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MODELING RELATIVE EFFECTS OF RIPARIAN COVER AND
GROUNDWATER INFLOW ON STREAM TEMPERATURE IN
LOWLAND WHATCOM COUNTY, WASHINGTON
by

Sarah Harper-Smith

ABSTRACT

Many Pacific Northwest streams have water temperatures that exceed thermal
thresholds for salmonids. Supporting and maintaining streams with temperatures below these
thermal thresholds requires an understanding of the relationships between the main factors
influencing stream temperatures. This study examined the relative effects of two of these
factors, riparian canopy cover and groundwater inflow, on stream temperatures at the reach
scale. I measured stream temperature, net groundwater exchange, and riparian canopy cover
levels in 10 different study reaches designed to comprise a factorial combination of reaches
with vegetated and unvegetated riparian buffers, as well as gaining and not-gaining
groundwater. I then modeled stream temperatures in each reach with the SSTEMP stream
temperature model, and compared model-predicted temperatures to measured stream
temperatures during the warmest part of the summer. Finally, I manipulated the model to
examine the relative impacts of riparian canopy cover (0-100%) and groundwater inflow (0-
50%) on predicted stream temperatures. SSTEMP predicted daily mean reach temperatures
well across the range of conditions studied here, although it overpredicted daily maximum
temperatures. Model manipulations of groundwater inflow and canopy cover levels showed
consistent trends in affecting stream temperatures. Under peak summer conditions and
“base” groundwater (0%) and canopy cover (0%) conditions, predicted mean stream
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temperatures warmed by an average of ~ 4°C across all streams. Full canopy cover and 50%
groundwater inflow each reduced this predicted warming by ~ 2.5°C when manipulated
independently. However, only the combination of both high canopy cover and groundwater
inflow actually reduced predicted mean stream temperatures within the study reaches. In
contrast, canopy cover had much stronger effects on modeled maximum stream temperatures
than did groundwater inflow. Under peak summer conditions, 100% canopy cover reduced
predicted downstream warming of daily maxima by ~ 10°C, while 50% groundwater inflow
did so by only ~ 2°C compared to base conditions. The results of this study affirm that both
canopy cover and groundwater inflow play significant roles in minimizing stream
temperatures in summer, and both should be considered when making restoration, land use,

and other management decisions.



ACKNOWLEDGEMENTS

I am so grateful to everyone who contributed to my success in this project. First and
foremost, thank you to my advisor, Dr. Dave Hooper, and my thesis committee, Dr. Merrill
Peterson, Dr. Jim Helfield, and Dr. Bob Mitchell, for your invaluable support and guidance.
Special thanks to Dave and Jim for going out into the field with me. Thank you to all the
wonderful people who helped with fieldwork for nothing more than an ice cream treat at the
end of the day: Aura Lee Harper-Smith, Beth Ballow, Bradley Leckron, Cathy Reidy,
Deborah Purce, Erin Duez, Laura Caputo, Rachel Zack, Scott Teas, and Suzannah White.
Many thanks to Aura Lee for bravely spending my first week out in the field with me.

Thank you to everyone else who helped and supported me in many ways, large and
small. To my fellow graduate students, especially Alli Neils, Deborah Purce, Katie Luxa,
Kenady Reuland, and Rachel Zack, for open ears and good advice. Thanks to Mike LeMoine
for showing me the magic of iButtons; Dr. Ben Miner, for the miracle of pivot tables and
macros; Dr. Robin Matthews, for the gift of R; and the Biology Department staff, for always
being ready to help. Additional thanks to Tim Hyatt and Llyn Doremus, who took the time
to discuss my thesis research with me; Dorie Belisle, Henry Bierlink, and Karen Steensma,
who helped me identify study sites; and all the property owners who allowed me access to
their streams. This project would not have been possible without the flow meters lent by:
Nooksack Salmon Enhancement Association, Peter Kiffney, Tim Hyatt, and the WWU
Geology Department, or the funding provided by the WWU Biology Department and WWU
Research and Sponsored Programs. Finally, I am so grateful to my friends and family for all

your love and support.

vi



TABLE OF CONTENTS

ABSTRACT ...ttt ettt ettt ettt e et e bt e st e sseesteenseeseesseenseeneesseeseeneesneenseas v
ACKNOWLEDGEMENTS ..ottt ettt sttt ettt vi
LIST OF TABLES ...ttt ettt sttt sttt e st beeneeene e viii
LIST OF FIGURES ...ttt sttt sttt sttt ix
LIST OF SUPPLEMENTARY DATA ...ttt st X
INTRODUCTION ...ttt sttt sttt ettt sttt et bttt et sbe e b e e sae e 1
OVETVIEW ...ttt ettt ettt ettt et h e et e bt e e e bt et e e e ab e et e e eabeeabeesabe e bt e sabeenbeesabeenbeenaee 1
Riparian vegetation and stream teMPETAtUIe. ..........cccueeruierieeriierieeriienreeneeesaeeieesveeseesaneens 4
Groundwater inflow and stream tEMPETATULE ...........cceeeriuieeriieeiiieeieeeie e e eeeeeaee e 6
Stream temperature MOdElINg .........cccuiiiiiiiiiiiieie e 8
StUAY OVETVIEW ...ttt ettt et e et e e st e e s sbaeesaeeesseeessseesnsseesnsaaennseens 11
IMETHODS ...ttt ettt s bt ettt bt et et sbe et et e sae e beenees 12
Study area and SIt€ SEIECTION ......c.ueieiiieiiiie et e e e et e s e e e aeeeeeaee s 12
Field data COIIECION .......cc.eiiiiiiiieicee ettt 15

D 1. B 101 £ TSRS 16
Temperature MOAEING ........cc.eeiiiiiiiiii ettt et sabe e e naeeneees 17
RESULTS <.ttt ettt ettt ettt e s et et e e s st e bt e st e es e e beenteeneeseensesneeneenees 21
REACKH data....oueiiiiiiieie et 21
SSTEMP model data........coouieiiiiiiiiieeee ettt 27
DISCUSSION ...ttt ettt ettt sb ettt sb ettt esbe e bt et e sbee bt et e sbeenbeenees 39
OVETVIEW ...ttt ettt ettt e bttt e bt e et e e bt e e a bt e bt e e abeeebeeeabeeeseeeabeenabeenbeesneeenneas 39
Relative effects of canopy cover and groundwater inflow ...........cccoeeieiiiienienciienienieenen. 40
Reflections 0n SSTEMP ... e 44
Looking forward: Implications for restoration, climate change, and future study ............. 48
REFERENCES ... oottt ettt et et e s st et e e steeneenseenaeeneenneeneas 51
SUPPLEMENTARY DATA ...ttt ettt sttt enseenaeeseenes 60
TADIES ..ttt sttt ettt a ettt ebeeatens 61
FRGUIES...... ettt ettt ettt ettt e st e et e e et e e bt e enbeebeeeneeenneas 67

Vil



LIST OF TABLES

Table 1. Study reach stream order, gradient, canopy cover, flow, and temperature data. .... 22
Table 1 (CONtINUEA). ...cviieiierieiecieeteee ettt ettt et ettt et eaeeeae e e aeeeaeennas 23

Table 2. Regression data from analysis of predicted versus actual temperatures for: A) daily
mean stream temperatures, and B) daily maximum stream temperatures. ...........ccccceevveennen. 30

Table3. ANOVA table for comparison of change in mean and maximum temperatures
(ATy) from recorded upstream to predicted downstream temperatures. .........c.cceeeeevveernnennns 34

Table4. Average change in stream temperature within a study reach (from measured
upstream to predicted downstream, AT,,) under different canopy cover and groundwater
COMAILIONS. 1.ttt ettt ettt b et e bt e s bt et e ebte s bt eabeebtesbeenbesaeesbeenbeestenbeensesaeens 35

Table5. SSTEMP parameter sensitivity analyses for an example study reach (Deer Creek)
on the Peak date (July 23, 2006), for predicted mean and maximum temperatures. .............. 38

viil



LIST OF FIGURES

Figure 1. Relief map of the study area in lowland Whatcom County, Washington. ............ 14

Figure 2. Stream and air temperatures for A) daily mean, B) daily maximum, and C) 7-day
average daily (7DAD) MAaXIMUML........cccuiiiiieriiieriienieeiie et eieeeteesteesteeaeessbeeseessseesseassseenseas 24

Figure 3. Boxplot of changes in maximum stream temperature from up to downstream
(AT measured) during the first 8 days of temperature logging at each reach. ............ccoeeveeennee. 26

Figure 4. Relationship between groundwater inflow and the slope of the 7DADM air and
stream temperature relationship for A) all reaches, and B) 7 reaches, excluding Bertrand.P,
Double Ditch, and Squalicum, which have shallower slopes than would be expected based on
their estimated groundwater eXChange............ocveviieiiieiiieiiecie e 28

Figure 5. Examples of the range of relationships between SSTEMP predicted and measured
reach temperatures for three reaches: Deer, Squalicum, and Whatcom. ...........c.cccceevirennennne. 31

Figure 6. Regressions of predicted versus actual measured stream temperature for A) Daily
Mean and B) Daily Maximum t€MPETatures. .........ccceereeeriienieeniienieesieesieeseesereenseesnseeseennns 32

Figure 7. Manipulation of groundwater and canopy cover levels in SSTEMP for a
representative reach (Deer Creek) for A) mean stream temperature, and B) maximum stream
1951001 0 1C) 111 (OSSO PSPRRUPPPRRE 36

