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Abstract 

Currently there is no comprehensive source of community resilience data. Geographic data 

is collected by multiple agents and stored using different schemas. In most cases the schemas that 

store the data do not relate them to concepts of community resilience, or the disasters the data 

could be associated with. So this begs the question, how can decentralized geographic data be 

leveraged to facilitate data-driven decision-making about community disaster resilience? This 

question was answered by completing three related objectives. First a data aggregation was 

performed, second a schema was created to organize data with respect to components of disaster 

resilience, and third a data system called WISCkey was developed for storing, managing, and 

disseminating data over the web. 

A data aggregation was performed for two case studies and was developed specifically for 

the variety of data related to disaster recovery. Subsequently, a schema was developed to organize 

aggregated data based on attributes of resilience and aggregation outcomes. Technical 

infrastructure was selected and configured to store, manage and disseminate the organized data. 

The result of this research is a web-based application called WISCkey. WISCkey was built 

using MongoDB, Python, and Bottle and organizes aggregated data. It was developed to store, 

mange, disseminate, and provide the means to centralize a variety of resilience data. Ultimately 

these completed objectives permit applying community resilience theory to facilitate data-driven 

decision-making, and research, in a user friendly way.   
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Chapter 1: Introduction 

1.1 Problem Overview 

Data-driven decision-making (DDDM) has the potential to assist communities to improve 

their resilience to disasters, minimize losses and facilitate effective recovery. Currently there is no 

systematic way, or comprehensive source, for finding data to drive management decisions toward 

community resilience (Chang 2009; Beran et al. 2008). Recent literature has suggested the need for 

systems to better manage resilience data (Chang 2009; Huggins 2007; Pradhan 2007; Cutter 2003; 

Zhang, Zhou, and Nunamaker 2002). It is important to measure and evaluate disaster resilience to 

understand what went wrong, what went right, and how to evolve practices of improving resilience 

for future disasters.  

A resilient community is one that either does not experience degradation to critical services, 

or recovers them to similar or better levels in a reasonable time (S. Miles and Chang 2011). In 

essence, community disaster resilience is the combination of loss and recovery from a stress event 

within a community. Unless explicitly stated otherwise, the word resilience is used synonymously in 

this thesis with community disaster resilience.  

No organization is specifically mandated with storing, managing, and disseminating 

resilience data. Currently, most data associated with disaster resilience are stored and managed by 

the organizations that captured or commissioned those data. The decentralized storage of data 

within individual organizations creates a problem of knowing what each organization has and how 

to obtain it. The problem of decentralization makes it cumbersome to use data for decision making 

and research. Complications for transferring resilience data between the various organizations 
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arise because each has a different method of capturing and storing those data. Also, there are 

critical technical challenges which include proprietary, standalone, and segregated disaster 

management systems (Pradhan 2007; Voigt 1998). 

Resilience data can vary greatly in content type, timely availability, and relative usefulness. 

The spatiotemporal resolution of data needed for monitoring resilience varies greatly based on both 

the size and intensity of a stress event. Data gathered and used towards DDDM is currently 

organized based on explicit traits, such as if it pertains to economics, transportation, demographics, 

etc. Such obvious representations leave less explicit resilience attributes of the data to be filled in ad 

hoc by managers and researchers of community resilience theory.  

Disciplines such as communications and medicine use schemas to organize data based on 

relationships to illustrate what concepts are relevant to one another (F. Ye et al. 2005; Poser et al. 

1983). A useful data schema which displays relationships between data does not currently exist in 

the study of community resilience. Establishing relationships between resilience data is a necessary 

first step to measure, evaluate, and research disaster resilience to inform decision making. A 

theoretical framework for disaster resilience provides the conceptual structure needed to create a 

functional schema. Such a schema would organize, manage, analyze and synthesize loss and 

recovery data in a systematic and meaningful way.  

Some work has been completed to consolidate and organize resilience data. However, data 

consolidation efforts have largely been associated with the loss portion of resilience data, and not 

the recovery portion (National Research Council 1999). This unbalanced focus means that only a 

partial understanding of resilience is possible with these systems and respective data. According to 

Chang (2009), recovery is often cited as the least understood aspect of disasters. It is symptomatic 

that no comprehensive disaster resilience database of multiple disasters exists. Furthermore, several 
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researchers have declared a need for a comprehensive source of disaster recovery data (Pradhan 

2007; Chang 2009; S. Cutter 2003). Because recovery is a large portion of resilience, and is the least 

understood phase of the disaster cycle, more work needs to be completed toward its 

understanding. This thesis focuses on the recovery side of resilience data rather than loss.  

1.2 Research Question and Objectives 

The research presented here seeks to fill in gaps related to work on resilience data systems. 

Specifically, the research is guided by the following question: 

How can decentralized geographic data be leveraged to facilitate data-driven decision-

making about community disaster resilience? 

This is important because as researchers and managers attempt to leverage the concepts of 

resilience in their work, they must be able to find data to support this work. The goal of this research 

was to develop a schema for organizing, and develop methods for managing resilience data. This 

goal was accomplished through a series of related objectives. The objectives of this thesis focus on 

stages of aggregation, organization, storage, management, and dissemination from the lifespan of 

data as shown in Figure 1. Ultimately, by focusing on these middle stages, the results from these 

objectives will facilitate the movement of data from capture to the final stages of analyzing, 

visualizing, and deciding.  

• First, a data aggregation was performed on decentralized resilience data at multiple spatial 

and temporal scales for two case studies.  

• Second, a schema was created to organize data with respect to components of disaster 

resilience.  
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• Third, a data system called WISCkey was developed which implements the schema for 

storing, managing, and disseminating disaster resilience data. 

The case studies chosen were Hurricane Katrina, which occurred in 2005, and the 2007 

Lewis county floods. These events were chosen because they offer a spectrum of size, scale, and 

impacts. Through the aggregation of important resilience data for each case study, it became 

apparent what organizations hold data at federal, state, or local levels, as well as how best to access 

them. By using the data aggregated from the case studies as exemplars, a schema for representing 

data by resilient attributes was created. The data schema was then applied to develop a prototype 

application called WISCkey that stores, manages, and disseminates data using concepts of resilience. 

1.3 Thesis Organization 

The second chapter presents a literature review related to representing community 

resilience both conceptually and technically. The literature review provides a justification from 

previous research for the methods and general framework. Chapter three provides details on the 

case studies, presents the readily available data found, and explains the methods used to complete 

the research objectives. Chapter four answers the research question, focuses on the analysis, and 

addresses any errors that may have occurred. Chapter five provides a discussion that synthesizes 

insights gained from schema and data system development. In addition, the final chapter makes 

recommendations for future work given the utility and limitations of the research. 
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Chapter 2: Literature Review 

2.1 Literature Overview 

The growing complexity of community problems, such as improving resilience, requires 

knowledge, situational awareness, and more comprehensive designs for managing human activities 

(Dangermond 2007). A review of work meant to alleviate decentralization of data needs to be 

performed to evaluate current methods of storage, and understand ways to improve these 

methods. Part of this review involves understanding what attributes of the data need to be 

represented to inform decisions and research related to resilience. This understanding can be 

achieved by examining the data lifespan, which is the flow of data through time, from creation up 

until the point of informing management and research. 

2.2 Community Disaster Resilience Data Lifespan   

There are different systematic processes for applying data toward problem solving and 

decision making. This systematic process can be represented as a data lifespan with reasonably well-

defined steps (Provost and Fawcett 2013). Acting (e.g., about policy) based on data is known as 

data-driven decision-making and is an ideal culmination of transforming data into information 

(Datnow and Park 2014). In order to understand how data transforms into information, a synthesis 

of relevant literature is prudent.   

Zhang et al. 2002 states that in order to respond to a disaster quickly with management 

decisions, humanitarians need to collect, analyze, sort, and communicate.  Huggins (2007) describes 

this process as Geoinformatics. By applying Geoinformatics, the turning of spatial data into spatial 

information by acquiring, processing, management, analysis, and visualization of data is possible. 

Maceachren et al. (1999) states how the steps of turning data into information are not linear. 
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Geoinformatics is an iterative process with feedback loops because data, and the patterns of 

interest in that data, are not fully known prior to being transformed to relevant information  

(Frawley, Piatetsky_Shapiro, and Matheus 1992; Maceachren et al. 1999). Maceachren et al. (1999) 

states that the transition of data into information follows iterative steps. These steps are data 

selection, preprocessing, transformation, data mining, and interpretation. Another systematic way 

of understanding the use of data through spatial problem solving is known as the Geographic 

Approach (Artz 2008).  

The five steps in the Geographic Approach are ask, acquire, examine, analyze, and act (Artz 

2008). The step ask frames the problem geographically (Artz 2008). For resilience data, the event 

itself provides the location and the problem for which data is required. In order to ask questions 

about a problem associated with a disaster recovery, it makes sense that the disaster itself first 

needs to occur. Once the problem is framed, determining what data is needed to answer the 

research question (Artz 2008). The step acquire either involves direct measurement or aggregating 

others’ direct measurements that have already been captured. Once acquired, data must be 

examined to determine if it is appropriate to solve the problem asked in the first place (Artz 2008). 

During the examine step, data is organized, stored, managed, and maybe even disseminated in 

order to facilitate data analysis. The step analyze is based on a set of methods chosen to solve the 

problem (Artz 2008). This is when data begins to take the form of information. The final step, act 

involves visualizing the results from the analysis to drive decisions (Artz 2008).  

For the complex task of facilitating data-driven decision making to improve resilience, the 

above literature can be synthesized to provide a more comprehensive representation of the data 

lifespan. Based on the literature, the data lifespan for this thesis is represented as ten stages, 

starting at creation and ending with informing decisions (Figure 1). A hazard event is the point at 
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which the resilience data lifespan beings. The subsequent stages are as follows: capture, aggregate, 

organize, store, manage, disseminate, analyze, visualize, and decide. Each stage is specifically 

defined in Figure 1. Data is analyzed and visualized to develop information in support of the last 

stage of decision making (Datnow and Park 2014; Wohlstetter, Datnow, and Park 2008; Voigt 1998). 

The lifespan of resilience data is linear in the sense that it moves from one start point and one 

endpoint, but is cyclical in the sense that certain stages can cause feedback loops with other stages 

within the lifespan (Maceachren et al. 1999). The overall flow of data to information, and the 

feedback loops that exist in the process, are represented by arrows in figure 1.  

The data lifespan stages in Figure 1 are used below to organize a review of relevant 

literature for this study. Capture examines the phases of a disaster and how these phases fit into 

loss and recovery. Aggregate examines the variety of data, the spatiotemporal variability that exists 

throughout the data, and how to systematically gather those data. Organize examines the resilience 

frameworks available to aid in creating a schema. Storage examines the technical systems available 

today in data storage. Management examines best practices and other managerial standards. 

Disseminate examines current storage, and management systems, that help users interact with the 

data. The stages of event, capture, analyze, visualize, and decide are out of the scope of this thesis 

and will not be discussed to provide context only.   
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Figure 1 – A conceptual model of the data lifespan to facilitate data-driven decision-making and 

research about community disaster resilience.   

2.3 Capture  

 Capturing refers to the act of recording measurable events and is most similar to half of the 

stage of acquire in the geographic approach and geoinformatics. The other half of the acquire stage 

in the geographic approach is the act of aggregating. The logic here is that to acquire data you must 

gather it yourself in the field (capture) or acquire it from someone that did (aggregate). While not 

the first stage of the data lifespan, the stage of capture is when resilience data enters the hands of 

researchers, whereas the stage event represents the conception itself of resilience data. The 
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product of the capture stage is raw data. Capturing of resilience data can theoretically occur 

continuously through all phases of disaster recovery. Different types and topics of data can be 

captured relative to various phases of disasters. 

  While there is no consensus in the literature on how to represent the post-disaster phases, 

they still help to understand what type of data is available when. Haas et al. (1977) proposed four 

disaster recovery phases: response, restoration, reconstruction, and commemorative 

reconstruction. Haas et al. (1977) also proposed that each phase is exponentially longer than the 

one before it. In reality, phases are not discrete and activities can blend between them (Rodrigue 

2011). So the phases of a disaster cannot necessarily be distinguished in the capturing of data. 

Cutter (2003) proposes that the post-disaster phases are rescue, relief, recovery, and 

reconstruction. The first two phases are focused on reducing loss and the latter two phases are 

focused on aiding recovery. These phases proposed by Cutter (2003) represent a cycle, not a linear 

path. Post-disaster activities oscillate between each phase, depending on attributes of the disaster, 

community, and length of time after the hazard event. As a disaster evolves, the amount of time 

spent in each disaster phase changes as well (Rodrigue 2011).  

2.4 Aggregate 

Aggregation refers to the collecting of items into an unorganized whole. As discussed above 

it is most similar to the stage of acquire in the geographic approach and geoinformatics. For data-

driven decision-making, the problem is less the capturing of data and more the aggregation of it. 

Organizations capture data for various reporting purposes, but that data may not be easily 

obtainable by decision makers and researchers (Simpson and Katirai 2006). Security and privacy 

issues can also hinder data access for aggregation purposes (Crittenden 2013; Mills et al. 2008). 

Another large issue affecting aggregation is proprietary concerns of data (Mills et al. 2008). 
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Aggregation of data can become expensive when proprietary data must be purchased. Bharosa et al 

(2010) suggests that organizations are more concerned with obtaining data from others rather than 

providing their own data. 

Pradhan (2007) argues that recovery is rarely integrated into disaster management systems.  

Even for one particular disaster, recovery data is typically decentralized and often not stored in any 

formal data system. This situation tends to necessitate a difficult process of aggregating relevant 

data for particular decisions or research objectives. To Pradhan (2007), what is needed is a 

standardized enterprise-level GIS for decision support related to disaster recovery. Standardization 

is ideal, but two factors make standardization complicated. First, the number of organizations 

involved between and within the stages of the data lifespan (Zhang, Zhou, and Nunamaker 2002; 

Zheng, Shen, and Tang 2012). Also, in non-disaster situations organizations tend to operate 

independently of one another (Bharosa, Lee, and Janssen 2010). Because of this independence, the 

second complication is that the various organizations use unique data standards that originate from 

many levels of interdependent socio-cultural decisions by organizations (Masten and Obradovic 

2008).  

Because of these complications, during a disaster situation the systems for data are often 

pieced together ad-hoc by the various organizations involved (Cutter 2003). An appropriate 

middleware technology could be applied to facilitate this transfer of data among organizations 

(Pradhan 2007). An example of middleware for data exchange is the Department of Homeland 

Security’s Unified Incident Command and Decision Support (UCIDS) (U.S Department of Homeland 

Security 2013). UCIDS is middleware that stakeholders can connect to their existing data 

infrastructure that allows them to expose certain data to other organizations. UCIDS is geared 

towards the response phase after a disaster, not longer-term recovery and research.  
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Bizer et al. (2009) developed a system and set of best practices called the Web of Data for 

connecting structured data. The Web of Data links data sources through unique resource identifiers. 

This minimizes issues of privacy and security by creating a virtual web of linked metadata rather 

than providing the actual data.  The Web of Data includes resource description frameworks which 

outline data and their sources.  While exposing the actual data would be ideal, the compounding 

issues of data volume, variety, privacy, and security make the use of metadata a useful way to aid 

aggregation of decentralized data across multiple sources and organizations. Such a metadata 

repository is a viable first step towards creating a centralized repository for resilience data (Beran et 

al. 2008). 

2.5 Organize 

A tight relationship exists between the stage of organize and aggregate. To aggregate data 

in a systematic way you need to do it in an organized way. To organize data it helps to catalog what 

criteria was used for aggregation. The issues of spatiotemporal variability, variety of data, and 

capturing organizations involved with aggregation carry a direct connection with organization. In 

particular, the spatiotemporal attributes of data are important for the organization, because it 

allows decision makers and researchers to make queries based on time and location. 

Geographic information is important for data-driven decision making. Chrisman (1996) 

breaks geographic information into three components: time, space, and attributes. Chrisman (1996) 

goes on to explain that in order to measure the change in one component the other 2 must be fixed. 

In order to understand the spatiotemporal challenges that exist for aggregation, the spatial 

resolution and temporal resolution must be examined (Peuquet and Duan 1995). To organize 

disaster resilience data the unit of analysis and the unit of observation both need to be defined. The 

unit of analysis is the larger phenomena that is being studied, and the unit of observation is the 
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scale at which the data was collected (Ye and Rey 2013). For example, it might be desired to 

research how an entire neighborhood is recovering after a disaster event, but the data observed is 

for each individual. In this case, the entire neighborhood would be the unit of analysis, but the 

individuals would be the unit of observation. In a way, the unit of analysis is the sum of the units of 

observations. Ye and Rey (2013) use the elements time, space, and attributes for the different units 

of analysis and uses local, meso, and global as the units of observation.  

The units of observation for spatiotemporal information are important to organize and 

structure data systems. However, to make data useful for decision-making and research, data 

should be organized in a way that is tied to the problem or decision domain. This requires a domain-

specific conceptual framework to determine what elements are relevant. Indicators are made up of 

metrics or measures derived from data (Freudenberg 2003). Indicators can be used to understand 

the spatio-temporal phenomenon of disaster loss and recovery through indirect measurement.  

Most conceptual frameworks in the disaster literature were developed to assist in 

identifying what indicators, metrics, and data are important for understanding the respective topic 

of disasters. Simpson and Katirai (2006) developed a framework for quantifying vulnerability to 

hazards. Cutter et al. (2003) uses an additive model to produce composite social vulnerability scores 

for specific regions. Brown et al. (2010) and Chang (2009) establish indicators for evaluating 

recovery from disasters. Miles and Chang (2011) and Cutter et al. (2010a) propose separate 

frameworks for comprehensively representing resilience.  

