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ABSTRACT 

The Mars-2020 rover mission will explore an astrobiologically relevant ancient environment on Mars, 

establish geologic context of the region, assess past habitability, and cache rocks for a future sample 

return. The Mastcam-Z instrument is a stereoscopic, zoom-enabled multispectral imager that will be 

critical to these objectives. As one of the mission’s primary reconnaissance tools, Mastcam-Z’s two 

cameras will acquire red-green-blue (RGB) true-color images and visible-to-near-infrared (VNIR) images 

with 11 narrowband filters from ~400-1100 nm. Mastcam-Z’s new ~975 nm spectral filter will help 

characterize the ~950-1000 nm absorption band in hydrated minerals, which has not been resolvable by 

previous rover multispectral imagers. We hypothesize that this filter will allow Mastcam-Z to better 

characterize VNIR hydration bands in hydrated sulfates, although mineral mixtures, iron-oxide dust 

contamination, and varying grain size will affect band depths. At the time of this writing, three candidate 

landing sites are being considered for the Mars-2020 mission, each bearing mineralogical units 

extensively investigated by high-resolution orbital SWIR (short-wave-infrared) imagery. We also 

hypothesize that Mastcam-Z VNIR spectral parameters can distinguish the prominent geologic units 

characterized by orbital SWIR at each landing site, although iron-oxide dust distribution is the suspected 

primary control on VNIR spectral variability on Mars. Synthetic magnesium and calcium sulfate samples 

were measured with a laboratory spectrometer and acquired spectra were convolved to expected 

Mastcam-Z resolution to identify the spectral filter combinations most sensitive to signatures of 

hydration. Sulfate samples were subject to bimodal mineral mixing, grain size separation, and 

contamination with a martian dust simulant to quantify the spectral effects these properties have on the 

~950-1000 nm hydration band. SWIR imagery from the Mars 2020 candidate landing sites were also 

convolved to expected Mastcam-Z resolution. Spectral parameters were then developed at expected 

Mastcam-Z resolution that would corroborate mineral detections made by extensively-tested SWIR 

spectral parameters and SWIR spectra of prominent units. Mastcam-Z-simulated hydrated sulfate 
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spectra reveal that Mastcam-Z can detect hydration in bimodal mixtures of hydrated Mg-sulfates but 

bimodal mixtures Ca-sulfates may present challenge unless significantly gypsum-rich. Iron-oxide dust 

contamination significantly shallows the ~950-1000 nm hydration band in hydrated sulfates, whereas 

band depth generally increases with increasing grain size. Mastcam-Z-simulated orbital imagery reveals 

distinct Mastcam-Z VNIR spectral parameters distinguishing prominent geologic units for each landing 

site, although modified versions of Pancam parameters are recommended for the Columbia Hills. 

Seasonal changes in spectral variability at the Columbia Hills and regional variation in spectral parameter 

effectiveness at NE Syrtis indicate VNIR spectral properties on Mars are likely controlled by surface dust 

distribution. These results provide specific operational recommendations for Mastcam-Z and insights 

into the nature of VNIR spectra on Mars. 
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 1.0 INTRODUCTION   

1.1.1 Introduction to Thesis and Study Motivation 

Introduction to Thesis 

Over the course of decades, NASA missions have explored the surface of Mars from orbit and on 

the ground, uncovering a planetary history brimming with the potential for habitable environments in 

the distant past. Fueling the search for ancient habitable environments, intriguing hydrated mineral 

deposits have been discovered using spectral imagery. Unraveling Mars history will rest on our 

understanding of these deposits. Going forward, linking orbital mineral mapping with ground-based 

observations from rovers will help characterize the ancient martian environment, providing more 

complete models of Mars’ planetary evolution and pinpointing regions most likely to have been 

hospitable. The next chapter of this longstanding exploration effort, NASA’s Mars-2020 rover, will 

characterize the surface geology and assess the astrobiological potential of a compelling region of Mars. 

Mastcam-Z, a stereoscopic, zoom-enabled multispectral imager will help guide the Mars-2020 rover. The 

dual-camera instrument will provide red-green-blue (RGB) true-color imagery and visible-to-near-

infrared (VNIR) multispectral imagery vital to dictating the rover’s navigation and science investigations. 

11 VNIR spectral filters covering ~400-1100 nm will allow Mastcam-Z to be sensitive to subtle 

differences in color inherent to mineralogy and chemical composition. This multispectral imagery, 

coupled with true-color observations, will identify broad compositional and morphological differences in 

rocks to help guide in situ scientific analyses. Herein, I describe my efforts to support the Mars-2020 

mission: investigating the capabilities of the Mastcam-Z multispectral imaging system and the 

reflectance spectroscopic properties of minerals on Mars.  

Two separate studies comprise this work: (1) a laboratory investigation of the visible-to-near-

infrared reflectance spectra of Mars-relevant hydrated Mg- and Ca-sulfate minerals, with a focus on the 
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morphology of a spectral signature near ~950-1000 nm that is indicative of hydration, and (2) an 

investigation of orbital spectral imagery taken of the three Mars-2020 candidate landing sites. 

Laboratory spectra and orbital spectral imagery are convolved to the estimated spectral resolution of 

Mastcam-Z. These data are analyzed to determine what grain size, mineral mixing, and dust 

contamination conditions allow for hydration in Mg/Ca-sulfates to be detected by Mastcam-Z, Mastcam-

Z’s ability to constrain the prominent geologic units at each landing site, and what phenomena influence 

VNIR spectral variability on Mars. Recommendations are made as to what combinations of Mastcam-Z 

imaging filters should be used to scan for hydration in sulfate units and what parameters allow 

Mastcam-Z multispectral imagery to distinguish prominent geologic units at the three proposed landing 

sites. The following three chapters describe this work. Chapter 1 is a broad introduction presenting the 

motivation for these investigations and necessary background information. Chapter 2 fully details the 

laboratory investigation of hydrated sulfates and Chapter 3 fully details the orbital investigation of Mars-

2020 landing sites. 

Reflectance spectra can be used to assess the mineralogy of a surface (see section 1.2). 

Mastcam-Z will be one of the primary reconnaissance instruments on the Mars-2020 rover. Visible 

approximate-true-color (ATC) and VNIR multispectral images acquired by Mastcam-Z will help inform 

the rover’s navigation and target selection for in-situ analyses and sample caching. A variety of 

hydrated/hydroxylated minerals exhibit an absorption feature centered at ~950-1000 nm (Hunt, 1977), 

including hydrated sulfates. However, most laboratory work characterizing Mars-relevant mineral 

spectra has concentrated on short-wave-infrared (~900-2500 nm; SWIR) features to support the CRISM 

(Compact Reconnaissance Imaging Spectrometer for Mars; Murchie et al., 2007); and OMEGA 

(Observatoire pour la Mineralogie, l’Eau, les Glaces et l’Activitie; Bibring et al., 2004) missions that are 

capable of imaging at longer wavelengths. As such, this VNIR spectral signature remains to be 

investigated in depth and is important for identifying hydrated minerals when longer-wavelength data 
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are unavailable. Hydrated sulfates on Mars present a variety of potential formation mechanisms 

including evaporitic deposition, similar to playa lake environments (Warren, 1999; Tosca and McLennan, 

2006), and acidic, sulfurous hydrothermal environments (e.g. Golden et al., 2005; Klingelhöfer et al., 

2004; Squyres et al., 2004; Wang et al., 2006b). To yield a firmer understanding of these environments in 

a martian context, it is crucial we understand how Mastcam-Z will view these minerals by investigating 

the morphology of the ~950-1000 nm spectral feature. 

Additionally, it is important to understand how spectral signals observed from orbit correlate 

with what can be observed on the ground by Mastcam-Z. Orbital spectrometers like CRISM operate at 

higher spectral resolution and over a wider effective wavelength range than ground-based imaging 

spectrometers. Beyond sulfates, a variety of other key materials are present at the Mars-2020 candidate 

landing sites, including phyllosilicates, carbonates, and mafic minerals. These mineral deposits have 

been well characterized in SWIR using the CRISM instrument (e.g. Carter and Poulet, 2012; Ehlmann and 

Mustard, 2012; Goudge et al., 2015), but it is not known how they will appear to Mastcam-Z VNIR. 

Mastcam-Z will detect compositional differences on the surface both for long-distance reconnaissance 

and for mapping of smaller-scale mineral distributions to guide traverse planning and sample caching. 

To support future Mastcam-Z operation, this work links orbital SWIR spectroscopy to simulated 

Mastcam-Z VNIR spectroscopy and identifies parameters allowing Mastcam-Z to reproduce some 

spectral reconnaissance achieved from orbit. However, Mastcam-Z is not the only instrument that may 

benefit from this work. Future rovers/landers may be developed with evolved multispectral imagining 

instruments. No past research has convolved orbital hyperspectral images to the simulated resolution of 

ground-based multispectral instruments and this work serves to demonstrate that orbital SWIR imagery 

can be used to develop VNIR parameters for multispectral imagers.   
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1.2 Reflectance Spectroscopy on Mars 

The Mastcam-Z instrument will utilize reflectance spectroscopy (e.g. Hunt, 1977; Clark and 

Roush, 1984a), the imaged interactions between incident sunlight and surface material, to interpret 

surface mineral composition. Reflectance spectra on Mars are typically acquired in the VNIR (~400-1100 

nm) and SWIR (~900-2500 nm). Mineral grains reflect or absorb light at different wavelengths. Chemical 

composition, molecular geometry, grain size, and the number of distinct phases present control the 

resulting reflectance spectrum. Absorption features (Figure 1), defined as the observed decrease in 

reflected light at specific wavelengths (also known as absorption bands), can be distinct to specific 

minerals (e.g. Hunt, 1977; Clark et al., 1999). Absorption bands result from electronic processes and 

vibrational processes (e.g., Hunt, 1977; Burns, 1993; Clark et al., 1999).  

In electronic processes, photons exert various effects on mineral electrons and cause electronic 

absorptions. The prominent electronic processes, crystal field effects and charge transfer processes, 

occur in transition elements. Crystal field effects result when energy levels in d-orbitals are split 

between neighboring atoms in a crystal lattice, allowing electrons to more easily move into higher 

energy states after photon absorption (e.g., Burns, 1993) and charge transfer processes involve 

movement of an electron between ions/ligands (e.g., Morris et al., 1985; Clark et al., 1999).  

Vibrating bonds in dipolar molecules give rise to vibrational absorptions. Due to bending and 

stretching in molecular morphology, bonded atoms continuously tug at one another, producing 

nanoscale vibrations governed by bond strength and atomic mass (e.g., Wilson et al., 2012; Herzberg, 

2013). A dipolar molecule can experience 3N-6 fundamental vibration frequencies (each producing an 

absorption band), where N is the number of atoms in the molecule (e.g., Clark et al., 1999). Additional 

vibration frequencies (and corresponding absorption bands) can occur: overtones, the sum of multiple 

instances of a single fundamental frequency, and combinations, the sum of multiple different 
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fundamental frequencies (e.g., Clark et al., 1999; Wilson et al., 2012; Herzberg, 2013). Combination and 

overtone bands are weaker and occur at shorter wavelengths than fundamentals. H2O, OH, metal-OH, 

and CO3 bearing minerals experience multiple fundamental vibrations, each with various combinations 

and overtones (e.g., Hunt, 1977; Clark et al., 1990; Clark et al., 1999). For example, carbonates often 

show diagnostic absorptions near 2300 nm and 2500 nm (Figure 1). H2O and OH experience overtone 

and combination bands near ~950-1000 nm, ~1400 nm, and ~1900 nm (e.g., Hunt, 1977) that are 

important for detecting hydrated minerals, such as hydrated sulfates. The precise position and shape of 

absorption bands are dictated by a mineral’s specific crystal chemistry and molecular morphology. We 

can, therefore, use absorption bands to infer the presence of specific minerals. 

Orbital and ground-based spectrometers scour Mars’ preserved ancient environments for 

invaluable mineralogical data. The OMEGA (Bibring et al., 2004) and CRISM (Murchie et al., 2007) 

instruments aboard the Mars Express (Chicarro et al., 2004) and Mars Reconnaissance Orbiter (MRO; 

Graf et al., 2005; Zurek and Smrekar, 2007) missions, respectively, allow high-resolution mapping of 

mineral deposits from orbit (Figure 2).  

1.3 Martian Surface Mineralogy and Brief History 

The exploration of Mars has revealed a planetary history with distinct stages of widespread 

geologic activity, active aqueous processes, and a paleoclimate potentially suitable for habitable surface 

environments (e.g. Carr and Head III, 2010a; Fassett and Head, 2011; Ehlmann et al., 2016). Much of 

what we know about ancient Mars has been inferred through mineralogical discoveries in terrains from 

three distinct martian periods: the Noachian, Hesperian, and Amazonian.  

Little is known about the properties of pre-Noachian Mars (4.5 – 4.1 Ga); it is assumed that most 

rock from this time has been buried by younger material, reworked by impact events, and extensively 

eroded by aqueous/aoelian processes. Mars’ dichotomy boundary – the stark geographic transition 
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dividing the smooth northern lowlands and rugged southern highlands – may have formed from 

enormous impact events during this time (e.g. Frey, 2006). Pyroxenes and olivines dominate the 

mineralogy of ancient basaltic-to-andesitic crust extracted from the mantle ~4.5 Ga (e.g. Halliday et al., 

2001; Nimmo and Tanaka, 2005). In some regions, these units experienced subsequent weathering and 

alteration, forming various alteration minerals (e.g. Bibring et al., 2006).  

Beginning around 4.1 Ga at the start of the Noachian (4.1 – 3.7 Ga), fluvial activity carved 

extensive valley networks, resulting in widespread lacustrine deposition in closed basins. (e.g. Carr and 

Head III, 2010; Fassett and Head, 2011; Ehlmann et al., 2016). Massive sedimentary sequences indicate a 

long period of fluvial activity, suggesting the atmosphere was thicker than at present. (e.g. Owen, 1992; 

Jakosky and Phillips, 2001). Noachian-aged sedimentary deposits contain significant amounts of 

phyllosilicate minerals (primarily smectites), which are also widespread throughout much of Mars’ non-

layered crust (e.g. Mustard et al., 2008; Ehlmann et al., 2009).  

The Hesperian (3.7 – 3.0 Ga) is characterized by the loss of the bulk of the martian atmosphere, 

a shift from near-neutral pH to acid-sulfate aqueous chemistry, the eventual depletion surface water 

volume, and the conclusion of valley network formation (e.g. Bibring et al., 2006; Bouley et al., 2009; 

Hoke and Hynek, 2009; Carr and Head III, 2010a; Fassett and Head, 2011). Impact-induced hydrothermal 

systems sustained some limited phyllosilicate formation (e.g. Marzo et al., 2010; Mangold et al., 2012), 

but Hesperian-aged deposits often contain Mg/Ca-carbonates, Mg/Ca/Fe-sulfates, opaline silicas, iron 

oxides, and pristine to partially-altered mafic volcanics (e.g. Bibring et al., 2006; Fassett and Head, 2011; 

Ehlmann and Edwards, 2014). Hydrated sulfates primarily occur in Hesperian-aged deposits and 

understanding how these minerals spectrally appear to Mastcam-Z will enable better characterization of 

ancient Hesperian environments. 
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In the frigid and hyper-arid Amazonian period (3.0 Ga – Present), aeolian activity is the primary 

control on landscape modification (e.g. Hartmann et al., 2005; Carr and Head III, 2010; Fassett and Head, 

2011). With minimal ongoing geologic activity, erosion rates are several orders of magnitude lower than 

previous periods (e.g. Golombek and Bridges, 2000) and new aqueous alteration processes at the 

surface have likely ceased. 

These alteration minerals provide valuable clues to the nature of ancient depositional 

environments on Mars. Smectites often form in aqueous environments with circum-neutral to alkaline 

pH, and are often deposited in marine and lacustrine environments (Velde, 2013). Some crustal 

phyllosilicate units on Mars may have formed via groundwater-crust interactions and impact-induced 

hydrothermal systems (e.g. Ehlmann et al., 2011). Mars’ phyllosilicate-rich Noachian mineralogy 

indicates near-neutral pH aqueous alteration occurred over large areas on the surface and in 

groundwater reservoirs during this time. Hesperian sulfates indicate substantial sulfur supply, likely due 

to lava outgassing during volcanic events (e.g. Bibring et al., 2006) creating the Tharsis Rise – the largest 

volcanic complex on Mars (e.g., Nimmo and Tanaka, 2005; Carr and Head III, 2010). Extensive sulfur 

outgassing, coupled with volcanically-induced release of other volatiles, may have resulted in sulfur 

oxidation in the martian atmosphere, precipitating H2SO4-bearing material onto the surface and spurring 

the global aqueous chemistry shift (e.g. Bibring et al., 2006). Acidic alteration resulting from 

hydrothermal activity in sulfur-rich environments and/or surface weathering of mafics and 

phyllosilicates fueled production of sulfate minerals (Bibring et al., 2006). Most carbonates are Mg-rich 

and occur in association with olivine and Mg-bearing clays (Ehlmann et al., 2008b). Mg-carbonates have 

been identified in the Syrtis Major region (e.g. Ehlmann et al., 2008; Ehlmann and Mustard 2012) and 

may have formed (Brown et al., 2010) similarly to an Mg-phyllosilicate-carbonate regime in Western 

Australia developed via hydrothermal alteration of basalt (Brauhart et al., 2001; Brown et al., 2005). 
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Most mineral detections on Mars have been made from orbit; however, landed spacecraft have allowed 

for analyses on much finer scales, albeit spatially-limited. 

1.3 History and Evolution of Ground-Based Reflectance Spectroscopy on Mars  

Mars rovers and landers have used stereoscopic multispectral imagers as essential tools for 

interpreting surface mineralogy. These imagers consist of a dual charge-coupled device (CCD) camera 

system equipped with spectral filters in the VNIR range that allow throughput of strategically chosen 

wavelengths – individual images from each spectral filter are combined to form three-dimensional 

image ‘cubes’ (e.g., Gat, 2000). The success of ground-based multispectral imagers on Mars since the 

1970s is the heritage of Mastcam-Z. 

Viking 1 and 2 

The Viking Lander Camera System (LCS) pioneered multispectral imaging on the surface of Mars, 

imaging with six VNIR spectral filters spanning 400-1000 nm (Mutch et al., 1972). LCS determined the 

first ground-based spectral endmember rocks on Mars, capturing albedo differences between 

‘palagonitic dust,’ ‘dark rocks,’ and ‘blocky material’ exposed by the spacecraft’s descent engine 

(Arvidson et al., 1989). 

Mars Pathfinder 

Mars Pathfinder (Golombek et al., 1997) used the Imager for Mars Pathfinder Experiment (IMP) 

– a stereoscopic, multispectral imager consisting of two eyes 15 cm apart on a cylindrical mast, snapping 

images using 12 spectral filters covering 440-1000 nm. IMP’s Pixel resolution was 512x512 with an 

angular resolution of 0.98 mrad/pixel (Smith et al., 1997). Multispectral observations revealed seven 

(three rock and four soil) spectral endmember units at the confluence of the Ares and Tiu flood channels 
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(Smith et al., 1997) and spectral signatures consistent with the presence of low-Ca pyroxene, olivine, 

nanophase goethite, akaganeite, maghemite, and/or schwertmannite (Bell et al., 2000; Bell et al., 2002).  

Mars Exploration Rover (MER) Spirit and Opportunity Rovers 

In 2004, the Spirit and Opportunity rovers, landed in the Gusev Crater (home to the Columbia 

Hills) and Meridiani Planum (Arvidson et al., 2006; Squyres et al., 2006), respectively, three weeks apart. 

Both rovers were equipped with Panoramic Camera (Pancam), an 8-filter stereoscopic multispectral 

imaging system covering the 400-1100 nm range (Bell et al., 2003; Bell et al., 2006). Pancam captured 

panoramic images detailing spectral variation across landscapes with a focal length of 43 mm, pixel 

resolution of 1024x1024, and an angular resolution of 0.28 mrad/pixel (Gunn and Cousins, 2016). 

Pancam’s filter set in conjunction with other MER instrument data, has identified signatures consistent 

with the presence of ferric oxides, such as hematite, manganese oxides observed in distinct-color rock 

coatings, and phyllosilicate-rich rock (Farrand et al., 2016). In the Columbia Hills, spectra of opaline 

silica-bearing outcrops and soils observed by Spirit’s Pancam exhibited a steep negative slope between 

the 934 nm and 1009 nm filters (Wang et al., 2008). Rice et al. (2010) showed that a diversity of 

hydrated minerals exhibit a similar spectral signature in this range due to the 2v1 + v3 H2O combination 

band and/or 3vOH overtone (e.g., Herzberg, 1945; Bayly et al., 1963; Clark et al., 1990), demonstrating 

that the width and band center of this hydration band varies significantly among different hydrated 

minerals. In spectra of mineralized veins at Endeavor Crater, Pancam also observed a steep negative 

slope between the 934 nm and 1009 nm filters (e.g. Farrand et al., 2013, 2016). In combination with 

measurements of CaSO4 from the rover’s Alpha Particle X-ray Spectrometer (APXS), the presence of this 

absorption allowed for the identification of the hydrated Ca-sulfate gypsum (Squyres et al., 2012). 

Pancam lacked an additional filter between 934 and 1009 nm, limiting the ability to resolve the ~950-

1000 nm hydration feature for all hydrated minerals (Pancam cannot detect the feature when it is 

centered shortward of ~980 nm; Rice et al., 2010). Mastcam-Z will have a new filter within this range (to 
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be discussed in Section 1.4), and it will be important to understand how hydrated sulfates will appear 

spectrally to Mastcam-Z. 

Phoenix Mars Lander 

Phoenix’s Surface Stereo Imager (SSI) imaged using numerous filters covering 450-1000 nm with 

a 1024x1024 pixel resolution and 0.24 mrad/pixel angular resolution (Lemmon et al., 2008). Phoenix’s 

arm excavated periglacial material, exhuming high-albedo soils showing resolvable absorption bands at 

~967 nm thanks to three-filter coverage at 931 nm, 967 nm, and 1002 nm. Additional analyses 

constrained Mg/Ca-perchlorates as the source of observed hydration bands (Cull et al., 2010a). Spectra 

of ‘snow-white material’ exhumed by Spirit also exhibited a resolvable hydration band in this 

wavelength region – this material was confirmed to be near-pure H2O ice (Cull et al., 2010b). When 

intermixed with >1 wt% of the surrounding soil, the hydration band in this ice was masked, showing that 

martian dust/soil contamination can significantly hinder the depth of VNIR hydration bands. SSI 

demonstrated the usefulness of an additional filter in the ~950-1000 nm range, providing better 

resolution of hydration band morphology.  

