively spliced genes that produce 1,989 transcripts that appear to be targets of NMD 

(2003).  Such significant numbers suggest that combining alternative splicing with NMD 

allows for further regulation of protein levels.  However, more recent work done by Pan et al. 

with alternative splicing microarrays, suggests that, while about 35% of mammalian 
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alternative splicing events result in a splice variant with a PTC, they are transcribed at a very 

low level to begin with and thus NMD does not play a significant role.  Thus, while NMD 

may play a role in the regulation of NvDM1, is it unclear whether this role could be 

significant.   
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Figure 69.  The current model of mammalian nonsense-mediated decay (NMD).  After the 
transcript is spliced in the nucleus, the exon junction complexes (EJCs) associate with each 
exon-exon junction.  Once moved into the cytoplasm, the mRNA is translated for the first 
time.  However, if a premature termination codon (PTC) is present, not all EJCs will be 
removed and the ribosome will stall, resulting in the recruitment of proteins to the exon EJC 
and the ribosome.  This marks the transcript for decay (adapted from Garneau et al. 2007).   
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Sex-specificity in NvDM4 

 

 Among the four genes in the DM family of N. vitripennis, NvDM4 is the best 

candidate for a doublesex ortholog.  NvDM4 has a number of different splice forms in yellow 

pupae that fall into four major classes, differentiated by variations in the oligomerization 

domain.  Of the four classes of transcripts, OD-B appears to be female-specific, with all 

transcripts from this class isolated from female RACE products and RT-PCR showing 

products of the correct-sized band only in females.  OD-C appears to be male-specific; the 

transcripts in this class were isolated from male RACE reactions and, while it is expressed in 

both sexes, crude quantitation with RT-PCR suggests that OD-C transcripts are transcribed at 

higher levels in males.  Two other transcripts, OD-A and OD-X, are transcribed in both sexes 

and do not appear to be sex-specifically expressed. 

 I aligned the predicted polypeptides of NvDM4 the doublesex homologs of A. 

mellifera, D. melanogaster, and the silk moth Bombyx mori (fig. 70A, B, C).  Looking at the 

female-specific region, one notes fairly little similarity (fig. 70 B), which is comparable to 

what is seen in A. mellifera (Cho et al. 2007).  Of the 15 amino acids that make up the 

female-specific portion of the oligomerization domain, only one residue in the OD-B protein 

from N. vitripennis is identical to any one of the other three (both N. vitripennis and B. mori 

share a K at the second amino acid in the female-specific region), and just four similarities.  

It should be noted that the honeybee has only one identity and just three similarities.  Work 

done by Yang and colleagues suggest that a tyrosine (third residue in the female-specific OD) 

and asparagine (sixth residue) are critical in D. melanogaster for the binding of intersex (ix), 

a protein important for the correct phenotypic development of females (2008).  While N. 
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vitripennis has a similar residue at the sixth position, it shows no such similarity at the third 

position.  Yet, neither does A. mellifera or B. mori.   

 This suggests a couple of possibilities.  It may be that intersex does not interact with 

these other dsx orthologs.  However, intersex itself has been shown to be highly conserved, 

with the ix genes from dipterans and lepidopterans able to restore sexual differentiation to ix 

null mutants of D. melanogaster (Siegal and Baker 2005).  Even an ix ortholog from mice 

was able to partially rescue the mutants, suggesting that intersex is functionally conserved 

(Siegal and Baker 2005).  Furthermore, performing a BLASTP search of the predicted N. 

vitripennis gene sets, I was able to find an intersex ortholog in the N. vitripennis RefSeq 

database (results not shown).  Both of these would suggest ix would be interacting with the 

dsx homolog in N. vitripennis.  The second possibility is that ix is interacting with other 

amino acids in the female-specific region of the gene.  In fact, Yang and his colleagues note 

that the alanine scanning mutagenesis technique used to show the importance of the 

asparagines and tyrosine can underestimate the size of contacts between proteins, which 

leaves open the opportunity for interactions with other amino acids (2008).   

 Also of interest in females is the C-terminus region following the oligomerization 

domain.  In the N. vitripennis OD-B protein, this consists of only a single residue.  While a 

shortened C-terminal could interfere with the protein’s ability to bind ix, deletion studies in 

D. melanogaster have shown that ix is still able to bind to dsx when the entire sequence after 

the oligomerization domain has been deleted (Yang et al. 2008).  This would suggest the 

shortened C-terminal region in the OD-B protein would not affect interactions with ix.  