 For organizing resilience data, it is important to examine the literature surrounding different 

conceptual frameworks of community resilience. A composite framework will provide a functional 

set of indicators and metrics to organize disaster resilience data. The frameworks in the literature 

have commonalities but also vary noticeably with respect to chosen indicators, the metrics they are 
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comprised of, and the data used to characterize each metric. There is not one universally accepted 

community resilience framework (Cutter et al. 2010b) and so a specific choice must be made from 

the alternatives for the purposes of organizing resilience data. 

 Bruneau et al. (2003) put forward one of the earliest frameworks for resilience in the 

disaster literature. Their framework represents resilience as four components: technical, 

organizational, social, and economic, with each component having quantifiable traits of robustness, 

redundancy, resourcefulness, and rapidity. Cutter et al. (2010a) breaks resilience into components 

of social, economic, institutional, infrastructure, and community capital. There are multiple 

indicators within each component. For instance, social capital is comprised of education equity, age, 

transportation access, communication capacity. Alternatively Miles and Chang (2011) organize 

resilience into the three components of physical built environment, economics, and personal capital 

(S. Miles and Chang 2011). Norris et al. (2008) examines disaster resilience from a psycho-social 

perspective and introduces the idea of well-being as the ultimate goal of resilience. Norris et al 

(2008) connects personal and social well-being to Bruneau et al.’s resourcefulness, robustness, 

redundancy, and rapidity, while adding adaptive capacity and quality of life. Miles (2014) separates 

static resilience into four constructs of well-being, identity, services, or capitals (WISC), with 27 

variables in total characterizing the constructs.  

The WISC framework proposed by Miles (2014) is the most comprehensive of the 

frameworks in the literature, incorporating components of Cutter et al. (2010a), Norris et al. (2008) 

and Bruneau et al. (2003), among others. WISC is more complex than other frameworks in the 

literature and thus more difficult to operationalize. However, this complexity is necessary when 

trying to understand a concept as complicated as community resilience. The theoretical framework 

of Miles (2014) allows for the most detail and theoretical grounding for organizing resilience data, 
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which is essential for informing decisions and research. The framework does not currently specify a 

list of data sources to use as indicators of each component, whereas some frameworks do (e.g., 

Cutter et al. 2010a). This data flexibility allows for a more dynamic organizational schema.   

2.6 Store and Manage 

 Store in the data lifespan refers to the implementation of an organizational schema with 

technical infrastructure. Manage refers to the upkeep of such a system through database 

administration and associated best practices. An organizational schema for disaster resilience data 

becomes more useful when technical infrastructure is in place to support storage and management. 

The stages of storage and management are cyclical in the lifespan because they are continuously 

occurring throughout decision-making and/or research. When data moves along to further stages, 

where it is transformed into information, the raw data is still (ideally) being managed. Furthermore, 

data may need to be reorganized and stored using a new schema as new means of representing 

resilience data is needed. While the stages of store and manage are technically separate in the data 

lifespan, because they often happen concurrently it makes the most sense to discuss them together.  

A computer database can be thought of as digital data stored with an explicit data model 

and structure. A database management system (DBMS) is software, or a stack of software, designed 

to manage a database and facilitate dissemination of data. There are two main types of data models 

present in the literature today, relational and non-relational. Prior to discussing these alternative 

database models, several basic principles of DBMS should be discussed. 

There are basic guiding principles involved in storage and management of data. All 

interactions with a database can be considered transactions in which the activities of one user are 

isolated from all concurrent activities (Haerder and Reuter 1983).  Since applications tend to have 

multiple users all at once, data must be indivisible and concurrent (Haerder and Reuter 1983; Fowler 
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and Sadalage 2013). To enforce indivisibility traditional data models ensure that every transaction 

has properties of atomicity, consistency, isolation, and durability (ACID) (Haerder and Reuter 1983).  

ACID transactions are a classic strategy for determining if a database is effective and that each 

transaction is a single logical expression (Barthomew 2010). A newer counterpart to ACID is 

“basically available, soft state, eventual consistency” (BASE) (Fowler and Sadalage 2013; 

Bartholomew 2010). BASE emphasizes higher availability of data and allows for approximate outputs 

(Brewer 2000). ACID and BASE transactions are straightforward to enforce over a non-networked 

system. When designing a distributed web-service additional properties of consistency, availability, 

and partition tolerance (CAP) are desired in these transactions (Gilbert and Lynch 2000). CAP 

Theorem, also known as Brewer’s Theorem, is a conjecture stating it is impossible for a database to 

have all three traits of CAP simultaneously (Gilbert and Lynch 2000).  

For representing disaster resilience data it is important to consider what aspects of CAP are 

desired and whether ACIDS or BASE transactions are appropriate. For resilience data the DBMS 

model that makes the most sense depends on the use case. If the DBMS is to be used in addressing 

loss then an ACID model may be suitable. Whenever extremely valuable resources are at stake, such 

as money or human lives, strong consistency and accuracy are critical (Fowler and Sadalage 2013). 

For example, emergency responders need up to date locational information in order to find people 

in need of assistance. If the use case is more for the recovery side of disaster resilience, then 

eventually consistent data is acceptable in exchange for a simpler model. For example, for 

researching resilience it won’t matter if the addresses of parcels are out of date at that very instant, 

as long as they are eventually consistent (within a reasonable timeframe). While exceptions do exist, 

ACID is generally associated with relational models and BASE is associated with non-relational 

models (Fowler and Sadalage 2013).  
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The long-standing approach for storage and management of data is the relational data 

model (Bartholomew 2010; Leavitt 2010). Codd (1970) is credited with the invention of the 

relational data model and the twelve traits required to be considered such. Many modern RDBMS 

now need only conform to at least two of the traits established by Codd to be considered relational. 

An RDBMS stores data in tables with rows and columns. A row is an entity, and a column is its 

associated attributes. Data in a table can be related to another table of data according to common 

attributes (ORACLE 1995; Leavitt 2010). Relational operators must also be present which enable 

relationships to be tested between two entities. The presence of relationships and their operators 

makes performing queries on the data easy and efficient. Currently the widely used language for 

querying a RDBMS is the Structured Query Language (SQL) (Deutsch 2013). The conformity to SQL 

makes moving from one type of RDBMS to another easy because the application code querying the 

database will largely not have to be rewritten. There are many variations of commercial and open 

source RDBMS such as OracleDB, SQL Server, MySQL, PostgreSQL, etc. The rigidity of the relational 

model is intentional and allows developers to maintain large amounts of data in persistent, 

concurrent, integrated, and standard ways (Fowler and Sadalage 2013). Critiques of the relational 

model are that it does not scale well over the web, is too rigid to handle diverse datasets 

(Stonebraker 2010), and the interaction style is unproductive (Fowler and Sadalage 2013).    

With the surge of data that has been seen over the last several years, new types of non-

relational data models are being developed and used for storage and management (Fowler and 

Sadalage 2013). Non-relational DBMS are most commonly referred to as NOSQL (Bartholomew 

2010; Leavitt 2010). Originally this was due to the fact they did not use SQL to query the database, 

but now they commonly refer to non-relational DBMSs that run well on a network, are open-source, 

and are schemaless (Fowler and Sadalage 2013; Pokorny 2011; Leavitt 2010). It is important to note 

that while considered schemaless the non-relational model is not without structure, but it is just less 
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rigid than traditional relational models. The performance gains of NOSQL DBMSs are debated in the 

literature. Some researchers claim the same performance gains can be achieved using the relational 

model by eliminating unnecessary overhead (Stonebraker 2010; Pokorny 2011). It is possible 

however, that the relative performance is more dependent on the use case (Bartholomew 2010; 

Fowler and Sadalage 2013; Leavitt 2010), rather than being a universal trait.  

Unlike the relational model, there are four alternative approaches to non-relational DBMS: 

key-value pair, column, document, and graph (Rebelic 2013). Table 1 lists the four approaches to 

non-relational data models and examples of associated DBMS software available today. A strength 

of the relational DBMS is derived from the fact that many operate similarly and share a common 

query language; the same is not true for non-relational DBMSs. Major differences exist between the 

alternative non-relational DBMS approaches (Bartholomew 2010). The decision as to which 

approach to the non-relational data model is appropriate for storing and managing disaster 

resilience data is important because it will be harder to switch later in development. For this reason, 

it is necessary to examine the literature for each approach in order to determine which one can best 

represent disaster resilience data. 
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Figure 2 – Non-relational data model approaches and associated DBMS software. 

A key-value non-relational data model is simple in design. Key-value uses a hash table 

containing a list of keys and a value associated with that key (Rebelic 2013). Key-value is an easy 

design to implement, but its simplicity makes it possible to become inconsistent if your dataset 

grows large enough (Kumar and Checker 2013).  Disaster resilience data in this model could be a 

particular disaster as a key and the value would be a description of the event, chunk of information, 

or attribute of resilience. 

Column data models are similar to key-value in that they use keys, but each key points to 

multiple columns intended to be spread across multiple machines (Rebelic 2013). A relational DBMS 

uses rows for reading and writing data, but a column DBMS uses columns. Because of the way a 

column is stored on disk (as compared to a row) operations performed on them are much faster 

(Kumar and Checker 2013). Conceptually, resilience data in a column data model is similar to the 

relational model. There is one large table instead of multiple linked tables. Within the table each 
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row could be an event, with each column being an attribute of that event. This conceptual table is 

not actually stored as such; instead it is stored in a single long text string. For example, disaster A, 

disaster B, disaster C: location A, location B, location C: indicator A, indicator B, indicator C: etc.  

Instead of tables with rows and columns, a graph data model uses nodes that are connected 

by edges. Both edges and nodes contain attributes and could be stored as entities. The graph data 

model structures are useful for modeling entities that have strong relationships with one another 

(Kumar and Checker 2013). For disaster resilience data, each element of resilience, and disaster 

could be a separate node. Each node would be connected to whichever other node it was relevant 

to, with an edge having its own attributes describing the relationships as well. This is a very intuitive 

approach to data management. 

The document data model is very similar to key-value stores, but unlike normal key-value 

stores they allow for nested documents. This nesting  allows for more complexity when designing an 

organizational schema (Rebelic 2013; Kumar and Checker 2013; Cattell 2011). DBMSs that use the 

document data model generally support multiple types of documents and the ability to query 

collections based on multiple attributes (Cattell 2011).  The best use case Cattell points out for a 

document data model approach is one where there will be multiple objects and each object has 

multiple different attributes associated with them (Cattell 2011). An example for disaster resilience 

data could be a document for each piece of data; within each document is attributes organized by 

key-value pairs. Two examples of key-value pairs included in the list could be event (e.g., Hurricane 

Katrina) and associated characteristic of resilience (e.g., economics).  

Because of its schemaless nature, a non-relational model has the most advantage in 

managing and storing disaster resilience data and is the approach adopted for this study. The 

volume of disaster resilience data is not necessarily larger than what relational models are capable 
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of handling. However, the variety of data contributors and the spatiotemporal complexity make the 

use of the non-relation model for storing and managing resilience data worthwhile. Community 

resilience theory is constantly changing and so are the associated frameworks. There is a variety of 

content types, such as jpegs, docs, pdfs, etc. and a variety of researchers and organizations 

capturing data, all this equates to a proliferation of data (Voigt 1998). As suggested above in 

subsection 2.4, the schema needs for resilience data will contain different resilience attributes. The 

non-relational data model is useful if a lot of semi-structured data is present,  which is the case with 

resilience data (Bartholomew 2010; Leavitt 2010).  

2.7 Disseminate 

  If resilience data is going to support decision making and research it will need to be readily 

available. Disseminate is the stage of providing easy access to stored and managed data. Effective 

dissemination allows researchers and decision makers to conveniently access the storage 

mechanisms in a variety of ways to facilitate their own data aggregation needs. According to an 

Executive Order issued by President Barrack Obama (2013), disseminated data should be machine 

readable and open to the public.  

Web services are a way in which different software systems exchange information with each 

other (Cerami 2002). Web services tend to use a standardized XML messaging system and are not 

necessarily tied to any single operating system or programming language. These traits make cross 

platform communication of web services possible (Cerami 2002). Multiple examples of web services 

can currently be found to support data exchange, but none are developed for disseminating data 

based on its attributes of resilience. The Bureau of Economic Analysis (BEA), the Bureau of Labor 

Statistics (BLS) data page, and Environmental Protection Agency (EPA) Data Finder are all examples 

of web service functionality that can be used as examples for developing a web service for disaster 
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resilience data. The BEA’s mission it to provide insight into the American economy by providing the 

most up to date statistics on economic accounts (http://www.bea.gov/itable/index.cfm). The BLS 

measure labor market activity, working conditions, and price changes in the economy and 

disseminates that information (http://www.bls.gov/data/). The EPA’s goal is to protect human 

health and the environment. Additionally the EPA offers a data finder (http://www.epa.gov/data/).  

 Simple Object Access Protocol (SOAP) and Representational State Transfer (REST) are two 

web-service protocols used for requesting information between two client computers. Both SOAP 

and REST are viable options for disseminating resilience data between potential users. SOAP is the 

older of the two methods and essentially transmits XML-encoded messages (zur Muehlen, 

Nickerson, and Swenson 2005). REST exposes a specific set of resources through a series of HTTP 

methods such as get, post, put, or delete (Mulligan and Gracanin 2009). REST generally is well suited 

for basic applications, whereas SOAP offers flexibility and advanced features suited for enterprise 

applications (Pautasso, Zimmermann, and Leymann 2008). Infrastructure for storing and managing 

organized resilience data will already be in place by using a DBMS, the resources being stored will 

just need to be made available for dissemination. Because of the simplicity of REST web services, it is 

an appropriate way to easily disseminate disaster resilience data organized, stored, and managed in 

a chosen DMBS (Pautasso, Zimmermann, and Leymann 2008; Mulligan and Gracanin 2009; zur 

Muehlen, Nickerson, and Swenson 2005). 

 In typical use cases, a new web framework applying either SOAP or REST protocols is not 

developed for every application. A web framework is a collection of packages that allow developers 

to skip tasks like handling protocols, sockets, or other tedious code (Piercy 2014). There are two 

main types of web frameworks: a full-stack framework and a basic framework (Piercy 2014). The 

difference is that full-stack frameworks come with pre-selected technology to implement a web 
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service. Technology that might be included in a full-stack framework include a database, template 

engine, AJAX toolkit, etc. (Piercy 2014). A basic web framework runs as its own independent process 

allowing one to introduce other components, such as any DBMS deemed appropriate to run on top 

of the framework (Piercy 2014). This thesis requires flexibility in choosing specific components to 

alleviate decentralization of resilience data.  A basic web framework is appropriate because it allows 

for such flexibility, and would create an application server with only the simple functionality 

required. 

2.8 Analyze, Visualize, Decide 

At the end of the dissemination stage of the data lifespan, disaster resilience data would 

need to be analyzed, visualized, and used to make decisions. However, these stages are out of scope 

for this thesis. Future work will need to be completed to build upon the understanding of these out 

of scope stages of the data lifespan. With an understanding based on the current literature of 

organizing, storing, managing, and disseminating a useful research framework was devised. This 

research framework was used to accomplish the research objectives in order to answer the research 

question.  

Chapter 3: Research Approach 

3.1 Research Approach Overview 

 

The literature provides a solid foundation to better represent community resilience data. 

The objectives of this thesis aim to facilitate the lifespan of resilience data leading to information. 

The research question of how to better represent community resilience data in a centralized way 

can be answered by completing the three subsequent research objectives. 
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1. Aggregation: A data aggregation was performed for two case studies and was developed 

specifically for the variety of data related to disaster recovery. The aggregation reveals a 

systematic way to gather data at various spatiotemporal resolutions, from various sources, and 

in various formats.  

2. Organization: Subsequently, a schema was developed to organize aggregated data based on 

attributes of resilience and aggregation outcomes. The schema represents the data with 

respect to components of community resilience. More specifically the schema represents data 

in terms of the WISC community resilience framework (Miles 2014), which is the most 

comprehensive such framework to date. The schema also facilitates characterizing and 

structuring data to add meaning with respect to important elements of communities, disasters, 

and resilience.  

3. Storage, Management, and Dissemination: Technical infrastructure was selected and 

configured to store, manage and disseminate the organized data. The DBMS software 

MongoDB was used for storing and managing data. Dissemination of data is facilitated using a 

Bottle web framework. Both systems are combined into an application called WISCkey which is 

described in this chapter. WISCkey provides a non-relational data model with principles of BASE 

being served via a REST service and coded with the Python programming language. WISCkey 

earns its name by being a key step in representing decentralized data by applying the schema 

for operationalizing the theoretical framework WISC.  

3.2 Aggregation 

 

As mentioned in the literature review, one of the most comprehensive community resilience 

frameworks to date is the WISC framework (Miles 2014). Due to its comprehensiveness WISC was 

chosen as the mechanism to guide aggregation of resilience data. More specifically, data 
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representing capital and it’s variables of social, political, human, economic, built, and natural 

capitals was the focus of aggregation. These variables of capital represent half of the community 

resilience component of infrastructure (Miles 2014) The construct of capital was chosen because 

services derived from capital create the foundation for achieving the end goal of community well-

being (Miles 2014). Because capitals can be viewed as the foundation of communities and resilience, 

it is an appropriate starting construct for guiding the aggregation of resilience data.  

A capital within the Framework of WISC is a community asset which is used to subsequently 

obtain additional assets, or derives a service. In a sense, capital is the building block of community 

resilience. Seven variables of the construct of community capital were adopted in WISC by 

synthesizing other community resilience frameworks. These community capitals are social, political, 

human, economic, built, natural, and cultural.  