X



LIST OF SUPPLEMENTARY DATA

Table S1. Parameters and units used in SSTEMP model runs. ..........cceceveeverienienenenenennen. 62
Table S2. Regional weather data used in SSTEMP model calculations for each date modeled
................................................................................................................................................. 63
Table S3. Reach specific parameter values for SSTEMP model runs. ...........cccveeveeveennnenne. 64
Table S4. ANOVA table for effects across modeled reach conditions for each study reach
(difference between predicted downstream temperatures, both AT,mean and AT,max) on
three dates fOT tWO TESTS: 1..eiuiiiiiieiiete ettt et 65
Table S5. Temperature differences across modeled reach conditions for each study reach
(difference between predicted downstream temperatures, both AT,mean and AT,max) on
three dates fOT TWO tESES: ...ttt et et 66
Figure S1. Map of the surficial geology in the study area in lowland Whatcom County,

AT 1180710 ) SRS 68
Figure S2. Map of the land cover and land use in the study area in lowland Whatcom
County, WashiNGLON. ......cccuiieiiieiiiie ettt eee e ee et eesteeestteeessaeeesaeeessseesssaeesnseeesseeenns 69
Figure S3. 7 day average daily (7DAD) maximum air by stream temperatures for each

TRACK. -ttt ettt et h e et e bt e et e bt e a bt e bt e eab e e beeeateebeeeaee 70
Figure $4. Average daily stream temperature variation by estimated groundwater at the
downstream logger location in €ach reach...........c.cccociieiiiiiiiiiieciece e 71

Figure S5. Relationships between SSTEMP predicted and measured reach temperatures for
three reaches: Anderson, Bertrand.P, and Bertrand.S.........cccovvvviiiiiiiiiiieieeeeen 72

Figure S6. Relationships between SSTEMP predicted and measured reach temperatures for
three reaches: Double Ditch, Fishtrap, and Padden. .............ccccoeeviiiiiiieniiiieeeeee e, 73

Figure S7. Relationships between SSTEMP predicted and measured reach temperatures for
the Terrell TEACK. .....oouiiiiiiii e 74



INTRODUCTION
Overview

Changes in stream temperature have contributed significantly to the decline of Pacific
Northwest salmonid stocks (EPA 2003, NMFS 1996, 1998, Richter and Kolmes 2005), and
these changes are one of the greatest challenges facing resource managers throughout the
region (Gaffield et al. 2005, Richter and Kolmes 2005, Tague et al. 2007). Increased
temperatures can harm salmon populations by increasing juvenile mortality, increasing
susceptibility and exposure to disease, reducing spawning success and predator avoidance,
changing the timing of migration, and altering fish community structure away from salmonid
species (Groot and Margolis 1991, Ice et al. 2004, NMFS 1996, 1998, Quinn 2005, Smith
2002). Both riparian canopy cover and groundwater inflow to the stream can have
substantial moderating effects on stream temperatures (Gomi et al. 2006, Johnson 2004,
Moore et al. 2005, Poole and Berman 2001, Story et al. 2003), however the relative effects of
these two factors are less well understood. This study used field and model-derived data to
examine the extent to which these two factors moderate stream temperatures at the reach
scale, with the goal of providing insight into the effectiveness of riparian restoration as a tool
for addressing increased summer stream temperatures.

The small, lowland streams that are the focus of this study provide important habitat
for salmonids and are particularly vulnerable to temperature changes. Whatcom County is
home to 10 salmonid species, three of which are listed as Threatened under the Endangered
Species Act (ESA): Chinook salmon (Oncorhynchus tshawytscha), steelhead trout (O.
mykiss), and bull trout (Salvelinus confluentus) (FWS 2007). The status of these species, as

well as their cultural and economic importance, has made support of local salmonid



populations an important, and federally mandated, concern. Small, lowland streams provide
habitat for two of these species (steelhead and, to a lesser extent, Chinook), in addition to
several other salmonids, including chum salmon (O. keta), coho salmon (O. kisutch, an ESA
Species of Concern), and cutthroat trout (O. clarki) (Smith 2002, WCPW 2005). These
streams are especially at risk of temperature impairment due to their relatively shallow depth,
small flow volumes (Budd et al. 1987, Neumann et al. 2006) and proximity to agricultural,
residential, and/or urban development (Booth 2005, Kauffman et al. 1997, Roni et al. 2002).
Legal definitions of water quality have been tied to key salmonid temperature
thresholds. Salmon are temperature sensitive throughout their life cycles; stream
temperatures help regulate everything from embryo incubation to juvenile growth and adult
migration (Groot and Margolis 1991, Quinn 2005). To monitor local waters more
effectively, the state of Washington is divided into Water Resource Inventory Areas
(WRIAs), and streams within each WRIA are monitored through a water quality assessment
program and associated 303(d) listing (WA DOE 2002). The 303(d) list documents the
impairment status of all monitored streams: category 5 streams are impaired, category 2
streams are “waters of concern” bordering on impairment, and category 1 streams are
unimpaired; categories 3 and 4 refer to special cases. All category 5 streams are required to
have management plans developed, which often include restoration efforts. Streams
designated as category 5 for temperature impairment have summer seven-day average daily
maximum (7DADM) temperatures exceeding 16°C for core summer salmonid habitat.
Additional temperature criteria exist for other salmonid habitat types and life history periods,
including a daily maximum temperature threshold of 22°C (a barrier to migration and nearly
lethal) (WA DOE 2002, 2005, 2006). I focused on the summer daily maximum and 7DADM
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temperatures; the 7DADM is used to determine 303(d) impairment because it minimizes
influence of any single day, and thus the chance of listing a stream that only exceeds
thresholds a few days per year (EPA 2003, WA DOE 2005).

My study seeks to elucidate the effects of riparian canopy cover and groundwater
inflow on stream temperatures to better predict and test the effects of restoration efforts.
Stream restoration is mandated or strongly encouraged by many laws and monitoring plans
designed to protect streams and facilitate salmon preservation and recovery (Clean Water Act
2002, EPA 2003, NPPC 2000, Roni €t al. 2002, Smith 2002, WA DOE 2005, WCPW 2005),
particularly in streams considered impaired by one or more factors (WA DOE 2002).
Despite the increasing consensus within the scientific community that restoration should
address the natural ecosystem processes within a watershed, most restoration efforts still take
place at the site or reach-specific scale (Booth 2005, Roni et al. 2002). One of the major
challenges to restoration efforts is the lack of information available regarding which
restoration techniques are most successful in facilitating salmon population recovery (Roni et
al. 2002). Identifying the most successful restoration methods has presented many
challenges, particularly because post-restoration monitoring and evaluation are rare and,
when they occur, often take many years to detect a response (Bernhardt et al. 2005, Booth
2005, Palmer et al. 2007, Roni et al. 2002). Despite these challenges, thorough monitoring
and evaluation are necessary to improve the quality and science of ecological restoration
(Klein et al. 2007). Given that riparian restoration frequently happens over relatively small
distances, I sought to match the scale of this study (~500 m) to the typical scale of local

riparian restoration efforts (NRT 2004).



Riparian vegetation and stream temperature

One common restoration strategy is to reestablish riparian vegetation for stream
shading and other benefits (Bernhardt and Palmer 2007, Bernhardt et al. 2005, Kauffman et
al. 1997). The benefits of a healthy native riparian plant community are numerous, including
provision of large woody debris, stream bank stability, and nutrient inputs, among others
(Anbumozhi et al. 2005, Broadmeadow and Nisbet 2004, Endreny 2002, Watanabe et al.
2005). Shade helps to minimize daily fluctuations in stream temperature, limits excess
primary production within the stream, supports salmon life cycle timing, and increases the
summer carrying capacity of the stream by maximizing available habitat (Gregory et al.
1991, Johnson 2004, Malcolm et al. 2004, Murphy 1995, Naiman et al. 2005). In this study,
I examined the role of riparian canopy cover in providing shade to the stream. However,
shade is only one of several factors that are modified by human development and that
influence stream temperature.

The effects of riparian canopy cover removal on stream temperature are well
established in the literature. In upland Pacific Northwest streams, total forest removal
(without retaining a riparian buffer) typically results in increases of up to 12°C in maximum
stream temperature (reviewed in Moore et al. 2005), though the magnitude of the effect
varies widely across sites (Gomi et al. 2006, Moore et al. 2005, Wilkerson €t al. 2006). In
one case, four of seven upland study streams exhibited no significant change in temperature
after clear-cutting, although this was likely due to shade provided by slash left covering the
stream after forest removal (Jackson et al. 2001). In addition, multiple studies report
temperature recovery over 10+ years after forest removal and subsequent regrowth,

suggesting that decreases in temperature as canopies close are equivalent to the increases
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seen after clear-cutting (Johnson 2004, Moore et al. 2005). However, most of the streams
examined in these previous studies are located in upland watersheds that differ substantially
from lowland streams in a variety of ways that may influence stream temperature. For
example, elevation, gradient, and turbulence are often greater in upland streams and
generally minimize increases in stream temperature (Allan 1995). Given that lowland
streams typically have the greatest pressures from development, support dwindling salmon
populations, and are the focus of many restoration projects in the Pacific Northwest,
understanding the potential effects of restoration on their temperature regimes will help
maximize the effectiveness of limited restoration resources.