 Two of the alternatively spliced transcripts, OD-A and OD-X, do not appear to be 

sex-specific in yellow pupae at the level of the entire organism.  OD-A contains a truncated 
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oligomerization domain, while OD-X has only the DM domains.  In the alternatively spliced 

dsx homolog of A. mellifera, one transcript is not sex-specific.  Like OD-X, it contains a DM 

domain, but lacks an oligomerization domain.  Whether these shortened transcripts code for 

functional proteins has not been determined.    

 

 

Splice Sites 

 

 An examination of how the pre-mRNA of doublesex is differentially spliced can help 

us postulate about what may be occurring in N. vitripennis.  In the canonical doublesex of D. 

melanogaster as well as the sex-specifically spliced ortholog in A. gambiae, the male splice 

pattern is the default transcript (Lynch and Maniatis 1995; Scali et al. 2005) and the female-

specific splice site is weakened by nearby purine nucleotides (Cho et al. 2007).  In contrast, 

both B. mori and A. mellifera appear to have the female transcript as default (Cho et al. 

2007).  The default splice pattern refers to the pattern of pre-mRNA processing that occurs 

without the presence of genes known to affect sexual differentiation, requiring only general 

splicing machinery (Nagoshi and Baker 1990).  In D. melanogaster, for example, the 

transformer protein (tra) is known to regulate sexual differentiation.  If tra is lost in 

genetically female flies due to mutations, the flies will express the male dsx splice pattern 

(Nagoshi and Baker 1990).  After examining both computational and molecular evidence as 

described below, I was unable to propose a specific transcript as the default splicing pattern 

in N. vitripennis.   
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   Female specific-splicing in both fruit flies and mosquitoes is dependent on the 

interaction of TRA with two doublesex-specific splicing enhancers: the doublesex repeat 

element (dsxRE) and the purine rich enhancer (PRE) (Lynch and Maniatis 1995).  Both of 

these sequences are located within the exon that codes for the female-specific region of the 

oligomerization domain (Fig. 65).  On the other hand, neither B. mori nor A. mellifera 

possess these splicing enhancers (Cho et al. 2007).  In both, the female-specific splice site is 

not weakened and the female transcript is the default sequence.  Nasonia vitripennis appears 

to fall into this latter category with respect to splice site strength and signaling.  It lacks both 

of the splicing enhancers and the female-specific exon 4b of class OD-B does not seem to 

have a weakened splice site (table 7).  This would suggest that, like the silk moth and 

honeybee, N. vitripennis has the female transcript as default splicing pattern. 

 However, unlike what is seen in A. mellifera, the results of RT-PCR in N. vitripennis 

do not confirm this proposition.  In the case of A. mellifera, the hypothesis of the female 

transcript as default is further supported by the fact that female transcripts were detected in 

male bees at low levels in some stages of development using RT-PCR, suggesting there is 

incomplete repression of this default splicing pattern.  In contrast, I saw no evidence of class 

OD-B in males using RT-PCR (Fig. 64).  Instead, the OD-C transcripts, the male-specific 

transcript, are present at a low level in female yellow pupae (Fig. 60).  This suggests that the 

default transcript would be male, not female.  Therefore, I cannot draw a conclusion as to 

which form of NvDM4 is the default splice pattern.  The RT-PCR work tentatively suggests 

the male transcript is the default splicing pattern.  However, the strength of the female splice 

site (and relative weakness of the male splice site) along with the lack of the splice enhancers 

dsxRE and PRE indicate that the female transcript represents the default pattern.   
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 Nagoshi and his colleagues showed that the male transcript of dsx of D. melanogaster 

was the default transcript through mutation studies (Nagoshi et al. 1988 and 1990).  In B. 

mori, the female transcript was shown to be the default version of the splicing pattern by 

examining the splicing in vitro using HeLa cell nuclear extracts (Suzuki et al. 2001).  No 

such work has been done in bees.  Thus, in the discussion of their results, Cho and his 

colleagues note that, while circumstantial evidence suggests that the female transcript is the 

default splicing pattern in A. mellifera, either male or female transcripts may serve as default 

in the honey bee (2007).  In order to draw firm conclusions about splicing in N. vitripennis, 

further studies need to be conducted.  At present, it is not possible to determine what the 

default splice pattern is for NvDM4 in N. vitripennis.   

