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ABSTRACT 

 

 

Controlling pollution from agricultural lands is a priority for improving watershed 

health. Best management practices (BMPs) recommend strategies such as riparian buffers 

and altered fertilizer application timing and rates for reduction of nutrient and sediment 

export from agricultural watersheds, but BMP effectiveness in nutrient retention can vary 

greatly depending on differences in crops, soils, and topography. 

Conducting nitrogen (N) and phosphorus (P) measurements in all BMP projects is 

generally not feasible, so well-validated models can help estimate benefits on the watershed 

scale. This project uses the Agricultural Policy/ Environmental Extender (APEX) model to 

simulate crop yield, streamflow, and surface runoff in a small watershed in Whatcom 

County, Washington, to prepare the model for future use in estimating nutrient and sediment 

retention benefits by BMPs. The APEX model requires detailed inputs for soils, climate, 

cropping system, and agricultural management; outputs must be calibrated and validated 

against existing environmental data. No current consensus exists as to the ideal set of soil 

data for the APEX model. I tested the APEX model for three different soils datasets: the Soil 

Survey Geographic Database (SSURGO), the National Cooperative Soil Survey (NCSS), and 

the Nutrient Tracking Tool (NTT), to determine the best dataset to use in terms of ease of use 

and model fit.  

I modeled the northern Kamm Creek watershed, a 227 hectare watershed that 

contains a diverse representation of Whatcom County cropping systems. As the first APEX 

modelling effort in western Washington, this study investigated parameters for blueberry and 

raspberry, two crops new to the APEX model, while testing model performance with three 
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different sets of soils data. I manipulated key parameters in two of the datasets to evaluate 

their effects on hydrology and yield.  

 The model performed well for streamflow and surface runoff across all soils during 

calibration, with satisfactory validation for surface runoff, but not streamflow. Performance 

for crop yields, however, varied across both crop type and soil data sets. Simulated crop 

yields fell within 10% of county-reported average yields for four of the five soils for 

blueberry, raspberry, and corn silage crops, whereas NTT soils drastically underestimated 

yields of both berry crops. 

I recommend applying the SSURGO soils dataset to future APEX modelling in 

Whatcom County, as it had the best model fit for hydrology and crop yields. Further 

recommendations are made for obtaining data to parameterize, calibrate, and validate the 

model to assure accuracy for future APEX modelling efforts.  
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INTRODUCTION 

 

 

Overview 

Food security is crucial to society but the environmental impacts of agriculture can be 

costly. As demand for food increases with the world’s population, land managers are seeking 

strategies to limit environmental impacts of agricultural non-point source (NPS) pollution 

(Chen et al., 2014;  Cui et al., 2016).  Sediment erosion and NPS pollution of nitrogen (N) 

and phosphorus (P) from agriculture costs an estimated $210 billion per year in the United 

States from losses in recreation, property values, biodiversity, and fouling of drinking water 

(Sobota et al., 2015). Agricultural NPS pollution in runoff is implicated in soil acidification, 

biodiversity loss, and eutrophication and subsequent hypoxia of both freshwater and coastal 

marine environments (Schindler & Fee, 1974;  Sobota et al., 2015;  Vitousek et al., 1997). 

Globally, formation of hypoxic “dead zones” in marine environments caused by NPS 

pollution from heavy agriculture has led to the death of benthic organisms and disruption of 

ecosystem productivity (Diaz & Rosenberg, 2008;  Turner & Rabalais, 2003). Nitrate 

pollution in drinking water is toxic to humans and can lead to methhemoglobinemia (blue 

baby syndrome) and increased risk of cancer (Sobota et al., 2015). Agriculture accounts for 

over 40% of atmospheric emissions of nitrous oxide, a potent greenhouse gas (Van Grinsven 

et al., 2013). A cost-benefit analysis of N application in European agriculture showed that 

costs incurred from degradation of human health and the environment might outpace benefits 

associated with enhanced crop yields (Van Grinsven et al., 2013). Alternatively, through 

careful farm management and fertilizer use, crops yields can increase while decreasing 

environmental impact (Chen et al., 2014;  Cui et al., 2016). Widespread adoption of farm 

practices that reduce NPS pollution can both combat environmental problems associated with
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agricultural NPS pollution and enhance economic prosperity (Maringanti, Chaubey & Popp, 

2009). 

 

Incentivizing best management practices  

Best management practices (BMPs) provide guidelines for two main strategies for 

reduction of nutrient exports from agricultural lands: reducing fertilizer application rates and 

intercepting excess nutrients lost from fields (Ribaudo et al., 2001). Fertilizer reduction can 

involve decreasing amounts of fertilizer used, applying fertilizer at strategic times, or 

changing to less fertilizer-intensive cropping systems (Mitsch et al., 1999). On the other 

hand, planting riparian buffers, grassed waterways, and restoring wetlands can intercept N 

and P from overland runoff and lateral subsurface flow (Morris, 2014;  Peterjohn & Correll, 

1984;  USDA, 2014). BMP effectiveness in nutrient retention, however, can vary greatly 

depending on differences in crops, soils, topography, climate, season, and agricultural 

management (Brooks et al., 2015;  Mulla, 2008). In a study of several riparian buffers in 

Ontario, Vidon and Hill (2004) found that the buffer width required to remove 90% of upland 

nitrate inputs at different sites varied from less than 10 meters to more than 150 meters 

depending on soil porosity and riparian sediment depth. Nutrient trapping efficiency of 

riparian buffers also depends on buffer vegetation type, buffer width, slope, and time since 

establishment (Dosskey, Hoagland & Brandle, 2007;  Fennessy & Cronk, 1997;  Ranalli & 

Macalady, 2010). More research is needed to fully understand spatial and temporal 

variability in BMP effectiveness, especially at the watershed scale (Mulla, 2008).  

For all BMP implementation, associated costs can hinder farmers’ willingness to 

improve agricultural practices (Osmond et al., 2015). Solutions that are economically viable 

for farmers stand the greatest chance of widespread adoption and success (Osmond et al., 
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2015). Providing financial incentives for projects that enhance ecosystem services, such as 

clean air and water, habitat, and flood protection, is a promising avenue for improving 

agricultural watershed management. Ecosystem service markets can monetize these benefits 

in the form of credits (Chesapeake Bay Commission, 2012;  Electric Power Research 

Institute, 2014;  Willamette Partnership, 2015). Dozens of instances of nutrient credit 

accounting and trading currently exist worldwide (Greenhalgh & Selman, 2012). Awarding 

credits for nutrient reduction projects requires accurate assessment of the biological 

processes affected by BMPs and effective accounting of any resulting nutrient reductions. 

Uncertainty in BMP effectiveness, however, can undermine this effort, leading to high 

trading ratios, where a polluter must purchase more credits from a manager looking to reduce 

nutrient loads (Olander et al., 2014). 

  

The APEX Model 

Conducting N and P measurements in all projects in an ecosystem service trading 

market is generally infeasible, so developing well-validated models is essential. The 

Agricultural Policy/ Environmental Extender (APEX) is a computer model developed by the 

United States Department of Agriculture- Agricultural Research Service (USDA-ARS) in 

Temple, Texas, to simulate agricultural watersheds using algorithms from the Environmental 

Policy Impact Climate (EPIC) model and the Soil and Water Assessment Tool (SWAT) 

(Williams et al., 2008). The model was designed to bridge the spatial gap between existing 

models that focus on impacts of agricultural practices on single farm (EPIC) and whole 

watershed (SWAT) scales (Gassman et al., 2010). The major components of the EPIC model 

are climate, hydrology, crop growth, nutrient cycling, soil erosion, carbon cycling, and 

agricultural management practices (Steglich & Williams, 2013). EPIC is capable of 
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simulating a single field, while APEX has an additional component of subarea routing that 

can link several fields within a watershed and generate simulations on the sub-watershed and 

watershed scales. While SWAT operates over a regional scale, APEX can track movement of 

water, sediment, and nutrients (in the form of sediment-bound and dissolved species) from 

agricultural fields to streams in watersheds ranging from single fields to multi-state 

agricultural regions (Gassman et al., 2010). The model is an important tool for estimating 

efficacy of BMPs at both the field scale and the watershed scale (Francesconi et al., 2015;  

Plotkin et al., 2013;  Qiu et al., 2002;  Williams et al., 2006). APEX is currently in use to 

model potential benefits of various BMPs as a part of the USDA’s national Conservation 

Effects Assessment Program (CEAP; Santhi et al., 2014;  USDA, 2014). The spatial 

flexibility of APEX and its ability to simulate N and P migration in sediment, runoff, and 

subsurface flow make it potentially useful as a tool in nutrient trading in the Pacific 

Northwest.  Before APEX can be reliably used in a given region, however, it must be 

calibrated against a set of existing measured data for all simulated outputs (crop yield, 

streamflow, runoff, N and P loss, etc.). Calibration is an iterative process that continues until 

model fit is deemed acceptable, at which point the model must be validated against a 

separate, untrained set of data (Wang, Kemanian & Williams, 2011).  

Despite the wide applications and uses of APEX, however, it had not been explicitly 

calibrated and validated in this region. APEX requires detailed inputs of climatic, soil, and 

hydrologic data and can simulate a wide variety of agricultural management scenarios and 

cropping systems. Several issues needed resolution for its successful use at the small 

watershed scale, the critical scale for evaluating water quality benefits from BMPs (Strauss et 

al., 2007). Understanding how soil properties affect dominant hydrologic pathways in a 
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watershed is fundamental to predicting BMP effectiveness for nutrient and sediment 

retention (Brooks et al., 2015). Soil properties determine how APEX simulates hydrology, 

crop growth, erosion, and nutrient flow (Steglich & Williams, 2013). There is no consensus 

in the modelling community on what soils database interfaces best with the APEX model. 

