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Abstract

Moraines of at least two ages occur in alpine cirques near the Mt. Baker volcano in the 

North Cascades Range, WA. The south Swift Creek cirque preserves a distinct sequence of 

moraines representing the two primary age groups. In south Swift Creek cirque, the upper 

group of moraines (1450-1550 m) has little soil development and vegetation. Increment 

borings of the oldest trees growing on the upper moraines suggest that they were formed 

between the late 1800s and early 1900s. This age range correlates with numerous late Little 

Ice Age (T .TA) moraines elsewhere in the Cascade Range. The south Swift Creek cirque Little 

Ice Age moraines have a reconstructed equilibrium line altitude (ELA) of 1550 m.

The lower moraines in south Swift Creek cirque are overlain by and older than 
Mazama ash (6800 ^"^C yrs B.P.). In addition, a date of 9560±50 ’"^C yrs B.P. on charcoal 

from the base of a bog just outside the lowermost moraine provides a closer minimum 

limiting age. A date of 9350+180 yrs B.P. from a branch near the base of a bog behind 

the uppermost pre-Mazama moraine indicates that trees were growing at the edge of the cirque 

by that time. Other cirque moraines in Swift Creek and Shuksan Creek, which are similar in 

extent to the older group of south Swift Creek cirque moraines, are constrained only as older 

than Mazama ash.
Moraines several kilometers distant and similar in altitude and geomorphic position to 

the pre-Mazama moraines of south Swift Creek cirque occupy the mouth of Bagley Creek 

cirque and dam Highwood Lake. A basal radiocarbon date from a Highwood Lake sediment 
core demonstrates that deglaciation occurred before 9410±50 ^'‘C yrs B.P.

The similar limiting radiocarbon dates and similar reconstructed equilibrium line 

altitudes (FT .As) of ~ 1400 m for pre-Mazama moraines in both Bagley Creek cirque and 

south Swift Creek cirque indicates that they are correlative. Two dates with a mean of 

"10,700 yrs B.P. from charcoal layers in outwash associated with moraines 40 km down 

the North Fork Nooksack valley provide a maximum limiting age, constraining the Swift 

Creek and Bagley Creek moraines to the early Holocene or late Pleistocene (Kovanen and 

Easterbrook, 2001).
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The minimum ages indicate that Bagley Creek cirque and south Swift Creek cirque 

moraines predate most of the early Holocene moraines on the south flank of Mt. Baker and 

probably correlate to the similar-scale McNeely II moraines near Mt. Rainier (Heine, 1998). 
However, the range of limiting dates (10,700 - 9600 '"*C yrs B.P.) allows an alternative 

correlation with the youngest Sumas moraines (younger than 10,250 ‘'^C yrs B.P.) from the 

remnant of the Cordilleran Ice Sheet on the Fraser Lowland (Kovanen and Easterbrook, in 

review-a).
The modem local ELA is estimated at 1640 m from small existing glaciers at the heads 

of south Swift Creek cirque and Bagley Creek cirque and a regional ELA of 1890 m based on 

northeast-to-northwest facing, modem glaciers near the study area. The difference (AELA) 

between the modem local and the south Swift Creek Little Ice Age ELAs is 75 m. The local 

ELA is used because local topographic effects that strongly influence mass balance and the 

FT .A today probably also influenced the LIA glacier. The AELA between the regional ELA 

and the late-Pleistocene/early Holocene ELA in Swift Creek and Bagley Creek is ~ 490 m.

The mean regional ELA is a more appropriate comparison for the earlier glacier positions 

because the glaciers were large enough at that time to have substantially reduced local 

topographic effects on mass balance and ELA.

Simple comparisons of modem climate at reconstmcted ELAs with modem glacier 

ELA climate conditions suggest that in order to build the oldest moraines in south Swift Creek 

cirque and Bagley Creek cirque, ablation season temperature would have to decrease by 1.6- 

degrees C or winter precipitation would have to increase by 870 mm. Similarly, building the 

oldest LIA moraine in south Swift Creek cirque would require a 0.85-degree C decrease in 

ablation season temperature or a 440-mm accumulation season precipitation increase.
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Chapter 1 Introduction

The Study Area

The North Cascade Range provides an excellent location to investigate recent alpine 

glaciation. The range occupies northwestern Washington and a small part of southwestern 

British Columbia and extends from Snoqualmie Pass in the south to the Fraser River in the 

north. High relief, rugged topography, and modest modem glaciation characterize the North 

Cascade Range. Precipitation decreases markedly across the range from west to east. High 

precipitation and thick forests and brush occur on the wet, west side of the range where the 

study area is located.

The study area lies in northwestern Washington between Mt. Baker (3287 m (10,781 

ft)), a Quaternary stratovolcano, and Mt. Shuksan (2784 m (9131 ft)), a prominent thrust- 

sheet massif (Figure 1.1). The topography of the study area is dominated by the east-west 

trending ridges of Shuksan arm and Table Mountain and lesser, variably trending, 

subalpine/alpine ridges between 1070 and 1980 m altitude (3500 to 6500 feet) (Figure 1.2). 

The ridges and lower peaks were inundated to an upper altitude of -2000 m (6600 feet) by 

the Cordilleran Ice Sheet during glacial maxima of the Pleistocene. Inundation by the 

Cordilleran ice sheet is indicated by numerous erratics from the last maximum (Easterbrook, 

1963). Rounded ridges below -2000 m are likely a result of repeated ice sheet glaciations. 

Well-developed cirques have been cut into the ridges and U-shaped valleys have been carved 

by past valley glacier erosion.

This study focuses on the glacial geomorphology in the eastern most headwaters of 

upper Swift Creek, upper Shuksan Creek, and upper Bagley Creek (Figure 1.2). Upper Swift 

Creek and upper Shuksan Creek are compound cirques. Each sub-cirque of the compound 

cirques is given a name (additionally, some are given acronyms, which are used in the 

figures and tables) based on its position within the drainage (Figure 1.2). In order to make 

the discussion easier for the reader to follow, full names of each cirque are used in the text 

with acronyms in parenthesis, because acronyms are used on figures. Swift Creek has four 

sub-cirques identified in this study: south Swift Creek cirque (SSC); north Swift Creek 

cirque (NSC); high Swift Creek cirque (HSC); and Austin Pass cirque. Shuksan Creek has
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Figure 1.2 Study area map showing cirques that were investigated in this study. Cirque walls are outlined in 
black. NSC = north Swift Creek cirque, SSC = south Swift Creek cirque, HSC = high Swift Creek cirque, 
NShC = nprth Shuksan Creek cirque, SShC = south Shuksan Creek cirque. Source: Shuksan Arm USGS 7.5 
minute Quadrangle 1989.
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three sub-cirques identified in this study: north Shuksan Creek cirque (NShC); Lake Ann 

cirque; and south Shuksan Creek cirque (SShC). The cirque and upper valley of Bagley 

Creek is simply referred to as Bagley Creek cirque.

North Cascades glaciers and associated landforms are important for understanding 

late-Pleistocene and Holocene glacial history and climate change. The glaciers are close to 

the pacific coast and therefore sensitive to weather patterns originating in the North Pacific 

(McCabe and Fountain, 1995). This study adds to the understanding of correlations and 

variability of the glacial history of the North Cascades and North American Cordillera. The 

North Cascades are unique in the western Cordillera of North America because of their 

relationship to the Pleistocene Cordilleran Ice Sheet. Although much of the range was 

inundated by Cordilleran ice at glacial maxima, the North Cascade Range was not a major 

source area for Cordilleran ice as were the Coast Ranges to the north. The western North 

Cascades preserve moraines of valley glaciation after retreat of the ice sheet (Kovanen,

1996; J. Riedel, personal comm., 1998). However, in the eastern North Cascades (the 

Methow drainage) Cordilleran ice appears to have downwasted with no subsequent valley 

glaciers (Waitt, 1972). The Cascade Range was not inundated by Cordilleran ice to the 

south of Cascade Pass and so a record of Pleistocene valley glaciation is preserved in the 

southern part of the range (e.g. Porter, 1976).

At the close of the Pleistocene, a last remnant of the Cordilleran ice sheet readvanced 

briefly to near the present U.S;-Canada border during the Sumas Stade and Younger Dryas 

(Easterbrook, 1963; Armstrong et al., 1965; Clague et al., 1997,1998; Easterbrook and 

Kovanen, 1998; Kovanen and Easterbrook, in review-a). Climatic changes during the 

Sumas Stade, in which ice advanced almost to sea level in the Fraser lowland, probably 

influenced the timing and pattern of late Pleistocene alpine glaciation in the adjacent 

northwest North Cascades and the study area (Kovanen and Easterbrook, 2001).
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Introduction to Research Problem

The discovery of a set of striking moraines on aerial photographs in the upper Swift 

Creek valley initiated this thesis. These moraines and similar ones in Bagley Creek and 

Shuksan Creek valleys provide a distinct record of landscape and climate change since the 

last glacial maximum in the area. The moraines provide a means to compare the timing and 

extent of these changes with those elsewhere in the Cascade Range. Specifically, the six 

main goals of this study are:

(1) to identify and map glacial landforms in the study area (concentrating on

depositional landforms);

(2) to determine close limiting ages for formation of moraines in the study

area using dendrochronology and radiocarbon dating of organic matter in

sediment cores of lakes and bogs adjacent to the moraines;

(3) to determine if an early Holocene advance occurred in the study area.

(4) to compare the glacial history of this area with the glacial history elsewhere in

the Cascade Range;

(5) to reconstruct margins and calculate the former equilibrium line altitudes

(ELAs) of past glaciers in the study area (from map and field evidence) and

compare reconstructed ELAs with modem ELAs;

(6) to estimate past climate deviations (from modem climate) related to these

glacial events, based on changes of ELA.

General Glacial History of Northwestern Washington

Studies of glacial geology and analyses of pollen from all over the world first shaped 

concepts of climate change. Recently, ice cores from Antarctica and Greenland have yielded 

high-resolution paleoclimate records, which most notably show the variability and rapidity 

of past climate change (eg. Bender et al., 1994; Johnson et al., 1997; Meese et al., 1994; 

White et al., 1997). Paleoclimate in the Pacific Northwest generally fits into the global

5



framework (e.g. Mullineaux et al., 1965; Heller 1980; Easterbrook, 1992; Thomas, 1997; 

Porter and Swanson, 1998; Walker et al., 1999) (Table 1.1). The last glacial maximum of 

the region, named the Vashon Stade, was marked by the maximum extent of the Puget Lobe 

of the Cordilleran Ice Sheet (CIS). Soon after the maximum (-14,500 years B.P), the ice 

sheet abruptly and rapidly retreated (Mullineaux et al., 1965; Easterbrook, 1992; Porter and 

Swanson, 1998) and climate ameliorated during the Everson Interstade during which the 

northern Puget Lowland was flooded by marine water. The marine water floated the 

remaining ice, at which time the Everson glaciomarine drift was deposited (Armstrong et al., 

1965). Multiple moraines and associated deposits of the Sumas Stade of the CIS in the 

Pacific Northwest indicate that the warming climate at the end of the Pleistocene was 

interrupted by a brief, return to near-glacial conditions. A piedmont glacier readvanced in 

the late Pleistocene on the Fraser Lowland of southwestern British Columbia and 

northwestern Washington, and deposited several large moraine and drift complexes 

(Kovanen and Easterbrook, in review-a). The readvance is known as the Sumas Stade of the 

Vashon Glaciation (Armstrong et al. 1965). Kovanen and Easterbrook (in review-a) 

recognize three primary moraine-building events of the Sumas Stade, the first between 
-11,600 and -11,400 ^'‘C years B.P., the second between - 11,400 and 10,250 years 

B.P., and the third after 10,250 ''‘C years B.P. The last two events correlate to the Younger

Dryas event of the North Atlantic region (11,000-10,000 '"^C years B. P.) and other similarly

dated cool events around the world (Rutter et al., 2000). In addition, a large alpine valley

glacier system that occupied the North, Middle, and South Forks of the Nooksack River

drainage may correlate with the Sumas Stade (Kovanen and Easterbrook, 2001).

Based on pollen studies in the Pacific Northwest, the early-to-mid-Holocene has 

generally been thought of as a period of warm and dry conditions (e.g. Whitlock, 1992), 

included in the Hypsithermal (defined by Deevy and Flint (1957) between -10,000 and 2500 

''^C years B.P.). The Neoglacial period, which overlaps with the Hypsithermal, is commonly 

used for the period of glacier expansion after warm dry conditions (Porter and Denton,
1967). The start of the Neoglacial period varies regionally from 5000 to 8000 *'^C years B.P. 

(Denton and Porter, 1970).
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Table 1.1 Late-Pieistocene and Holocene stratigraphy for western 
Washington and southwestern British Columbia. Sources: Mullineaux 
et al., 1965; Heller 1980; Easterbrook, 1992; Clague et al. 1997; 
Kovanen and Easterbrook 1997; Thomas 1997; Easterbrook and 
Kovanen, 1998; Porter and Swanson, 1998.
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Thus, the boundary between the Hypsithermal and Neoglacial is considered time 

transgressive. Mathes (1939) first coined the term “Little Ice Age”(LIA) for the same period 

as Neoglaciation. More recently Little Ice Age has come to mean the time of glacier 

expansion during the past ~ 700 years within and at the end of the Neoglacial (late 

Neoglacial). The end of the UA (and the Neoglacial) and the beginning of warmer, modem 
conditions are generally considered to have started at the end of the 19* Century.

An early Holocene glacial advance in the North American Cordillera?

Most glaciers in the North American Cordillera reached their Holocene maximum 

extents during the Neoglacial period. However, a number of pre-Neoglacial moraines, some 

assigned early Holocene ages, have been identified (Beget, 1981; 1988; Easterbrook and 

Burke, 1972: Easterbrook, 1975; Waitt et al., 1983). Because of the long-held view of 

prevalent, warm and dry conditions during the Hypsithermal and lack of rigorous dating 

control on many of these moraines, substantial early Holocene glacial advances have been 

viewed with skepticism by some (Davis and Osbom, 1987; Luckman, 1998).
In the Cascade Range, cirque moraines mantled by Mazama ash (-6800 ''^C years 

B.P.) near the south side of Mt. Baker provided an early indication of an early Holocene

glacier advance (Easterbrook and Burke, 1972: Easterbrook, 1975). More recently, charcoal

from one of these moraines has been dated at -8500 ^"^C years B.P. (Easterbrook and

Kovanen, 1999). Thomas (1997; Thomas et al., 2000) documented evidence for an extended

position of the Easton Shelf Glacier on the south flank of Mt. Baker between 6800 and 8400

•'‘C years B.P. Beget (1981) provided evidence for an early Holocene advance near Glacier

Peak between about 8300 to 8400 '"^C years B.P. In a reexamination of Beget's field area,

Davis and Osbom (1987) concluded that Beget’s dates are from colluvium rather than till,

but Beget (1988) maintained that an early Holocene advance did occur there. Waitt et al.