 The male-specific regions of the proteins are also of interest.  Previous studies have 

suggested that the male-specific region of the C-terminal diverged rapidly, with few 

identities between difference species in the male-specific region of the oligomerization 

domain (Cho et al. 2007).  While this may be the case generally, among the insects compared 

here the male-specific region of the OD shows a higher degree of conservation than the 

female-specific region.  Four of the fifteen amino acids in D. melanogaster are identical to 

those in N. vitripennis, and three more amino acids in the wasp are similar to either the silk 

moth or the fruit fly.  Among N. vitripennis and A. mellifera, there are even some conserved 

regions in the C-terminal region beyond the oligomerization domain.  Any biological 

importance of this similarity is impossible to decipher without further study; the bulk of the 

research in protein structure has focused on the female version of doublesex, and so 

relatively little is known about the male-specific region.        
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Figure 70A.  See following page for description. 
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Figure 70.  Amino acid sequence alignment of NvDM4 with A. mellifera (Am), D. 
melanogaster (Dm), and B. mori (Bm).  (A) is non-sex specific region of each gene, (B) is 
the female-specific C-terminal, and (C) is the male-specific C-terminal.  The DNA binding 
domain (DBD)/oligomerization domain 1 (OD1) and non-sex-specific OD2 are indicated 
with black boxes.  The sex-specific regions of OD2 are indicated by pink and blue boxes for 
males and females respectively.  
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Future Studies 

 

 My thesis research provides many opportunities for future studies.  My work showed 

that the DM gene family in N. vitripennis consists of four members and one, NvDM4, is a 

homolog of doublesex.  The NvDM4 gene is alternatively spliced, with four different classes 

of transcripts.  Two of these show sex-specific expression.  My discoveries can provide a 

basis for furthering out understanding of sex-determination in N. vitripennis. 

 One avenue available for exploration is the examination of these genes at different 

developmental stages, with particular focus on the four transcript classes of NvDM4.  In my 

own research, I worked with the yellow pupal stage, the first stage at which individuals can 

be differentiated by sex.  Future work should look at transcription at other stages of 

development ranging from embryo to adult.  At stages prior to the yellow pupae, it will be 

difficult to isolate a pool of exclusively female RNA.  However, a pool of just males can be 

acquired from virgin females due to the haplodiploid system of sex determination and, under 

proper conditions, mated females will produce mostly female offspring.  This would provide 

two sources of RNA in which to compare transcript expression.  Also, tissue-specific 

expression might be examined.  As discussed previously, the D. melanogaster gene dmrt93B 

has shown sex-specific expression in the fly body, but not its head, a nuance that would not 

have been picked up following my protocol (Wen 2002).   

 Future research could complete the transcripts of NvDM1, NvDM2, and NvDM3.  I 

did not determine the 5’ untranslated regions of these genes or the 3’ untranslated region of 

NvDM3.  Completing the 3’ end of the transcripts would allow future work to include RNA 

interference (RNAi) of these genes, which could elucidate the functional roles of these genes.  
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Because relatively little work has been done on the DM-containing genes not involved in 

sex-determination, this would provide insight into other roles members of this family can 

play.   

 While my work has shown sex-specific splicing of NvDM4, this does not guarantee 

that the gene plays a role in sex-determination, although the similarities observed between 

NvDM4 and other doublesex homologs strongly support this possibility.  In order to show 

definitively that NvDM4 is a dsx ortholog, further experiments are needed.  This would 

require observing the phenotypes in wasps that lack a functional NvDM4 gene.  Such 

experiments might include RNAi, although, because of variability in the 3’ UTR where small 

interfering RNA typically targets, as well as the sheer number of transcripts, this could be a 

complex proposition.   

 If NvDM4 expression was inhibited, it is likely that the result would be a wasp with 

an intersexual phenotype as seen in D. melanogaster doublesex (Waterbury et al. 1999).  

Male fruit flies lacking dsx have lightly pigmented abdomens, improperly formed male-

specific sex-comb teeth, and malformed genitalia in addition to expressing the female-

specific yolk protein at low levels.  Females that do not have a functional dsx also have 

improperly formed sex-comb teeth, along with a darkened abdomen, malformed genitalia and 

abnormally low levels of yolk protein (Waterbury et al. 1999).  In light of these observations 

in D. melanogaster, if NvDM4 is involved in sex-determination, one would expect an 

intersexual phenotype from a successful knockout.  This might include such phenotypic 

alterations as variation in wing length, as N. vitripennis males have markedly shortened 

wings relative to females, changes in antennae, with females typically have thicker and 
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darker antennae, or genitalia, because wild type males lack the ovipositor seen in females 

(Kamping et al. 2007).   