For this modeling effort, I explored three separate sources of soil data. The USDA-NRCS 

developed and maintains two of these sources, the Soil Survey Geographic Database 

(SSURGO) and National Cooperative Soil Survey (NCSS; Dr. Nathan Nelson, Kansas State 

University, pers. comm., Dr. M. Lee Norfleet, USDA-NRCS pers. comm.). The third source 

was from the Nutrient Tracking Tool (NTT), an agricultural model that interfaces with APEX 

(Dr. Ali Saleh, Tarleton State University, pers. comm.). All three soils datasets contained 

detailed information on soil physical characteristics and nutrient content organized by soil 

layer, including layer depth, bulk density, sand, silt, and clay content, pH, percent organic 

carbon, and saturated hydraulic conductivity. These data sets differed in readiness for input 

into APEX, as well as public accessibility. For example, while soil layers from NTT were 

recommended by some APEX users, incorporating them requires sending spatial data from 

the modeled watershed to the developers of the NTT model so they can extract APEX-ready 

soils data.  These issues could have a large impact on ease of adoption of APEX in new 

locations. Testing the APEX model using different soils data sources allowed me to 

determine which soils produced the most accurate hydrologic outputs and crop yields for my 

area, to investigate what soil properties affected these outputs, and to make recommendations 

on which data sets are most practicable.  

Accurate parameterization of crop growth and management in APEX drives key 

processes for modeling hydrologic and nutrient fluxes. Most crops modeled in APEX are 
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annuals; however, perennial shrubs dominate cropping in some regions (e.g., blueberries and 

raspberries in western Washington) and are important components of riparian restoration 

projects aimed at reducing nutrient loading in the Pacific Northwest.  Including blueberry and 

raspberry crops in this project required working with the developers of the ALMANAC 

model (Agricultural Land Management Alternative with Numerical Assessment Criteria), 

which is used by APEX to simulate crop growth, nutrient uptake, and yield (USDA-ARS). 

Furthermore, limited access to detailed farm management data, including crop rotations, 

fertilizer application strategies, and timing of tillage, planting, and harvest, can impede 

accurate parameterization of APEX, as most of these field-level data are confidential.  

Finally, locating calibration and validation data for hydrology and crop yield pose additional 

challenges. Using APEX to evaluate BMPs requires accounting for seasonal variability in 

climate and watershed hydrology. This means that calibration data must have a monthly 

timestep or less. Furthermore, obtaining local crop yield data for several crops on a yearly 

basis is required to capture year-to-year variability in crop yields in a simulated watershed.  

 

Study overview 

I applied the APEX model to an agricultural watershed, Kamm Creek, in northern 

Whatcom County, Washington, to test using APEX to estimate nutrient retention benefits of 

various BMPs. Whatcom County’s agricultural economy has a market value of over $350 

million per year, but like the rest of the nation, faces many issues with NPS pollution 

(USDA-NASS, 2014). Dairy products account for over 50% of the agricultural economy, but 

are connected with N, P, and fecal coliform pollution of surface and groundwater from 

manure production and spreading on grass hay and silage corn fields (Carey & Cummings, 

2012;  Olander et al., 2014;  Rosenstock et al., 2014). Many of Whatcom County’s 
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agricultural waterways are listed on the Environmental Protection Agency’s 303 (d) list of 

impaired waterways due to fecal coliform, sediment pollution, and reduced dissolved oxygen 

(Bandaragoda et al., 2012). Many of these streams are critical to migration, spawning, and 

rearing for chinook salmon (Oncorhynchus tshawytscha), steelhead (O. mykiss) and bull trout 

(Salvelinus confluentus), three salmonid fish species listed as threatened under the 

Endangered Species Act (Shared Strategy Development Committee, 2007). Furthermore, 

fecal coliform from streams has forced multiple closures of Whatcom County’s near-shore 

commercial shellfish harvest, which generates $79 million per year (Snyder, 2015;  Whatcom 

County Public Works-Natural Resources, 2015). State and federal agencies, local 

governments, and Western Washington University are currently collaborating with 

landowners to test payments for agricultural practices that promote ecosystem function and 

agricultural economies (MacKay, 2013).  

Calibration and validation of APEX in the Kamm Creek watershed proceeded in a 

stepwise manner that involved data collection and model testing against existing 

environmental datasets (Figure 1). I built different APEX models based on three different soil 

data sources: SSURGO, NCSS, and NTT. I also developed growth models for blueberry and 

raspberry, perennial berry crops not already covered by APEX by measuring growth of these 

crops in the field to parameterize APEX (Dr. James Kiniry, USDA-ARS pers. comm.). 

Following initial model runs with each of the soil data sets, I created additional soil data sets 

by varying key soil parameters to better understand what factors drove differences among the 

three original data sets. These initial calibration and validation steps will allow future testing 

of the model for simulating nutrient fluxes under a variety of conservation practices.
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Figure 1. Flow chart of experimental approach to APEX model application in Whatcom County, WA. Model setup proceeds in a 

stepwise direction. This project covers steps one through four. 



 
 

9 

 

OBJECTIVES 

 

Below, I enumerate the key progression of goals necessary to achieve calibration and 

validation of APEX in this project (Fig. 1). First, I gathered relevant soil, cropping system, 

management, and climate data as inputs to the APEX model. Second, I gathered existing data 

for the watershed of interest for calibration and validation of hydrology and crop yield.  I 

calibrated the model by manipulating sensitive parameters (as determined by a literature 

search) and analyzing model fit to calibration data for watershed hydrology and crop yield.  

To calibrate for hydrology, I used an automatic calibration tool, APEX- auto-Calibration and 

UncerTainty Estimator (APEX-CUTE) that repeatedly runs the model in search of optimal 

combinations of sensitive parameters to maximize model accuracy. I manually calibrated 

crop yield by adjusting sensitive parameters. Finally, I validated the model against a separate 

sent of data to test the efficacy of model calibration. This study aimed to: 

1) Determine which of the three available soil datasets produce the closest model fit 

for hydrology and crop yield. 

2) Determine which soil parameters are critical drivers of hydrology and yield 

outputs. 

3) Parameterize two perennial shrubs, blueberry and raspberry, for the first time in 

APEX, while evaluating the model’s performance in simulating shrub growth and 

annual yield.   

4) Make recommendations for future use of the APEX model locally and regionally 

by outlining key steps in model preparation that are not covered in the 

documentation, to enhance the ability of APEX to simulate effects of BMPs.  
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METHODS 

 

Study system 

Site Description 

 This study took place in the northern portion of the Kamm Creek watershed, a 

lowland agricultural watershed located in northern Whatcom County, Washington. The 

modeled watershed covers 227 ha and is relatively flat, with slopes between zero and four 

percent, and an average slope of two percent (Goldin, 1992). The lowlands of Whatcom 

County have a mild climate that is heavily influenced by proximity to the Pacific Ocean, with 

an average yearly temperature of ~10ºC. January is the coldest month, with an average 

temperature of ~3ºC, and July is the warmest month with an average temperature of ~17ºC 

(Goldin, 1992). The annual average precipitation between 1960 and 2010 was 1400 mm, with 

70% falling as rainfall between October and March. Lowland soils are diverse, but generally 

consist of well-drained silt loam (Goldin, 1992). Whatcom County’s primary agricultural 

products are dairy, raspberries, blueberries, and strawberries (USDA-NASS, 2014).  

I chose the northern Kamm Creek watershed for this study for several reasons. The 

watershed contains a variety of crop types that are representative of Whatcom County 

agriculture including blueberry, raspberry, silage corn, and pasture (orchard grass). Silage 

corn and orchard grass are associated with dairy operations. 58% of the watershed is used for 

agriculture, while the other 42% of the watershed includes alternative land uses: forests, 

residential areas, and fallow fields. This watershed contains no tile drainage, though tile 

drainage is present downstream in the greater Kamm Creek watershed. APEX can simulate 

tile drainage, but this further complicates model parameterization and applicability to other 

watersheds. Finally, presence of calibration and validation data is essential to applying APEX 



 
 

11 

 

in a new region. Within the Kamm Creek watershed, several environmental studies have 

monitored both hydrologic and nutrient conditions at multiple points in the watershed 

(Bandaragoda et al., 2012;  Matthews & Vandersypen, 1998), although using these data 

required some assumptions, as described below. 
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Table 1. Data needs and sources for APEX parameterization, calibration, and validation. 

Inputs refer to parameterization components and outputs to calibration components. 