Mars Science Laboratory (MSL) Curiosity Rover 

Landing in Gale Crater in 2012, Curiosity, the most recent and sophisticated rover mission to 

date (Grotzinger et al., 2015), hosts Mastcam, the direct successor to Pancam. Mastcam is a stereo 

multispectral imager with 12 VNIR spectral filters and, for the first time on any ground-based Mars 

spectrometer, an RGB Bayer filter (produces true-color visible imagery). Mastcam possesses 

asymmetrical focal lengths – 100 mm (M-100) in one eye and 34 mm (M-34) in the other. Pixel 

resolution is 1200x1200, M-100 angular resolution is 0.074 mrad/pixel and M-34 angular resolution is 

0.22 mrad/pixel. Mastcam assisted in discoveries at Gale Crater indicative of an ancient fluvio-lacustrine 

environment (e.g. Grotzinger et al., 2014, 2015). Multispectral observations with Mastcam have 
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returned spectral features consistent with iron oxides (including nanophase) and iron-rich silicates 

(Wellington et al., 2017). Cross-cutting white veins found to contain calcium-sulfates (Nachon et al., 

2014; Vaniman et al., 2014a) showed spectra with a negative slope between the 937 nm and 1013 nm 

filters. Various hydrated sulfates, water ice, and natron show absorption bands in laboratory resolution 

consistent with the slope observed in Mastcam spectra (Rice et al., 2013). Mastcam lacks a filter 

between 937 nm and 1013 nm to better resolve the band and hydration bands in the ~950-1000 nm 

range could be characterized more completely with additional filters. 

1.4 Future Multispectral Imagers: Mastcam-Z on Mars-2020 

Mars-2020 Rover 

Mars-2020, the next chapter in martian surface exploration, will scan and scour the surface for 

new clues regarding Mars’ planetary evolution. Mars-2020’s Science Definition Team Report outlined 

four critical scientific mission objectives (Mustard et al., 2013): 

A. Explore an astrobiologically relevant ancient environment on Mars to 

decipher its geological processes and history, including the assessment of past 

habitability. 

B. Assess the biosignature preservation potential within the selected 

geological environment and search for potential biosignatures. 

C. Demonstrate significant technical progress toward the future sample 

return of scientifically selected, well-documented samples to Earth. 

D. Provide an opportunity for contributed HEOMD or Space Technology 

Program (STP) participation, compatible with the science payload and within the 

mission’s payload capacity (this objective is not related to geologic/astrobiological 

investigation and is of no concern for this thesis). 
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Objective C is new in Mars exploration. Fitted with a first-of-its-kind drilling and caching system, 

Mars-2020 will core and collect rock samples for future retrieval. Selection of scientifically compelling 

samples is crucial and Mastcam-Z will play a critical role in this capacity by helping mineralogically 

characterize surface materials. At the time of this writing, three sites are being evaluated to serve as 

Mars 2020’s field area: the Columbia Hills (formerly explored by MER Spirit), Northeast Syrtis Major, and 

Jezero Crater. The geology, context, and rationale for visiting each site will be discussed in Chapter 3. 

Mastcam-Z 

Mastcam-Z, the “eyes” of NASA’s Mars-2020 rover (Bell et al., 2016), is a stereoscopic pair of 

zoomable CCD cameras providing broad-band red/green/blue (using the same Bayer filter as Mastcam), 

narrow-band VNIR color, and direct solar images. Unique zoom functionality allows for coverage of 

horizontal fields of view between 23° and 6° (Gunn and Cousins, 2016). Like previous imagers, Mastcam-

Z’s filters obtain spectra in the 400–1100 nm wavelength range to distinguish signatures consistent with 

important Fe-bearing minerals that show absorption features in VNIR. To be more sensitive to 

mineralogical diversity detected in the past decade (as summarized in Section 1.2 above), Mastcam-Z 

has improved positioning of narrowband filters. A new ~975nm filter will improve resolution in the 

region of the ~950-1000 nm VNIR hydration band found in hydrated sulfates, hydrated perchlorates, 

hydrated carbonates, hydrated silica, some phyllosilicates, and H2O ice (e.g. Hunt, 1977). A new ~600 nm 

filter will help characterize Fe3+-bearing material that may show an absorption band near 530 nm (e.g. 

Kong et al., 2011). Both eyes contain RGB filters and an 805 nm stereo filter. The left eye contains filters 

spanning 445-805 nm and the right eye contains filters spanning 805-1013 nm. Mastcam-Z’s filter design 

provides spectral coverage superior to Pancam and Mastcam (Figure 3). The instrument will sit atop the 

mast of the rover and use a calibration target, based on the design of the Mastcam calibration target 

(Figure 4). The calibration target is a mounted disc of circular stripes and plates – each an ideal 

representation of the specific wavelengths each filter is sensitive to – used to calibrate imagery as 
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described in Wellington et al. (2017) and Bell et al. (2017). While Mastcam-Z has heritage with previous 

instruments, this specific spectral filter arrangement is the first of its kind. This work will investigate this 

filter set’s capabilities with respect to VNIR hydration bands for the first time. Because the Mars-2020 

mission seeks to investigate and sample an astrobiologically-relevant paleoenvironments (a classification 

that requires signs of past aqueous activity), it is crucial that we develop an understanding of how 

Mastcam-Z’s improved resolution will view VNIR hydration bands. 

In summary, the sources of VNIR spectral variability on Mars are still poorly understood, 

particularly as they relate to hydrated sulfate minerals and the prominent geologic units present at the 

Mars-2020 candidate landing sites. Mastcam-Z’s new filter set will provide the opportunity to 

characterize hydration bands in new ways. However, how these hydration bands will appear to 

Mastcam-Z’s first-of-its-kind filter set remains unknown, as does how Mastcam-Z can most effectively be 

used to corroborate spectral detections made with orbital instruments. The work described in the 

proceeding chapters addresses these gaps in knowledge. The following two chapters will describe how 

Mastcam-Z will view hydration bands in sulfates at varying conditions, what Mastcam-Z filters are most 

effective for capturing signs of hydration in sulfates, what Mastcam-Z filters can be used to corroborate 

spectral detections made from orbit at each Mars-2020 candidate landing site, and the primary controls 

on VNIR spectral variability on the surface of Mars. 

2.0 CHARACTERIZING VISIBLE TO NEAR-INFRARED SPECTRA OF HYDRATED SULFATES IN 

 MASTCAM-Z RESOLUTION 

2.1 Introduction 

2.1.1 Hydrated Sulfates on Mars 

Sulfate minerals on Mars are important environmental indicators. As stated in Section 1.3, the 

presence of widespread sulfate mineral deposits on Mars indicates a period of significantly sulfur-rich 
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aqueous environments as H2SO4 was precipitated onto the surface following major volcanic outgassing 

events (e.g. Bibring et al., 2006). Thus, the presence of hydrated sulfate minerals in any given region 

allows for the possibility that acid-sulfate hydrothermal environments existed in that location in the 

distant past. These environments are important for understanding Mars’ aqueous history and provide 

regions of interest to search for indications of past habitability. Constraining Mastcam-Z’s ability to 

detect hydrated sulfate minerals directly supports exploration of these environments. Effectively 

identified hydrated sulfates can be further analyzed by other instruments on the Mars-2020 payload, 

cached for the future sample return mission, and allow for the interpretation of past aqueous 

environments at the chosen landing site. Because hydrated sulfates encountered on Mars will likely be 

intermixed with different endmembers and/or iron oxide dust, this research also analyzes how such 

mixtures will affect the crucial ~950-1000 nm hydration band. Constraining the spectral trends that 

occur with mineral mixtures and dust contamination allows for quantification of potential hinderances 

to Mastcam-Z’s ability to detect hydration in sulfates and offers insights into the general variability of 

this understudied VNIR absorption band. 

Ca/Mg-sulfates have been identified in a variety of regions on Mars. Magnesium and calcium 

sulfates are common in martian regolith (Vaniman and Chipera, 2006) and exist in multiphase 

dehydration/rehydration systems with concentrations of different species varying based on local 

environmental conditions (Vaniman and Chipera, 2006). Mg-sulfates are expressed in surface material as 

monohydrated kieserite, stable in near-equatorial latitudes during the martian summer, and 

polyhydrated epsomite, the result of kieserite rehydrating at higher latitudes (Vaniman and Chipera, 

2006). Laboratory experiments demonstrated that kieserite can also hydrate to hexahydrite (Vaniman et 

al., 2004). Sulfur-rich soils were identified in Gusev Crater by the Spirit rover (Yen et al., 2008) using the 

alpha-particle X-ray spectrometer (Squyres et al., 2003) and the Mossbauer Spectrometer (MB; Squyres 

et al., 2003). Elemental analysis of these soils revealed the presence of Fe(III)-, Mg-, and Ca-bearing 
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sulfate phases. Sulfate material was also observed in situ at Meridiani Planum by the Opportunity rover 

(Squyres et al., 2012). A large vein unit at Endeavor Crater dubbed ‘Homestake’ contained significant 

amounts of SO3 and Ca, signaling the presence of Ca-sulfates (Squyres et al., 2012). Multispectral 

imagery was used in conjunction with APXS analyses, revealing the notable negative slope between the 

934 nm and 1009 nm filters, indicative of hydration. At Gale Crater, anhydrite, bassanite, and gypsum 

have been observed to coexist in a dehydration series within fracture-filling vein deposits (Nachon et al., 

2014; Vaniman et al., 2017). Curiosity ChemMin XRD data from vein samples reveal that gypsum is 

primarily concentrated at depth and dehydrates to bassanite when exposed to ambient conditions 

(Vaniman et al., 2017), while anhydrite occurs both at depth and on the surface. OMEGA has identified 

kieserite, gypsum, and unconstrained polyhydrated sulfate material in layered sedimentary deposits at a 

variety of locations on Mars (Gendrin et al., 2005). Surface analysis with CRISM has yielded signatures of 

bassanite in the Mawrth Vallis region (Wray et al., 2010), jarosite and unconstrained polyhydrated 

sulfates in NE Syrtis (Ehlmann and Mustard, 2012), and layered Mg-sulfates in Gale Crater (Milliken et 

al., 2009), among numerous other identifications.  

As previously stated, the sulfate deposits that will be encountered by Mastcam-Z are unlikely to 

be homogenous; intimate mixtures of various hydrated sulfate species are more likely (e.g., Vaniman et 

al., 2013). Mineral mixtures are difficult to discern in VNIR spectra because of non-linear mixing effects. 

Due to the close combination of endmember particles in intimate mixtures, incident light undergoes 

multiple interactions with each endmember, leading to non-linear combinations of the spectral 

properties of endmember constituents in an acquired spectrum (Hapke, 2012). Mixture spectra can be 

modeled in some cases to estimate the proportions of each endmember, but simple linear mixing 

models break down when applied to intimately mixed samples (Hapke, 2012). Various statistical 

methods to ‘unmix’ intimate mixture spectra have been developed and tested (e.g. Broadwater and 

Banerjee, 2010; Nascimento and Bioucas-Dias, 2010; Hapke, 2012) and effective spectral unmixing 
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models for combinations of Mars-relevant clays and epsomite have been explored (Stack and Milliken, 

2015). However, additional model testing with other Mars-relevant minerals is required before we can 

confidently rely on models (instead of manually creating and analyzing mixtures in the lab) to 

understand how rover spectrometers will visualize mixture spectra in the field. This thesis does not test 

statistical unmixing methods, but will discuss the non-linear spectral effects of hydrated sulfate 

mixtures. The dataset herein could prove useful to further test the effectiveness of unmixing models on 

Mars-relevant mixtures in future work. 

2.1.2 Hydrated Sulfates Investigation 

This work spectrally investigates synthetic varieties of several calcium and magnesium sulfates 

(Table 1). Ca- and Mg-sulfate phases were selected that have been either explicitly detected on Mars or 

theoretically inferred to be stable at the surface. To support identification of hydration in these phases 

with Mastcam-Z, five key hypotheses are tested: 

1) The ~975 nm filter will allow Mastcam-Z to detect the ~950-1000 nm band in 

hydrated sulfates when used in tandem with the ~1013 nm and ~937 nm filters. 

2) Bimodal mixtures of hydrated sulfates will mask or shallow the ~950-1000 nm 

band at Mastcam-Z’s spectral resolution due to varying hydration states. 

3) Minor (5% sample vol.) martian dust contamination will mask the ~950-1000 nm 

band at Mastcam-Z’s spectral resolution due to the absorptions of iron oxides in VNIR. 

4) Mastcam-Z will not have uniform sensitivity to hydration in sulfates at all grain 

sizes  

(strength of the ~950-1000 nm absorption band is dependent on grain size). 

5) Bimodal mixtures of hydrated sulfates will experience nonlinear mixing effects 

that cannot be accurately described by standard linear spectral mixing models. 
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To address these hypotheses, we created bimodal mixtures of these sulfates and analyzed them 

in VNIR with a laboratory spectrometer. The outcome of this work is a dataset consisting of band depth 

and band position information for a variety of imposed conditions, as well as suggestions for the use of 

the Mastcam-Z spectral filter set to constrain hydration in Ca/Mg-sulfates. The 937 nm, 975 nm, and 

1013 nm filters are used to determine what filter combinations are most sensitive to signs of this 

hydration (i.e. must all three filters be used in tandem as hypothesized or could two-filter combinations 

reasonably detect hydration from the resulting slope between them?) 

2.2 Methods 

An Analytical Spectral Devices, Inc. (ASD) Field Spec 4 Wide-Res (WR) spectrometer was used for 

data collection. The Fieldspec 4 WR is a 2151 channel spectrometer offering VNIR spectral coverage 

from 350-2500 nm at a spectral resolution of 3 nm from 350-700 nm and 30 nm at 701-2500 nm. Scan 

time is 100 ms with a 0.1 nm reproducibility and 0.5 nm accuracy. Spectral bandwidth is 1.4 nm at 350-

1000 nm and 1.1 nm at 1001-2500 nm. The spectrometer has three detectors: a VNIR detector capturing 

350-1000 nm composed of a 512-element silicon array, SWIR detector 1 capturing 1001-1800 nm, and 

SWIR detector 2 capturing 1801-2500 nm. Both SWIR detectors are composed of a graded index InGaAs 

photodiode. The spectrometer absorbs light with a 1.5 m fiber optic with a 25° field of view. The fiber 

optic is attached to a contact probe at a fixed viewing angle of 35°. The light source – contained within 

the contact probe – is a 6.5 W halogen lightbulb with a color temperature of 2901 +/- 10 °K that 

produces a 10-mm spot size light. The stray light specification is 0.02 % in VNIR and 0.01 % in SWIR 1 and 

2.  

Ca-sulfate mixtures were made from synthetic anhydrite, bassanite, and gypsum purchased 

from Sigma Aldrich. Vendor documents indicate ≥97% purity for each sample. Two series of sample 

powders were created: bimodal mixtures and single phases at varying grain size. Bimodal mixtures were 
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created by volumetrically mixing anhydrite-gypsum, bassanite-gypsum, and anhydrite-bassanite 

combinations at 10% total sample volume intervals (e.g. 90% anhydrite-10% gypsum, 80% anhydrite-

20% gypsum, 70% anhydrite-30% gypsum, etc.). These bimodal mixtures were chosen to capture a range 

of concentrations for a Mars-like dehydration series. For bimodal mixtures, samples were gently crushed 

using an agate mortar and pestle and dry sieved to a grain size of 500-1000 μm. For the grain size series, 

gypsum was crushed and sieved to grain size fractions of 2-4 mm, 1-2 mm, 500-1000 µm, 250-500 µm, 

125-250 µm, 63-125 µm, and <63 µm. A whole rock selenite sample (a lithified ~2” x 3” x 2” chunk) was 

also used to analyze the spectra of a solid gypsum outcrop, such as large vein deposits. Samples were 

stored in airtight sample cups to protect against long-term exposure to ambient humidity. Mixtures 

were thoroughly agitated with a plastic stirrer to randomly distribute particles. These methods were 

repeated for the magnesium sulfate minerals, with epsomite selected for the grain size series. Whole 

rock epsomite, however, was not available for this study and no proxy for cohesive Mg-carbonate 

outcrop is assessed. Trimodal mixtures were not explored given the difficulty that would accompany 

attributing changes in spectral properties to the relative abundances of each individual phase. Cross-

class mixtures of Ca- and Mg- sulfates were also not investigated. Trimodal and cross-class hydrated 

sulfate mixtures remain an intriguing subject for a future, expanded study. 

Reflectance spectra of each sample were measured in a dark room to limit stray light 

contamination. Sample powders were analyzed in custom-made aluminum sample holders fashioned to 

be the same diameter as the contact probe. The contact probe was held in place using a ring stand while 

an adjustable platform raised sample cups into contact with the probe (Figure 5). This minimized the 

escape of light reflected by the sample and further shielded the detector from ambient light. Sample 

holders and the contact probe were cleaned between samples. Contamination is not a significant risk 

with such easily removable powders. Cleaning with condensed air and kimwipes removed all visible 

powder and no spurious features were observed in resulting spectra. Spectral measurements were 
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made 1000 times for each sample – and averaged into a single spectrum – to minimize noise. White and 

dark reference spectra are required for calibration of sample spectra and were acquired using a 

Spectralon white standard at the start of laboratory work. Heating of the instrument during operation 

can cause these reference values to deviate slightly if not regularly calibrated. A dark current and white 

reference measurement was retaken every 10 minutes to mitigate this issue. A splice correction was 

applied using ASD software to correct for “jumps” in reflectance at wavelengths where detector change 

occurs (1000 nm and 1800 nm). 

Following analysis of uncontaminated powders, a subset of the gypsum-anhydrite and 

epsomite-kieserite mixtures were mixed with JSC Mars-1, a Mars dust simulant (Allen et al., 1997), and 

new spectra were acquired. JSC Mars-1 is composed of <1 mm weathered volcanic ash from the Pu’u 

Nene volcanic in Hawaii. The dust simulant was dry sieved to <500 µm before being mixed with sulfate 

samples. While there are numerous Mars dust simulants, JSC Mars-1 represents a close spectral match 

to dusty regions on Mars and has become the industry standard for Mars analog studies and has been 

used/compared in analog studies of Mars covering a wide range of topics (e.g. Moroz et al., 2009; 

Phebus et al., 2011; Johnson et al., 2017). JSC Mars-1 was introduced at 5% total volume of the sample. 

Five percent dust contamination simulates the minimum amount of dust observed on any martian 

surface, even after attempts to remove dust with rover equipment. The dust simulant was mixed into 

the samples with a plastic stirrer for over one minute to randomly distribute particles. A subset of dust 

contaminated Ca-sulfate samples were re-mixed and measured a second time to discern if any 

significant variations occurred in dust distribution in the sample. No significant spectral differences were 

observed.  

Absolute reflectance values were used for data processing and analysis. Laboratory resolution 

band depths for the hydration band were calculated by creating straight-line continuums over the 

spectral absorption and applying the equation DB ≡ (RC – RB )/ RC (Clark and Roush, 1984). DB is the band 
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depth, RC is the reflectance of the continuum line at the band center wavelength, and RB is the 

reflectance of the spectrum at the band center wavelength (Figure 6). Left and right shoulder positions 

chosen to calculate straight-line continuums for laboratory spectra were 960 and 1050 nm. 

Each spectrum was convolved to Mastcam-Z resolution by integrating over Mastcam-Z’s 

hypothetical filter transmission profiles, roughly Gaussian curves centered on specific wavelengths 

(Figure 7). Given that Mastcam-Z’s filters have not been manufactured yet, the hypothetical 

transmission profiles used are replicas of the Mastcam filter transmission profiles. The profile of the 805 

nm filter was copied and shifted to create hypothetical bandpasses for the new ~600 nm and ~975 nm 

filters that are unique to Mastcam-Z. The convolution script removes spectral data outside of the 

Gaussian transmission profile for each filter, simulating the spectrum Mastcam-Z would capture. 

Deconvolved spectra were over-plotted on original spectra to visualize data loss at Mastcam-Z 

resolution. To aid in discrimination of sulfate hydration signatures with Mastcam-Z, this work searched 

for the filter combination most sensitive to the ~950-1000 nm hydration band. Ideal filter combinations 

can then be used to optimize investigation of hydration signatures with Mastcam-Z. To that end, three 

Mastcam-Z convolved band depths were calculated (Figure 8): the center band depth of 975 nm (with 

937 nm and 1013 nm as shoulder positions), the depth of 1013 nm below 937 nm (937-1013 band 

depth), and the depth of 975 nm below 937 nm (937-975 band depth). The 975 nm center band depth 

was calculated for the convolved spectra with 1013 nm and 937 nm used as shoulder positions. The 937-

975 band depth and 937-1013 band depth were calculated using the equations (R937 – R975)/R937) and 

(R937 – R1013)/R937) where Rxxx is the reflectance at the specified wavelength. 

The 975 nm center band depth, 937-1013 band depth, and 937-975 band depth for each sample 

were compared to that of a selected ‘base sample.’ For bimodal mixtures, the base sample was 100% of 

the more hydrated phase (e.g. 100% gypsum for gypsum-bassanite mixtures, 100% hexahydrite for 

hexahydrite-kieserite mixtures, etc.). The percent reduction of band depths (shallowing of the band) of 
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mixture samples from band depths of the base sample was quantified. For the gypsum and epsomite 

grain size series, the base sample was the coarsest sample of each mineral (whole rock selenite for 

gypsum and 2-4 mm for epsomite). For dust contaminated samples, the corresponding dust-free 

mixture was chosen as the based for each contaminate sample. 

Measured in the laboratory prior to launch (Bell et al., 2017), the 445 nm Mastcam filter has 

some out of band transmission sensitive to light outside the intended effective wavelength range (Figure 

9). Because the hypothetical Mastcam-Z transmission profiles used in this work are based on the official 

Mastcam transmission profiles, the aggregate of this noise can cause a significant vertical offset of 445 

nm reflectance in a convolved spectrum. The Mastcam calibration process corrects this error to some 

degree. To correct for this issue, throughput of the 445 nm band at wavelengths >460 nm and <420 nm 

was reduced to 0, producing more accurate convolved spectra (Figure 10).  

All spectra from this work have been uploaded to our online interactive spectral database 

(http://spectro.geol.wwu.edu/). The database combines data from the University of Winnipeg Planetary 

Spectrophotometer Facility (HOSERLab; Cloutis et al., 2006), the United States Geological Survey (USGS) 

Spectral Library (Kokaly et al., 2017), Brown University’s Keck/NASA Reflectance Experiment Laboratory 

(RELAB; Pieters and Hiroi, 2004), Crowley et al., 1991 spectra of several playa evaporate minerals, the 

Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) Spectral Library (Baldridge 

et al., 2009), and the Mastcam-Z team’s spectral library of Mars-relevant minerals. The database was 

created by undergraduate computer science students at Western Washington University under the 

direction of Dr. Melissa Rice and myself, and is currently being maintained by students in our Mars 

science research group. This database has been made available to members of the Mars-2020 and MSL 

science teams to aid their spectral investigations. 
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2.3 Results 

Observed spectral trends will be discussed in this result section. Trends in band depths for all 

samples are often too small to see with the naked eye. Tables (Tables 2-5) have been included in a 

supplementary section at the end of this chapter to house numerical band depth data that cannot be 

constrained visually. 

2.3.1 Grain Size Series 

Gypsum 

The overall selenite spectrum has a steep negative slope toward longer wavelengths (Figure 11). 

Band center position is 1001 nm in all samples (Table 2). Overall, laboratory resolution band depths 

increase with grain size (Table 2). In powdered samples (excludes selenite), band depth peaks at 500-

1000 µm (Table 2). 

In Mastcam-Z convolved spectra, a similar grain size trend is observed: increasing band depth 

with increasing grain size. The 975 nm center band depth generally increases with grain size (Table 2). 

Mastcam-Z convolved band depths are shallower than laboratory resolution band depths at all grain 

sizes and of the convolved bands, the 975 nm center band exhibits the smallest bands depths at each 

size fraction (Table 2). Percent reduction of band depths from the selenite base sample generally 

decreases with increasing grain size, however this trend breaks down at grain sizes >1000 µm (Table 2). 