Guidelines for riparian buffers have focused on minimum buffer widths, but buffer
lengths have received much less attention (Blinn and Kilgore 2001, Lee et al. 2004). For
small, fish-bearing streams such as those studied here, Washington State now has condition-
specific requirements for riparian buffer widths, such that harvest within 15 m of the stream
is never permitted, and, depending on site-specific conditions, harvest is either limited or
prohibited within 20 to 45 m of the stream channel (WFPB 2001). In many cases, the
maintenance or creation of minimum buffer widths mitigates or eliminates stream
temperature changes due to forest removal (Barton et al. 1985, Blinn and Kilgore 2001, Budd
et al. 1987, Frimpong et al. 2005, Gomi et al. 2006, Lee et al. 2004, Wenger 1999,
Wilkerson et al. 2006). These positive impacts are diminished, however, if the restored or
preserved buffer is an isolated patch along an otherwise heavily impacted stream (Booth
2005, Roni et al. 2002). In such situations, buffer length can be an equally important

component of riparian restoration or protection.



Guidelines similar to those for buffer width are not generally available for buffer
length. In Ontario, Canada, Barton et al. (1985) investigated the effects of riparian buffer
length on small agricultural streams in southern Ontario, Canada, and found that 56% of
weekly maximum water temperature variation at a given location was explained by riparian
conditions within 2.5 km upstream. Since then, studies focused on decreases in stream
temperature over a given distance have found that as little as 150 m of canopy cover may be
enough to reduce stream temperatures by 2-3°C (Johnson 2004). Even greater effects have
been observed over distances closer to 500 m in a variety of streams (Frimpong et al. 2005,
Rutherford et al. 2004). While streams can decrease in temperature upon moving through a
shaded reach, they typically increase again once canopy cover is no longer present
(Rutherford et al. 2004). Still, the buffer length needed to reduce temperature by a given
amount depends on a variety of factors (e.g., air temperature, temperature at the upper limit
of the reach, groundwater exchange), all of which can vary from stream to stream and from
reach to reach. Finally, a key question for restoration is whether restored riparian canopy
cover is likely to substantially cool streams below ambient upstream temperatures as opposed
to minimizing further warming. Understanding the interactions of these factors is necessary
to make reasonable predictions about the potential effectiveness of a given restoration

strategy or project.

Groundwater inflow and stream temper ature
While restoration efforts frequently focus on riparian vegetation as a way to decrease
stream temperatures, groundwater inflow may also mitigate temperature increases.

Groundwater inflow is defined here as any subsurface inputs to streamflow. In areas where
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virtually all streams are groundwater fed to some degree, the same changes to land cover
(e.g., increasing impervious surfaces), and land use (e.g., land conversion to agriculture) that
create a need for riparian restoration can dramatically affect the hydrology of local streams
(Allan 2004, Boulton and Hancock 2006, Harbor 1994, Scanlon et al. 2007). Groundwater
inflow moderates stream temperature by entering the stream at a cool and constant
temperature, regardless of season; it generally cools the stream in summer, and warms it in
winter (Adam and Sullivan 1989, Brosofske et al. 1997, Johnson 2004, Moore €t al. 2005,
O'Driscoll and DeWalle 2006, Poole and Berman 2001, Story et al. 2003, Younus €t al.
2000). In lowland Whatcom County, groundwater temperatures tend to be 10-11°C year-
round (Cox et al. 2005). In summer, the effect of groundwater cooling peaks just after the
daily maximum air temperature is reached, when the difference between stream and
groundwater temperatures is greatest. Hyporheic exchanges also tend to buffer stream
temperature changes because of the delayed subsurface response to air temperature variation;
hyporheic flows generally have a cooling effect when stream temperature is rising, and a
warming effect when it is cooling (Loheide and Gorelick 2006, Poole and Berman 2001).

While the general effects of groundwater inflow on stream temperature, as described
above, are relatively well-established, the magnitude of those effects is not. The effects of
groundwater inflow on stream temperature depend upon the relative amount of groundwater
entering the stream, the flow volume, the velocity of the stream itself, and the difference in
temperature between stream and groundwater (Becker et al. 2004, O'Driscoll and DeWalle
2006, Whitledge et al. 2006). In one study attempting to quantify the effects of groundwater
inflow on small upland streams in British Columbia, Canada, 40% of the cooling that

occurred throughout one of the study reaches was attributed to groundwater inflow (Story et
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al. 2003). Bed heat conduction and hyporheic exchange were responsible for the remaining
cooling. One reason these effects are so difficult to quantify is the challenge of determining
the relative amount of groundwater entering the stream. This difficulty is largely due to the
dynamic nature of stream-groundwater interactions and the inherent limitations of different
measurement methods (Becker et al. 2004, Boulton and Hancock 2006, Christensen €t al.
1998, Keery et al. 2007, Moore €t al. 2005, Story et al. 2003). One common and reliable
method of estimating net groundwater exchange is to compare total streamflow at the top and
bottom of the study reach (Becker et al. 2004). However, net exchange can still miss
groundwater inputs that may have a significant effect on stream temperature if these inputs
are balanced, in whole or in part, by loss of stream water to groundwater. To help account
for such effects, groundwater-fed segments of small, lowland streams in Pennsylvania were
distinguished from neutral or losing segments by examining stream-air temperature
relationships (O'Driscoll and DeWalle 2006). For those relationships, the slopes decreased
and the intercepts increased as groundwater inflow increased because rising air temperatures
did not increase stream temperatures as rapidly in gaining streams as in non-gaining streams.
[ used a combination of net flow differences and air-stream temperature relationships to

estimate groundwater exchange in this study.

Stream temper ature modeling
Given the logistical challenges of manipulating canopy cover and/or groundwater
inflow levels in the field, models can help examine how stream temperatures may be affected
by these two factors. Several recent stream temperature modeling studies have identified

canopy cover and/or groundwater inflow as important factors controlling stream temperature.
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In addition to the field measurements of the effects of canopy cover (as described above),
modeled canopy cover significantly reduced stream temperatures, even at levels as low as
70%, in small, lowland New Zealand streams (Rutherford et al. 1997). In another study
modeling stream and river temperatures in the Cascade Mountains in Washington, model-
varied buffer widths with full canopy cover revealed that buffer widths greater than 30 m did
not result in further significant decreases in stream temperature (Sridhar et al. 2004). Solar
radiation, a factor heavily influenced by canopy cover, is a main control of stream
temperature in many stream temperature models. This was the case in reaches with
groundwater inflow, as well as reaches without it, across a variety of different study areas
(Sinokrot and Stefan 1993, St-Hilaire et al. 2000, Younus et al. 2000). Heat exchange with
the streambed, a factor heavily influenced by groundwater inflow, is another significant
factor in some stream temperature models (Sinokrot and Stefan 1993). Other models identify
groundwater inflow as a significant factor, in one case in the form of shallow subsurface flow
from tile drains (Younus et al. 2000). Solar radiation, groundwater discharge, and stream
width were identified as the three most sensitive factors when modeling urban stream
temperatures in Ontario, Canada (LeBlanc et al. 1997). While it is clear that both canopy
cover and groundwater inflow can be important in determining stream temperature, few
studies have quantified the relative magnitudes of these effects. While riparian restoration
strongly emphasizes canopy cover, a key issue for predicting restoration success is the extent
to which changes in groundwater exchange (e.g., decreased inflow because of further upland
development) might offset any temperature improvements due to shade from riparian

plantings.



This study aimed to quantify the effects of groundwater and canopy cover on daily
mean and maximum stream temperatures during peak summer conditions using the Stream
Segment Temperature Model (SSTEMP, Bartholow 2002). SSTEMP is an extensive heat
budget model incorporating a variety of physical and meteorological parameters
(Supplementary Table S1) to predict mean and maximum daily stream temperatures at the
end of a reach of specified length. It is not a spatially explicit model, in contrast to others
that predict stream temperatures throughout an entire stream network (e.g., Bartholow 1989,
Cox and Bolte 2007). Two recent studies have used SSTEMP to ask similar questions
focusing on summer daily mean stream temperatures. Whitledge et al. (2006) found that
groundwater inflow was necessary, even under maximum riparian canopy cover, to decrease
mean stream temperatures to a level safe for resident smallmouth bass during peak summer
air temperatures in the Midwest. Gaffield et al. (2005) modeled the magnitude of change in
mean temperature for small streams in southeastern Wisconsin under varied groundwater and
canopy cover conditions, and found that the concentration of groundwater inflow was very
important. While concentrated groundwater inflow resulted in the greatest decrease in mean
temperature over short distances, more diffuse groundwater inflow kept the stream coolest at
the end of a 2 km reach. The same modeling experiments showed the effects of maximum
riparian canopy cover to be very similar to those of groundwater inflow. In contrast to these
studies, which were conducted in Midwestern streams subject to different climatic and
geographical constraints, I used SSTEMP to further examine these questions in lowland

Pacific Northwest streams.
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Study overview

Within the context of riparian restoration and alleviating summer stream temperatures
that are too warm for salmon, this study aimed to quantify the relative magnitude of the
effects of changes in riparian canopy cover and groundwater inflow on peak summer stream
temperatures in lowland Whatcom County, Washington. I measured stream temperature, net
groundwater exchange, and riparian canopy cover in ten different study reaches designed to
comprise a factorial combination of reaches with vegetated and unvegetated riparian buffers,
as well as gaining and not-gaining groundwater. I evaluated stream temperature impairment
by examining daily maximum and 7DADM stream temperatures relative to salmonid thermal
thresholds. Using a combination of reach-specific and regional conditions as inputs to the
SSTEMP model, I compared model-predicted temperatures to measured stream temperatures
during the warmest part of the summer. I then manipulated the model to examine the relative
impacts of riparian canopy cover and groundwater inflow on predicted stream temperatures.
I expected that both riparian canopy cover and groundwater inflow would have measurable
and ecologically important effects on stream temperature. I expected that the effect would be
similar for both factors, and that the magnitude of effect on daily maximum temperatures
would be greater than the effect on daily mean temperatures. However, I also expected that
while canopy cover would reduce stream warming, groundwater inflow would be necessary

to cool temperatures within the study reaches.
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METHODS
Study area and site selection

This study was conducted in the watersheds of lowland Whatcom County, the
northwestern-most county in Washington, adjacent to the northern portion of Puget Sound.
The area is contained within the greater Nooksack River watershed, formally known as
Water Resources Inventory Area 1 (WRIA 1) by the state. The climate is Mediterranean-like
with wet, cool winters and dry, warm summers (Bailey 1995). Prior to Euro-American
settlement, the lowland area was dominated by red alder (Alnus rubra) and western red cedar
(Thuja plicata), as well as black cottonwood (Populus trichocarpa) and Sitka spruce (Picea
sitchensis) in riparian forests. By 1940, settlers had burned or logged much of the lowland
forest and converted the land to agriculture, and many streams and rivers had been ditched or
diked (Collins and Sheikh 2003).