(1983) suggested an early Holocene advance in the southern North Cascades marked by

moraines mantled with Mazama Ash (older than —6800 *"*C years B.P.). However, the age of
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these moraines is poorly constrained with a maximum limiting age of -13,000 years B.P. 

(Waitt et al„ 1983).

Heine (1998) dated the McNeely I and II advances of Crandell and Miller (1964) near 

Mt. Rainier. Based on radiocarbon dates from lake and bog sediment and tephrochronology, 

the McNeely I advance occurred before 11,300 years B.P., and the McNeely II advance 

occurred at the beginning of the Holocene, between 9800 and 8950 years B.P. Thus, the 

only well-dated evidence for an early Holocene glacier advance in the Cascade Range and in 

the North American Cordillera comes from the vicinities of Mt. Baker and Mt. Rainier.

Some moraines in the study area appear to be good candidates for early Holocene age. They 

are similar in extent, are covered by Mazama ash, and their position relative to Little Ice Age 

moraines is similar to those near Mt. Baker and Mt. Rainier.

Climatic Setting
The North Cascades lie within a highland maritime climate zone characterized by 

cool, wet winters and relatively dry, warm summers. The average annual temperature at Mt. 

Baker Lodge (near the mouth of Bagley Creek cirque) is 4.4 deg. C (39.9 deg. F), and the 

average annual precipitation is 279 cm (110 inches) (Porter, 1977; Douglas, 1969). 

Approximately 80 percent of the annual precipitation in the study area falls between October 

and April, most of which falls as snow. Frequent winter storms and orographic lifting are 

responsible for the large amounts of winter snowfall. Storms commonly come from the west 

and southwest off the Pacific Ocean. During the winter, an atmospheric low-pressure 

pattern (the Aleutian Low) dominates the northeast Pacific directing storms onto the 

northwest coast of North America. During the summer, a high-pressure pattern (the Pacific 

High) shifts northward and dominates the northwest coast, causing drier conditions to 

prevail (Ahrens, 1994). The North Cascade Range is distinct from the South Cascade Range 

in that the North Cascades receive occasional blasts of arctic air from the north during the 

winter, lowering temperatures and freezing levels in the mountains.
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Vegetation
The study area occurs mostly in the subalpine vegetation zone. This zone is patchy 

forest parkland of heather/huckleberry, wetland meadows, and stands of mountain hemlock 

and fir. The subalpine vegetation zone is defined as the area above closed (montane) forest 

but below the limits of krummholz and alpine tundra (Douglas, 1969). In the North 

Cascades, these limits typically are between 1280 m (4200 ft) and 1820 m (5970 ft) on 

north-facing slopes and 1580 m (5180 ft) to 1980 m (6490 ft) on south-facing slopes 

(Douglas, 1969). The primary non-altitudinal controls on vegetation patterns in the study 

area are duration of summer snow cover, age of recent deglaciation, soil drainage, and 

substrate type.
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Chapter 2 Methods

Glacial Landform Mapping

Landforms were mapped from stereo air photos and topographic maps. Black and 

white (USDA, Mt Baker-Snoqualmie National Forest, 1963) and color air photos (USDA,

Mt Baker-Snoqualmie National Forest, 1985) at a scale of 1:12,000 were used in conjunction 

with the uses, 7.5-minute Shuksan Arm quadrangle (1989). Field sites suitable for 

investigation were identified on the photos, which were later used to compile maps of glacial 

deposits in upper Swift Creek, Shuksan Creek (Figure 3.1) and Bagley Creek (Figure 4.1). 

However, ground exploration proved to be the most accurate method of mapping.

Field mapping in upper Swift Creek and Shuksan Creek was conducted from July to 

October, 1998. Reconnaissance field mapping in Bagley Creek was completed in 

September, 1999. The main goal of the field mapping was to distinguish primary moraine 

crests. Both sparsely vegetated Neoglacial moraines and densely vegetated pre-Neoglacial 

moraine crests were distinct on air photos and in the field. Where available, exposures of till 

in stream cuts, trail cuts, and tree throws allowed moraines to be distinguished from bedrock 

ridges. Where till exposures were lacking, interpretations were based on surface 

morphology as well as the presence and provenance of surface clasts.

Dendrochronology

The ages of Neoglacial moraines were estimated using dendrochronology (Lawrence, 

1950). Few trees occur on the Neoglacial moraines and those that do are quite small (1-3 m 

tall) mountain hemlock or subalpine fir. The oldest were readily recognized by their size 

and were sampled. A 12-inch long increment borer was used to obtain cores as close to the 

base of the tree trunk as possible. A small number of trees occur on each moraine so no 

problems were encountered in distinguishing the oldest.

From several studies in the North Cascades, the estimated time to establish trees on 

moraines after glacier retreat (ecesis) is between 15 and 35 years (Long, 1953; Miller, 1969; 

Leonard, 1974; Heikkinen, 1984). However, estimates of ecesis from studies on Mt. Rainier
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vary from 5 years (Sigafoos and Hendricks, 1961) to 50 years (Harrison, 1956) to 100 years 

(Burbank, 1981). Recent observations by the author of a ~20 year-old moraine from the 

nearby Coleman Glacier (on Mt. Baker) noted numerous tree seedlings already established. 

The lowest estimate of 15 to 35 years is used in this study.

Bog and Lake Coring

Sediment records and radiocarbon dates from bogs and lakes associated with 

moraines have been used successfully to determine close limiting ages to glacier advances 

(e.g., Surgenor, 1978; Davis et al., 1979; Leonard 1986b; Clark and Gillespie, 1997; Heine, 

1998). A number of bogs in Swift Creek were cored in October 1998; Highwood Lake was 

cored during February, July, and September 1999; and several attempts were made to core 

Lake Ann from June to August 1999. Three types of coring systems were utilized in this 

study:

(1) A simple PVC pipe percussion corer was utilized to obtain shallow (1.0-1.5 m)

bog cores in Swift Creek basin. Two-inch diameter, schedule 40, PVC pipe in

1.0 and 1.5 meter lengths, beveled at one end (a cutting edge), were driven into

the ground with a hammer and wooden block. The PVC pipe was then extracted

from the ground by digging around the pipe.

(2) Highwood Lake and Lake Ann cores were obtained using a modified Livingstone

piston sampler (Livingstone, 1955; Vallentyne, 1955; Wright, 1984).

(3) A lightweight, percussion core sampler (Reasoner, 1993) was used in Lake Ann.

This system proved problematic. One partial core was obtained, but much of the

device was lost in the bottom of the lake when the main support rope was

accidentally cut. With some modifications this system could be an effective

alternative to the modified Livingstone sampler and would be better suited for

transport into and use in deep, remote lakes. The modifications should include

using a piston to create suction in extracting the core instead of a core catcher

with fingers at the sharp end of the corer (Reasoner, 1993; P. Bierman, personal

comm., 1999).
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All cores were split, measured, and the stratigraphy sketched and photographed. 

Charcoal, wood, plant fragments, and peat were sampled for radiocarbon dating and any 

tephra present was sampled for identification. Before the Highwood Lake cores were split, 

bulk magnetic susceptibility was measured every 2 cm using a B aldington MS 2c analyzer.

Radiocarbon Dating
Samples large enough for conventional radiocarbon analysis (a few grams) were 

submitted to Beta Analytic, Inc. Smaller samples were dated by accelerator mass 

spectrometry (AMS) methods at the Arizona AMS radiocarbon laboratory (AAMS) and at 

the Center for Accelerator Mass Spectrometry (CAMS) at Lawrence Livermore National 

Laboratory.
Radiocarbon ages were calibrated using the world wide web-based calibration 

program, HTML CALIB 4.2 (http://depts.washington.edu/qil/calib/) (Stuiver and Reimer, 

1993). This program uses 1998 international calibration data sets, summarized in Stuiver et 

al. (1998). Two-sigma calibrated age ranges are reported in this thesis.

Tephrochronology
The presence of tephras on moraines provides minimum age markers. Tephras in 

bog and lake sediments are useful in correlating stratigraphic horizons. Two ubiquitous 

tephras are present in the field area, Mazama ash (Bacon, 1983; Easterbrook, 1975) and the 

tephra first referred to informally as black sandy tephra by Hyde and Crandell (1978) then as 

Cathedral Crag tephra (Kovanen and Easterbrook, in review-b).

Mazama ash is silt-sized, white to orange, and up to 25 cm in thickness in the study 

area and well dated at 6850 + 50 years B.P. (7590-7760 and 7780 cal. years) (Bacon 
1983) and 6730 ± 40 '^C years (7510-7530 and 7560-7670 cal. years) (Hallet et al., 1997). 

Although the two radiocarbon ages are different at 1 sigma, the calibrated age ranges for 

each is not, with overlap between 7590 and 7670 cal. years B.P. (at the 2-sigma range of 

uncertainty).
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Cathedral Crag tephra is predominantly sand-sized, black and gray in color, and 

originated from nearby Mt. Baker. Maximum estimates of its age vary from 6400 to 5800 

''‘C years (7420 - 6450 cal. years B.P.) from radiocarbon dates on charcoal, peat, and plant 

macrofossils (this thesis; Kovanen and Easterbrook, in review-b). Bob Mierendorf (Personal 

Communication, 1999) obtained a date of 6040 ± 80 '"‘C years B.P. from charcoal embedded 

within the tephra from a site on Copper Ridge, several kilometers to the northeast of the 

study area. At several locations on the south flank of Mt Baker, Cathedral Crag tephra 

directly overlies the Rocky Creek tephra. The Rocky Creek tephra is directly overlain by a 

lahar deposit and peat. The lahar deposit is dated at -5700 *‘^C years B.P. and the peat beds 

are dated between 5730 and 5965 ^'‘C-yrs B. P. Thereby providing a minimum limiting ages 

for the Cathedral Crag tephra.
Other sediment collected from cores and trail cuts suspected to be tephra layers but 

not readily identified were submitted to Nick Foit at Washington State University for 

microprobe analysis and correlation. Analyzed sediments were identified as Mazama ash. 

Cathedral Crag tephra, and one sample was concluded not to be a tephra (See Chapter 4).

Equilibrium Line Altitude and Paleoclimate Reconstruction Methods

Equilibrium line altitudes (ELAs) are calculated from modem and reconstructed past 

glaciers using the 0.65 accumulation area ratio (AAR) method (Meier and Post, 1962). 

Modem climate is estimated at these past and present equilibrium line altitudes in the study 

area using lapse rates from lower altitude stations. The modem climate at an ELA is then 

compared with the possible range of documented climates at modem glaciers (these are used 

as an estimate for climate of the past glacier ELA) in order to determine a deviation from 

modem conditions. This approach follows Leonard (1989) and is covered in more detail in 

Chapter 6.
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Chapter 3 Swift Creek and Shuksan Creek Glacial Geology

The headwaters of Swift Creek and Shuksan Creek occur in compound cirques. Each 

sub-cirque is named according to its position within the compound cirque. Upper Swift 

Creek is comprised of three sub-cirques: north Swift Creek Cirque (NSC ); south Swift 

Creek cirque (SSC); and high Swift Creek cirque (HSC) (Figure 3.1). Upper Shuksan Creek 

has four sub-cirques : north Shuksan Creek cirque (NShC); Lake Ann Cirque; south Shuksan 

Creek cirque (SShC); and lower Curtis glacier cirque (this cirque is not shown on Figure 

3.1). Organic material from sediment cores collected near moraines associated with south 

Swift Creek cirque (SSC) provided age control for the moraines. Dendrochronology 

provided age control for younger moraines in south Swift Creek cirque (SSC) and high Swift 

Creek cirque.

Moraine Morphology and Stratigraphy
Moraines in Swift Creek were identified and mapped from 1:12,000 scale black and 

white and color air photos and in the field during the summer of 1998 (Figures 3.1 and 3.2). 

“Undifferentiated drift” in Figure 3.1 includes hummocky ground or ablation moraine, small 

moraine crests, and outwash. Bedrock, talus, colluvium, and alluvium are not mapped. 

Moraine crests are grouped according to presence or absence of a mantle of Mazama ash 

(“pre-Mazama” or “post-Mazama” respectively). Purple stars indicate ponds and bogs cored 

during this study. Black stars indicate other sites not cored but could be lucrative for future 

coring. These ponds and bogs were not cored because of time constraints.
South Swift Creek cirque (SSC), a two-tiered cirque, is the largest (~1 km^ area) and 

best-developed cirque of the Swift Creek sub-cirques (Figure 3.1, 3.2, and 3.3). The upper, 

north-facing tier is poorly developed and hosts a small unnamed glacier (0.07 km area), 

which lies between 1550-1680 m altitude (5100-5500 feet) (Figure 3.4). This glacier, 
identified in the Post et al. (1971) glacier inventory (0.10-km^ area), has a few poorly 

developed crevasses and no obvious modem moraine. The upper set of moraines, consisting 

of discontinuous lateral and end moraines, lies at the edge of the upper cirque between 1340 

and 1580 m altitude (4400 and 5200 feet) (Figure 3.1). The lower, well-developed.
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Figure 3.2 Air photo of upper Swift Creek and upper Shuksan Creek. Note the arcuate end moraines 
in upper left center. SSC = south Swift Creek cirque, NSC = north Swift Creek cirque, HSC = high 
Swift Creek cirque, NShC = north Shuksan Creek cirque.
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3.3 View looking northeast mto south Swift Creek cirque (SSCC). South Swift Creek Cirque lower moraines are in red and upper moraines are blue. North Swift Creek cirque (NSCC) is in the background and Lake Ann is behind the rounded 
bedrock ndge where the arrow pomts. Note the intervening slopes between north Swift Creek cirque and south Swift Creek cirque, drift on these slopes contaiins erratics from Shuksan Arm to the north. Photographed fi-om the west peak of the south ridge 
above south Swift Creek cnque in August 1998. !
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northwest-facing cirque has an average floor altitude of 1370 m (4500 feet). It is floored 

with sculpted bedrock and till and has several discontinuous but distinct moraine crests at 

the lip. The lip of the lower cirque drops off to a northwest valley. Eight, small, end 

moraines (1-3 m high) occupy the valley ~1 km down-valley from the lip of the cirque at an 

altitude range of 1220 to 1110 m (4000 to 3650 ft).