Epsomite 

All epsomite samples >500 µm show a slight negative slope toward longer wavelengths in the 

overall spectra (Figure 11). Band position varies from 998-1001 nm (Table 2). Laboratory resolution band 

depths increase with grain size while band position exhibits no notable trend (Table 2). Band depth 

peaks at 1000-2000 µm (Table 2).  
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Mastcam-Z convolved band depths also increase with grain size (Table 2). The 975 nm center 

band shows the smallest band depths (Table 2). Lab resolution bands are typically larger than convolved 

bands (Table 2). Deconvolved band depths peak at 500-1000 µm and percent reduction of band depths 

from the 2000-4000 µm sample generally decreases with increasing grain size (Table 2). 

2.3.2 Bimodal Mixtures 

Gypsum-Anhydrite 

Anhydrite-bearing overall spectra slope positively toward longer wavelengths (Figure 12). Pure 

gypsum has a negative overall slope (Figure 12). Pure anhydrite, a nominally anhydrous mineral, exhibits 

a minor hydration band (Figure 11 and Table 3). Lab resolution band depth increases with gypsum 

concentration (Table 3). Band position ranges from 964 nm-1001 nm and shifts toward longer 

wavelengths with increased gypsum concentration (Table 3).  

All Mastcam-Z band depths decrease significantly with increased anhydrite concentration (Table 

3). Some samples exhibit slightly negative band depths, indicating that no absorption band exists (Table 

3). Lab resolution band depths are generally larger than Mastcam-Z band depths (Table 3). Percent band 

depth reduction increases with anhydrite concentration and this effect is most pronounced for the 937-

1013 band depth (Table 3). 

Gypsum-Bassanite 

Bassanite-bearing overall spectra slope positively toward longer wavelengths (Figure 12). Lab 

resolution band depth ranges increases with gypsum concentration (Table 3). Band position varies from 

964-1001 nm and, like gypsum-anhydrite mixtures, shifts to longer wavelengths as gypsum 

concentration increases (Table 3).  
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Mastcam-Z band depths decrease with increasing bassanite concentration (Table 3). The 937-

1013 band depth is negative at concentrations of 0-90% (Table 3). The 937-975 band depth is negative 

at concentrations of 0-70% gypsum (Table 3). Percent band depth reduction increases with bassanite 

concentration and, like gypsum-anhydrite mixtures, this effect is most prominent in the 937-1013 band 

depth (Table 3). 

Bassanite-Anhydrite 

All overall spectra slope positively toward longer wavelengths (Figure 12). The lab resolution 

band position varies between 964-969 nm, showing no systematic trend with mineral concentration 

(Table 3). Lab resolution band depth also exhibits no notable trend with mineral concentration (Table 3).  

Both the 937-1013 band depth and the 937-975 band depth are negative at all tested 

concentrations (Table 3). Like in lab resolution spectra, no band depth trends are observed at Mastcam-

Z resolution (Table 3). Percent band depth reduction varies significantly in both laboratory and 

Mastcam-Z resolution, with several negative reductions, indicating hydration bands deeper than that of 

the base sample (Table 3).  

Epsomite-Kieserite 

All overall spectra slope negatively toward longer wavelengths and slope steepens with 

increased epsomite concentration (Figure 13). Lab resolution band depth increases with increasing 

epsomite concentration (Table 4). Band position for all samples of 20% or greater epsomite is 1001 nm 

(Table 4). Pure kieserite shows a lab resolution band position of 1024 nm and the addition of 10% 

epsomite shifts this band to 998 nm (Table 4).  

The 975 nm center band depth, 937-1013 band depth, and 937-975 band depth all increase with 

epsomite concentration (Table 4). The 937-1013 band depth and 937-975 band depth exceed the 975 
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nm center and laboratory resolution band depths in all mixtures (Table 4). Percent band depth reduction 

increases with kieserite concentration (Table 4). 

Epsomite-Hexahydrite 

Lab resolution band position ranges from 985-1001 nm, generally shifting toward longer 

wavelengths with increased epsomite concentration (Table 4). Lab resolution band depth increases with 

increasing epsomite concentration (Table 4).  

The 975 nm center band depth exhibits no concentration trend, while the 937-1013 band depth 

and 937-975 band depth increase with epsomite concentration (Table 4). Like epsomite-kieserite 

mixtures, the 937-1013 band depth and 937-975 band depth are larger than the 975 nm center and 

laboratory resolution band depths (Table 4). Percent band depth reduction increases with hexahydrite 

concentration for the 937-1013 band depth and 937-975 band depth (Table 4). Reductions of the 975 

nm center band depth are significantly lower and follow no observable trend (Table 4). 

Hexahydrite-Kieserite 

Lab resolution band depth increases with increasing hexahydrite concentration (Table 4). Band 

position generally shifts toward shorter wavelengths with increased hexahydrite concentration, 

although this trend shows some variance (Table 4). 

All Mastcam-Z convolved band depths increase with increasing hexahydrite concentration (Table 

4). Overall, the 975 nm center band depths are greater than lab resolution band depths, yet smaller than 

the 937-1013 band depths and 937-975 band depths (Table 4). Percent band depth reduction from 100% 

hexahydrite increases with kieserite concentration at laboratory and Mastcam-Z reduction (Table 4). 
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2.3.3 Dust Contamination Series 

Dust Contaminated Gypsum-Anhydrite 

All overall spectra slope positively toward longer wavelengths; this slope is steepest from ~400-

750 nm (Figure 14). Laboratory resolution band depth is smaller in contaminated versus 

uncontaminated samples, and exhibits no concentration trend (Table 5). Band position varies from 961-

992 nm, shifting to longer wavelengths with increased gypsum concentration (Table 5). Uncontaminated 

samples show band positions shifted toward longer wavelengths (Table 5). 

The 937-1013 band depth is negative at all concentrations and the 937-975 band depth is 

negative at concentrations of 0-80% gypsum (Table 5). The 975 nm center band depth is negative for 

100% anhydrite and band depth increases with increasing gypsum concentration (Table 5). Although the 

937-1013 band depth and the 937-975 band depth are largest in the 100% gypsum sample, no 

concentration trend exists for these features (Table 5). Percent band depth reduction of the 975 nm 

center band depth from uncontaminated samples increases with increasing anhydrite concentration 

(Table 5). 

Dust Contaminated Epsomite-Kieserite 

All overall spectra slope positively toward longer wavelengths and, similarly to the gypsum-

anhydrite sample set, the slope is steepest at shorter wavelengths (Figure 14). Laboratory resolution 

band depth increases with increasing epsomite concentration and is significantly smaller than in 

uncontaminated samples (Table 5). Band position ranges from 975-1001 nm, shifting toward longer 

wavelengths with increased epsomite concentration (Table 5). Apart from 100% epsomite, 

contaminated sample band positions are at shorter wavelengths than their uncontaminated 

counterparts (Table 5).  
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Overall, Mastcam-Z convolved band depths increase with increasing epsomite concentration 

(Table 5). The 937-1013 band depth is negative from 0-40% epsomite and the 937-975 band depth is 

negative from 0-20% epsomite (Table 5). Percent band depth reduction from uncontaminated samples 

increases with increasing kieserite concentration (Table 5).  

2.4 Discussion 

This data reveals several key trends in the variation of the ~950-1000 nm absorption band. 

Important takeaways regarding the effects of mineral mixing, grain size, and dust contamination gleaned 

from this dataset are valuable to future Mastcam-Z operations.  

2.4.1 Hydration Feature Detectability 

Internal sources of Mastcam-Z instrument error have yet to be characterized. Instrument errors 

for the Pancam instrument were found to be <1% (Bell et al., 2006), indicating that any band depth 

greater than 1% can be considered a positive detection and not spectral noise. Anticipating similar 

instrument error to that of Pancam, a band depth ≥0.01 (1%) is considered potentially detectable to 

Mastcam-Z. The following section summarizes what minerals and conditions exhibit detectable bands 

(Figures 15 and 16), and what this means for Mastcam-Z operation.  

Grain Size Series Detectability 

Pure gypsum samples show a detectable 975 nm center band depth at grain sizes 250-500 µm or 

greater (Figure 16; bands <0.01 are too small for detection). The 937-1013 band depth is detectable at 

all grain sizes 63-125 µm or greater and the 937-975 band depth is detectable at all grain sizes (Figure 

15). The band is centered at 1001 nm (Table 2), but laboratory spectra reveal that this band is wide 

enough to be captured by Mastcam-Z’s filter set (Figure 11).  The 937-975 band depth shows detectable 

depths at all grain sizes and is the ideal filter combination to analyze potential gypsum on Mars.  
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In pure epsomite, the 975 nm center band depth, 937-1013 band depth, and 937-975 band 

depth are detectable at all tested grain sizes (Figure 15). Lab resolution band center ranges from 998 – 

1001 nm, but similarly to gypsum, Mastcam-Z’s filter set can capture this band given its width (Table 2). 

The 937-1013 band depth shows the largest bands depths for pure epsomite and represents the most 

effective filter combination for constraining hydration in potential martian epsomites.  

Bimodal Mixtures Detectability 

Results show that even small amounts of anhydrite masks hydration bands in gypsum-anhydrite 

mixtures. The addition of a mere 10% sample volume amount of anhydrite results in a band depth 

reduction that drives the 975 nm center band depth and 937-1013 band depth below the 1% detection 

threshold (Figure 16). The 937-975 band depth remained detectable with 10-20% anhydrite, but at >20% 

anhydrite, detection of hydration bands in gypsum-anhydrite mixtures fails (Figure 16). Larger grain sizes 

were demonstrated to produce more significant band depths. 500-1000 µm may represent the finest 

size of an anhydrite-gypsum mixture possessing detectable hydration signature and larger grain sizes of 

this mixture may prove more favorable. Gypsum-bassanite mixtures exhibit no detectable hydration 

band at any concentration (Figure 16). Larger grain size mixtures may be detectable, but with a mere 

10% bassanite addition rendering bands at 500-1000 µm undetectable, detection of consistently shallow 

Ca-sulfate hydration bands may be difficult. The 975 nm center band depth consistently shows the 

deepest bands out of the three tested features. To constrain hydration in gypsum-bassanite mixtures, if 

larger grain sizes of this mixture are to be encountered on Mars, the 937 nm, 975 nm, and 1013 nm 

filters should be used in tandem. Pure bassanite and bassanite-anhydrite mixtures lack a detectable 

band depth at any tested condition. Percent reductions of these band depths show no clear trend with 

concentration; assumptions cannot be made about the ability to detect hydration in bassanite-anhydrite 

mixtures at larger grain sizes. 
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Pure kieserite at 500-1000 µm lacks a detectable 975 nm center band depth (Figure 16). 

Epsomite-kieserite mixtures have detectable hydration bands at all concentrations. Addition of 90% 

kieserite reduces the 937-1013 band depth and 937-975 band depth significantly, but the resulting band 

depths remain more than double the detection threshold. For the 975 nm center band depth, 90% 

kieserite results in a band that is barely detectable (Figure 16). Hydration is likely detectable in 

epsomite-kieserite mixtures at smaller grain sizes where band depths shallow, although the 975 nm 

center band depth may be less effective when more kieserite is present. The 937-975 band depth is the 

deepest band in this sample set and recommended for analyzing potential epsomite-kieserite mixtures. 

Epsomite and hexahydrite mixtures exhibit significant absorption bands at all concentrations. Increasing 

hexahydrite concentration results in notable percent reduction of band depths, but none significant 

enough to reduce a band below 4x the detection threshold (Figure 16). Epsomite-hexahydrite mixtures 

retaining detectable hydration bands at smaller grains sizes is likely. The 975 nm center band depth 

shows no clear concentration trend. The 937-975 band depth shows the deepest bands for these 

mixtures and is ideal to constrain hydration in epsomite-hexahydrite mixtures. In hexahydrite-kieserite 

mixtures, the 937-975 band depth and 937-1013 band depth are detectable at all concentrations (Figure 

16). The 975 nm center band depth becomes undetectable with the addition of 80% kieserite and 90% 

kieserite addition results in a barely detectable 937-1013 band depth and 937-975 band depth (Figure 

16). Hydration in kieserite-dominated hexahydrite-kieserite mixtures may be troublesome to constrain 

at smaller grain sizes. The 937-975 band depth exhibits the deepest bands and is the advised feature to 

use for identifying hydration in potential hexahydrite-kieserite mixtures. 

Dust Contamination Series Detectability 

The addition of JSC Mars-1 significantly increases absorption at blue and green wavelengths. 

Rich in iron-oxides, the red-brown dust simulant absorbs light in this wavelength range. Dust 

contamination rendered hydration undetectable in all gypsum-anhydrite mixtures (which is expected 
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given that anhydrite significantly reduces hydration bands on its own), but also resulted in pure gypsum 

no longer showing a detectable band (Figure 16). Calcium sulfate hydration bands are characteristically 

weak; even 5% sample volume contamination presents significant challenge to identifying hydration in 

calcium sulfates. Significant absorption of blue-green light is also observed in contaminated epsomite-

kieserite samples. Epsomite displays prominent hydration bands and hydration remains detectable via 

the 975 nm center band depth at 80-100% epsomite, 937-1013 band depth at 80-100% epsomite, and 

937-975 band depth at 60-100% (Figure 16). In 100% epsomite hydration bands remain significant. 

Homogenous epsomite deposits may retain discernable hydration features in instances of minimal dust 

contamination at smaller grain sizes. Kieserite addition significantly shallows hydration bands in dust 

contaminated mixtures (Figure 16) and smaller grain sizes may pose challenge. The 937-975 band depth 

exhibits the deepest bands and is the recommended feature to use for dust contaminated Mg-sulfate 

deposits. Mars-2020 will likely encounter rocks with levels of dust contamination exceeding what was 

used in this study, based on the experience of the Curiosity mission (e.g. Bradley et al., 2017). Larger 

dust contents could enhance hydration band masking far beyond what is observed in this work. 

However, in the exceptionally dusty Columbia Hills, negative slopes between 934 and 1009 nm 

indicative of hydration were successfully observed with Pancam, even on Ca-sulfate veins and hydrated 

silica outcrops where the surface dust had not been removed (e.g. Rice et al., 2010; Farrand et al., 

2016). 

The dataset presented here offers critical insights on the potential use of Mastcam-Z to identify 

hydration in sulfate minerals. The 937-1013 band depth and 937-975 band depth generally exhibit 

stronger signals than the 975 nm center band depths. Apart from the grain size series samples, 937-975 

band depth exceeds 937-1013 band depth. The 937-975 band depth stands as the optimal feature to 

constrain hydration signatures in sulfate deposits with Mastcam-Z. The addition of the 975 nm filter 
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improves our ability to constrain hydration signatures in hydrated sulfates, but the 937 nm, 975 nm, and 

1013 nm filters may not need to be used in tandem for most situations. 

Beyond Mg- and Ca-sulfates, there are numerous hydrated minerals identified on Mars (e.g. 

Bibring et al., 2006; Mustard et al., 2008). Previous rover spectrometers have identified signs of 

hydration in a number of these without the addition of an ~975 nm filter (e.g. Rice et al., 2010; Squyres 

et al., 2012; Vaniman et al., 2014; Farrand et al., 2016). The success of past missions in constraining 

hydration in other phases with and without Mastcam-Z’s updated ~975 nm filter bodes well for 

projecting Mastcam-Z’s ability to discern hydration in minerals other than the sulfates address here. 

Similar work is needed to constrain how band morphology and detectability changes in those phases, 

but it can currently be assumed that the new ~975 nm filter will prove a critical addition to constraining 

hydration in a multitude of other Mars-relevant hydrated minerals. 

2.4.2 Operational Considerations 

Several variables demand keen attention during Mars rover operation. Power availability, data 

volume, and time constraints guide daily operational decisions for the ongoing Curiosity rover mission, 

and Mars-2020 will be similar in construction and technical operation. Several key operational 

considerations can be gleaned from the results of this work. 

Through radioactive decay of plutonium-238, Curiosity’s radioisotope thermoelectric generator 

(RTG) consistently generates power over time (Welch et al., 2013). Energy production proceeds at a 

pace that meets mission needs, but depletion of on-hand power is possible. To not exceed power 

budget, rover operators must continuously draft, revise, compromise, and sacrifice on proposed rover 

activities. The RTG allows six hours of operating time each martian day (Welch et al., 2013), and the 

energy needs of planned observations can further constrain that time block. Every rover action – 

including each filter shot in a multispectral image observation – consumes power. This work 



32 
 

demonstrates that the 975 nm and 937 nm filters most effectively identify hydration in sulfates in most 

cases (i.e. The down-drop in reflectance between the 975 nm and 937 nm filters due to the presence of 

hydration is greater in more tested samples than the down-drop between the 1013 nm and 937 nm or 

the 975 nm center band depth). Acquiring two-filter observations, opposed to three-filter, alleviates 

power consumption. 

Data volume presents a similar challenge. The amount of data the rover can store, transmit to 

relay satellites, and downlink to Earth is limited. As with power, multispectral filter image necessitates 

some portion of data volume be reserved. What data transits to Earth requires daily deliberation. 

Constraining hydration in sulfates with two filters, as opposed to three, reduces the data requirement. 

Science operations adhere to specified time blocks based on factors such as illumination, 

thermal conditions, visibility, etc. These finite constraints also dictate rover activities. Two-filter 

hydration images reduce time costs, making these observations more manageable in planning phases.  

2.4.3 Spectral Trends  

This dataset also provides insight on the nature of VNIR hydration bands in Ca/Mg-sulfates 

beyond the operation of Mastcam-Z. The results presented here verify previous laboratory observations 

that overall reflectance increases with grain size (e.g., Clark et al., 1990). Light travels longer distances 

through larger grains, increasing the opportunity for photons to be absorbed in the crystal lattice (e.g. 

Clark and Roush, 1984; Hapke, 2012). Larger grains have lower surface area/volume ratio for reflection 

to occur. 

In pure mineral samples at 500-1000 µm grain size, band depth increases substantially with 

hydration state in hydrated sulfates. Hemi-hydrated (0.5H2O) bassanite shows a minimal laboratory 

resolution band depth of 0.0012. Epsomite (7H2O) exhibits a band depth of 0.0793, ~6600% greater than 

bassanite and gypsum (2H2O) shows a band depth of 0.0303, ~2500% greater than bassanite. Gypsum 
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and epsomite represent H2O content increases of factors of four and 14 from bassanite, but the increase 

in band depth greatly exceeds these factors – there is positive correlation between wt.% H2O and band 

depth, but it is not linear (Figure 17).  

Band position for vibrational processes is governed by the mode of vibration as it relates to the 

molecular geometry of the given mineral. Thus, this property is not necessarily dependent on the 

abundance of H2O and not expected to show any meaningful relationship with H2O content. Results 

show no correlation between band position and hydration state (Figure 18). Anhydrite is not included in 

these figures because anhydrite hydration bands are the result of adsorbed water (see discussion in 

Section 2.4.1). 

Spectral mixing effects in hydrated Ca/Mg-sulfates are non-linear. Generally, band depth 

decreases with additional mixing of less hydrated phases. However, percent band depth reduction with 

each 10% increment of the less hydrated phase experiences some variation (Figure 16). To test the 

accuracy of linear mixing modeling to characterize the spectra and absorption bands presented in this 

work, a simple linear mixing operation was performed on the epsomite-kieserite set. Pure epsomite and 

pure kieserite were linearly mixed using the equation MixedSpectrum = (Spectrum1*X) + 

(Spectrum2*(1-X)), where X is the decimal fraction of kieserite relative to epsomite. These modeled 

spectra were over-plotted with laboratory spectra (Figure 19) and band depths were calculated and 

compared to laboratory samples (Table 4). Modeled spectra exhibit noticeably larger band depths in 

most cases than laboratory spectra and are more reflective at shorter wavelengths. Error in band depth 

ranges from 6.3-38.5% using the linear mixing model (Table 4). In most cases the band position is shifted 

to 1000 nm from 1001 nm in modeled spectra (shifts from 998 nm to 1019 nm in 10% epsomite sample). 

It is clear from this data that linear mixture modeling is not recommended for understand the spectral 

properties of hydrated sulfate mixtures on Mars. The efficacy of non-linear unmixing models then 

becomes an important question. With known mixture concentrations, this dataset presents intriguing 
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opportunity to test non-linear unmixing models such as the popular Hapke model (Hapke, 2012) which 

was applied to phyllosilicate and sulfate mixtures by Stack and Milliken, 2015 and the Shkuratov model 

(Shkuratov et al., 1999) used on mafic minerals by Poulet and Erard, 2004. 

2.4.4 Caveats and Limitations 

There are a few key limitations and known sources of error in this dataset that must be 

addressed to aid the interpretation of results. For example, the laboratory conditions likely effected the 

observations of anhydrite, as the spectrum of 100% anhydrite shows a small absorption band centered 

at 964 nm (Figure 12). A band at this position is likely the result of hydration and suggests the presence 

of adsorbed water in the samples. In intrinsically hydrated minerals (all other minerals used in this 

study), the presence of adsorbed water contamination is difficult to discern from the structural H2O/OH. 

Anhydrite, industrially used as a desiccant, readily absorbs moisture from its surroundings (Hammond 

and Withrow, 1933). Exposure to extant humidity during sample prep and analysis can potentially lead 

to water adsorption on anhydrite grains. Cloutis et al. (2006) documented similar hydration of anhydrite 

under ambient conditions. A humidity-controlled experiment chamber could have prevented this 

contamination, but was not available for this study. Hydration via ambient humidity also potentially 

explains pure anhydrite showing a deeper hydration band than pure bassanite. Cloutis et al. (2006) also 

suggests fluid inclusions or incipient alteration as potential causes of anhydrite hydration bands. 

To simulate regolith contamination, samples were thoroughly mixed with the Mars JSC-1. No 

other methods of dust contamination, such as thin coatings, were applied. While it is anticipated that 

near-outcrop fragments and particulate deposits will be similarly intermixed with martian regolith, there 

is also the case where dust lies atop pristine material as a thin coating. This situation prevails throughout 

the bulk of the martian surface (e.g. Bishop et al., 2002). Studying the spectral effects of thin dust 

coatings is exceptionally difficult. Investigation of this phenomenon requires creating polished, near-flat 
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uniform Ca/Mg-sulfate substrates (difficult to do with such a soft and friable material), simulating airfall 

deposition of uniform grain size contaminant, and measuring coating thickness with microscopy, as 

performed with basaltic andesite substrates by Johnson and Grundy, 2001. The spectral effects of dust 

coatings on hydrated sulfates (and other Mars-relevant hydrated minerals) remains a valuable 

unexplored dataset.  

Samples were mixed with plastic stirrers due to the lack of precision powder mixing equipment. 

Mixing was performed for over one minute, but the possibility of random preferential organization of 

grains when poured into the sample holders could not controlled. Calcium and magnesium sulfate 

powders are similar in appearance, rendering this potential error impossible to visually constrain. 

