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GROUNDWATER INFLOW ON STREAM TEMPERATURE IN  

LOWLAND WHATCOM COUNTY, WASHINGTON 

by 

Sarah Harper-Smith 

 

ABSTRACT 

Many Pacific Northwest streams have water temperatures that exceed thermal 

thresholds for salmonids.  Supporting and maintaining streams with temperatures below these 

thermal thresholds requires an understanding of the relationships between the main factors 

influencing stream temperatures.  This study examined the relative effects of two of these 

factors, riparian canopy cover and groundwater inflow, on stream temperatures at the reach 

scale.  I measured stream temperature, net groundwater exchange, and riparian canopy cover 

levels in 10 different study reaches designed to comprise a factorial combination of reaches 

with vegetated and unvegetated riparian buffers, as well as gaining and not-gaining 

groundwater.  I then modeled stream temperatures in each reach with the SSTEMP stream 

temperature model, and compared model-predicted temperatures to measured stream 

temperatures during the warmest part of the summer.  Finally, I manipulated the model to 

examine the relative impacts of riparian canopy cover (0-100%) and groundwater inflow (0-

50%) on predicted stream temperatures.  SSTEMP predicted daily mean reach temperatures 

well across the range of conditions studied here, although it overpredicted daily maximum 

temperatures.  Model manipulations of groundwater inflow and canopy cover levels showed 

consistent trends in affecting stream temperatures.  Under peak summer conditions and 

“base” groundwater (0%) and canopy cover (0%) conditions, predicted mean stream 
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temperatures warmed by an average of ~ 4°C across all streams.  Full canopy cover and 50% 

groundwater inflow each reduced this predicted warming by ~ 2.5°C when manipulated 

independently.  However, only the combination of both high canopy cover and groundwater 

inflow actually reduced predicted mean stream temperatures within the study reaches.  In 

contrast, canopy cover had much stronger effects on modeled maximum stream temperatures 

than did groundwater inflow.  Under peak summer conditions, 100% canopy cover reduced 

predicted downstream warming of daily maxima by ~ 10°C, while 50% groundwater inflow 

did so by only  ~ 2°C compared to base conditions.  The results of this study affirm that both 

canopy cover and groundwater inflow play significant roles in minimizing stream 

temperatures in summer, and both should be considered when making restoration, land use, 

and other management decisions.   
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INTRODUCTION 

Overview 

Changes in stream temperature have contributed significantly to the decline of Pacific 

Northwest salmonid stocks (EPA 2003, NMFS 1996, 1998, Richter and Kolmes 2005), and 

these changes are one of the greatest challenges facing resource managers throughout the 

region (Gaffield et al. 2005, Richter and Kolmes 2005, Tague et al. 2007).  Increased 

temperatures can harm salmon populations by increasing juvenile mortality, increasing 

susceptibility and exposure to disease, reducing spawning success and predator avoidance, 

changing the timing of migration, and altering fish community structure away from salmonid 

species (Groot and Margolis 1991, Ice et al. 2004, NMFS 1996, 1998, Quinn 2005, Smith 

2002).  Both riparian canopy cover and groundwater inflow to the stream can have 

substantial moderating effects on stream temperatures (Gomi et al. 2006, Johnson 2004, 

Moore et al. 2005, Poole and Berman 2001, Story et al. 2003), however the relative effects of 

these two factors are less well understood.  This study used field and model-derived data to 

examine the extent to which these two factors moderate stream temperatures at the reach 

scale, with the goal of providing insight into the effectiveness of riparian restoration as a tool 

for addressing increased summer stream temperatures.   

The small, lowland streams that are the focus of this study provide important habitat 

for salmonids and are particularly vulnerable to temperature changes.  Whatcom County is 

home to 10 salmonid species, three of which are listed as Threatened under the Endangered 

Species Act (ESA): Chinook salmon (Oncorhynchus tshawytscha), steelhead trout (O. 

mykiss), and bull trout (Salvelinus confluentus) (FWS 2007).  The status of these species, as 

well as their cultural and economic importance, has made support of local salmonid 
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populations an important, and federally mandated, concern.  Small, lowland streams provide 

habitat for two of these species (steelhead and, to a lesser extent, Chinook), in addition to 

several other salmonids, including chum salmon (O. keta), coho salmon (O. kisutch, an ESA 

Species of Concern), and cutthroat trout (O. clarki) (Smith 2002, WCPW 2005).  These 

streams are especially at risk of temperature impairment due to their relatively shallow depth, 

small flow volumes (Budd et al. 1987, Neumann et al. 2006) and proximity to agricultural, 

residential, and/or urban development (Booth 2005, Kauffman et al. 1997, Roni et al. 2002).   

Legal definitions of water quality have been tied to key salmonid temperature 

thresholds.  Salmon are temperature sensitive throughout their life cycles; stream 

temperatures help regulate everything from embryo incubation to juvenile growth and adult 

migration (Groot and Margolis 1991, Quinn 2005).  To monitor local waters more 

effectively, the state of Washington is divided into Water Resource Inventory Areas 

(WRIAs), and streams within each WRIA are monitored through a water quality assessment 

program and associated 303(d) listing (WA DOE 2002).  The 303(d) list documents the 

impairment status of all monitored streams: category 5 streams are impaired, category 2 

streams are “waters of concern” bordering on impairment, and category 1 streams are 

unimpaired; categories 3 and 4 refer to special cases.  All category 5 streams are required to 

have management plans developed, which often include restoration efforts.  Streams 

designated as category 5 for temperature impairment have summer seven-day average daily 

maximum (7DADM) temperatures exceeding 16°C for core summer salmonid habitat.  

Additional temperature criteria exist for other salmonid habitat types and life history periods, 

including a daily maximum temperature threshold of 22°C (a barrier to migration and nearly 

lethal) (WA DOE 2002, 2005, 2006).  I focused on the summer daily maximum and 7DADM 
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temperatures; the 7DADM is used to determine 303(d) impairment because it minimizes 

influence of any single day, and thus the chance of listing a stream that only exceeds 

thresholds a few days per year (EPA 2003, WA DOE 2005).   

My study seeks to elucidate the effects of riparian canopy cover and groundwater 

inflow on stream temperatures to better predict and test the effects of restoration efforts.  

Stream restoration is mandated or strongly encouraged by many laws and monitoring plans 

designed to protect streams and facilitate salmon preservation and recovery (Clean Water Act 

2002, EPA 2003, NPPC 2000, Roni et al. 2002, Smith 2002, WA DOE 2005, WCPW 2005), 

particularly in streams considered impaired by one or more factors (WA DOE 2002).  

Despite the increasing consensus within the scientific community that restoration should 

address the natural ecosystem processes within a watershed, most restoration efforts still take 

place at the site or reach-specific scale (Booth 2005, Roni et al. 2002).  One of the major 

challenges to restoration efforts is the lack of information available regarding which 

restoration techniques are most successful in facilitating salmon population recovery (Roni et 

al. 2002).  Identifying the most successful restoration methods has presented many 

challenges, particularly because post-restoration monitoring and evaluation are rare and, 

when they occur, often take many years to detect a response (Bernhardt et al. 2005, Booth 

2005, Palmer et al. 2007, Roni et al. 2002).  Despite these challenges, thorough monitoring 

and evaluation are necessary to improve the quality and science of ecological restoration 

(Klein et al. 2007).  Given that riparian restoration frequently happens over relatively small 

distances, I sought to match the scale of this study (~500 m) to the typical scale of local 

riparian restoration efforts (NRT 2004). 
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Riparian vegetation and stream temperature 

One common restoration strategy is to reestablish riparian vegetation for stream 

shading and other benefits (Bernhardt and Palmer 2007, Bernhardt et al. 2005, Kauffman et 

al. 1997).  The benefits of a healthy native riparian plant community are numerous, including 

provision of large woody debris, stream bank stability, and nutrient inputs, among others 

(Anbumozhi et al. 2005, Broadmeadow and Nisbet 2004, Endreny 2002, Watanabe et al. 

2005).  Shade helps to minimize daily fluctuations in stream temperature, limits excess 

primary production within the stream, supports salmon life cycle timing, and increases the 

summer carrying capacity of the stream by maximizing available habitat (Gregory et al. 

1991, Johnson 2004, Malcolm et al. 2004, Murphy 1995, Naiman et al. 2005).  In this study, 

I examined the role of riparian canopy cover in providing shade to the stream.  However, 

shade is only one of several factors that are modified by human development and that 

influence stream temperature. 

The effects of riparian canopy cover removal on stream temperature are well 

established in the literature.  In upland Pacific Northwest streams, total forest removal 

(without retaining a riparian buffer) typically results in increases of up to 12°C in maximum 

stream temperature (reviewed in Moore et al. 2005), though the magnitude of the effect 

varies widely across sites (Gomi et al. 2006, Moore et al. 2005, Wilkerson et al. 2006).  In 

one case, four of seven upland study streams exhibited no significant change in temperature 

after clear-cutting, although this was likely due to shade provided by slash left covering the 

stream after forest removal (Jackson et al. 2001).  In addition, multiple studies report 

temperature recovery over 10+ years after forest removal and subsequent regrowth, 

suggesting that decreases in temperature as canopies close are equivalent to the increases 
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seen after clear-cutting (Johnson 2004, Moore et al. 2005).  However, most of the streams 

examined in these previous studies are located in upland watersheds that differ substantially 

from lowland streams in a variety of ways that may influence stream temperature.  For 

example, elevation, gradient, and turbulence are often greater in upland streams and 

generally minimize increases in stream temperature (Allan 1995).  Given that lowland 

streams typically have the greatest pressures from development, support dwindling salmon 

populations, and are the focus of many restoration projects in the Pacific Northwest, 

understanding the potential effects of restoration on their temperature regimes will help 

maximize the effectiveness of limited restoration resources. 