Component APEX inputs & outputs Source(s) 

Lowland Whatcom 

County climate data 

Daily minimum/maximum 

temperature, daily 

precipitation 

National Climate Data Center, Natural 

Resource Conservation Service (NRCS) 

Snotel stations (WRIA1 2012) 

Lowland Whatcom 

County soils data 

(by layer) 

Layer depth, % silt/sand/clay, 

bulk density, saturated 

hydraulic conductivity, soil 

water content, organic 

content 

1. NRCS: Soil Survey Geographic 

Database (SSURGO) 

2. Nutrient Tracking Tool (NTT) 

3. National Cooperative Soil Survey 

(NCSS) 

Cropping system/ 

Management data:  

1. Berry crops  

2. Grass/ Hay/ Corn/ 

Dairy 

Crop type,  fertilizer 

application, irrigation, 

planting/harvest, tillage  

1. WSU-Extension Mt. Vernon: Dr. Lisa 

Wasko-DeVetter 

2. Whatcom Conservation District: Chuck 

Timblin,  

WSU-Extension Bellingham: Chris 

Benedict  

Crop Yield Data (for 

calibration) 

1. Silage Corn 

2. Orchard Grass 

3. Blueberry 

4. Red Raspberry 

Dry kg/ha/yr 

 

1. NASS: Whatcom County (1995-2008) 

2. NASS: Whatcom County (2002, 2007) 

3. NASS: Whatcom County (1987-2002) 

    NASS: Washington State (1985-2011) 

4. NASS: Whatcom County (1985-2002) 

    NASS: Washington State: (1985-2011) 

Streamflow Data 

(for calibration) 

mm/month  Topnet Water Management Model 

(WRIA1 2012) 

Surface runoff Data 

(for calibration) 

mm/month Topnet Water Management Model 

(WRIA1 2012) 

2013 National 

Agriculture Imagery 

Program Mosaic 

Field area, crop type, water 

routing 

NRCS  

3M Digital Elevation 

Map 

Watershed area, slope, water 

routing, reach length 

NRCS  

Washington State 

crops: Whatcom 

County 

Crop type, field size Washington State Department of 

Agriculture  
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Calibration and Validation Data 

APEX calibration and validation required existing measured data against which to 

compare model outputs, which were not readily available as direct measurements for my test 

watershed under current land use conditions (Table 1). The northern Kamm Creek watershed 

has changed dramatically since the 1980s, with a marked decrease in lands used for dairy 

farms, an increase in blueberry and raspberry cultivation, and an increase in residential land 

(Matthews & Vandersypen, 1998; C. Timblin, Whatcom Conservation District, pers. comm.). 

Hydrologic processes required calibration first, as they drive the transport of sediment and 

nutrients (Wang, Kemanian & Williams, 2011). The Washington State Water Resource 

Inventory Area No. 1 (WRIA1) Joint Board provided data on the water cycle for all 

watersheds and subbasins within the agricultural portions of Whatcom County (Bandaragoda 

et al., 2012). This water budget used the TOPNET hydrologic model to simulate major 

processes including streamflow, runoff, rainfall interception by vegetation, 

evapotranspiration, and snow accumulation. Like APEX, TOPNET uses input data on soil 

type, climate, land use, vegetation, and artificial drainage to model hydrology. The 

streamflow component of the TOPNET model was directly calibrated and validated against 

streamflow data from several U.S. Geological Survey (USGS) and Washington Department 

of Ecology (WA DoE) stream gauges in the Lower Nooksack Basin. Although none of these 

gauges were located along Kamm Creek, two were along the mainstem of the Nooksack 

River, into which Kamm Creek flows, and several were in smaller watersheds in Whatcom 

County, including Fishtrap and Bertrand Creeks, two agricultural watersheds adjacent to 

Kamm Creek (Bandaragoda et al., 2012;  Tarboton, 2007).  One subbasin in particular within 

the Kamm Creek watershed, node 173, contained the general area of the northern Kamm 
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Creek watershed, so I used TOPNET hydrologic outputs at this location to calibrate and 

validate my model.  Use of TOPNET-modeled data rather than direct measurements to 

calibrate APEX was not ideal. However, very little hydrologic data exist for current 

conditions on the subbasin scale for Whatcom County. TOPNET hydrologic outputs were 

generated at the daily scale from 1952 to 2011, providing continuous data for calibration. A 

calibration dataset that included daily data offered flexibility to look at hydrologic trends on a 

daily, monthly, or annual scale (Sudheer et al., 2007). 

To calibrate for crop yield, I would ideally use yield data from individual fields 

within my watershed but these data were confidential. Instead, I obtained annual crop yield 

data for calibration from the National Agricultural Statistical Service (Table 1; USDA-

NASS, 2014). While I found county-wide average yields from 1985-2002 for raspberry and 

1987-2002 for blueberry crops, only statewide averages were available after 2002. I located 

county-specific corn silage data from 1985-2008, but hay yields were available from only 

census years 2007 and 2012. 

 

Model Parameterization 

APEX Overview 

 I gathered data from several sources to construct a watershed that represented actual 

conditions in the northern Kamm Creek watershed as of 2012 (Table 1).  I compiled these 

datasets in ArcMap 10.2 (ESRI Corporation, Redlands, California, U.S.A.) to delineate the 

watershed and subareas, and to characterize soils and cropping systems within subareas.  

APEX watersheds are constructed of discrete, interconnected plots called “subareas,” each of 

which has homogeneous plant cover, management regime, soil type, slope, and climate. 

Water, sediment, and nutrients are routed from the edge of each subarea to the next, 
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ultimately resulting in outputs calculated at the watershed outlet. APEX is driven by a series 

of interconnected text files containing input data for all subareas along with background 

parameters that determine model output calculations. To simplify the modeling process, I 

built my watershed using the winAPEX interface (Steglich, 2014b), creating 36 

interconnected subareas (Fig. 2).  APEX offers several process models for simulating 

hydrology, soil erosion, plant growth, and nutrient cycling, depending on available data and 

project scope (Wang, Kemanian & Williams, 2011). I chose the Hargreaves method to 

estimate potential evapotranspiration as it is the most robust method and does not require 

solar radiation or wind inputs (Ford et al., 2015;  Francesconi et al., 2014;  Hargreaves & 

Samani, 1985). For surface runoff estimates, I chose the variable daily curve number method 

that varies based on daily soil moisture conditions. I adjusted the atmospheric CO2 

concentration to 400 ppm to reflect current conditions (IPCC, 2013). I used default settings 

for all other control file parameters not mentioned above (Evelyn Steglich, USDA-NRCS, 

pers. comm.).   

 

Watershed and subarea delineation 

 I delineated the northern Kamm Creek watershed using the hydrology toolbox in the 

ArcMap 10.2 spatial analyst extension (ESRI Corporation, Redlands, California, U.S.A.; 

Merwade, 2012). I first constructed flow direction and flow accumulation rasters from a three 

meter digital elevation model of the greater Kamm Creek watershed (USDA-NRCS). I used 

the “watershed” tool to delineate the watershed from the flow direction raster, assigning the 

outlet point to node 173 from the WRIA1 study to assure that my watershed matched the 

calibration watershed.   
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I defined APEX watershed subareas primarily by spatial cropping system data 

obtained from the Washington Department of Agriculture (Perry Beale, pers. comm.). I 

combined adjacent fields of the same cropping system to simplify the watershed, and 

delineated residential areas and forests separately from agricultural fields. I also delineated 

subareas by soil type, splitting fields that contained distinct soils at the soil boundary from 

the SSURGO soils layer. All soil datasets contained the same spatial boundaries as the 

SSURGO dataset. I used aerial imagery to determine percent impervious surfaces (parking 

lots, roads, and homesteads). I used the GIS spatial analyst to assign minor stream paths to 

devise a routing scheme for my subareas by creating streams from the flow accumulation 

raster at a threshold contributing area of one hectare, determined by trial and error as the 

threshold where each subarea had at least one minor stream path present. To assign average 

slopes to individual subareas, I used the DEM to create one meter contour lines for my 

watershed and measured the average distance between contours.  

 

Weather 

 I compiled daily weather data on precipitation and minimum and maximum 

temperature using methods similar to those employed by the TOPNET model (Bandaragoda 

et al., 2012). Briefly, I used a gridded dataset of weather data maintained by the University of 

Washington Surface Hydrology Research Group (Hamlet & Lettenmaier, 2005). I located 

daily weather files from four stations near my site used in the WRIA1 report and generated 

spatially-weighted averages of daily precipitation, minimum temperature, and maximum 
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temperature, which I converted to an APEX-ready daily weather file using the “Weather 

Import” program (Steglich, 2014a). 

 

Soils 

 I initially tested the response of APEX to inputs from three different soil data sets 

(Table 1). The names and spatial extents of the soil types are identical across these data sets. 

Differences among soil data sets lie in how soil properties are organized by layers for APEX 

inputs. The NCSS data splits soil into layers by horizon (A, B, and C) and subhorizon 

(NCSS). NTT and SSURGO soils are split into fewer horizons, and often soil subhorizons 

are combined (USDA-NRCS). The NTT soils split the A horizon into two layers, with the 

upper layer containing the top ten cm of soil, so they have one more layer than the SSURGO 

data. Furthermore, all three soil datasets contain slightly different parameters for percent 

organic matter and soil texture (percent sand, silt, and clay). NCSS soils had an additional 

percent rock parameter that was not specified in the SSURGO or NTT data. I extracted 

APEX parameters from SSURGO and NCSS soil databases using MS Access (Dr. Nathan 

Nelson, Kansas State University, pers. comm., Carrie-Ann Houdeshell, USDA-NRCS pers. 

comm.). For NTT soils, I loaded my APEX watershed into an unreleased update of the NTT 

model and model developers extracted soil data from the resulting watershed in APEX 

format (Dr. Ali Saleh, Tarleton State University, pers. comm.). I also modified two of the 

soils datasets to investigate the effects of specific soil parameters on crop yield and 

hydrology: 

1. NTT soils had very low percent carbon in the A layers, so I modified these values using 

percent carbon data from the SSURGO and NCSS datasets, creating the “NTT Normal 

C” soil data (Goldin, 1992).  
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2. NCSS soils contained 5-10% rock in their surface layers and over 33% rock in 

subtending layers, a parameter not included in the SSURGO and NTT soils. I set the 

percent rock parameter of the NCSS soils to 0%, to make “NCSS No Rock” soils 

(USDA-NRCS).  