 To further establish the level of conservation between NvDM4 and dsx one could see 

if NvDM4 would rescue dsx null fruit flies, which would suggest a high degree of 

conservation.  Previous experiments have shown that the male version of DSX from D. 

melanogaster can rescue mab-3 mutants of C. elegans (Waterbury et al. 1999).  As D. 

melanogaster and N. vitripennis are more closely related than D. melanogaster and C. 

elegans, it seems plausible that NvDM4 could at least partially rescue mutant D. 

melanogaster. 

 Future studies are also needed to follow up on the differences I observed in transcript 

expression between the sexes.  By varying the cycling numbers, I was able to make a 

rudimentary analysis of the differences in level of transcription between the sexes for the 

OD-C transcripts.  It would be useful to do either quantitative PCR (Q-PCR) or Northern 

blots to determine the transcription levels more accurately.  These techniques could also be 

used to check the levels of transcription of the other NvDM4 transcripts.  For example, using 

a Northern blot to look for the OD-B transcripts would confirm whether this class is female-

specific.  

 Another avenue that should be investigated is molecular mechanism behind the 

alternative splicing pattern observed in NvDM4.  By understanding the regulation of 

NvDM4, it might be possible to determine the next step up in the sex-determination 

hierarchy.  These studies might include attempting to establish splicing in vitro using HeLa 

as was done in B. mori (Cho et al. 2007).  With this information, it could be determined how 

NvDM4 is spliced in the absence of sex-specific regulators.  For example, if the results 
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indicate the male transcript is the default splice pattern as seen in D. melanogaster, it would 

be worthwhile to search for a tra ortholog in N. vitripennis, although I failed to find an 

obvious tra ortholog in a preliminary search of the available N. vitripennis databases. 

 The DM gene family in Nasonia vitripennis provides many possibilities for future 

study.  Of particular interest is work to be done with NvDM4, the doublesex homolog.  Work 

done with this gene will contribute to our understanding of the regulation of sexual 

dimorphism, both within N. vitripennis and hymenopterans and in the broader context of 

conservation amidst the diversity of hierarchical regulators in the sex determination 

pathways.  
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APPENDIX A 

 

Internet sources 

 

Translation 
ExPASy Translate Tool:  
http://www.expasy.ch/tools/dna.html 
 
Sequence Alignment 
ClustalW:  
http://www.ebi.ac.uk/Tools/clustalw2/index.html 
 
Malign – AliBee - Multiple Alignment : 
http://www.genebee.msu.su/services/malign_reduced.html 
 
Mobyle: 
http://mobyle.pasteur.fr/cgi-bin/MobylePortal/portal.py?form=boxshade 
 
Wasp Genome Sites 
NCBI:  
http://www.ncbi.nlm.nih.gov/genome/guide/wasp/ 
 
HGSC: 
http://www.hgsc.bcm.tmc.edu/projects/nasonia/ 
 
Geneboree: 
http://www.genboree.org/java-bin/index.jsp 
 
Protein Domains 
Pfam: 
http://pfam.janelia.org/ 
 
SMART: 
http://smart.embl-heidelberg.de/ 
 
Exon/Intron Analysis 
Spidey: 
http://www.ncbi.nlm.nih.gov/IEB/Research/Ostell/Spidey/ 
 
Splice Site Analysis 
NNSPLICE v. 0.9: 
http://www.fruitfly.org/seq_tools/splice.html 
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ASPic: 
http://t.caspur.it/ASPIC/use.php 
 
Primer Design and Alignment 
Primer3: 
http://frodo.wi.mit.edu/ 
 
Sequence Extractor: 
http://www.bioinformatics.org/seqext/ 
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APPENDIX B 

 

RT-PCR of NvDM1 

 
       1          2            3            4            5         6           7           8 
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         750bp 
 

         500bp 
 
 
 
 
 
 
 
 
 
 
Figure 1. Primers S1 and A4 to amplify across junction b1 and b2.  Expected product size: 
524.  The lanes are as follows: (3) male template (+RT); (5) female template (+RT); (6) male 
template (-RT); (7) female template (-RT); (2, 4) Empty; (1, 8) Hi-Lo. 
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       1           2            3           4            5           6           7           8 
 