Guidelines for riparian buffers have focused on minimum buffer widths, but buffer 

lengths have received much less attention (Blinn and Kilgore 2001, Lee et al. 2004).  For 

small, fish-bearing streams such as those studied here, Washington State now has condition-

specific requirements for riparian buffer widths, such that harvest within 15 m of the stream 

is never permitted, and, depending on site-specific conditions, harvest is either limited or 

prohibited within 20 to 45 m of the stream channel (WFPB 2001).  In many cases, the 

maintenance or creation of minimum buffer widths mitigates or eliminates stream 

temperature changes due to forest removal (Barton et al. 1985, Blinn and Kilgore 2001, Budd 

et al. 1987, Frimpong et al. 2005, Gomi et al. 2006, Lee et al. 2004, Wenger 1999, 

Wilkerson et al. 2006).  These positive impacts are diminished, however, if the restored or 

preserved buffer is an isolated patch along an otherwise heavily impacted stream (Booth 

2005, Roni et al. 2002).   In such situations, buffer length can be an equally important 

component of riparian restoration or protection.   
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Guidelines similar to those for buffer width are not generally available for buffer 

length.  In Ontario, Canada, Barton et al. (1985) investigated the effects of riparian buffer 

length on small agricultural streams in southern Ontario, Canada, and found that 56% of 

weekly maximum water temperature variation at a given location was explained by riparian 

conditions within 2.5 km upstream. Since then, studies focused on decreases in stream 

temperature over a given distance have found that as little as 150 m of canopy cover may be 

enough to reduce stream temperatures by 2-3°C (Johnson 2004).  Even greater effects have 

been observed over distances closer to 500 m in a variety of streams (Frimpong et al. 2005, 

Rutherford et al. 2004).  While streams can decrease in temperature upon moving through a 

shaded reach, they typically increase again once canopy cover is no longer present 

(Rutherford et al. 2004).  Still, the buffer length needed to reduce temperature by a given 

amount depends on a variety of factors (e.g., air temperature, temperature at the upper limit 

of the reach, groundwater exchange), all of which can vary from stream to stream and from 

reach to reach.  Finally, a key question for restoration is whether restored riparian canopy 

cover is likely to substantially cool streams below ambient upstream temperatures as opposed 

to minimizing further warming.  Understanding the interactions of these factors is necessary 

to make reasonable predictions about the potential effectiveness of a given restoration 

strategy or project.  

 

Groundwater inflow and stream temperature 

While restoration efforts frequently focus on riparian vegetation as a way to decrease 

stream temperatures, groundwater inflow may also mitigate temperature increases.  

Groundwater inflow is defined here as any subsurface inputs to streamflow.  In areas where 
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virtually all streams are groundwater fed to some degree, the same changes to land cover 

(e.g., increasing impervious surfaces), and land use (e.g., land conversion to agriculture) that 

create a need for riparian restoration can dramatically affect the hydrology of local streams 

(Allan 2004, Boulton and Hancock 2006, Harbor 1994, Scanlon et al. 2007).  Groundwater 

inflow moderates stream temperature by entering the stream at a cool and constant 

temperature, regardless of season; it generally cools the stream in summer, and warms it in 

winter (Adam and Sullivan 1989, Brosofske et al. 1997, Johnson 2004, Moore et al. 2005, 

O'Driscoll and DeWalle 2006, Poole and Berman 2001, Story et al. 2003, Younus et al. 

2000).  In lowland Whatcom County, groundwater temperatures tend to be 10-11°C year-

round (Cox et al. 2005).  In summer, the effect of groundwater cooling peaks just after the 

daily maximum air temperature is reached, when the difference between stream and 

groundwater temperatures is greatest.  Hyporheic exchanges also tend to buffer stream 

temperature changes because of the delayed subsurface response to air temperature variation; 

hyporheic flows generally have a cooling effect when stream temperature is rising, and a 

warming effect when it is cooling (Loheide and Gorelick 2006, Poole and Berman 2001).   

While the general effects of groundwater inflow on stream temperature, as described 

above, are relatively well-established, the magnitude of those effects is not.  The effects of 

groundwater inflow on stream temperature depend upon the relative amount of groundwater 

entering the stream, the flow volume, the velocity of the stream itself, and the difference in 

temperature between stream and groundwater (Becker et al. 2004, O'Driscoll and DeWalle 

2006, Whitledge et al. 2006).  In one study attempting to quantify the effects of groundwater 

inflow on small upland streams in British Columbia, Canada, 40% of the cooling that 

occurred throughout one of the study reaches was attributed to groundwater inflow (Story et 
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al. 2003).  Bed heat conduction and hyporheic exchange were responsible for the remaining 

cooling.  One reason these effects are so difficult to quantify is the challenge of determining 

the relative amount of groundwater entering the stream.  This difficulty is largely due to the 

dynamic nature of stream-groundwater interactions and the inherent limitations of different 

measurement methods (Becker et al. 2004, Boulton and Hancock 2006, Christensen et al. 

1998, Keery et al. 2007, Moore et al. 2005, Story et al. 2003).  One common and reliable 

method of estimating net groundwater exchange is to compare total streamflow at the top and 

bottom of the study reach (Becker et al. 2004).  However, net exchange can still miss 

groundwater inputs that may have a significant effect on stream temperature if these inputs 

are balanced, in whole or in part, by loss of stream water to groundwater.  To help account 

for such effects, groundwater-fed segments of small, lowland streams in Pennsylvania were 

distinguished from neutral or losing segments by examining stream-air temperature 

relationships (O'Driscoll and DeWalle 2006).  For those relationships, the slopes decreased 

and the intercepts increased as groundwater inflow increased because rising air temperatures 

did not increase stream temperatures as rapidly in gaining streams as in non-gaining streams.  

I used a combination of net flow differences and air-stream temperature relationships to 

estimate groundwater exchange in this study.   

 

Stream temperature modeling 

Given the logistical challenges of manipulating canopy cover and/or groundwater 

inflow levels in the field, models can help examine how stream temperatures may be affected 

by these two factors.  Several recent stream temperature modeling studies have identified 

canopy cover and/or groundwater inflow as important factors controlling stream temperature.  
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In addition to the field measurements of the effects of canopy cover (as described above), 

modeled canopy cover significantly reduced stream temperatures, even at levels as low as 

70%, in small, lowland New Zealand streams (Rutherford et al. 1997).  In another study 

modeling stream and river temperatures in the Cascade Mountains in Washington, model-

varied buffer widths with full canopy cover revealed that buffer widths greater than 30 m did 

not result in further significant decreases in stream temperature (Sridhar et al. 2004).  Solar 

radiation, a factor heavily influenced by canopy cover, is a main control of stream 

temperature in many stream temperature models.  This was the case in reaches with 

groundwater inflow, as well as reaches without it, across a variety of different study areas 

(Sinokrot and Stefan 1993, St-Hilaire et al. 2000, Younus et al. 2000).  Heat exchange with 

the streambed, a factor heavily influenced by groundwater inflow, is another significant 

factor in some stream temperature models (Sinokrot and Stefan 1993).  Other models identify 

groundwater inflow as a significant factor, in one case in the form of shallow subsurface flow 

from tile drains (Younus et al. 2000).  Solar radiation, groundwater discharge, and stream 

width were identified as the three most sensitive factors when modeling urban stream 

temperatures in Ontario, Canada (LeBlanc et al. 1997).  While it is clear that both canopy 

cover and groundwater inflow can be important in determining stream temperature, few 

studies have quantified the relative magnitudes of these effects.  While riparian restoration 

strongly emphasizes canopy cover, a key issue for predicting restoration success is the extent 

to which changes in groundwater exchange (e.g., decreased inflow because of further upland 

development) might offset any temperature improvements due to shade from riparian 

plantings. 
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This study aimed to quantify the effects of groundwater and canopy cover on daily 

mean and maximum stream temperatures during peak summer conditions using the Stream 

Segment Temperature Model (SSTEMP, Bartholow 2002).  SSTEMP is an extensive heat 

budget model incorporating a variety of physical and meteorological parameters 

(Supplementary Table S1) to predict mean and maximum daily stream temperatures at the 

end of a reach of specified length.  It is not a spatially explicit model, in contrast to others 

that predict stream temperatures throughout an entire stream network (e.g., Bartholow 1989, 