Social capital refers to the bonds that hold people and groups together. Social capital is 

directly linked to cultural capital, which is the traditions and languages within a community, and 

together these capitals act as a cohesive force. Political capital reflects on the access to power via 

political channels and the ability to contribute to the community. Human capital is the skill and 

abilities of the people inside a community, especially those in leadership positions. Natural capital 

refers to the natural resources such as amenities, natural beauty, timber, oil, etc. Economic capital is 

the resources that can be used to invest in the development of businesses, and supports civic and 

social entrepreneurship. Built Capital is the infrastructural interface between natural capital and all 

other capital variables, built capital controls the access to natural capital from all other capitals.  

Together the variables for the construct of capital, provides a reasonable stepping stone in 

understanding community resilience. Another construct of the WISC framework is geography—

space, time, and scale. Geography strongly influences the processes and outcomes of community 
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resilience, and therefore the resilience data that can be aggregated. A proper aggregation will 

search for community capitals by resolutions of space, time, and scale.  

 For community resilience data, aggregation can happen at various spatial resolutions. As 

seen in the literature, units of observation are proposed as individual, local, meso and global (Ye and 

Rey 2013).  These categories proposed by Ye and Rey (2013) are not finite enough and can be 

interpreted differently by an individual’s perception of scale. More specific units of observation are 

proposed for this aggregation, and later on for organization. These units include a combination of 

established jurisdictional boundaries and census units. The units are national, state, metropolitan 

statistical area, county, city, neighborhood, census designated area, and individual (e.g., households 

or businesses). Under Ye and Rey’s classifications county might be considered local by one 

researcher and meso by another. By explicitly stating the boundaries themselves as the units this 

interpretation is taken out of the mix.  

 Much the same way space was delineated into human constructed segments, time in the 

aggregation was divided into units of observation of increasing resolution. These units of 

observation can either be taken as totaled, yearly, quarterly, monthly, weekly, daily, hourly, or more 

than once per hour. These temporal breaks are self-evident, except for perhaps totaled resolution. 

Totaled resolution data represents a cumulative snapshot of an event. For example one might 

provide a cumulative dollar amount associated with damage from an event since it occurred.  

The spatiotemporal resolutions provide a structured way to aggregate data based on similar 

units of observation to ensure the aggregation is systematic across time and space. The aggregation 

was used to gather resilience data for two very different scale natural disaster events. Through 

aggregating resilience data for the two events, insight was gained on how data access changes 
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based on event size. After aggregation was complete it was organized and disseminated, completing 

the second and third objectives of this research. 

The two events chosen for aggregation were the 2007 Lewis County flood and Hurricane 

Katrina in 2005. These two events were chosen for several reasons. First, these disasters occurred at 

different spatiotemporal scales, allowing for an evaluation of what types of resilience data are 

available for disasters of differing sizes. For example, Hurricane Katrina was an event which grabbed 

national attention, whereas the 2007 Lewis County Floods were more a regional event.  Selecting 

two events of such differing sizes helps to reveal what attributes of data are present for large and 

small events.  Second, both disasters occurred within 2 years of each other, which should mitigate 

for any change in data monitoring or dissemination technologies that occur over time. Third, enough 

time has elapsed from both events that each should have had opportunity for organizations to 

capture disaster resilience data along all the phases of the disaster cycle. It is easy to see the stark 

contrast of both event sizes and economic impacts associated with them. This difference between 

case studies was intentional so that nuances of data availability could be discovered throughout the 

aggregation process. The dataset gathered represents a potentially high variability in spatiotemporal 

and resilience attributes, which required an organizational schema.  

To aggregate resilience data for every WISC capital, at each spatial scale affected for both 

events, was out of scope for this thesis. For this reason, one example jurisdiction was chosen for 

aggregating data at each defined spatial resolution. This process was applied to both events using a 

spatial resolution hierarchy. For Hurricane Katrina data aggregation was attempted for each WISC 

capital for the United States, Louisiana, New Orleans-Metairie-Kenner Metropolitan Statistical Area 

Orleans Parish, New Orleans city proper, Uptown, and an individual that lives within Uptown. For 

the Lewis County flood, an aggregation was attempted for each WISC capital for the United States, 
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Washington, Lewis County, Centralia and an individual that lives in Centralia proper. For both events 

certain spatial resolutions were intentionally left out. For Lewis County there is no metropolitan 

statistical area or neighborhood, because of the city’s small size. To better understand the context 

of the data about the two disasters, a closer look at each’s geography and characteristics is 

described below. 

In December of 2007, record rainfall occurred in the Willapa Hills from a storm coming in 

from the Pacific Ocean causing flooding throughout Lewis County, Washington. Preliminary damage 

from the 2007 floods totaled $166.1 million, with the cost rising to $510 million a year after the 

event which made up about 25% of the total FEMA claims for the state of Washington in 2007. 

Despite being a devastating event for the county, flooding is not uncommon in the area, with 

records showing significant floods at least seven times since the 1800s, of which the 1933, 1986, 

1997 and 2007 floods all exceeded the 100 year flood level (Lewis County 2014). 

Lewis County is a rectangular county in the southwest of Washington State. With a land area 

of 2,402.80 square miles and is ranked as the 6th largest county in Washington as shown in Figure 3. 

Lewis County’s population is roughly 76,000, giving it a population density of 31.63 people per 

square mile. This makes Lewis County the 22nd most densely populated county in Washington State 

out of 39 total counties. The largest town within Lewis County is Centralia with a population of 

16,440. The largest job sectors in descending order within Lewis County are government, 

manufacturing, healthcare and retail. When added with all other smaller business sectors Lewis 

County paid $787,405,854 in wages during 2010 (State of Washington 2011). 
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Table 1– Population statistics for Lewis County from the 2011 Washington Databook 

 

Table 2- Employment statistics for Lewis County from the 2011 Washington Databook 
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Figure 3 - Lewis County, Washington 

Hurricane Katrina started as a tropical depression on August 23rd 2005. The Storm quickly 

turned into a Category 5 hurricane in the Gulf of Mexico and by Monday August 29th was only 90 

miles away from New Orleans. Although the storm slowed down to a Category 3 as it came ashore, 

there were still predictions of storm surges up to 28 feet (Graumann et. al, 2005). These conditions 

were well above the severity needed to overwhelm the 125 miles of hurricane reduction system 

(Army Corps of Engineers, 2005). Although Katrina was not the largest Hurricane to strike the Gulf 

Coast, the destruction was some of the worst ever seen (Graumann et al, 2005). Figure 4 depicts the 

path Katrina took leading up to major landfall. While the effects of Katrina were wide spread, the 

combination of hazard conditions and human vulnerability made New Orleans one of the hardest hit 
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areas. Within Orleans Parish alone the cost of Hurricane Katrina is estimated around $40-$50 billion 

dollars (Kates et al. 2006). 

 

Figure 4 - Hurricane Katrina path and associated strength 

New Orleans as a city has an estimated population of 369,250 and is located on the 

southern tip of Louisiana in the Orleans Parish. The city is below sea level and is sandwiched in 

between Lake Pontchartrain and the Gulf Coast as shown in Figure 5. The land area of New Orleans 

is 169.42 square miles with a density of 2,030 people per square mile (US Census 2013). 
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Table 3- Population numbers for New Orleans from the 2010 United States Census 

(quickfacts.census.gov/qfd/states/22000.html) 

 

Table 4- Business numbers for New Orleans from the 2010 United States Census 

(quickfacts.census.gov/qfd/states/22000.html) 
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Figure 5 - New Orleans City Proper, Louisiana  

3.3 Organization 

 

By aggregating data for each of the two described case studies, certain data use case 

scenarios became apparent. Specifically, two use case scenarios were common for how the schema 

could organize resilience data. The first scenario was that an organization holds resilience data and 

offers access to that data readily. The second scenario was that an organization holds data, but does 

not offer access to it readily. In scenario one, the resilience data was aggregated and needed to be 

organized as both an item and the metadata associated with that item. An item could be an excel 

file, word doc, pdf, csv, picture, etc. In the second scenario, metadata for resilience data was the 

only thing to aggregate, with no particular item associated with it. The lack of an item was because 
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of privacy or security reasons previously stated in the literature review (Crittenden 2013; Mills et al. 

2008). An effective schema for resilience data should be able to organize both scenarios in a 

meaningful way. To accomplish organization under both scenarios, the schema design takes on a 

metadata style structure. Such a structure in both scenarios holds metadata, but also provides the 

opportunity to organize an item alongside it when available. 

 

Figure 6 - Possible scenarios for data availability 

 The schema for resilience data is specified using the attributes of resilience itself in order to 

store, manage and disseminate those data more effectively. As well as attributes of community 

resilience, data is also associated with attributes about itself (metadata), including the data source, 

disaster event, spatiotemporal resolution, and data category. Some of the metadata are attributes 

used for aggregation described above. 

Data source was included because it allows a user of that data to trace it backward. In 

scenario 1, the source helps verify the legitimacy of the data, as well as makes it easy to discover any 

recent updates, or related items. The source of resilience data is important when organizing data, 

but especially so if storing only metadata under scenario 2. If no item was obtained during the 

aggregation process, than the source metadata is important for managers and researchers to make 
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requests to the providers of those data to obtain what they need. This is important because even 

though data may be restricted to some, it may not hold the same usage restrictions for others.   

The attributes carried over from the aggregation to organize data are the disaster event, 

spatiotemporal resolution, and data category. The event describes what disaster the data is relevant 

to, helping to narrow searches further during dissemination. Organizing the data by spatiotemporal 

resolution shows what resolution of research and DDDM it can support. For example, one cannot 

make a decision on statewide policy based off the data from a single town. Organizing by data 

categories provides a basic description based on what the data is outside of a community resilience 

framework. For example, data may be considered a built capital within WISC, but it could be 

described as road closure statistics related to the broader category of transportation. To increase 

the data utility it needs to be further organized using a robust community resilience framework. 

Such an organization establishes a link between current technical ways of understanding the data 

and ways of understanding the data through the lens of community resilience.    

To date, there are no databases organizing data in such a way that would remove the work 

of deciding what data is relevant to a particular event, and how it can inform management and 

research towards community resilience. Organizing by what attributes of community resilience are 

associated with the data is very important. In reviewing the community resilience literature, it was 

decided the WISC framework is the most comprehensive. WISC offers a wide variety of attributes 

hierarchically structured as objects, constructs and variables. These components of WISC are 

integrated into the organization schema.  Below is an overview of WISC and how it was integrated 

into the organization. This overview is not meant to be exhaustive, but rather provides 

understanding of how data is further organized by resilient attributes.  
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WISC is broken down into two models one, of which is static and the other being dynamic. 

The static model provides understanding of resilience as a state at a point in time and space, while 

the dynamic model helps to understand how states change across time and space. Figure 7 is a 

graphic representation for the organization of the static model of WISC. These objects, variables, 

and constructs grounded in the community resilience literature provide theoretical understanding 

to data gathered by broad categories from a variety of literature. This links the various ways of 

understanding the data into one comprehensive schema.  

A piece of data gathered in the aggregation process was per capita income at the county 

level for the 2007 Lewis County Flood. This piece of data is organized based on the metadata, which 

are that it is associated with that flood, the spatial resolution is county level, the temporal resolution 

is by year, its descriptive category is economic, and its descriptive attribute is per capita income. 

Furthermore, the data is given attributes of WISC, such as that it belongs to the object of 

infrastructure, the construct of capital, and the variable of economics. Using the definitions of each 

object, construct, and variable, the framework of WISC can then be referenced to gain 

understanding of how this data can be used to drive decision making. Notice in this example that the 

descriptive attribute and variable of WISC are the same. This is not uncommon, but not a 

requirement of the organizational schema. Transportation, a descriptive attribute mentioned 

earlier, is not present as an object, construct, or variable in WISC. It is fairly apparent that 

transportation represents built capital and should therefore have those attributes of resilience in its 

organization. Furthermore, transportation data could be relevant to both services and capital. Due 

to this multiplicity, more than one attribute of WISC needs to be represented by the metadata.   
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Figure 7: Structure of the WISC proken into Objects (community, infrastructure), constructs 

(capital, services, identity, well-being), and twenty-nine variables of human settlements (S. B. 

Miles 2015) 

 

Because this schema is heavily organized around the theoretical understanding of 

community resilience provided by WISC, the definitions of each component need to be associated 

with the data in the schema. Doing so by embedding the definitions into each piece of data is far too 

redundant, especially if multiple WISC components are relevant. Instead, the organizational schema 

provides a way to organize a single list for the components of WISC, which are linked to each piece 

of disaster resilience data. This can be thought of as a one-to-many relationship represented in 

Figure 8. In this example there are three metadata documents for resilience data. One of the 

metadata documents has an item stored with it, one has no items, and one has multiple items. Each 

piece of metadata in this example has the same components of WISC associated with it. Rather than 

embedding these components into each piece of metadata, there is a key linking each metadata 

document to the WISC document. This way if the component of WISC needs to be modified it can be 
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done in one location rather than three. It also will take a third of the space on disc. This is done for 

all 35 components of WISC. . This organizational technique of WISCkey is in anticipation of saving 

space and time during the storage and management of data. 

 

Figure 8 - Possible one-to-many relationship for storing resilience metadata 

3.4 Application for Storing, Managing and Disseminating  

 

The third objective was to develop an application that aids in storing, managing and 

disseminating data gathered in the first objective and organized in the second. While storage, 

management, and dissemination are all discrete stages in the data lifespan they are all integrated 

into the third objective of this research. In section 2.6 and 2.7 a synthesis of the literature was 

performed to evaluate the technical infrastructure that could be used for such an application. The 

specific technology chosen for storage and management is a non-relational DBMS, specifically 
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MongoDB. Once storage and management was in place a user friendly way to disseminate those 

data was needed. Disseminating data was achieved through a Python scripted Bottle web 

framework. Python was chosen because it is a well-established scripting language, is considered 

agile, and as a result is successful as a programming tool (Daly 2007). These technologies come 

together as the web application called WISCkey.   

Figure 9 breaks WISCkey into a server-client model of computing. Within these two 

providers there exist three main components. On the server side there is a Mongo database (#1 in 

Figure 9) and a Bottle web framework (#2 in Figure 9) and on the client side there is a web browser 

(#3 in Figure 9). The Mongo database serves the purpose of storing and managing data and the 

Bottle web framework serves the purpose of aiding in disseminating that data. The following section 

of the research approach is broken down by these three main components of WISCkey. Within this 

model there must be a web server such as Apache or NIGNX, but discussing these configurations are 

out of scope for this research.  

 

Figure 9 - WISCkey Application Architecture 
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MongoDB is a scalable and agile DBMS, which are desirable traits for this research. 

MongoDB was chosen as the DBMS for several reasons. First, MongoDB was readily available and 

useable in a wide variety of applications as was apparent in the usage examples. Secondly, the 

feature list is more robust than most other document DBMSs, not completely necessary for the 

current application, but allows for more advanced functionality to be added as needed in the future. 

Third, MongoDB is a very popular DBMS, meaning that documentation and help files are very good. 

Fourth, MongoDB offers a driver for the scripting language Python, whereas CouchDB for example 

does not.  

MongoDB is a document style non-relational DBMS. MongoDB structures data into nested 

compartments of databases, collections, and documents. Within a MongoDB instance multiple 

databases are possible. Within each database there can be one or many collections and within each 

collection there can be one or many documents. A document database is essentially a key-value 

store, but the way values are stored is unique enough to warrant its own category. The difference is 

that instead of a single value, a document database will store an HTML, JSON, or BSON document as 

its value (Fowler and Sadalage 2013). These are three different standards used within programming 

and stand for Hyper Text Markup Language, Java Script Object Notation, and Binary JSON, 

respectively. MongoDB itself stores items using JSON and BSON formats. Both are easily read by 

humans and machines alike which makes it a convenient storage mechanism. Figure 10 shows an 

example of what a JSON document stored in MongoDB looks like. In reality these JSON documents 

are stored as one line of text without returns, but it has been formatted for human readability. This 

particular example is a description of a stress event. Some keys have a single value to them, such as 

disaster or type. The characteristics key is a collection of two key-value pairs. A key can have a single 

value as described before, or a list of values such as characteristic and states_with_deaths. This 
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JSON storage is limitless in its nesting capabilities and this flexibility is one reason a document 

database was chosen versus a simpler non-relational data model. 

 

Figure 10 - Basic example of a JSON document 

 MongoDB is meant to handle “big data,” which means it was designed to address the four 

Vs of data, which are volume, velocity, variety, and veracity (IBM 2013). MongoDB handles volume 

by scalability in the form of sharding collections across multiple machines. As data volume grows, it 

is easy to add another node into the system to meet the new storage needs. In mongo a single 

database is designed to spread itself across multiple machines rather than a single server. Rather 

than buying a single expensive high performance machine, a MongoDB can be spread across 

multiple low-end machines when high processing power is needed. This means the system remains 

fast when velocity and volume increases.  

The variety of the data itself is handled by the fact that MongoDB has no strict schema (not 

requiring certain attributes to be populated or keeping new ones to be added without updating all 

data currently being stored). This schemaless trait makes it so as the variety of the data increases, 

the documents can adaptively change without having to go back a reformat all previous data. 
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MongoDB as a DBMS offers an aggregation pipeline and map-reduce function. The aggregation 

pipeline is specific to MongoDB and refers to its ability to have multiple layers of search parameters. 

This pipeline ensures that it only scans as much of the document as needed to satisfy the query. 

Map-reduce is a standard function across DBMS software. Map-reduce filters common queries and 

provides a summary operation on those queries which can be accessed quickly in the future. The 

veracity of the data is handled in the schema design by incorporating WISC, the most 

comprehensive community resilience framework, into its organization.   

Using MongoDB as a DBMS allows a non-relational data model to be applied to data 

aggregated in the first objective. Using the key-value type storage allows components of community 

resilience, adopted from the WISC framework, to be applied to storage and management. To 

accomplish this one-to-many relationship described earlier are employed using key-value pairs. 