This project focused on longitudinal temperature changes in stream reaches that have,
or are at risk of, impaired maximum stream temperatures. I defined impaired streams as
those meeting the criteria for listing on the state 303(d) list as Category 5 temperature
impaired, including a summer seven-day average daily maximum (7DADM) temperature
greater than 16°C (WA DOE 2005). My study reaches were chosen based on the 303(d)
temperature listing, a survey of aerial photographs and surficial aquifer maps, and in situ
suitability evaluations at candidate sites. I chose a study reach length of ~500 m because it is
a length representative of most local riparian restoration projects (NRT 2004).

My goal was to test SSTEMP across a wide variety of lowland stream conditions. I selected
ten reaches, six with high riparian canopy cover (stream channel heavily shaded throughout

the reach), and four with low canopy cover (stream channel erratically shaded by patches of
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riparian vegetation or primarily unshaded). Each study reach was located in a wadeable
(1*- 3" order), perennial stream, with consistent levels of riparian cover (or lack thereof)
throughout the reach. Surficial aquifer maps were used to identify sites that were likely
gaining groundwater flow, and likely not gaining (neutral or losing) within each canopy
cover group. Thus, the study reaches were intended to fit into the following groups:

2 gaining reaches with low canopy cover

2 not gaining reaches with low canopy cover

3 gaining reaches with high canopy cover

3 not gaining reaches with high canopy cover

Field measurements during data collection revealed that not all reaches fit into the
category for which they were intended (see Results); most reaches had substantial net gains
in flow, indicating groundwater inflow. However, I was successful in finding study reaches
that exhibited a wide range of conditions across all categories. Reaches were chosen to
represent not only the range of local canopy cover and groundwater exchange conditions, but
geographical, physical, and geological conditions as well (Figure 1, Supplementary Figure
S1). Reaches were located in primarily agricultural or rural areas (Anderson, Bertrand.P,
Bertrand.S, Double Ditch, Terrell), and primarily residential or urban areas (Deer, Fishtrap,
Padden, Squalicum, Whatcom) (Supplementary Figure S2). Three reaches flowed from lakes
with controlled outlets: Padden, Terrell, and Whatcom. Stream substrate in most reaches was
cobbly, although some reaches had substantially more fine sediments (Bertrand.P,

Bertrand.S, Double Ditch, Fishtrap, and Terrell).
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Figure 1. Relief map of the study area in lowland Whatcom County, Washington. Study
reach limits are indicated by red dots, water bodies are in blue. Study reaches are numbered
as follows: 1) Anderson; 2) Bertrand.P; 3) Bertrand.S; 4) Deer; 5) Double Ditch; 6) Fishtrap;
7) Padden; 8) Squalicum; 9) Terrell; 10) Whatcom. All data accessed from Huxley College
at Western Washington University.
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Field data collection

To measure temperature over the course of the summer within each study reach, two
water-resistant temperature data loggers (iButton DS-1921G®, 60 minute interval recordings,
+0.5°C accuracy, Maxim Integrated Products Inc., Sunnyvale, CA) were deployed at the top,
middle, and bottom of each 500 m reach (approximately every 250 m). Each pair was
attached to a piece of rebar (0.5 m long) hammered into the streambed so that the iButtons
were submerged mid-way between the stream bottom and the surface in an area of well-
mixed flow. In streams where the middle of the reach was inaccessible or highly-trafficked,
no middle loggers were placed. I also recorded air temperature hourly with two temperature
data loggers placed in the shade, attached to streamside vegetation in the middle of each
study reach (or at the top or bottom, if the middle of the reach was not available). Data
loggers were deployed for 2.5 months (July through mid-September 2006), recording
temperatures hourly through the hottest part of the summer.

At the up- and downstream data logger locations, I measured streamflow three times
throughout the summer using the EPA Environmental Monitoring and Assessment Program
(EMAP) velocity-area discharge measurement procedure (Lazorchak et al. 1998). Flow was
measured at the same locations each time, and whenever possible all locations were
downstream of gravel bars, to minimize loss to hyporheic flow. Due to dry summer
conditions, flow measurements approximated base flow conditions. I interpreted the
difference between the up and downstream flow measurements as a proxy for net
groundwater exchange. While this technique has limitations (it cannot measure gross
groundwater exchange), it is an accepted and reliable method for estimating net exchange

between stream and groundwater flows, particularly in the absence of a continuous
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hydrograph or other monitoring data (Becker et al. 2004, Gaftield et al. 2005, Kalbus et al.
2006). Only one stream (Padden Creek) had a tributary within the study reach, and flow was
also measured above and below the tributary, to account for tributary gain in the final
calculations of average flow and change in flow. Depending on equipment availability, flow
was measured with a Swoffer Model 2100 (Swoffer Instruments Inc., Seattle, WA) or a
Marsh-McBirney Flo-Mate® (Marsh-McBirney Inc., Frederick, MD); equipment was
consistent within each of the three measurement periods.

In addition to collecting stream temperature and flow data, I conducted riparian
vegetation and stream physical habitat assessments with modified EMAP protocols
(Lazorchak et al. 1998). The vegetation survey included a semi-quantitative assessment of
riparian vegetation type and cover, as well as in-stream densiometer measurements, and a
summary of anthropogenic disturbances present within 10 m of the stream bank (e.g.,
buildings, agricultural land use, pavement). The physical assessment included average
wetted and bankfull widths and thalweg depth. Both assessments were conducted at each
logger location and at the mid-point between each pair of loggers for a total of five

equidistant assessment locations in each stream reach.

Data analysis

For all analyses, temperatures recorded by both data loggers at each location were
averaged, and calculations were performed on the average values. Daily mean, daily
maximum, and 7DADM temperatures were used to compare stream reaches to one another,
as well as to identify temperature-stressed reaches. I examined how maximum temperatures

changed from upstream to downstream within each reach (AT measured), and how those changes
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varied across reaches with different canopy cover and groundwater flow conditions. To
characterize impairment within my reaches, I calculated the percentage of days reaches
exceeded two criteria set forth by the state water quality standards (WA DOE 2006): 1) the
22°C daily maximum temperature threshold (a barrier to adult migration and close to the
lethal threshold), and 2) the 16°C 7DADM temperature threshold (the limit for summer core
salmonid habitat, the use designation of the study streams).

Net groundwater exchange estimates were examined for accuracy by assessing two
relationships: 1) the slope of the relationship between 7DADM stream temperature and
7DADM air temperature for each reach, and 2) the daily stream temperature variation at the
downstream logger location, by estimated percent groundwater flow. Based on results of
previous studies, I expected that reaches with higher levels of groundwater inflow would
have a shallower slope for the stream — air temperature relationship, as well as lower daily
variation in stream temperature (Constantz 1998, O'Driscoll and DeWalle 2006). I assessed
these relationships for both raw temperature data and temperature data normalized for flow

across reaches by dividing stream temperature by average flow volume.

Temperature modeling
SSTEMP-predicted temperatures were tested for fit with the actual temperatures
recorded in the study reaches. SSTEMP incorporates a variety of factors, all measured in the
field or acquired from regional data sources, in its prediction of daily mean and maximum
temperatures at a specified distance downstream of the head of the reach (Supplementary
Tables S1- S3). In calculating the net heat flux as water moves through the specified reach,

the model incorporates a variety of heat flux components, including: convection, conduction,
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evaporation, water’s back radiation, atmospheric radiation, friction, solar radiation, and
vegetative radiation. Model predictions may be somewhat limited by the assumptions of the
model structure (Bartholow 2002). For example, it is assumed that the stream channel is
well-mixed at all times, with no vertical stratification in pools. SSTEMP is based on, and
derived from, a series of stream temperature models developed by U.S. Fish and Wildlife
Service (Theurer et al. 1984).

I used regression analyses to test model fit and compare the actual temperature data to
the model-predicted temperatures on 13 dates for each reach individually and for all reaches
together. For two reaches (Fishtrap and Whatcom Creeks), only 12 dates were used due to
the slightly later deployment of loggers in those locations. For the Bertrand.P site [ used 12
dates, all occurring within the first three weeks of data collection, due to loss of both
downstream loggers. The dates were haphazardly chosen to represent the full range of
stream temperature and weather conditions throughout the summer (Supplementary Table
S2). The only modeled date to include rain was the final date in September, and precipitation
was negligible at < 0.3 mm.