For grain size series samples, clear trends are present. But, in laboratory resolution spectra of 

powdered samples (excluding the whole rock selenite sample), the largest band depths did not occur in 

the largest grain size fractions. A possible explanation is that spectra were contaminated as light 

interacted with the inner edges of the sample holders. Large grains crumbled when packed forcefully 

into the sample holder. To avoid destruction of large grains samples were loosely packed, resulting in 

voids the sample. It is possible that these voids allowed light to interact with the holder unobstructed 

and impact the spectra of these samples. Increased surface area of smaller grains may also explain this 

band depth discrepancy. Surface-to-volume ratio increases when samples are broken down into smaller 

grain sizes. This smaller ratio leads to an increase in reflectance and band depth shallowing, as seen in 

data for the grain size series samples. However, increased surface-to-volume ratio also creates more 

surfaces for adsorbed water to attach to. If the increase in band depth caused by additional adsorbed 

water exceeds the decrease in band depth resulting from increased surface-to-volume ratio, this may 

have caused smaller grain size bands to appear larger and explain the observed discrepancy.  
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2.5 Conclusions 

Mastcam-Z will use a new filter set designed to be more sensitive to spectral features based on 

past experiences. The results of this work help to define Mastcam-Z’s ability to constrain hydration 

signatures in Ca- and Mg-sulfates, the effects of various conditions on these hydration signatures, and 

what filter combinations are most effective to analyze potential hydrated Ca- and Mg-sulfates on Mars. 

The major findings presented here include: 

1. Spectra reveal that the new ~975 nm filter constrains portions of the right 

bounds of the ~950-1000 nm hydration band in Ca/Mg-sulfates, offering resolution of band 

morphology not previously available. This additional band resolution allows for a new effective 

means to constrain hydration: the 937-975 band depth, which shows deeper bands than the 

937-1013 band depth (the only means of constraining hydration with Mastcam) in most cases.  

2. Bimodal mixing of hydrated sulfates affects depths of hydration bands in 

Ca/Mg-sulfates due to heterogeneous hydration states. The band depth shallowing that occurs 

is dependent on the hydration states of each component and their relative concentrations. For 

mixtures of Mg-sulfates, band shallowing does not pose significant risk of rendering bands 

undetectable to Mastcam-Z due to the prominent hydration bands of epsomite and hexahydrite, 

which possess high H2O/SO4 ratios. For Ca-sulfates, only gypsum-anhydrite mixtures composed 

of primarily gypsum retain some detectability.  

3. Dust contamination of Mg/Ca-sulfates with small quantities of Mars JSC-1 

significantly reduces reflectance in the green-blue wavelength region and shallows hydrations 

bands. In gypsum-anhydrite mixtures, 5% sample volume dust contamination obscures 

hydration bands to Mastcam-Z. In epsomite-kieserite mixtures, dust contamination significantly 

limits detectability, with detectable bands only being confined to epsomite-dominant mixtures.  
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4. Grain size effects in these samples corroborate the previous understanding of 

reflectance/absorption effects in long grains. Pure epsomite and gypsum samples generally 

exhibit deeper laboratory and Mastcam-Z band depths with increased grain size. Grain size is an 

important variable when investigating potential martian Ca/Mg-sulfates for signs of hydration.  

5. Mixtures of hydrated Ca/Mg-sulfates cause nonlinear spectral combinations. 

These spectra cannot be effective explained by linear models and nonlinear spectral mixing 

models must be tested before we can effectively rely solely on models to understand spectral 

mixing on Mars. This work provides useful data to test nonlinear mixing models. 

2.6 Future Work 

Although this study provides an important dataset and intriguing filter combinations for 

identifying hydration signatures on Mars with Mastcam-Z, more work is needed. Numerous hydrated 

minerals exist on Mars that bear hydration bands in Mastcam-Z’s effective wavelength range. To better 

understand how these minerals will appear to Mastcam-Z, similar work is needed addressing hydration 

band morphology in these minerals both at laboratory resolution and Mastcam-Z convolved resolution. 

Dust contamination also remains a significant issue and intermixed Mars dust simulant, as done in this 

study, represents only one piece of the problem. There still exists the prevalent case where a thin layer 

of dust overlays intriguing alteration minerals. Cases where this overlying dust may not be easily 

removed by rover equipment may occur and to optimize how Mastcam-Z handles these situations, 

worked is needed studying the spectral effects of thin uniform dust coatings.  
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3.0 DISTINGUISHING GEOLOGIC UNITS AND ALTERATION MINERALOGY AT MARS 2020 

 CANDIDATE LANDING SITES WITH VISIBLE-TO-NEAR-INFRARED SPECTROSCOPY: IMPLICATIONS 

 FOR MASTCAM-Z  

3.1 Introduction  

3.1.1 Reflectance Spectroscopy from Orbit: CRISM 

Our current understanding of martian surface mineralogy can largely be attributed to the high-

resolution hyperspectral orbital spectrometers CRISM (Murchie et al., 2007, 2009) and OMEGA (Bibring 

et al., 2004, 2006). The work described here analyzes specific regions on Mars with CRISM imagery, 

warranting an in-depth explanation of CRISM’s capabilities.  

CRISM detects wavelengths 362-3920 nm using two detectors (VNIR detector from 362-1053nm 

and SWIR detector from 1002-3920) with a spectral resolution of 6.55nm/channel. CRISM has an 

aperture of 100 mm and focal length of 441 mm which allow for a 2.12° field of view and pixel angular 

size of 61.5 µrad (Murchie et al., 2007). The instrument is composed of three main parts: The Optical 

Sensor Unit (OSU), the Gimbal Motor Electronics (GME), and the Data Processing Unit (DPU). The OSU 

houses the spectrometers and optical equipment responsible for image capture. The GME enables 

function of the gimbal to scan surfaces at different angles, compensating for image distortion effects 

caused by spacecraft motion. Gimbal motion causes the bowtie-like dimensions of high-resolution 

CRISM images (as seen in Figures 26, 28, 29, 34, 41, 47, and 48); the field of view narrows as the camera 

becomes perpendicular to the surface and widens as the camera moves away from perpendicular. The 

DPU processes all optical data and allows the instrument to communicate with the MRO spacecraft. 

Summary products – mathematical parameters corresponding to key spectral features of certain 

minerals – are used to guide mineral identification with CRISM (Pelkey et al., 2007; Viviano-Beck et al., 

2014), allowing users to quickly identify spectral endmembers in a scene. CRISM observations are often 
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paired with images taken by the MRO Context Imager (CTX), an orbital panchromatic stereo imager 

capable of 6 m/pixel resolution (Zurek and Smrekar, 2007) and the MRO High Resolution Imaging 

Science Experiment (HiRISE), an orbital color imager capable of 0.25m/pixel resolution (McEwen et al., 

2007). Use of these instruments in tandem with CRISM produces maps illustrating relationships between 

geomorphology and mineralogy.  

CRISM acquires spectral observations of Mars’ surface in two modes: “multispectral mapping” 

and “targeted”. The multispectral mapping mode provides near-global coverage at limited resolution (72 

wavelength channels and 100-200 m/pixel spatial resolution) to document absorption features 

indicative of key endmember mineral phases (Murchie et al., 2007, 2009). This resolution discerns broad 

mineral classes but is unlikely to uniquely identify specific minerals. The gimbal is inactive in 

multispectral mapping mode and CRISM acquires spectra as MRO passes, longitudinally, across the 

planet – these observations are referred to as ‘pushbroom’ observations in reference to this motion. 

The targeted mode maps a small region with the complete hyperspectral resolution of the instrument 

and a spatial resolution of 15-19 m/pixel. The gimbal is employed to scan a single area without apparent 

motion distortion (Murchie et al., 2007, 2009). The broad global mineralogy constrained by multispectral 

mapping observations helps identify regions of interest for targeted hyperspectral observations.  

3.1.2 Spectral Features of Martian Surface Mineralogy Detectable By CRISM 

Diagnostic absorption bands (e.g., Figure 20) arising from the processes discussed in Section 1.2 

are used to identify mineral classes and species on Mars. The absorption features discussed in this 

section are widely used to constrain martian surface mineralogy from orbit and necessary to the 

interpretation of this work’s result. 

SWIR observation reveals that Mars’ igneous crustal rocks are composed of pyroxene, olivine 

(e.g., Breuer et al., 1993; Halliday et al., 2001; Nimmo and Tanaka, 2005) and feldspars that have been 
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identified by thermal IR spectroscopy (e.g., Christensen et al., 2000). Olivines exhibit broad absorption 

bands in the 1000 nm region (Figure 20b), varying from 105001080 nm with composition from Fo90 to 

Fo10 (e.g., King and Ridley, 1987; Clark et al., 1999). Pyroxenes exhibit broad absorption bands in the 

1000 nm and 2000 nm regions (Figure 20b) that vary in exact band position with pyroxene composition 

(e.g., Cloutis and Gaffey, 1991).  

Mineral-bound water and hydroxyl can be determined by diagnostic vibrational bands: a 1400 

nm OH stretching overtone and a combination of OH stretching with H-O-H bending resulting in a 

‘doublet’ band near 1900 nm (Figure 20a). Thus, the presence of a 1400 nm band alone indicates that 

only OH is present and the presence of a 1900 nm band indicates that water is also present. The 

strength of these bands is a function of the amount of H2O and OH present (e.g., Clark et al., 1999). 

Sulfate minerals exist in numerous Hesperian-aged deposits on Mars (e.g., Bibring et al., 2006; 

Ehlmann and Edwards, 2014). Fe(II)-sulfates exhibit bands in the 900-1200 nm range that appear similar 

to the broad 1000 nm bands of olivines and pyroxenes (e.g., Cloutis et al., 2006), however Fe(II) sulfates 

are also typically hydrated and show additional diagnostic bands. Most hydrated sulfates display bands 

in the 2100-2700 nm region (Figure 20a), particularly near 2550 nm and 2100 nm (e.g., Bishop and 

Murad, 2005; Cloutis et al., 2006). Jarosite and alunite show bands near 1850 nm, 2270 nm, and 2630 

nm for jarosite and 1760 nm, 2170 nm, and 2530 nm for alunite (e.g., Bishop and Murad, 2005).  

Phyllosilicates are prevalent in layered sedimentary stratigraphy on Mars (e.g., Grotzinger and 

Milliken, 2012), in some massive, nonlayered deposits (e.g., Poulet et al., 2005; Bibring et al., 2006; 

Bishop et al., 2008; Ehlmann and Edwards, 2014), and can be constrained by absorption bands in the 

2200-2300 nm region (Figure 20a). Hydrated Fe/Mg smectites show absorptions near 2280-2300 nm, in 

addition to hydration bands at 1400 and 1900 nm (e.g., Frost et al., 2002). Illite and muscovite show 

bands at 1400 nm, 2200 nm, and 2350nm (e.g., Clark et al., 1990). Montmorillonite is common in 
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numerous deposits and exhibits prominent bands near 1900 nm and 2200 nm, with a minor 1400 nm 

band (e.g., Poulet et al., 2005). A doublet band near 2200 nm occurring with a 1400 nm band is 

indicative of kaolinite (e.g., Bishop et al., 2008) and Fe-bearing chlorites show a band near 2340 nm and 

minor bands at 2250 nm and 1900 nm (e.g., Bishop et al., 2002).  

Carbonates are widespread in martian dust (Bandfield et al., 2003) and are commonly 

associated with olivine (e.g., Ehlmann et al., 2008b; Carter and Poulet, 2012; Niles et al., 2013; Goudge 

et al., 2015). Calcite and dolomite are known to exhibit numerous absorption features in the 1600 – 

2550 nm region (Figure 20a) and broad doublet bands near 1200 nm (e.g., Gaffey, 1985). Carbonates 

also display diagnostic bands near 2300 and 2500 nm that vary with cation composition (e.g., King et al., 

2014) – band position shifts longward from Mg- → Fe- → Ca-carbonate (e.g., King et al., 2014). 

3.1.4 Mars 2020 Candidate Landing Sites 

Investigating ancient environments with orbital spectroscopy is an important aspect of Mars 

rover landing site selection and mineral identification aids our understanding of past chemical and 

aqueous conditions. The MSL landing site selection process involved five community workshops during 

which sites were proposed, ranked, and incrementally eliminated (e.g., Grant et al., 2011). Mineralogy 

assessed from orbit played a key role in understanding candidate sites’ geologic diversity, potential 

habitability, and potential for biosignature preservation (e.g., Grant et al., 2011).  

The selection of landing sites for the 2020 mission will proceed in a similar fashion. As of now, 

three sites are being evaluated to serve as Mars-2020’s field area (Figure 22): the Columbia Hills of 

Gusev Crater, NE Syrtis Major, and Jezero Crater. CRISM hyperspectral images, particularly SWIR 

observations, have played a key role in mineralogical characterization of these sites. 

Jezero Crater, a 49 km diameter impact crater in the located within the NE Syrtis region (Figure 

22), is an ancient crater lake environment featuring two Noachian-aged inlet channels and an outlet 
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channel extending from a breached section of the northeast crater rim (e.g., Fassett and Head, 2005; 

Schon et al., 2012; Goudge et al., 2017). The Jezero crater watershed contains over ~640 km of drainage 

channels within a ~15,000 km2 catchment area (Schon et al., 2012) that drove lake depths to exceed 

~450 m before crater breach occurred (Fassett and Head, 2005). Two depositional fans are preserved in 

the crater (Fassett and Head, 2005; Goudge et al., 2017) – one at the mouth of each inlet channel. The 

western fan is more clearly defined than the heavily eroded northern fan. CRISM SWIR observations 

have detected Fe/Mg-smectites on both deltaic units, olivine variably altered to Mg-carbonate on the 

northern delta and in terrain west of the western delta, and pyroxenes throughout the region (e.g., 

Goudge et al., 2015; Salvatore et al., 2017) Alteration minerals in these deposits are interpreted to be 

detrital, having been eroded and delivered from the NE Syrtis region via the large Jezero crater 

watershed (e.g., Ehlmann et al., 2008b, 2008a, 2009).  Covering most of the crater floor and embaying 

deltaic landforms, a spectrally-bland volcanic unit caps the crater’s regional stratigraphy. Jezero Crater 

offers a large, potentially Noachian-aged, open-basin lake environment featuring two large deltaic fans 

that transported Syrtis Major phyllosilicates and olivine/Mg-carbonate assemblages as a potential Mars 

2020 landing site.  

Syrtis Major Planum (Figure 23) is a low-albedo region of Mars west of the 1900 km Noachian-

aged Isidis basin (e.g., Nimmo and Tanaka, 2005). Syrtis Major is interpreted to be a volcanic province 

related to the Isidis-forming impact event (e.g., Hiesinger and Head, 2004). As identified by CRISM SWIR 

observations, NE Syrtis Major is characterized by two main regional units: an overlying olivine unit and 

an underlying low-Ca pyroxene unit (e.g., Ehlmann and Mustard, 2012; Bramble et al., 2017). Clay-rich 

deposits (predominantly Fe/Mg-smectites, with some Al-phyllosilicates) are interbedded with the low-

Ca pyroxene material in some exposures. The olivine unit exhibits variable alteration to Mg-carbonate 

and serpentine. Exposed stratigraphy at NE Syrtis spans a large portion of Mars history (e.g., Mustard et 

al., 2010; Ehlmann and Mustard, 2012; Bramble et al., 2017): an early-Hesperian lava capping unit 



43 
 

underlain by layered sulfate material comprised of jarosite and polyhydrated sulfates, then the 

olivine/Mg-carbonate unit, and finally, the early Noachian basement composed of low-Ca pyroxene and 

clays. This impressive stratigraphy spanning the Noachian-Hesperian transition offers temporal 

interpretation of deposition and a diverse alteration mineralogy – potentially due to extensive surface 

interaction of volcanic material with hydrothermally-heated sulfur-rich waters (e.g., Ehlmann and 

Mustard, 2012; Bramble et al., 2017) – for Mars-2020 to explore. 

The Columbia Hills landing site is located within Gusev crater and is the landing site of MER Spirit 

(2004-2011) (Figure 24). Gusev is a 166 km Noachian-aged impact crater in the Aeolis quadrangle 

(Squyres et al., 2004a, 2004b, 2006; Arvidson et al., 2006). The 700km outflow channel Ma’adim Vallis – 

one of the largest outflow channels on the planet – extends from the southern rim of the crater (e.g., 

Cabrol et al., 1998; Irwin et al., 2002). Much of the basin floor is Hesperian-aged volcanic plains of 

olivine and pyroxene (e.g., Golombek et al., 2006; McSween et al., 2006) and the Columbia Hills are 

likely remnants of the central peak of the impact basin that have undergone extensive erosion (e.g., 

McCoy et al., 2008; van Kan Parker et al., 2010). The dark volcanic plains surrounding the Columbia Hills 

are subject to recurrent dust devil activity that leaves “trails” (curvilinear, low-albedo features where 

dust has been removed) patterning the landscape (Greeley et al., 2006).  

Most knowledge of the Columbia Hills mineralogy comes from the discoveries of the Spirit rover. 

While CRISM SWIR has been a valuable tool for constraining mineralogy at other regions, much of the 

Columbia Hills is partially to completely obscured by a millimeters thick coating of dust (e.g., Arvidson et 

al., 2006) that has hindered mineral detections from orbit. Signatures of Mg-carbonate and Al/Fe/Mg-

phyllosilicates have been identified in CRISM SWIR (Carter and Poulet, 2012), but are limited spatially. 

During Spirit’s mission, “fresh” (nearly dust-free) soils were uncovered by dragging of Spirit’s inoperative 

right, front wheel (e.g., Arvidson et al., 2006) and analyses revealed Mg/Fe/Ca-carbonates, 

phyllosilicates, hydrated silica, hydrated sulfates, ferric sulfates, Ca/Fe(III)-phosphates, nanophase ferric-
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oxides, hematite, halite, and allophane (Ming et al., 2006; Clark et al., 2007; Lane et al., 2008; Wang et 

al., 2008; Rice et al., 2010).  

The Columbia Hills also harbors “Home Plate”, a plateau composed of partially-altered basaltic 

pyroclastic material that was the subject of substantial investigation by Spirit (e.g., Squyres et al., 2007; 

Arvidson et al., 2008; Schmidt et al., 2008). The geomorphology and mineralogy of the Columbia Hills 

are consistent with alteration of mafic crust or volcanoclastic material by near-neutral hot springs, acid-

sulfate fumaroles, or groundwater brines (e.g., Schmidt et al., 2008; Yen et al., 2008). Opaline silica 

deposits at Home Plate are morphologically and spectrally similar to biologically-mediated silica material 

in the hydrothermal region of El Tatio, Chile (Ruff and Farmer, 2016); these compelling similarities have 

spurred questions about the past habitability and biosignature preservation potential of the ancient 

hydrothermal system within the Columbia Hills. 

3.1.3 CRISM Imaging Spectroscopy Analysis 

To aid in landing site selection and the future Mastcam-Z investigation, this work examines 

CRISM SWIR and VNIR spectral observations of each site. Apart from the Columbia Hills (investigated by 

Spirit’s Pancam), the mineralogy of these sites has been characterized from orbit by CRISM SWIR 

exclusively (e.g. Ehlmann and Mustard, 2012; Goudge et al., 2015). There has been no orbital VNIR study 

of any landing site. This work aims to develop spectral parameters that can distinguish key 

geologic/mineralogic units in CRISM imagery that have been convolved to simulated Mastcam-Z 

bandpasses for each landing site. CRISM SWIR is used to determine the mineralogy at each site and 

Mastcam-Z convolved CRISM VNIR is then explored to develop spectral parameters that the future 

Mars-2020 rover can best use to distinguish these units. Two key hypotheses are addressed: 

1) Mastcam-Z VNIR parameters can be developed from convolved CRISM 

observations that distinguish the prominent geologic/mineralogic units at each landing site. 
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2) VNIR spectra from orbit show sensitivity to prominent geologic features, but the 

primary control on VNIR spectral variability from orbit is the distribution of iron-oxide-rich dust. 

3.2 Methods 

Representative CRISM observations were acquired for each candidate site from the NASA 

Planetary Data Server (Table 7 and Figure 25). CRISM observations were selected to fit three specific 

criteria: they were used in previously published work, they included the main units/deposits supporting 

candidacy of the site, and they included material that is either within proposed site landing ellipses or 

part of a postulated “drive-to” region (regions outside of the ellipse that are compelling enough to 

warrant extended travel after the rover has landed). Two CRISM observations were used for the 

Columbia Hills due to significant the seasonal variations in dust activity in the region revealed by Spirit 

(Lemmon et al., 2015). Lemmon et al. (2015) corroborates broader work determining that martian dust 

lifting varies with solar longitude (Ls) – the Mars-Sun angle measured from the northern hemisphere 

used to describe martian seasons (Murphy, 1999). The use of two Columbia Hills observations serves to 

document spectral changes that may occur between seasons due to fluctuating dust conditions. For NE 

Syrtis, three observations were selected. Although the regional geology is well documented, the geology 

of the landing ellipse has yet to be fully characterized. Two observations were selected covering the 

landing ellipse to test spectral parameters developed at the observation south of the ellipse in regions 

where mineralogic and geologic units have been extensively studied in the literature. 

Corresponding CRISM SWIR and VNIR observations for each Observation ID were prepared for 

analysis using the CRISM Analysis Toolkit (CAT) plugin for ENVI (Environment for Visualizing Images). CAT 

is a suite of ENVI and IDL tools designed by the CRISM science team and Brown University to automate 

the standard methods used to prepare CRISM data for more sophisticated spectral analysis. In CAT, first, 

a photometric correction was applied to correct the sunlight incidence angle in the scene 

(SpectrumOriginal/cosƟ). A ‘volcano-scan’ correction was then applied to remove spectral contributions 
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from the martian atmosphere by dividing the spectral data in the scene by spectra acquired over a 

region above which there is no atmosphere: the summit of Olympus Mons. The Pelkley 2-Wavelength 

Volcano Scan, the most recently developed volcano scan method, was used (McGuire et al., 2009). 

Columnar bias in spectral data was smoothed out using the ‘Remove Stripes’ tool. CRISM SWIR summary 

parameters are notoriously noisy, bearing horizontal or vertical ‘striping’ that skews histograms. While 

the CRISM Analysis Toolkit contains a variety of tools for mitigating this striping and MTRDR (Map-

Projected Targeted Reduced Data Records) observations released by the CRISM team undergo a 

sophisticated data cleaning procedure, not all spectral striping can be removed. Spectral striping is 

evident in all CRISM SWIR summary parameters present in this study despite MTRDR observations being 

used. These effects are primarily constrained to summary parameters and do not significantly affect the 

interpretations of this work. Lastly, a map projection was applied using the corresponding Derived Data 

Records (DDR) for each scene. DDR files contain observational conditions/locations allowing for quick 

map projection to the GCS_Mars_2000 coordinate system. Processed imagery was exported as 3-

dimensional floating-point arrays for further manipulation in IDL. The latest CRISM summary products 

(Viviano-Beck et al., 2014) were calculated for each observation (Table 8) and exported as 3-dimensional 

arrays. 

CRISM VNIR observations were convolved to Mastcam-Z bandpass resolution following the 

methodology of Bell et al., 2006. Transmission profiles for Mastcam-Z filters are not yet characterized; 

Mastcam bandpasses were used for this convolution, with the 805 nm filter being duplicated and shifted 

to 975 and 600 nm to simulate the new Mastcam-Z filter positions (Figure 3). These bandpasses were 

used to interpolate reflectance values at each band and the remainder of the CRISM VNIR data was 

discarded, resulting in 3-dimensional arrays with data only at wavelengths for the theoretical Mastcam-Z 

filters.  
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MERSpect, an IDL-based operations package developed by the MER Pancam team for the 

manipulation of multispectral image data, and currently maintained by the MSL Mastcam team, was 

used to analyze the CRISM observations. CRISM SWIR summary products were used to determine 

spectral endmembers. CRISM SWIR parameters exist for many materials – some not relevant to this 

study, such as H2O and CO2 ices. Because no surface ice is observed at these sites, these, and other 

irrelevant, summary parameters were rejected as geologically implausible. After reasonable spectral 

endmembers were determined, individual reflectance spectra were acquired from representative 

endmember regions in MERSpect by extracting a single spectrum average of all pixels within a polygonal 

selection.  