Within each piece of resilience data, a key (the name of a component of WISC) provides a link to the 

value (the definition of that WISC component). The linking of these two documents is handled in the 

code for the application and will be discussed in detail in section 4.4 of the results chapter. While 

MongoDB offers a command line interface to manage the storage of data, it is not a convenient or 

effective way to allow users to access/upload data. For dissemination purposes, WISCkey needed a 

user-friendly way of accessing data. This user interface is achieved using Bottle as a web framework 

and represents the second component of WISCkey within the server in figure 9. 

Bottle is a basic python framework that is fast, simple, has URL parameter support and is 

contained in a single file with no dependencies (Piercy 2014). In other words, the application is a 

single .py file and does not require python libraries to be installed other than the standard library. 

This keeps the application architecture simple to move to a new server if necessary. These were all 

desirable traits for disseminating resilience data because it is not only simple, but effective as well. 
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In order to better disseminate data, WISCkey needed to accomplish several things. First it needed to 

be searchable so users can pull items and metadata out of the database. Second, it needed to 

provide an upload function so the database could continue to grow organically. Third, it needed to 

provide adequate documentation for theoretical understanding of the WISC framework. 

 Bottle was used to design a Representational state transfer (REST) interface for interacting 

with the MongoDB database to disseminate the data. A simple way to think of a RESTful interface is 

one which exposes certain resources. In this use case JSON documents inside MongoDB are exposed 

with a limited number of operations. The user interface designed for WISCkey uses the standard 

HTTP (foundation of data exchange via the World Wide Web) requests of GET and POST in order to 

communicate information. GET is used to request information, and POST is used to communicate 

that information. For example, GET is used to ask a user for a search parameter and POST is used to 

send that query to the MongoDB. GET is then used to retrieve the result of that query and POST 

used again to deliver it to the user. These communications occur between a client side (user’s 

computer) web browser, the third component of WISCkey’s architecture, and the MongoDB on the 

server.  

Chapter 4: Results 

4.1 Results Overview 

The technical details of how the three objectives were achieved constitute the results of this 

thesis. The results for objective one are a set of resilience data, aggregated based on the capitals of 

the theoretical framework WISC, for two disaster case studies, at different spatiotemporal scales. An 

organization of data based on WISC is applied for the storage and management of those data. This 

organizational schema is the result for the second objective. This schema helps to organize data 
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based on elements of community resilience, as well as more conventional metadata. The result of 

the third objective is a web-based application called WISCkey. WISCkey was built using MongoDB, 

Python, and Bottle. It was developed to store, mange, disseminate, and provide the means to 

centralize a variety of resilience data. Ultimately these completed objectives will permit 

applying community resilience theory to facilitate data-driven decision-making, and research, in a 

user friendly way.  

4.2 Aggregated 

The first objective of aggregating decentralized resilience data at multiple spatial and 

temporal scales yielded a sample dataset for Hurricane Katrina and the 2007 Lewis County floods. 

Using the research framework, an aggregation protocol was used to gather 52 datasets from 22 

sources of decentralized resilience data. Of these 52 datasets, 29 were for Hurricane Katrina and 23 

were for Lewis County. Of the 52 datasets, 26 were for Hurricane Katrina and 23 for Lewis county 

floods contained items alongside them. Of the 52 datasets, entries had 0 cultural, 5 social, 1 

political, 6 human, 8 built, 33 economic, and 0 natural tags of relevant elements of resilience. These 

add up to more than the total of 52 because each dataset can have multiple attributes of resilience.  

While expansive, these data are not comprehensive. Rather, they serve as an example of what 

spatiotemporal resolutions of data are available for large and small scale events. These data also 

help test the feasibility of using WISC in the next stage of organization. 

The similar number of data for each dataset between the two case studies indicates access 

does not change based on spatiotemporal scale of event. However, these values do not mean that 

the amount of data relevant to each event was the same. Given the limited scope of this thesis, case 

studies were chosen using the spatial and temporal hierarchies designed for aggregation. If one 

were to repeat the same aggregation for a town in Oregon looking for effects from the Lewis County 
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flood data, very few datasets would show a recovery signal to an event of this scale. Because 

hurricane Katrina affected a large geographic area, data for a town in Mississippi would still show a 

recovery signal associated with hurricane Katrina. 

Given the idea of Katrina affecting multiple spatial hierarchies, it can be concluded that 

events that span a large geographic region generate relevant data more so than intensity of the 

event. As the amount of data increases the variability of access will fluctuate. For example, if an 

event is spatially small it might affect a single city whose public data access is poor. If an event is 

spatially large it might affect multiple towns whose public data access is poor, but it might include 

one or two with high quality data access.  

To ensure veracity of research and DDDM, a useful resolution of data is needed both 

temporally and spatially. A conclusion to any problem will be insufficient if it is not timely or spatially 

relevant to the community for which it was made. The intensity and a real extent of the disruption 

event will affect what temporal and spatial scales are relevant to understanding recovery. For 

example, if the intensity of the disruption event is such that a community fully recovers within 6 

months, annual level data is not going to necessarily show a signal for the event and subsequent 

recovery. The same applies for geographic extent, if a single small town experiences a disturbance 

event, the signal showing a decline in services and subsequent recovery may not show up in state 

level data. This intensity and geographic extent are what define the overall scale of an event in the 

context of this research. 

 Scale of a disturbance event, in this context, is based largely on the intensity of the event, 

while the geographic extent becomes a multiplier adding to that scale. The smaller in scale the 

disturbance event, the more granular the data must be to see a disturbance signal, the larger the 

scale the more coarse it can be while still seeing a disturbance signal. For the most part, the 
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temporal resolution needed for recovery research and DDDM is primarily determined by the 

intensity of the stress event, while spatial resolution needed for research is determined by the 

geographic extent the stress event directly affected. The exception to this rule is if intensity is great 

enough to completely overwhelm the larger system. For example, 9/11 was a very intense event in 

very centralized locations, so much so that it had effects across the nation and even the world for 

many years. The intensity of this event was such that it overwhelmed the resiliency in place, which 

created a large scale disturbance event, even though it was small geographically. Another 

complicating factor in this exception is that the systems that the event effected, while localized 

geographically, were global in a political and economic nature.  

4.3 Organized 

With sample datasets aggregated, a schema was created to organize data with respect to 

components of resilience. The organizational model is referred to as a schema and will act as the 

data structure later when it is deployed within the application WISCkey. This was completed first at 

a higher conceptual level of organizing based on theoretical ideas of community resilience, source 

metadata, and descriptive attributes. This high level schema was largely driven by the research 

approach. Later, the schema was refined at a technical level to help operationalize storage and 

management of data.  

There are two main portions of the schema as shown in Figure 11, a minimal portion and an 

optional portion. Each of these portions contains several fields which organize user-inputted 

metadata. The minimally required metadata fields are represented by red text in Figure 11 and are 

as follows: title, event type, event alias, summary, elements of WISC, descriptive category, 

spatiotemporal resolution, and source agent of the data. The schema will not allow an upload if this 

minimally viable metadata is not present. Optional metadata fields, ones which are not necessarily 
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needed but found to be useful if they exist, are blue in Figure 11 and are as follows: specific author, 

contact information of author, URL where data was found, publisher, primary source of the  data if 

relevant, and the date of the data. These 22 metadata fields are the high level conceptual schema 

for organizing resilience data. 

The second result for creating a schema was the technical details that operationalize the 

high level concepts. These details are the resulting decisions of where the schema is open to an 

infinite possibility of inputs and where inputs are restricted. The ultimate result of this decision are 6 

fields being restricted, 3 being machine generated, and 13 being open. The black values in figure 11 

are representations of the metadata input allowed for a given field. In the cases where inputs are 

restricted, the options for inputs are found in the boxes in the right side of the figure. These 

designations were chosen based on patterns across all datasets aggregated, methods used during 

the research approach, and designations established by other agents.  
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Figure 11 - Organizational Schema for Disaster Resilience data. Fields that are required are in red 

and fields that are optional are in blue. In some cases field inputs are restricted to a list of values 

which are on the right side of the figure.  

 

Organization needed to be accomplished for two data scenarios. Recall that scenario one is 

when only metadata exists, and that scenario two is when metadata exists with an actual item of 

data as well. These dual scenarios drove the overall structure of the schema to take a metadata style 

design. The reason for organizing anything is to be able to easily find it when it is needed. To 

accomplish this basic goal of organization the where, when, who, and what of the data is important. 

Under both scenarios, there is a minimal amount of metadata needed in order to organize it. Once 

these minimal fields of metadata are satisfied there are optional fields that can, and should be, 

satisfied. Below is a discussion of the metadata fields used to organize disaster resilience data, and 
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how each group of fields relates to the larger concept of community resilience. Together these 

metadata fields constitute the organizational schema and provide answers to where, when, who, 

and what. 

 Each of the 22 fields of metadata falls within three major organizational elements; 

metadata on community resilience, metadata on the source, and metadata on descriptive 

attributes. The metadata for the descriptive attributes of the data provides a foundation to organize 

data based on its spatiotemporal resolution, location, and description. This allows data to be 

organized on a high level of how the data is currently labeled, what resolution it was captured at, 

and when it was captured. Descriptive attributes also make the schema searchable with a minimal 

working knowledge of WISC, or community resilience in general. By enabling users unfamiliar with 

resilience and WISC to easily find data it will allow for the progression of their understanding from 

disaster recovery toward disaster resilience.   

The metadata for community resilience creates a key for exploring how the data is related 

to the theoretical framework of WISC. By associating data with elements of WISC, the schema 

organizes what the data represents in terms of resilience. For example, if data is tagged in the 

metadata as an economic capital and a rivalrous service, it can be linked to the relevant metadata 

documents of WISC and therefore community resilience.  

Having metadata associated with WISC allows organization and searching to occur using an 

advanced knowledge of what resilience means. Having metadata for the source of the data allows a 

user to quickly check the legitimacy of the data, where to find related data, and who to contact with 

additional questions. Source metadata allows for further organization of data based on who 

captured, stores, manages, and disseminates those data.  
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By restricting some fields and leaving some fields open, this schema is pre-defined enough 

to organize data, but open enough to allow the user to capture any uniqueness those data provide. 

In order to organize data in meaningful ways, commonalities need to exist between the storage 

categories. These commonalities were partially identified and defined during the aggregation 

process, and partially already defined by frameworks such as WISC, or definitions recognized by 

FEMA. These commonalities are restricted fields controlled in the technical part of the schema and 

are as follows: 

1. Event type  

2. Spatiotemporal resolution 

3. Elements of resilience.  

Event type was limited based on FEMA recognized disaster event types. The spatiotemporal 

resolutions were limited based on the hierarchies recognized and developed during aggregation. 

Elements of resilience were limited based on the elements from the theoretical resilience 

framework WISC. These restricted inputs create predictable values which are recognized and 

searchable by WISCkey. These restricted inputs can easily be changed, modified, or created as the 

data evolves. The restricted fields falling under the three organizational elements in the schema 

provide an outline defining the what, when, where, and who of resilience data. By adding these pre-

defined fields to the schema, structure is added to the organization that allows for storage and 

management through predictable values.      

4.4 Storage and Management 

The technical way the schema became operationalized affected the way in which data was 

stored and managed. The approach to storage and management is discussed briefly at a high level in 

section 3.4, but the details of how this occurs are the result of that approach. The schema 
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developed for Objective 2 required a minimal upload of metadata, and requested optional metadata 

when available. Once uploaded using WISCkey, the metadata for resilience data will have fields 

dictated by the schema and will be stored and managed within the DBMS MongoDB. How and why 

this occurs is addressed here. 

 Within MongoDB each upload is stored as a single JSON document, with an optional related 

item accompanying it stored outside of MongoDB. This item that accompanies the document is 

stored in its native format (such as jpg, png, xlsx, etc.) within the same directory on the server which 

contains the entire application of WISCkey. Within MongoDB there exist two collections for the 

storage and management of resilience data. One collection holds all user metadata and is titled 

“data”. Figure 12 is an example of a metadata document as it exists within the data collection. 

Notice that within Figure 12 the field keys have been highlighted with their corresponding minimal 

and optional metadata categories. There are 3 fields not highlighted in Figure 12. These consist of an 

_id field created by MongoDB as a unique identifier for the JSON document, and two filename 

paths, which are created in the WISCkey code. The directory filename is the one which is used to 

store the item on the server in its native format. 
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Figure 12 - Disaster resilience metadata document as it exists within MongoDB. Per the 

conventions in figure 11, required fields are highlighted in red and optional fields in blue. 

The second collection, “wisc”, holds a JSON document for each element of WISC. An 

example of an object, variable, and construct document stored in this wisc collection can be found in 

Figure 13.This wisc collection is then linked to the data collection to connect the metadata of wisc, 

which are concepts of resilience, to the metadata of disaster recovery data. This relationship was 

shown in Figure 8. This is done on the server side and is handled through the HTML application code 

in WISCkey. When a user submits a query results are displayed in HTML, each result has an HTML 

hyperlink associated with it. When this hyperlink is clicked, it sends another query to MongoDB, via 

Bottle, and retrieves the corresponding WISC document and displays it as a popup for the user. 

While possible to keep all documents in one collection within the MongoDB database, it was 

chosen to split the resilience metadata and WISC descriptive metadata into separate collections. 

This was done to create a layer of separation between the two to clarify that one was derived from 
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aggregation, and one was derived from the WISC framework. This separation also allows for another 

framework to be added in a separate collection to expand ways of understanding the data. Figure 13 

is an example of the three layers of documents that exists for elements of WISC. The important 

connection between the data collection and the WISC collection is the WISC field inside of data. The 

value of this field acts as a tag that can be used to link the documents from the two separate 

collections. Notice that in Figure 12 the data document has a built capital value for the key of WISC. 

Using the value of this field in the data document one can look up the definition of the relevant 

variable, construct, and/or object of WISC.     

  

 

Figure 13 - Metadata documents for 3 objects of WISC within MongoDB 

Separate from these two collections are static items stored locally on the server alongside 

MongoDB. MongoDB offers a feature called GridFS which would allow for non JSON documents to 

be stored inside the database, but this added an unnecessary level of application code to GET and 

POST items uploaded by a user. The simplest solution is often the most elegant. For this reason, the 

simpler method of keeping the files in their native format, and store them alongside MongoDB was 

chosen. The metadata document is simply tagged with the item’s directory location on the server. 
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This directory location information can be used to POST the item when a user requests it. Upon 

upload, the item is renamed for storage according to a unique hash to ensure each item is unique 

and not conflicting on the server. In order to manage these items once they are uploaded, the 

legacy name upon upload is saved to the metadata. Additionally, a new descriptive name is 

generated based on the field values from the metadata name, author, and spatiotemporal scale.   

 To this point, the most significant management function performed has been querying the 

database to pull data out of MongoDB and disseminating it through WISCkey. To accomplish this, a 

query was designed using MongoDB search syntax. Figure 14 is an example of a query performed 

within MongoDB, and uses inputs from WISCkey, which are highlighted in yellow. The first line is 

specifying to search inside the collection data. The second line (first line in the brackets) specifies to 

search for every document that has an event field with some piece ($regex) of the same value of 

event (as specified by the user), and apply the option i (non-case sensitive). This is done in turn for 

each field represented in Figure 14 by a new line of code. Since the user is only entering one search 

perimeter for the resilience component of WISC, the $or modifier will modify the command to first 

look at the WISC objects. If there is no WISC object that is equal to the input, then it will then look 

for constructs, and lastly variables.  
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Figure 14 - Example of the management code used to query the organization schema. The items 

highlighted in yellow are user inputs and change depending on the search criteria 

The other significant management function that has been used so far is a remove command to 

delete test data earlier in the development process. MongoDB offers a full suite of commands for 

finding, and modifying documents as well. An upload can occur exclusively inside MongoDB but is 

more difficult, time consuming, and prone to error. Rather than using the mongo command line, the 

graphic user interface of WISCkey can be used to upload data. 

The choice of the DBMS MongoDB, and the sequential storage and management based on 

its capabilities, was a large decision. The overall choice of MongoDB was derived by the need to 

have an extremely agile DBMS that could adapt as quickly as the schema changed, which was still in 

development at the time of DBMS selection. 

4.5 Dissemination (WISCkey) 

The results of this particular section are application code. This application code is at the 

heart of WISCkey and connects the HTML coded pages to search, gather, and disseminate data 

within the database. This application code can be found in appendix A. The HTML code associated 

with searching can be found in Appendix B, uploads can be found in Appendix C, and query results in 

Appendix D. Additional help pages are also available from within WISCkey which outline how to use 
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the application(Appendix E) and information on WISC itself (Appendix F). Additional CSS style sheets 

accompany some of the HTML pages and can be found in the appendices denoted with –b. The code 

itself represents the technical details of how these results were achieved and are components that 

make up WISCkey. The most important part which ties everything together is the application code in 

Appendix A.  

The top of the application code starts by loading in the necessary python libraries such as 

pymongo, bottle, urllib2, hashlib. Next, global MongoDB variables are established using the 

MongoClient functionality and a connection is set based on which database to interact with. At the 

end of the API, is a section that establishes the host machine and its IP address, associated port 

numbers, and additional parameters. An example would be run(host='111.111.111.111’, port=1010, 

reloader=True). In this example, reloader=true indicates that the application should be reloaded 

every time there is a save made to the code. In between the library imports and the ending run 

function are a series of bottle containers. These containers run associated sections of python code 

on the server when a designated URL is visited. An example of a bottle container might be 

@route('/upload', method='POST'), which will run if the host webpage is visited. In the working 

example the host page would be 111.111.111.111:1010/upload, and would run any python code in 

that container. Essentially WISCkey is made up of two main containers: an upload and a search 

container. 