I manipulated SSTEMP to evaluate mean and maximum stream temperatures under
varying canopy cover (CC) and groundwater inflow (GW) conditions. These manipulations
were conducted for 3 of the 12 sub-sampled dates, representing the range of air temperatures
and other meteorological conditions exhibited throughout the study period: 1) a peak
temperature date, 2) a mid temperature date, and 3) a cool temperature date (Supplementary
Table S2). A factorial combination of groundwater inflow levels (0%, 10%, 20%, 30%, and
50% of upstream flow added from groundwater flow) and riparian canopy cover levels (0%,
25%, 50%, 75%, and 100%) was modeled for each reach. Levels of both canopy cover and

18



groundwater inflow were chosen because they are representative of common regional
conditions (Llyn Doremus, personal communication'), and I standardized reach length at

500 m for all manipulations. To assess overall trends in the effects of these manipulations, I
calculated the change in stream temperature from recorded upstream temperatures to
predicted downstream temperatures within each study reach (ATymean and AT,max) on
each of the three dates under the following treatments: 1) 0% CC and 0% GW; 2) 0% CC and
50% GW; 3) 100% CC and 0% GW; 4) 100% CC and 50% GW. I analyzed the results with
an ANOVA, examining changes in both mean and maximum temperatures. The AT,max
values were transformed to fit ANOVA assumptions (V(|ATy|), negative values were
reinstated after transformation). The ANOVA model was: ATy, = constant + Date + Stream +
CC + GW + Date*GW + Date*CC + CC*GW + Date*CC*GW + error. Date had three
levels (Peak, Mid, and Cool), Stream had 10 levels and functioned as a blocking factor, CC
had two levels (0% and 100%), and GW had 2 levels (0% and 50%). Contrasts were also
performed within each date, comparing each of the 4 treatments to all others (Dunn-Sidak
corrected alpha = 0.0085).

I performed similar analyses to look for significant effects across modeled reach
conditions (AT,mean and AT,max) for each study reach when modeled on each of the three
dates for two tests: 1) the difference between predicted downstream temperatures in reaches
with 0% canopy cover (CC) and reaches with 100% CC; I calculated AT, at two levels of
groundwater inflow (GW, 0% and 50%); 2) comparing reaches with 0% GW to reaches with
50% GW at two levels of CC (0% and 100%). AT, values for test 1 (change in temperature

between reaches with 0% and 100% CC at two levels of GW) were transformed to fit

! Llyn Doremus; Nooksack Natural Resources; 5016 Deming Rd; Deming, WA 98244; June 6 2007.
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ANOVA assumptions ((In(]AT,|))+1, negative values were reinstated after transformation).
The ANOVA model was: AT, = constant + Date + Level + Stream + Level*Date + error.
Date had three levels (Peak, Mid, and Cool), Stream had ten levels and functioned as a
blocking factor, and Level had two levels (0% and 50% GW for test 1, 0% and 100% CC for
test 2). Selected contrasts assessed differences between Dates (e.g., comparing Peak to Mid
and Cool) as well as levels of one factor within the other (e.g., comparing AT,max for change
in CC at 0% GW versus 50% GW). For all contrasts, Dunn-Sidak corrected alpha = 0.0085.
I used the sensitivity analysis program within SSTEMP to evaluate the sensitivity of all
model parameters for a representative reach, Deer Creek, under peak temperature conditions.
The SSTEMP sensitivity analysis tool varies each parameter individually, holding all others
constant (Bartholow 2002). Each parameter was increased and decreased by 10%, and the
changes in predicted temperature reported. The tool also assigned a relative sensitivity score
to each parameter, ranging from 0 to 30, indicating how strongly that parameter influenced
model results. I conducted sensitivity analysies for both mean and maximum temperature

parameters.
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RESULTS
Reach data

Study reaches spanned a broad range of conditions typical of lowland streams in this
region in terms of canopy cover, overall flow, and groundwater exchange (Table 1). Most
reaches exhibited streamflow rates less than 0.11 cms, although the streamflow of the
Whatcom Creek reach was more than three times greater. While I achieved a factorial
balance of gaining/not gaining and covered/not covered streams overall, in several cases the
reaches did not fit into the a priori riparian canopy cover or groundwater exchange category.
Change in flow from upstream to downstream locations (net groundwater exchange) varied
from -34% to +120% and canopy cover ranged from 11% to 92% (Table 1). There was less
variation in canopy cover across reaches than was expected based on initial observations at
each reach, with 8 reaches exceeding 65% canopy cover.

As expected based on individual reach conditions, summer stream temperatures at the
downstream logger locations varied considerably across time (July through September) and
space (10 reaches). However, all sites experienced their hottest temperatures in late July
2006 (Figure 2), when maximum air temperatures exceeded 30°C in some locations.
Whatcom Creek had consistently higher mean and maximum stream temperatures than all
other reaches (due to warm outflow from Lake Whatcom), while Anderson was mid-range
and Deer was typically coolest (Figure 2). One reach (Bertrand.P) had less than three weeks
(mid-July through early-August) of downstream logger data due to iButton disappearance. In
all cases, there was a strong relationship between daily mean and maximum air and stream
temperatures at each reach; within a reach, peaks and lows in these temperatures occurred

within hours of one another (reach-specific air temperature data not shown). There was a
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Figure 2. Stream and air temperatures for A) daily mean, B) daily maximum, and C) 7-day
average daily (7DAD) maximum. Highlighted reaches show the range of reach temperatures,
remaining reaches are plotted in the background; horizontal lines indicate salmonid thermal
thresholds (WA DOE 2006). Study period includes the peak summer (May-Sept)
temperatures; weeks preceding summer peak have temperature patterns similar to weeks
following; air temperatures are regional values with some missing data (AgWeatherNet
2006).
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wide range among study reaches in the change in recorded temperature from up to
downstream (AT measured) during peak study period conditions (Figure 3). Three reaches
cooled consistently (Bertrand.S, Terrell, and Squalicum), five reaches exhibited little (<
+1°C) change (Padden, Fishtrap, Deer, Anderson, and Double Ditch), and two reaches
warmed consistently (Whatcom and Bertrand.P). AT easured did not follow a consistent
pattern across reaches with respect to either canopy cover or groundwater exchange levels
(Figure 3).

My measurements confirmed that all study reaches exceeded temperature thresholds
indicating impairment. The study period included the hottest summer air and water
temperatures. Stream temperatures more frequently exceeded the summer 7DADM
threshold than the summer daily maximum (DailyMax) threshold (Figure 2). At downstream
logger locations, temperatures exceeded the 22°C DailyMax threshold in one reach,
Whatcom, on more than 35% of days. This was largely due to the source of Whatcom Creek:
a surficial outflow of Lake Whatcom with very warm summer temperatures (Matthews et al.
2008). All 10 reaches exceeded the 16°C 7DADM threshold on 6-100% of days (Figure 2,
Table 1). Three reaches (Bertrand.S, Terrell, and Squalicum) had a greater percentage of
days exceeding the 7DADM threshold at the upstream logger location than at the
downstream location, and the number of days in excess of the threshold decreased by 12-
71% at the downstream location in these reaches. These were the same three reaches that
experienced the greatest up to downstream cooling throughout the study period (ATyithin
Figure 3). Groundwater inflow may have contributed to this pattern, particularly in the
Bertrand.S and Squalicum reaches. Bertrand.S had the highest net groundwater inflow of
any reach, and, while Squalicum experienced a net loss of flow (Table 1), it may have had
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substantial inflow as well as outflow (see analysis of groundwater flow estimates below).
Canopy cover may also have contributed to cooling. The Squalicum reach was just
downstream of an entirely unvegetated reach and Terrell Creek flows out of a warm lake just
upstream of the study reach, so the increased canopy cover may have decreased stream
temperatures.

Change in flow likely gave a more reliable estimate of groundwater exchange in some
reaches than others. A plot of 7DADM air temperatures by 7DADM stream temperatures at
the downstream location in each reach revealed that the Bertrand.P, Double Ditch, and
Squalicum reaches had best-fit lines with shallower slopes than would be expected based on
their groundwater exchange estimates; the relationship between slope and groundwater
exchange was significant when these reaches were removed (Figure 4, Supplementary Figure
S3). While flow measurements suggested that these reaches were nearly neutral or losing
(Table 1), the air-water temperature slope suggested that groundwater inflow likely reduced
the sensitivity of daily maximum stream temperatures to variation in air temperature.
Attempts to normalize across reaches by examining stream temperatures per unit flow did not
help to identify reaches with potentially inaccurate groundwater measurements: a regression
of daily temperature variation per unit flow by groundwater exchange (%GW) was non-
significant (even with Whatcom, an apparent outlier reach, removed, p = 0.28)

(Supplementary Figure S4).

SSTEMP model data
SSTEMP generally predicted daily mean (DailyMean) reach temperatures more accurately

than DailyMax temperatures, though all relationships between measured and predicted
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temperatures were significant (Table 2). For DailyMean, seven reaches showed a nearly 1-
to-1 linear relationship between measured and predicted temperatures (e.g., Deer,
Squalicum). Three reaches (Fishtrap, Padden, and Whatcom) had strongly linear
relationships, but DailyMean was significantly underpredicted by the model within the range
of temperatures recorded (Table 2, Figure 5, Supplementary Figures S5-S7). In all three
cases, the slope was significantly less than one, and the intercept was significantly greater
than zero, indicating that they were underpredicted by a greater margin at higher stream
temperatures. In all reaches except one, the DailyMean relationship was quite strong, with
an R? greater than 0.93 (Table 2). Only the Bertrand.P reach was lower (~0.82). On the
other hand, SSTEMP consistently overpredicted DailyMax temperatures by ~3.2°C + 0.2
(average + standard error), and the relationships were generally weaker than the
corresponding DailyMean (Table 2, Figure 6). Again, seven reaches were not significantly
different from a 1-to-1 relationship. Two reaches (Anderson and Squalicum) had slopes
significantly greater than one, indicating that they were overpredicted by a greater margin at
higher stream temperatures. A single study reach, Padden, had an intercept that was
significantly greater than zero (Table 2). For both DailyMean and DailyMax, Bertrand.P did
not differ significantly from the 1-to-1 relationship, but had a lower R? value than the other
reaches, largely due to the limited data available for modeling that reach (Supplementary
Table S2).