In CRISM data analysis, spectra of interest are often divided by a ‘denominator’ spectrum 

(Figure 26) that represents a bulk composition the user wishes to remove from the spectra of a region of 

interest (Murchie et al., 2009). Due to the similarity of martian terrains, spectra that are not processed 

via this ‘ratio method’ can look largely similar and diagnostic absorption bands may not be visible. 

Dividing a spectrum of interest by some denominator spectrum to tease out minute spectral differences 

is a staple technique in CRISM data analysis, but this method is not without potential for error. Dividing 

spectra from two regions containing starkly diverse alteration mineralogies could produce spectra 

showing differences that could be misinterpreted for mineral identification. Dividing two spectra that 

are too spectrally similar could produce data with no distinct bands at all. During this study, I was careful 

to select denominator spectra that represented a composition likely to be found throughout the entire 

study region, but not of importance for constraining and mapping alteration mineralogy. For the 

Columbia Hills, denominator spectra came from the broad volcanic plains in regions largely free of dust 

devil tracks and small impact craters. In Jezero Crater denominator spectra came from the crater floor. 

And in NE Syrtis denominator spectra came from the abundant dark dune fields throughout the region. 
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Extracted spectra were characterized to determine the wavelength position of major absorption 

bands and compared to terrestrial and martian analog mineral spectra from the WWU Spectral 

Database and ‘Minerals Identified through CRISM Analysis’ (MICA) spectral libraries, respectively. The 

MICA spectral library contains confirmed CRISM spectra for a variety of minerals on the martian surface 

(Viviano-Beck et al., 2014). Mineral detections were also compared to results of previous work to 

corroborate findings. CRISM SWIR data is prone to significant noise (causes of which will be discussed in 

section 3.4.4) and common practice is to remove data (Figure 26) from exceptionally noisy regions 

(often 1000-1200 nm and 1600-1700 nm in this work) in otherwise telling CRISM spectra (e.g., Ehlmann 

and Mustard 2012; Goudge et al., 2015). The 1600 nm region is often noisy due to an instrument filter 

boundary at ~1650 nm (Murche et al., 2009). All CRISM SWIR spectra presented in this work exclude 

anomalous spectral spikes. 

In Mastcam-Z convolved data, band depths and band ratios were used to identify spectral 

parameters that highlighted key mineralogic and geologic units at each site. Because rock composition, 

dust contamination, and light conditions vary between regions, spectral parameters were found for each 

scene independently. A trial and error process was employed to identify spectral parameters showing 

correlation to geomorphic units of interest. In many regions, spectral parameters were found that did 

not correlate to the geomorphology of a region and were discarded. To consider a spectral parameter 

useful, the parameter needed to correspond to rock units that could reasonably be identified by a 

traversing rover. Spectral variability between the Mastcam-Z VNIR filters is somewhat limited and 

several ‘endmember’ parameter groups consisting of different filter combinations highlighted similar 

geologic units. However, parameter groups varied significantly in how completely the prominent 

geologic units were highlighted. The parameters shown in this work highlighted the most terrain of their 

corresponding geologic units.  
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Standard RGB composites were made using the RGB Bayer filter bands at 640 nm, 554 nm, and 

495 nm to simulate real-color imagery. However, overlapping band coverage in multi/hyperspectral 

imagers can render minute color intensity differences between bands difficult to discern. To accentuate 

minute color differences, decorrelation stretches (e.g., Gillespie et al., 1986) were created for each 

scene to document overall color variability in the left and right eyes of Mastcam-Z, respectively. 

Decorrelation stretches remove interband coloration correlation and enhance color differences by 

calculating the correlation matrix of selected bands (also referred to as the ‘rotation matrix’), calculating 

‘stretching vectors’ from the reciprocal of the square-root of correlation matrix eigenvalues, and 

multiplying these stretching vectors by the rotation matrix (Alley, 1999). These significantly exaggerated 

RGB color images can then be used to determine where minute spectral differences occur in regions 

that are seemingly nonunique in standard VNIR imagery. Three bands are required for each stretch and 

were chosen to span the wavelength coverage of each eye. The 805 nm stereo band shared by both eyes 

was only applied to the decorrelation stretch for the right eye. The right-eye decorrelation stretch was 

generated using the 805 nm, 908 nm, and 1013 nm filters. The left-eye decorrelation stretch was 

generated using the 445 nm, 600 nm, and 751nm bands.  

Mastcam-Z spectral parameters were exported from MERSpect as .TIFF rasters and imported 

into ArcGIS. These rasters were geoferenced and mapped onto CTX basemaps to visualize relationships 

between spectral parameters and geomorphology, creating Mastcam-Z parameter ‘unit maps.’ High-

resolution digital elevation models made from HiRISE stereo images (e.g., Kirk et al., 2008) and were 

used to create 3D perspective models that RGB composites and Mastcam-Z parameter unit maps could 

be mapped on to create simulated Mastcam-Z reconnaissance imagery.  
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3.3 Mars-2020 Candidate Landing Sites: Results and Discussion 

Mastcam-Z parameters, CRISM SWIR parameter mapping, and spectral analysis were done for 

each landing site independently. Large differences in spectral sensitivity and mineral distribution 

between landing sites warranted the development of parameters for each site individually. Given this 

approach, this section presents and discusses results for each landing site separately before a discussion 

of broader implications relevant to the results of all sites follows in Section 3.4. Maps of CRISM and 

Mastcam-Z parameters (Table 9) and the properties of associated reflectance spectra are discussed in 

this section. We do not consider these suggested Mastcam-Z parameters to correspond to a specific 

mineralogy, but they do correspond to rocks bearing key minerals in some cases and do distinguish 

important geologic units. 

3.3.1 Jezero Crater Results  

Seven regions of interest were investigated and chosen for spectra extraction in Jezero Crater 

(Figure 27): (1) Low-albedo material at the front of the western delta, (2) channelized, high-albedo 

terrain on the southwestern portion of the western delta, (3) a curved, elongate unit determined by 

Goudge et al. (2015) to be exposed remnants of the crater floor, (4) portions of the northern delta, (5) 

mottled terrain north of the crater rim, (6) hilly terrain north of the western delta, and (7) high-albedo 

hill units within the proposed landing ellipse. 

The parameters BD554 (554 nm band depth), R600/R805 (ratio of reflectance at 600 nm and 805 

nm), and R805/R908 (ratio of reflectance at 805 nm and 908 nm) were found to best correspond to the 

regions of interest. As revealed by Mastcam-Z parameter maps (Figure 28a,c,e; 29d), most of the 

western delta (excluding craters and the low-albedo delta front; region 2), the hilly and mottled terrain 

to the north (regions 5 and 6), portions of the northern delta and surrounding terrain (region 4), the 

landing ellipse hills (region 7), and hills to the southwest are distinguished by BD554. R600/R805corresponds 
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to the exposed crater floor unit and surrounding terrain, the western delta front, portions of the 

northern delta, and the crater rim (Figure 28a,c,e; 29d). R805/R908 highlights similar terrain as R600/R805, 

but also highlights terrain encircling the landing ellipse hills, in portions of the hilly terrain north of the 

western delta, numerous small impact craters, and at the contact between the western fan and the 

surrounding basin floor (Figure 28a,c,e; 29d). RGB color and decorrelation stretches (Figure 29a,b,c) 

corroborate trends observed in Mastcam-Z parameter maps showing sedimentary units and the basin 

floor/dark regions of the western fan as distinct endmembers.  

CRISM SWIR summary parameters BD1900_2 (CRISM SWIR parameter sensitive to mineral-

bound H2O), D2300 (CRISM SWIR parameter sensitive to Fe/Mg-smectites), and MIN2295_2480 (CRISM 

SWIR parameter sensitive to Mg-carbonates) were mapped (Figure 28b,d,f) to determine the 

distribution of alteration minerals and compare the result to minerals previously found in Jezero Crater. 

Spectral signatures consistent with Mg-carbonate exist in the hilly terrain north of the western delta and 

extend south along the western edge of the CRISM observation. Mg-carbonate signatures are present in 

the northern fan and mottled terrain, as well (Figure 28d; 29e). Regions mapped orange/yellow indicate 

the presence of signatures consistent with both hydration (BD1900_2) and Fe/Mg-bearing phyllosilicates 

(D2300). These signatures can be found on the northern and southern ends of the western delta, the 

mottled terrain, northern delta, and landing ellipse hills (Figure 28b,d,f; Figure 29e). Limited hydration 

signatures are also present in the exposed crater floor unit and hills southward (Figure 29e). Mafic 

parameter mapping (Figure 29f) reveals abundant olivine and pyroxenes. Indicated by greenish-yellow 

to orange color, high- and low-calcium pyroxenes are concentrated in basin floor material embaying the 

front of the western delta and the southern reaches of the northern delta, in the crater rim, in hills to 

the southwest, within small impact craters to the northwest, and embaying the exposed crater floor unit 

(Figure 29f). Low-Ca pyroxene also dominates much of the channelized regions of the western delta 

(Figure 29f). Olivine detections are abundant in the northern delta, portions of the western delta, the 
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hilly terrain north of the western delta, portions of the exposed crater floor unit, and in hills to the south 

(Figure 29f).  

In CRISM SWIR spectra (Figure 30), the low-albedo material at the western fan exhibits a 

spectrum with three notable absorption bands centered near 1370 nm, 1970 nm, and 2300 nm. The 

spectrum for the channelized material on the western delta also shows three notable absorption 

features: a doublet band 1915/2000 nm, a band at 2300 nm, and a small band at 2530 nm. The exposed 

crater floor spectrum shows a triplet band centered at 1930/1994/2060 nm, a shallow, broad band 

spanning 2170-2350 nm, a small band at 2555 nm, and a steep, positive slope spanning 1250-1800 nm. 

Mottled terrain, hilly terrain, and northern fan spectra bear several key features: a prominent increase 

in reflectance from 1250-1600 nm, a doublet band at 1940/1995 nm (1920/1995 nm for the northern 

delta), and two bands at 2310 nm and 2500 nm. The hill units within the landing ellipse display a small 

band at 1450 nm and prominent absorptions near 1950 nm and 2330 nm. Apart from the exposed crater 

floor unit and low-albedo western delta front, VNIR spectra (Figure 31) slope positively toward longer 

wavelengths. The western delta front spectrum exhibits a broad absorption longward of 530 nm. The 

northern delta, high-albedo hills, hilly terrain, mottled terrain, and channelized western delta region 

show absorption bands in MCZ VNIR spanning 445-676 nm, centered between 527 nm and 554 nm.  

3.3.2 Jezero Crater Discussion 

Parameter mapping of CRISM SWIR summary products at Jezero Crater revealed widespread 

alteration minerals and hydrated material throughout the region, consistent with previous studies (e.g., 

Goudge et al., 2014; Salvatore et al., 2017). Mg-carbonate signatures are abundant northwest of the 

western delta and occur in some regions of the northern delta (region 4), the mottled terrain north of 

the crater rim (region 5), and regions along the western edge of the observation. Fe/Mg-bearing 

phyllosilicate signatures dominate the western fan (regions 1 and 2) and the hill units (region 7) within 
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the landing ellipse. Hydration is detected throughout these regions. This mapping suggests that Jezero 

Crater is rich in alteration minerals that are clearly discernable from orbit and should presumably 

present little challenge to ground-based instruments able to investigate finer-scale occurrences.   

Spectra from the western delta, the channelized high-albedo region (region 2) and low-albedo 

material at the delta front (region 1), exhibit notable absorption bands. The 1915 nm, 2300 nm, and 

2530 nm bands in the channelized region spectrum correspond to the diagnostic band locations of MICA 

Mg-Carbonate and roughly align with RELAB magnesite. The wide 1400 nm O-H stretching overtone 

(Hunt, 1977; Clark et al., 1999) and 1900 nm hydration bands in both the channelized and low-albedo 

regions also correspond to wide bands in this region for USGS Saponite. USGS Saponite is used only as a 

proxy for Fe/Mg-smectites, which exhibit band position differences that can be >10 nm. This work does 

not claim any species to be saponite and merely provides a useful comparison spectrum helping 

distinguish Fe/Mg-bearing smectites from other broad classes. The low-albedo region shows a 2315 nm 

band consistent with USGS Saponite and characteristic of Fe/Mg-bearing smectites which bear 

diagnostic bands from 2280-2320 nm (e.g., Clark et al., 1990). Channelized western delta terrain 

contains potential Mg-carbonate and Fe/Mg smectite while the low-albedo material on the delta front 

may contain Fe/Mg smectites.  

The exposed crater floor unit (region 3) represents and altered olivine-rich unit. Spectra from 

this unit show a steep increase in reflectance from 1250-1600 nm, possibly resulting from Fe2+ electronic 

transitions that produce a broad absorption centered near 1000 nm in olivines (e.g., King and Ridley, 

1987; Kong et al., 2011). A triplet hydration band at 1900-2000 nm, a shallow, broad band spanning 

2170-2350 nm, and a wide band at 2550 nm indicate some alteration phases are present. Concise 

discrimination of alteration species is not possible given the wide nature of these bands, but the 

presence of hydration and bands at wavelengths longward of 1600 nm in an olivine-like spectrum 

indicates some degree of alteration in an olivine-rich unit. 
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Rocks to the north are dominated by Mg-carbonate. Spectra from the northern delta (region 4), 

the mottled terrain (region 5), and the hilly terrain (region 6) exhibit a clear 1920-1940/1995 nm doublet 

hydration band and C-O stretching pairs near 2310 and 2500 nm. All three spectra show significant 

reflectance increases from 1250-1600 nm, possibly related to the broad Fe2+ 1000 nm band found in 

olivine. I interpret these units to represent olivine and Mg-carbonate alteration assemblages. 

Within the landing ellipse, the high-albedo hills (region 7) show a minor O-H stretching overtone 

at 1450 nm, a broad hydration band centered at 1950 nm, and an Fe/Mg smectite absorption near 2320 

nm. Band positions correspond with the USGS saponite comparison spectrum and, along with CRISM 

SWIR parameter maps, suggests Fe/Mg phyllosilicates dominate the mineralogy of this unit. 

It is important to note that Mars conditions also can reduce the amplitude of certain diagnostic 

SWIR bands. OH/H2O bands can appear significantly shallow or entirely absent in CRISM spectra, 

hindering accurate mineralogical detections and prompting researchers to often abandon use of the 

1400 nm spectral band as a diagnostic tool. In Mars-like ambient conditions dehydrated OH/H2O-bearing 

minerals lose diagnostic 1400/1900 nm hydration bands and upon rehydration these spectral signatures 

either remain lost or return significantly weaker (Morris et al., 2010, 2011). Clay mineral dehydration in 

Mars-like conditions collapses phyllosilicate interlayers, inhibiting rehydration and potentially stunting 

the reappearance of diagnostic hydration bands (Morris et al., 2010). Near-1400 nm OH bands are weak 

and/or non-existent in the spectra of phyllosilicate-bearing regions in Jezero Crater, showing the 

occurrence of this problem. 

VNIR spectra show fewer spectral features than SWIR spectra. At Jezero Crater, most VNIR 

spectra are more reflective in red wavelengths than blue-green, apart from the low-albedo material at 

the western delta front. The low-albedo western delta material exhibits a broad absorption longward of 

530 nm that may be the result of olivine Fe2+ transitions. The mottled and hilly terrain north of the 
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western delta, northern delta, channelized western delta terrain, and high-albedo hills in the landing 

ellipse show absorption features centered between 527 nm and 554 nm. Fe3+ transitions can give rise to 

a band near 530 nm (e.g., Kong et al., 2011). Jezero Crater rocks are iron-bearing with Fe3+ in regions 

associated with alteration minerals and possible Fe2+ associated with the darker regions of the western 

delta, potentially indicating an olivine component.  

Mastcam-Z parameters at Jezero Crater distinguish sedimentary rock rich in H2O, Mg-carbonate 

and/or Fe/Mg-smectites from regions darker in color and potentially more mafic. BD554 highlights 

regions of the western delta, hills within the landing ellipse, and altered rocks to the north that exhibit 

signatures of hydration, Fe/Mg-smectites, and Mg-carbonate. R600/R805 highlights regions showing 

spectral signatures related to olivine in CRISM SWIR parameter maps. R805/R908 highlights olivine-bearing 

regions and shows some sensitivity to Mg-carbonate bearing terrain northwest of the western delta and 

in the northern delta.  

These parameters show significant spectral variability among geologic units in 3D-simulated 

reconnaissance images (Figure 32). BD554 is shown distinguishing altered rock to the north in angle #3 

and the landing ellipse hills in angle #2. Angle #4 shows the western delta front highlighted by both 

R600/R805 and R805/R908. Angle #1 shows BD554 sensitivity to altered rock in the north and R805/R908 

sensitivity to the Mg-carbonate unit northwest of the western delta. 

3.3.3 NE Syrtis Results 

Five regions of interest were investigated in the NE Syrtis HRLB8C2 scene: (1) a high-albedo star-

shaped unit, (2) nodular units observed in the cliff face, (3) a triangular shaped plateau with small ridges 

on its top, (4) high-albedo rugged terrain, and (5) an elongate unit composed of ridge-forming rocks, and 

(Figure 33). 
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CRISM SWIR parameter mapping indicate several areas that contain spectral signatures 

consistent with hydrated sulfates (Figure 34b,d; 35e). These areas include the star-shaped unit (region 

2), nodular units within the cliff face (region 1), and portions of the high-albedo rugged unit to the north 

(region 4). Signatures consistent with Fe/Mg-bearing phyllosilicates and Mg-carbonates often occur 

together (Figure 34b,d,f; 35e) and are correlated to olivine-bearing units in the mafic mineralogy map 

(Figure 35f), notably on the central plateau-forming units (region 3) and the ridge-forming terrain to the 

east and southeast. Mafic summary parameters reveal olivine largely in the plateau-forming units 

(including the triangular plateau; region 3) in the center of the observation, the ridge-forming terrain to 

the east and southeast (including the elongate ridged unit; region 5), and terrain to the north of the star-

shaped unit (Figure 35f). High-Ca pyroxene-bearing material embays olivine-bearing units in numerous 

locations (Figure 35f). Low-Ca pyroxene is noted on the large southwest cliff-forming unit and in rugged 

terrain to the north (Figure 35f). Mastcam-Z parameters (Figure 34a,c,e; Figure 35d) correlate with 

specific geologic units highlighted by CRISM SWIR summary parameters (Figure 34b,d,f; 35e). The 

parameters R975/R908 (ratio of reflectance at 975 nm and 908 nm), R805/R975 (ratio of reflectance at 805 

nm and 975 nm), and R751/R445 (ratio of reflectance at 751 nm and 445 nm) were found to best 

correspond to the regions of interest. R975/R908 corresponds well to regions highlighted by SINDEX2 

(CRISM parameter sensitive to sulfate minerals): the star-shaped unit (region 2), nodular units (region 1), 

high-albedo cliff-forming units to the northwest, and portions (region 4) of the northern rugged unit 

(Figure 34a/c and Figure 35d). R805/R975 shows correlation to terrain highlighted by OLINDEX3 (CRISM 

parameter sensitive to olivine) including the central plateaus units (region 3), terrain to the northwest, 

and some ridge-forming units to the east (region 5) and southeast (Figure 34a,c,e; 35d). R751/R445 

corresponds to the oval-shaped unit to the east of the star-shaped unit, the elongate ridged feature 

(region 5), and various ridged regions to the north (Figure 35a,c,e; 35d). 
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CRISM SWIR spectra (Figure 36) of these units show several distinct absorption bands. The 

nodular unit spectrum shows a small absorption band near 1460 nm, a doublet band at 1950/1995 nm, 

an abrupt flattening from ~2000-2300 nm, and a subsequent downslope. The star-shaped feature shows 

a band at 1940 nm and a wide band from 2140-2350 nm; reflectance within this band decreases toward 

2350 nm. Three distinct bands at 1915nm, 2290 nm, and 2500 nm exist within the triangular plateau 

spectrum. The rugged high-albedo feature bears notable absorptions at 1415 nm, 1675 nm, a doublet at 

1930/1995 nm, 2210 nm, and 2395 nm, with an abrupt drop off in reflectance occurring thereafter. The 

elongate ridged unit shows three bands at 1950 nm, 2300 nm, a wide band spanning 2400-2560 nm, 

centered near 2510 nm, and a potential absorption near 2100 nm, although this feature is exceptionally 

shallow. CRISM VNIR/MCZ spectra (Figure 37) exhibit fewer spectral features than SWIR, but these 

features are notable. The rugged high-albedo terrain spectrum is roughly flat; however, an absorption 

band centered near 875 nm is noted. The nodular and star-shaped units exhibit VNIR spectra sloping 

positively toward longer wavelengths with broad absorptions centered near 875 nm. Spectra for the 

triangular plateau and northern rugged unit slope positively from 450-875 nm and 450-750 nm, 

respectively, before a drop-off in reflectance toward longer wavelengths.  

3.3.4 NE Syrtis Discussion 

Numerous diagnostic features are observed in NE Syrtis SWIR spectra (Figure 36) that are 

consistent with mineralogy previously described in the region (e.g. Ehlmann and Mustard 2012). The 

high-albedo star shaped feature (region 2) shows absorption bands in CRISM SWIR correlating to bands 

observed in a USGS jarosite laboratory spectrum (Figure 36): a 1940 nm hydration band and a wide band 

spanning 2140-2350 nm within which reflectance decreases toward 2350 nm. This wide band is the 

likely remnants of a doublet feature within this region associated with Fe-O-H vibration (e.g., Crowley et 

al., 2003). Showing a hydration doublet at 1950/1995 nm, an O-H stretching band near 1460 nm, and a 

roughly flat spectrum from ~2000-23000 nm, the nodular cliff face unit (region 1) exhibits a spectrum 
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resembling the MICA polyhydrated sulfate example. These two units associate with the SINDEX2 CRISM 

SWIR parameter for sulfate signatures and likely represent jarosite-bearing and polyhydrated sulfate-

bearing rock. These sulfate deposits do not exhibit 1400 nm hydration bands that are present in analog 

spectra. 

The ridged triangular plateau (region 3) shows a hydration band at 1915 nm and a C-O stretching 

pair at 2290/2500 nm and resembles the MICA Mg-carbonate and RELAB Mg-carbonate spectra (Figure 

36). CRISM SWIR parameter mapping shows OLINDEX3 correlation in this plateau, corroborated by a 

significant reflectance increase from 1250-1600 nm associated with Fe2+ electronic processes. This unit 

likely consists of olivine occurring with Mg-carbonate. 