 Uploading starts on the client end. A user visits the upload page, seen in Figure 15, which is 

comprised of an HTML web form, CSS, and JavaScript in Appendices C and C-b. The HTML form is a 

series of mostly text inputs with dropdowns for the components of WISC, temporal and spatial 

resolution, and event type, all which are specified by the schema. Each input has an associated 

HTML name, which uses dot notation to specify a category and a subcategory. For example, there 
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are several inputs associated with the source category. In this example the dot notation for source 

category metadata would be source.author, source.url, source.contact, etc. When a user fills in the 

fields and clicks the submit button, the application performs the action of POST to a URL pointing to 

a specified bottle container holding a python script. 
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Figure 15 - Screen capture from the data upload form page 

Once received by the bottle application, the python function that runs inside the Bottle 

container does five main things. The function pulls the upload form input, renames any attached 

files, saves it to the server, parses the form input, creates a JSON document, and finally uploads that 

JSON document to the data collection in MongoDB. The code uses the form input, which is in dot 

notation, and splits the contents up. Anything in the position to the left of the dot becomes a 
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category; anything to the right becomes a subcategory. In the source example mentioned above, 

source becomes the category and within that there are the subcategories of author, url, and 

contact. Each of these subcategories will then store the values that were uploaded via HTML form. 

 Using the upload function, WISCkey converts the form data to a JSON document that fits 

the schema, and allows for the insertion directly into MongoDB. Any associated file attached to the 

metadata has a unique hash key generated; the file is then renamed according to that hash and 

saved to the server. When this is done the data’s original name, file path, recommended name 

based on spatial, temporal, source, descriptive information, and unique hash are all saved to the 

JSON, and uploaded to the mongo server. This will later allow access to that data when one queries 

its associated metadata through WISCkey. 

The search functionality was implemented to make querying the database as simple as 

possible for the user. In order to do this a search page was created to serve as the landing page of 

WISCkey seen in Figure 16. From the landing page a user has the option to filter their search based 

on event name, event type, element of WISC, or what file format they want. The user can fill in all 

boxes to combine search criteria or search by a single field if a broader search is desired. Upon 

submitting the search, WISCkey uses a combination of jQuery, Ajax, JavaScript, and HTML to 

complete the query by accessing MongoDB. 
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Figure 16 - Screen caputre of the home/search page 

When the search button is hit, WISCkey sends the search parameters, which are stored in 

the URL (via Ajax), to an Ajax function located on a results HTML page (Appendix D). This Ajax 

function asynchronously runs the search container in the bottle framework (Appendix A). The search 

container within the bottle framework runs a regular expression query on the data collection within 

MongoDB (Figure 14). A regular expression query eliminates text case sensitivity, as well as returns 

partial matches. Once the query is run, the results of that query are returned as a JSON using the 
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JSON dumps command. Again, Ajax allows that search function within the bottle framework to run 

asynchronously on the results HTML page, while also receiving the JSON return from the search 

container. 

To present the JSON document in a useful manner, the parse results function iterates 

through the returned JSON document. For this standard three-statement JavaScript loop was used 

to display contents in a structured, and formatted, way using HTML. Tertiary statements were used 

to return the optional fields, because they may not exist in the MongoDB. Within the HTML result 

are the hyperlinks discussed in section 4.4 that connect to the WISC collection. When active, these 

bottle containers run a separate query to find the desired WISC element, returning it via HTML 

similar to the data result as seen in Figure 17. These resulting documents are an exploration of 

effective methods of disseminating resilience data. Next, additional conclusions that can be drawn 

from these methods are explored.  
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Figure 17 - Sample return on the data results page 

 

Chapter 5: Conclusion 

5.1 Overview 

The results of this research show that by completing the three research objectives the 

beginning stages of centralizing data about community disaster resilience have been set in place. 

The first research objective was to aggregate resilience data as it currently exists in a decentralized 

fashion. This aggregation was completed at multiple spatial and temporal scales for two case study 

events. The case study events chosen were Hurricane Katrina and the 2007 Lewis County floods. The 

reason these events were chosen was because they offered two very different spatiotemporal 
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scales. In both cases the aggregation was performed in a structured way using the developed 

spatiotemporal hierarchies. 

After a sample set of data was aggregated for the two case studies, an organizational 

schema was created with respect to components of resilience. For the schema, components of 

resilience were drawn from a comprehensive community resilience framework known as WISC. The 

schema uses the pre-defined components of community resilience, the spatiotemporal hierarchies 

developed during the aggregation protocol, source information, and descriptive characteristics to 

organize resilience data items and metadata. With the ability to include items of data plus the 

associated metadata, or just the metadata, this organizational schema provides a way to organize 

useful datasets themselves, or the knowledge to track them down when needed.  

By applying the organizational schema to a stack of data management software, an 

application was built to store, manage, and disseminate those data. The application was called 

WISCkey because it is the key to exploring data based upon its resilient components as defined by 

the framework WISC. The application was built on top of a CentOS operating system using python, 

MongoDB, and bottle. WISCkey facilitates a way to explore geographic data as it relates to 

community resilience and the sources that created them. 

So then how can decentralized geographic data be leveraged to facilitate data-driven 

decision-making about community disaster resilience? Data can be represented by linking 

decentralized sources of data via metadata. These metadata, being grounded with a theoretically-

based schema, help disaster professionals discover general data. Once discovered, these disaster 

professionals can then link and interpret the varieties of disaster and non-disaster specific data 

through the understanding of community resilience. For this research an appropriate stack of 

technologies was chosen to manage these datasets. These technologies include MongoDB and 



 

63 

 

Bottle. Application code including python, html, css, and Java Script was then used to communicate 

between client and server. All together this work operationalizes the theoretical knowledge of 

community resilience using an effective stack of technology to facilitate DDDM and research. It does 

this by cataloging the decentralized sources as they exist now, and offers additional storage 

mechanisms to begin centralizing the data. 

5.2 Conclusion 

This research provides insight into how to aggregate, organize, store, manage and 

disseminate data and metadata for understanding community disaster resilience. This insight 

provides researchers and decision makers with a theoretically-grounded system for facilitating data-

driven decision-making in management and research in regards to community resilience. Such a 

system acts as a roadmap for gathering data, but can also act as a repository. A centralized resilience 

database prototype called WISCkey was developed and loaded with sample data. WISCkey 

operationalizes the theoretical community resilience framework WISC using a simple design and 

effective stack of data management technology. WISCkey serves as an exemplar for how to better 

organize, store, manage, and disseminate community resilience data. Furthermore, this system is 

highly generalizable because it can easily be restructured with new frameworks. These frameworks 

could pertain to any type of decentralized data. This means that the guiding principles behind 

WISCkey could be used to build applications housing geographic data to facilitate understanding of 

other disciplines. 

WISCkey is the only application specifically designed for aiding in the research of community 

resilience. It is also the only application organizing data based on the disaster event it is associated 

with. By leveraging this organizational schema, WISCkey ties in concepts of community resilience 

directly to datasets relevant to specific disasters. These linked concepts can be refined even more by 
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providing the spatiotemporal scales the data is relevant towards. It was determined during the 

aggregation protocol that the spatial resolutions the data can be organized by are national, state, 

metropolitan statistical area, county, city, neighborhood, census designated area, and individual. 

The temporal resolution that data can organized by is totaled, yearly, quarterly, monthly, weekly, 

daily, hourly, or more than once per hour. 

Ideally, as new data becomes available, disaster researchers and managers will load the 

items and metadata into WISCkey using the concepts described above. This collaborative 

environment acts as a centralized location to kick off any number of disaster research projects. As it 

grows and becomes more sophisticated by future work, WISCkey could easily become the 

equivalent of a google search engine, but specifically for disaster resilience data. Furthermore, it 

reaches beyond a simple search engine by facilitating understanding of the datasets through the 

WISC community resilience framework. 

By facilitating the understanding of datasets in this way, this research provides a way of 

representing data in such a way that it is relevant toward community resilience research. It does so 

by using metadata to embed knowledge of a topic into the data and its source, based on a 

theoretical framework. In this research WISC (S. B. Miles 2015) was used to embed knowledge of 

community resilience, but this could be extruded to other disciplines and their theoretical 

frameworks as well. WISCkey exposes a framework to a wide audience, and allows them to 

operationalize it. By operationalizing them, new insight can be gained by examining how different 

people, with different biases, choose to embed knowledge into their data.  

While highly technical in nature, this research is grounded in the discipline of Geography. It 

carefully ties the information of space, time, and event to data. It also borrows heavily on the 

Geographic Approach for understanding how data moves from creation to decision support in the 
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data lifespan. Looking at how data was aggregated outside of a WISCkey type application, it is clear 

that spatiotemporal elements have an effect on readily available data. It was concluded that the 

temporal resolution needed for recovery research and DDDM is primarily determined by the 

intensity of the stress event, while spatial resolution needed for research is determined by the 

geographic extent the stress event directly affected. Again, the exception to this rule is if intensity is 

enough to completely overwhelm the system. 

As providers like Amazon Web Services push projects such as their Open Data Project 

forward, more and more resources are going to be stored efficiently in the cloud and will be freely 

available. The data model Amazon suggests with this project is to provide one location that will 

serve the most up to date datasets. However, this does not solve the problem of navigating the 

datasets for what is relevant toward research. There will inevitably be multiple agents providing 

such services, and none are going to be specific to resilience data. WISCkey and the schema that 

organizes it is the compass to navigate this composite of data. By providing metadata and examples, 

WISCkey takes the theoretical understanding of community resilience and operationalizes it by 

providing insightful methods of aggregating, organizing, storing, managing, and disseminating 

community resilience data.   

5.3 Limitations and Future Research 

The application WISCkey developed and supported through the research performed in this 

thesis serves as a proof of concept, but there is an extensive list of features to be added and things 

to improve upon related to style, functionality, and data collection. 

One of the many strengths of WISCkey is that anyone can contribute data and metadata to 

grow the knowledge base. Unfortunately this open contribution is a limitation of WISCkey as well. 

Because anyone can contribute, there is no guarantee that the entry will be appropriate or relevant. 
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The required fields upon data entry help to ensure all relevant data is included, but can only go so 

far and will certainly not protect against malicious entries. This means that WISCkey will need to be 

monitored to assure data quality is maintained. 

 With respect to style, cascading style sheets (CSS) were used to present Hyper Text Markup 

Language (HTML) more attractively in the browser. For example the data upload form uses CSS to 

outline input boxes once the mouse hovers over them. Multiple styles could be developed and 

tested with consumers of WISCkey to find which design is most appealing and functional to the user. 

At the same time usability surveys could be done that would be used to gauge the actual 

effectiveness of WISCkey. When WISCkey was being designed the HTML and CSS used was under the 

working assumption that the application would mainly be used via desktops. This means the design 

is non-responsive to mobile devices. This acts as a limitation and should be addressed in future work 

 More functionality could be added to WISCkey so it could be integrated into automated 

analytics and data visualization. Within MongoDB, indexes could be established on datasets. A 

normal query that is sent to MongoDB has to scan every document in a collection to select those 

documents that match the query statement. These types of scans are not particularly efficient 

because they require the database to process a large volume of data. Indexes are special data 

structures that store a small portion of a collection that is easy to transverse. By predefining queries 

that will be performed often, the MongoDB can use an index to limit the number of documents it 

must inspect. Establishing these indexes in future work will improve the functionality of WISCkey.  

As it functions now, the application uses regular expressions to query the data which cannot 

be indexed and therefore are less performant. This is fine for the current scale of data within 

WISCkey, but as data grows, these queries should be changed to use non-regular expressions and 

indexes. Perhaps another option is to explore leveraging a supplemental technology such as 
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Elasticsearch ELK stack alongside MongoDB. Elasticsearch provides the ability to move easily beyond 

simple full-text searches, and could improve the results from queries that were previously 

hampered by misspelling and other complicating factors. 

 The investigation of data aggregation provides a set of useful examples but it should not be 

considered comprehensive. Future work should be performed to understand the data workflow 

characteristics of more, and different, types of disasters. In the near term, sample data from a third 

event should be aggregated with a spatiotemporal scale somewhere in the middle of Lewis County 

Floods and Hurricane Katrina. This could in fact generate new information and cause changes to the 

schema designed for this application. This data aggregation could also be completed for multiple 

spatial hierarchies from the same large event. Once this has been completed for several towns, 

counties, states, etc. a comparison could be made to see how data availability varies within an event 

and across geographies. This analysis could identify additional institutional variables that could limit 

data access. This access availability could establish a baseline for which agencies are working toward 

to provide meaningful data. Once a baseline for data management practices is established this could 

be used as a guiding force in how other agencies should operate. 

The technology used in this application works well, but it’s hard to tell if it is the best that 

could be in place. The use of a NoSQL system could be considered somewhat of a controversial 

decision. MongoDB, and NoSQL, in general is still a very new technology and it has yet to be seen 

whether it is a passing fad in file management or a long-term solution. The use of MongoDB was 

convenient because it allowed for development of the schema and the database at the same time. 

Now that the schema is developed it could easily be adapted to a traditional RDBMS. More people 

are familiar with SQL so porting to an RDBMS could make it easier to complete future development 

of WISCkey. Alternatively, a document store could be developed in multiple database technologies 
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and then benchmark tests could be run on upload and download speeds. This not only would add to 

the literature surrounding the choices between traditional and schemaless document stores, but 

would also ensure the fastest application moving forward.    
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Appendix A: Application code  

1. import pymongo   
2. import gridfs   
3. import json   
4. import hashlib   
5. import urllib2   
6. import logging   
7. import os   
8. import bottle   
9. from types import *   
10. from pymongo import MongoClient   
11. from bson.objectid import ObjectId   
12. from bson import json_util   
13.    
14. version = "0.0.1"   
15. app = application = bottle.Bottle()   
16. ###########mongoDB  Global variables################       
17. client = MongoClient()   
18. db = client.test    
19.    
20. ###########Cross Origin Resource Sharing (CORS)################   
21. @app.hook('after_request')   
22. #the server is allowed to deliver the results to any domain   
23. def enable_cors():   
24.     #bottle.response.headers['Access-Control-Allow-Origin'] = '*'   
25.     bottle.response.headers['Access-Control-Allow-

Methods'] = 'GET, POST, OPTIONS'   
26.     #bottle.response.headers['Access-Control-Allow-

Headers'] = 'Origin, Accept, Content-Type, X-Requested-With, X-CSRF-Token'   
27.   
28. @app.route('/', method=['OPTIONS', 'POST', 'GET'])     
29. def home():   
30.     return "You are running version " + version + " of the WISCkey API Server"   
31.        
32.        
33. #############This POSTS information that is uploaded using the DATAForm.html docume

nt on Udrive########        
34. @app.route('/upload', method='POST')   
35. def upload():   
36.     #FileUpload   
37.     """Loads filefield (which is the data from form into the file variable"""   
38.     file = bottle.request.files.get('fileField')   
39.     """If there is actualll a  file uploaded, this creates an object ext   
40.     which is the raw_filename popped after the. which essentially is just the file 

extention"""    
41.     if type(file) is NoneType:   
42.         pass   
43.     else:   
44.         #Naming Conventions   
45.         ext = file.filename.rsplit('.',1)[1]   
46.         """Creates a uniqe hash of the content from file"""   
47.         hash = hashlib.md5(file.file.read()).hexdigest()   
48.         hashname = hash+"."+ext   
49.         file.file.seek(0)   
50.            
51.         """This block pulls from data used as the standard naming convention for fi

les  
52.             This should be used to when returning data to the user, not to post""" 
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53.         spatial = bottle.request.forms.get('spatial')   
54.         temporal = bottle.request.forms.get('temporal')   
55.         author = bottle.request.forms.get('source.author')   
56.         metric = bottle.request.forms.get('indicator.metric')   
57.         name = spatial +"_"+temporal+"_"+author+"_"+metric+"."+ext   
58.         """This strips the name field of any spaces before or after"""   
59.         name = name.strip()   
60.         """This replaces spaces with dashes"""   
61.         name = name.replace(" ", "-")   
62.            
63.         #save the file   
64.         path = '/var/www/wisc/static/doc/'+hashname   
65.         bottle.request.files.get('fileField').save(path)   
66.            
67.     #Mongo Side upload   
68.     """Create an empty dict for data, then create empty lists for each nested objec

t"""   
69.     data = {}   
70.     data["source"] = {}   
71.     data["indicator"] = {}   
72.     data["WISC"] = {}   
73.     data["spatial"] = {}   
74.     """If a file was uploaded add the filenames, if not pass"""   
75.     if type(file) is NoneType:   
76.         pass   
77.     else:   
78.         """All the naming conventions created in the above section"""   
79.         data["fileNames"] = {"directory":path,"original":file.raw_filename,"hash":h

ashname,"new":name,"ext":ext}   
80.     """request the form data"""    
81.     input = bottle.request.forms.dict   
82.     #get rid of keys with empty values   
83.     for key,value in input.items():   
84.         if value ==['']:   
85.             input.pop(key)   
86.         elif value ==['-Please Select-']:   
87.             input.pop(key)   
88.         elif value ==['Select a object to view constructs']:   
89.             input.pop(key)   
90.         elif value ==['Select a construct to view variables']:   
91.             input.pop(key)   
92.         else:   
93.             pass   
94.     for key in input:   
95.         """splits the names based on."""   
96.         loc = key.split(".")   
97.         """if there is only one value aka there was no . use that key"""   
98.         if len(loc) == 1:   
99.             data[loc[0]] = input[key][0]   
100.         #else go through and create two dics with the split values   
101.         elif len(loc) == 2:   
102.             data[loc[0]][loc[1]]= input[key][0]        
103.     data = json.dumps(data)   
104.     if not data:   
105.         bottle.abort(400, 'No data received')   
106.     entity = json.loads(data)   
107.     db['data'].save(entity)   
108.     return """  
109.     data entry successful<br>  
110.     <button onclick="location.href='http://myweb.students.wwu.edu/~kempj2/wi

sckey/dataform.html'">Return to upload</button><br>  
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111.     <button onclick="location.href='http://myweb.students.wwu.edu/~kempj2/wi
sckey'">home</button>  