In all, I tested the APEX model using these five separate soil datasets: SSURGO, NCSS, 

NTT, NTT Normal C, and NCSS No Rock.  For all five soils datasets, I kept all values for 

wilting point, field capacity, and saturated hydraulic conductivity at zero to allow the model 

to simulate these parameters (Dr. Lee Norfleet, USDA-ARS pers. comm.). 

 

Crops 

 Bringing the APEX model to a new area required parameterizing growth of additional 

crops for the model. Though APEX could simulate silage corn and orchard grass fields, the 

existing model did not include blueberry or raspberry crops. The APEX model simulates 

plant growth based on biomass accumulation by photosynthesis. APEX uses heat unit 

accumulation as a proxy for solar energy, which is assimilated based on a specific plant Leaf 

Area Index (LAI). LAI is the dimensionless amount of leaf area in a field exposed to sunlight 

at any given time (LAI= one-sided leaf area/ ground area). APEX simulates growth over time 

using a sigmoidal curve that has crop-specific values of LAI increase over the course of the 

growing season (Steglich & Williams, 2013).  

 To populate these inputs, I used experimental blueberry and raspberry fields at the 

Washington State University Extension (WSUE)-Mount Vernon. I investigated “Duke” 

blueberries and “Meeker” raspberries, two common varietals grown in Whatcom County (Dr. 

Lisa DeVetter, WSUE pers. comm.). I first measured “Duke” blueberry LAI in September, 
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2014, to capture the LAI of the plant at its maximum. I made subsequent measurements in 

April, May, and August 2015 to capture LAI development throughout the growing season for 

both “Duke” blueberries and “Meeker” raspberries. 

 To calculate LAI, I followed a protocol specified by the Temple, TX, ARS station 

using an AccuPAR LP-80 ceptometer (Decagon Devices, Pullman, WA) with an additional 

sensor to compare photosynthetically active radiation above and below the canopy (Williams, 

2014). For each LAI sampling of raspberries and blueberries, I set up a three meter transect 

(the row spacing between plants), perpendicular to the plant rows with the midpoint of the 

transect at the center of a haphazardly-chosen plant. I took seven evenly-spaced 

measurements with the light bar running parallel to the row of berries (Fig. S1), assuring that 

I sampled the LAI both below plants and between plant rows (Johnson, Kiniry & Burson, 

2010). I repeated this for four plants of each berry varietal. I also destructively sampled 

blueberry and raspberry plants and shipped the samples to the Temple, TX, ARS station to 

measure biomass per plant and N and P content in leaves and shoots. The ARS also measured 

physical leaf area using a LICOR LI-2100 (LICOR, Inc., Lincoln, NE) leaf area meter to 

estimate an extinction coefficient, K, which we used in Beer’s law to convert the fraction of 

photosynthetically active radiation absorbance by the canopy into absolute LAI (Johnson, 

Kiniry & Burson, 2010; Amber Williams, USDA-ARS pers. comm).   

 Another critical crop parameter was harvest index (HI), which is the amount of fruit 

biomass produced in a growing season divided by the total above ground plant biomass. 

Through repeated calibration with observed blueberry yield, I found an HI value of 0.30, 

which was consistent with reported values in the literature (published mean= 0.39, standard 

deviation=0.25; Bryla et al., 2012;  Pritts & Hancock, 1985;  Strik & Buller, 2005). For 
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raspberry, I used an HI value of 0.30 as well, close to HI values arising from a single study 

and which ranged from 0.27-0.32 (Bryla, unpublished).  

 One major challenge of modelling blueberries and raspberries was that APEX is 

rarely used to model growth of perennial shrubs. I used information from WSU Ag extension 

to adjust blueberry and raspberry-specific parameters for the simulated crop including crop 

height, rooting depth, and optimal and minimum temperatures for growth (Dr. Lisa DeVetter, 

WSUE pers. comm.). Plant growth form is an important parameter in the APEX model, but 

unfortunately, perennial shrub is not a growth form currently supported by the model. After 

calibrating the crops against county yield data, I chose to model blueberries as a “deciduous 

tree” and raspberries as a “perennial” to maximize model fit (Dr. Dr. James Kiniry, USDA-

ARS pers. comm.). Blueberry plants are kept in agricultural fields for 15 to 20 years before 

being replaced, so I checked  that APEX was properly modelling year-to-year development 

in the plants by comparing APEX biomass outputs to biomass data from both mature and two 

year old blueberry plants (Bryla, Gartung & Strik, 2011;  Bryla et al., 2012).  

 

Agricultural Management 

I was unable to obtain field-specific crop management regimes for the northern 

Kamm Creek watershed due to farmer confidentiality. Instead, I obtained crop-specific, 

county-wide estimates from experts at local agricultural agencies (Table 1). I used a nutrient 

management plan for a corn silage and orchard grass hay operation that was representative of 

northern Kamm Creek watershed practices from the Whatcom Conservation District (Chuck 

Timblin pers. comm.). Because both of these crops are associated with dairy cow operations, 

all nutrients applied to fields came as manure, and I adjusted manure N and P content 
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according to data in the management plan. I used approximate planting and harvesting dates 

for silage corn and orchard grass, which is harvested multiple times per year, from the 

WSUE office in Whatcom County (Chris Benedict, pers. comm.). These dates vary year to 

year, but for simplicity, I kept them fixed for my model. Raspberry and blueberry 

management regimes were based on recommendations from Oregon State University 

Extension, WSUE Mt. Vernon, and the British Columbia Ministry of Agriculture (Hart, Strik 

& Rempel, 2006;  Hart et al., 2006; Dr. David Bryla pers. comm.; Dr. Lisa DeVetter pers. 

comm.; David Poon pers. comm.). Because I was unable to obtain irrigation data, I used the 

APEX automatic irrigation function that triggers irrigation when plants experience drought 

stress. I programmed blueberry and raspberry rotations to last 15 and eight years, 

respectively, to reflect the average field lifespan for each plant (Dr. Lisa DeVetter, WSUE 

Mt. Vernon pers. comm.). Because I used county-wide averages, I could not incorporate 

variation in field-to-field management practices. Though farmers are instructed to follow 

crop management guidelines as outlined by local agricultural agencies, there is no guarantee 

that they do. Variations in irrigation, fertilizer application, or timing of planting or harvest 

may affect crop growth and nutrient leaching dynamics within the watershed.   
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Figure 2. Subareas for the APEX model by crop type in the northern Kamm Creek 

watershed, Whatcom County, WA.  
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Calibration and Validation  

To account for tree growth in forested subareas, I included a 35 year run-up period on the 

model, starting in 1960. I used monthly streamflow and surface runoff outputs from 

TOPNET from 1995-2004 to calibrate APEX and from 2005-2010 to validate APEX. I used 

a longer calibration period to better capture annual variability in weather before validation 

(Moriasi et al., 2007). I calibrated hydrology in the model with the APEX-CUTE 

autocalibration tool developed by the USDA-ARS (Wang et al., 2014). APEX-CUTE uses a 

dynamically-dimensioned search algorithm to fine tune background parameters to maximize 

model fit based on two statistical measures recommended by Moriasi et al. (2007): 

o Nash-Sutcliffe Efficiency (NSE) evaluates model fit compared to variability of 

observed data, where Pi is the model-generated output, Oi is observed data, and Ō is 

the mean of observed data. NSE ranges from negative infinity to 1, with 1 being a 

perfect model fit.  

NSE = 1 − [∑(𝑃𝑖 − 𝑂𝑖)
2/ ∑(𝑂𝑖 − �̅�)2

𝑛

𝑖=1

𝑛

𝑖=1

] 

o Percent bias (PBIAS) expresses deviation between mean observed (Ō) and mean 

predicted (P̅, modelled) data, where lower percentages indicate closer fit. A positive 

PBIAS indicates model underestimation, while a negative PBIAS indicates 

overestimation.  

 

   PBIAS = [
�̅�− �̅�

�̅�
] ∗ 100 
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o The two measures are combined in an objective function (OF). APEX-CUTE runs the 

model hundreds of times to minimize this function. 

 

𝑂𝐹𝑖 = [(1 − 𝑁𝑆𝐸)2 + (|𝑃𝐵𝐼𝐴𝑆𝑖| + 0.5)2]1/2 

 

 Guidelines suggest that satisfactory model fit for hydrologic processes occurs with 

NSE ≥ 0.5 and PBIAS ≤ ±25% (Moriasi et al., 2007; Table 2). I compiled previous 

sensitivity analyses of streamflow and runoff in APEX to determine hydrology-related APEX 

parameters to adjust, default values, and the ranges of those parameters  

(Francesconi et al., 2014;  Kumar et al., 2010;  Wang & Jeong, 2015;  Wang et al., 2006b;  

Wang et al., 2012; Table S2). For each soil type, APEX-CUTE generated 250 model runs; I 

chose the optimal model run for determining parameters by first looking at the OF, then 

comparing NSE and PBIAS values to find optimal model fit.  