Cox and Bolte 2007).  Two recent studies have used SSTEMP to ask similar questions 

focusing on summer daily mean stream temperatures.  Whitledge et al. (2006) found that 

groundwater inflow was necessary, even under maximum riparian canopy cover, to decrease 

mean stream temperatures to a level safe for resident smallmouth bass during peak summer 

air temperatures in the Midwest.  Gaffield et al. (2005) modeled the magnitude of change in 

mean temperature for small streams in southeastern Wisconsin under varied groundwater and 

canopy cover conditions, and found that the concentration of groundwater inflow was very 

important.  While concentrated groundwater inflow resulted in the greatest decrease in mean 

temperature over short distances, more diffuse groundwater inflow kept the stream coolest at 

the end of a 2 km reach.  The same modeling experiments showed the effects of maximum 

riparian canopy cover to be very similar to those of groundwater inflow.  In contrast to these 

studies, which were conducted in Midwestern streams subject to different climatic and 

geographical constraints, I used SSTEMP to further examine these questions in lowland 

Pacific Northwest streams.   
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Study overview 

Within the context of riparian restoration and alleviating summer stream temperatures 

that are too warm for salmon, this study aimed to quantify the relative magnitude of the 

effects of changes in riparian canopy cover and groundwater inflow on peak summer stream 

temperatures in lowland Whatcom County, Washington.  I measured stream temperature, net 

groundwater exchange, and riparian canopy cover in ten different study reaches designed to 

comprise a factorial combination of reaches with vegetated and unvegetated riparian buffers, 

as well as gaining and not-gaining groundwater.  I evaluated stream temperature impairment 

by examining daily maximum and 7DADM stream temperatures relative to salmonid thermal 

thresholds.  Using a combination of reach-specific and regional conditions as inputs to the 

SSTEMP model, I compared model-predicted temperatures to measured stream temperatures 

during the warmest part of the summer.  I then manipulated the model to examine the relative 

impacts of riparian canopy cover and groundwater inflow on predicted stream temperatures.  

I expected that both riparian canopy cover and groundwater inflow would have measurable 

and ecologically important effects on stream temperature.  I expected that the effect would be 

similar for both factors, and that the magnitude of effect on daily maximum temperatures 

would be greater than the effect on daily mean temperatures.  However, I also expected that 

while canopy cover would reduce stream warming, groundwater inflow would be necessary 

to cool temperatures within the study reaches. 
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METHODS 

Study area and site selection 

This study was conducted in the watersheds of lowland Whatcom County, the 

northwestern-most county in Washington, adjacent to the northern portion of Puget Sound.  

The area is contained within the greater Nooksack River watershed, formally known as 

Water Resources Inventory Area 1 (WRIA 1) by the state.  The climate is Mediterranean-like 

with wet, cool winters and dry, warm summers (Bailey 1995).  Prior to Euro-American 

settlement, the lowland area was dominated by red alder (Alnus rubra) and western red cedar 

(Thuja plicata), as well as black cottonwood (Populus trichocarpa) and Sitka spruce (Picea 

sitchensis) in riparian forests.  By 1940, settlers had burned or logged much of the lowland 

forest and converted the land to agriculture, and many streams and rivers had been ditched or 

diked (Collins and Sheikh 2003).  

This project focused on longitudinal temperature changes in stream reaches that have, 

or are at risk of, impaired maximum stream temperatures.  I defined impaired streams as 

those meeting the criteria for listing on the state 303(d) list as Category 5 temperature 

impaired, including a summer seven-day average daily maximum (7DADM) temperature 

greater than 16°C (WA DOE 2005).  My study reaches were chosen based on the 303(d) 

temperature listing, a survey of aerial photographs and surficial aquifer maps, and in situ 

suitability evaluations at candidate sites.  I chose a study reach length of ~500 m because it is 

a length representative of most local riparian restoration projects (NRT 2004).   

My goal was to test SSTEMP across a wide variety of lowland stream conditions.  I selected 

ten reaches, six with high riparian canopy cover (stream channel heavily shaded throughout 

the reach), and four with low canopy cover (stream channel erratically shaded by patches of 
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riparian vegetation or primarily unshaded).  Each study reach was located in a wadeable     

(1st - 3rd order), perennial stream, with consistent levels of riparian cover (or lack thereof) 

throughout the reach.  Surficial aquifer maps were used to identify sites that were likely 

gaining groundwater flow, and likely not gaining (neutral or losing) within each canopy 

cover group.  Thus, the study reaches were intended to fit into the following groups: 

2 gaining reaches with low canopy cover 

2 not gaining reaches with low canopy cover 

3 gaining reaches with high canopy cover 

3 not gaining reaches with high canopy cover 

Field measurements during data collection revealed that not all reaches fit into the 

category for which they were intended (see Results); most reaches had substantial net gains 

in flow, indicating groundwater inflow.  However, I was successful in finding study reaches 

that exhibited a wide range of conditions across all categories.  Reaches were chosen to 

represent not only the range of local canopy cover and groundwater exchange conditions, but 

geographical, physical, and geological conditions as well (Figure 1, Supplementary Figure 

S1).  Reaches were located in primarily agricultural or rural areas (Anderson, Bertrand.P, 

Bertrand.S, Double Ditch, Terrell), and primarily residential or urban areas (Deer, Fishtrap, 

Padden, Squalicum, Whatcom) (Supplementary Figure S2).  Three reaches flowed from lakes 

with controlled outlets: Padden, Terrell, and Whatcom.  Stream substrate in most reaches was 

cobbly, although some reaches had substantially more fine sediments (Bertrand.P, 

Bertrand.S, Double Ditch, Fishtrap, and Terrell). 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.  Relief map of the study area in lowland Whatcom County, Washington.  Study 
reach limits are indicated by red dots, water bodies are in blue.  Study reaches are numbered 
as follows: 1) Anderson; 2) Bertrand.P; 3) Bertrand.S; 4) Deer; 5) Double Ditch; 6) Fishtrap; 
7) Padden; 8) Squalicum; 9) Terrell; 10) Whatcom.  All data accessed from Huxley College 
at Western Washington University. 
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Field data collection 

To measure temperature over the course of the summer within each study reach, two 

water-resistant temperature data loggers (iButton DS-1921G®, 60 minute interval recordings, 

±0.5ºC accuracy, Maxim Integrated Products Inc., Sunnyvale, CA) were deployed at the top, 

middle, and bottom of each 500 m reach (approximately every 250 m).  Each pair was 

attached to a piece of rebar (0.5 m long) hammered into the streambed so that the iButtons 

were submerged mid-way between the stream bottom and the surface in an area of well-

mixed flow.  In streams where the middle of the reach was inaccessible or highly-trafficked, 

no middle loggers were placed.  I also recorded air temperature hourly with two temperature 

data loggers placed in the shade, attached to streamside vegetation in the middle of each 

study reach (or at the top or bottom, if the middle of the reach was not available).  Data 

loggers were deployed for 2.5 months (July through mid-September 2006), recording 

temperatures hourly through the hottest part of the summer.   

At the up- and downstream data logger locations, I measured streamflow three times 

throughout the summer using the EPA Environmental Monitoring and Assessment Program 

(EMAP) velocity-area discharge measurement procedure (Lazorchak et al. 1998).  Flow was 

measured at the same locations each time, and whenever possible all locations were 

downstream of gravel bars, to minimize loss to hyporheic flow.  Due to dry summer 

conditions, flow measurements approximated base flow conditions.  I interpreted the 

difference between the up and downstream flow measurements as a proxy for net 

groundwater exchange.  While this technique has limitations (it cannot measure gross 

groundwater exchange), it is an accepted and reliable method for estimating net exchange 

between stream and groundwater flows, particularly in the absence of a continuous 
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hydrograph or other monitoring data (Becker et al. 2004, Gaffield et al. 2005, Kalbus et al. 

2006).  Only one stream (Padden Creek) had a tributary within the study reach, and flow was 

also measured above and below the tributary, to account for tributary gain in the final 

calculations of average flow and change in flow.  Depending on equipment availability, flow 

was measured with a Swoffer Model 2100® (Swoffer Instruments Inc., Seattle, WA) or a 

Marsh-McBirney Flo-Mate® (Marsh-McBirney Inc., Frederick, MD); equipment was 

consistent within each of the three measurement periods.   

In addition to collecting stream temperature and flow data, I conducted riparian 

vegetation and stream physical habitat assessments with modified EMAP protocols 

(Lazorchak et al. 1998).  The vegetation survey included a semi-quantitative assessment of 

riparian vegetation type and cover, as well as in-stream densiometer measurements, and a 

summary of anthropogenic disturbances present within 10 m of the stream bank (e.g., 

buildings, agricultural land use, pavement).  The physical assessment included average 

wetted and bankfull widths and thalweg depth.  Both assessments were conducted at each 

logger location and at the mid-point between each pair of loggers for a total of five 

equidistant assessment locations in each stream reach.   

 

Data analysis 

For all analyses, temperatures recorded by both data loggers at each location were 

averaged, and calculations were performed on the average values.  Daily mean, daily 

maximum, and 7DADM temperatures were used to compare stream reaches to one another, 

as well as to identify temperature-stressed reaches.  I examined how maximum temperatures 

changed from upstream to downstream within each reach (ΔTmeasured), and how those changes 
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varied across reaches with different canopy cover and groundwater flow conditions.  To 

characterize impairment within my reaches, I calculated the percentage of days reaches 

exceeded two criteria set forth by the state water quality standards (WA DOE 2006): 1) the 

22ºC daily maximum temperature threshold (a barrier to adult migration and close to the 

lethal threshold), and 2) the 16ºC 7DADM temperature threshold (the limit for summer core 

salmonid habitat, the use designation of the study streams).   