The elongate ridged unit (region 5) shows a hydration band near 1950 nm and bands centered 

near 2300 nm and 2510 nm, likely the result of C-O stretching (Figure 36). A shallow, potential dip in 

absorption occurs at around 2100 nm. Weak bands in the 2100 nm region are diagnostic of serpentine, 

which also bears bands near 2320 nm and 2510 caused by Mg-OH/metal-OH overtones (e.g., Viviano-

Beck et al., 2014). The presence of this potential, albeit exceptionally shallow 2100 nm feature raises the 

possibility of serpentine occurring within this unit, as suggested by Ehlmann and Mustard (2012). 

Spectrum reflectance also increases sharply from 1250-1600 nm, indicating an olivine component. This 

unit likely consists of olivine and Mg-carbonate with potential associated serpentine. The ~1400 nm OH 

band is not present, potentially the result of phyllosilicate interlayer collapse (Morris et al., 2010). 

The high-albedo rugged terrain (region 4) shows absorptions at 1415 nm due to O-H stretching, 

1930/1995 nm due to H2O, 2210 nm, and 2395 nm. The positions of these bands correspond with bands 

observed in USGS Kaolinite and would corroborate the Al-phyllosilicate identification in this region by 

Ehlmann and Mustard, 2012. Al-rich clays can be identified by a doublet near 2200 nm resulting from Al-

OH vibrations and other potential bands near 2260 nm, 2350 nm, and 2440 nm resulting from Al-OH 
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stretch and bend combinations (e.g., Clark et al., 1990). This unit likely represents Al-phyllosilicate 

bearing rock.  

VNIR spectra also show some bands revealing compositional clues (Figure 37). Both sulfate-

bearing units and the kaolinite-bearing rugged terrain show spectra with broad bands centered near 875 

nm, indicating Fe3+ transition. All spectra, apart from the rugged terrain is red-dominant. The ridged 

triangular plateau, elongate ridge, and star-shaped feature show wide absorptions in the 400-600 nm 

range – potentially the 530 nm Fe3+ transition. NE Syrtis rocks bear signatures of Fe3+ in all examined 

regions. 

Mastcam-Z parameters at NE Syrtis are sentitive to sulfate-, Mg-carbonate-, olivine-, and high-

Ca pyroxene-bearing units identified by SWIR mapping and representative spectra. R975/R908 is sensitive 

to terrain distinguished by sulfates parameter SINDEX2 in CRISM SWIR parameter maps, including the 

nodular features, the star-shaped unit, and parts of the rugged unit in the north (although the spectrum 

of this unit is consistent with Al-bearing phyllosilicates). R805/R975 selects regions corresponding to 

olivine, high-Ca pyroxene, and Mg-carbonate in SWIR parameter maps. R751/R445 distinguishes the 

elongate ridged feature showing a potential 2100 nm absorption band that was mapped by Ehlmann 

and Mustard (2012) as serpentine-bearing. Because digital elevation models are not available for the 

region covering CRISM observation HRLB8C2, simulated Mastcam-Z reconnaissance images are not 

producible for this region at the time of this writing. 

Mastcam-Z parameters for NE Syrtis were developed using the HRLB8C2 CRISM observation 

because HRLB8CS has been extensively investigated by other researchers (e.g. Ehlmann and Mustard, 

2012). Their work enabled corroboration of CRISM SWIR mineral detections to better constrain minerals 

contained within geologic units highlighted by potential Mastcam-Z parameters. With Mars 2020 landing 

site selection ongoing at the time of this writing, the attention of the community has turned toward the 
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geology within the proposed NE Syrtis landing ellipse. Ongoing efforts have gleaned some understanding 

of the local mineralogy and geology, namely the extent of carbonate-bearing deposits in the local 

stratigraphy. To test the efficacy of the suggested parameters, mapping was conducted for FRT174F4 

and FRT1642E (Figure 37), two CRISM scenes covering the full expanse of the proposed NE Syrtis landing 

ellipse. Blue regions in the alteration mineralogy parameter composite (Figure 38e) display the location 

of carbonate-bearing deposits and blue regions in the mafic mineralogy parameter map (Figure 38f) 

show that olivine coexists with Mg-carbonate, as in FRTB8C2. Extracted spectra (Figure 39) bear a near-

1900 nm hydration band and a 2300/2500 nm C-O stretching pair, confirming carbonate composition. 

These Mg-carbonate bearing units exhibit notable spectral differences in VNIR despite exhibiting similar 

bands in SWIR. The Mastcam-Z parameter composite shows no spatial correlation between the Mg-

carbonate units in the CRISM SWIR map and the regions defined by R805/R908 (which distinguishes 

carbonate-bearing material in FRTB8C2). Thus, suggested Mastcam-Z parameters may only be sensitive 

to region-specific spectral conditions and some other variable (aside from rock composition) may be 

controlling VNIR spectral variability on Mars. Given that much of the martian surface is covered by some 

amount of iron-oxide-rich dust that varies in thickness, it is possible that regional variations in dust 

conditions could be controlling the observed spectral differences. However, it is important to discuss 

that CRISM detector performance has declined with time. Effectiveness of the instrument’s cooling 

system has waned, causing warmer detector temperatures to increase spectral noise (e.g., Carter et al., 

2013). FRT174F4 and FRT1642E were acquired four years after MRO was inserted into Mars’ orbit and 

the spectra acquired contain abundant noise spikes (Figure 39). While absorption bands for Mg-

carbonates are clear in these spectra, the data quality of these observations is called into question. 

3.3.5 Columbia Hills Results 

Thee three key regions in the Columbia Hills were investigated using parameter maps and 

selected for spectra extraction (Figure 40): (1) portions of the eroded southwestern hills, (2) Home Plate, 
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and (3) portions of the high-albedo northern hills. Results of this mapping and spectral analysis are 

presented herein. 

MCZ VNIR parameters developed for the Columbia Hills distinguish between the NE/SW volcanic 

plains, the NW/SE volcanic plains, the northern (region 3)/eastern Columbia Hills, the eroded 

southwestern Columbia Hills (region 1), and mafic sand dunes (Figure 41a,c; 42a,c) . R975/R805 shown in 

red, highlights the bulk of the northern (region 3)/eastern Columbia Hills and the NE/SW volcanic plains. 

This parameter highlights more Columbia Hills terrain in FRT929F than FRT3192 (the selected CRISM 

observations for the Columbia Hills). R751/R451 and R805/R908 highlight the NW/SE volcanic plains, the 

eroded southwestern hills (region 1), and mafic sand deposits. FRT3192 shows significantly increased 

signal strength for R751/R451 and R805/R908 over FRT929F. CRISM SWIR summary parameters (Figure 41b,d) 

show a similar bimodal spectral variability between the NE/SW and NW/SE plains. This mapping reveals 

low-Ca pyroxene dominating the northern/eastern Columbia Hills and the immediately surrounding 

plains (Figure 41c,d) . Olivine signatures constitute the bulk of the mafic mineralogy in the southwestern 

hills and lowlands areas within the Columbia Hills complex (Figure 42b,d). High-Ca pyroxene occurs 

within small impact craters and in known mafic sand dunes (Figure 42b,d). Olivine is also present in 

numerous impact basins and ejecta blankets (Figure 42b,d). Significant detections of olivine and high-Ca 

pyroxene are noted in volcanic plains northwest and southeast of the Columbia Hills (Figure 41b,d). 

High-Ca pyroxene detections are more prominent in the northwest in FRT3192 and in the southeast in 

FRT929F (Figure 41b,d). Parameter detections in the southwest and northeast are confined to crater 

basins and ejecta blankets. Decorrelation stretches and MCZ RGB imagery (Figure 43) corroborate some 

of the spectral trends observed in MCZ VNIR and CRISM SWIR parameter maps. The NW/SE volcanic 

plains are darker in color than the light-brown NE/SW plains. The south/southwestern hills and the 

north/eastern hills also exhibit this color contrast. Dark, linear features abundant in the volcanic plains, 

regions where dust-devils have removed dust from the surface (e.g., Greeley et al., 2006), are darker, 
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more abundant, and more visually pronounced in FRT929F than FRT3192 (Figure 43a,d). FRT929F shows 

an overall darker surface than FRT3192. Simulated decorrelation stretches for the left and right eyes of 

Mastcam-Z show similar color disparity between NW/SE and NE/SW regions (Figure 43b,c,e,f). NW/SE 

regions are red in decorrelation stretches, indicating increased sensitivity to the 445 nm filter in the left 

eye and the 805 nm filter in the right eye. NE/SW regions are blue in decorrelation stretches indicating 

increased sensitivity to the 751 nm filter in the left eye and 1012 nm filter in the right eye.  

Home Plate (region 2) and northern hills (region 3) SWIR spectra in FRT3192 slope positively 

toward longer wavelengths from 1040-2600 nm (Figure 44b). No notable absorption bands are 

observed. Southwestern hills (region 1) spectra in FRT3192 show a notable increase in reflectance from 

1200-1600 nm (Figure 44b). In FRT929F, spectra from all three regions increase in reflectivity from 

~1400-1600 nm and ~1900-2100 nm. This 1900-2100 nm reflectance increase includes a small 

absorption band centered near 2000 nm (Figure 44b). Home Plate and the northern hills SWIR spectra in 

FRT929F overall slope positively toward longer wavelengths, whereas the southwestern hills spectra 

shows minimal slope change (Figure 44b). In VNIR spectra (Figure 44a), FRT3192 Home Plate and 

northern hills spectra slope positively toward longer wavelengths. This slope is steepest from ~450-750 

nm. FRT3192 southwestern hills spectra slope negatively toward longer wavelengths and absorption 

bands are present at 600 nm and 840 nm (Figure 44a). FRT929F Home Plate and northern hills spectra 

also slope positively toward longer wavelengths. Home Plate and the northern hills spectra from both 

CRISM scenes display a shallow, wide absorption band spanning 750-975 nm that centers near 870 nm 

(Figure 44a). Southwestern hills spectra in this scene slope negatively toward longer wavelengths, show 

a small absorption band centered near 530 nm, and a broad absorption band from 600-1050 nm (Figure 

44a).  
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3.3.6 Columbia Hills Discussion  

CRISM SWIR summary parameters at the Columbia Hills reveal a predominantly mafic 

mineralogy from orbit. No summary parameters were identified that highlight the known alteration 

mineralogies (e.g., Figure 42). However, SWIR spectra of the eroded southwestern hills (region 1) in 

FRT3192 exhibit a broad increase in reflectance from ~1250-1600nm, which is typically characteristic of 

olivine on Mars (e.g., Viviano-Beck et al., 2014).  

Overall, the Columbia Hills’ mineralogy is difficult to constrain from orbit, aside from the 

potential presence of olivine and pyroxene. This dearth of diagnostic spectral signatures is characteristic 

of the Columbia Hills and can be attributed to significant dust cover in the region. That is not to suggest 

there is no alteration mineralogy to be explored at the Columbia Hills – Spirit rover operations revealed 

a wide variety of mineral deposits indicative of extensive past aqueous activity (e.g., Arvidson et al., 

2008; Farrand et al., 2016); however, alteration deposits identified by the Spirit rover at the Columbia 

Hills often span small spatial areas. With the ~18 m pixel size of investigated CRISM imagery, important 

alteration deposits investigated by Spirit are often subpixel-size from orbit and are, therefore, difficult to 

accurately constrain. (Carter and Poulet, 2012) identified carbonate and phyllosilicate-rich units from 

orbit, however these detections encompassed a small number of pixels in each case and were not 

reproducible in this work.  

While SWIR spectra in the Columbia Hills showed little significant variability (Figure 44b), VNIR 

and MCZ spectra reveal two spectral endmembers (Figure 44a): red dominant and blue dominant. In 

both CRISM observations, spectra taken from Home Plate (region 2) and the northern hills (region 3) 

show significant red reflectance (relative to blue-green) and an absorption signature spanning 750-975 

nm (Figure 44a). Fe3+ electronic transition processes can give rise to a broad absorption band within this 

region, often centered near 850 nm (e.g., Kong et al., 2011). Southwestern hills spectra, as evidenced by 
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the dark, blue-black color of the region in simulated Mastcam-Z RGB, show greater blue reflectance than 

green-red (Figure 44a). The southwestern hills spectrum in FRT3192 shows a broad absorption centered 

near 850 nm, likely the result of Fe3+ transitions and a band centered near 600 nm of unknown origin 

(Figure 44a). The southwestern hills in FRT929F shows a broad absorption stretching longward of 600 

nm.  This may be the beginning of a broad, 1000 nm centered Fe2+ transition band for olivine. VNIR 

spectra, thus, abundant Fe3+ bearing-material in the Columbia Hills and the southwestern hills may also 

bear Fe2+ contained in olivine. 

At the Columbia Hills, Mastcam-Z VNIR parameters are sensitive to the volcanic plains, mafic 

sand dunes, and Columbia Hills rock. R751/R445 nm highlights the northern (region 3)/eastern Columbia 

Hills and R600/R805 and R805/R908 distinguish the surrounding volcanic plains, mafic sands within the 

Columbia Hills, and small impact crater fill and ejecta (as shown in the simulated Mastcam-Z 3D 

perspective views in Figure 43). CRISM SWIR summary parameters show pockets of high-Ca pyroxene 

occurring in regions related to mafic sand dunes and within small craters. R805/R908 corresponds well to 

these regions, suggesting this parameter may be sensitive to the spectral properties of high-Ca pyroxene 

at the Columbia Hills.  

The sensitivity of these parameters varied significantly between the two tested CRISM images. 

As mentioned in the methods section, Lemmon et al., 2015 analyzed years of Spirit atmospheric data 

and described several seasonal fluctuations in dust activity in the region that recur annually. FRT3192 

and FRT929F were acquired by CRISM at Ls of 139° and 12°. Among the most notable seasonal dust 

cycles identified by Lemmon et al. (2015) was a period of oscillating dust cover from 0-135° Ls. These 

two observations roughly fall within that season and, as evidenced by differences in RGB color and dust 

devil patterns, represent time periods of significantly different surface dust conditions. Spectral 

variability between the two scenes is likely a reflection of surface dust distribution controlling the 

‘redness’ of the region.  



65 
 

Given the significant variability in signal strength of these parameters between observations 

(between dust seasons), it is not recommended that these parameters be widely used on the ground at 

the Columbia Hills. The Spirit rover enabled ground-truthing of several VNIR spectral parameters for this 

region. Farrand et al. (2016) outlines several Pancam spectral parameters. For Mastcam-Z operation in 

the Columbia Hills, it is recommended that these proven parameters be modified (Table 10) to the 

Mastcam-Z bandpasses. 

3.4 Broad Discussion 

3.4.1 VNIR Spectral Variability on Mars and Implications for Future Rover Missions 

The inability of R805/R908 to detect mineralogically similar units in a different region of NE Syrtis 

and the differences between spectral parameter sensitivity in the Columbia Hills between seasons raise 

a crucial question: are Mastcam-Z VNIR spectral parameters primarily sensitive to mineralogy, or does 

some other surficial material or photometric property, varying from region to region, govern VNIR 

spectral properties observed from orbit? Most of Mars’ surface is covered by varying amounts of a 

global, anhydrous, iron-oxide-rich basaltic dust distributed by aoelian activity (e.g., McSween and Keil, 

2000) (McSween and Keil, 2000). The prominent red reflectance of this material dominates the visible 

wavelengths. Some Mastcam-Z parameters correlate to visible color differences in simulated Mastcam-Z 

RGB Bayer composites (for example, some parameters highlight regions of the hills and surrounding 

plains that are red-brown in RGB versus regions that are black in RGB). Given the extent of red-brown 

martian regolith, this color correlation, disparities in parameter sensitivity through seasonal dust cycles 

at Columbia Hills, and disparities in parameter sensitivity spatially in different NE Syrtis regions, 

Mastcam-Z VNIR parameters may be primarily highlighting differences in surface color caused by 

surficial deposits and not bedrock composition. Thus, it is possible that these parameters are most 

sensitive to the color effects caused by varying dust cover. The suggested Mastcam-Z spectral 
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parameters do show sensitivity to regions with different chemical/mineralogical compositions, but it is 

important to consider that sensitivity may be region specific and controlled by variations in dust cover. 

Orbital VNIR spectra have been underutilized and not well studied in the literature. Absorption 

bands in the SWIR wavelengths are diagnostic of numerous alteration minerals, presenting a more 

attractive wavelength range for orbital mineral identification, but this work demonstrates that VNIR 

parameters can be developed from orbit that are sensitive to the broad scale spectral variability in a 

single region. Region-specific parameters may also show some degree of variation based on season. 

Mapping of different seasons in the Columbia Hills in this work reveals that season-dependent dust 

activity has significant effect on the overall color and, therefore, the spectral variability of a region. This 

region-specific spectral variability can be used to devise preliminary filter combinations to perform 

reconnaissance with multispectral imagers. Spectral parameters suggested in this work, parameter maps 

created using those parameters, and comparisons to SWIR spectral parameter maps offer a unique 

dataset providing researchers with VNIR parameters to test once Mastcam-Z is on the surface. 

Parameters can be used to ground-truth differences in spectral variability occurring as seasons change 

and potentially expedite the identification of spectral endmembers for reconnaissance in the initial 

phases of the mission. Similar datasets would be useful for any future ground-based Mars mission 

featuring a multispectral imaging system.  

3.4.2 Implications for the SuperCam Instrument 

While Mastcam-Z will only be sensitive to reflectance in the VNIR, the Supercam instrument 

(successor to the ChemCam instrument on MSL Curiosity) will be sensitive to reflectance at longer 

wavelengths (1300 – 2600 nm; Clegg et al., 2015; Maurice et al., 2015). Unlike Mastcam-Z, SuperCam 

cannot acquire wide, stereo panoramic images. SuperCam is a point spectrometer capable of spot 

diameters ~45 µm at a 1.5 m distance and ~200 µm at a 7 m distance (Maurice et al., 2012, 2015). 
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Despite the small targetable region, SuperCam’s SWIR will be sensitive to diagnostic bands of alteration 

minerals. Mastcam-Z will provide the first spectral reconnaissance on the ground, determining broad 

endmember compositions from a distance, potentially using parameters developed by this work, with 

the goal of identifying locations for sampling and caching. SuperCam benefits from this analysis, as 

Mastcam-Z reconnaissance would provide spots of interest for SuperCam analysis. This analysis pipeline 

can allow composition distribution to be mapped along the rover traverse and help pinpoint outcrops 

for thorough analysis with instruments requiring direct outcrop contact such as the Planetary 

Instrument for X-Ray Lithochemistry (PIXL; Allwood et al., 2016) and the Scanning Habitable 

Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC; Beegle et al., 2014).  

3.5 Conclusions 

This work developed VNIR spectral parameters for the Mastcam-Z instrument at each Mars-

2020 candidate landing site and investigated the primary controls on VNIR spectral variability at these 

regions. Data reveals the dominant minerals at each landing site and the efficacy of Mastcam-Z to 

corroborate broad-scale spectral distinctions observed from orbit. The key conclusions of this work are 

summarized as follows:  

1. At Jezero Crater, simulated Mastcam-Z parameters correspond to regions 

known to contain alteration minerals by CRISM SWIR, spectrally distinguishing dark-toned, 

olivine-rich regions, such as the western delta front and exposed crater floor unit, Mg-carbonate 

bearing terrain north of the western delta and within the northern delta, and phyllosilicate-rich 

units – the high albedo hills within the landing ellipse and light-toned regions of the western 

delta. 

2. South of the proposed landing ellipse in NE Syrtis, parameters were developed 

that correlate with CRISM SWIR summary parameters in the region. These parameters 
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distinguish sulfate-bearing units near/within the large cliff face, potentially kaolinite-bearing 

rugged terrain, olivine and Mg-carbonate bearing plateaus, some high-Ca pyroxene signatures, 

and the elongate ridge containing a potential serpentine component.  

3. Within the NE Syrtis landing ellipse, Mastcam-Z VNIR parameters that 

distinguish Mg-carbonate bearing units in southern NE Syrtis fail to corroborate SWIR Mg-

carbonate detections. Varying distribution of red iron-oxide dust may account for this 

discrepancy and may be the primary control on VNIR spectral properties on Mars. 

4. At the Columbia Hills, simulated Mastcam-Z parameters derived from CRISM 

observations can distinguish the northern Columbia Hills, the eroded and darker-toned southern 

Columbia Hills, color differences between the NE/SW and NW/SE volcanic plains, and known 

mafic sand deposits.  

5. Spectral parameters vary in extent between Columbia Hills observations 

acquired during different seasons. Dust conditions vary seasonally in this region and notable 

differences in regional color between the two different-time-of-season observations correlate to 

the extent of Mastcam-Z spectral parameters, suggesting that seasonal dust variation is a 

primary control on VNIR spectral variability.  

 

3.6 Future Work 

While this work has demonstrated that orbital hyperspectral data can be useful in performing 

preliminary reconnaissance for in-development ground-based multispectral imaging systems, more work 

can expand upon the conclusions made here. To better understand how martian dust plays a role in the 

VNIR variability of orbital spectra, comprehensive work quantifying changes in spectral ‘redness’ and 

band depth as a function of Ls is needed. This could be accomplished by performing VNIR spectral 

analysis on a wide array of CRISM images acquired at different Ls for a variety of regions. At present, 
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more CRISM observations would be required – few regions have multiple CRISM observations taken 

over the same area like the Columbia Hills. Constraining how Ls is directly related to VNIR spectral 

variability at future Mars mission landing sites could provide valuable data for fine-tuning preliminary 

parameters for future multispectral imagers. 

To further support the use of orbitally-derived VNIR spectral parameters, this technique can be 

tested prior to the launch of Mars 2020. The wealth of experience provided by the Mastcam instrument 

aboard the Curiosity rover can provide this ground-truthing opportunity. I am currently developing 

CRISM-derived Mastcam parameters for mineralogic stratigraphy observed in Mt. Sharp using methods 

like those employed for this study. These orbital parameters can then be tested on the ground by 

Mastcam imagery (and compared to current Mastcam parameters) to determine the effectiveness of 

orbitally-derived VNIR spectral parameters. 

CRISM is not the only orbital instrument that can be used to expand this work. The HiRISE 

instrument can acquire high-resolution 3-color imagery using 14 CCDs sensitive to visible-to-near 

infrared light (Delamere et al., 2010): 10 for red (RED), 2 for near-SWIR (SWIR), and 2 for blue-green (BG) 

Each grouping of CCDs constitutes a color “filter” sensitive to specific wavelength ranges: 550-850 nm 

for RED, <600 nm for BG, and <800nm for SWIR. Delamere et al. (2010) has outlined several ways in 

which HiRISE color imagery can be used to assess the composition of surface material. RGB composites 

using the SWIR, RED, and BG channels for red, green, and blue respectively show surface dust as yellow, 

sand and lithified rock as cyan to violet, and frost and ice as blue-white. Comparing these sorts of data 

products to CRISM VNIR could serve as a useful check on which Mastcam-Z parameters are sensitive to 

dust and which are sensitive to lithified rock. In HiRISE imagery, it is also possible to distinguish between 

material containing primary mafic minerals and material containing altered minerals. SWIR/BG ratios 

and BG/RED ratios for ferrous minerals are generally clustered, whereas SWIR/BG ratios are typically 

greater than BG/RED ratios in ferric minerals. This HiRISE data (in tandem with CRISM data) allow for a 



70 
 

clearer understanding of the stratigraphic contacts of these mineral phases given HiRISE’s superior 

spatial resolution. This technique also provides further means to check the sensitivity of suggested 

Mastcam-Z parameters on Mars, identifying which parameters may be pinpointing spectral differences 

inherent to local alteration minerals and which parameters are not. The set of suggested Mastcam-Z 

parameters in this study provides a useful dataset to the ability of HiRISE and CRISM VNIR to work in 

tandem and the ability of these specific Mastcam-Z parameters to distinguish alteration minerals. 
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FIGURES  
(Figure number and caption BELOW images) 

 

 
Figure 1: Portion of calcite_gds304.4124 spectrum from the US Geological Survey (USGS) Spectral Library (Kokaly et al., 2017) 

with locations of major absorption bands labeled. Reflectance has been stretched to increase clarity of absorption bands. 