112.     """   
113.                   
114. @app.route('/search', method=['OPTIONS', 'POST', 'GET'])   
115. def search():   
116.     if bottle.request.method == 'OPTIONS':   
117.         return {}   
118.     #use headers to communicate to the server for what your doing   
119.     bottle.response.headers['Content-Type'] = 'application/json'   
120.     #pulls the data from ajax on results.html and assigns them to a variable

 based on what they are   
121.     event = bottle.request.forms.get('event')   
122.     indicator = bottle.request.forms.get('indicator')   
123.     metric = bottle.request.forms.get('metric')   
124.     hazard = bottle.request.forms.get('hazard')   
125.     ext = bottle.request.forms.get('ext')   
126.        
127.     if ext =="":   
128.         search_parameters = {   
129.             'event':{'$regex':event, '$options':'i'},   
130.             'indicator.type':{'$regex':indicator, '$options':'i'},   
131.             '$or':[   
132.                 {'WISC.object':{'$regex':metric, '$options':'i'}},   
133.                 {'WISC.object1':{'$regex':metric, '$options':'i'}},   
134.                 {'WISC.object2':{'$regex':metric, '$options':'i'}},   
135.                 {'WISC.construct':{'$regex':metric, '$options':'i'}},   
136.                 {'WISC.construct1':{'$regex':metric, '$options':'i'}},   
137.                 {'WISC.construct2':{'$regex':metric, '$options':'i'}},   
138.                 {'WISC.variable':{'$regex':metric, '$options':'i'}},   
139.                 {'WISC.variable1':{'$regex':metric, '$options':'i'}},   
140.                 {'WISC.variable2':{'$regex':metric, '$options':'i'}},   
141.                 ],   
142.             'hazard':{'$regex':hazard, '$options':'i'}   
143.         }   
144.     else:   
145.         search_parameters = {   
146.             'event':{'$regex':event, '$options':'i'},   
147.             'indicator.type':{'$regex':indicator, '$options':'i'},   
148.             '$or':[   
149.                 {'WISC.object':{'$regex':metric, '$options':'i'}},   
150.                 {'WISC.object1':{'$regex':metric, '$options':'i'}},   
151.                 {'WISC.object2':{'$regex':metric, '$options':'i'}},   
152.                 {'WISC.construct':{'$regex':metric, '$options':'i'}},   
153.                 {'WISC.construct1':{'$regex':metric, '$options':'i'}},   
154.                 {'WISC.construct2':{'$regex':metric, '$options':'i'}},   
155.                 {'WISC.variable':{'$regex':metric, '$options':'i'}},   
156.                 {'WISC.variable1':{'$regex':metric, '$options':'i'}},   
157.                 {'WISC.variable2':{'$regex':metric, '$options':'i'}},   
158.                 ],   
159.             'hazard':{'$regex':hazard, '$options':'i'},   
160.             'fileNames.ext':{'$regex':ext, '$options':'i'}   
161.             }   
162.    
163.     cur = list(db['data'].find(search_parameters))     
164.        
165.        
166.     # dropped   "for item in cur:item.pop("_id")" and use the default instea

d which preserves the bson   
167.     if cur ==[]:   
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168.         cur =[{"indicator" : { "metric" : "", "type" : "" }, "title" : "No M
etadata Available", "temporal" : "", "WISC" : {  }, "hazard" : "", "summary" : "", 
"source" : { "author" : "" }, "spatial" : "", "event" : "" }]   

169.         return json.dumps(cur, default=json_util.default)   
170.     else:   
171.         return json.dumps(cur, default=json_util.default)      
172.   
173. @app.route('/download/<hash>', method=['OPTIONS', 'POST', 'GET'])   
174. def server_static(hash):   
175.     print hash   
176.     return bottle.static_file(hash, root='/var/www/wisc/static/doc/', downlo

ad=hash)   
177.   
178.       
179. @app.route('/wiscinfo/<wisc>', method=['OPTIONS', 'POST', 'GET'])   
180. def get_services(wisc):   
181.     search_parameters= {'key':{'$regex':wisc, '$options':'i'}}   
182.    
183.     cur = list(db['wisc'].find(search_parameters))   
184.        
185.     return json.dumps(cur, default=json_util.default)   
186.    
187.    
188. """Run the function on this host using this port reload every time it is edi

ted"""     
189. if __name__ == '__main__':   
190.     bottle.run(app, host='140.160.114.193', port=8080, reloader=True)   

Appendix B: Landing Page HTML 

1.  <!DOCTYPE html>   
2. <html>   
3. <head>   
4.     <script src="http://code.jquery.com/jquery-1.10.1.min.js"></script>   
5.     <link rel="stylesheet" href="IndexStyle.css">   
6.        
7. </head>   
8.    
9. <body>   
10.     <div id='page'>   
11.         <div class='logo'>   
12.             <div class='picture'>   
13.                 <img src="http://myweb.students.wwu.edu/~kempj2/wisckey/Logo4.png"/

>   
14.             </div>   
15.         </div>   
16.         <form id="search-form" name="search-

form" action="results.html" method="GET" enctype="multipart/form-data">      
17.             <input type="text" placeholder="Event name" name="event" id="event" /> 

<img src="Info-03.png" onclick="$('#info1').toggle()" /><br />   
18.                 <div id="info1" style="display:none">What event are you interested 

in? This is what the news would call the event if they were reporting on the event.
 The popular name that you would use to search scholarly articles pertaining to the
 event. Example Hurricane Katrina</div>   

19.             <input type="text" placeholder="Hazard type" name="hazard" id="hazard">
 <img src="Info-03.png" onclick="$('#info2').toggle()" /><br />   

20.                 <div id="info2" style="display:none">What type of hazard are you in
terested in? This is the initial hazard that caused a disaster when it collided wit
h human development. The types could be biological threat, chemical threat, drought
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, earthquake,fire, flood, heat, hurricane, landslide, radiation, tornado, tsunami, 
volcano, wild fire, or winter storm.</div>   

21.             <input type="text" placeholder="Recovery indicator" name="indicator" id
="indicator"> <img src="Info-03.png" onclick="$('#info3').toggle()" /><br />   

22.                 <div id="info3" style="display:none">Recovery indicator is the broa
d category of data you are looking for. What sector does your data below to? Some e
xamples would be economic, transportation, demographics, etc. </div>   

23.             <input type="text" placeholder="Element of WISC" name="metric" id="metr
ic"> <img src="Info-03.png" onclick="$('#info4').toggle()" /><br />   

24.                 <div id="info4" style="display:none">What componenet of WISC does t
he data you are looking for pertain to? It can be an object, construct, or variable
. There are 37 components of WISC you could search for. For more information on the
 community resiliece framework WISC please click on the information tab below</div>
   

25.             <input type="text" placeholder="file type" name="ext" id="ext"> <img sr
c="Info-03.png" onclick="$('#info5').toggle()" /><br />   

26.                 <div id="info5" style="display:none">If a sample dataset was upload
ed a source, you can search the directory for the types of documents you are intere
sted in. A few exampels could be pdf, doc, csv, jpg, etc.</div>   

27.             <br><button class="submit" id="submit">Submit search criteria</button> 
  

28.         </form>   
29.         <button onclick="location.href='http://myweb.students.wwu.edu/~kempj2/wisck

ey/dataform.html'">Upload Metadata</button>     
30.         <button onclick="location.href='http://myweb.students.wwu.edu/~kempj2/wisck

ey/wisc'">What is WISC?</button>   
31.         <button onclick="location.href='http://myweb.students.wwu.edu/~kempj2/wisck

ey/help.html'">Help file</button>   
32.    
33. </body>   
34.    
35. </html>   

Appendix B-b: Landing page CSS 

1. #page{   
2.     width: 624px;   
3.     margin: 0 auto;   
4.     margin-top:20px;   
5. }   
6. #search-form{   
7.     padding-top:60px;   
8.     padding-bottom:0px   
9.     }      
10. input, textarea {    
11.     padding: 9px;     
12.     border: solid 2px #C5C5C5;     
13.     outline: 0;     
14.     font: normal 13px/100% Verdana, Tahoma, sans-serif;     
15.     width: 500px;     
16.     background: #FFFFFF url('bg_form.png') left top repeat-x;     
17.     background: -webkit-gradient(linear, left top, left 25, from(#FFFFFF), color-

stop(4%, #EEEEEE), to(#FFFFFF));     
18.     background: -moz-linear-gradient(top, #FFFFFF, #EEEEEE 1px, #FFFFFF 25px);     
19.     box-shadow: rgba(0,0,0, 0.1) 0px 0px 8px;     
20.     -moz-box-shadow: rgba(0,0,0, 0.1) 0px 0px 8px;     
21.     -webkit-box-shadow: rgba(0,0,0, 0.1) 0px 0px 8px;     
22.   }   
23. #info1,#info2,#info3,#info4 ,#info5{   
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24.     width: 500px;   
25.     text-align: left;   
26.     display:block;   
27. }   
28.        
29. input:hover, textarea:hover,     
30. input:focus, textarea:focus {      
31.     border-color: #606060;      
32.     -webkit-box-shadow: rgba(0, 0, 0, 0.15) 0px 0px 8px;     
33.   }    
34.    
35. button {     
36.     width: auto;     
37.     padding:9px;       
38.     background: #617798;     
39.     border: 0;     
40.     font-size: 14px;     
41.     color: #FFFFFF;     
42.     -moz-border-radius: 5px;     
43.     -webkit-border-radius: 5px;   
44.     float:left;   
45.     margin-right:5px;   
46.     cursor:pointer;   
47.     cursor:hand;   
48. }   
49. #submit{     
50.     width: auto;     
51.     padding:9px;       
52.     background: #617798;     
53.     border: 0;     
54.     font-size: 14px;     
55.     color: #FFFFFF;     
56.     -moz-border-radius: 5px;     
57.     -webkit-border-radius: 5px;   
58.     float:left;   
59.     margin-right:5px;   
60.     cursor:pointer;   
61.     cursor:hand;   
62.     }     
63. .logo {   
64.        
65.     padding-bottom:30px;   
66.     background: #617798;   
67.     width:525px;   
68.     border: 1;     
69.     font-size: 14px;     
70.     color: #FFFFFF;     
71.     -moz-border-radius: 5px;     
72.     -webkit-border-radius: 5px;   
73.     }   
74. .picture{   
75.     padding-left:102px;   
76.     padding-top:31px;   
77.     }   
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Appendix C: Upload page HTML 

1. <!DOCTYPE html>   
2.    
3. <head>   
4.   <meta charset='UTF-8'>   
5.   <script src="http://ajax.googleapis.com/ajax/libs/jquery/1/jquery.min.js"></scrip

t>   
6.   <link rel="stylesheet" href="FormStyle.css">   
7.      
8. </head>   
9.    
10. <body>   
11.     <div id='page'>   
12.         <h1>Tell us about your data sources</h1>   
13.         <p>   
14.             Please enter metadata regarding where one can find post-

disaster recovery   
15.             data. At the very least you should indicate a thoughtful title, the eve

nt the data pertains to,   
16.             the type of event it is, a descriptive summary, and the source where th

e data can be found.    
17.             Fields with an astrisk (*) are required   
18.         </p>   
19.              
20.         <form name="input" action="http://140.160.114.190/proxy/proxy.ashx?http://1

40.160.114.193/upload" method="POST" enctype="multipart/form-data">   
21.             <div class="row header">Descriptive information</div>   
22.             <div class="row">   
23.                 <div class="col50">   
24.                     <label for="event">Name of Associated event<a>*</a></label>   
25.                     <input id="event" placeholder="Hurricane Katrina" type="text" n

ame="event" class='field' required></input>   
26.                        
27.                 </div>   
28.                 <div class="col50">   
29.                     <label for="type">Type of associated event<a>*</a></label>   
30.                     <select id="hazard" name="hazard" class='select' required><br> 

  
31.                         <option value="">-Please Select-</option>   
32.                         <option value="biological">Biological Threat</option>   
33.                         <option value="chemical">Chemical Threat</option>   
34.                         <option value="drought">Drought</option>   
35.                         <option value="earthquake">Earthquake</option>   
36.                         <option value="fire">Fire</option>   
37.                         <option value="flood">Flood</option>   
38.                         <option value="heat">Heat</option>   
39.                         <option value="hurricane">Hurricane</option>   
40.                         <option value="landslide">Landslide</option>   
41.                         <option value="radiation">Radiation</option>   
42.                         <option value="tornado">Tornado</option>   
43.                         <option value="tsunami">Tusnami</option>   
44.                         <option value="volcano">Volcano</option>   
45.                         <option value="wildfires">Wildfires</option>   
46.                         <option value="winter.storm">Winter Storm</option>     
47.                     </select>   
48.                 </div>   
49.             <div class="row">   
50.                 <div class="col50">   
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51.                     <label for="title">Descriptive title of data available from sou
rce<a>*</a></label>   

52.                     <input id='title' placeholder="August Road Closure data for Orl
eans Parish" type="text" name="title" class='field' required></input>           

53.                 </div>   
54.                 <div class="col50">   
55.                     <label for="file">File</label>   
56.                     <input id="file" type="file" name="fileField" class="file"></in

put>   
57.                        
58.                 </div>   
59.             <div class="row">   
60.                 <div class="col100">   
61.                     <label for="summary">Summary of source and data available<a>*</

a></label>   
62.                     <textarea id="summary" name="summary" class='notes' required>   
63.                 </div>   
64.             </div>   
65.             <div class="row header">Descriptive information associated with datasou

rce</div>   
66.             <div class="row">   
67.                 <div class="col50">   
68.                     <label for="indicator type">Associated indicator type<a>*</a></

label>   
69.                     <input id="indicator type" placeholder="Transportation" type="t

ext" name="indicator.type" class='field' required></input>   
70.                 </div>   
71.                 <div class="col50">   
72.                     <label for="indicator metric">Associated indicator metric<a>*</

a></label>   
73.                     <input id="indicator metric" placeholder="Road Closure"  type="

text" name="indicator.metric" class='field' required></input>   
74.                 </div>   
75.             <div class="row header">Elements of WISC that apply to source  <a href=

"http://myweb.students.wwu.edu/~kempj2/wisckey/wisc" target="_blank"><img src="Info
-03.png" alt="WISC"></a></div>   

76.             <div class="row">   
77.                 <div class="col33">   
78.                     <div class="row header">Element 1<a>*</a></div>   
79.                     <label for="object">Object</label><select id="object" name="WIS

C.object" required>   
80.                         <option value="" >-Please Select-</option>   
81.                         <option value="infrastructure">Infrastructure</option>   
82.                         <option value="community">Community</option>       
83.                     </select>   
84.                     <label for="construct">Construct</label><select id="construct" 

name="WISC.construct" required>   
85.                         <option>Select a object to view constructs </option>   
86.                     </select>   
87.                     <label for="variable">Variable</label><select id="variable" nam

e="WISC.variable" required>   
88.                         <option>Select a construct to view variables</option>   
89.                     </select>   
90.                 </div>   
91.                 <div class="col33">   
92.                     <div class="row header">Element 2</div>   
93.                     <label for="object">Object</label><select id="object1" name="WI

SC.object1">   
94.                         <option value="" >-Please Select-</option>   
95.                         <option value="infrastructure">Infrastructure</option>   
96.                         <option value="community">Community</option>       
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97.                     </select>   
98.                     <label for="construct">Construct</label><select id="construct1"

 name="WISC.construct1">   
99.                         <option>Select a object to view constructs </option>   
100.                     </select>   
101.                     <label for="variable">Variable</label><select id="variab

le1" name="WISC.variable1">   
102.                         <option>Select a construct to view variables</option

>   
103.                     </select>   
104.                 </div>   
105.                 <div class="col33">   
106.                     <div class="row header">Element 3</div>   
107.                     <label for="object">Object</label><select id="object2" n

ame="WISC.object2">   
108.                         <option value="" >-Please Select-</option>   
109.                         <option value="infrastructure">Infrastructure</optio

n>   
110.                         <option value="community">Community</option>       
111.                     </select>   
112.                     <label for="construct">Construct</label><select id="cons

truct2" name="WISC.construct2">   
113.                         <option>Select a object to view constructs </option>

   
114.                     </select>   
115.                     <label for="variable">Variable</label><select id="variab

le2" name="WISC.variable2">   
116.                         <option>Select a construct to view variables</option

>   
117.                     </select>   
118.                 </div>   
119.             <div class="row header">Finest resolution(accuracy) of data offe

red from source</div>   
120.             <div class="row">   
121.                 <div class="col50">   
122.                 <label for="spatial">Spatial Resolution<a>*</a></label><sele

ct required id="spatial" name="spatial" class='select'><br>   
123.                         <option value="" >-Please Select-</option>   
124.                         <option value="national">National</option>   
125.                         <option value="state">State</option>   
126.                         <option value="msa">Metropolitan Statistical Area</o

ption>   
127.                         <option value="county">County</option>   
128.                         <option value="city">City</option>   
129.                         <option value="neighborhood">Neighborhood</option>   
130.                         <option value="csa">Census Designated Area</option> 

  
131.                         <option value="household">Household</option>   
132.                         </select>   
133.                 </div>   
134.                 <div class="col50">   
135.                 <label for="temporal">Temporal Resolution<a>*</a></label><se

lect id="temporal" name="temporal" class='select' required><br>   
136.                         <option value="" >-Please Select-</option>   
137.                         <option value="totaled">Totaled</option>   
138.                         <option value="yearly">Yearly</option>   
139.                         <option value="quarterly">Quarterly</option>   
140.                         <option value="monthly">Monthly</option>   
141.                         <option value="weekly">Weekly</option>   
142.                         <option value="daily">Daily</option>   
143.                         </select>   
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144.                 </div>   
145.             <div class="row header">Author of the dataset</div>   
146.             <div class="row">   
147.                 <div class="col50">   
148.                     <label for="source author">Authoring person, agency, or 

group<a>*</a></label>   
149.                     <input id="source author" placeholder="Louisiana DOTD" t

ype="text" name="source.author" class='field' required></input>   
150.                 </div>   
151.                 <div class="col50">   
152.                     <label for="source contact">Author Contact information</

label>   
153.                     <input id="source contact" placeholder="John Doe, (111)1