Field relationships distinguish two age groups of moraines from south Swift Creek 

cirque (SSC) (Figure 3.2). The lower, older moraines are vegetated with mature subalpine 

vegetation and have impounded a number of small ponds and bogs. An extensive cover 

(within the soil) of Mazama ash on the lower moraines and bogs provides a minimum 

limiting age of ~ 6800 years for deposition. The upper moraines lack tephras, are 

bouldery, sparsely vegetated with only a few small trees growing on them, and are 

discontinuous but have matching right and left lateral crests and a few closely spaced end 

moraine crests (Figure 3.2). Upper moraines occur 120-180 m below the terminus of the 

small, present-day glacier. The oldest trees behind the right lateral moraine (-20 m to the 

west, growing on bedrock), on the end moraine, and on the left lateral moraine are 79,77, 

and 70 years old, respectively (from 1998 A.D.). A number of factors favor or delay tree 

establishment on freshly exposed surfaces in this area. Established trees nearby provide 

abundant seed sources. However, this area has vegetation patterns and treelines controlled 

largely by lingering late summer snowpack, which also may inhibit tree establishment. The 

dated trees occur on relatively steep slopes (~30 degrees) where snow is less likely to stay 

late in the season and on topographic projections (moraine crests) where snow is likely to be 

shallower. But if the moraine crests are blown clear of snow in the winter, young trees may 

suffer from freeze kill.

North Swift Creek Cirque (NSC) (Figures 3.2 and 3.3 and 3.5) is a small (-0.25 

km^), west-facing, well-developed cirque directly below Shuksan Arm at the extreme NE 

headwaters of Swift Creek. The average cirque floor altitude is 1390 m (4550 feet), similar 

to south Swift Creek cirque (SSC). North Swift Creek cirque is mostly bedrock-floored with 

scattered till cover and two substantial deposits of drift. Trail cuts reveal that Mazama ash 

mantles the lower deposit. Two discontinuous end moraine crests and a small
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Figure 3.4 South Swift Creek cirque (SSC) glacier in 
the late summer. The Lower Curtis Glacier on the west 
flank of Mt. Shuksan is in the background.

Figure 3.5 North Swift Creek cirque (NSC). The inset is a view from south Swift Creek cirque 
looking NE. The larger view looks downvalley at the cirque floor. Blue lines delineate the upper limit 
of Mazama ash and red lines show pre-Mazama moraines at the edge of the cirque. Blue lines are also 
a possible post-Mazama moraine.
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lateral moraine occur near the edge of north Swift Creek cirque (NSC) (Figure 3.5, red 

lines). Another moraine, sparsely vegetated with no trees, occurs near the head of the cirque 

(Figure 3.5, blue line). The upper moraine has no Mazama ash on it. Above the main cirque 

is a bench that may be considered a poorly developed cirque. The bench is scoured bedrock 

(Lake Ann Stock granodioiite) with striations pointing downslope (Figure 3.2).

The intervening area between south Swift Creek cirque (SSC) and north Swift Creek 

cirque (NSC) is extremely hummocky topography, dissected by small streams, and hosts a 

few small, discontinuous moraine crests (Figure 3.2). The bedrock at this location is 

granodiorite of the Lake Ann Stock, but erratic boulders of slightly metamorphosed ribbon 

chert (Figure 3.3) from the ridge of Shuksan Arm to the north occur in and on top of this 

drift and on the slopes and ridge above. These erratics indicate an ice source from the north 

(Shuksan Arm) rather than from the slopes and ridge above, as the topography would 

suggest. The north-to-south flowing Cordilleran Ice Sheet (CIS) transported these erratics 

and the hummocky topography is either stagnant ice drift or the remains of a post-CIS rock 

glacier. In either case, the erratics demonstrate that no substantial movement of ice 

downvalley occurred on the intervening slopes between south Swift Creek cirque (SSC) and 

north Swift Creek cirque (NSC) since the disappearance of the CIS. The erratics also 

demonstrate that the SSC and NSC glaciers did not coalesce on these slopes after the CIS 

left.
The high Swift Creek cirque (HSC) is west-facing, small (-0.125 km^ area), and 

contains a permanent snowfield with two distinct end moraines at the edge of the snowfield 

at about 1585 m (5200 feet) altitude (Figure 3.2 and 3.6). The end moraines are bouldery 

and sparsely vegetated with no tephras on them (Figure 3.7). The upper moraine has a few 

small trees growing on it, the oldest of which is 85 years old (from 1998).

The head of Shuksan Creek is a compound cirque and has three sub-cirques at the 

head (Figure 3.1). The Lower Curtis Glacier on the southwest flank of Mt. Shuksan 

occupies the easternmost sub-cirque (not shown on Figure 3.1). At the northern head of the 

valley is north Shuksan Creek cirque and on the western side is Lake Ann Cirque. These 

three cirques are all at approximately the same elevation. They all have a lip at
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approximately 1400 m (4600 feet) which drops off abruptly into a lower, larger cirque at the 

head of the main valley floor of Shuksan Creek. (Figure 3.1) South Shuksan Creek cirque is 

a small tributary valley/sub-cirque ~2 km south and west of Shuksan Creek headwaters. It 

also has a lip at approximately 1400 m.

Lake Ann lies at an altitude of 1430 m (4700 feet) and occupies Lake Ann cirque, a 

small, shallow, southeast-facing cirque (-0.125 km area). The cirque floor is mostly 

exposed bedrock but contains five pre-Mazama moraines (Figure 3.8). The rounded, low 

pass between Lake Ann cirque and north Swift Creek cirque (NSC) suggests a common ice 

mass occurred here at the time of deposition, as does the large lateral moraine above and just 

northeast of the lake. The moraine at the distal edge of the cirque is sharp crested, is 

mantled with Mazama ash, and has large Mountain Hemlock trees growing on it (Figure 

3.8). The mid-cirque moraines are bouldery, sparsely vegetated, and have a few small trees 

growing on them. They appear to be devoid of Mazama ash and Cathedral Crag tephra. 

However, both tephras occur in the sediments of a small basin on the cirque floor up-valley 

from the moraines just north of the lake. Both tephras are also found in the bottom 

sediments of Lake Ann. Lingering late summer snow cover explains the young appearance 

of these pre-Mazama moraines by preventing significant vegetation establishment and soil 

development. For example, during the summer of 1999, after a winter of record-setting 

snowfall, the lake and much of the basin never melted out.

The North Shuksan Creek cirque (NShC on Figure 3.1 and 3.2) is a small, poorly 
developed, south-facing cirque northeast of Lake Ann Cirque (-0.125 km^). Its floor 

altitude is the same as Lake Ann at 1430 m (4700 feet). Talus from the cliffs and gullies 

above occupy the east side. Till and a large, distinct, right lateral moraine high on the west 

slope cover the west side of the cirque. An esker occupies the floor of the cirque (Figures 

3.1, 3.8, and 3.9). The esker is a low, sinuous ridge (-1 m high) and has gravel and cobbles 

exposed at the surface. A crested moraine occurs at the edge of the cirque downslope from 

the esker (Figure 3.1 and 3.8). The large amount of drift comprising the right lateral moraine 

of the cirque and the esker on the floor suggests a stagnant ice regime in this cirque.
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Figure 3.7 This view is looking down at the high 
Swift Creek cirque moraines from the peak above.

Figure 3.8 View looking south at Lake Ann cirque and north Shuksan Creek cirque (NShC) from 
Shuksan Arm. Red lines are pre-Mazama moraines. The curving red line on the floor of NShC is an 
esker.
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The south Shuksan Creek cirque (SShC on Figure 3.1) is a well developed, elongate, 
southeast-facing cirque just south of the Swift Creek headwaters (-0.6 km^) (Figure 3.10). 

This cirque is directly south of south Swift Creek cirque (SSC). The floor of the cirque 

(1490 m; 4900 ft) is sculpted bedrock covered with drift with little vegetation, and typically 

has a late summer snowpack. Three small paternoster lakes occupy the cirque floor. The 

deposits in the cirque were mapped only from air photos and field observations and from the 

north ridge of the cirque. Four sparsely vegetated, bouldery, moraine crests are apparent 

near the distal end of the cirque (Figure 3.1).

Sediment Cores and Basal Radiocarbon Dates
Sediment cores were collected from nine small ponds and bogs associated with the 

south Swift Creek cirque (SSC) moraines. The cores were obtained with a simple PVC, 

plastic-pipe, percussion-coring device. The pipes were driven to refusal, usually to till or 

rock.
Most of the south Swift Creek cirque (SSC) cores are from wet meadows/shallow 

bogs and small ponds and therefore subject to penetration from tree and plant roots, 

bioturbation (treethrow, burrowing animals, etc.), and other stratigraphic disturbance due to 

erosion, fire, and snow and pond ice freezing (Nichols, 1967). The lower Swift Creek cores 

(SC-2,4, 6 and 7) come from a subalpine meadow/wetland environment in which small, 

shifting, streams erode and deposit sediment in the meadows. In places, abandoned channels 

of these small streams have eroded former bog sediments. The core sites were chosen to be 

as far away as possible from present and former channels of these streams.

Sampling results of the five most stratigraphically complete cores from south Swift 

Creek cirque (SSC) are presented in Figure 3.11. Cores SC-2, SC-4, SC-7, SC-8, and SC-9 

from south Swift Creek cirque (SSC) all have the same basic stratigraphy (Figure 3.1 for 

locations and Figure 3.11 for stratigraphy). The general stratigraphy from bottom to top 

consists of basal inorganic sediment (mix of clay, silt, and sand) overlain by peat and/or
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organic-rich silt, Mazama ash, peat or organic-rich silt, and Cathedral Crag tephra grading 

into a top layer of peat or organic-rich silt.
Incomplete cores were recovered from Lake Ann using a modified Livingstone 

piston sampler and a Reasoner corer. The best core from Lake Ann penetrated into Mazama 

ash, but the stratigraphy below the ash is unknown.
Interpreting basal sediments and radiocarbon dates from organic material in bog 

sediments can be problematic. Davis and Davis (1980) found that “piping” of fine 
sediments between large boulders can cause large time lags (800-9000 ^'‘C years) between 

deglaciation and onset of organic deposition. Bogs, from which cores SC-2, SC-4, and SC-7 

were obtained, are dammed by moraines and rest on till. “Piping” may or may not occur in a 

moraine dammed depression since the till could have a fine or coarse matrix, inhibiting or 

allowing the “piping” process to occur. The basal radiocarbon ages from these bogs may be 

younger because earlier sediment was “piped” away. The sites of SC-8 and SC-9 have 

bedrock catchments and are not as susceptible to the “piping” process.

The two oldest radiocarbon dates are from near the base of two of the south Swift 

Creek cirque (SSC) cores and are associated with the lower-most moraines. The two dates 

are indistinguishable when calibrated (Table 3.1). The oldest date, from peat and plant 
fragments directly overlying basal sand and silt in core SC-7, is 9650 + 50 ''^C years B.P. 

(10,760-11,180 cal. years). The second oldest date, from a piece of charcoal in a layer of 
peat and charcoal just above basal gravel, sand, and silt in core SC-2, is 9560 ± 50 ''‘C years 

B.P. (10,690-11,110 calibrated (cal.) years). Core SC-7 was collected from a small bog just 

above the third moraine up-valley (Figures 3.1, 3.11 and 3.12). Core SC-2 was collected 

from a small bog between the two lowermost end moraines below south Swift Creek cirque 

(SSC) (Figures 3.1 and 3.11). These dates further limit the age of the moraines from the 

Mazama ash minimum limiting date.
Similar limiting ages as those discussed above constrain the uppermost lower 

moraine at the edge of lower south Swift Creek cirque (SSC) (Figures 3.1 and 3.13). Core 

SC-8 was collected from a small pond in a bedrock depression impounded by the uppermost 

lower moraine and a bedrock lip at the edge of the cirque. The basal sediment recovered in
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Sample ID C-14 Age
2 sigma 

±
2 sigma (95.4 %) 

calibrated age range
area under 
probability 

curve
Sample Description Lab ID

max age min age
SC-2P 9560 100 11110 10694 1 charcoal above basal sand&silt CAMS-59600
SC-2h 8760 100 10108 10084 0.024 organic-rich silt in basal sand CAMS-59607

9919 9553 0.976
SC-2e 7530 120 8406 8277 0.679 roots at top of basal sand & silt CAMS-59599

8274 8194 0.321
SC-4e 8870 100 10179 9856 0.878 charcoal near base of lower peat CAMS-59603

9854 9755 0.122
SC4ae 6930 160 7932 7893 0.068 roots at base of core AAMS-SC4a

7873 7614 0.932
SC-4h 5780 100 6719 6700 0.039 plant macrofossils at base of CAMS-59601

6671 6450 0.961 Cathedral Crag tephra
SC4de 3970 200 4813 4755 0.049 roots in AAMS-SC4d

4710 4667 0.024 Cathedral Crag tephra
4655 4146 0.922
4109 4100 0.004

SC-7a 9650 100 11178 11043 0.457 plant macrofossils CAMS-59606
11020 10993 0.034 at top of basal silt
10963 10755 0.509

SC7ae 6820 150 7791 7565 0.975 roots at base of core AAMS-SC7a
7529 7513 0.025

SC6ae 6545 100 7565 7529 0.132 roots at base of core AAMS-SC6a
7513 7411 0.724
7397 7364 0.079
7354 7326 0.066

SC6be 6230 240 7416 7388 0.022 plant macrofossils just below AAMS-SC6b
7370 7347 0.016 Cathedral Crag tephra
7335 6855 0.942
6832 6802 0.021

SC8a 9350 360 11132 10212 1 branch near base of core BETA-124906
SC-8c 9180 200 10636 10615 0.011 single needle near base CAMS-59604

10582 10178 0.989
SC8de 4560 180 5568 5552 0.006 peat bed between Mazama BETA-SC8d

5472 4962 0.974 ash and Cathedral Crag tephra
4929 4904 0.01
4901 4880 0.01

SC-9a 8340 260 9532 9029 1 small wood chunk in basal silt CAMS-59605
SC9ae 7950 180 9026 8583 0.984 1 -cm peat bed below Mazama BETA-SC9a

8571 8546 0.016 ash
SC9ce 4390 180 5293 4832 1 1-cm peat bed above Cathedral BETA-SC9C

Crag tephra

Table 3.1 Swift Creek cores radiocarbon dates. Lab codes: CAMS=Lawrence Livermore National Laboratory Center for 
Accelerator Mass Spectrometry; AAMS=Arizona AMS Radiocarbon Laboratory; BETA=Beta Analytic, Inc.
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Figure 3.12 Core SC-7 site. The moraine is the belt of trees in the 
background.