The model manipulations of canopy cover (CC) and groundwater inflow (GW)
looking at temperature change within reaches (ATy,), revealed that both CC and GW had

significant effects on the difference between measured upstream and predicted downstream
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mean temperatures (ATymean) across all three dates (Tables 3-4). In addition, the magnitude
of those effects varied depending on Date (significant Date*CC and Date*GW interactions,
Table 3). Both CC and GW significantly reduced warming on the Peak date (Table 4). The
effect of 100% CC alone reduced ATymean by over 70%, while 50% GW alone reduced it by
over 60%. Significant cooling (ATymean < 0) was achieved only with a combination of
maximum levels of both factors. For the Mid and Cool dates, there was decreased warming
across all conditions, resulting from different meteorological conditions later in the summer
(including lower air temperatures and decreased solar radiation). On the Mid date,
substantial cooling (> 1°C) was only observed with the combination of maximum CC and
GW. None of the treatments warmed on the Cool date, and three out of four (all except 0%
CC and 0% GW) exhibited significant cooling. This was expected, given that on this date,
end of summer conditions included air temperatures that were quite close to both stream and
groundwater temperatures.

Similarly, both CC and GW had significant effects on the difference between
measured upstream and predicted downstream maximum temperatures (AT,max) on all three
dates (Table 3). The magnitude of effect of CC, however, varied significantly with Date
(Date*CC interaction, Table 3). CC significantly reduced warming on the Peak date, and it
did so by over 75% (a decrease in predicted downstream temperatures, AT,max, > 10°C,
Table 4, Figure 7, Supplementary Tables S5-S6). The magnitude of effect of GW on
ATymax was much smaller (a decrease in predicted downstream temperatures, AT,max, of
~ 2°C, Table 4, Figure 7, Supplementary Tables S5-S6). While no combination of CC and
GW resulted in significant cooling for maximum stream temperatures on the Peak date,

maximum levels of both factors resulted in warming of less than 2°C. On the Mid and
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Table3. ANOVA table for comparison of change in mean and maximum temperatures
(ATy) from recorded upstream to predicted downstream temperatures. The ANOVA model
was: ATy = constant + Date + Stream + CC + GW + Date*GW + Date*CC + CC*GW +
Date*CC*GW + error. Date had three levels (Peak, Mid, and Cool), Stream had 10 levels
and functioned as a blocking factor, CC had two levels (0% and 100%), and GW had 2 levels
(0% and 50%). AT,max values were transformed to fit ANOVA assumptions (V(|ATy|));
negative values were converted back after the transformation. Significant p-values are bold.

AT,mean AT,max
Treatment df F P F P
Date 2 43.63 <0.001 159.20 <0.001
Stream 9 5.27 <0.001 20.69 <0.001
CC 1 46.43 <0.001 505.72 <0.001
GW 1 39.18 <0.001 27.40 <0.001
Date*CC 2 10.37 <0.001 2035 <0.001
Date*GW 2 7.90 0.001 1.26 0.290
CC*GW 1 0.39 0.535 1.78 0.185
Date*CC*GW 2 0.04 0.959 1.59 0.209
Error 91
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Cool dates, patterns were similar to those observed in AT,mean. For the Mid date,
significant cooling only occurred under the combination of both 100% CC and 50% GW.
For the Cool date, there was slightly significant warming for two treatments (0% of both CC
and GW, and 0% CC with 50% GW), and there was no significant change in temperature
when 100% CC was present (the other two treatments). Again, this was due to cool, end of
summer conditions.

Sensitivity analyses for a representative study reach (Deer Creek) were helpful in
exploring why canopy cover and groundwater inflow had similar effects on predicted
DailyMean temperatures, but canopy cover had a much greater effect than groundwater
inflow on DailyMax. The two parameters manipulated were Segment Outflow (which varied
amounts of groundwater inflow), and Shade (canopy cover). When calculating DailyMean
under peak temperature conditions, the sensitivity of Segment Outflow was twice that of
Shade (Table 5). Their total effects were similar because Shade was increased twice as much
(0-100%) as Segment Outflow (0-50%), effectively canceling out the difference in
sensitivity. When predicting the DailyMax under peak temperature conditions, however, the
sensitivity of Shade was three times that of Segment Outflow (Table 5). Thus, the total effect
of changes in canopy cover on DailyMax was approximately six times that of groundwater

inflow.
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DISCUSSION
Overview

This study predicted the magnitude of effects of groundwater inflow and riparian
canopy cover across a wide range of lowland stream conditions, establishing an initial
baseline of data about local stream conditions to inform future restoration or management
decisions. Both factors had substantial effects on stream temperatures over a 500 m reach
distance. The effects of canopy cover and groundwater inflow on mean temperature were
similar; however, canopy cover had a much greater effect on maximum temperatures than did
groundwater inflow. The benefits of canopy cover on stream temperature were expected in
this study, as they are well-documented in others (Gomi et al. 2006, Moore et al. 2005,
Wilkerson et al. 2006). However, the model results indicated that groundwater inflow to
local streams was also an important factor in summer stream temperature moderation: under
the warmest summer conditions, stream temperatures decreased only with both full canopy
cover and groundwater conditions. Either factor alone reduced warming, but did not actually
cool streams. Groundwater inflow, therefore, should be considered when making restoration,
land use, and other management decisions (Ebersole et al. 2001, Torgersen et al. 1999). This
is particularly true for streams with intact, closed-canopy riparian buffers that have
substantial groundwater inflow and are within a few degrees of thermal thresholds for salmon
and other stream organisms. In these instances, managing local hydrology with streams in
mind could help prevent temperature impairment.

For each reach, the SSTEMP-predicted temperatures had a strong, but unique,
relationship with measured stream temperatures. The model was most accurate when

predicting daily mean (DailyMean) temperatures; it consistently overpredicted daily
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maximum (DailyMax) temperatures. This suggests that SSTEMP could be a useful tool for
future temperature modeling in lowland streams, provided reach-specific data are available
for input into the model and the relationship between model-predicted and actual
temperatures is identified. The overprediction of maximum temperatures does not
compromise estimates of change in predicted temperatures caused by canopy cover and
groundwater inflow in this study, as the slope of predicted to actual temperatures was close to
one for most reaches. However, studies using the model to assess the effects of restoration
on actual temperatures (e.g., with respect to particular thermal thresholds) would need to

adjust the model-predicted temperatures accordingly.

Relative effects of canopy cover and groundwater inflow

The results of this study support the idea that both canopy cover and groundwater
inflow are important in keeping peak summer stream temperatures at, or below, thermal
thresholds for sensitive species such as salmon. This study is unique in examining the
relative effects of both of these factors on the same streams, at the same time. The
magnitude of effect of canopy cover on daily maximum stream temperatures in my model
manipulations (~10°C) is at the high end of what has been seen in previous studies assessing
the effects of clear-cutting in upland forests (2-12°C) (Gomi et al. 2006, Johnson and Jones
2000, Moore et al. 2005). This wide range of effects may result from several factors,
including differences in stream aspect or gradient, methods of clear-cutting, and extent of
clear-cutting (Moore et al. 2005). The predicted 10°C decrease in stream warming for peak
summer maximum temperatures attributed to canopy cover in my study suggests that the

opportunity for thermal recovery in lowland areas may be greater than in many upland areas,

40



likely because of more extreme summer air temperatures in lowland areas. Despite the
model’s overprediction of daily maximum stream temperatures and occasional
underprediction of mean temperatures (Figure 5), the magnitude of effect should be similar in
real streams because I focused on the change in model-predicted temperatures under different
scenarios. Actual maximum temperatures would be lower, however. Even if the magnitude
of effect was slightly smaller, severely impaired streams with little to no canopy cover might
be kept below thermal thresholds by increases in canopy cover. The Whatcom Creek reach,
for example, was the most severely impaired of the study reaches and was still less than 5°C
greater than the daily maximum thermal threshold (Figure 3B). While other local factors at
this site (e.g., stream width) might reduce its effects, canopy cover would still facilitate
thermal recovery given the magnitude of effects I observed.

Under peak summer conditions, groundwater inflow may mitigate extreme stream
temperatures, even though the magnitude of effect may be relatively small (~1.5°C). The
effect of groundwater inflow on stream temperature depends on many factors, especially the
volume of groundwater inflow relative to streamflow and the differences between the air,
stream, and groundwater temperatures (Becker et al. 2004, O'Driscoll and DeWalle 2006,
Whitledge et al. 2006). For example, one of my study reaches, Bertrand.S, exceeded the
seven-day average daily maximum (7DADM) threshold on more than 72% of days at the
upstream logger location, but only 6% of days at the downstream location. This change was
due to a drop in stream temperature of ~ 2°C between the two logger locations (Table 1).
Canopy cover was likely not a factor in this temperature change because it was consistently

high both above and throughout the reach. There was, however, dramatic groundwater
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inflow (>120%) to the reach. In addition, previous research on Bertrand and Fishtrap creeks
found both to be heavily influenced by groundwater inflow (Cox et al. 2005).