11-
1111, Jdoe@example.com" type="text" name="source.contact"class='field'></input>   

154.                 </div>   
155.             </div>   
156.             <div class="row">   
157.                 <div class="col50">   
158.                     <label for="source url">Source URL</label>   
159.                     <input id="source url"placeholder="www.exmple.com/dotd/r

oad/closure" type="text" name="source.url"class='field'></input>   
160.                 </div>   
161.                 <div class="col50">   
162.                     <label for="source publisher">Source Publisher</label>   
163.                     <input id="source publisher"placeholder="BigPublishing U

nlimited" type="text" name="source.publisher"class='field'></input>   
164.                 </div>   
165.             </div>   
166.             <div class="row">   
167.                 <div class="col50">   
168.                     <label for="source journal">Primary Source</label>   
169.                     <input id="source journal" placeholder="Journal of Scien

ce" type="text" name="source.journal"class='field'></input>   
170.                 </div>   
171.                 <div class="col50">   
172.                     <label for="source date">Source Date</label>   
173.                     <input id="source date" type="date" name="source.date"cl

ass='field'></input>   
174.                 </div>   
175.             </div>   
176.             <div class="row">   
177.                 <label for="submit"></label>   
178.                 <button class="submit" value="Submit">Submit</button>      
179.             </div>   
180.                  
181.         </form>   
182.     </div>   
183.           <script>   
184.             //This sets the list of all the difrerent elements of WISC   
185.                 var selects = {   
186.                     "infrastructure": ["-Please Select-

","Capital","Services"],   
187.                     "community": ["-Please Select-","Identity","Well-

being"],   
188.                     "dynamic":["-Please Select-

","Metabolism","Geography","Sufficency"],   
189.                     "capital":["-Please Select-

","Social","Political","Human","Economic","Built","natural"],   
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190.                     "services":["-Please Select-
","Rivalrousness","Excludability","Marketability","Redundancy","Substitutability","
Robustness","Gravity","Centrality","Connectedness"],   

191.                     "identity":["-Please Select-
","Equity","Continuity","Esteem","Efficacy","Empowerment","Distinctiveness","Divers
ity","Adaptability"],   

192.                     "well-being":["-Please Select-
","Satisfaction","Affiliation","Autonomy","Health","Security","Material Needs"],   

193.                     "metabolism":["-Please Select-
","Activities of Governence","Intervention","Disruption","Provision","Consumption"]
,   

194.                     "geography":["-Please Select-
","Space","Time","Scale","Topology"],   

195.                     "sufficency":["-Please Select-
","Supply","Demand","Speed","Adequacy","Externality"]   

196.    
197.                        
198.                 }   
199.                 //Set an event listener on the objects dropdown   
200.                 $('#object').on('change', function(){   
201.                     //set the construct to empty   
202.                     $('#construct').empty();   
203.                     //select the value from the object dropdown   
204.                     $.each(selects[$('#object').val()], function(i,value) { 

  
205.                         //append the value from object drop down and get the

 value from selects   
206.                         $('#construct').append("<option>" + value + "</optio

n>")   
207.                     });   
208.                        
209.                 })   
210.                 //this second function is a listener for the second dropdown

. Check for a change in the construct dropdown   
211.                 $('#construct').on('change', function(){   
212.                     //set third (variable) drop down to empty   
213.                     $('#variable').empty();   
214.                     //for the value you chose in construct convert to lowerc

ase and run function   
215.                     $.each(selects[$('#construct').val().toLowerCase()], fun

ction(i,value) {   
216.                         //append the value from the construct to the variabl

e.   
217.                         $('#variable').append("<option>" + value + "</option

>")   
218.                     });   
219.                 })   
220.                 //Set an event listener on the objects dropdown(1)   
221.                 $('#object1').on('change', function(){   
222.                     //set the construct to empty   
223.                     $('#construct1').empty();   
224.                     //select the value from the object dropdown   
225.                     $.each(selects[$('#object1').val()], function(i,value) {

   
226.                         //append the value from object drop down and get the

 value from selects   
227.                         $('#construct1').append("<option>" + value + "</opti

on>")   
228.                     });   
229.                        
230.                 })   
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231.                 //this second function is a listener for the second dropdown
. Check for a change in the construct dropdown(1)   

232.                 $('#construct1').on('change', function(){   
233.                     //set third (variable) drop down to empty   
234.                     $('#variable1').empty();   
235.                     //for the value you chose in construct convert to lowerc

ase and run function   
236.                     $.each(selects[$('#construct1').val().toLowerCase()], fu

nction(i,value) {   
237.                         //append the value from the construct to the variabl

e.   
238.                         $('#variable1').append("<option>" + value + "</optio

n>")   
239.                     });   
240.                 })   
241.                 //Set an event listener on the objects dropdown(2)   
242.                 $('#object2').on('change', function(){   
243.                     //set the construct to empty   
244.                     $('#construct2').empty();   
245.                     //select the value from the object dropdown   
246.                     $.each(selects[$('#object2').val()], function(i,value) {

   
247.                         //append the value from object drop down and get the

 value from selects   
248.                         $('#construct2').append("<option>" + value + "</opti

on>")   
249.                     });   
250.                        
251.                 })   
252.                 //this second function is a listener for the second dropdown

. Check for a change in the construct dropdown(2)   
253.                 $('#construct2').on('change', function(){   
254.                     //set third (variable) drop down to empty   
255.                     $('#variable2').empty();   
256.                     //for the value you chose in construct convert to lowerc

ase and run function   
257.                     $.each(selects[$('#construct2').val().toLowerCase()], fu

nction(i,value) {   
258.                         //append the value from the construct to the variabl

e.   
259.                         $('#variable2').append("<option>" + value + "</optio

n>")   
260.                     });   
261.                 })   
262.                    
263.             </script>   
264.    
265. </body> 

 

Appendix C-b: Upload page CSS 

1. body {   
2.   text-align:left;   
3. }   
4. h1{   
5.     text-align:left;   
6. }   
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7. p{   
8.     text-align:left;   
9.     font-weight:bold;   
10.     padding-top:0px;   
11.     margin-top:16px;   
12.        
13. }   
14. textarea{   
15.     -webkit-box-sizing: border-box;   
16.     -moz-box-sizing: border-box;   
17.     box-sizing: border-box;   
18. }   
19.    
20. #page{   
21.     width: 950px;   
22.     margin: 0 auto;   
23. }   
24.    
25.    
26. .field {   
27.   padding: 4px;    
28.   border: solid 1px #C5C5C5;     
29.   outline: 0;     
30.   font: normal 13px/100% Verdana, Tahoma, sans-serif;     
31.   width: 300px;   
32.   }   
33. .Rfield {   
34.   padding: 4px;    
35.   border: solid 1px #E87B7B;     
36.   outline: 0;     
37.   font: normal 13px/100% Verdana, Tahoma, sans-serif;     
38.   width: 300px;      
39. }   
40. .notes {   
41.   padding: 4px;    
42.   border: solid 1px #C5C5C5;     
43.   outline: 0;     
44.   font: normal 13px/100% Verdana, Tahoma, sans-serif;     
45.   width: 625px;   
46.   height:100px;   
47. }   
48. select {   
49.   border: solid 1px #C5C5C5;   
50.   padding:2.5px;   
51.   outline: 0;     
52.   font: normal 13px/100% Verdana, Tahoma, sans-serif;    
53. }   
54. input:hover, textarea:hover,     
55. input:focus, textarea:focus {      
56.   border-color: #606060;      
57.   -webkit-box-shadow: rgba(0, 0, 0, 0.15) 0px 0px 8px;   
58. }   
59.    
60. button.submit {    
61.        
62.     width: 150px;     
63.     padding:9px;       
64.     background: #617798;     
65.     border: 0;     
66.     font-size: 14px;     
67.     color: #FFFFFF;     
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68.     -moz-border-radius: 5px;     
69.     -webkit-border-radius: 5px;   
70.     float:left;   
71.     margin-right:5px;   
72.     cursor:pointer;   
73.     cursor:hand;   
74.      
75. }   
76.    
77. .radio {   
78.   padding:4px;   
79. }   
80. label {   
81.   display: block;   
82.   padding-top:8px;   
83.   width: 300px;   
84.   text-align:left;   
85.   margin-right: 10px;   
86. }   
87.    
88. .header {   
89.     font-weight: bold;   
90.     padding-top:20px;   
91.     padding-bottom:20px;   
92. }   
93. .file{   
94.   border:20px;   
95. }   
96.    
97. .row {   
98.     clear: both;   
99. }   
100.    
101. .col33{   
102.     width: 310px;   
103.     float: left;   
104. }   
105.    
106. .col50{   
107.     width: 350px;   
108.     float: left;   
109. }   
110.    
111. .col100{   
112.     width: 960px;   
113.     float: left;   
114. }   
115. a{   
116.     color:#FF0000;   
117.    
118. }   

 

Appendix D: Results page 

1. <!DOCTYPE html>   
2. <html>   
3. <head>   
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4.     <title>WiskKey Results</title>   
5.     <script src="http://code.jquery.com/jquery-1.10.1.min.js"></script>   
6.     <link rel="stylesheet" href="ResultStyle.css">   
7.        
8.        
9.     <script>   
10.         function getURLParameter(name) {   
11.             return decodeURIComponent((new RegExp('[?|&]' + name + '=' + '([^&;]+?)

(&|#|;|$)').exec(location.search)||[,""])[1].replace(/\+/g, '%20'))||null;   
12.         }   
13.                    
14.    
15.         function parseResults(results) {   
16.                
17.             console.log(results);   
18.             for (var i = 0; i < results.length; i++) {   
19.                 var html = '';   
20.                 html += "<div>";   
21.                 html += "<b>" + results[i].title + "</b>";   
22.                 html += "<br><i>Hazard Type:</i> " + results[i].hazard;   
23.                 html += "<br><i>Associated event:</i> " + results[i].event;   
24.                 html += "<br><i>Source:</i> " + results[i].source.author;   
25.                 html += "<br><i>Summary:</i> " + results[i].summary;   
26.                 html += "<br><i>Recovery Indicator:</i> " + results[i].indicator.ty

pe;   
27.                 html += "<br><i>Metric within indicator:</i> " + results[i].indicat

or.metric;   
28.                 html += "<br><i>Spatial Resolution:</i> " + results[i].spatial;   
29.                 html += "<br><i>Temporal Resolution:</i> " + results[i].temporal +"

<br>";              
30.                    
31.                 /// TERNARY:   
32.                 // Condition ? true : false   
33.                 html += results[i].source.publisher ? "<i>Publisher:</i> " + result

s[i].source.publisher   + "<br>" : "";   
34.                 html += results[i].source.author ? "<i>Author:</i> " + results[i].s

ource.author   + "<br>" : "";   
35.                 html += results[i].source.url ? "URL: " + results[i].source.url   +

 "<br>" : "";   
36.                 ///journal is now priamry author via scott's edits   
37.                 html += results[i].source.journal ? "<i>Primary Source:</i> " + res

ults[i].source.journal   + "<br>" : "";   
38.                 html += results[i].source.contact ? "<i>Contact:</i> " + results[i]

.source.contact   + "<br>" : "";   
39.                 html += results[i].source.date ? "<i>Date:</i> " + results[i].sourc

e.date   + "<br>" : "";   
40.                    
41.                 html += results[i].notes ? "<i>Notes:</i> " + results[i].notes   + 

"<br>" : "";   
42.                 html +="<i>WISC Objects:</i>"   
43.                 html += results[i].WISC.object ? "<br>    " + "<a href='http://140.

160.114.193/wiscinfo/" + results[i].WISC.object+ "'>"+results[i].WISC.object+"</a>"
:"";   

44.                 html += results[i].WISC.object1 ? "<br>    " + "<a href='http://140
.160.114.193/wiscinfo/" + results[i].WISC.object1+ "'>"+results[i].WISC.object1+"</
a>":"";   

45.                 html += results[i].WISC.object2? "<br>    " + "<a href='http://140.
160.114.193/wiscinfo/" + results[i].WISC.object2+ "'>"+results[i].WISC.object2+"</a
>":"";   

46.                 html +="<br><i>WISC Constructs:</i>"   
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47.                 html += results[i].WISC.construct ? "<br>    " + "<a href='http://1
40.160.114.190/proxy/proxy.ashx?http://140.160.114.193/wiscinfo/" + results[i].WISC
.construct+ "'>"+results[i].WISC.construct+"</a>":"";   

48.                 html += results[i].WISC.construct1 ? "<br>    " + "<a href='http://
140.160.114.190/proxy/proxy.ashx?http://140.160.114.193/wiscinfo/" + results[i].WIS
C.construct1+ "'>"+results[i].WISC.construct1+"</a>":"";   

49.                 html += results[i].WISC.construct2 ? "<br>    " + "<a href='http://
140.160.114.190/proxy/proxy.ashx?http://140.160.114.193/wiscinfo/" + results[i].WIS
C.construct2+ "'>"+results[i].WISC.construct2+"</a>":"";   

50.                 html += "<br><i>WISC Variables:</i>"   
51.                 html += results[i].WISC.variable ? "<br>    " + "<a href='http://14

0.160.114.190/proxy/proxy.ashx?http://140.160.114.193/wiscinfo/" + results[i].WISC.
variable+ "'>"+results[i].WISC.variable+"</a>":"";   

52.                 html += results[i].WISC.variable1 ? "<br>    " + "<a href='http://1
40.160.114.190/proxy/proxy.ashx?http://140.160.114.193/wiscinfo/" + results[i].WISC
.variable1+ "'>"+results[i].WISC.variable1+"</a>":"";   

53.                 html += results[i].WISC.variable2 ? "<br>    " + "<a href='http://1
40.160.114.190/proxy/proxy.ashx?http://140.160.114.193/wiscinfo/" + results[i].WISC
.variable2+ "'>"+results[i].WISC.variable2+"</a>":"";   

54.                    
55.                 //link to bottle that will serve up the document   
56.                 html += results[i].fileNames ? "<br>Sample: " + "<a href='http://14

0.160.114.190/proxy/proxy.ashx?http://140.160.114.193/download/" + results[i].fileN
ames.hash + "'>" + results[i].fileNames.new +"</a>" : "";   

57.                    
58.                 html += "<br>____________________________________________________";

   
59.    
60.                 html += "</div><br>";   
61.                
62.                 $('#results').append(html);   
63.             }   
64.         }   
65.                
66.                
67.                
68.            
69.    
70.            
71.         $.ajax({   
72.             type: "POST",   
73.             url: 'http://140.160.114.190/proxy/proxy.ashx?http://140.160.114.193/se

arch',   
74.             data: {   
75.                 'event' : getURLParameter('event'),   
76.                 'indicator' : getURLParameter('indicator'),   
77.                 'hazard' : getURLParameter('hazard'),   
78.                 'metric' : getURLParameter('metric'),   
79.                 'ext': getURLParameter('ext')   
80.             },   
81.             success: parseResults,   
82.             dataType: 'json'   
83.                
84.         });   
85.     
86.    
87.     </script>   
88.        
89.        
90. </head>   
91.    
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92. <body>   
93.    
94. <div id="results">   
95.    
96. </div>   
97.    
98.    
99.    
100. </body>   
101. </html>   

Appendix E: Help documentation HTML 

1. <!DOCTYPE html>   
2. <html>   
3. <head>   
4.     <link rel="stylesheet" href="HelpStyle.css">   
5. </head>   
6. <body>   
7.    
8.     <h1>Welcome to the help documentation!</h1>   
9.     <div>   
10.         This application is meant as a proof of concept for a better way of conduct

ing disaster recovery  by providing a metadata repository    
11.         to aid in research. What is metadata? Great question! Metadata is data abou

t data. Essentially each document stored in this application is a    
12.         metadata document which provides valuable information on where to find a pa

rticular dataset.   
13.     </div>   
14.     <div>   
15.         More than providing a roadmap this application is about imbedding useful, s

earchable,    
16.         information within the metadata. Information like at what scale both tempor

ally and spatially a    
17.         particular source of information is useful at.   
18.     </div>   
19.     <div>   
20.         The application goes further by incorporating elements of community resilie

nce within the data    
21.         as well. This is useful because it promotes the use of these the WISC frame

work in helping    
22.         emergency management and researchers apply the theory to their work. The go

al of applying such a   
23.         framework in the overall well-being of a community   
24.     </div>   
25.     <h1> Searching:</h1>   
26.     <div>   
27.     Submitting a search to the application is very easy. Fill in one, or a combinat

ion, of  any of the   
28.     5 search boxes on the WISCkey homepage. If you are unsure of what each box is a

sking for click    
29.     the info button to the right of that search box.   
30.     </div>   
31.     <h1>Uploading:</h1>   
32.     <div>   
33.     Just as easy as searching uploading only requires a little bit of necessary inf

ormation. Each    
34.     mandatory field is marked with a red asterisk. Additional fields while unnecess

ary are highly    
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35.     recommended. Remember that this is not an actual piece of data, this is metadat
a, so itâ€™s almost    

36.     like you are writing a citation for data you have found.   
37.     </div>   
38.    
39. </body>   
40. </html>   

 