Figure 3.13 Core SC-8 site. White PVC pipe is 1.5 m long for scale. Numerous macrofossils from 
trees (branches, twigs, needles) were recovered from the basal sediments of this pond. The 
environment at this site may have been very similar -9350 '^C years ago as it is today.
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this core consists of organic-rich silt with a high percentage of macrofossils (wood, needles, 

and plant fragments) (Figure 3.11). The corer hit refusal in a thin layer of sand or gravel 

(which was not recovered) and rock. Radiocarbon samples SC8a and SC-8c from the basal 

material are stratigraphically similar with mostly indistinguishable dates (Table 3.1). At 

the base of the core, a small branch with intact bark was dated at 9350 + 180 years B.P. 

(10,210 -11,130 cal. years) (Table 3.1, sample SC8a). Jiist below the branch, a single 

mountain hemlock needle was dated at 9180 + 100 years B.P. (10,180-10,640 cal. years) 

(Table 3.1, sample SC8c).

The abundance of tree-related macrofossils at the SC8 core site indicates that by 
9350 + 180 '"‘C years B.P. (10,210 -11,130 cal. years) trees were growing at the edge of the 

south Swift Creek cirque (SSC), perhaps similar to today (Figure 3.13).

In comparison to the basal dates for cores SC-2, SC-7, and SC-8, discussed above 

cores SC-4 and SC-9 show evidence of a lag between deglaciation and organic deposition. 

Near-basal radiocarbon samples from cores SC-4 and SC-9 are 8870 + 50 (9760-10,180 cal. 
years) and 8340 + 130 ^‘‘C years B.P. (9030-9530 cal. years), respectively (Figure 3.11,

Table 3.1). A similar basal date for core SC-4 would be expected to be close to those of SC- 
2 (9560 + 50 ''‘C years B.P.) and SC-7 (9650 + 50 ^'^C years B.P.). However, it is 

significantly younger. Organic deposition may have occurred later at the SC-4 site for any of 

the reasons discussed above, or is simply not the oldest part of the bog. The same applies for 
the basal date of core SC-9 (8340 ± 130 '"‘C years B.P.) which should have a similar basal 

age as core SC-8 (9350 + 180 '"^C years B.P.) (Figure 3.11).

Radiocarbon Date Inconsistencies

A number of the dates from the south Swift Creek cirque (SSC) cores conflict with or 

are inconsistent with other dates and the age of Mazama ash. Figure 3.11 illustrates this 

problem. On the figure, dates in orange text are significantly younger compared to those in 

white text. Contrasting basal dates occur in cores SC-2, SC-4, and SC-7. Each pair of dates 

are from material sampled at stratigraphically equivalent positions in each core. The 

material that yielded the younger dates, originally interpreted as wood fibers, are most likely
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instead penetrative root fibers. The dates from these contrast sharply with charcoal, peat, 

and plant macrofossil (heather needles) samples carefully scrutinized to eliminate root 
material. In all three cases, the roots are ~ 2000 ''‘C years younger (Table 3.2). The younger 

dates were a “first round” of samples sent to the Arizona Accelerator Mass Spectrometry 

facility (AAMS), while the older “second round” dates were done at Lawrence Livermore 

National Laboratory Center for Accelerator Mass Spectrometry (CAMS). The age 

discrepancy is not related to the facility where the material was dated, as these two labs 

calibrate against each other regularly.

Charcoal can be substantially older than the sediments in which it is encased. This 

situation is possible if the charcoal has been redeposited or if it is from old heartwood of an 

old growth tree. In the western Cascade Range, the oldest wood in a tree could be hundreds 

to a thousand years old. The fact that the two oldest radiocarbon dates, one of which is on 

charcoal (sample SC2g) and the other on macrofossils (sample SC7a), are basically the same 

age suggests that this particular piece of charcoal is not substantially older than the 

surrounding sediment.

The following discussion covers the radiocarbon date discrepancies in detail, based 

on Figure 3.11 and Table 3.1. Sample SC4ae is composed of wood fibers from the basal 
diamicton in core SC-4 with an age of 6930 + 80 '"‘C years B.P. Above SC4ae is sample 

SC4e on charcoal at the base of the lower peat with an older age (8870 + 50 *'*C years B.P.). 

Similarly, sample SC7ae, composed of wood fibers in the sand and silt at the base of the 
core has an age of 6820 + 75 ''^C years B.P. Sample SC7a, which is above SC7ae and 

composed of peat and identifiable heather needle macrofossils, is older (9650 + 50 ’'^C years 

B.P.) In addition, the SC7ae date is demonstrably too young because it is stratigraphically

well below Mazama ash. Thus the ages of samples SC4ae and SC7ae are rejected on the

basis of being far too young relative to older samples stratigraphically above them. These

two samples were originally interpreted as wood fibers but are reinterpreted here as

penetrative root fibers.

Samples SC-2e and SC-2g were collected in the “second round” of samples analyzed 

at CAMS as a direct test of this problem. Sample SC-2e, identified as stratigraphically
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transgressive roots, was sampled at the same location as sample SC-2g, which is a piece of 

charcoal. SC-2e, the roots, returned a date of 7530 ± 60 years B.P. and SC-2g, the 

charcoal returned a date of 9560 + 50 years B.P. In addition, sample SC-2h, organic-rich 

silt, sampled stratigraphically below both SC-2e and SC-2g, yielded a date of 8760 + 50 C 

years B.P. The younger date indicates probable contamination from younger material 

compared to SC-2g, the charcoal. Sample SC6ae (6545 + 50 years B.P.) is probably too 

young as it is significantly below SC6be (6230 + 120 years B.P.), but close to it in age.

Radiocarbon dates obtained from bulk peat samples are rejected as they may contain 

younger root material. These samples are SC8de (4560+ 50 years B.P.), and SC9ce 

(4390 ± 50 years B.P.) (Figure 3.11 and Table 3.1). However sample SC9ae (7950 ± 50 

years B.P.), a 1-cm thick peat bed below Mazama ash, is significantly older than the 

known age for the base of the ash and may indicate a hiatus of deposition prior to deposition 

of Mazama ash at this site.

Limiting Dates for the Cathedral Crag Tephra.
Two dates from the Swift Creek cores and one date from the Highwood Lake core 

(see Chapter 4) provide maximum limiting ages for the Cathedral Crag tephra (CCT) (for a 

discussion of origin and characteristics and other limiting dates see Easterbrook and 
Kovanen, in review-b). The youngest date of 5780 ± 50 '"‘C years B.P. (sample SC-4h) is 

composed of peat and plant macrofossils (heather needles) sampled from immediately below 

the CCT. Also immediately below the tephra, sample SC6be, on wood fibers, gives the 

oldest date of 6230 ± 120 *'*C years B.P. Gyttja sampled from immediately below the CCT 

in the Highwood Lake core yielded an age of 6210 + 40 '"^C years B.P

In comparison to the dates for the Cathedral Crag tephra discussed above, a date of 

3970 + 100 '“^C years B.P. (sample SC4de) on wood fibers within the tephra, is too young 

and likely on roots.
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Chapter 4 Bagley Creek

Landforms were mapped on stereo air photos and topographic maps in Bagley Creek

with special attention to moraines. Reconnaissance field mapping of deposits and landforms

was done in September 1999. The Bagley Creek field area overlaps with the Ph.D. study

area of Dori Kovanen, who is at the University of British Columbia. We are currently

collaborating and jointly naming features. However, all work presented here is my own.

Bagley Creek basin is located ~ 5 km northwest of south Swift Creek cirque (Figure
21.2) and is comprised of a well-developed cirque and glacial trough with an area of ~1 km 

(Figures 4.1, 4.2, and 4.3). The Bagley Creek valley is a hanging valley to the North Fork 

Nooksack River valley. The upper, northeast-facing slope, in the crook of the L-shaped
2Table Mountain, is a poorly developed cirque that hosts a small, unnamed glacier (0.05 km 

area) at 1550-1710 m (5100-5600 feet) (Figures 4.1, 4.2, 4.4). This glacier was identified in 
the Post et al. (1971) glacier inventory as being 0.10 km^ in area, but now appears to be little 

more than a permanent snowfield. The lower, well-developed, east-facing cirque has an 

average floor altitude of 1340 m (4400 feet). It is floored with sculpted bedrock, drift, talus, 

and rockfall deposits. The northeast-trending, U-shaped valley below the lower cirque 

(1160-1340 m; 3800-4400 ft) is floored with sculpted bedrock and littered with glacial drift. 

The upper of two glacially scoured tiers in the valley bottom is Heather Meadows. The 

lower tier of the valley has been incised by Bagley Creek. The creek also occupies the 

contact between Mt. Baker andesite and Mt. Herman greenstone of the Chilliwack Terrane. 

Cuts from roads and trails reveal subsurface stratigraphy of end moraines at the lower end of 

Bagley Creek valley (Figure 4.1,4.2, 4.3, 4.5).
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Figure 4.4 The view looking west into Bagley Creek cirque from Austin Pass. The Bagley Creek 
glacier is on the upper right and upper Bagley Lake is in the lower left. Note large amount of snow 
accumulation on the cirque floor, due to avalanching during the winter. The photograph was taken in 
late September 1999.

Figure 4.5 View looking northwest on lower Bagley Creek trench and end moraine complex. 
Heather Meadows moraine (short line) and Picture Lake moraine (long line) are both in red.
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Moraine Morphology and Stratigraphy

Much of the valley floor of Bagley Creek trough is littered with pockets of drift and 

lineated, sculpted, columnar andesite. Whalebacks, whose long axes trend down valley 

(northeast), are abundant (Figure 4.6). The Heather Meadows picnic area roadcut (Figure 

4.1) is -100 m long and 2-3 m high and is representative of the stratigraphy for much of the 

valley floor. It reveals a 1-2 m thick veneer of till overlying columnar andesite. The till 

consists of a clay, silt, and sand matrix surrounding cobbles and boulders of andesite and 

greenstone.
Two distinct lateral moraines that occupy the broad, flat rise of the Galena Camp 

locale are named the Galena Camp moraines (Figure 4.1) (Burrows and Kovanen, in 

progress). A road cut through the uppermost moraine reveals till with a silt-clay matrix and 

many andesite cobbles and boulders (Figure 4.7). The moraines are 2-3 m high and 3-5 m 

wide. A pocket of till, identified by a road cut and gullying, occurs topographically below 

but slightly up valley from the crested lateral moraines (Figure 4.8). Gullying indicates the 

extent of the till, and the road cut into the till reveals a composition similar to the moraine 

above it. Approximately 700 m to the west of this complex is a small end moraine, named 

the Heather Meadows moraine (Burrows and Kovanen, in progress) (Figure 4.1, 4.2, 4.3, and 

4.5). This moraine, identified on the basis of morphology and gullying is -1-2 m high by 

-4-5 m wide, with a broad but distinct crest.

A hummocky end moraine complex occupies the edge of Bagley Creek trough to the 

north of Highwood and Picture Lakes (Figures 4.1, 4.2, 4.3, & 4.5). The morphology here 

consists of moraine crests and bedrock knobs. A distinct, sharp-crested, end moraine 

(named the Picture Lake moraine (Burrows and Kovanen, in progress)) occurs north of 

Picture Lake (Figures 4.1, 4.2, & 4.5). Roadcuts 1-3 m high on the north side of Picture 

Lake reveal a well-indurated diamicton with a silt and sand matrix, which contains pebbles 

and cobbles of andesite and greenstone (Figure 4.9).

A crested end moraine is transected in two places at the mid-hairpin curves of the 

Mt. Baker Highway (see Figure 4.1). These roadcuts are 3-4 m high and 5-6 m wide and 

reveal a diamicton similar to those in the Picture Lake road cuts. The 2-4 m high and -200

39



Figure 4.6 A whaleback on the valley floor of Bagley Creek trench. The long axis of the whaleback is 
~ 40 m.

Figure 4.7 Road cut of the upper Galena Camp lateral moraine. Cut is approximately 2.5 m in height.
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Figure 4.8 The pocket of drift below the Galena Camp moraines is the hummocky topography at the 
base of the slope. The lateral moraines are on the crest of the ridge. This view is looldng east with Mt. 
Shuksan in the background.

Figure 4.9 The diamicton of the Picture Lake road cut. Pen for scale.
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m long upper hairpin road cut is composed of till with many striated cobbles of andesite and 

greenstone (Figure 4.10). The gently sloping morphology upslope (southeast) from the cut 

indicates that this is a pocket of till rather than a distinct moraine crest.

Austin Pass is a notch in the southeast valley wall of the Bagley Creek trough (Figure 

4.1). The pass is a low point (1430 m (4700 ft)) between the east rim of Table Mountain 

(1690 m (5550 ft)) and Panorama Dome (1520 m (5000 ft)). At the pass is a crested moraine 

with an excellent road cut revealing till (Figure 4.11), that contains cobbles and boulders of 

andesite from Table Mountain and Mt. Herman greenstone. A pocket of drift, with surface 

gullying characteristics of unconsolidated deposits (Figure 4.12), occurs below Austin Pass 

at the edge of the Bagley Creek valley floor (southeast side of the pass).

Austin Pass cirque (APC on Figure 4.1), southeast of Austin Pass, has a floor altitude 

of ~ 1280 m (4200 ft). A bench occurs at an altitude of ~ 1370 m (4500 ft) below Artist 

Point on the west side of the cirque headwall (Figure 4.1). The bench is mantled with drift, 

as indicated by hummocky topography and gullying. This debris may comprise a kame 

terrace that was formed as a result of ice below the bench in Austin Pass cirque. In addition, 

a substantial amount of drift with possible moraine crests lies where the cirque opens up into 

the greater Swift Creek basin (not shown).