Net groundwater exchange estimates were examined for accuracy by assessing two 

relationships: 1) the slope of the relationship between 7DADM stream temperature and 

7DADM air temperature for each reach, and 2) the daily stream temperature variation at the 

downstream logger location, by estimated percent groundwater flow.  Based on results of 

previous studies, I expected that reaches with higher levels of groundwater inflow would 

have a shallower slope for the stream – air temperature relationship, as well as lower daily 

variation in stream temperature (Constantz 1998, O'Driscoll and DeWalle 2006).  I assessed 

these relationships for both raw temperature data and temperature data normalized for flow 

across reaches by dividing stream temperature by average flow volume. 

 
Temperature modeling 

SSTEMP-predicted temperatures were tested for fit with the actual temperatures 

recorded in the study reaches.  SSTEMP incorporates a variety of factors, all measured in the 

field or acquired from regional data sources, in its prediction of daily mean and maximum 

temperatures at a specified distance downstream of the head of the reach (Supplementary 

Tables S1- S3).  In calculating the net heat flux as water moves through the specified reach, 

the model incorporates a variety of heat flux components, including: convection, conduction, 
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evaporation, water’s back radiation, atmospheric radiation, friction, solar radiation, and 

vegetative radiation.  Model predictions may be somewhat limited by the assumptions of the 

model structure (Bartholow 2002).  For example, it is assumed that the stream channel is 

well-mixed at all times, with no vertical stratification in pools.  SSTEMP is based on, and 

derived from, a series of stream temperature models developed by U.S. Fish and Wildlife 

Service (Theurer et al. 1984). 

I used regression analyses to test model fit and compare the actual temperature data to 

the model-predicted temperatures on 13 dates for each reach individually and for all reaches 

together.  For two reaches (Fishtrap and Whatcom Creeks), only 12 dates were used due to 

the slightly later deployment of loggers in those locations.  For the Bertrand.P site I used 12 

dates, all occurring within the first three weeks of data collection, due to loss of both 

downstream loggers.  The dates were haphazardly chosen to represent the full range of 

stream temperature and weather conditions throughout the summer (Supplementary Table 

S2).  The only modeled date to include rain was the final date in September, and precipitation 

was negligible at < 0.3 mm.   

I manipulated SSTEMP to evaluate mean and maximum stream temperatures under 

varying canopy cover (CC) and groundwater inflow (GW) conditions.  These manipulations 

were conducted for 3 of the 12 sub-sampled dates, representing the range of air temperatures 

and other meteorological conditions exhibited throughout the study period: 1) a peak 

temperature date, 2) a mid temperature date, and 3) a cool temperature date (Supplementary 

Table S2).  A factorial combination of groundwater inflow levels (0%, 10%, 20%, 30%, and 

50% of upstream flow added from groundwater flow) and riparian canopy cover levels (0%, 

25%, 50%, 75%, and 100%) was modeled for each reach.  Levels of both canopy cover and 
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groundwater inflow were chosen because they are representative of common regional 

conditions (Llyn Doremus, personal communication1), and I standardized reach length at  

500 m for all manipulations.  To assess overall trends in the effects of these manipulations, I 

calculated the change in stream temperature from recorded upstream temperatures to 

predicted downstream temperatures within each study reach (ΔTwmean and ΔTwmax) on 

each of the three dates under the following treatments: 1) 0% CC and 0% GW; 2) 0% CC and 

50% GW; 3) 100% CC and 0% GW; 4) 100% CC and 50% GW.  I analyzed the results with 

an ANOVA, examining changes in both mean and maximum temperatures.  The ΔTwmax 

values were transformed to fit ANOVA assumptions (√(|ΔTw|), negative values were 

reinstated after transformation).  The ANOVA model was: ΔTw = constant + Date + Stream + 

CC + GW + Date*GW + Date*CC + CC*GW + Date*CC*GW + error.  Date had three 

levels (Peak, Mid, and Cool), Stream had 10 levels and functioned as a blocking factor, CC 

had two levels (0% and 100%), and GW had 2 levels (0% and 50%).  Contrasts were also 

performed within each date, comparing each of the 4 treatments to all others (Dunn-Ŝidák 

corrected alpha = 0.0085).   

I performed similar analyses to look for significant effects across modeled reach 

conditions (ΔTamean and ΔTamax) for each study reach when modeled on each of the three 

dates for two tests: 1) the difference between predicted downstream temperatures in reaches 

with 0% canopy cover (CC) and reaches with 100% CC; I calculated ΔTa at two levels of 

groundwater inflow (GW, 0% and 50%); 2) comparing reaches with 0% GW to reaches with 

50% GW at two levels of CC (0% and 100%).  ΔTa values for test 1 (change in temperature 

between reaches with 0% and 100% CC at two levels of GW) were transformed to fit 

 
1 Llyn Doremus; Nooksack Natural Resources; 5016 Deming Rd; Deming, WA 98244; June 6 2007. 
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ANOVA assumptions ((ln(|ΔTa|))+1, negative values were reinstated after transformation).  

The ANOVA model was: ΔTa = constant + Date + Level + Stream + Level*Date + error.  

Date had three levels (Peak, Mid, and Cool), Stream had ten levels and functioned as a 

blocking factor, and Level had two levels (0% and 50% GW for test 1, 0% and 100% CC for 

test 2).  Selected contrasts assessed differences between Dates (e.g., comparing Peak to Mid 

and Cool) as well as levels of one factor within the other (e.g., comparing ΔTamax for change 

in CC at 0% GW versus 50% GW).  For all contrasts, Dunn-Ŝidák corrected alpha = 0.0085. 

I used the sensitivity analysis program within SSTEMP to evaluate the sensitivity of all 

model parameters for a representative reach, Deer Creek, under peak temperature conditions.  

The SSTEMP sensitivity analysis tool varies each parameter individually, holding all others 

constant (Bartholow 2002).  Each parameter was increased and decreased by 10%, and the 

changes in predicted temperature reported.  The tool also assigned a relative sensitivity score 

to each parameter, ranging from 0 to 30, indicating how strongly that parameter influenced 

model results.  I conducted sensitivity analysies for both mean and maximum temperature 

parameters. 
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RESULTS

Reach data 

Study reaches spanned a broad range of conditions typical of lowland streams in this 

region in terms of canopy cover, overall flow, and groundwater exchange (Table 1).  Most 

reaches exhibited streamflow rates less than 0.11 cms, although the streamflow of the 

Whatcom Creek reach was more than three times greater.  While I achieved a factorial 

balance of gaining/not gaining and covered/not covered streams overall, in several cases the 

reaches did not fit into the a priori riparian canopy cover or groundwater exchange category.  

Change in flow from upstream to downstream locations (net groundwater exchange) varied 

from -34% to +120% and canopy cover ranged from 11% to 92% (Table 1).  There was less 

variation in canopy cover across reaches than was expected based on initial observations at 

each reach, with 8 reaches exceeding 65% canopy cover.   

As expected based on individual reach conditions, summer stream temperatures at the 

downstream logger locations varied considerably across time (July through September) and 

space (10 reaches).  However, all sites experienced their hottest temperatures in late July 

2006 (Figure 2), when maximum air temperatures exceeded 30°C in some locations.  

Whatcom Creek had consistently higher mean and maximum stream temperatures than all 

other reaches (due to warm outflow from Lake Whatcom), while Anderson was mid-range 

and Deer was typically coolest (Figure 2). One reach (Bertrand.P) had less than three weeks 

(mid-July through early-August) of downstream logger data due to iButton disappearance.  In 

all cases, there was a strong relationship between daily mean and maximum air and stream 

temperatures at each reach; within a reach, peaks and lows in these temperatures occurred 

within hours of one another (reach-specific air temperature data not shown).  There was a
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Figure 2.  Stream and air temperatures for A) daily mean, B) daily maximum, and C) 7-day 
average daily (7DAD) maximum.  Highlighted reaches show the range of reach temperatures, 
remaining reaches are plotted in the background; horizontal lines indicate salmonid thermal 
thresholds (WA DOE 2006). Study period includes the peak summer (May-Sept) 
temperatures; weeks preceding summer peak have temperature patterns similar to weeks 
following; air temperatures are regional values with some missing data (AgWeatherNet 
2006).
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wide range among study reaches in the change in recorded temperature from up to 

downstream (ΔTmeasured) during peak study period conditions (Figure 3).  Three reaches 

cooled consistently (Bertrand.S, Terrell, and Squalicum), five reaches exhibited little (< 

±1°C) change (Padden, Fishtrap, Deer, Anderson, and Double Ditch), and two reaches 

warmed consistently (Whatcom and Bertrand.P).  ΔTmeasured did not follow a consistent 

pattern across reaches with respect to either canopy cover or groundwater exchange levels 

(Figure 3). 