 I calibrated annual crop yields manually on a crop by crop basis (Table 1). I was able 

to use NSE and PBIAS as guidelines to calibrate and validate all crops except hay, which 

only had data available for 2 years of NASS censuses (2002, 2007). For crop yield, a PBIAS 

≤ ±25% is considered satisfactory (Wang et al., 2012). Yield does not have established 

guidelines for NSE, but they are typically less stringent than those for hydrology (Dr. Daniel 

Moriasi, USDA-ARS pers. comm.). Since blueberry and raspberry yields vary by crop age, I 

randomized time of planting for fields, staggering them every two years for raspberry and 

every four years for blueberry. Since county-level yield data for berries were only available 

from 1985-2002, I ran a regression between state and county numbers to estimate yield data 

from 2002-2009 (state data were available annually to the current year). I found a significant, 
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positive linear relationship between state and county yields for both blueberry (R2=0.72, 

p<0.001) and raspberry (R2=0.97, p<0.001). Because I estimated berry yield data from 2002-

2009, I calibrated using even years and validated using odd years from 1995-2009. For silage 

corn, county-specific yield data were available annually up until 2008, so I calibrated from 

1995-2001 and validated from 2002-2008. I calculated spatially weighted average yields by 

field area for each crop simulated in APEX.  
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Table 2. Performance ratings as recommended by Moriasi and others (2007) for streamflow 

on a monthly time step for APEX model evaluation. 

Performance 

Rating 

NSE PBIAS  

(%) 

Very Good 0.75< NSE ≤1.00 PBIAS < ±10 

Good 0.65< NSE ≤0.75 ±10≤ PBIAS < ±15 

Satisfactory 0.50≤ NSE ≤0.65 ±15≤ PBIAS < ±25 

Unsatisfactory  NSE< 0.50 PBIAS ≥ ±25 
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RESULTS 

 

Hydrology 

The APEX model closely predicted monthly runoff and streamflow values when 

compared to TOPNET data during calibration (1995-2004) for all soil types (Figs. 3-4, S2-

S6). During calibration, APEX had a “very good” fit with TOPNET for monthly runoff for 

all soils, while streamflow had a “good” fit for SSURGO soils and a “satisfactory” fit for all 

other soils (Table S1; Figs. 3-4, S2-S6).  For all soils, APEX under-predicted both 

streamflow and surface runoff during low-flow events, and over-predicted those fluxes 

during high flow events, illustrated by slopes significantly greater than one in all regressions 

(Figs. 4, S6). These trends were driven by seasonality, with high-flow events occurring 

during winter months and low-flow events occurring during the summer (Figs. 3, S2-S5). 

The APEX-simulated hydrologic data indicated that runoff was the primary source of 

streamflow for the watershed, generating 50% of annual flow volume for all soils (Table S1); 

this proportion was higher in the winter months than in the summer. The TOPNET data had a 

20-30% higher portion of streamflow generated through runoff than APEX (Table S1). 

SSURGO soils performed slightly better than NCSS and NTT soils for hydrology calibration, 

but overall, the differences were small. 

During the validation period (2005-2009), seasonal trends between APEX and 

TOPNET monthly runoff and streamflow data were generally similar to those in the 

calibration. For all soils in the validation period, APEX captured seasonal variability in flows 

and average measurements of streamflow and runoff were closer (lower PBIAS) to TOPNET 

averages than in calibration (Figs. 3-5, S2-S5, S7). On the other hand, model fit for monthly 

trends in both streamflow and runoff were lower in validation than during the calibration 
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period (Figs 4-5, S6-S7). All soils had satisfactory to good fit for runoff (NSE>0.5), but not 

streamflow. This occurred because APEX had a stronger over-prediction at high flows and 

under-prediction at low flows in the validation than calibration periods (i.e., slopes much 

greater than 1, Figs. 4-5). During validation, SSURGO soils showed the best fit with monthly 

variation in TOPNET hydrologic data, with a “good” NSE for runoff and an NSE for 

streamflow just below the “satisfactory” threshold (Table S3; Fig. 5). For all other soils 

during validation, fit with monthly TOPNET streamflow and runoff data was lower than 

SSURGO results (Figs. 5, S2-S5, S7). Interestingly, the values of parameters that optimized 

model fit during autocalibration with APEX-CUTE were identical for all APEX soil types 

(Table S2).  
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Figure 3. Predicted (APEX generated) vs observed (TOPNET generated) monthly surface 

runoff (a) and streamflow (b) during the calibration (1995-2004) and validation (2005-2010) 

periods for SSURGO soils. *Indicates “satisfactory”, ** indicates “good”, and *** indicates 

“very good” fits as determined by NSE and PBIAS (Table 2, Moriasi et al. 2007).  
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Figure 4. Linear regression of predicted (APEX generated) vs observed (TOPNET 

generated) monthly surface runoff and streamflow during the calibration period (1995-2004) 

for NCSS (a,b), SSURGO (c, d), and NTT (e, f) soils. The black line indicates a 1:1 line, the 

black dashed line indicates a linear regression line through the simulated points, and the gray 

dotted lines indicate 95% confidence intervals. *Indicates a “satisfactory”, ** indicates 

“good”, and *** indicates “very good” fit as determined by NSE and PBIAS (Moriasi et al. 

2007).  ^Indicates a significant linear regression (p<0.05). # Indicates a significant regression 

with a slope (m) not statistically different from l (p>0.05; Table S3). 
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Figure 5. Linear regressions of predicted (APEX generated) vs observed (TOPNET 

generated) monthly surface runoff and streamflow for the North Kamm Creek Watershed 

during the validation period (2005-2009) for NCSS (a,b), SSURGO (b,c), and NTT (d, e) 

soils. Lines and symbols as in Fig. 4.    
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Crop Yield 

 APEX’s ability to predict crop yields varied greatly among crop and soil types, with 

different results in the calibration and validation periods. NCSS and SSURGO soils showed 

similar trends in calibration and validation for the three primary crops in this watershed 

(Figs. 6-7, S8-S9). During calibration, raspberry and blueberry crops in NCSS and SSURGO 

soils had average yields close to reported values (PBIAS< ±10%). During calibration, APEX-

predicted average raspberry yields for NCSS and SSURGO soils were within ~5% of 

observed values. For these soils, raspberry yields closely followed annual trends for NCSS 

and SSURGO soils, with regression slopes not different from one (Figs. 6,7, S8-S9). 

SSURGO soils had the closest fit with annual trends for observed raspberry yields. In 

contrast, NTT soils during calibration dramatically under-predicted raspberry yields and 

failed to capture annual variation (Fig. 6).  

Blueberry yields during calibration were very close, on average, to observed values 

for NCSS, SSURGO soils (PBIAS < ±1%; Figs. 6, S8). Blueberry yields satisfactorily 

followed annual trends for NCSS and SSURGO soils (NSE>0.4), though not as closely as in 

raspberry, as slopes were significantly less than one (Figs. 6, S8). Similar to raspberry, NTT 

soils dramatically under-predicted yields and failed to capture annual variation (Fig. 6).  

During the calibration period, APEX fit of silage corn yields differed from results of 

the berry crops (Figs. 6, S8). For NCSS soils, APEX dramatically under-predicted yields and 

failed to capture yearly variability (Fig. 6, S8). Although the slope of the regression for 

NCSS soils is close to one, the regression is not significant due to low interannual variation 

in observed yield data and a large difference between observed and simulated yields (Table 

S3; Fig. 6). On the other hand, yields for corn silage during calibration were well within the 

range of observed yields for both SSURGO and NTT soils, with PBIAS values all below 
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10% (Figs. 6, S8). Actual yields of silage corn varied less than 7% across all years, so NSE 

values and regression fits were correspondingly low for all soils.  

Because initial crop calibration was poor for NTT soils in both berry crops and NCSS 

soils for silage corn, I investigated which soil parameters caused anomalous results. NTT 

soils had much smaller values for percent organic carbon, often close to 0% in the top two 

layers of soil for Kickerville silt loam and Whatcom silt loam, the two most common soils in 

this watershed. The NTT Normal C soil had much better calibration results for berry yields, 

which mirrored NCSS and SSURGO soil results (Fig. S8). Compared to observed values, 

average raspberry yields and annual trends improved dramatically from NTT to NTT Normal 

C in terms of PBIAS, NSE, and slope (Figs. 6, S8). Similarly, estimates of blueberry crop 

yields improved dramatically from NTT to NTT Normal C soils, though slope for NTT 

Normal C was still significantly lower than one (Figs. 6, S8). On the other hand, silage corn 

improved only slightly in annual fit from NTT to NTT Normal C soils, though average yields 

did increase (Figs. 6, S8). NCSS soils were the only ones that contained data on percent rock 

content (this parameter was left at zero for all other soils). These values were not trivial, with 

percent rock of 9 and 10% in the surface soil layers of Kickerville silt loam and Whatcom silt 

loam, respectively. Below the top two soil layers, both soils had percent rock of up to 33%. 

Rock-containing soils in the NCSS database make up 70% of the simulated watershed area. 

When I eliminated percent rock data from NCSS soils (“NCSS No Rock”), silage corn yield 

results closely matched other soils and average values clustered around the mean measured 

values (Figs. 6, S8). Compared to NCSS soils, NCSS No Rock blueberry crops saw no 

change in average yield nor interannual fit, while raspberry crops saw a slight improvement 

in both fit and average yield (Figs. 6, S8). 
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For all soils, fit for yield of all crops worsened in the validation period compared to 

the calibration period. In contrast to calibration results, for NCSS, SSURGO, and NTT 

Normal C soils, APEX failed to capture year-to-year variation in blueberry and raspberry 

yields during validation (NSE< 0, m ≠ 1; Figs. 7, S9). Average yields, compared to observed 

data, increased slightly for raspberry crops in validation compared to calibration, indicating a 

minor increase in model over-prediction for all soils. Additionally, model fit of both 

raspberry and blueberry yields decreased compared to observed data for all soil types (Figs. 