Two post-Mazama depositional landforms occur on Mt. Herman (Figure 4.1 and 

4.3). A pro-talus rampart at 1590 to 1650 m (5200-5400 ft) occupies a small northeast­

facing cirque on the north side of Mt. Herman. The second deposit, a rockslide on the south- 

southwest flank of the mountain, is ~ 250 m wide and 600 m long from the scarp to the floor 

of the lower cirque (Figure 4.1 and 4.3).

Sediment Cores
Six cores were collected from Highwood Lake with a modified Livingstone piston 

corer. The sediments were sampled at locations near the central, deepest part of the lake 

(Figure 4.1 and 4.13) in water 6.7 to 7.6 m (22-25 ft) deep. Results of analysis of three cores 

(HL-3, HL-6, and HL-7) are presented here. The stratigraphies of the overlapping sections 

of cores HL-6 and HL-7 are nearly identical. They have been combined into a single
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Figure 4.11 The road cut of the Austin Pass moraine. The view is looking southwest and the cut is 
approximately 2.5 m high.
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Figure 4.12 The pocket of drift below Austin Pass. Note the gullies in the foreground. The 
trees in the foreground are 18-24 m tall for scale.
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composite section (Figure 4.14) to eliminate possible gaps in the core record resulting from 

the coring process. Radiocarbon dates on samples from cores HL-3, HL-4, and HL-7 are 

shown on equivalent horizons in Figure 4.14 (see also Table 4.1).

Magnetic susceptibility (MS) is used here as a general inverse proxy for organic 

content of lake sediment (high MS equates to low organic content). Here MS distinguishes 

between organic and inorganic sediment in the core and provides a quantified companion 

index to the visual stratigraphy (Figure 4.14). Loss-on-ignition (LOI) analysis is another 

excellent companion index to visual stratigraphy for a mountain lake sediment core. Loss- 

on-ignition measures the amount of combustible carbon within an 8 cm -volume sample. 

Most carbon in shallow mountain lake sediments in the field area is organic so LOI 

approximates the amount of organic material present, although the technique can also 

dewater micas and clay minerals. Figure 4.15 compares LOI and MS from core HL-3. To 

the first order the LOI and MS curves are inversely related (Figure 4.15). Thus, samples 

with high organic content generally have a low magnetic susceptibility. However, in the 

sediment interval with high, variable MS at the bottom of the core (predominantly inorganic 

sediments), the abundance of magnetic minerals varies and this indicates changes not related 

to organic content. Generally, magnetic susceptibility is used as an inverse proxy for organic 

content of lake sediment. Thus since the first-order relationship was consistent in Highwood 

Lake, LOI was not conducted on other cores.

The top 43-cm of composite core HL-6 and 7 is massive dark brown, gelatinous 

gyttja with low MS, except for a small peak in the top 10 cm, which is probably related to 

historic clastic sedimentation during construction of the road that borders the lake (Figure 

4.14). Below the gyttja, 15 cm of laminated Cathedral Crag tephra (CCT) displays the 

highest MS of the core sediments. Each lamination in the tephra consists of a layer of light 

brown silt and sand and a layer of black sand that appear to comprise a couplet. 

Approximately 27 couplets occur in the CCT in HL-6. A thin (~2 mm) light gray, silt 

parting underlies the tephra. Below the parting is 8 cm of dark brown gyttja with very low 

MS. Below the gyttja is 7 cm of Mazama ash with moderate MS. The top 2-cm of Mazama 

ash is transitional ash/gyttja. Forty-three centimeters of massive, dark brown, compact gyttja
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with very low MS underlies Mazama ash. An inclined layer of dense, black, charcoal-like 

material occurs in the lower 5-10 cm of lowermost gyttja at ~ 100 cm core depth. The 

charcoal-like material is 2-4 mm thick with slickensided partings. The lowest 8 cm of gyttja 

grades into silt, with MS increasing downward to the basal silt of the core. The basal unit 

consists of 27 cm of yellow-gray laminated silt with high, generally increasing MS. Textural 

analysis indicates that 94-99 percent of the basal unit is silt and clay. The laminations 

appear to be couplets of yellow-gray-colored silt and clay and black very fine and fine sand. 

Approximately 115 couplets are present.

Analysis of the basal silt and clay shows that the peaks in the MS curve (Figure 4.14) 

correlate with better defined laminations, whereas less well defined laminations in the silt 

correlate with low MS values. Textural analysis of the silt with depth shows that the 

laminations are well defined because they contain distinct layers of black, very fine sand.

A radiocarbon date on gyttja at the base of the CCT (54 cm core depth in core HL-4) 

yielded 6210 + 40 years B.P. (6990-7250 cal. years B.P.) (Table 4.1, Figure 4.14). This 

date is the oldest, closely limiting, maximum age for the tephra found in this study. A twig 

stuck in both the base of Mazama ash and in the top of the gyttja at 69 cm depth in core HL- 

3 yielded a radiocarbon date of 6850 ± 50 years B.P. (7590-7780 cal. years B.P.), 

confirming the Mazama ash designation. A small Y-shaped twig was recovered in gyttja at 

80 cm depth in core HL-7. Radiocarbon dates from the twig and the surrounding gyttja are 
statistically indistinguishable within 1-sigma uncertainty at 8160 + 50 '"‘C years B.P. (9010- 

9270 cal. years B.P.) and 8230 ± 60 ’"‘C years B.P. (9030-9400 cal. years B.P.), respectively. 

The oldest radiocarbon date in core HL-7, 9410 + 50 years B.P. (10,430-11,040 cal. 

years B.P.) was obtained from the lowermost charcoal-like material, just above the gyttja-silt 

transition zone at 100 cm depth. The charcoal-like shear zone may be contaminated with 

younger material from above and/or older material from below. Despite this uncertainty the 

date is considered at face value.

Most of the stratigraphy of the core reflects organic sedimentation (gyttja). Inorganic 

sedimentation events include the two tephras that were deposited from a combination of air 

fall and subsequent slope wash, and the basal laminated silt, the origin of which is discussed
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VISUAL STRATIGRAPHY MAGNETIC SUSCEPTIBILITY

8160+50 twig 
8230+60 gyt^a

9410+50

1

Gyttja

Cathedral Crag tephra

Gyttja

Mazama Ash

Gyttja

Gyttja and
Charcoal

Gyttja-Silt Transition

Laminated
Yellow-gray Silt

11^j________________ 1
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Figure 4.14 Highwood Lake core stratigraphy, magnetic susceptibility, and important radiocarbon dates 
from cores HL-6 and HL-7. Depth units are in centimeters.
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Figure 4.15 Comparison of magnetic susceptibility (MS) and loss on 
ignition (LOI) results for core HL-3.
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below. Rythmites present in the CCT and basal silt suggest varves. Varves are likely 

because (1) each varve couplet consists of a layer of fine sediment and a layer of coarser 

Figures 4.10 and 4.11 sediment and (2) Highwood Lake currently receives a persistent 

winter snow cover (it does not freeze over; rather it receives so much snowfall that a layer 2- 

4 m thick of snow, slush, and discontinuous ice covers the lake throughout most winters) 

that would have the same effect on reducing the depositional energy of the lake during the 

winter that lake ice would. Twenty-seven varves in the CCT would equate to 27-year period 

of deposition and 115 varves in the basal silt would equate to a 115-year period of 

deposition. Thus, relative to the gyttja intervals, these inorganic layers could be nearly 

instantaneous.

The most likely explanation for the origin of the basal silt is that it reflects 

deglaciation and subsequent pre-vegetation slopewash sedimentation. In this scenario, the 

Bagley Creek glacier retreated from the Picture Lake moraine rapidly, leaving only patchy 

ground moraine and bare bedrock in the surrounding lake basin. A small amount of water 

and sediment from the retreating glacier would have been shed into Highwood and Picture 

Lakes but most runoff would have been shed down Bagley and Galena Creeks (see Figure 

4.1 for location of creeks). A small fan/delta at the head (south end) of Highwood Lake 

(Figure 4.13) could be a product of the rapid recession or simply post-glacial stream and 

slope wash. For a time after recession (years), abundant unvegetated till and rock flour 

would have been easily washed into the lake by slopewash, possibly on a seasonal cycle (if 

the couplets are varves). Gradually, as more vegetation became established and stabilized 

the slopes, lake sedimentation would have shifted from inorganic to organic (gyttja), as seen 

in the sediment cores (which the transition from silt to gyttja in the Highwood Lake core 

could be interpreted to indicate) (Figure 4.14).

Several lines of reasoning indicate that the basal silt of Highwood Lake is locally 

derived, rather than a distant source such as a tephra or eolian deposition related to the 

Cordilleran ice sheet. A volcanic glass microprobe analysis and database correlation shows 

that the basal silt has very altered glass (possibly from glacially scoured sediment in a basin
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with volcanic bedrock) and does not correlate with any known tephras near in age to the 

basal limiting date of 9410 + 50 years B.P.

The mineralogy of the basal silt unit was compared to nearby till. The sand and clay 

fraction from one sample of till from the Picture Lake road cut and nine samples of the basal 

silt from the cores were dry sieved. Two samples from the basal silt and one sample of the 

till were analyzed for abundant minerals using standard packed powder X-ray diffraction 

techniques. Results yielded a very similar diffraction peak pattern for the lake silt and till. 

Diffraction peak patterns were clear for hypersthene and plagioclase in all cases but other 

minerals were difficult to identify. Other possible minerals include enstatite, chlorite, and 

actinolite (most diffraction peaks are present but not prominent). Most of the minerals 

compare to part of the local bedrock mineralogy of the Mt. Baker andesite (plagioclase, 

hypersthene, clinopyroxene, olivine, and hornblende (Coombs, 1939; Stavert, 1971)) and 

Mt. Herman greenstone (chlorite, actinolite, and epidote).

Two additional points lend support to a local source. First is that the silt is the basal- 

most sediment in the lake and directly overlies bedrock or coarse till (coring efforts always 

bottomed on rock). Thus, one would expect the basal sediment in an obviously deglaciated 

lake basin to be inorganic fine sediment. Second, the silt is biologically sterile, that is no 

macrofossils were recovered and LOI shows virtually no organic material present, also 

typical of a recently deglaciated basin.
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Chapter 5 Interpretation and Chronology

Past glaciers in the study area are reconstructed by combining information from 

moraines, erratic location and provenance, trimlines, topography, and patterns of modem 

glacier surfaces and margins. For this study, the glacier reconstructions are drawn to 

approximate glaciers at a neutral mass balance. They are subjective but are based on the best 

available information.

Swift Creek and Shuksan Creek Glacial Chronology

The uppermost moraines in south Swift Creek cirque (SSC) demonstrate 

characteristics of deposition in the late Little Ice Age by the absence of tephras, lack of soil 

and vegetation development, and bouldery surfaces (Figures 3.5 and 3.7). The oldest tree 

associated with these moraines grows on bedrock inside the right lateral moraine (see Figure 

5.1 for location). The tree is 79 years old from A.D. 1998. The addition of 15 - 35 years 

ecesis time for the establishment of the tree (Long 1953, Miller 1969, Leonard 1974, 

Heikkinen 1984), places the minimum age of deposition of the moraine sometime between 

A.D. 1884 and 1904. Because the oldest trees on the end and left lateral moraines are of

similar age (77 and 70 years old, respectively) and a coherent continuous margin can be

drawn to connect them, all the uppermost moraines in south Swift Creek cirque appear to be

contemporaneous.
Surface characteristics of the uppermost moraines in high Swift Creek cirque (HSC) 

closely resemble those of south Swift Creek cirque. In high Swift Creek cirque, an 85 year- 

old (from A.D. 1998) tree grows on the upper of the two highest moraines. The age of this 

tree with the addition of 15- 35 years ecesis time places the minimum age of deposition of 

the moraine sometime between A.D. 1878 and 1898. This moraine thus appears to be 

contemporaneous with the uppermost moraines of south Swift Creek cirque. The lower high 

Swift Creek cirque moraine has virtually identical surface characteristics to the upper 

moraine (except no trees grow on the lower). The two upper moraines in high Swift Creek
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cirque were therefore most likely deposited within decades of each other rather than being 

seperated by hundreds or thousands of years. All of the upper moraines in Swift Creek were 

deposited late in the Little Ice Age (LIA) and are hereafter referred to collectively as the 

Swift Creek LIA moraines.
The small area, distinct moraine extent, trimlines, and cirque topography, made 

reconstruction of Little Ice Age glacier margins relatively straightforward. However, 

reconstruction of the pre-Mazama extents are more subjective. All of the maximum 

reconstructions in Figure 5.1 are based on the outermost pre-Mazama moraines, whereas the 

minimum reconstructions are based on the innermost. The moraines from cirque to cirque 

may or may not be contemporaneous, but the maximum reconstruction lines for all cirques 

are designated the same line-type and color in Figure 5.1. The minimum limiting ages are 

also indicated on the figure.
Radiometric minimum ages on pre-Mazama moraines in the Swift Creek and 

Shuksan Creek area were obtained only for the south Swift Creek cirque moraines from the 

Swift Creek cores. The two oldest bog bottom dates from Swift creek cores constrain the 

three lowermost south Swift Creek cirque moraines with close minimum ages (moraines 1-3, 

Figure 5.1). The oldest date, 9650 ± 50 '"‘C years B.P. (10,760 - 10,960, 10,990 - 11,020,

11,040 - 11,180 cal. years B.P.) from charcoal near the base of core SC-7 (Figure 5.2), is 

from a bog just upvalley from moraine 3 (Figure 5.1). The second oldest radiocarbon date, 

9560 ± 50 ''‘C years B. P. (10,690 - 11,110 cal. years B.P.) from peat near the base of core 

SC-2 (at a depth of 55 cm) (Figure 5.2) was obtained from a small bog a few meters 

downvalley from moraine 1 (Figure 5.1). The radiocarbon ages of these two dates overlap at 

1-sigma, making them statistically indistinguishable.
The oldest minimum age for moraine 10 (Figure 5.1) of 9350 + 180 '“^C years B. P. 