My measurements confirmed that all study reaches exceeded temperature thresholds 

indicating impairment.  The study period included the hottest summer air and water 

temperatures.  Stream temperatures more frequently exceeded the summer 7DADM 

threshold than the summer daily maximum (DailyMax) threshold (Figure 2).  At downstream 

logger locations, temperatures exceeded the 22°C DailyMax threshold in one reach, 

Whatcom, on more than 35% of days.  This was largely due to the source of Whatcom Creek: 

a surficial outflow of Lake Whatcom with very warm summer temperatures (Matthews et al. 

2008).  All 10 reaches exceeded the 16°C 7DADM threshold on 6-100% of days (Figure 2, 

Table 1).  Three reaches (Bertrand.S, Terrell, and Squalicum) had a greater percentage of 

days exceeding the 7DADM threshold at the upstream logger location than at the 

downstream location, and the number of days in excess of the threshold decreased by 12-

71% at the downstream location in these reaches.  These were the same three reaches that 

experienced the greatest up to downstream cooling throughout the study period (ΔTwithin, 

Figure 3).  Groundwater inflow may have contributed to this pattern, particularly in the 

Bertrand.S and Squalicum reaches.  Bertrand.S had the highest net groundwater inflow of 

any reach, and, while Squalicum experienced a net loss of flow (Table 1), it may have had



Be
r.S

Fi
sh

Pa
d

D
ee

r
Te

r
A

nd
W

ha
t

Be
r.P

D
.D

itc
h

Sq
ua

-2-1012

Change in temperature from up to downstream (C)

N
ot

 g
ai

ni
ng

N
ot

 g
ai

ni
ng

G
ai

ni
ng

G
ai

ni
ng

G
W

H
ig

h
Lo

w
C

C

Be
r.S

Fi
sh

Pa
d

D
ee

r
Te

r
A

nd
W

ha
t

Be
r.P

D
.D

itc
h

Sq
ua

-2-1012

Change in temperature from up to downstream (C)

N
ot

 g
ai

ni
ng

N
ot

 g
ai

ni
ng

G
ai

ni
ng

G
ai

ni
ng

G
W

N
ot

 g
ai

ni
ng

N
ot

 g
ai

ni
ng

G
ai

ni
ng

G
ai

ni
ng

G
W

H
ig

h
Lo

w
C

C
H

ig
h

Lo
w

C
C

                           Fi
gu

re
 3

.  
B

ox
pl

ot
 o

f c
ha

ng
es

 in
 m

ax
im

um
 st

re
am

 te
m

pe
ra

tu
re

 fr
om

 u
p 

to
 d

ow
ns

tre
am

 (Δ
T

) d
ur

in
g 

th
e 

fir
st

 8
 d

ay
s o

f 
te

m
pe

ra
tu

re
 lo

gg
in

g 
at

 e
ac

h 
re

ac
h.

m
ea

su
re

d
  F

or
 a

ll 
re

ac
he

s, 
th

is
 p

er
io

d 
in

cl
ud

ed
 p

ea
k 

su
m

m
er

 te
m

pe
ra

tu
re

s. 
 P

at
te

rn
s w

er
e 

si
m

ila
r f

or
 e

nt
ire

 
st

ud
y 

pe
rio

d.
  W

ith
in

 a
 c

an
op

y 
co

ve
r (

C
C

) l
ev

el
, r

ea
ch

es
 a

re
 a

rr
an

ge
d 

fr
om

 h
ig

he
st

 to
 lo

w
es

t g
ro

un
dw

at
er

 e
xc

ha
ng

e 
(G

W
). 

 T
he

 b
ox

 is
 

th
e 

in
te

rq
ua

rti
le

 ra
ng

e 
(I

Q
R

); 
w

hi
sk

er
s r

ep
re

se
nt

 1
.5

xI
Q

R
; d

ot
s i

nd
ic

at
e 

ou
tli

er
s >

1.
5x

IQ
R

.  
Fo

r s
pe

ci
fic

 C
C

 a
nd

 G
W

 v
al

ue
s, 

se
e 

Ta
bl

e 
1.

 26



 27

substantial inflow as well as outflow (see analysis of groundwater flow estimates below).  

Canopy cover may also have contributed to cooling.  The Squalicum reach was just 

downstream of an entirely unvegetated reach and Terrell Creek flows out of a warm lake just 

upstream of the study reach, so the increased canopy cover may have decreased stream 

temperatures. 

Change in flow likely gave a more reliable estimate of groundwater exchange in some 

reaches than others.  A plot of 7DADM air temperatures by 7DADM stream temperatures at 

the downstream location in each reach revealed that the Bertrand.P, Double Ditch, and 

Squalicum reaches had best-fit lines with shallower slopes than would be expected based on 

their groundwater exchange estimates; the relationship between slope and groundwater 

exchange was significant when these reaches were removed (Figure 4, Supplementary Figure 

S3).  While flow measurements suggested that these reaches were nearly neutral or losing 

(Table 1), the air-water temperature slope suggested that groundwater inflow likely reduced 

the sensitivity of daily maximum stream temperatures to variation in air temperature.  

Attempts to normalize across reaches by examining stream temperatures per unit flow did not 

help to identify reaches with potentially inaccurate groundwater measurements: a regression 

of daily temperature variation per unit flow by groundwater exchange (%GW) was non-

significant (even with Whatcom, an apparent outlier reach, removed, p = 0.28) 

(Supplementary Figure S4).   

 

SSTEMP model data 

SSTEMP generally predicted daily mean (DailyMean) reach temperatures more accurately 

than DailyMax temperatures, though all relationships between measured and predicted 
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temperatures were significant (Table 2).  For DailyMean, seven reaches showed a nearly 1-

to-1 linear relationship between measured and predicted temperatures (e.g., Deer, 

Squalicum).  Three reaches (Fishtrap, Padden, and Whatcom) had strongly linear 

relationships, but DailyMean was significantly underpredicted by the model within the range 

of temperatures recorded (Table 2, Figure 5, Supplementary Figures S5-S7).  In all three 

cases, the slope was significantly less than one, and the intercept was significantly greater 

than zero, indicating that they were underpredicted by a greater margin at higher stream 

temperatures.  In all reaches except one, the DailyMean relationship was quite strong, with 

an R2 greater than 0.93 (Table 2).  Only the Bertrand.P reach was lower (~0.82).  On the 

other hand, SSTEMP consistently overpredicted DailyMax temperatures by ~3.2°C ± 0.2 

(average ± standard error), and the relationships were generally weaker than the 

corresponding DailyMean (Table 2, Figure 6).  Again, seven reaches were not significantly 

different from a 1-to-1 relationship.  Two reaches (Anderson and Squalicum) had slopes 

significantly greater than one, indicating that they were overpredicted by a greater margin at 

higher stream temperatures.  A single study reach, Padden, had an intercept that was 

significantly greater than zero (Table 2).  For both DailyMean and DailyMax, Bertrand.P did 

not differ significantly from the 1-to-1 relationship, but had a lower R2 value than the other 

reaches, largely due to the limited data available for modeling that reach (Supplementary 

Table S2). 

The model manipulations of canopy cover (CC) and groundwater inflow (GW) 

looking at temperature change within reaches (ΔTw), revealed that both CC and GW had 

significant effects on the difference between measured upstream and predicted downstream
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mean temperatures (ΔTwmean) across all three dates (Tables 3-4).  In addition, the magnitude 

of those effects varied depending on Date (significant Date*CC and Date*GW interactions, 

Table 3).  Both CC and GW significantly reduced warming on the Peak date (Table 4).  The 

effect of 100% CC alone reduced ΔTwmean by over 70%, while 50% GW alone reduced it by 

over 60%.  Significant cooling (ΔTwmean < 0) was achieved only with a combination of 

maximum levels of both factors.  For the Mid and Cool dates, there was decreased warming 

across all conditions, resulting from different meteorological conditions later in the summer 

(including lower air temperatures and decreased solar radiation).  On the Mid date, 

substantial cooling (> 1°C) was only observed with the combination of maximum CC and 

GW.  None of the treatments warmed on the Cool date, and three out of four (all except 0% 

CC and 0% GW) exhibited significant cooling.  This was expected, given that on this date, 

end of summer conditions included air temperatures that were quite close to both stream and 

groundwater temperatures. 

Similarly, both CC and GW had significant effects on the difference between 

measured upstream and predicted downstream maximum temperatures (ΔTwmax) on all three 

dates (Table 3).  The magnitude of effect of CC, however, varied significantly with Date 

(Date*CC interaction, Table 3).  CC significantly reduced warming on the Peak date, and it 

did so by over 75% (a decrease in predicted downstream temperatures, ΔTamax, > 10°C, 

Table 4, Figure 7, Supplementary Tables S5-S6).  The magnitude of effect of GW on 

ΔTwmax was much smaller (a decrease in predicted downstream temperatures, ΔTamax, of   

~ 2°C, Table 4, Figure 7, Supplementary Tables S5-S6).  While no combination of CC and 

GW resulted in significant cooling for maximum stream temperatures on the Peak date, 

maximum levels of both factors resulted in warming of less than 2°C.  On the Mid and
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Table 3.  ANOVA table for comparison of change in mean and maximum temperatures 
(ΔTw) from recorded upstream to predicted downstream temperatures. The ANOVA model 
was: ΔTw = constant + Date + Stream + CC + GW + Date*GW + Date*CC + CC*GW + 
Date*CC*GW + error.  Date had three levels (Peak, Mid, and Cool), Stream had 10 levels 
and functioned as a blocking factor, CC had two levels (0% and 100%), and GW had 2 levels 
(0% and 50%).  ΔTwmax values were transformed to fit ANOVA assumptions (√(|ΔTw|)); 
negative values were converted back after the transformation.  Significant p-values are bold. 
 