6-7, S8-9). This pattern persisted for silage corn, which saw a decrease in model fit along 

with only slight changes in average yields compared to observed data from calibration to 

validation (Figs. 6-7, S8-S9). 

 I could not calculate NSE and PBIAS statistics for orchard grass hay yields since 

only two years of county-level data existed for the calibration and validation period. APEX-

predicted yields were lower than county averages for all three soils, but within ~20% (Table 

3). As with the actual county data, APEX estimated higher yields for 2002 than 2007 for all 

five soil data sets.      
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Figure 6. Linear regressions of predicted (APEX generated) versus observed yields for three 

major crops in the North Kamm Creek Watershed during the calibration period for NCSS 

(a,b,c), SSURGO (d,e,f), and NTT (g,h,i) soils. The black line indicates a 1:1 line, the black 

dashed line indicates a linear regression line through the simulated points, and the black 

dotted lines indicate 95% confidence intervals. ^Indicates a significant linear regression 

(p<0.05). # Indicates a significant regression with a slope (m) not statistically different from l 

(p>0.05). *Indicates a “satisfactory” fit for PBIAS as determined by Wang and others (2012). 
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Figure 7.  Linear regression plots of predicted (APEX generated) vs observed yields for 

three major crops in the north Kamm Creek watershed during the validation period for NCSS 

(a,b,c), SSURGO (d,e,f), and NTT (g,h,i) soils. Lines and symbols as in Fig. 6.   
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Table 3. Orchard grass hay yields (dry kg/ha) compared to county averages for each soil run. 

Numbers in parentheses are percent differences from Whatcom County reported yields 

(USDA-NASS, 2014). 

Year Whatcom 

County 

NCSS SSURGO NTT  NTT     

Normal C 

NCSS No 

Rock 

2002 11.9 9.6 (19%) 9.8 (18%) 9.5 (20%) 9.8 (18%) 9.6 (19%) 

2007 13.0 10.6 (18%) 10.9 (16%) 10.3 (21%) 10.8 (17%) 10.6 (18%) 
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DISCUSSION 

 

Overview 

Several studies have used APEX to model BMP performance in single fields (Plotkin 

et al., 2013;  Wang et al., 2008;  Williams et al., 2006;  Yin et al., 2009;  Mudgal et al., 

2010), and large watersheds, ranging up to the regional scale for the national CEAP report 

(Santhi et al., 2014;  Tuppad et al., 2010;  Wang et al., 2014;  Williams et al., 2010), but few 

exist at the sub-watershed scale, which is critical to assess the conservation value of BMPs 

(Strauss et al., 2007). For example, successful nutrient trading requires involvement of 

multiple stakeholders within the same watershed, allowing in-kind payments from polluters 

to landowners that establish BMPs to reduce overall pollutant export from that watershed 

(Greenhalgh & Selman, 2012). Thus, predicting benefits of various BMPs with a properly 

validated APEX model on the sub-watershed scale shows promise for nutrient credit 

calculation, which is an overarching goal of the national CEAP program (Santhi et al., 2014;  

USDA, 2014;  Williams et al., 2010). The results of this study will inform future use of the 

APEX model in Whatcom County, the Pacific Northwest, and nationally, to simulate 

sediment and nutrient dynamics. Four general findings emerged from this study.  First, soil 

played a more important role in model fit for crop yield than for hydrology. Second, 

validation of two perennial shrubs, blueberry and raspberry was limited by the APEX’s 

ability to simulate shrub growth and development. Third, crop yield is sensitive to two 

critical soil parameters: percent organic carbon, and soil rock content. Finally, this study 

makes recommendations on data requirements and quality for future parameterization, 

calibration, and validation of the APEX model. 
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Hydrology 

Overall, all soil data sets performed similarly in simulating hydrology in APEX when 

compared to TOPNET data. Statistically, all soil scenarios calibrated and validated surface 

runoff and calibrated streamflow satisfactorily to very well, depending on soil data set. All 

soils exaggerated seasonal variation in streamflow during validation due to overprediction of 

high flows and underprediction of low flows, but average predicted streamflow values were 

reasonably close to TOPNET values (Figs. 5, S7). The tendency of APEX to overestimate 

and underestimate streamflow and runoff in extreme wet and dry events is documented in the 

literature and may also pose a problem when applying the model to nutrient and sediment 

data (Ford et al., 2015;  Kumar et al., 2010;  Plotkin et al., 2013;  Wang et al., 2014). Runoff 

was a major contributor to streamflow in my watershed, accounting for around half of 

streamflow annually (Table S1). Predominance of runoff was most pronounced during 

winter, when Whatcom County receives most of its precipitation. Runoff is a major 

contributor to soil erosion and nutrient loss in agricultural watersheds, so accurately 

simulating it is an important first step to future modelling efforts focused on sediment and 

nutrient simulations (Brooks et al., 2015). For all soils in both calibration and validation, 

however, APEX consistently attributed less streamflow to runoff (as a percentage) than did 

the TOPNET model (Table S1). Overestimates in runoff would cause overestimation of 

erosion and nutrient loss in winter when fields are bare and susceptible to erosion, while 

underestimates may fail to generate erosion and nutrient loss in summer, particularly in the 

shoulder months (April-June, September; Wang, Kemanian & Williams, 2011). 

After autocalibration, all soil scenarios had the same set of optimal parameters, but 

SSURGO soils showed the best model fit to TOPNET data, especially during validation, 
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where SSURGO had a good fit with monthly trends in runoff (Table S2). Any slight 

differences in model fit among soil datasets for hydrology were likely from differences in 

soil bulk density, texture, and rock content, as these differed throughout data sources. For 

example, percent silt content and bulk density of the top layer of Kickerville silt loam ranged 

from 55 to 68% and 1.0 to 1.15 Mg/m3 for SSURGO and NCSS soils, respectively.  

Differences among soils in layer number and depth of layers were probably less important, 

because the APEX model automatically splits soil layers up to more accurately model water 

percolation and nutrient availability to plant roots (Williams, Izaurralde & Steglich, 2012). 

 I found differences between model fit in the calibration and validation periods for all 

five soil types. APEX predictions for watershed hydrology showed better fit during 

calibration than validation (Figs. 4-5, S6- S7). This result was not unexpected, and was found 

in other APEX modelling studies (Gitau, Veith & Gburek, 2004;  Wang, Kemanian & 

Williams, 2011;  Wang et al., 2012;  Yin et al., 2009). In a study using the APEX-CUTE 

autocalibration tool to calibrate and validate streamflow in a large watershed in Inner 

Mongolia, China, researchers attributed decreased model fit during validation to climactic 

differences between the calibration and validation period (Wang et al., 2014). Specifically, 

the authors found that precipitation during the validation period was much lower than in 

calibration, limiting the model’s ability to simulate low-flow events (Wang et al., 2014). In 

my study, average annual precipitation was 10% lower during the validation period than in 

calibration, which may have contributed to decreased model fit (Moriasi et al., 2007). In 

particular, average July and August precipitation were 68% and 21% lower, respectively, 

during validation than during calibration. (Figs. 6, S1-S4).  
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APEX model fit was poorer for streamflow than runoff for all soils in both calibration 

and validation (Figs. 4-5, S6-S7). Finding weaker fits for streamflow than runoff was not 

surprising, as streamflow is a complex process that involves soil storage of water, infiltration 

to groundwater, lateral subsurface flow, and return flow to streams from groundwater 

(Gassman et al., 2010;  Williams, Izaurralde & Steglich, 2012). In a study calibrating APEX 

simultaneously for surface runoff and subsurface lateral flow investigating CEAP BMP 

application, Plotkin and others (2013) found very good fit for surface runoff (NSE=0.80), but 

poor fit for subsurface lateral flow (NSE=0.16). The similarly weaker fit in streamflow may 

also indicate that APEX parameters governing soil moisture and groundwater storage did not 

mirror conditions in the TOPNET model.  

Lack of availability of directly-measured hydrologic data in the northern Kamm 

Creek watershed was a source of uncertainty for this project. While the TOPNET model 

allowed for continuous monthly calibration and validation of both runoff and streamflow in 

the North Kamm Creek watershed, these data are also modeled estimates. TOPNET 

streamflow was calibrated and validated against real-world streamflow data at several USGS 

and WA DoE gauging stations in Whatcom County, including some on the mainstem of the 

Nooksack River, to which Kamm Creek is a tributary. None of those gauges, however, lay on 

Kamm Creek itself (Tarboton, 2007). Furthermore, surface runoff data were not calibrated in 

TOPNET (Tarboton, 2007). Both gauges on the Nooksack River downstream of Kamm 

Creek were satisfactorily calibrated for streamflow (with less than a 5% deviation from 

observed data), however, these gauges served a much larger catchment area than that of the 

northern Kamm Creek watershed. Tarbaton (2007) also calibrated TOPNET at several 

gauging sites along creeks serving much smaller watersheds, including Fishtrap Creek, a 
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watershed with similar land use to Kamm. TOPNET modeled flow was consistently 1.5 

times higher than measured flow at a gauging station on Fishtrap Creek near Lynden, WA. 

Such an overestimate of TOPNET data in Kamm Creek would indicate that overestimates by 

the APEX model during high flow events were even more severe when compared to 

measured flows. Unlike APEX, TOPNET data did not appear to underestimate flow during 

low-precipitation events on Fishtrap Creek. Future research will evaluate the accuracy of 

APEX-simulated hydrology in the northern Kamm Creek watershed by comparing APEX 

outputs against measured flows.   

Using appropriate soils data is essential to modelling with APEX on any scale. APEX 

modelling efforts on the single-field scale often include collecting soil samples and 

calculating physical soil properties in a lab (Kumar et al., 2010;  Plotkin et al., 2013). 