(10,210 -11,130 cal. years B. P.) is not significantly different from the two dates discussed 

above. This date is on a tree branch from the base of core SC-8 at -106 cm depth. The 

lowermost 15-cm (95-110 cm depth) of core SC-8 is organic-rich silt with abundant conifer 

needles and wood (Figure 5.2). Abundant wood at the base of the core suggests that trees
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were growing next to the pond at the time of deposition, perhaps similar to the modem 

environment (See Figure 3.15).
The south Swift Creek cirque moraines are small (1-3 m in height) and thus probably 

do not represent much time for deposition. This inference is supported by the coherence of 

the limiting radiocarbon dates discussed above. The ten oldest lower moraines are named 

the Swift Creek moraines (Burrows and Kovanen, in progress) and are older than 9350 to 

9650 ’"‘C years B. P.

Bagley Creek Glacial Chronology
The glacier reconstruction for the Picture Lake moraine (Burrows and Kovanen, in 

progress), is closely constrained only by the headwall and moraines. The upper left margin 

(north side of valley) of the glacier is reconstructed ~ 60 m lower than the upper right margin 

(south side of the valley), because of its south-facing exposure. The terminus position is 

based on moraines, topography, and patterns of modem glacier margins (Figure 5.3).
A near-basal radiocarbon date from the Highwood Lake sediments of 9410 + 50 '“^C 

years B. P. (10,430-10,440; 10,490-10,750; 10,970-10,990; 11,020-11040 cal. years B. P.) 

(Figure 4.14) provides a minimum limiting age for the Picture Lake moraine. This date is 

only slightly younger than the oldest limiting ages of the south Swift Creek cirque moraines.

Analysis of remnant magnetism in the core sediments provides a means to correlate 

inclination and declination of the sediments with those of a known chronology at Fish Lake, 

Oregon (Verosub et al., 1986). Matching inclination and declination curves with those from 

the Fish Lake core indicates a basal age of -9450 '"^C years B. P. (11,060-10950 cal. years 

B.P.) (Housen, personal communication, 2000). This analysis appears to contradict the near- 

basal radiocarbon date in the core. The calibrated Highwood Lake inclination curve suggests
an 8900 '"‘C years B. P. at a tie point that is stratigraphically below the 9410 ± 50 ’"^C years

B. P. date from Highwood Lake. More information is needed to reconcile this discrepancy. 

The paleomagnetic comparison suggests that the age for the base of the Highwood Lake silt 

may be within a couple of hundred years of the lowest radiocarbon date. The possible 

varves (only 115 years represented) in the basal silt suggests this as well.
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Summary of Morainal Evidence

Trees growing on and behind the upper moraines of two cirques in Swift Creek 

(south Swift Creek cirque and high Swift Creek cirque) provide a close (within 15-35 years) 

minimum limiting age of 96 to 122 years old or deposition sometime from 1878 to 1904 

A.D. Bouldery surfaces, sparse vegetation, small trees, and the absence of any tephras also

support recent deposition of these moraines at late Little Ice Age.

Minimum limiting radiocarbon ages from bog and lake cores constrain the oldest 

cirque moraines in south Swift Creek cirque and Bagley Creek cirque. The Swift Creek 

moraines and Picture Lake moraines appear to be contemporaneous, based on similar 

geomorphic positions, extent, reconstructed equilibrium line altitudes (~ 1400 m; see 

Chapter 6), and similar stratigraphies of the Swift Creek cores and the Highwood Lake core 

(Figure 5.2), and relatively close basal ages. Radiocarbon minimum limiting ages constrain 
the Swift Creek moraines as older than 9650 + 50 '^^C years B. P. (10,760 - 10,960, 10,990 - 

11,020,11,040 - 11,180 cal. years B.P.). In Bagley Creek basin, the Picture Lake moraines 
are constrained by a minimum limiting radiocarbon date of 9410 + 50 '"^C years B. P. 

(10,430-10,440; 10,490-10,750; 10,970-10,990; 11,020-11040). Near-basal sediment core 

radiocarbon ages from both Swift Creek and Bagley Creek are very close and when 

calibrated at the 2-sigma uncertainty level have ages that overlap from 10,760 to 11,040 cal. 

years.
The only maximum age limit for the Swift Creek moraines and Picture Lake 

moraines is from two dates of 10,788 ± 77 (13,112 - 12,442 cal. years B. P.) and 10,603 ±

69 (12,944 - 12,176 cal. years B. P.) years B. P. on charcoal layers in outwash from a 

tongue of the Nooksack alpine glacier system that flowed ~40 km down the North Fork of 

the Nooksack valley (Easterbrook and Kovanen, 1996; Kovanen, 1996; Kovanen and 

Easterbrook, 2001). When calibrated, these dates are statistically indistinguishable so the 

mean of ~ 10,700 years will be referred to as the maximum limiting age. Bagley Creek 

cirque was possibly a part of the source area for the Nooksack alpine glacier system. 

Although Swift Creek is not part of the Nooksack drainage system, a contemporaneous
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alpine valley glacier of greater extent than outlined in this study would likely have occupied 

the Swift Creek drainage.

Moraine sets of two ages were deposited in Swift Creek during the late Holocene and 

the late-Pleistocene/earliest Holocene, whereas only the older set of the late- 

Pleistocene/earliest Holocene age moraines are preserved in Bagley Creek trough. Swift 

Creek Little Ice Age moraines were deposited sometime between about 1878 and 1904 A.D. 

in south Swift Creek cirque (SSC) and high Swift Creek cirque (HSC). The Swift Creek and 

Picture Lake moraines were deposited sometime between 10,700 and 9600 ’'*C years 

B.P.
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Chapter 6 Equilibrium Line Altitudes (ELAs) and Paleoclimatic Reconstructions

The Equilibrium line altitude (ELA) of a glacier is the hypothetical contour across 

the glacier that has a zero net mass balance at the end of an annual ablation season. In 

actuality, the contour that defines the ELA is an average of the irregular end-of-summer 

snowline. The ELA and mass balance of a glacier are dependent on the balance between 

snow and ice accumulation (closely dependent on winter precipitation/accumulation) and 

snow, fim, and ice ablation (closely dependent on summer temperature). Winter 

precipitation/accumulation and summer temperature are dependent on the influence, 

interaction, and feedback of many climatic and topographic factors especially for cirque 

glaciers (Graf, 1976).
ELAs on modem glaciers typically vary widely from year to year and so to gain a 

sense for the cumulative effect of this variation on the response of a glacier, the ELAs must 

be averaged for several years in a row, appropriate to the response time of the particular 

glacier. A calculated ELA attempts to approximate the averaged ELA that would keep the 

glacier at a neutral mass balance and hence a stillstand. Calculating the ELA at a stillstand is 

significant because it relates back to a climate during the period of stillstand that is marked 

by a moraine building event. If the moraine building event is an advance, then the climate 

estimate is a minimum. If the event is a recession then the climate estimate is only a 

snapshot of ameliorating conditions.

Glacier response and moraine deposition are not necessarily simple climate relations. 

The interaction of glacier mass balance with topography (affecting glacier geometry and 

flow dynamics) further filters the climate signal (Furbish and Andrews, 1984). These 

relationships explain different glacier responses in the same mountain range to the same 

climate regime and make correlation of moraines from cirque to cirque without solid dating 

control impossible. However, to expect at least a few moraines to correlate in age from 

cirque to cirque in a mountain range is reasonable.

Equilibrium Line Altitudes for the Little Ice Age and early Holocene/late Pleistocene 

glacier reconstructions from Chapter 5 were calculated using the standard accumulation area
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ratio (AAR) method (Meier and Post, 1962) with an assumed error of + 50 m. The AAR is 

the area above the equilibrium line (accumulation area) divided by the total area of the 

glacier. Meier and Post (1962) observed that most mountain glaciers with a neutral mass 

balance, along the Northwest coast of North America and the western U.S. have an AAR 

between 0.5 and 0.8. Porter (1975) was one of the first to apply AAR to calculate ELA and 

used 0.6 AAR. Values of 0.6 or 0.65 are now commonly in use (i.e. Meierding, 1982; 

Thomas, 1997; Heine, 1998). Then, by estimating modem climate at the calculated ELAs for 

the reconstructed glaciers and comparing those climates to the range of climates on modem 

glaciers, the range of deviation from modem climate can be estimated. Ablation season 

temperature and accumulation season precipitation are the climate parameters used. This 

follows Leonard (1989) who applied this method to Pleistocene ELAs in the Colorado Front 

Range. This is assuming that climate at ELAs of modem glaciers in the Pacific Northwest 

and Canadian Rockies are valid models for past glaciers in the study area.

Estimating climatic conditions associated with past glacier extents in Swift Creek 

and Bagley Creek is important in assessing regional climate changes. Although Equilibrium 

Line Altitude (ELA) reconstmctions and associated climate conditions provide only a 

snapshot of past conditions, they are important to compare with modem conditions and with 

other paleoclimate proxies.

The Modem ELA

Equilibrium line altitudes of modem glaciers in the Cascades are primarily controlled 

by winter precipitation, summer temperature, and local topography (Porter, 1977; Clark et 

al., 1994). Important topographic factors are aspect, cirque geometry and topography, and 

locations of passes, ridges, and peaks (Graf, 1976). Typically, as the size of a glacier 

decreases (to the point it is confined to a cirque), the more it is dependent on the surrounding 

topography in order to continue to maintain enough mass balance to exist under marginal 

climate conditions. Assuming marginal climate conditions, an optimum location to maintain 

a small cirque glacier (referred to as a glacieret) in the northern hemisphere is in a large 

cirque with a northeast aspect, width greater than length, high steep walls, a pass located to



the windward, and a peak to the southwest (Graf, 1976). This situation would also tend to 

result in a lower ELA than larger, more exposed glaciers in the surrounding area. As the size 

of a glacier increases and becomes valley glacier size, the mass balance and ELA become 

less dependent on the local topographic situation. The effect of regional winter precipitation 

and summer temperature would more strongly control the mass balance and ELA. 

Topography is still important, but especially the area-altitude distribution (Tangbom, 1999). 

The area-altitude distribution is dependent on the size, shape, and altitude range of the valley 

in which the glacier resides.
Glaciers in and near the study area are excellent illustrations of the relationship 

between size, topography, and the ELA. Based on these relationships two modem ELA 

values are used in this study. The regional ELA (1890 m) is from substantial north-facing 

glaciers that exist on higher peaks in the area (Baker, Shuksan, Ruth, Icy, Hadley, and 

Ptarmigan Ridge) (Table 6.1). The mean from these represents the mean ELA of some of the 

larger, meteorologically exposed, N-facing glaciers in the area. The local ELA (1640 m) is 

from the two glacierets in Bagley Creek and Swift Creek(Table 6.1). The local and the 

regional ELA are related in that they are both subject to the same climate conditions, but the 

local ELA is more subject to local topographic conditions.

The two glacierets in the study area owe their continued existence to their northerly 

aspect and having favorable topographic conditions for collecting wind-blown snow. Wind­

blown snow from prevailing winter storm winds (from the south and southwest) deposits 

snow through the pass at the head of Swift Creek glacier (Figure 3.1). The calculated 

modem FT A for Swift Creek Glacier is 1625 m (5330 ft). The Bagley Creek glacier sits in a 

depression in the northeast-facing crook of L-shaped Table Mountain (and is also probably 

significantly shaded) (Figure 4.1). Storm winds redeposit snow in this depression from the 

flat tops of the mountain. The calculated modem ELA of Bagley Creek glacier is 1650 m 

(5410 ft). Both of these calculated ELAs are within the ELA error margins (+ 50 m) of the 

other. The rounded average ELA from Swift Creek and Bagley Creek of 1640 m is used as 

the local ELA.

In the vicinity of the study area, winter precipitation and summer temperature
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probably more strongly influence ELAs of glaciers on the large peaks of Mt. Baker (Harper, 

1992) and others than in the study area itself. To approximate the modem ELA in the 

vicinity of the study area, I calculated ELAs from the most recent 7.5’ topographic 

quadrangles (1989) for several modem glaciers on Mt. Baker, Mt. Shuksan, Icy Peak, Ruth 

Mt., Hadley Peak, and Ptarmigan Ridge (see Figure 1.1 for locations). These values varied 

from 1795 to 1990 m for northwest to northeast facing glaciers with a mean of 1890 m 

(Table 6.1). The mean of 1890 m is referred to from here on as the regional ELA. The large 

difference of ~250 m between the mean regional ELA and the local ELA demonstrates how 

strongly an influence topography is for preserving the glacierets in Swift Creek and Bagley 

Creek.
Two ELAs were calculated for south-facing, modem glaciers to compare the affect of 

aspect and to compare with ELAs of south-facing reconstmcted glaciers in the study area. 

The south-southeast-facing Crystal glacier on Mt. Shuksan has a calculated ELA (0.65 AAR 

method) of 2200 m. This compares well with 2015 m (0.65 AAR method) for the south- 

southwest-facing Easton glacier on Mt. Baker (Thomas 1997). The mean for these two 

south-facing glaciers is 2110 m. The Crystal glacier ELA may be higher than the Easton 

because of its hypsometry and/or because the Crystal has a calving margin over a cliff.

Noisy Creek glacier, several kilometers to the southeast of the study area, is a small

cirque glacier (0.6 km^ area), with little vertical relief, and has a calculated ELA of 1820 m

with a field-measured ELA of 1765 m for 1995-96, a near-neutral mass balance year (Riedel,

pers. comm., 2000). The Noisy Creek Glacier ELA is probably below the regional ELA

mean because it sits in a relatively flat basin that likely collects avalanched snow from the
2slopes above. In comparison, the South Cascade glacier, a larger valley glacier (~ 2 km 

area) several km to the south of Noisy Creek with significant vertical relief (-400 m), had a 

field-measured ELA at 1900 m during the same year (Rrimmel, 1997). The contrast 

between measured ELAs on these two glaciers that have a similar climate further illustrates 

the importance of local topographic effects on the ELA of small cirque glaciers.
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Glacier Location Aspect
Calculated 
ELA (m) ELA (ft)

Measured 
ELA (m)

Crystal Mt. Shuksan S 2200 7220
Easton Mt. Baker S 2015 6610
unnamed Ruth Mt. N 1925 6310
unnamed Icy Peak. NW 1845 6050
Mazama Mt. Baker N-NE 1940 6360
Hadley Hadley Peak N 1990 6530
Sholes Ptarmigan Ridge NE 1795 5890
Noisy Creek Bacon Peak N 1820 5970 1765
Swift Creek upper SSC N 1625 5330
Bagley Creek upper Bagley Cr. NE 1650 5410

North-facing 
Regional mean:

1890

Local mean: 1640

Table 6.1 Modern ELAs of glaciers in the vicinity of the study area, calculated from 
0.65 AAR. The regional ELA is 1890 m from north facing glaciers

Name Phase Aspect ELA (m) ELA (ft)
Bagley Creek Picture Lake E-NE 1390 4560
SSC Swift Creek N-NW 1415 4640
SSC Swift Creek Minimum N-NW 1475 4840
SSC LIA N 1550 5080
HSC LIA W-NW 1645 5400
HSC pre-Mazama unknown W-NW 1565 5130
SShC pre-Mazama unknown SE 1595 5230
NSC pre-Mazama unknown W-NW 1470 4820
LAC pre-Mazama unknown SE 1460 4790
Table 6.2 Calculated past ELAs for the study area.