 

  ΔTwmean ΔTwmax 
Treatment df F P F P 
Date 2 43.63 <0.001 159.20 <0.001 
Stream 9 5.27 <0.001 20.69 <0.001 
CC 1 46.43 <0.001 505.72 <0.001 
GW 1 39.18 <0.001 27.40 <0.001 
Date*CC 2 10.37 <0.001 20.35 <0.001 
Date*GW 2 7.90 0.001 1.26 0.290 
CC*GW 1 0.39 0.535 1.78 0.185 
Date*CC*GW 2 0.04 0.959 1.59 0.209 
Error 91     
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Cool dates, patterns were similar to those observed in ΔTwmean.  For the Mid date, 

significant cooling only occurred under the combination of both 100% CC and 50% GW.  

For the Cool date, there was slightly significant warming for two treatments (0% of both CC 

and GW, and 0% CC with 50% GW), and there was no significant change in temperature 

when 100% CC was present (the other two treatments).  Again, this was due to cool, end of 

summer conditions. 

Sensitivity analyses for a representative study reach (Deer Creek) were helpful in 

exploring why canopy cover and groundwater inflow had similar effects on predicted 

DailyMean temperatures, but canopy cover had a much greater effect than groundwater 

inflow on DailyMax.  The two parameters manipulated were Segment Outflow (which varied 

amounts of groundwater inflow), and Shade (canopy cover).  When calculating DailyMean 

under peak temperature conditions, the sensitivity of Segment Outflow was twice that of 

Shade (Table 5).  Their total effects were similar because Shade was increased twice as much 

(0-100%) as Segment Outflow (0-50%), effectively canceling out the difference in 

sensitivity. When predicting the DailyMax under peak temperature conditions, however, the 

sensitivity of Shade was three times that of Segment Outflow (Table 5).  Thus, the total effect 

of changes in canopy cover on DailyMax was approximately six times that of groundwater 

inflow.   
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DISCUSSION 

Overview 

This study predicted the magnitude of effects of groundwater inflow and riparian 

canopy cover across a wide range of lowland stream conditions, establishing an initial 

baseline of data about local stream conditions to inform future restoration or management 

decisions.  Both factors had substantial effects on stream temperatures over a 500 m reach 

distance.  The effects of canopy cover and groundwater inflow on mean temperature were 

similar; however, canopy cover had a much greater effect on maximum temperatures than did 

groundwater inflow.  The benefits of canopy cover on stream temperature were expected in 

this study, as they are well-documented in others (Gomi et al. 2006, Moore et al. 2005, 

Wilkerson et al. 2006).  However, the model results indicated that groundwater inflow to 

local streams was also an important factor in summer stream temperature moderation: under 

the warmest summer conditions, stream temperatures decreased only with both full canopy 

cover and groundwater conditions.  Either factor alone reduced warming, but did not actually 

cool streams.  Groundwater inflow, therefore, should be considered when making restoration, 

land use, and other management decisions (Ebersole et al. 2001, Torgersen et al. 1999).  This 

is particularly true for streams with intact, closed-canopy riparian buffers that have 

substantial groundwater inflow and are within a few degrees of thermal thresholds for salmon 

and other stream organisms.  In these instances, managing local hydrology with streams in 

mind could help prevent temperature impairment. 

 For each reach, the SSTEMP-predicted temperatures had a strong, but unique, 

relationship with measured stream temperatures.  The model was most accurate when 

predicting daily mean (DailyMean) temperatures; it consistently overpredicted daily 
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maximum (DailyMax) temperatures.  This suggests that SSTEMP could be a useful tool for 

future temperature modeling in lowland streams, provided reach-specific data are available 

for input into the model and the relationship between model-predicted and actual 

temperatures is identified.  The overprediction of maximum temperatures does not 

compromise estimates of change in predicted temperatures caused by canopy cover and 

groundwater inflow in this study, as the slope of predicted to actual temperatures was close to 

one for most reaches.  However, studies using the model to assess the effects of restoration 

on actual temperatures (e.g., with respect to particular thermal thresholds) would need to 

adjust the model-predicted temperatures accordingly. 

 

Relative effects of canopy cover and groundwater inflow 

The results of this study support the idea that both canopy cover and groundwater 

inflow are important in keeping peak summer stream temperatures at, or below, thermal 

thresholds for sensitive species such as salmon.  This study is unique in examining the 

relative effects of both of these factors on the same streams, at the same time.  The 

magnitude of effect of canopy cover on daily maximum stream temperatures in my model 

manipulations (~10°C) is at the high end of what has been seen in previous studies assessing 

the effects of clear-cutting in upland forests (2-12°C) (Gomi et al. 2006, Johnson and Jones 

2000, Moore et al. 2005).  This wide range of effects may result from several factors, 

including differences in stream aspect or gradient, methods of clear-cutting, and extent of 

clear-cutting (Moore et al. 2005).  The predicted 10°C decrease in stream warming for peak 

summer maximum temperatures attributed to canopy cover in my study suggests that the 

opportunity for thermal recovery in lowland areas may be greater than in many upland areas, 
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likely because of more extreme summer air temperatures in lowland areas.  Despite the 

model’s overprediction of daily maximum stream temperatures and occasional 

underprediction of mean temperatures (Figure 5), the magnitude of effect should be similar in 

real streams because I focused on the change in model-predicted temperatures under different 

scenarios.  Actual maximum temperatures would be lower, however.  Even if the magnitude 

of effect was slightly smaller, severely impaired streams with little to no canopy cover might 

be kept below thermal thresholds by increases in canopy cover.  The Whatcom Creek reach, 

for example, was the most severely impaired of the study reaches and was still less than 5°C 

greater than the daily maximum thermal threshold (Figure 3B).  While other local factors at 

this site (e.g., stream width) might reduce its effects, canopy cover would still facilitate 

thermal recovery given the magnitude of effects I observed.   

Under peak summer conditions, groundwater inflow may mitigate extreme stream 

temperatures, even though the magnitude of effect may be relatively small (~1.5°C).  The 

effect of groundwater inflow on stream temperature depends on many factors, especially the 

volume of groundwater inflow relative to streamflow and the differences between the air, 

stream, and groundwater temperatures (Becker et al. 2004, O'Driscoll and DeWalle 2006, 

Whitledge et al. 2006).  For example, one of my study reaches, Bertrand.S, exceeded the 

seven-day average daily maximum (7DADM) threshold on more than 72% of days at the 

upstream logger location, but only 6% of days at the downstream location.  This change was 

due to a drop in stream temperature of ~ 2°C between the two logger locations (Table 1).  

Canopy cover was likely not a factor in this temperature change because it was consistently 

high both above and throughout the reach.  There was, however, dramatic groundwater 
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inflow (>120%) to the reach.  In addition, previous research on Bertrand and Fishtrap creeks 

found both to be heavily influenced by groundwater inflow (Cox et al. 2005).   

Even at lower levels of groundwater inflow, the SSTEMP manipulations indicated 

that groundwater inflow could decrease warming of mean and maximum stream temperatures 

by similar amounts with all else being equal (Table 3).  For the gaining reaches in this study 

(10-120% estimated net groundwater inflow), the model sensitivity of Segment Outflow 

attributed temperature reductions of ~0.3-3°C to groundwater inflow (Table 5).  However, 

this was likely an underestimate of actual effects since change in streamflow measured only 

net, not total, groundwater exchange.  Even “losing” reaches could have some groundwater 

exchange, as was apparently the case for at least two of my study reaches (Anderson and 

Squalicum, see discussion of SSTEMP-predicted to actual DailyMax relationships).  This 

magnitude of effect on stream temperature is consistent with other field and modeling 

studies, even in different regions (Gaffield et al. 2005, Torgersen et al. 1999).  Previous 

SSTEMP manipulations of groundwater inflows in warm, Midwestern streams resulted in a 

~2.5°C decrease in mean temperature over 500 m, with 50% canopy cover and 50% 

groundwater inflow (Gaffield et al. 2005).  Even under conditions likely to limit the effect of 

groundwater inflow (e.g., a short, upland reach), a 1.2°C decrease in maximum stream 

temperature was attributed to groundwater inflow (Story et al. 2003).   