However, in large watersheds with several different soil types, this is impractical. Most 

APEX modelling studies recommend using data from publicly available sources (Ford et al., 

2015;  Wang, Kemanian & Williams, 2011;  Francesconi et al., 2014). In using APEX to 

model several contiguous ~10 ha watersheds to evaluate effectiveness of riparian buffers, Qiu 

and others (2002) obtained soils data from the SSURGO database. Another more recent study 

used SSURGO soils data in an APEX modelling effort to evaluate nutrient and sediment 

retention by various BMPs in several watersheds ranging from 3,426 to 14,082 ha (Tuppad et 

al., 2010). SSURGO data had the best fits for hydrology and crop growth in this study, were 

publically available, and are supported nationally, making this data set a good choice for 

APEX projects moving forward. Locally, land managers in Whatcom County mentioned 

SSURGO as a preferred source of soil data (Heather MacKay, FHB Consulting, pers. 

comm.). 
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Crops 

 In contrast to hydrology, soil type was a major factor in simulating crop growth. 

Causes of this variation depended on the soil data source and the crop of interest. For both 

berry crops, yields were close to expected average yields during the calibration and 

validation periods for all soils except NTT, however, yearly variation in berry yields was not 

captured during the validation period (Figs. 6,7). For silage corn, yield fit also differed 

among soil types during calibration and validation. For berries, NTT soils lacked sufficient 

organic carbon content for proper berry growth. Organic carbon percentage determines N and 

P availability to crops in APEX (Williams, Izaurralde & Steglich, 2012), and values as low as 

0% (in the top two soil layers of Whatcom and Kickerville silt loam) caused both berry crops 

to exhibit stunted growth due to N and P stress. Organic carbon percentage values of 

SSURGO and NCSS are more consistent with published data for Whatcom County (Goldin, 

1992). For silage corn, yield fit also differed among soil types during calibration and 

validation. While average corn silage yields were within 10% of county-wide yield data, 

simulated yields did not reflect year-to-year variation in observed yield (NSE<0; Figs. 6,7). 

Both measured and modelled silage corn yields showed little year-to-year variation for all 

soils. For modeling, this pattern may result from having fixed annual planting, harvesting, 

and fertilizer timing. Realistically, this management would vary considerably from year to 

year and from field to field (Chuck Timblin, WCD pers. comm.). NCSS soils with percent 

rock data had particularly low yields (Figs. 6,7). Interestingly, this percent rock data did not 

affect blueberry, raspberry, or orchard grass growth, likely because these perennial crops 

have higher root strength than does silage corn, an annual with growth limited by soil density 

(Cresswell & Kirkegaard, 1995;  Laboski et al., 1998). In a sensitivity analysis of the APEX 
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model for the national CEAP report, modelled corn, soybean, and winter wheat yield were 

especially sensitive to the “root growth soil strength” parameter that can cause crop growth 

stress in compact soils (Wang et al., 2006b), similar to the pattern with saw with high rock 

content. Alternatively, soils with high rock content in the northern Kamm Creek watershed 

may benefit crop yields, as soils such as Kickerville silt loam and Whatcom silt loam have a 

gravel layer subtending their loamy surface, allowing the soils to drain well while retaining 

moisture effectively in surface layers (Chuck Timblin, WCD pers. comm.).  

This study was the first to calibrate and validate yields for blueberry and raspberry 

crops, so modelling these unique crops presented some challenges. Unfortunately, no 

literature calibrating yields from fruit bearing shrubs with APEX exists. My inability to 

predict the full range of variation in yields for blueberry and raspberry crops likely stemmed 

from two main issues (Fig. 7). First, to simulate crop growth, APEX does not incorporate 

plant storage: the LAI development curve assumes all biomass accumulation (including fruit 

production) from a certain year comes entirely from photosynthesis in leaves from that same 

year (Williams, Izaurralde & Steglich, 2012). In both blueberry and raspberries, however, 

buds develop during the growing season before fruiting, indicating that photosynthesis in the 

previous year is storing energy to allow next year’s fruit development (Hart, Strik & Rempel, 

2006;  Pritts & Hancock, 1985). The inability of APEX to model this type of fruit 

development likely affected my ability to capture yearly variation in yields for both blueberry 

and raspberry. Second, like with silage corn, my berry management regime assumed identical 

timing of planting, pruning, harvesting, and fertilizing each year for both blueberry and 

raspberry. Field and year specific yield calibration and management data would likely 

improve year to year model fit for berry yield.   
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Literature documenting APEX model fit for crop yield is sparse and generally focuses 

only on major crops such as corn (non-silage), soybeans, and wheat (Gassman et al., 2010). 

Statistical analyses in these studies are limited to basic comparisons of percent error and 

PBIAS, often finding yields within 10% of observed values (Harman, Wang & Williams, 

2004;  Wang et al., 2006a;  Wang et al., 2008). A recent study applying APEX to two small 

(~2 ha) watersheds in the Midwest found good fit for corn yield, but overestimated soybean 

yield by 60-70%; less accurate than my model fit with SSURGO soils for all crops 

(Francesconi et al., 2014). One paper using the SWAT model, a similar model to APEX that 

is applied to whole watersheds, did calculate NSE as a goodness-of-fit statistic for corn, 

soybean, and winter wheat, and found model fit for all three crops (NSE: 0.5-0.7) comparable 

to my yield calibration results for blueberry and raspberry with all soils except NTT (Nair et 

al., 2011). Overall, calibration of silage corn along with two new crops in this APEX 

watershed was well in line with reported ranges in the literature, but fit for validation was 

worse.  

For all crops, additional issues affecting yield calibration and validation arose. First, 

yield statistics were based on annual data, thus there were fewer points contributing to NSE 

and PBIAS statistics than with monthly hydrology. Because of this, a single year where 

predicted yield differs highly from observed yield has the ability to skew goodness of fit 

statistics in either calibration or validation. Furthermore, NSE delivers higher scores in 

scenarios where observed values vary widely, so crops that have little variability in observed 

yields over the calibration and validation periods would deliver low NSE scores unless 

modelled values were very close to observed values (Krause, Boyle & Bäse, 2005). Since 

NSE measures the squared differences between observed and predicted values, the statistic 
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will exaggerate differences between crops with higher yields (silage corn) compared to crops 

with lower yields if variance is proportional to the mean (blueberry and raspberry; Krause, 

Boyle & Bäse, 2005).  Additionally, for both blueberry and raspberry crops, half of the 

observed calibration and validation points were estimated based on state to county 

regressions. Any instance where state yields are decoupled with Whatcom County yields 

could skew my calibration data and affect results. This was especially possible for 

blueberries, which had a weaker state-to-county correlation than did raspberry. Much of the 

state raspberry crop, on the other hand, comes from Whatcom County. More detailed county 

or farm-scale yield data would improve this fit analysis. Finally, all yield calibration and 

validation data were taken from county-wide averages, which may not be representative of 

crop yields in the northern Kamm Creek watershed. This watershed contains some soils that 

are poorly drained and less suitable for corn silage growth, which could have driven modeled 

yields below county averages (Chuck Timblin, WCD pers. comm.). Future success in 

calibrating crop yields with APEX would benefit from a long time period of accurate, site-

specific management and crop yield data.  

 

Recommendations 

 The results of this study informed specific recommendations on future use of APEX 

in Whatcom County and elsewhere. First, I recommend using SSURGO soil data, as data 

were easily accessible and produced the closest model fit for both hydrology and crop yield. 

When examining soil data, modelers should pay special attention to percent carbon and 

percent rock content, as these soil parameters were critical to crop growth and yield. Second, 

to improve APEX simulation of perennial shrubs like blueberry and raspberry, the model 

must account for energy storage from the previous year to determine the next year’s yield. 
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Improving how APEX simulates perennial shrubs also has implications for simulating 

forested riparian buffers, as these consist mainly of trees and shrubs. 

More generally, all future APEX modelling projects should prioritize data quality for 

parameterization, calibration, and validation. This project by necessity relied on TOPNET-

simulated calibration and validation data, so assumptions on model closeness of fit were not 

based on direct measurements. I recommend that future APEX modelling efforts use actual 

measured streamflow (and runoff, if possible) on the daily or monthly timestep. Furthermore, 

because I calibrated watershed hydrology on a monthly time scale, the model should not be 

used to infer daily or weekly trends in runoff or streamflow (Sudheer et al., 2007). Also, to 

improve water balance simulation, I recommend measuring water table depth and/or potential 

evapotranspiration, which both can be calibrated in the APEX model (Cavero et al., 2012;  

Wang et al., 2014;  Williams et al., 2013). Calibrating and validating the APEX model for 

crop yield is essential, as crop evapotranspiration and plant interception of moisture are 

critical elements of watershed hydrology (Nair et al., 2011).  To parameterize APEX with 

field-specific management data and calibrate against field specific yield data, I recommend 

working with farmers through conservation district liaisons. I inferred agricultural 

management data from state and county recommendations, which may not accurately reflect 

management practices in my watershed. While I expect farm management and crop yield to 

vary from field to field and year to year, my simulated management regimes were constant 

through time for each crop type. Time of planting, fertilizer types, amounts, irrigation, and 

soil tillage are all aspects of farm management that will vary. These aspects have an 

important effect on watershed hydrology and crop yields. Moving forward, they are even 

more critical when examining soil erosion and nutrient loss (Moriasi et al., 2014;  Wang, 
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Kemanian & Williams, 2011). Determining the farm management aspects to which APEX 

outputs for hydrology, crop yield, and nutrients are most sensitive is critical for future model 

applications.  