Glacier
Name local ELA regional ELA

Loca
LIA

1 AELA
Swift Cr.

Region
LIA

al AELA 
Swift Cr.

Swift Cr. 1625 1890 75 210 340 475
Bagley Cr. 1650 1890 NA 260 NA 500
S. Shuksan Cr. unknown 1890 NA NA NA 515
Table 6.3 AELAs for Swift Creek, Bagley Creek, and south Shuksan Creek Glaciers.
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ELA Reconstructions
Past glacier surface contours were drawn based on the reconstructed glacier margins outlined 

in Chapter 5, (Figures 6.1 through 6.4). Paleo-ELAs based on these reconstructions were 

calculated using a 0.65 AAR (Table 6.2).

The Little Ice Age ELA for south Swift Creek cirque (SSC) (1550 m) (Figure 6.1) is 

nearly 100 m lower than for high Swift Creek cirque (HSC) (1645 m), reflecting the more 

northerly aspect and greater potential for snow drifting at SSC.

The reconstructed ELAs for the Swift Creek (1415 m) and Picture Lake (1390) 

moraines are not significantly different (Table 6.2). Considering the similar aspect and 

elevation of the cirques, the correspondence in ELAs further support correlation of these two 

sets of moraines along with minimum limiting radiocarbon dates (see Chapter 5).

ELAs from maximum moraine reconstructions in Lake Ann cirque and north Swift 

Creek cirque (NSC) (Table 6.2) are not significantly different at 1460 m and 1470 m, 

respectively, suggesting the maximum moraines in these cirques are contemporaneous. This 

inference is further supported because the glaciers shared a common source area across the 

dividing ridge (Figure 6.2). The SSC pre-Mazama minimum extent (from the highest 

moraines) ELA (1475 m) (Figure 6.3) closely compares with those of Lake Ann cirque and 

NSC, suggesting a similar age. However, without more precise dating control the age and 

correlations of SSC, Lake Ann cirque and NSC moraines is impossible to confirm.

AELAs
The FT .A depression or AELA (AELA will be used from here on) is the difference 

between the modem ELA and the calculated ELA for a reconstmcted past glacier. Two sets 

of AELAs were calculated for the Swift Creek LLA and Swift Creek and Picture Lake 

moraine reconstructions; one depression each from the modem regional ELA (1890 m) and 

the other from the local Swift Creek/Bagley Creek ELAs (1640 m) (Table 6.3). Comparison 

of the paleo-ELAs with the modem local ELA is useful if the paleo-glacier was subject to 

the same localized conditions that preserves the modem glaciers (probably increased 

accumulation due to wind drifting). This is most likely the case for the Little Ice Age extent
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because the glacier was only slightly larger than it is now. The AELA from the modem 

Swift Creek glacier for the south Swift Creek LIA moraines is 75 m. The AELA from the 

regional ET A for the south Swift Creek LIA moraines is 340 m. The AELA for the late 

Pleistocene/early Holocene extents of Swift Creek and Bagley Creek from the modem 

regional FT A is -490 m. This comparison is probably more valid because both glaciers 
were significantly larger (Bagley Creek was over 3 km^ and Swift Creek was - 1 km^) and 

more dependent on winter precipitation and summer temperature. For example, a modem 
analog is the South Cascade Glacier (~ 2 km^ in area), which is similar in size and 

geomorphic position to the late Pleistocene/early Holocene Bagley Creek Glacier. The 

modem, near-neutral, mass balance ELA (1900 m) for the South Cascade Glacier (Knmmel, 

1997) is very close to the regional ELA (1890 m). Therefore, the late Pleistocene/early 

Holocene FT .As of Swift Creek and Bagley Creek were probably in the same range as the 

larger glaciers on Mts. Baker and Shuksan, hence the AELA from the regional mean ELA.

In addition, the AELA for south-facing south Shuksan Creek cirque (SShC) from the 

south-facing regional mean ELA (2110 m) is 515 m. This value is in the same range as the 

early Holocene/late Pleistocene reconstructions in Swift Creek and Bagley Creek, suggesting 

a correlation.

Using the AELA from the regional mean for the late Pleistocene/early Holocene 

extents of Swift Creek and Bagley Creek is probably a simplification. The relative change in 

FT A between the study area glaciers and higher-altitude, larger-extent glaciers in the region 

was probably not linear between today and the late Pleistocene/early Holocene, so the AELA 

of 490 m should be considered a maximum.

Climate at Modem Glacier ELAs

Comparing modem climate conditions at the ELAs of the reconstmcted glaciers in 

the study area with climate at modem glacier ELAs in the North American Cordillera can 

provide a measure of how summer temperatures and winter precipitation have changed since 

the Little Ice Age and the early Holocene/late Pleistocene. These deviations from modem 

temperature and precipitation indicate what change was necessary (from present) to
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glacierize the basins of the study area. This approach follows Leonard (1989) who plotted a 

global distribution of accumulation-season precipitation and ablation-season temperature at 

ELAs of modem glaciers and then developed two envelope equations to encompass the data. 

Ohmura et al. (1992) published an expanded data set and more rigorous treatment of the 

climate at glacier ELAs (takes the radiation balance into account). However, for the sake of 

simplicity only precipitation and temperature are considered here.

Kotlyakov and Krenke (1982) proposed a “tabulated global formula” to encompass 

ELA climates at modem glaciers:
A=1.33(Tvi.viii + 9.66)^'' (1)

Where A is accumulation season precipitation (October through May) in mm water 

equivalent and Tvi-viii is mean summer temperature in degrees C (June, July, and August). 

This curve fits one extreme of their data very well, but to encompass the other extreme of the 

data, Leonard (1989) developed a curve in the same form;
A = 1.33 (Tvi.viii + 6.66)^-^^ (2)

Likewise, I used variations on the same function to generate an envelope for those 

glaciers that may serve as better modem analogs to reconstmcted glaciers in the study area. 

These glaciers are in the North Cascades, British Columbia Coast Ranges, and Canadian 

Rockies and I used climate data for these glaciers tabulated in Ohmura et al., 1992) (Table 

6.4; Figure 6.5). The function to fit the left-hand side of this envelope is:
A = (Tvi-viii+ 8.5)"-^' (3)

The function to fit the right-hand side of the envelope is:
A = (Tvi-viii+ 5.2)2-^' (4)

Equation (4) is the right hand side of the envelope and the minimum combination of 

accumulation season precipitation and summer mean temperature needed to sustain a glacier. 

Values generated from equation (4) are compared with modem climate (developed in the 

next section below) at reconstructed ELAs in the study area.
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Figure 6.5 A comparison of modem glacier ELA climates (measured and estimated) with modem climates 
at past ELAs of this study. The envelope curves (solid and dashed lines) are modified from Kotlyakov 
and Krenke (1982) and Leonard (1989). The estimated regional ELA climate estimates fit well within the 
envelope. See text for deviations of modem climates at past ELAs from modem glacier ELA climates. 
These data are from Table 6.4 and Table 6.5.
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Modem Climate at Calculated ELAs for Past Glaciers in the Study Area

Modem ablation-season temperatures at the reconstructed ELAs are estimated by 

generating and interpolating from mean summer temperature lapse rates in the study area. 

The mean summer temperature lapse rate between the study area at Mt. Baker Lodge (MBL) 

and Upper Baker Dam (UBD) ~ 15 km to the southwest is 0.5 deg. C/100 m (Figure 1.1 and 

1.2 for locations).
Winter precipitation at Mt. Baker Lodge (MBL) and Upper Baker Dam (UBD) are 

similar and the winter precipitation lapse rate is low at 4.26 mm/lOOm. Porter (1977) 

recognized that precipitation values above weather stations in the Cascades probably are not 

significantly different and the low precipitation lapse rate value is congment with this. The 

interaction of topography and wind and the altitude of the freezing level are probably 

stronger controls on the winter snowfall in this region than altitude (D. Burrows, personal 

comm., 2000), but the lapse rate is used anyway. In the Cascades, a strong west to east 

decreasing precipitation gradient exists across the range. However, the distance between Mt. 

Baker and Mt. Shuksan of the study area does not cover enough west-east distance to be 

significant (Porter, 1977).
Mean temperatures and precipitation for Mt. Baker Lodge at 1320 m altitude in 

Heather Meadows are reported in Porter (1977) from 1931 to 1960. Climate data for Upper 

Baker Dam is from the period 1960-1990. Unfortunately the earlier 30-year mean from 

Upper Baker Dam is not available. Thus, they are assumed to be reasonably close for this 

comparison.
The mean accumulation-season precipitation is 2150 mm, whereas the mean annual 

is 2790 mm. Upper Baker Dam is at 150 m altitude and has a mean accumulation-season 

precipitation of 2100 mm.
At Mt. Baker Lodge, the mean annual temperature is 4.5 deg. C, the mean ablation- 

season (May-September) temperature is 10.1 deg. C, and mean July temperature is 12.2 deg. 

C (Porter, 1977). Taking the difference between ablation season temperatures of Upper 

Baker Dam and Mt. Baker Lodge and dividing by the difference in altitude yields a lapse rate 

of 0.50 deg. C/lOOm.
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The lapse rate was applied to the various altitudes corresponding to modem and 

paleo-ELAs. These results are reported in Table 6.5 and compared graphically to the 

modem glacier data from Ohmura et al. (1992) in Figure 6.5. The calculated north-facing 

mean regional ELA climate parameters fall within the envelope as would be expected. The 

climate conditions that exist today at paleo-ELAs fall outside of the envelope as would be 

expected. Climate conditions for the local Swift Creek/Bagley Creek ELA fall outside of 

the envelope, showing topography/weather interactions must be at work to keep glaciers at 

these locations. In actuality, this point is probably shifted into the envelope by increased 

accumulation due to wind drifting and decreased summer temperature due to a north-facing 

aspect.

Climate Shifts to Reestablish Reconstructed Glaciers

The differences between the reconstmcted ELA climate conditions (Table 6.5) and 

the envelope for glacier existence (Figure 6.5) are tabulated on Table 6.6. The maximum 

temperature depression is the difference with no change in precipitation and the maximum 

precipitation increase is the difference with no change in temperature. These are the 

extremes that would be necessary to create glacier ELA climatic conditions. The maximum 

temperature depression for the Swift Creek and Picture Lake moraines would be ~ 1.6 deg.

C. and the maximum precipitation increase would be 870 mm. For the Swift Creek Little Ice

Age ELA a maximum temperature depression of 0.85 deg. C or a maximum precipitation

increase of 440 mm would be needed. Probably some combination of a decrease in

temperature and increase in precipitation from modem conditions occurred because modem

climate trends show increased precipitation with cooler periods and decreased precipitation

with warmer periods. Such conditions could persist for a short period (a few years) and

cause a stillstand or small advance and moraine deposition by a retreating glacier. A larger

advance from growth of an originally smaller glacier would probably require a climate

change favorable for growth to last at least a few decades. The decrease in temperature for

the Little Ice Age seems plausible as Graumlich and Brubaker (1986) approximate a 1 deg. C

decrease in mean annual temperature based on tree-ring correlations for the Little Ice Age.
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Glacier
Phase

Max Temp 
Decrease 
(deg. C)

Max Precip 
Increase 

(mm)

Early Holocene/I. Pleistocene 1.6 870
Swift Creek Little Ice Age 0.85 440

Table 6.6 Ablation season temperature and accumulation season 
precipitation shifts from modern climate at past ELAs to a glacial climate.
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Chapter 7 Comparison with other studies

No previous work in glacial geology in the study area has been published, but numerous 

studies of historical glacier fluctuations and glacial geology have been conducted in the North 

Cascades. Several studies have investigated Holocene and historical glacier fluctuations on Mt. 

Baker (Bengston, 1956; Burke, 1972; Easterbrook and Burke, 1972; Fuller, 1980; Heikkinen, 

1984; Harper, 1993; Thomas, 1997; Thomas et ah, 2000), and in nearby cirques (Easterbrook 

and Burke, 1972; Easterbrook and Kovanen, 1999; Thomas, 1997; Thomas et ah, 2000). 

Leonard (1974) studied Neoglacial moraines from the Price Glacier on the north side of Mt. 

Shuksan. Other Neoglacial and Little Ice Age moraine studies in the North Cascades include 

the Dome Peak area (Miller, 1969), and Depot Creek (Riedel, 1987). Holocene glaciation has 

been quite extensively studied on and around Mt. Rainier (Burbank, 1981; Crandell and Miller, 

1964; Harrison, 1956; Heine, 1998; Porter and Burbank, 1979; Sigafoos and Hendricks, 1961, 

1972; Veatch, 1969). Ryder and Thomson (1985) and Souch (1994) report on timing of 

Neoglacial advances in the British Columbia Coast Range. This chapter compares the results 

from Swift Creek and Bagley Creek to glacier records around the western United States.