Even at lower levels of groundwater inflow, the SSTEMP manipulations indicated
that groundwater inflow could decrease warming of mean and maximum stream temperatures
by similar amounts with all else being equal (Table 3). For the gaining reaches in this study
(10-120% estimated net groundwater inflow), the model sensitivity of Segment Outflow
attributed temperature reductions of ~0.3-3°C to groundwater inflow (Table 5). However,
this was likely an underestimate of actual effects since change in streamflow measured only
net, not total, groundwater exchange. Even “losing” reaches could have some groundwater
exchange, as was apparently the case for at least two of my study reaches (Anderson and
Squalicum, see discussion of SSTEMP-predicted to actual DailyMax relationships). This
magnitude of effect on stream temperature is consistent with other field and modeling
studies, even in different regions (Gaffield et al. 2005, Torgersen et al. 1999). Previous
SSTEMP manipulations of groundwater inflows in warm, Midwestern streams resulted in a
~2.5°C decrease in mean temperature over 500 m, with 50% canopy cover and 50%
groundwater inflow (Gaffield et al. 2005). Even under conditions likely to limit the effect of
groundwater inflow (e.g., a short, upland reach), a 1.2°C decrease in maximum stream
temperature was attributed to groundwater inflow (Story et al. 2003).

Where stream temperatures are close to thermal thresholds, groundwater exchange
might make the difference between maintaining unimpaired temperatures and exceeding
thermal thresholds. This is particularly important where the thermal benefits of full canopy
cover have already been achieved by riparian restoration or protection, yet streams remain

close to impairment. I saw such conditions in the SSTEMP model manipulations of peak
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conditions, where reach temperatures were predicted to remain constant or decrease only
under maximum levels of both groundwater inflow and canopy cover. Full canopy cover
alone was insufficient to produce cooling during peak temperatures in the middle of the
summer. Similarly, longitudinal temperature monitoring of two upland, Pacific Northwest
streams revealed abrupt decreases in mean temperature of 2-4°C that were likely due, in large
part, to groundwater inflow to those reaches (Torgersen et al. 1999). Many reaches in my
study, when not exceeding the 7DADM threshold, were close to it. The Deer Creek study
reach, for example, only surpassed the 7DADM threshold on ~5% of summer days. If
changes to local hydrology deprived this reach of groundwater inflow (~20% of baseflow), it
might easily exceed that threshold more frequently, as more than 63% of days were within
2°C of the 7DADM threshold. In addition to the role groundwater inflow may play in
maintaining stream temperatures below thermal thresholds, areas of groundwater inflow may
also serve as thermal refugia for salmonids (Brunke and Gonser 1997, Ebersole et al. 2001,
Ebersole et al. 2003, Isaak et al. 2007, Morley et al. 2005, Power et al. 1999, Sutton et al.
2007, Torgersen et al. 1999). The cool segments where groundwater enters the stream can
allow salmonid populations to persist even in streams that are otherwise too warm (Ebersole
et al. 2001, Sutton et al. 2007, Torgersen et al. 1999). Thus, the SSTEMP-predicted effects
of groundwater inflow on DailyMean and DailyMax may not reflect the full magnitude of
groundwater’s actual importance.

I did not explicitly test the effects of reach or riparian buffer length, but my
measurements and modeling results suggest that thermal recovery can occur within 500 m,
given appropriate canopy cover and groundwater inflow conditions. I chose this study reach

length because it is representative of many local restoration and revegetation projects (NRT
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2004). This distance is also similar to those found in previous studies conducted in the
Midwest and New Zealand (Frimpong et al. 2005, Rutherford et al. 2004). In an upland
Pacific Northwest stream, Johnson (2004) measured decreases of more than 1°C in the
maximum stream temperature over as little as 150 m of artificial shade (black plastic
sheeting). Temperature recovery may occur within 500 m, but loss or absence of riparian
buffers will generally result in an equivalent increase in temperature over an even shorter
distance (Rutherford et al. 2004). Thus, while 500 m may be a sufficient distance to mitigate
impaired summer stream temperatures within a single reach, it may be necessary to maintain
riparian buffers and groundwater exchange throughout the entire stream to keep temperatures

below thermal thresholds (Ebersole et al. 2003, Watanabe et al. 2005, Wissmar 2004).

Reflectionson SSTEMP

I found significant, linear relationships between model-predicted and measured mean
and maximum stream temperatures across a wide range of lowland stream reaches.
DailyMax temperatures, however, were overpredicted in nearly all cases (by ~ 0°C to 9°C).
It is unclear why some reaches were so dramatically overpredicted, but the SSTEMP
documentation suggests one possible reason: the model was originally developed specifically
to calculate mean temperatures, and the tools to calculate maximum temperatures were added
secondarily (Bartholow 2000b, 2002). The documentation suggests that tuning some of the
standard parameters (e.g., Manning’s n, a measure of stream roughness, and Thermal
Gradient, a measure of steam-streambed heat exchange) may help adjust model fit. Both of
these parameters, however, have very low sensitivity under the conditions studied here. For

example, Manning’s n has a typical range of 0.02 — 0.05 in small, cobbly streams, similar to
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my study reaches (I used n = 0.035; Supplementary Table S1) (Arcement Jr. and Schneider
1984, USGS 2008). This parameter would need to be increased by 500% to 1.75 (an
impossible value), to achieve a 3°C decrease in DailyMax. Another hypothesis is that
inaccuracies in the regional data used across all reaches contributed to the overprediction of
DailyMax temperatures. But again, the sensitivity of these factors makes this an unlikely
explanation. For example, of the regional values used in the model, Relative Humidity had
the greatest sensitivity and it is possible that the relative humidity in each study reach varied
from the weather station measurements. To decrease predicted DailyMax temperatures by
3°C, however, the Relative Humidity would have to be more than 130% lower at the study
reaches — another impossible value, and a change in the opposite direction for how I would
expect actual relative humidity values at the study reaches to differ from weather station
values.

Reach-specific conditions provide a possible explanation of why some reaches varied
significantly from the 1-to-1 relationship for DailyMean temperatures (Fishtrap, Padden, and
Whatcom) and DailyMax temperatures (Anderson, Padden, and Squalicum). For the
DailyMean relationships, all three reaches had slopes that were significantly less than one,
and intercepts that were significantly greater than zero, suggesting that these reaches were
warmer than the model predicted in the range of temperatures measured. However, in all
cases, the difference between predicted and measured temperatures was relatively small (a
range of 0 = 2°C). Padden Creek was the only reach that differed significantly for both
DailyMean and DailyMax relationships (although in opposite directions), and the difference
between predicted and measured was always less than = 2°C. While both slope and intercept

were significantly different for the DailyMean relationship, only the intercept was
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significantly different for the DailyMax. This may be related to a very small tributary that
entered the middle of the reach. This tributary was accounted for in the reach’s flow
measurements, but it may have had a slightly warmer temperature (a potential problem, given
that the model cannot account for two different inflow temperatures). If this were the case,
we would expect the model to have underpredicted both the DailyMean and DailyMax
temperatures; it only underpredicted DailyMean, however, suggesting that other factors must
also be involved.

Two other reaches differed significantly in slope from the 1-to-1 relationship for
DailyMax (Anderson and Squalicum) differed only in terms of slope. These reaches had
slopes significantly greater than one; they were cooler than the model predicted, particularly
at higher temperatures. The Anderson reach’s DailyMax temperatures were overpredicted by
1-4°C, while Squalicum was more dramatically overpredicted by 3-8°C. This discrepancy
may result from inaccurate groundwater measurements; these were the only losing reaches
(net loss of 15-35% of streamflow). While my measurements revealed that these reaches had
a net outflow of water from the stream to the ground, they may also have had groundwater
inflow that was ultimately masked by a larger volume of outflow. This would result in
cooler temperatures than the model predicted. For the Squalicum reach, this hypothesis was
also supported by the slope of the 7DADM air by stream temperature relationship, which was
shallower than would be expected for a losing reach.

Suspected inaccuracies in groundwater exchange estimates did not render the model
unable to predict stream temperatures, but some applications of SSTEMP may benefit from
the use of more detailed methods for measuring groundwater exchange. Detailed stream

temperature surveys, piezometers installed throughout the study reach, models integrating
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flow measurements and temperature surveys, and spatial models based on geological
databases are examples of alternative methods for identifying areas of groundwater exchange
in hydrologically dynamic reaches (Becker et al. 2004, Christensen et al. 1998, Keery et al.
2007, Westhoff et al. 2007). The labor intensity of these methods, however, would have
prohibited conducting the broad survey of many different reaches in this study.

The results of my manipulations of canopy cover and groundwater inflow could be
further refined by adjusting predicted reach temperatures to account for any under or
overprediction by the model. In addition, covarying other secondary parameters with canopy
cover or groundwater would also improve the reliability of these results. For example, one
would expect that air temperature, wind speed, relative humidity, and channel morphology
would all vary with changes in canopy cover (Bartholow 2000a). Similarly, changes in flow
would also affect stream width and depth (and Width’s A Term). The model, however, does
not account for these changes. Including empirical data on how these parameters respond to
changes in groundwater inflow or canopy cover in the model manipulations of these factors
may enhance the fit of predicted to actual stream temperatures (Bartholow 2002). Another
important consideration that was not addressed in this study, and is not included in the
SSTEMP model, is that stream orientation (i.e., north-south versus east-west) may influence
the effectiveness of canopy cover in providing shade to the stream throughout the day
(LeBlanc and Brown 2000, LeBlanc et al. 1997, Sridhar et al. 2004). Canopy cover over
north-south oriented streams provides much more shade than equivalent cover on east-west
oriented streams in the morning and afternoon, but dramatically less shade at solar noon.
This means that while north-south oriented streams may have a higher daily maximum

temperature (by ~1°C), east-west oriented streams will have a longer duration of the daily

47



maximum temperature (by ~ 2.5 hrs) (LeBlanc et al. 1997). Incorporating this factor could
improve predictions of DailyMax temperatures, especially, because it would affect Shade,
one of the most sensitive SSTEMP parameters and one of the factors I manipulated. The
complexity of stream systems makes accounting for all environmental and physical factors
difficult, particularly when modeling experimental manipulations, such as those in this study.
Future model predictions may benefit from expanding or refining SSTEMP to account for

variation in these potentially important parameters.