Identification of absorption bands is dependent on band position and absolute reflectance values are often redacted in 

manipulated data. 
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Figure 2: (Left) CRISM spectral parameter MIN2295_2480 applied to CRISM image HRL000040FF from the Jezero Crater region 

(one of the Mars-2020 candidate landing sites) overlain on Context Camera (CTX; see Section 3.1) image D14_032794_1989. 

MIN2295_2480 is a CRISM spectral parameter sensitive to absorptions at 2295 nm and 2480 nm to constrain the presence of 

the ~2300 nm and ~2500 nm absorption bands in Mg-sulfates (Viviano-Beck, 2014). (Right) CRISM SWIR spectrum acquired 

from pixels within the black oval in the spectral parameter map. Dotted line is the original CRISM spectrum. Solid line is the 

spectrum after being smoothed by a 7-pixel boxcar average. Significant noise in the 1600-1700 nm region has been removed. 

The spectrum features prominent absorptions near ~2300 nm and ~2500 nm related to carbonates. Given presence of these 

absorption bands in terrain highlighted by the CRISM parameter for Mg-carbonates, dark blue terrains in the parameter map 

are likely Mg-carbonate-bearing. 
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Figure 3: Pancam, Mastcam, and Mastcam-Z convolved spectra of USGS gypsum_su2202.8850 (Kokaly et al., 2017). Grey lines 

are original laboratory resolution spectra, black lines are convolved spectra. Black squares correspond to instrument filter 

positions. Plots have been vertically offset to eliminate overlap, improving visual clarity. The ~975nm filter on Mastcam-Z 

improves resolution in the 950-1000 nm region where hydration bands may occur. 

 

Figure 4: High-definition illustration of the Mars-2020 rover. Location of the dual Mastcam-Z cameras indicated by red arrows 

and Mastcam-Z calibration target and zoomed schematic located in red inset box. 
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Figure 5: Cartoon showing the ring stand-spectrometer probe apparatus used for data collection. The spectrometer probe was 

mounted facing downward on a ring stand clamp and brought into contact with the raised sample holder. 

 

Figure 6: Illustration of the band depth calculation process for a hypothetical band. Left and right shoulder values must be 

chosen at locations above the band center on the analyzed spectrum. Band depth calculates the percent drop of the measured 

spectrum at band center below the reflectance of the continuum line at band center. RC is the reflectance of the continuum line 

at the center wavelength of the band. RB is the reflectance of the spectrum at the center wavelength of the band. 
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Figure 7: Hypothetical transmission profiles for the left and right eyes of Mastcam-Z. X-axis is wavelength in nanometers and Y-

axis is transmission strength. 
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Figure 8: Diagram showing what each calculated band depth represents. The dashed black line is the Mastcam-Z resolution 

spectrum. Black diamonds are the Mastcam-Z filter positions. Dashed red lines represent band depths (the calculated decreases 

in reflectance). The solid yellow line is the continuum line between 937 nm and 1013 nm. The solid green and blue lines are the 

points at which the 937-975 band depth and the 1013-depth-below-975 are calculated. 
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Figure 9: Hypothetical transmission profile for the 445 nm filter. The 445 nm bandpass in the left eye includes some light 

sensitivity at all wavelengths. These small windows of additional light sensitivity are not ideal and allow noise into images taken 

using this filter. 
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Figure 10: Spectrum for the dust contaminated 80% epsomite, 20% kieserite mixture before and after correction of 

the 445nm band position. Dashed line is the Mastcam-Z convolved spectrum, solid line is the laboratory spectrum. 
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Figure 11: A – Pure gypsum spectra for different grain size fractions. B – Pure epsomite spectra for different grain size fractions. 

Dashed line is the Mastcam-Z convolved spectrum, solid line is the laboratory spectrum. Absolute reflectance values have been 

offset by an arbitrary amount to separate curves and improve figure clarity. 

 

Figure 12: A – Gypsum-anhydrite mixture spectra. B – Gypsum-Bassanite mixture spectra. C – Bassanite-Anhydrite mixture 

spectra. Dashed line is the Mastcam-Z convolved spectrum, solid line is the laboratory spectrum. Absolute reflectance values 

have been offset by an arbitrary amount to separate curves and improve figure clarity. 
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Figure 13: A – Epsomite-Kieserite mixture spectra. B – Epsomite-Hexahydrite mixture spectra. C – Hexahydrite-Kieserite mixture 

spectra. Concentration of more hydrated phase increases in 10% increments from top to bottom. Dashed line is the Mastcam-Z 

convolved spectrum, solid line is the laboratory spectrum. Absolute reflectance values have been offset by an arbitrary amount 

to separate curves and improve figure clarity. 

 

Figure 14: A – Dust contaminated Gypsum-Anhydrite mixture spectra. B – Dust contaminated Epsomite-Kieserite mixture 

spectra. Concentration of more hydrated phase increases in 20% increments from top to bottom. Dashed line is the Mastcam-Z 

convolved spectrum, solid line is the laboratory spectrum. Vertical offset has been applied to each spectrum for plot clarity. 

Reflectance values are not listed; vertically offset reflectance values are not real. 
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Figure 15: A – 975 nm Center Band Depth for pure epsomite and gypsum samples. B – 937-1013 band depth for pure epsomite 

and gypsum samples. C - 937-975 band depth for pure epsomite and gypsum samples. D - Lab Resolution Band Depth (960 nm 

and 1050 nm as shoulder positions) in pure epsomite and gypsum samples. Blue shaded region indicates a band that is 

detectable to Mastcam-Z. 
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Figure 16: A – 975 nm Center Band Depth for all mixtures. B – 937-1013 band depth for all mixtures. C - 937-975 band depth for 

all mixtures. D - Lab Resolution Band Depth for all mixtures. Blue shaded region indicates a band that is detectable to Mastcam-

Z. Epsomite-Hexahydrite/Epsomite Kieserite and Gypsum-Bassanite/Gypsum-Anhydrite have the same values at 100% of the 

more hydrated phase. Hexahydrite-Kieserite/Epsomite-Kieserite and Gypsum-Anhydrite/Bassanite-Anhydrite have the same 

values at 0% of the more hydrated phase. 
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Figure 17: Change in band depth with H2O/SO4 ratio for pure 500-1000 µm hydrated Ca/Mg-sulfates with linear trendline. 

Depth of the ~950-1000 nm absorption band is noted to depend significantly on amount of bound water. 

 

 

Figure 18: Change in band position with H2O/SO4 ratio for pure 500-1000 µm hydrated sulfates. Position of the ~950-1000 nm 

absorption band does not exhibit a dependence on amount of bound water. 
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Figure 19: Reflectance spectra of epsomite-kieserite mixtures. Solid lines are laboratory spectra, dotted lines are linear mixing 

model versions of laboratory counterparts. 

 

 

 

 

 

 

 

 

 

 

 



104 
 

 

Figure 20: Example spectra of Mars-relevant mineral species. A: alteration mineral species. B: mafic mineral species. Olivine, 

augite, jarosite, enstatite, and nontronite spectra come from the USGS Spectral Library and the magnesite and gypsum spectra 

come from RELAB. Reflectance has been offset for visual clarity. Spectra may have been acquired at different times with varying 

instruments and lab setups which effects the relative depth of absorption bands; it should not be assumed from this figure that 

any mineral possess inherently deeper absorption bands than another. 

 

Figure 21: Mars MOLA (Mars Orbiter Laser Altimeter) global map showing the locations of the 3 candidate landing sites for 

Mars 2020. 
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Figure 22: HRSC images H0988_0000 and H2228_0002 of Jezero crater showing the Mars 2020 landing ellipse (white oval), 

delta deposits, and inflow/outflow channels. The red rectangle outlines the study area investigated by this work. 

 

Figure 23: HRSC image H0988_0000_ND3 of the NE Syrtis region showing the Mars 2020 landing ellipse (white ellipse) and 

prominent geologic features. Red rectangles outline the study areas investigated by this work. 
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Figure 24: HRSC image H0637_0000_ND3 of Gusev crater showing the Mars 2020 landing ellipse (white oval), the location of 

the Columbia Hills site, the dark terraub immediately surrounding the Columbia Hills, and the beginning of the Ma’adim Vallis 

channel. The red rectangle outlines the study area investigated by this work. 

Figure 25: From left to right, CRISM observation outlines and landing ellipses on CTX imagery at Jezero Crater (image 

D14_032794_1989), Columbia Hills (image D06_029415_1653), and NE Syrtis (images B18_016720_1978, B_19_016931_1975, 

F05_037818_1977, and P06_003376_1987). Red/blue/yellow outlines are full extents of CRISM observations used in this study, 

black ovals are outlines of the preliminary landing ellipses as defined by the Mars-2020 engineering team. Purple boxes indicate 

regions of interest that will be spectrally examined in detail. Regions of interest for each site are numbered. CRISM observation 
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IDs are included next to observation outlines. It is customary to remove the zeroes in CRISM IDs; going forward, IDs will be 

presented in an FRTXXXX format. 

 

Figure 26: (A) Blue numerator spectrum from a sedimentary region in NE Syrtis was divided by the orange denominator 

spectrum from nearby mafic sand dunes to remove spectral similarities between the two units and isolate spectral properties 

unique to the sedimentary unit. This process revealed distinct narrow absorption bands near 1400 nm and 1900 nm. (B) CRISM 

RGB imagery overlain on CTX images B18_016720_1978 and B_19_016931_1975 of NE Syrtis showing location of numerator 

and denominator spectra. 
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Figure 27: CTX image D14_032794_1989 of the Jezero Crater region showing geologic units of interest that were chosen for 

spectral extraction. Black oval is the proposed Mars 2020 landing ellipse. These units will be discussed in this section’s results. 
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Figure 28: (A) Mastcam-Z parameter composite for Jezero region of interest #1. Black partial-oval is the proposed landing 

ellipse. (B) CRISM SWIR summary parameter composite for Jezero region of interest #1. Black partial-oval is the proposed 

landing ellipse. (C) Mastcam-Z parameter composite for Jezero region of interest #2. (D) CRISM SWIR summary parameter 

composite for Jezero region of interest #2. (E) Mastcam-Z parameter composite for Jezero region of interest #3. (F) CRISM SWIR 

summary parameter composite for Jezero region of interest #3.  All parameters are overlain on CTX image D14_032794_1989. 
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Figure 29: (A) Mastcam-Z RGB Bayer filter composite to simulate Mastcam-Z real-color imagery. (B) Left eye decorrelation 

stretch. (C) Right eye decorrelation stretch. (D) Mastcam-Z parameter composite. (E) CRISM SWIR summary parameter map for 

alteration mineralogy. (F) CRISM SWIR summary parameter map for mafic mineralogy. All parameters are overlain on CTX 

image D14_032794_1989. Black ovals are the proposed Mars-2020 landing ellipse 
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Figure 30: CRISM SWIR spectra for selected geographic areas in and around the proposed Jezero Crater landing zone and 

laboratory spectra from known spectral databases for comparison. Numbered spectra are extracted from CRISM imagery, non-

numbered spectra are laboratory spectra. (A) Spectra from the western delta. (B) Spectra from the exposed crater floor unit. (C) 

Spectra from rocks north of the western delta. (D) Spectra from the high-albedo hills in the landing ellipse. Dashed lines are 

spectra prior to 7-pixel boxcar averaged, solid lines are boxcar averaged spectra. Absolute reflectance values are not included; 

reflectance is ratioed and offset for clarity and no longer pertains to real values. E-G: CTX image D14_032794_1989 of Jezero 

Crater regions of interest illustrating regions spectra were extracted. Numbered labels are numerator spectra; D is denominator 

spectrum. Comparison spectra are from the USGS, RELAB, and MICA databases (Pieters and Hiroi, 2004; Viviano-Beck et al., 

2014; Kokaly et al., 2017) and their respective sample IDs are olivine_gds70.16284 (USGS olivine), saponite_sapca1.19977 

(USGS saponite), CRB114 (HOSERLab ID for RELAB magnesite). MICA samples do not have sample IDs. 
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Figure 31: CRISM VNIR spectra for selected geographic areas in and around the proposed Jezero Crater landing zone. Dashed 

lines are CRISM VNIR spectra from Jezero Crater and solid lines are MCZ VNIR spectra with squares representing spectral filter 

positions. Absolute reflectance values are not included; reflectance is ratioed and offset for clarity and no longer pertains to 

real values. 
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Figure 32: RGB composites for Mastcam-Z parameters have been applied to 3D simulations of Jezero developed using HiRISE 

imagery and high-resolution digital terrain models. (Left) HIRISE image mosaic (composed of HiRISE images ESP_022680_1985, 

ESP023102_1985, ESP_037752_1990, ESP045994_1985, PSP_001820_1985, PSP_002743_1985) of Jezero Crater Hills showing 

simulated rover locations. Numbers refer to the view angles showing in the panels on the right. (Right) 3D perspective images 

simulating suggested spectral parameters BD554 (red), R600/R805 (green), and R805/R908 (blue) applied to Mastcam-Z imagery.  
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Figure 33: CTX images B18_016720_1978 and B_19_016931_1975 of the NE Syrtis region showing geologic units that were 

chosen for spectral extraction.  
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Figure 34: (A) Mastcam-Z parameter composite of NE Syrtis region of interest #1. (B) CRISM SWIR summary parameter 

composite of NE Syrtis region of interest #1. (C) Mastcam-Z parameter composite of NE Syrtis region of interest #2. (D) CRISM 

SWIR summary parameter composite of NE Syrtis region of interest #2. (E) Mastcam-Z parameter composite of NE Syrtis region 

of interest #3. (F) CRISM SWIR summary parameter composite of NE Syrtis region of interest #3. All parameter maps overlain on 

CTX image B18_016720_1978. 
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Figure 35: (A) Mastcam-Z RGB Bayer filter composite to simulate Mastcam-Z real-color imagery. (B) Left eye decorrelation 

stretch. (C) Right eye decorrelation stretch. (D) Mastcam-Z parameter composite. (E) CRISM SWIR summary parameter map for 

alteration mineralogy. (F) CRISM SWIR summary parameter map for mafic mineralogy. All parameter maps overlain on CTX 

images B18_016720_1978 and B_19_016931_1975. 
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Figure 36: CRISM SWIR spectra for selected geographic areas south of the proposed NE Syrtis landing zone and laboratory 

spectra from known spectral databases for comparison. Numbered spectra are extracted from CRISM imagery, non-numbered 

spectra are laboratory spectra. (A) Spectra from the star-shaped feature and nodular units in the cliff face. (B) Spectra from the 

ridged triangular plateau (C) Spectra from the high-albedo rugged terrain. (D) Spectra from the elongate ridged unit. Dashed 

lines are spectra prior to 7-pixel boxcar averaged, solid lines are boxcar averaged spectra. Absolute reflectance values are not 

included; reflectance is ratioed and offset for clarity and no longer pertains to real values. E-G: CTX image B18_016720_1978 of 

NE Syrtis regions of interest illustrating regions spectra were extracted. Numbered labels are numerator spectra; D is 

denominator spectrum. Comparison spectra are from the USGS, RELAB, and MICA databases (Pieters and Hiroi, 2004; Viviano-

Beck et al., 2014; Kokaly et al., 2017) and their respective sample IDs are olivine_gds70.16284 (USGS olivine), 

kaolinite_cm3.11788 (USGS kaolinite), serpentine_hs318.20395 (USGS serpentine), jarosite_gds100.11210 (USGS Jarosite), 

CRB114 (HOSERLab ID for RELAB magnesite). MICA samples do not have sample IDs. 
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Figure 37: CRISM VNIR spectra for selected geographic areas south of the proposed NE Syrtis landing zone. Dashed lines are 

CRISM VNIR spectra from NE Syrtis and solid lines are MCZ VNIR spectra with squares representing spectral filter positions. 

Absolute reflectance values are not included; reflectance is ratioed and offset for clarity and no longer pertains to real values. 
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Figure 38: (A) Mastcam-Z RGB Bayer filter composite to simulate Mastcam-Z real-color imagery. (B) Left eye decorrelation 

stretch. (C) Right eye decorrelation stretch. (D) Mastcam-Z parameter composite. (E) CRISM SWIR summary parameter map for 

alteration mineralogy. (F) CRISM SWIR summary parameter map for mafic mineralogy. All parameter maps overlain on CTX 

images B18_016720_1978, B_19_016931_1975, F05_037818_1977, and P06_003376_1987. 
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Figure 39: (A) CRISM SWIR summary parameter map for alteration mineralogy overlain on CTX images B18_016720_1978, 

B_19_016931_1975, F05_037818_1977, and P06_003376_1987. Numbers are regions where spectra were extracted from 

potential Mg-carbonate units. (B) CRISM VNIR/MCZ spectra for compared to the ridged triangular plateau in FRTB8C2. Numbers 

in plot labels correspond to numbers in panel A. (C) CRISM SWIR spectra for numbered carbonate regions in the NE Syrtis 

landing ellipse. Numbers in plot labels correspond to numbers in Panel A. Comparison spectra are from the RELAB and MICA 

databases (Pieters and Hiroi, 2004; Viviano-Beck et al., 2014) and the RELAB magnesite’s HOSERLab sample ID is CRB114. MICA 

samples do not have sample IDs. 
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Figure 40: CTX image D06_029415_1653 of the Columbia Hills region showing geologic units that were chosen for spectral 

extraction. These units will be discussed in this section’s results. 
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Figure 41: (A) Mastcam-Z parameter composite for FRT3912. (B) Mastcam-Z parameter composite for FRT929F.  (C) CRISM 

SWIR summary parameter composite for mafic minerals in FRT3192. (D) CRISM SWIR Summary parameter composite for mafic 

minerals in FRT929F. Black ovals are the proposed Columbia Hills landing ellipses. All parameter maps overlain on CTX image 

D06_029415_1653  
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Figure 42: (A) Mastcam-Z parameter composite for FRT3912. (B) Mastcam-Z parameter composite for FRT929F. (C) CRISM SWIR 

summary parameter composite for mafic minerals in FRT3192. (D) CRISM SWIR summary parameter composite for mafic 

minerals in FRT929F. Black partial-ovals are the proposed Columbia Hills landing ellipse. All parameter maps overlain on CTX 

image D06_029415_1653. 



124 
 

 

Figure 43: Imagery for FRT3192 (A-C) and FRT929F (D-F). (A) Mastcam-Z RGB Bayer filter composite to simulate Mastcam-Z real-

color imagery in FRT3192. (B) Left eye decorrelation stretch for FRT3192. (C) Right eye decorrelation stretch for FRT3192. (D) 

Mastcam-Z RGB Bayer filter composite to simulate Mastcam-Z real-color imagery in FRT929F. (E) Left eye decorrelation stretch 

for FRT929F. (F) Right eye decorrelation stretch for FRT929F. All parameter maps overlain on CTX image D06_029415_1653. 

Black ovals are the proposed Mars-2020 landing ellipse. 
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Figure 44: (A) CRISM SWIR spectra for regions of interest in FRT3192 and FRT929F. Dashed lines are spectra prior to 7-pixel 

boxcar averaged, solid lines are boxcar averaged spectra. (B) CRISM VNIR and MCZ VNIR spectra for regions of interest in 

FRT3192 and FRT929F. Dashed lines are CRISM VNIR spectra and solid lines are MCZ VNIR spectra with squares representing 

spectral filter positions. Reflectance values are not included; reflectance is ratioed and offset for clarity and no longer pertains 

to real values (C) CTX image D06_029415_1653 illustrating regions of spectra extraction. Numbers are numerator spectra; D is 

denominator spectrum. Black partial-oval is the proposed Mars-2020 landing ellipse. 
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Figure 45: (Left) HIRISE image mosaic (composed of HiRISE images ESP_011943_1650, ESP_034874_1655, ESP_035230_1665, 

ESP_035586_1655, ESP_035942_1655, ESP_036087_1655, ESP_036641_1655, PSP_001513_1655, PSP_006524_1650, and 

PSP_008963_1650) of the Columbia Hills showing simulated rover locations and viewing angles. (Right) 3D perspective images 

simulating MCZ spectral parameters for FRT929F showing observed spectral endmembers; R751/R445 (red), R600/R805 (green), and 

R805/R908 (blue) applied to Mastcam-Z imagery.  
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TABLES 

(Table number and caption BELOW tables) 

 

Mineral Name Chemical Formula H2O/SO4 Ratio Detections/Inferred Stability on Mars 

Gypsum CaSO4 · 2(H2O) 2 Bridges and Grady, 2000 
Horgan et al., 2009 
Squyres et al., 2012 
Nachon et al., 2014 
Vaniman et al., 2017 

Bassanite 2(CaSO4) · H2O 0.5 Wray et al., 2010 
Nachon et al., 2014 
Vaniman et al., 2017 

Anhydrite (Drierite) CaSO4 0 Bridges and Grady, 2000 
Nachon et al., 2014 
Vaniman et al., 2017 

Epsomite MgSO4 · 7(H2O) 7 Vaniman and Chapera, 2006 
Tosca and McLennan, 2006 
Tosca et al., 2008 

Hexahydrite MgSO4 · 6(H2O) 6 Vaniman et al., 2004 
Feldman et al., 2004 
Vaniman and Chapera, 2006 

Kieserite MgSO4 · H2O 1 Vaniman and Chapera, 2006 
Tosca and McLennan, 2006 

Table 1: Minerals used for this study, including chemical formula and H2O/SO4 ratio, and references related to either their 

detection or theoretical stability on the martian surface. 
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Gypsum Grain Size Series 

975 nm 
Center 
Band 
Depth 

937-
1013 
Band 
Depth 

937-975 
Band 
Depth 

975 nm 
Center % 
Reductio
n From 
Selenite 

1013 nm 
% 
Reductio
n From 
Selenite 

975 nm  
% 
Reductio
n From 
Selenite 

Lab Res. 
Band 
Depth 

Lab Res. 
Band 
Pos. 

Grain 
Size 
(µm) 

0.048 0.0766 0.0435 - - - 0.0966 1001 
Whole 
Rock 

0.0116 0.0149 0.019 75.84 80.61 56.26 0.0228 1001 
2000-
4000 

0.0166 0.0166 0.0264 65.3 78.31 39.33 0.0257 1001 
1000-
2000 

0.0139 0.0293 0.0313 71.01 61.7 28.13 0.0303 1001 
500-
1000 

0.0103 0.0161 0.0184 78.55 78.98 57.78 0.0197 1001 250-500 

0.0092 0.016 0.0172 80.88 79.09 60.43 0.0171 1001 125-250 

0.0082 0.0139 0.0152 82.89 81.8 65.03 0.0155 1001 63-125 

0.0081 0.0091 0.0127 83.01 88.11 70.73 0.0158 1001 <63 

Epsomite Grain Size Series 

975 nm 
Center 
Band 
Depth 

937-
1013 
Band 
Depth 

937-975 
Band 
Depth 

975 nm 
Center % 
Reductio
n From 
2000-
4000 µm 

1013nm 
% 
Reductio
n From 
2000-
4000 µm 

975 nm 
% 
Reductio
n From 
2000-
4000 µm  

Lab Res. 
Band 
Depth 

Lab Res. 
Band 
Pos. 