Where stream temperatures are close to thermal thresholds, groundwater exchange 

might make the difference between maintaining unimpaired temperatures and exceeding 

thermal thresholds.  This is particularly important where the thermal benefits of full canopy 

cover have already been achieved by riparian restoration or protection, yet streams remain 

close to impairment.  I saw such conditions in the SSTEMP model manipulations of peak 
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conditions, where reach temperatures were predicted to remain constant or decrease only 

under maximum levels of both groundwater inflow and canopy cover.  Full canopy cover 

alone was insufficient to produce cooling during peak temperatures in the middle of the 

summer.  Similarly, longitudinal temperature monitoring of two upland, Pacific Northwest 

streams revealed abrupt decreases in mean temperature of 2-4°C that were likely due, in large 

part, to groundwater inflow to those reaches (Torgersen et al. 1999).  Many reaches in my 

study, when not exceeding the 7DADM threshold, were close to it.  The Deer Creek study 

reach, for example, only surpassed the 7DADM threshold on ~5% of summer days.  If 

changes to local hydrology deprived this reach of groundwater inflow (~20% of baseflow), it 

might easily exceed that threshold more frequently, as more than 63% of days were within 

2°C of the 7DADM threshold.  In addition to the role groundwater inflow may play in 

maintaining stream temperatures below thermal thresholds, areas of groundwater inflow may 

also serve as thermal refugia for salmonids (Brunke and Gonser 1997, Ebersole et al. 2001, 

Ebersole et al. 2003, Isaak et al. 2007, Morley et al. 2005, Power et al. 1999, Sutton et al. 

2007, Torgersen et al. 1999).  The cool segments where groundwater enters the stream can 

allow salmonid populations to persist even in streams that are otherwise too warm (Ebersole 

et al. 2001, Sutton et al. 2007, Torgersen et al. 1999).  Thus, the SSTEMP-predicted effects 

of groundwater inflow on DailyMean and DailyMax may not reflect the full magnitude of 

groundwater’s actual importance.   

I did not explicitly test the effects of reach or riparian buffer length, but my 

measurements and modeling results suggest that thermal recovery can occur within 500 m, 

given appropriate canopy cover and groundwater inflow conditions.  I chose this study reach 

length because it is representative of many local restoration and revegetation projects (NRT 
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2004).  This distance is also similar to those found in previous studies conducted in the 

Midwest and New Zealand (Frimpong et al. 2005, Rutherford et al. 2004).  In an upland 

Pacific Northwest stream, Johnson (2004) measured decreases of more than 1°C in the 

maximum stream temperature over as little as 150 m of artificial shade (black plastic 

sheeting).  Temperature recovery may occur within 500 m, but loss or absence of riparian 

buffers will generally result in an equivalent increase in temperature over an even shorter 

distance (Rutherford et al. 2004).  Thus, while 500 m may be a sufficient distance to mitigate 

impaired summer stream temperatures within a single reach, it may be necessary to maintain 

riparian buffers and groundwater exchange throughout the entire stream to keep temperatures 

below thermal thresholds (Ebersole et al. 2003, Watanabe et al. 2005, Wissmar 2004). 

 

Reflections on SSTEMP 

I found significant, linear relationships between model-predicted and measured mean 

and maximum stream temperatures across a wide range of lowland stream reaches.  

DailyMax temperatures, however, were overpredicted in nearly all cases (by ~ 0°C to 9°C).  

It is unclear why some reaches were so dramatically overpredicted, but the SSTEMP 

documentation suggests one possible reason: the model was originally developed specifically 

to calculate mean temperatures, and the tools to calculate maximum temperatures were added 

secondarily (Bartholow 2000b, 2002).  The documentation suggests that tuning some of the 

standard parameters (e.g., Manning’s n, a measure of stream roughness, and Thermal 

Gradient, a measure of steam-streambed heat exchange) may help adjust model fit.  Both of 

these parameters, however, have very low sensitivity under the conditions studied here.  For 

example, Manning’s n has a typical range of 0.02 – 0.05 in small, cobbly streams, similar to 
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my study reaches (I used n = 0.035; Supplementary Table S1) (Arcement Jr. and Schneider 

1984, USGS 2008).  This parameter would need to be increased by 500% to 1.75 (an 

impossible value), to achieve a 3°C decrease in DailyMax.  Another hypothesis is that 

inaccuracies in the regional data used across all reaches contributed to the overprediction of 

DailyMax temperatures.  But again, the sensitivity of these factors makes this an unlikely 

explanation.  For example, of the regional values used in the model, Relative Humidity had 

the greatest sensitivity and it is possible that the relative humidity in each study reach varied 

from the weather station measurements.  To decrease predicted DailyMax temperatures by 

3°C, however, the Relative Humidity would have to be more than 130% lower at the study 

reaches – another impossible value, and a change in the opposite direction for how I would 

expect actual relative humidity values at the study reaches to differ from weather station 

values. 

Reach-specific conditions provide a possible explanation of why some reaches varied 

significantly from the 1-to-1 relationship for DailyMean temperatures (Fishtrap, Padden, and 

Whatcom) and DailyMax temperatures (Anderson, Padden, and Squalicum).  For the 

DailyMean relationships, all three reaches had slopes that were significantly less than one, 

and intercepts that were significantly greater than zero, suggesting that these reaches were 

warmer than the model predicted in the range of temperatures measured.  However, in all 

cases, the difference between predicted and measured temperatures was relatively small (a 

range of 0 ± 2°C).  Padden Creek was the only reach that differed significantly for both 

DailyMean and DailyMax relationships (although in opposite directions), and the difference 

between predicted and measured was always less than ± 2°C.  While both slope and intercept 

were significantly different for the DailyMean relationship, only the intercept was 
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significantly different for the DailyMax.  This may be related to a very small tributary that 

entered the middle of the reach.  This tributary was accounted for in the reach’s flow 

measurements, but it may have had a slightly warmer temperature (a potential problem, given 

that the model cannot account for two different inflow temperatures).  If this were the case, 

we would expect the model to have underpredicted both the DailyMean and DailyMax 

temperatures; it only underpredicted DailyMean, however, suggesting that other factors must 

also be involved.  

Two other reaches differed significantly in slope from the 1-to-1 relationship for 

DailyMax (Anderson and Squalicum) differed only in terms of slope. These reaches had 

slopes significantly greater than one; they were cooler than the model predicted, particularly 

at higher temperatures.  The Anderson reach’s DailyMax temperatures were overpredicted by 

1-4°C, while Squalicum was more dramatically overpredicted by 3-8°C.  This discrepancy 

may result from inaccurate groundwater measurements; these were the only losing reaches 

(net loss of 15-35% of streamflow).  While my measurements revealed that these reaches had 

a net outflow of water from the stream to the ground, they may also have had groundwater 

inflow that was ultimately masked by a larger volume of outflow.  This would result in 

cooler temperatures than the model predicted.  For the Squalicum reach, this hypothesis was 

also supported by the slope of the 7DADM air by stream temperature relationship, which was 

shallower than would be expected for a losing reach.   

Suspected inaccuracies in groundwater exchange estimates did not render the model 

unable to predict stream temperatures, but some applications of SSTEMP may benefit from 

the use of more detailed methods for measuring groundwater exchange.  Detailed stream 

temperature surveys, piezometers installed throughout the study reach, models integrating 
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flow measurements and temperature surveys, and spatial models based on geological 

databases are examples of alternative methods for identifying areas of groundwater exchange 

in hydrologically dynamic reaches (Becker et al. 2004, Christensen et al. 1998, Keery et al. 

2007, Westhoff et al. 2007).  The labor intensity of these methods, however, would have 

prohibited conducting the broad survey of many different reaches in this study.     

The results of my manipulations of canopy cover and groundwater inflow could be 

further refined by adjusting predicted reach temperatures to account for any under or 

overprediction by the model.  In addition, covarying other secondary parameters with canopy 

cover or groundwater would also improve the reliability of these results.  For example, one 

would expect that air temperature, wind speed, relative humidity, and channel morphology 

would all vary with changes in canopy cover (Bartholow 2000a).  Similarly, changes in flow 

would also affect stream width and depth (and Width’s A Term).  The model, however, does 

not account for these changes.  Including empirical data on how these parameters respond to 

changes in groundwater inflow or canopy cover in the model manipulations of these factors 

may enhance the fit of predicted to actual stream temperatures (Bartholow 2002).  Another 

important consideration that was not addressed in this study, and is not included in the 

SSTEMP model, is that stream orientation (i.e., north-south versus east-west) may influence 

the effectiveness of canopy cover in providing shade to the stream throughout the day 

(LeBlanc and Brown 2000, LeBlanc et al. 1997, Sridhar et al. 2004).  Canopy cover over 

north-south oriented streams provides much more shade than equivalent cover on east-west 

oriented streams in the morning and afternoon, but dramatically less shade at solar noon.  

This means that while north-south oriented streams may have a higher daily maximum 

temperature (by ~1°C), east-west oriented streams will have a longer duration of the daily 
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maximum temperature (by ~ 2.5 hrs) (LeBlanc et al. 1997).  Incorporating this factor could 

improve predictions of DailyMax temperatures, especially, because it would affect Shade, 

one of the most sensitive SSTEMP parameters and one of the factors I manipulated.  The 

complexity of stream systems makes accounting for all environmental and physical factors 

difficult, particularly when modeling experimental manipulations, such as those in this study.  

Future model predictions may benefit from expanding or refining SSTEMP to account for 

variation in these potentially important parameters. 

 

Looking forward: Implications for restoration, climate change, and future study 

This study indicates that the focus of stream management efforts (both protection and 

restoration) for temperature-impaired streams should include groundwater exchange as well 

as canopy cover.  If canopy cover restoration alone cannot maintain summer maximum 

temperatures below thermal thresholds for Pacific Northwest streams, restoration or 

watershed protection efforts may need to address hydrological changes that have reduced 

groundwater inflow, as has been observed in other areas of the country (Whitledge et al. 