 
           ♂  ♀ 
 
 
 
 
 
 
 
 
           200bp 
          100bp 
 
 
 
 
 
 
 
 
 
Figure 2. Primers S11 and A11 to amplify across junction b1 and b6.  Expected product size: 
204.  The lanes are as follows: (3) male template (+RT); (5) female template (+RT); (6) male 
template (-RT); (7) female template (-RT); (2, 4) Empty; (1, 8) Hi-Lo. 
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       1           2           3            4            5          6            7           8 
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           400bp 
 
 
 
 
 
 
 
 
Figure 3. Primers S11 and A12 to amplify across junction b1 and b4.  Expected product size: 
460.  The lanes are as follows: (3) male template (+RT); (5) female template (+RT); (6) male 
template (-RT); (7) female template (-RT); (2, 4) Empty; (1, 8) Hi-Lo. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 172

 
 
      1           2           3          4           5             6           7           8  
 
 
       ♂         ♀ 
 
 
 
 
 
 
         1000bp 
 

          750bp 
 
          500bp 
 
 
 
 
 
 
 
 
Figure 4. Primers S12 and A13 to amplify across junction b5.  Expected product size: 549.  
The lanes are as follows: (3) male template (+RT); (5) female template (+RT); (6) male 
template (-RT); (7) female template (-RT); (2, 4) Empty; (1, 8) Hi-Lo. 
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         1              2              3               4              5              6             7              8 
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           400bp 
                 300bp   
 
 
 
 
 
 
Figure 5. Primers S10 and A10 to amplify across junction b3.  Expected product size: 328.  
The lanes are as follows: (3) male template (+RT); (5) female template (+RT); (6) male 
template (-RT); (7) female template (-RT); (2, 4) Empty; (1, 8) Hi-Lo. 
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APPENDIX C 

 

Primer sequences 

 

NvDM1 
Name L R Sequence Use Designer
DM1 S1 X  CTGCCGATGGCGTGACTGTATATGTGCAA RT-PCR cDNA 3.4 CT 
DM1 S10 X  AAGCCCATCTCATACCCCACCCATT RT-PCR cDNA 3.4 MR 
DM1 S11 X  CGAGTTATGGCAGCACAGGTTGCTT RT-PCR cDNA 3.42 MR 
DM1 S12 X  TCTTCGTGAGGGAGAAGCCAAGGTC RT-PCR cDNA 3.46 MR 
DM1 A4   TGGGTGGGGTATGAGATGGGCTTGATG RT-PCR cDNA 3.4 CT 
DM1 A10  X CGGATGCTGAATCTGGTGTCCATTG RT-PCR cDNA 3.4 MR 
DM1 A11  X AAACCATGGCATTGCAAACGAACAG RT-PCR cDNA 3.42 MR 
DM1 A12  X CCACTCGCAGAGCAATCTCCTCAGA RT-PCR cDNA 3.46 MR 
DM1 A13  X GTGCCGTGTTAGTGGTGACGGAGAG RT-PCR cDNA 3.46 MR 
DM1 A14  X AAAGTTGTATGCTTGCCGGTTTTGA RT-PCR cDNA 2.9 MR 
 
NvDM3 
Name L R Sequence Use Designer 
DM3LE4 X  GGTCGAGTGCAGATGTGGGACTTGG 3’ RACE MR 
DM3LE5 X  CTTGAGCAAGCCGACGACGTACGAA 3’ RACE MR 
DM3LE5.2 X  AGGCCGATTTTTCACCTGCCTTCGT 3’ RACE MR 
      

DM3LE2 X  ACCACGGGCTGATATCCTGGCTGAG RT-PCR MR 
DM3RE3  X CGGCTCCGTCACTGTCATACCGAAA RT-PCR MR 
DM3RE4  X GGTGGCGAGTGATGTCGAGGCTTTT RT-PCR MR 
DM3RE5  X AGCAAACAGTTCGGTTGGACGCAAG RT-PCR MR 
 