Grain 
Size 
(µm) 

0.0555 0.1108 0.106 - - - 0.0802 1001 
2000-
4000 

0.0529 0.1123 0.1092 75.84 -1.34 56.26 0.0826 1001 
1000-
2000 

0.0537 0.116 0.1093 65.3 -4.68 39.33 0.0793 1001 
500-
1000 

0.0388 0.083 0.0793 71.01 25.1 28.13 0.057 998 250-500 

0.0281 0.0557 0.0555 78.55 49.72 57.78 0.0412 1001 125-250 

0.0182 0.0392 0.0377 80.88 64.63 60.43 0.0264 999 63-125 

0.0192 0.0391 0.0386 82.89 64.68 65.03 0.0262 1001 <63 
Table 2: 975 NM center band depth, 937-1013 band depth, 937-975 band depth, percent reduction of band depths from the 

selenite sample spectrum (for gypsum) and 2000-4000 µm sample spectrum (for epsomite), laboratory resolution band depth 

(960 nm and 1050 nm as shoulder positions), and lab resolution band position of gypsum and epsomite grain size series. 

 

Gypsum-Anhydrite Mixture Series 

975 nm 
Center 

937-
1013 

937-975 
Band 

975 nm 
Center % 

1013 nm 
% 

975 nm 
% 

Lab Res. 
Band 

Lab Res. 
Band 

Percent 
Gypsum 
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Band 
Depth 

Band 
Depth 

Depth Reductio
n From 
100% 
Gypsum 

Reductio
n From 
100% 
Gypsum 

Reductio
n From 
100% 
Gypsum 

Depth Pos. 

0.0018 -0.0129 -0.0047 86.80 143.84 114.94 0.0016 964 0% 

0.0035 -0.0064 0.0003 74.87 121.71 99.11 0.0031 970 10% 

0.0032 -0.0108 -0.0022 77 136.71 107.17 0.003 970 20% 

0.005 -0.0002 0.0049 63.91 100.74 84.3 0.0044 974 30% 

0.0046 -0.0113 -0.0012 67.22 138.57 103.68 0.0042 970 40% 

0.0057 -0.002 0.0047 59.08 106.86 85.05 0.0052 974 50% 

0.0073 0.0003 0.0074 47.81 99.11 76.37 0.0113 990 60% 

0.0067 0.0002 0.0067 52.14 99.48 78.47 0.0091 990 70% 

0.0083 0.0037 0.0101 40.54 87.28 67.56 0.0135 993 80% 

0.0088 0.0043 0.011 36.77 85.32 64.96 0.0176 1001 90% 

0.0139 0.0293 0.0313 - - - 0.0303 1001 100% 

Gypsum-Bassanite Mixture Series 

975 nm 
Center 
Band 
Depth 

937-
1013 
band 
depth 

937-975 
band 
depth 

975 nm 
Center % 
Reductio
n From 
100% 
Gypsum 

1013 nm 
% 
Reductio
n From 
100% 
Gypsum 

975 nm 
% 
Reductio
n From 
100% 
Gypsum 

Lab Res. 
Band 
Depth 

Lab Res. 
Band 
Pos. 

Percent 
Gypsum 

0.0011 -0.0146 -0.0064 92.09 150.37 120.41 0.0012 964 0% 

0.0012 -0.0151 -0.0064 91.12 151.53 120.53 0.0015 967 10% 

0.0012 -0.0156 -0.0067 91.49 153.02 121.4 0.0006 963 20% 

0.0013 -0.0138 -0.0056 90.35 146.95 118.01 0.0015 967 30% 

0.0015 -0.017 -0.0071 89.05 157.92 122.63 0.0017 967 40% 

0.0018 -0.0127 -0.0046 86.75 143.17 114.6 0.0015 967 50% 

0.0031 -0.0092 -0.0016 77.88 131.47 105.08 0.0028 970 60% 

0.0026 -0.0116 -0.0032 81.3 139.4 110.37 0.0025 970 70% 

0.0047 -0.0021 0.0036 66.17 107.12 88.33 0.0085 990 80% 

0.0053 -0.0016 0.0045 61.7 105.43 85.53 0.0106 990 90% 

0.0139 0.0293 0.0313 - - - 0.0303 1001 100% 

Bassanite-Anhydrite Mixture Series 

975 nm 
Center 
Band 
Depth 

937-
1013 
Band 
Depth 

937-975 
Band 
Depth 

975 nm 
Center 
Center % 
Reductio
n From 
100% 
Bassanit
e 

1013 nm 
% 
Reductio
n From 
100% 
Bassanit
e 

975 nm 
% 
Reductio
n From 
100% 
Bassanit
e 

Lab Res. 
Band 
Depth 

Lab Res. 
Band 
Pos. 

Percent 
Bassanit
e 
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0.0018 -0.0127 -0.0047 -66.84 12.79 26.79 0.0016 964 0% 

0.0035 -0.0105 -0.0019 -214.84 27.84 70.22 0.0033 969 10% 

0.0018 -0.0182 -0.0076 -64.32 -24.83 -18.46 0.0009 963 20% 

0.0023 -0.0115 -0.0036 -107.94 21.2 43.86 0.0018 966 30% 

0.0026 -0.0111 -0.0031 -135.36 24.04 51.97 0.002 966 40% 

0.0015 -0.0111 -0.0042 -32.71 23.72 33.79 0.0013 966 50% 

0.0016 -0.0151 -0.0062 -42.38 -3.98 2.63 0.0016 966 60% 

0.0016 -0.0111 -0.004 -48.92 24.08 37.03 0.0014 966 70% 

0.0019 -0.0102 -0.0034 -69.16 29.7 47.17 0.0015 966 80% 

0.0011 -0.0131 -0.0056 -2.48 9.96 12.27 0.0012 966 90% 

0.0011 -0.0146 -0.0064 - - - 0.0012 964 100% 

Table 3: 975 NM center band depth, 937-1013 band depth, 937-975 band depth, percent reduction of band depths from 100% 

of the more hydrated phase, laboratory resolution band depth (960 nm and 1050 nm as shoulder positions), and lab resolution 

band position of Ca-sulfates mixtures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Epsomite-Kieserite Mixture Series 

975 nm 
Center 
Band 

937-
1013 
Band 

937-975 
Band 
Depth 

975 nm 
Center % 
Reductio

1013 nm 
% 
Reductio

975 nm 
% 
Reductio

Lab Res. 
Band 
Depth 

Lab Res 
Band 
Pos. 

Percent 
Epsomit
e 
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Depth Depth n From 
100% 
Epsomit
e 

n From 
100% 
Epsomit
e 

n From 
100% 
Epsomit
e 

0.0067 0.0181 0.0158 87.47 84.41 85.52 0.0062 1024 0% 

0.0106 0.0208 0.0211 80.17 82.09 80.73 0.012 998 10% 

0.0119 0.0222 0.0231 77.77 80.84 78.9 0.0138 1001 20% 

0.0175 0.0337 0.0343 67.33 70.94 68.6 0.0225 1001 30% 

0.0174 0.0307 0.0327 67.53 73.53 70.07 0.022 1001 40% 

0.0212 0.0391 0.0406 60.48 66.27 62.83 0.0283 1001 50% 

0.0203 0.0382 0.0393 62.18 67.09 64.08 0.0271 1001 60% 

0.0236 0.0398 0.0433 56.08 65.64 60.39 0.0324 1001 70% 

0.0328 0.0615 0.0629 39 46.93 42.44 0.0452 1001 80% 

0.0369 0.0717 0.0719 31.25 38.18 34.22 0.0508 1001 90% 

0.0537 0.116 0.1093 - - - 0.0793 1001 100% 

Epsomite-Hexahydrite Mixture Series 

975 nm 
Center 
Band 
Depth 

937-
1013 
band 
depth 

937-975 
band 
depth 

975 nm 
Center % 
Reductio
n From 
100% 
Epsomit
e 

1013 nm 
% 
Reductio
n From 
100% 
Epsomit
e 

975 nm 
% 
Reductio
n From 
100% 
Epsomit
e 

Lab Res. 
Band 
Depth 

Lab Res. 
Band 
Pos. 

Percent 
Epsomit
e 

0.0443 0.0454 0.0663 17.49 60.86 39.35 0.0384 985 0% 

0.0455 0.0531 0.0712 15.26 54.25 34.89 0.0397 986 10% 

0.0406 0.0474 0.0636 24.43 59.15 41.8 0.0387 990 20% 

0.0448 0.0639 0.0757 16.55 44.93 30.72 0.047 993 30% 

0.0446 0.0641 0.0756 16.97 44.72 30.81 0.0474 993 40% 

0.0433 0.0636 0.0741 19.33 45.17 32.17 0.049 993 50% 

0.0432 0.0675 0.0759 19.61 41.77 30.55 0.0513 993 60% 

0.0414 0.0704 0.0756 22.85 39.32 30.82 0.0536 1001 70% 

0.042 0.0777 0.0797 21.84 32.98 27.09 0.0571 1001 80% 

0.0429 0.0812 0.0823 20.19 29.96 24.75 0.0612 994 90% 

0.0537 0.116 0.1093 - - - 0.0793 1001 100% 

Hexahydrite-Kieserite Mixture Series 

975 nm 
Center 
Band 
Depth 

937-
1013 
band 
depth 

937-975 
band 
depth 

975 nm 
Center % 
Reductio
n From 
100% 
Hexahyd
rite 

1013 nm 
% 
Reductio
n From 
100% 
Hexahyd
rite 

975 nm 
% 
Reductio
n From 
100% 
Hexahyd
rite 

Lab Res. 
Band 
Depth 

Lab Res. 
Band 
Pos. 

Percent 
Hexahyd
rite 
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0.0067 0.0181 0.0158 84.82 60.16 76.12 0.0062 1024 0% 

0.0088 0.0126 0.0151 80.22 72.18 77.21 0.0083 991 10% 

0.0081 0.0129 0.0146 81.73 71.59 78.01 0.0075 992 20% 

0.0121 0.0177 0.021 72.65 61.07 68.37 0.0107 991 30% 

0.0151 0.0182 0.0242 65.9 60.01 63.54 0.0136 990 40% 

0.0221 0.0292 0.0365 50.25 35.59 44.89 0.0193 988 50% 

0.0303 0.0284 0.0442 31.74 37.46 33.33 0.0257 982 60% 

0.0294 0.0329 0.0455 33.74 27.53 31.31 0.0258 988 70% 

0.0309 0.0341 0.0477 30.2 24.87 28.09 0.0268 986 80% 

0.0371 0.0444 0.0588 16.19 2.24 11.32 0.031 985 90% 

0.0443 0.0454 0.0663 - - - 0.0384 985 100% 

Table 4: 975 NM center band depth, 937-1013 band depth, 937-975 band depth, percent reduction of band depths from 100% 

of the more hydrated phase, laboratory resolution band depth (960 nm and 1050 nm as shoulder positions), and lab resolution 

band position of Mg-sulfate mixtures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gypsum-Anhydrite Mixture Series + 5% Dust Contamination 

975 nm 
Center 
Band 
Depth 

937-
1013 
band 
depth 

937-975 
band 
depth 

975 nm 
Center % 
Reductio
n from 
Dust-
Free 

1013 nm 
% 
Reductio
n from 
Dust-
Free 

975 nm 
% 
Reductio
n from 
Dust-
Free 

Lab Res. 
Band 
Depth 

Lab Res. 
Band 
Pos. 

Percent 
Gypsum 
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-0.0002 -0.0044 -0.0025 113.04 65.53 46.77 0.0002 962 0% 

0.0001 -0.0159 -0.0079 95.55 -47.5 -252.65 0.0004 961 20% 

0.0005 -0.0117 -0.0055 89.41 -3.6 -373.93 0.0003 961 40% 

0.0011 -0.0094 -0.0036 84.48 3688.04 149.09 0.0013 968 60% 

0.0006 -0.0099 -0.0044 93.21 364.91 143.82 0.0002 961 80% 

0.0028 -0.0034 0.0011 79.77 111.43 96.42 0.0073 992 100% 

Gypsum-Anhydrite Mixture Series Subset 

0.0018 -0.0129 -0.0047 - - - 0.0016 964 0% 

0.0032 -0.0108 -0.0022 - - - 0.003 970 20% 

0.0046 -0.0113 -0.0012 - - - 0.0042 970 40% 

0.0073 0.0003 0.0074 - - - 0.0113 990 60% 

0.0047 -0.0021 0.0036 - - - 0.0085 990 80% 

0.0139 0.0293 0.0313 - - - 0.0303 1001 100% 

Epsomite-Kieserite Mixture Series + 5% Dust Contamination 

975 nm 
Center 
Band 
Depth 

937-
1013 
band 
depth 

937-975 
band 
depth 

975 nm 
Center % 
Reductio
n from 
Dust-
Free 

1013 nm 
% 
Reductio
n from 
Dust-
Free 

975 nm 
% 
Reductio
n from 
Dust-
Free 

Lab 
resolutio
n band 
Depth 

Lab 
resolutio
n band 
Pos. 

Percent 
Epsomit
e 

0.0011 -0.003 -0.0004 83.61 116.8 102.74 0.0016 975 0% 

0.0013 -0.0035 -0.0005 89.49 115.78 102.25 0.0018 977 20% 

0.0026 -0.0007 0.0023 84.85 102.38 93.05 0.0041 989 40% 

0.007 0.0089 0.0115 65.5 76.64 70.72 0.0099 990 60% 

0.0114 0.0166 0.0197 65.2 73.06 68.68 0.0163 990 80% 

0.0283 0.054 0.0549 24.49 26.37 25.06 0.0473 1001 100% 

Epsomite-Kieserite Mixture Series Subset 

0.0067 0.0181 0.0158 - - - 0.0062 1024 0% 

0.0119 0.0222 0.0231 - - - 0.0138 1001 20% 

0.0174 0.0307 0.0327 - - - 0.022 1001 40% 

0.0203 0.0382 0.0393 - - - 0.0271 1001 60% 

0.0328 0.0615 0.0629 - - - 0.0452 1001 80% 

0.0537 0.116 0.1093 - - - 0.0793 1001 100% 

 

Table 5: 975 NM center band depth, 937-1013 band depth, 937-975 band depth, percent reduction of band depths from 

corresponding uncontaminated samples, laboratory resolution band depth (960 nm and 1050 nm as shoulder positions), and 

lab resolution band position of dust contaminated mixtures. 
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Simulated Spectra  Laboratory Spectra 

% 
Epsomite 

Band 
Depth 

Band 
Position 

% of Lab Band 
Depth 

% 
Epsomite 

Band 
Depth 

Band 
position 

10 0.0092 1019 76.48 10 0.012 998 

20 0.0147 1000 106.30 20 0.0138 1001 

30 0.0192 1000 85.29 30 0.0225 1001 
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40 0.0243 1000 110.53 40 0.022 1001 

50 0.0302 1000 106.65 50 0.0283 1001 

60 0.0370 1000 136.37 60 0.0271 1001 

70 0.0449 1000 138.48 70 0.0324 1001 

80 0.0540 1001 119.49 80 0.0452 1001 

90 0.0654 1001 128.73 90 0.0508 1001 
Table 6: Percent epsomite (relative to kieserite), band depth, and bad position for modeled spectra and laboratory spectra. 

Percent of laboratory band depth is calculated for modeled band depth to illustrate error in the linear mixing model for this 

sample set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Observation 

ID 

Date 

Acquired 

Landing 

Site 

Prominent Units Solar 

Longitude 

(Ls) 

Lat/Lon 

FRT3192 11/22/2006 Columbia 

Hills 

Columbia Hills and 

surrounding volcanic plains 

139° 

Northern 

14.5478 S, 

175.6255 
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Summer E 

FRT929F 1/3/2008 Columbia 

Hills 

Columbia Hills and 

surrounding volcanic plains 

12° 

Southern 

Fall 

14.5478 S, 

175.6255 

E 

HRL40FF 1/29/2007 Jezero 

Crater 

Western and northern 

delta, crater rim, volcanic 

floor 

175° 

Northern 

summer 

18.85 N, 

77.52 E 

HRLB8C2 7/14/2008 NE Syrtis Large cliff-forming unit 

south of landing ellipse, 

ridges, plateaus, and mafic 

sand units extensively 

mapped by Ehlmann and 

Mustard, 2012 

99° 

Northern 

Summer 

18N, 77E 

FRT174F4 3/19/2010 NE Syrtis Abundant mound and ridge 

forming units within the 

landing ellipse 

66° 

Northern 

Spring 

18N, 77E 

FRT1642E 2/2/2010 NE Syrtis Abundant mound and ridge 

forming units within the 

landing ellipse 

43° 

Northern 

Spring 

18N, 77E 

Table 7: Observation ID, date CRISM acquired the observation, location, and prominent geologic units for each CRISM 

observation used in this study.  

 

 

 

 

 

 

 

CRISM Summary Parameters 

Parameter ID Parameter Mineral Sensitivity Formulation 

OLINDEX3 Broad 1000 nm Olivine (RB1210 * 0.1) + (RB1250 * 0.1) + 
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absorption (RB1263 * 0.2) + (RB1276 * 0.2) + (RB1330

 * 0.4) 

LCPINDEX2 Broad 1810 nm 

absorption 

Low-Ca Pyroxene  (RB1690 * 0.2) + (RB1750 * 0.2) + (RB1810

 * 0.3) + (RB1870 * 0.3) 

HCPINDEX2 Broad 2120 nm 

absorption 

High-Calcium Pyroxene  (RB2120 * 0.1) + (RB2140 * 0.1) + (RB2230

 * 0.15) + (RB2250 * 0.3) + (RB2430 * 0.2) 

+ (RB2460 * 0.15) 

D2300 2300 nm 

dropoff 

Hydroxylated Fe,Mg 

Silicates (Fe/Mg 

smectites) 

























2210

2210

2170

2170

2120

2120
2330

2330

2320

2320

2290

2290

1

RC

R

RC

R

RC

R
RC

R

RC

R

RC

R

 

SINDEX2 Convexity at 

2290 nm due 

to 2100 nm and 

2400 nm 

absorptions 

Hydrated Sulfates  








 


2290

2400*2120*
1

R

RbRa
 

MIN2295_2480 Mg-carbonate 

overtone band 

depth and 

metal-OH band 

Mg-Carbonates minimum





























2364*2165*

2295
1

RbRa

R , 





























2570*2364*

2480
1

RbRa

R
 

BD1900_2 1900 nm H2O 

band depth 

Hydrated Minerals  




























 


2067*1875*

2

19851930

1
ba

RR

 

Table 8: CRISM summary parameters used in this study including parameter ID, parameter function, and mineral sensitivity 

(parameters developed by Viviano-Beck et al., 2014). R = reflectance at wavelength ####, RC = reflectance of continuum line at 

wavelength ####, RB = band depth at #### nm. 

 

 

 

Suggested Mastcam-Z Parameters 

Parameter Parameter ID Landing Site Histogram Stretch Geologic Units 
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751 nm/445 nm R751n/R445nm Columbia Hills 4.27 - 5.32 N/NE Columbia Hills 

600 nm/751 nm R600nm/R805nm Columbia Hills 0.79 - 0.825 
SE Columbia Hills + 
Volcanic Plains 

805 nm/908 nm R805nm/R908nm Columbia Hills 1.03 - 1.044 
Small Craters + Sand 
Dunes 

554 nm Band Depth 
(445 nm, 676 nm 
Shoulders) 

BD554 Jezero Crater 0.00726 - 0.029 

Deltaic Sediments + N of 
Crater Rim (Mg-
Carbonate/Phyllosilicate-
bearing) 

600 nm/805 nm R600/R805  Jezero Crater 0.845 - 0.887 
Crater Floor Units + 
Southern Jezero 

805 nm/908 nm R805/R908  Jezero Crater 1.076 - 1.099 
Sand Dunes + Delta 
Front 

975 nm/908 nm R975nm/R908nm NE Syrtis 0.968 - 0.979 Sulfate-Bearing Units 

805 nm/975 nm R805/R975 NE Syrtis 1.142 - 1.17 
Mg-Carbonate/Olivine-
Bearing Units 

751 nm/445 nm R751/R445 NE Syrtis 3.14 - 3.49 
Serpentine-Bearing 
Ridge 

Table 9: Simulated Mastcam-Z Spectral parameters for each landing site, histogram stretches used for these parameters in 

Figures 28-29, 32-34, 39-40, and 43, and the geologic units they highlight. ‘BD’ indicates a band depth. ‘Rxxx/Rxxx’ indicates a 

ratio of the reflectance at two wavelengths. 

 

 

 

 

 

 

 

 

 

Pancam Proposed Pancam Formula Proposed Purpose 
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Parameter Mastcam-Z 

Parameter 

Mastcam-Z 

Formula 

482 to 673 nm 

slope 

495 to 676 nm 

slope 

1000*((R673-

R482)/191) 

1000*(R676-

R495)/191) 

Gauge of Fe 

oxidation 

535 nm band 

depth 

527 nm band 

depth 

1-

(R535/((0.57*R432

)+(0.43*R673))) 

1-

(R527/((0.57*R445

)+(0.43*R676))) 

Gauge of 

development of 

ferric oxides 

601 nm band 

depth 

600 nm band 

depth 

1-

(R601/((0.57*R535

)+(0.43*R673))) 

1-

(R600/((0.57*R527

)+(0.43*R676))) 

Assess convexity 

near 600 nm 

803 nm / 904 nm 805 nm / 908 nm  R803/R904 R805/R908 Indicator of 

strength of NIR 

absorption band 

803 nm / 1009 nm 805 nm / 1013 nm R803/R1009 R805/R1013 Help distinguish 

between olivine 

and pyroxene 

dominated 

lithologies 

904 nm band 

depth 

908 nm band 

depth 

1-

(904/((0.57*R803)

+(0.43*R1009))) 

1-

(R908/((0.57*R805

)+(0.43*R1013))) 

Assess depth of 

NIR absorption 

band 

754 to 1009 nm 

slope 

751 to 1013 nm 

slope 

1000*((R1009-

R754)/255) 

1000*((R1013-

R751)/255) 

Gauge of hematite 

development; 

indicator of 

pyroxene, olivine 

934 to 1009 nm 

slope 

937 to 1013 nm 

slope 

1000*((R1009-

R934/75) 

1000*((R1013-

R937/75) 

Indicator of H2O 

overtone band 

Fitted reflectance 

peak position 

Fitted reflectance 

peak position 

Maximum of 5th 

degree polynomial 

fitted to bands 

from 535 to 904 

nm  

Maximum of 5th 

degree polynomial 

fitted to bands 

from 527 to 908 

nm 

Gauge of Fe 

oxidation 

Fitted NIR band 

minimum position 

Fitted NIR band 

minimum position 

Minimum of 3rd 

degree polynomial 

fitted to bands 

from 864 to 1009 

nm 

Minimum of 3rd 

degree polynomial 

fitted to bands 

from 867 to 1013 

nm 

Distinguish 

between Fe-

bearing phases 

Table 10: Pancam parameters from Farrand et al., 2016, parameter formulas, and parameter purpose, compared to suggested 

Mastcam-Z adaptations. 
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