To use APEX results to support farm management and conservation decisions, all 

stakeholders involved must have confidence in the model. APEX simulation accuracy 

depends on a partnership between scientists and farmers to accurately simulate complex farm 

management processes (Moriasi et al., 2014). After watershed hydrology, sediment 

dynamics, and nutrient cycling are satisfactorily validated, managers can use the model to 

simulate potential effectiveness of various BMPs. Use of a properly validated APEX 

watershed can lead to accurate accounting of nutrient savings from BMPs, allowing land 

managers to cost-effectively prioritize BMP type and placement to reduce nonpoint source 

pollution.  
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SUPPLEMENTARY DATA 

 

 

 

 
Figure S 1 

 

Figure S1. (A) Schematic of LAI sampling for blueberry and raspberry fields. Each transect (red) was sampled seven times using the 

ceptometer (purple) to capture LAI of the plants and spaces between rows. (B) Measuring light interception beneath a blueberry 

(Vaccinium corymbosum, Duke variety) canopy in April, 2015 to develop growth curves of leaf area index, the fundamental parameter 

APEX uses to simulate plant growth rate. 
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Figure S 2 

Figure S2. Predicted (APEX generated) vs observed (TOPNET generated) monthly surface 

runoff (a) and streamflow (b) during the calibration (1995-2004) and validation (2005-2010) 

periods for NCSS soils. Lines and symbols as in Fig. 3.  

  



 
 

62 

 

 
Figure S 3 

Figure S3. Predicted (APEX generated) vs observed (TOPNET generated) monthly surface 

runoff (a) and streamflow (b) during the calibration (1995-2004) and validation (2005-2010) 

periods for NTT soils. Lines and symbols as in Fig. 3. 
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Figure S 4 

 Figure S4. Predicted (APEX generated) vs observed (TOPNET generated) monthly surface 

runoff (a) and streamflow (b) during the calibration (1995-2004) and validation (2005-2010) 

periods for NTT Normal C soils. Lines and symbols as in Fig. 3. 
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Figure S 5 

Figure S5. Predicted (APEX generated) vs observed (TOPNET generated) monthly surface 

runoff (a) and streamflow (b) during the calibration (1995-2004) and validation (2005-2010) 

periods for NCSS No Rock soils. Lines and symbols as in Fig. 3. 
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Figure S 6 

Figure S6. Linear regressions of predicted (APEX generated) vs observed (TOPNET generated) 

monthly surface runoff and streamflow for the North Kamm Creek Watershed during the 

calibration period (1995-2004) for NTT Normal C (a,b) and NCSS No Rock (c, d) soils. Lines 

and symbols as in Fig. 4. 
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Figure S 7 

Figure S7. Linear regressions of predicted (APEX generated) vs observed (TOPNET generated) 

monthly surface runoff and streamflow for the North Kamm Creek Watershed during the 

validation period (2005-2009) for NTT Normal C (a,b) and NCSS No Rock (b,c) soils. Lines and 

symbols as in Fig. 4. 
 

 

 

 

 

 

 

 



 
 

67 

 

 

 
 

 
Figure S 8 

Figure S8. Linear regressions of predicted (APEX generated) vs observed yields for three major 

crops in the North Kamm Creek Watershed during the calibration period for NTT Normal C 

(a,b,c) and NCSS NO Rock (d,e,f) soils. Lines and symbols as in Fig. 6.  
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Figure S 9 

Figure S9. Linear regressions of predicted (APEX generated) vs observed yields for three major 

crops in the North Kamm Creek Watershed during the validation period for NTT Normal C 

(a,b,c) and NCSS No Rock (d, e, f) soils. Lines and symbols as in Fig. 6.  
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Table S1. Percent streamflow derived from surface runoff for model calibration (1995-2004) and validation (2005-2009) periods. 

“Summer” covers April through September while “Winter” covers October through March. ± Values are standard deviations. 

“Observed” data were generated by the TOPNET model.  
 
Table S 1 

Soil Type: Observed SSURGO NCSS NTT NTT Normal C NCSS No Rock 

Overall Calibration 61 ±19 50 ±24 50 ±24 51 ±23 49 ±24 50 ±24 

Overall Validation 60 ±19 51 ±27 53 ±27 52 ±27 52 ±27 52 ±27 

Summer Calibration 47 ±14 35 ±22 36 ±22 36 ±21 34 ±21 36 ±22 

Winter Calibration 75 ±11 66 ±16 65 ±15 66 ±15 65 ±15 65 ±16 

Summer Validation 45 ±13 34 ±27 35 ±26 35 ±26 34 ±26 35 ±27 

Winter Validation 75 ±11 68 ±13 70 ±12 69 ±13 69 ±13 69 ±13 
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Table S2. APEX Parameter choices, defaults, ranges, and descriptions for runoff and 

streamflow autocalibration with APEX-CUTE. I determined optimal parameter values by 

evaluating the best combinations of PBIAS and NSE after 250 runs. All soil types had the 

same set of optimal parameters. “n/a” indicates a unitless parameter. Adopted from Wang 

and Jeong (2015).  
  
Table S 2 

APEX 

Parameter 

Default Minimum Maximum Optimal Units Description 

RFTO 10 0 50 48 days Groundwater residence time 

RFPO 0.95 0.05 0.98 0.44 n/a Return flow ratio: (return flow)/ 

(return flow+ deep percolation) 

PARM17 0.1 0 0.5 0.207 n/a Evaporation plant cover factor 

PARM20 0.2 0.05 0.4 0.202 n/a Runoff curve number initial 

abstraction 

PARM23 0.0032 0.0023 0.0032 0.003 n/a Hargreaves equation coefficient 

PARM34 0.6 0.5 0.6 0.532 n/a Hargreaves equation exponent 

PARM40 0.001 0.001 1 0.092 n/a Groundwater storage threshold: 

fraction of groundwater storage 

that initiates return flow 

PARM42 0.5 0.3 2.5 2.239 n/a Curve Number index coefficient 

PARM46 0.5 0.5 1.5 1.124 n/a RUSLE c factor coefficient in 

exponential crop height function 

in biomass factor 

PARM49 0 0 15 13.774 mm Maximum rainfall interception 

by plant canopy (mm) 

PARM92 1 0.1 2 0.283 n/a Curve number retention 

parameter coefficient  
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Table S3. Linear regression results of predicted (APEX generated) vs observed (TOPNET 

generated) hydrology and yield for all soils. Slope values are ± standard error. ^Indicates a 

significant regression (p<0.05). # Indicates a significant regression with a slope (m) not 

statistically different from l (p>0.05).  

 

    Calibration                                Validation  

Table S 3 

 R2 Slope R2 Slope 

Hydrology 

     

    

SSURGO streamflow 0.86^ 1.2 ± 0.05 0.94^ 1.62 ± 0.05 

SSURGO runoff 0.92^ 1.14 ± 0.03 0.93^ 1.41 ± 0.05 

NCSS streamflow 0.85^ 1.22 ± 0.05 0.94^ 1.71 ± 0.06 

NCSS Runoff 0.91^ 1.15 ± 0.03 0.93^ 1.53 ± 0.06 

NTT streamflow 0.85^ 1.22 ± 0.05 0.94^ 1.7 ± 0.06 

NTT runoff 0.91^ 1.17 ± 0.03 0.93^ 1.51 ± 0.05 

NTT Normal C streamflow 0.85^ 1.21 ± 0.05 0.94^ 1.69 ± 0.06 

NTT Normal C runoff 0.91^ 1.14 ± 0.03 0.93^ 1.5 ± 0.05 

NCSS No Rock streamflow 0.85^ 1.21 ± 0.05 0.94^ 1.71 ± 0.06 

NCSS No Rock runoff 0.92^ 1.14 ± 0.03 0.93^ 1.52 ± 0.05 

 

Crop Yield   

  

       

SSURGO raspberry 0.82^ 1.03 ± 0.2# 0.03 -0.18 ± 0.48 

SSURGO blueberry 0.58^ 0.28 ± 0.1 0.14 -0.14 ± 0.15 

SSURGO silage corn 0.00 0.04 ± 0.67 0.01 0.27 ± 1.23 

NCSS raspberry 0.69^ 0.98 ± 0.27# 0.03 -0.22 ± 0.51 

NCSS Blueberry 0.59^ 0.29 ± 0.1 0.11 -0.12 ± 0.15 

NCSS Silage corn 0.10 0.77 ± 1.03 0.09 0.77 ± 1.11 

NTT raspberry 0.18 0.17 ± 0.15 0.07 0.23 ± 0.38 

NTT blueberry 0.64^ -0.11 ± 0.03 0.00 -0.02 ± 0.12 

NTT silage corn 0.02 -0.21 ± 0.69 0.04 0.49 ± 1.03 

NTT Normal C Raspberry 0.77^ 1.06 ± 0.23# 0.03 -0.19 ± 0.51 

NTT Normal C blueberry 0.59^ 0.28 ± 0.1 0.11 -0.12 ± 0.15 

NTT Normal C silage corn 0.00 0.09 ± 0.78 0.06 0.66 ± 1.2 

NCSS No Rock raspberry 0.70^ 0.94 ± 0.25# 0.03 -0.19 ± 0.51 

NCSS No Rock blueberry 0.59^ 0.29 ± 0.1 0.11 -0.12 ± 0.15 

NCSS No Rock silage corn 0.01 0.12 ± 0.71 0.03 0.45 ± 1.07 
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