NvDM4 
Name L R Sequence Use Designer 
PERE3  X AGTTCGTGAAGGCCGAGGGTGGATAGT RT-PCR MR 
PERE5  X CATACGGTGGACGATCTCGCATGTACC RT-PCR MR 
PERE6  X GCAACCCCAGGATAAGTTCGTCGTGAA RT-PCR MR 
PERE7  X GAGCTCCGCGATTTTCAGCAGCATT RT-PCR MR 
PERE8  X GTAGGGCTTCCACGGTGCGATCTTC RT-PCR MR 
PERE9  X TGTGGATCACCATCACGACGAACTG RT-PCR MR 
PELE3.1 X  CGGCTACTATCCACCCTCGGCCTTC 3’ RACE MR 
PELE3.2 X  GCAACCTCGGCAACCCGACCTACTT 3’ RACE MR 
PELE3.3 X  GACCTACTTCGGCCAGGTCCCCTAC 3’ RACE MR 
PELE3.4 X  GCACACACGTCGTCAGTCCGAAGGT 3’ RACE MR 
      

DM4LE1.7 X  CTCAGAGGAGGGCGAGACAGCAACA RT-PCR MR 
DM4LE1.6 X  CATCGACGAAAAAGCCCAAGCCAAG RT-PCR MR 
DM4LE2 X  GGAAGAAATCGGACTCGGAGACACCAC RT-PCR MR 
DM4RE4  X TACGCCGCATGGCTACTTCCACATC RT-PCR MR 
DM4RMale1  X TGCCAAAAATACTTGAACTTTTGACGAT ODX, ODA MR 
DM4RMale2  X TGCAATGCCAAAAATACTTGAACTT ODX, ODA MR 
DM4R-M5-1  X TGGTGTAACTTCAATACACTGCTTCATCTG ODX MR 
DM4R-M5-2  X GCCTTTAGTTCGAATACATAATTCCGAAAA ODX MR 
DM4RA.1  X CGTAGGGGACCTGGCCGAAGTAGGT ODC.1,2 MR 
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DM4RA.2  X CACCTTCGGACTGACGACGTGTGTG ODC.1,2 MR 
DM4RA.3  X GACTGGAGGGCACCTTCGGACTGAC ODC.1,2 MR 
DM4RB.1  X TCGACGCTTGCTTACTCCGTGGAAA ODC.1 MR 
DM4RB.2  X CACTCTCATGAATGAATCGACGCTTGC ODC.1 MR 
DM4RB.3  X CCTGAAGTGAGGGGAATTGAGAAGTGC ODC.1 MR 
DM4RC.1  X CAACAAAGAGAGGCGCACGACGAGA ODC.1,2 MR 
DM4RC.2  X TTGCAAACGTGGCAACAAAGAGAGG ODC.1,2 MR 
DM4RC.3  X GCTCGAAATCCTCGGCCGGAAATAG ODC.1,2 MR 
DM4RD.1  X CTCGCGCTTCCCTCTCGTTCTCTC ODC.1 MR 
DM4RD.2  X AAAACGCGGATCTCTCGGGGAATTA ODC.1 MR 
DM4FLE3 X  AACCCGAACCAAATCCACGACTTGT OD-B MR 
DM4FRE5.1  X TCGAATAAAGTTCTGGTTGCCAGACG OD-B MR 
      

DM4RE1.1  X CTGGACCTTCTTGCCGTGATTCTGACA 5’ RACE MR 
DM4RE1.2  X ATTTTGGTATGCGCTGACTTGGCTTGG 5’ RACE MR 
DM4RE1.3  X TCCTTGGATTTGGCCGATTTCTTCCTC 5’ RACE MR 
DM4RE1.4  X GTCACCGTCGCTGCTATTGCTGTCATT 5’ RACE MR 
DM4RE1.5  X CTGCACGTCTCGCTGTTGCTGTTGTTA    5’ RACE MR 
      

DM4LE1 X  CTCAGAGGAGGGCGAGACAGCAACA 3’ RACE MR 
DM4LE2 X  GGCCAAATCCAAGGACTCGGAGACA 3’ RACE MR 
      

DM4F-21-M13R   CCTTGAAGATCAAAAGTTCTGCCAATC Sequencing MR 
DM4F-21-T7   CTAACAATCGTTGATGCGAATGACA Sequencing MR 
DM4F-2-M13R   TGGCTGTGAATTCTTGTACCTGATGA Sequencing MR 
DM4M-10-M13R   TCTGGCAACCAGAACTTTATTCGAGA Sequencing MR 
DM4M-10-T7   AATATTCGTTCTACGTTACCCCCTATCAAA Sequencing MR 
DM4M-5-M13R   AGATAAGTCGCGCTGCACACTGCGATA Sequencing MR 
DM4M-5-T7   ACCCGCAGTGACATGCGTAGTTTGA Sequencing MR 
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