L ooking forward: Implicationsfor restoration, climate change, and futur e study
This study indicates that the focus of stream management efforts (both protection and

restoration) for temperature-impaired streams should include groundwater exchange as well
as canopy cover. If canopy cover restoration alone cannot maintain summer maximum
temperatures below thermal thresholds for Pacific Northwest streams, restoration or
watershed protection efforts may need to address hydrological changes that have reduced
groundwater inflow, as has been observed in other areas of the country (Whitledge et al.
2006). In addition, temperature is not generally the only factor addressed by restoration
efforts (Bernhardt et al. 2005, Booth 2005, Isaak et al. 2007, Katz et al. 2007, Wissmar and
Beschta 1998). Thus, managers must balance all factors when they determine where
restoration efforts would be most effective in achieving the desired outcome (e.g., salmon
population recovery). This balance is particularly important given that previous research has
found that in some cases, even reaches with cool temperatures and other good habitat
characteristics may have highly degraded biotic communities if they are located in highly
urbanized or agricultural watersheds (Booth 2005, Neils 2007).
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While this study did not manipulate canopy cover or groundwater exchange
conditions in the field, such studies could help understand and quantify the interactions and
effects of these factors in the real world. Intensive, longitudinal stream studies relating
detailed field measurements of stream temperature, hydrological, and riparian conditions to
one another may validate the model-predicted effects of these factors, and further clarify their
relationship. Additional model manipulations may identify ways to prioritize restoration
efforts based upon potential for temperature and habitat restoration, test methods for
determining minimum buffer lengths, and relate watershed hydrology (and local
anthropogenic effects on hydrology) to stream temperatures (Bernhardt and Palmer 2007).
Particularly in areas such as the one studied here, where groundwater inflow to streams is
pervasive, a better understanding of the role groundwater plays in maintaining stream
temperatures is necessary to inform watershed and hydrological management decisions
(Becker et al. 2004, Boulton and Hancock 2006, Brown et al. 2007, Brunke and Gonser
1997, Gaffield et al. 2005, Tague et al. 2007). In particular, explorations of how different
types of groundwater inflow (e.g., continuous inflow along the reach versus isolated springs)
affect the relationship of groundwater inflow to summer maximum stream temperatures may
help distinguish between different types of reaches: 1) those where groundwater inflow may
maintain stream temperatures below thermal thresholds, 2) those where thermal refugia are
likely to be present, although reach temperatures in general exceed thermal thresholds, and 3)
those where groundwater inflow may be insufficient to buffer thermal loads to protect
salmonids.

Climate change will likely enhance the importance of canopy cover and groundwater
exchange in buffering stream temperatures (Battin et al. 2007, van Roosmalen et al. 2007).
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In this region, average annual air temperature is predicted to increase by 1.5 — 3.2°C by the
middle of this century (Battin et al. 2007). Restoration efforts, and especially restoration of
riparian canopy cover, may mitigate salmon population decline due to climate change by
enhancing livable habitat (Battin et al. 2007). My results suggest that restoration of canopy
cover in lowland areas should produce substantial decreases in summer maximum stream
temperatures, even under higher peak summer temperatures. However, the cooling effect of
groundwater on summer stream temperatures will be influenced by several concurrent
changes, including potential alteration of rates and volume of groundwater recharge, stream
flows, and stream-groundwater exchange (Palmer 2007, van Roosmalen et al. 2007), and
groundwater temperatures that increase with mean annual air temperature (i.e., 1.5 — 3.2°C).
Additional modeling studies that incorporate these changes would help to determine the
extent to which riparian restoration efforts and maintenance of stream-groundwater
interactions can continue to support local salmon populations under a warming climate
(Crozier and Zabel 2006, Nelson and Palmer 2007). As both land use and climate continue
to change, supporting healthy streams will become increasingly challenging, and require a

greater understanding of the biotic and abiotic factors affecting stream temperatures.
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Table S1. Parameters and units used in SSTEMP model runs. For regional values, see Table
B. Reach specific values are in Table 1 or Table C. Accretion Temperature is equivalent to
groundwater temperature; Width’s A Term incorporates both width and discharge;
Manning’s N is a measure of channel roughness; Thermal Gradient refers to the rate of
thermal transfer between the streambed and the water; Possible Sun is a reflection of
cloudiness (higher values indicate clear skies).

Model Parameter Parameter Value

Month Regional - Table B

Day Regional - Table B
Segment Inflow (cms) Reach specific - Table 1
Inflow Temperature (°C) Reach specific - Table C
Downstream Flow (cms) Reach specific - Table 1
Accretion Temperature (°C) 11

Latitude (°) 48

Dam at Head of Segment o

Segment Length (m) Reach specific - Table C
Upstream Elevation (m) Reach specific - Table C
Downstream Elevation (m) Reach specific - Table C
Width's A Term (sec/m?) Reach specific - Table C
Width's B Term 0.2+

Manning's N 0.035*

Mean Air Temperature (°C) Reach specific - Table C
Maximum Air Temperature (°C)  Reach specific - Table C
Relative Humidity (%) Regional - Table B
Wind Speed (mps) Regional - Table B
Ground Temperature (°C) Regional - Table B
Thermal Gradient (J/m*/sec/°C) 1.65%

Possible Sun (%) Regional - Table B
Solar Radiation (J/m?/sec) Regional - Table B
Total Shade (%) Reach specific - Table 1

1 =1 for Terrell, where a lake outflow was present just upstream of the study reach.
1 = Indicates a generally applicable value suggested for use when measured values were not
available (Bartholow 2002).
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Table S2. Regional weather data used in SSTEMP model calculations for each date modeled
(for all reaches except Bertrand.P}). Data from Lynden, WA (AgWeatherNet 2006). Peak,
Mid, and Cool dates are indicated by asterisks.

Ground Relative Solar Wind

Temperature  Humidity Possible Radiation speed

Month Day (°C) (%)  Sun (%) (90%', J/m?%/s)  (m/s)
7 20 17.08 77.34 95.00 245.58 0.45
T 23% 19.54 74.55 95.00 240.56 0.75
7 27 19.34 83.90 65.00 228.70 1.16
7 31 17.78 80.05 45.63 191.69 0.46
8 4 17.70 76.79 81.20 227.92 0.71
8 11* 17.60 90.49 33.70 128.49 0.97
8 14 17.48 82.30 94.14 219.23 0.69
8 17 17.43 90.65 60.00 175.71 0.74
8 20 17.52 78.13 95.00 217.38 0.50
8 23 17.34 89.79 32.86 136.93 1.21
9 2 16.09 71.42 87.56 191.93 0.27
9 7 16.22 85.76 77.58 175.61 0.57
9 14%* 14.59 97.71 16.43 41.68 0.23

1 = As recommended by SSTEMP model documentation, I used 90% of reported daily solar
radiation values as model input (Bartholow 2002).
1 = Dates and data for Bertrand.P, where loss of temperature logger limited possible dates:

Ground Relative Solar Wind
Temperature  Humidity Possible Radiation speed
Month Day (°C) (%)  Sun (%) (90%, J/m*/s)  (m/s)
7 20 17.08 77.34 95.00 245.58 0.45
7 21 17.97 73.64 95.00 245.67 0.49
7 22 19.02 79.15 95.00 224.54 0.63
7 23% 19.54 74.55 95.00 240.56 0.75
7 24 19.79 75.51 95.00 242.61 0.85
7 25 19.59 86.40 92.00 224.43 1.44
7 27 19.34 83.90 65.00 228.70 1.16
7 31 17.78 80.05 45.63 191.69 0.46
8 1 17.62 79.44 85.83 215.82 1.01
8 2 17.68 74.63 66.15 195.45 0.93
8 3 17.61 82.24 80.17 219.16 0.59
8 4 17.70 76.79 81.20 227.92 0.71
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Figure S1. Map of the surficial geology in the study area in lowland Whatcom County,
Washington. Study reach limits are indicated by red dots, water bodies are in blue. Study
reaches are numbered as follows: 1) Anderson; 2) Bertrand.P; 3) Bertrand.S; 4) Deer; 5)
Double Ditch; 6) Fishtrap; 7) Padden; 8) Squalicum; 9) Terrell; 10) Whatcom. All data
accessed from Huxley College at Western Washington University.
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Figure S2. Map of the land cover and land use in the study area in lowland Whatcom
County, Washington. Study reach limits are indicated by red dots, water bodies are in blue.
Study reaches are numbered as follows: 1) Anderson; 2) Bertrand.P; 3) Bertrand.S; 4) Deer;
5) Double Ditch; 6) Fishtrap; 7) Padden; 8) Squalicum; 9) Terrell; 10) Whatcom. Land cover
and land use data from National Oceanic Atmospheric Administration-Coastal Change
Analysis Program (NOAA 2008).
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Figure $4. Average daily stream temperature variation by estimated groundwater at the
downstream logger location in each reach. Streams with higher levels of groundwater were
expected to have smaller daily temperature variation (Constantz 1998).
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