Little Ice Age

The Swift Creek LIA moraines correlate with many Little Ice Age moraines in the 

Cascade Range. The Swift Creek LIA moraines delimit a maximum at the end of the Little Ice 

Age. In contrast, many glaciers in the North Cascades reached their maximum earlier in the 

Little Ice Age and have younger nested moraines upvalley from the maximum that may 

correlate with the Swift Creek moraines. The outermost Little Ice Age moraines are typically 

within 0.5 km of the inner moraines at these other sites and don’t represent a large change in 

ELA. The following modem glaciers and cirques have Little Ice Age moraines that may have 

formed at the same time as and are within the range of dates possible for those at Swift Creek 

(1878-1904 A.D.): on nearby Mt. Baker the Boulder Glacier (Burke, 1972; Easterbrook and 

Burke, 1972), Coleman/Roosevelt Glacier (Heikkinen, 1984), the Easton Glacier (Thomas 

1997), and possibly the Deming Glacier (Fuller, 1980); on Mt. Shuksan, just a few kilometers 

to the east of the study area, the Price Glacier (Leonard, 1974); the Dome Peak area, ~ 30 km
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south and east of the study area, which includes the South Cascade, the LeConte, the Dana, and 

the Chickamin glaciers (Miller, 1969); and Mt. Rainier, on the Carbon, Emmons, Ohanapecosh, 

Winthrop, and Cowlitz Glaciers (Sigafoos and Hendricks, 1972; Burbank, 1981). A similar 

Little Ice Age pattern occurs in the Canadian Cordillera as well (Osborn and Luckman, 1988).

Two of the north-facing glaciers on Mt. Rainier have similar AELAs as the south Swift 

Creek LLA moraines (Burbank, 1981). The Winthrop Glacier has a AELA of 99 m and the 

Carbon Glacier a AELA of 60 m. The Winthrop glacier AELA is from the Little Ice Age 

maximum extent and so the inner moraines that correlate with Swift Creek may be closer to the 

Swift Creek LIA AELA of 75 m. The lower Carbon Glacier is heavily debris-covered and thus 

is not comparable with the others.

Early Holocene/late Pleistocene

The Swift Creek and Picture Lake moraines do not appear to correlate to the early 

Holocene moraines (7700-8400 years B. P.) of the Easton shelf glacier on the south flank of 

Mt. Baker or a cirque moraine nearby (Easterbrook and Kovanen, 1999; Thomas, 1997;

Thomas et al., 2000). The 2-sigma calibrated age ranges for Thomas’ maximum, 9270-9535 

cal years, and the oldest minimum for the Swift Creek moraines, 10,760-11,180 cal years, do 

not overlap; therefore these appear to be two separate events. However, lateral moraines on the 

Easton shelf, just below those discussed above, appear to be older than Thomas’ maximum and 

may correlate to the Swift Creek and Picture Lake moraines. Dates on charcoal in a nearby 
cirque moraine (not part of the Mt. Baker glacier system) suggest an age of -8500 ''*C years B. 

P. (Easterbrook and Kovanen, 1999).
If 9650 ± 50 '“*C years B. P. is a close minimum limiting age for the Swift Creek 

moraines then they may correlate with McNeely II cirque moraines near Mt. Rainier (Heine, 

1998). Radiocarbon and tephrochronologic analyses on lake sediments associated with the 

McNeely moraines demonstrate that McNeely II moraines are bracketed between 9800 and 

8950 *'*C years B.P. Indeed, the AELA (from the modem ELA on Mt. Rainier) of 400-500 m 

for the McNeely advances compare closely with the 475-500 m AELA (from the regional ELA) 

for the Swift Creek and Picture Lake moraines. However, if the constraining date for the Swift
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Creek and Picture Lake moraines is not closely limiting (not within ~200 C years), then they

would not correlate with McNeely II moraines.
As discussed in Chapter 5 moraines of the North Fork of the Nooksack alpine glacier 

system (NAGS) provides a maximum limiting age of -10,700 ''^C years B. P. for the Swift 

Creek and Picture Lake moraines. In addition, lateral moraines of the Middle Fork Nooksack 

alpine glacier contains logs which were dated at -10,700 and -10,500 ''‘C years B.P. that are 

the result of the readvance of alpine ice in the Middle Fork Nooksack valley (Kovanen and 

Easterbrook, 2001). These moraine building events in the Nooksack may correlate to inner 

moraines of the Sumas Stade on the Fraser Lowland (the last remnant of the CIS), bracketed 

between -11,000 and 10,250 ''‘C years B. P (Kovanen and Easterbrook, 2001). The innermost 

Sumas moraine has a maximum limiting age of 10,250 ^"^C years B. P. (Easterbrook and 

Kovanen, in review-a). The Swift Creek and Picture Lake moraines, could correlate with the 

youngest Sumas moraines.
The number of alpine moraines of different ages in the Pacific Northwest suggests 

variable climates during the late-Pleistocene/earliest Holocene (and different responses of 

glaciers to unique climate changes for each period because of different area-altitude 

relationships). Several authors have attempted to correlate late-Pleistocene and Holocene 

alpine moraines throughout the North American Cordillera (e.g. Burke and Birkeland, 1983; 

Davis and Osborn, 1987; Davis, 1988; Osborn andLuckman, 1988; Luckman 1998). Although 

many studies identified “pre-Neoglacial moraines” of possible early Holocene and/or late- 

Pleistocene age, relatively few moraines have rigorous numeric age control. However, in recent 

years, some “pre-Neoglacial moraines” in the North American Cordillera have been shown to 

be latest Pleistocene in age. Alpine cirque moraines in the Canadian Rockies (Reasoner et al., 

1994), Colorado Rockies (Menounos and Reasoner, 1997), and Wyoming Wind River Range 

(Gosse et al., 1994) that are of slightly greater extent than Little Ice age moraines. The 

moraines from these studies correlate with the North Atlantic Younger Dryas event (11,000 to 

10,000 ’"^C years B. P.). In the Sierra Nevada, Clark and Gillespie (1997) demonstrated that 

"Recess Peak" moraines (also of slightly greater extent) previously thought to be late Holocene 

(-2500 ’'^C years B. P.), are pre-Younger Dryas (older than 11,200 years B.P.).
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Chapter 8 Summary

The Moraine Record and Limiting Ages

Two distinct sets of post-Vashon moraines occupy several cirques of the study area 

in northwestern Washington between Mt. Baker and Mt. Shuksan. Younger (upper) and 

older (lower) sets of moraines were deposited in Swift Creek, whereas only the older set is 

preserved in Bagley Creek basin. The upper moraines lack tephras, are bouldery, sparsely 

vegetated with only a few small trees growing on them. From dendrochronology, the Swift 

Creek LIA moraines were deposited sometime between about 1878 and 1904 A.D. in south 

Swift Creek cirque and high Swift Creek cirque. The lower, older moraines in south Swift 

Creek cirque are vegetated with mature subalpine vegetation and have impounded a number 

of small ponds and bogs. An extensive cover of Mazama ash on the lower moraines and 

bogs provides a minimum limiting age of 6800 '^C years for deposition. Minimum limiting 

radiocarbon ages from bog and lake cores constrain the oldest cirque moraines in south 

Swift Creek cirque and Bagley Creek basin. The Swift Creek moraines and Picture Lake 

moraines appear to be contemporaneous, based on similar geomorphic positions, extent, 
reconstructed equilibrium line altitudes, and relatively close basal ages from the Swift Creek 

cores and the Highwood Lake core. Radiocarbon minimum limiting ages constrain the 

Swift Creek moraines as older than 9650 ± 50 '"‘C years B. P. (10,760 - 10,960, 10,990 - 

11,020, 11,040 - 11,180 cal. years B.P.). In Bagley Creek trough, the Picture Lake moraines 
are constrained by a minimum limiting radiocarbon date of 9410 + 50 '"‘C years B. P. 

(10,430-10,440; 10,490-10,750; 10,970-10,990; 11,020-11040). Near-basal sediment core 

radiocarbon ages from both Swift Creek and Bagley Creek are very close to each other and 

when calibrated at the 2-sigma uncertainty level have ages that overlap from 10,760 to 

11,040 cal. years. The primary uncertainties with interpreting the closeness of the minimum 

limiting ages are: (1) possible piping of older sediments through porous till (in the cases of 

Swift Creek core sites); (2) unknown sedimentation rates below the radiocarbon dates; (3) an 

unknown hiatus time between deglaciation and establishment of vegetation and organic 

sedimentation; and (4) coring the deepest, oldest part of the bog or lake.

Moraines are preserved in other sub-cirques of Swift Creek and Shuksan Creek that
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are of similar extent to the lower south Swift Creek cirque moraines. Moraines in north 

Swift Creek cirque, Lake Ann cirque, north Shuksan Creek cirque, and south Shuksan Creek 

cirque are constrained by Mazama ash as a minimum limiting age. However, without 

further age constraints, whether these moraines correlate to the late Pleistocene/early 

Holocene moraines in Swift Creek and Bagley Creek is unknown.

The only maximum age limit for the cirque moraines in Swift Creek and Bagley 
Creek is 10,700 '“^C years B. P. from charcoal layers in outwash from the Nooksack alpine 

glacial system of the North Fork of the Nooksack valley (in which Bagley Creek is a 

tributary) (Kovanen, 1996; Easterbrook and Kovanen, 1996; Kovanen and Easterbrook, 

2001). Although Swift Creek is not part of the Nooksack drainage system, a 
contemporaneous alpine valley glacier of greater extent than outlined in this study probably 

occupied Swift Creek.
Two dates from the Swift Creek cores and one date from the Highwood Lake 

provide maximum limiting ages of ~ 5800 to 6200 ’“^C years B.P. (~ 6800 cal. years B. P.) 

for the Cathedral Crag tephra. These dates contribute to a suite of similar limiting ages for 

the tephra (Kovanen and Easterbrook, in review-b).

Discordant radiocarbon dates were observed on different materials at 

stratigraphically similar locations within the Swift Creek sediment cores. The wood fibers 

that yielded the younger dates, are most likely penetrative root fibers. The dates from this 

material contrast sharply with charcoal, peat, and plant macrofossil (heather needles) 
samples carefully scrutinized to eliminate root material. In all cases the roots are ~ 2000 ^'^C 

years younger.

ELA Reconstructions and t^LAs

Two sets of ART .As were calculated for the south Swift Creek cirque LIA and Swift 

Creek and Picture Lake moraines reconstructions; one depression each from the modem 

regional ELA (1890 m for north-facing glaciers) and the other from the modem local ELA 

(~ 1640 m). Comparison of the paleo-ELAs with the local ELA is useful if the paleo-glacier 

was subject to the same localized conditions that preserves the modem glaciers (probably 

increased accumulation due to wind drifting). This is most likely the case for the Little Ice
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Age extent because the glacier was only slightly larger than it is now. The AELA from the 

local ELA for the south Swift Creek LIA moraines is 75 m. This is similar to the Little Ice 

Age AELA from north facing Winthrop Glacier on Mt. Rainier.

During the late Pleistocene/early Holocene extents of Swift Creek and Bagley Creek 

glaciers the AELA from the regional ELA is -490 m. This AELA is very similar to the 

McNeely II moraines AELA of 400 to 500 m from the modem ELA on Mt. Rainier.

Paleoclimate Significance of Moraines

By comparing the range of climate conditions (ablation season temperature and 

accumulation season precipitation) at ELAs of modem glaciers with the modem climate at a 

reconstructed ELA the range of possible climate change is quantified. Two cases of change 

are the endpoints for the range of change. These are (I) the maximum ablation season 

temperature depression with no change in accumulation season precipitation and (2) the 

maximum increase in accumulation season precipitation with no change in ablation season 

temperature. The maximum temperature depression (case 1) for the Swift Creek Moraines 

would be - 1.6 deg. C. and the maximum precipitation increase (case 2) would be 870 mm. 

For the Swift Creek Little Ice Age ELA a maximum temperature depression (case 1) of 0.85 

deg. C or a maximum precipitation increase (case 2) of 440 mm would need to have 

occurred. Probably some combination of a decrease in temperature or increase in 

precipitation from modem conditions occurred because modem climate trends show 

increased precipitation with cooler periods and decreased precipitation with warmer periods. 

The decrease in temperature for the Little Ice Age seems plausible as Graumlich and 

Bmbaker (1986) approximate a 1 deg. C decrease in mean annual temperature for that 

period.

Comparison with Other Studies

The Swift Creek LIA moraines appear to correlate with numerous LIA moraines in 

the Cascade Range. However, many glaciers in the North Cascades reached their maximum
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extent earlier in the LIA and have younger nested moraines upvalley from the maximum that 

appear to correlate with the Swift Creek moraines.

The Swift Creek and Picture Lake moraines do not appear correlate to the early 
Holocene moraines (7700-8400 ’'^C years B. P.) of the Easton Shelf Glacier on the south 

flank of Mt. Baker (Thomas, 1997; Thomas, et al., 2000) or to small cirque moraines (~
8500 '“^C years B. P.) nearby to the Easton Glacier (Easterbrook and Kovanen, 1999). The 

2-sigma calibrated age ranges for Thomas’ maximum, 9270-9535 cal. years, and the oldest

minimum for the Swift Creek moraines, 10,760-11,180 cal. years, do not overlap. Therefore
these appear to be two separate events. In addition the 2-sigma age range of 8500 + 100 '"‘C

years B. P. is 9724 - 9149 cal. years and does not overlap with the moraines of this study. 

However, lateral moraines on the Easton shelf just below the Thomas et al. (2000) early 

Holocene moraines appear to be older and may correlate with the Swift Creek and Picture 

Lake moraines.

Given the uncertainty of the minimum ages to timing of deglaciation of Swift Creek 
and Bagley Creek and the large limiting age range (10,700 - 9600 ''‘C years B.P.), two 

correlations from the Pacific Northwest are possible for the Swift Creek and Picture Lake 

moraines. These possibilities are (1) correlation with McNeely II moraines near Mt. Ranier, 

which is probably the most likely when also considering AELAs, or (2) correlation with the 
last stillstand of the Sumas Stade sometime after 10,250 ‘"‘C years B.P. In this case, the 

Swift Creek and Picture Lake moraines could correlate with the very end of the Younger 

Dryas Chronozone after recession of the Nooksack alpine glacial system.

In conjunction, two possibilities exist for the glacial regime of the Swift Creek and 

Picture Lake moraines: (1) the moraines mark a short-lived readvance after a full or near 

disappearance of alpine ice in the study area, or (2) the moraines are recessional moraines 

deposited by brief stillstands of disappearing alpine ice in the study area.. A readvance is 

probably more likely if the moraines correlate with McNeely II. Recessional moraines are 

probably more likely if these moraines correlate with the youngest Sumas and end of the 

Nooksack alpine glacial system. However, the possibility exists in which the Swift Creek 

and Picture Lake moraines do not correlate with either McNeely II or Sumas. Future 

studies in the study area and the North Cascades may illuminate these uncertainties.
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