2006).  In addition, temperature is not generally the only factor addressed by restoration 

efforts (Bernhardt et al. 2005, Booth 2005, Isaak et al. 2007, Katz et al. 2007, Wissmar and 

Beschta 1998).  Thus, managers must balance all factors when they determine where 

restoration efforts would be most effective in achieving the desired outcome (e.g., salmon 

population recovery).  This balance is particularly important given that previous research has 

found that in some cases, even reaches with cool temperatures and other good habitat 

characteristics may have highly degraded biotic communities if they are located in highly 

urbanized or agricultural watersheds (Booth 2005, Neils 2007).   
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While this study did not manipulate canopy cover or groundwater exchange 

conditions in the field, such studies could help understand and quantify the interactions and 

effects of these factors in the real world.  Intensive, longitudinal stream studies relating 

detailed field measurements of stream temperature, hydrological, and riparian conditions to 

one another may validate the model-predicted effects of these factors, and further clarify their 

relationship.  Additional model manipulations may identify ways to prioritize restoration 

efforts based upon potential for temperature and habitat restoration, test methods for 

determining minimum buffer lengths, and relate watershed hydrology (and local 

anthropogenic effects on hydrology) to stream temperatures (Bernhardt and Palmer 2007).  

Particularly in areas such as the one studied here, where groundwater inflow to streams is 

pervasive, a better understanding of the role groundwater plays in maintaining stream 

temperatures is necessary to inform watershed and hydrological management decisions 

(Becker et al. 2004, Boulton and Hancock 2006, Brown et al. 2007, Brunke and Gonser 

1997, Gaffield et al. 2005, Tague et al. 2007).  In particular, explorations of how different 

types of groundwater inflow (e.g., continuous inflow along the reach versus isolated springs) 

affect the relationship of groundwater inflow to summer maximum stream temperatures may 

help distinguish between different types of reaches: 1) those where groundwater inflow may 

maintain stream temperatures below thermal thresholds, 2) those where thermal refugia are 

likely to be present, although reach temperatures in general exceed thermal thresholds, and 3) 

those where groundwater inflow may be insufficient to buffer thermal loads to protect 

salmonids.   

Climate change will likely enhance the importance of canopy cover and groundwater 

exchange in buffering stream temperatures (Battin et al. 2007, van Roosmalen et al. 2007).  
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In this region, average annual air temperature is predicted to increase by 1.5 – 3.2°C by the 

middle of this century (Battin et al. 2007).  Restoration efforts, and especially restoration of 

riparian canopy cover, may mitigate salmon population decline due to climate change by 

enhancing livable habitat (Battin et al. 2007).  My results suggest that restoration of canopy 

cover in lowland areas should produce substantial decreases in summer maximum stream 

temperatures, even under higher peak summer temperatures.  However, the cooling effect of 

groundwater on summer stream temperatures will be influenced by several concurrent 

changes, including potential alteration of rates and volume of groundwater recharge, stream 

flows, and stream-groundwater exchange (Palmer 2007, van Roosmalen et al. 2007), and 

groundwater temperatures that increase with mean annual air temperature (i.e., 1.5 – 3.2°C).  

Additional modeling studies that incorporate these changes would help to determine the 

extent to which riparian restoration efforts and maintenance of stream-groundwater 

interactions can continue to support local salmon populations under a warming climate 

(Crozier and Zabel 2006, Nelson and Palmer 2007).  As both land use and climate continue 

to change, supporting healthy streams will become increasingly challenging, and require a 

greater understanding of the biotic and abiotic factors affecting stream temperatures.
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Table S1.  Parameters and units used in SSTEMP model runs.  For regional values, see Table 
B.  Reach specific values are in Table 1 or Table C.  Accretion Temperature is equivalent to 
groundwater temperature; Width’s A Term incorporates both width and discharge; 
Manning’s N is a measure of channel roughness; Thermal Gradient refers to the rate of 
thermal transfer between the streambed and the water; Possible Sun is a reflection of 
cloudiness (higher values indicate clear skies). 
 

Model Parameter Parameter Value 
Month Regional - Table B 
Day Regional - Table B 
Segment Inflow (cms) Reach specific - Table 1 
Inflow Temperature (°C) Reach specific - Table C 
Downstream Flow (cms) Reach specific - Table 1 
Accretion Temperature (°C) 11 
Latitude (°) 48 
Dam at Head of Segment 0†

Segment Length (m) Reach specific - Table C 
Upstream Elevation (m) Reach specific - Table C 
Downstream Elevation (m) Reach specific - Table C 
Width's A Term (sec/m2) Reach specific - Table C 
Width's B Term 0.2‡

Manning's N 0.035‡

Mean Air Temperature (°C) Reach specific - Table C 
Maximum Air Temperature (°C) Reach specific - Table C 
Relative Humidity (%) Regional - Table B 
Wind Speed (mps) Regional - Table B 
Ground Temperature (°C) Regional - Table B 
Thermal Gradient (J/m2/sec/°C) 1.65‡

Possible Sun (%) Regional - Table B 
Solar Radiation (J/m2/sec) Regional - Table B 
Total Shade (%) Reach specific - Table 1 

 
† = 1 for Terrell, where a lake outflow was present just upstream of the study reach. 
‡ = Indicates a generally applicable value suggested for use when measured values were not 
available (Bartholow 2002). 
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Table S2.  Regional weather data used in SSTEMP model calculations for each date modeled 
(for all reaches except Bertrand.P‡).  Data from Lynden, WA (AgWeatherNet 2006).  Peak, 
Mid, and Cool dates are indicated by asterisks. 
 

Month Day 

Ground 
Temperature 

(°C) 

Relative 
Humidity 

(%) 
Possible 
Sun (%)

Solar 
Radiation 

(90%†, J/m2/s) 

Wind 
speed 
(m/s) 

7 20 17.08 77.34 95.00 245.58 0.45 
7 23* 19.54 74.55 95.00 240.56 0.75 
7 27 19.34 83.90 65.00 228.70 1.16 
7 31 17.78 80.05 45.63 191.69 0.46 
8 4 17.70 76.79 81.20 227.92 0.71 
8 11* 17.60 90.49 33.70 128.49 0.97 
8 14 17.48 82.30 94.14 219.23 0.69 
8 17 17.43 90.65 60.00 175.71 0.74 
8 20 17.52 78.13 95.00 217.38 0.50 
8 23 17.34 89.79 32.86 136.93 1.21 
9 2 16.09 71.42 87.56 191.93 0.27 
9 7 16.22 85.76 77.58 175.61 0.57 
9 14* 14.59 97.71 16.43 41.68 0.23 

 
† = As recommended by SSTEMP model documentation, I used 90% of reported daily solar 
radiation values as model input (Bartholow 2002). 
‡ = Dates and data for Bertrand.P, where loss of temperature logger limited possible dates: 
 

Month Day 

Ground 
Temperature 

(°C) 

Relative 
Humidity 

(%) 
Possible 
Sun (%)

Solar 
Radiation 

(90%†, J/m2/s) 

Wind 
speed 
(m/s) 

7 20 17.08 77.34 95.00 245.58 0.45 
7 21 17.97 73.64 95.00 245.67 0.49 
7 22 19.02 79.15 95.00 224.54 0.63 
7 23* 19.54 74.55 95.00 240.56 0.75 
7 24 19.79 75.51 95.00 242.61 0.85 
7 25 19.59 86.40 92.00 224.43 1.44 
7 27 19.34 83.90 65.00 228.70 1.16 
7 31 17.78 80.05 45.63 191.69 0.46 
8 1 17.62 79.44 85.83 215.82 1.01 
8 2 17.68 74.63 66.15 195.45 0.93 
8 3 17.61 82.24 80.17 219.16 0.59 
8 4 17.70 76.79 81.20 227.92 0.71 
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Figures 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S1.  Map of the surficial geology in the study area in lowland Whatcom County, 
Washington.  Study reach limits are indicated by red dots, water bodies are in blue.  Study 
reaches are numbered as follows: 1) Anderson; 2) Bertrand.P; 3) Bertrand.S; 4) Deer; 5) 
Double Ditch; 6) Fishtrap; 7) Padden; 8) Squalicum; 9) Terrell; 10) Whatcom.  All data 
accessed from Huxley College at Western Washington University.
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Figure S2.  Map of the land cover and land use in the study area in lowland Whatcom 
County, Washington.  Study reach limits are indicated by red dots, water bodies are in blue.  
Study reaches are numbered as follows: 1) Anderson; 2) Bertrand.P; 3) Bertrand.S; 4) Deer; 
5) Double Ditch; 6) Fishtrap; 7) Padden; 8) Squalicum; 9) Terrell; 10) Whatcom.  Land cover 
and land use data from National Oceanic Atmospheric Administration-Coastal Change 
Analysis Program (NOAA 2008).  
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Figure S4.  Average daily stream temperature variation by estimated groundwater at the 
downstream logger location in each reach.  Streams with higher levels of groundwater were 
expected to have smaller daily temperature variation (Constantz 1998). 
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