Appendix E-b: Help documentation CSS 

1. body {   
2.     margin: 0 auto;   
3.        
4.     width:800px;   
5.    
6.     }   
7.    
8. div{   
9.     margin-top:50px;   
10.     margin-bottom:50px;   
11.     text-align:justify;   
12.     }   
13.        
14. h1{   
15.     text-align:center;   
16.     padding:9px;       
17.     background: #617798;     
18.     border: 0;     
19.     font-size: 20px;     
20.     color: #FFFFFF;     
21.     -moz-border-radius: 5px;     
22.     -webkit-border-radius: 5px;   
23.     margin-right:5px;   
24.    
25.     }   

 

Appendix F: WISC documentation HTML 

1. <!DOCTYPE html>   
2. <html>   
3. <head>   
4.     <link rel="stylesheet" href="WISC_index_style.css">   
5.     <meta charset=utf-8 />   
6.     <title>WISC</title>   
7. </head>   
8. <body>   
9.   <div class="img-container">   
10.     <div class="hot-spots">   
11.       <div class="hot-spot settlment"> Human Settlement   
12.         <div class="info">   
13.         </div>   
14.       </div>   
15.       <div class="hot-spot infrastructure"> Infrastructure   
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16.         <div class="info">   
17.         </div>   
18.       </div>   
19.       <div class="hot-spot community"> Community   
20.         <div class="info">   
21.         </div>   
22.       </div>   
23.       <div class="hot-spot well-being">Well-Being   
24.         <div class="info">   
25.           <h2>Well-Being</h2>   
26.           <p>Well-being is a high and non-

disparate level of mental and behavioral health, role functioning, and quality of l
ife. The goal of community resilience should go beyond safety or functioning and ul
timately ensure the well-being of different communities and their members. Well-
being is more than just market based measures and is both an appropriate and necess
ary standard.  There is a distinct separation within the variables of well-
being between agents with the capabilities and those with achievements.</p>   

27.         </div>   
28.       </div>   
29.       <div class="hot-spot identity">Identity   
30.         <div class="info">   
31.           <h2>Identity</h2>   
32.           <p>Community identity has been empirically linked to indicators and, thus

, variables of well-
being. Identity provides a strong connection to root causes of social vulnerability
 because it constitutes a foundation for a variety of social effects, from humansâ€
™ ability to feel, act, and think as members of a social group to intergroup behavi
ors such as discrimination, confrontation, and cooperation. </p>   

33.         </div>   
34.       </div>   
35.       <div class="hot-spot services">Services   
36.         <div class="info">   
37.           <h2>Services</h2>   
38.           <p>A service is the benefits people derive from capital, where the end or

 goal is sustainable human well-
being. Services are how individuals and communities access and utilize capital towa
rds promotion of their well-being. </p>   

39.         </div>   
40.       </div>   
41.       <div class="hot-spot capitals">Capitals   
42.         <div class="info">   
43.           <h2>Capitals</h2>   
44.           <p>Capital refers to a stock of assets used to create or obtain additiona

l assets or derive services. In the community sense, it refers to any asset, whethe
r corporeal, material, or non-
material, that is utilized as part of the metabolic flows supporting human settleme
nts.</p>   

45.         </div>   
46.       </div>   
47.       <div class="hot-spot satisfaction">Satisfaction   
48.         <div class="info">   
49.           <h2>Satisfaction</h2>   
50.           <p>Satisfaction is hard to categorize other than to say it is a level whi

ch most agents have the capabilities of imagination, free emotions, reason, play, a
nd interaction with one another.</p>   

51.         </div>   
52.       </div>   
53.       <div class="hot-spot affiliation">Affiliation   
54.         <div class="info">   
55.           <h2>Affiliation</h2>   
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56.           <p>The variable of affiliation, when achieved, means that an agent is a p
roductive member of the larger community that helps to promote variables that lead 
to the well-being.  </p>   

57.         </div>   
58.       </div>   
59.       <div class="hot-spot health">Health   
60.         <div class="info">   
61.           <h2>Health</h2>   
62.           <p>Mental and physical health are both represented by the variable of hea

lth. The achievement of health is the cumulative use of all other variables possibl
e to alleviate illness and death.</p>   

63.         </div>   
64.       </div>   
65.       <div class="hot-spot autonomy">Autonomy   
66.         <div class="info">   
67.           <h2>Autonomy</h2>   
68.           <p>Autonomy is the level of independence an agent has in using capitals a

nd services to produce well-
being. Higher levels of autonomy are associated with an increase in well-
being. </p>   

69.         </div>   
70.       </div>   
71.       <div class="hot-spot security">Security   
72.         <div class="info">   
73.           <h2>Security</h2>   
74.           <p>The variable of security is an agentâ€™s ability to feel safe and secu

re from stress events. Predictability is also a component of security because it de
creases vulnerability. When agent achieves the variable of security metal anguish i
s avoided because their well-being is more secured.  </p>   

75.         </div>   
76.       </div>   
77.       <div class="hot-spot material">Material Needs   
78.         <div class="info">   
79.           <h2>Material Needs </h2>   
80.           <p>A variety of conditions that need to be satisfied in order to keep deg

radation from occurring to well-
being that come in physical forms such as food, housing, heat, energy. A poor level
 of the variable of material needs can result in poverty. </p>   

81.         </div>   
82.       </div>   
83.       <div class="hot-spot equality">Equality   
84.         <div class="info">   
85.           <h2>Equality</h2>   
86.           <p>Equity is the stock, investment, and ownership an agent has within a c

ommunity. In the case of resilience when something is inequitable it is unjust, whi
ch equates to poor access to community infrastructure. </p>   

87.         </div>   
88.       </div>   
89.       <div class="hot-spot esteem">Esteem   
90.         <div class="info">   
91.           <h2>Esteem</h2>   
92.           <p>Esteem goes hand in hand with Efficacy, and it is the respect or admir

ation an agent or community has for the organizations that respond during and after
 stress events, the larger the efficacy the higher the esteem.</p>   

93.         </div>   
94.       </div>   
95.       <div class="hot-spot empowerment">Empowerment   
96.         <div class="info">   
97.           <h2>Empowerment</h2>   
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98.           <p>Empowerment refers to whether an agent or human settlement has the abi
lity to access the infrastructure they desire. The ability to participate in the re
construction and recovery of their collective identity is also key.</p>   

99.         </div>   
100.       </div>   
101.       <div class="hot-spot diversity">Diversity   
102.         <div class="info">   
103.           <h2>Diversity</h2>   
104.           <p>Diversity is the variety of variables that that exists within, 

or is connected to, community infrastructure. More important than the quantity of i
nfrastructure is the diversity of access to infrastructure.</p>   

105.         </div>   
106.       </div>   
107.       <div class="hot-spot continuity">Continuity   
108.         <div class="info">   
109.           <h2>Continuity</h2>   
110.           <p>The overall maintenance of identity is the variable of continui

ty. If threats or access to infrastructure the continuity can be disrupted which ca
n leave agents or groups isolated which can have negative effects on the overall we
ll-being of the system.</p>   

111.         </div>   
112.       </div>   
113.       <div class="hot-spot efficacy">Efficacy   
114.         <div class="info">   
115.           <h2>Efficacy</h2>   
116.           <p>Efficacy is the trust an agent or community has in the overall 

effectiveness of organizations to take action during, or after a stress event.</p> 
  

117.         </div>   
118.       </div>   
119.       <div class="hot-spot distictiveness">Distictiveness   
120.         <div class="info">   
121.           <h2>Distictiveness</h2>   
122.           <p>Distinctiveness is strongly linked to peopleâ€™s sense of place

 and attachment. This allows members of a community to differentiate themselves and
 compare relative monetary and non-monetary costs</p>   

123.         </div>   
124.       </div>   
125.       <div class="hot-spot adaptability">Adaptability   
126.         <div class="info">   
127.           <h2>Adaptability</h2>   
128.           <p>Adaptability can be thought of as the flexibility or absorption

 rate of a system. Adaptability often times needs to be a creative solution, but ca
reful consideration needs to be given in order to ensure a community is not absorbi
ng and then returning to pre-event vulnerabilities. </p>   

129.         </div>   
130.       </div>   
131.        <div class="hot-spot rivalrousness">Rivalrousness   
132.         <div class="info">   
133.           <h2>Rivalrousness</h2>   
134.           <p>If a service is rivalrous it is finite, so once the capital tha

t it is derived from is used up, it cannot be continued</p>   
135.         </div>   
136.       </div>   
137.       <div class="hot-spot excludability">Excludability   
138.         <div class="info">   
139.           <h2>Excludability</h2>   
140.           <p>When excludable, a service can be realistically kept from certa

in groups via explicit or institutionalized access.</p>   
141.         </div>   
142.       </div>   
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143.       <div class="hot-spot marketability">Marketability   
144.         <div class="info">   
145.           <h2>Marketability</h2>   
146.           <p>Services can be either maintained as a public commons or manage

d by private market which drives the marketability of that service.</p>   
147.         </div>   
148.       </div>   
149.       <div class="hot-spot redundancy">Redundancy   
150.         <div class="info">   
151.           <h2>Redundancy</h2>   
152.           <p>a redundant service means that there is a backup service of the

 same type if one were to fail.</p>   
153.         </div>   
154.       </div>   
155.       <div class="hot-spot robustness">Robustness   
156.         <div class="info">   
157.           <h2>Robustness</h2>   
158.           <p>A robust service means that it resists degradation or loss duri

ng a stress event</p>   
159.         </div>   
160.       </div>   
161.       <div class="hot-spot gravity">Gravity   
162.         <div class="info">   
163.           <h2>Gravity</h2>   
164.           <p>High gravity services are important services with respect to di

fferent agents or communities such as clean water, but gravity is also highly depen
dent on the unit of </p>   

165.         </div>   
166.       </div>   
167.       <div class="hot-spot centrality">Centrality   
168.         <div class="info">   
169.           <h2>Centrality</h2>   
170.           <p>Centrality represents the degree of how centralized the service

s of infrastructure are.</p>   
171.         </div>   
172.       </div>   
173.       <div class="hot-spot substitutability">Substitutability   
174.         <div class="info">   
175.           <h2>Substitutability</h2>   
176.           <p>Substitution of a service would be replacing a service with a d

ifferent type but still receiving the same benefits.</p>   
177.         </div>   
178.       </div>   
179.       <div class="hot-spot connectedness">Connectedness   
180.         <div class="info">   
181.           <h2>Connectedness</h2>   
182.           <p>Connectedness of services shows us how related service benefits

 are within a network. The idea here is if the variable of connectedness is high, t
he benefits from that service go up relative to how many units are active within th
e network</p>   

183.         </div>   
184.       </div>   
185.       <div class="hot-spot social">Social   
186.         <div class="info">   
187.           <h2>Social</h2>   
188.           <p>Social capital refers to the bonds that hold people and groups 

together as well as the traditions and languages within a community and acts as a c
ohesive force.</p>   

189.         </div>   
190.       </div>   
191.        <div class="hot-spot political">Political   
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192.         <div class="info">   
193.           <h2>Political</h2>   
194.           <p> Political capital reflects on the access to power via politica

l channels and the ability to contribute to the community.</p>   
195.         </div>   
196.       </div>   
197.       <div class="hot-spot economic">Economic   
198.         <div class="info">   
199.           <h2>Economic</h2>   
200.           <p>Economic capital is the resources that can be used to invest in

 the development of businesses and support civic and social entrepreneurship.</p>   
201.         </div>   
202.       </div>   
203.       <div class="hot-spot human">Human   
204.         <div class="info">   
205.           <h2>Human</h2>   
206.           <p>Human capital is the skills and abilities of the people inside 

a community, especially those in leadership positions.</p>   
207.         </div>   
208.       </div>   
209.        <div class="hot-spot built">Built   
210.         <div class="info">   
211.           <h2>Built</h2>   
212.           <p>Built Capital is the infrastructural interface between natural 

capital and all other capital variables, which is to say that built capital control
s the access to natural capital from all other capitals</p>   

213.         </div>   
214.       </div>   
215.         <div class="hot-spot natural">Natural   
216.         <div class="info">   
217.           <h2>Natural</h2>   
218.           <p>Natural capital refers to the natural resources of such as weat

her, amenities, natural beauty, timber, oil, etc.</p>   
219.         </div>   
220.         </div>   
221.         <div class="hot-spot cultural">Cultural   
222.         <div class="info">   
223.           <h2>Cultural</h2>   
224.           <p>Cultural capitals are the traditions and languages within a com

munity, together with social capital they form a cohesive force within the communit
y</p>   

225.         </div>   
226.       </div>   
227.     </div>   
228.   </div>   
229.     <div class="desc">   
230.         WISC is this really neat comprehensive framework for community resil

ience. Go ahead and see what it's all about by holding down your left mouse bottom 
over any element of WISC for a description exaplining each component. Essentially i
ts the idea that communities will use capitals to gerneate services, which in turn 
are consumed to create idenity and overall well-being.   

231.     </div>   
232. </body>   
233. </html>   
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Appendix F-b: WISC documentation CSS 

1. .img-container {   
2.      
3.   background: url('http://myweb.students.wwu.edu/~kempj2/WiscKey/WISC3') center cen

ter;   
4.   margin: 0 auto;   
5.   position: relative;   
6.   width: 554px;   
7.   max-width: 100%;   
8.   height: 487px;   
9.      
10. }   
11.    
12. .hot-spots {   
13.      
14.   background: rgba(255,255,255,0.5);   
15.   margin: 0 auto;   
16.   position: relative;   
17.   width: 0px;   
18.      
19. }   
20.    
21. .hot-spot {   
22.   color: #000000;   
23.   padding: 5px;   
24.   position: absolute;   
25.   text-align: center;   
26.   width: 140px;   
27.   height: 10px;   
28.      
29. }   
30.    
31. .hot-spot:active {   
32.      
33.   background-color: #666;   
34.   cursor: pointer;   
35.      
36. }   
37.    
38. .hot-spot:active .info {   
39.      
40.   display: block;   
41.      
42. }   
43.    
44.    
45. .info {   
46.     
47.   background-color: #ccc;   
48.   border: 1px solid #000;   
49.   color: #222;   
50.   display: none;   
51.   padding: 5px;   
52.   position: absolute;   
53.   top: 0;   
54.   width: 250px;   
55.   z-index: 10;   
56.   text-align: left;   
57.    transform:none;   
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58.   -ms-transform:none;   
59.   -webkit-transform:none;    
60.      
61. }   
62. h2 {   
63.      
64.   font-size: 20px;   
65. }   
66. p {   
67.      
68.   font-size: 12px;   
69. }   
70. .settlment {   
71.      
72.   top: 235px;   
73.   left: -344px;   
74.   font-weight:bold;   
75.   font-size: 20px;   
76.   color: #FFFFFF;   
77.   transform:rotate(-90deg);   
78.   -ms-transform:rotate(-90deg); /* IE 9 */   
79.   -webkit-transform:rotate(-90deg); /* Opera, Chrome, and Safari */   
80.      
81. }   
82. .infrastructure {   
83.      
84.   top: 356px;   
85.   left: 170px;   
86.   font-weight:bold;   
87.   font-size: 20px;   
88.   color: #FFFFFF;   
89.   transform:rotate(-90deg);   
90.   -ms-transform:rotate(-90deg); /* IE 9 */   
91.   -webkit-transform:rotate(-90deg); /* Opera, Chrome, and Safari */   
92.      
93. }   
94. .community {   
95.      
96.   top: 110px;   
97.   left: 170px;   
98.   font-weight:bold;   
99.   font-size: 20px;   
100.   color: #FFFFFF;   
101.   transform:rotate(-90deg);   
102.   -ms-transform:rotate(-90deg); /* IE 9 */   
103.   -webkit-transform:rotate(-90deg); /* Opera, Chrome, and Safari */   
104.      
105. }   
106.    
107. .well-being {   
108.      
109.   top: 1px;   
110.   left: -64px;   
111.   font-weight:bold;   
112.   font-size: 20px   
113.      
114. }   
115.    
116. .identity {   
117.      
118.   top: 148px;   
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119.   left: -65px;   
120.   font-weight:bold;   
121.   font-size: 20px   
122.      
123. }   
124. .services {   
125.      
126.   top: 236px;   
127.   left: -65px;   
128.   font-weight:bold;   
129.   font-size: 20px   
130.      
131. }   
132. .capitals {   
133.      
134.   top: 328px;   
135.   left: -65px;   
136.   font-weight:bold;   
137.   font-size: 20px   
138.      
139. }   
140. .satisfaction {   
141.      
142.   top: 30px;   
143.   left: -65px;   
144.   font-size: 20px   
145. }   
146. .affiliation {   
147.      
148.   top: 60px;   
149.   left: -120px;    
150.   font-size: 20px   
151. }   
152. .health {   
153.      
154.   top: 90px;   
155.   left: -120px;    
156.   font-size: 20px   
157. }   
158. .autonomy {   
159.      
160.   top: 60px;   
161.   left: -20px;    
162.   font-size: 20px   
163. }   
164. .security {   
165.      
166.   top: 90px;   
167.   left: -20px;    
168.   font-size: 20px   
169. }   
170. .material {   
171.      
172.   top: 120px;   
173.   left: -65px;    
174.   font-size: 20px   
175. }   
176. .equality {   
177.      
178.   top: 175px;   
179.   left: -255px;    



 

98 

 

180.   font-size: 20px   
181. }   
182. .esteem {   
183.      
184.   top: 175px;   
185.   left: -155px;    
186.   font-size: 20px   
187. }   
188. .empowerment {   
189.      
190.   top: 175px;   
191.   left: -30px;    
192.   font-size: 20px   
193. }   
194. .diversity {   
195.      
196.   top: 175px;   
197.   left: 100px;    
198.   font-size: 20px   
199. }   
200. .continuity {   
201.      
202.   top: 205px;   
203.   left: -249px;    
204.   font-size: 20px   
205. }   
206. .efficacy {   
207.      
208.   top: 205px;   
209.   left: -155px;    
210.   font-size: 20px   
211. }   
212. .distictiveness {   
213.      
214.   top: 205px;   
215.   left: -30px;    
216.   font-size: 20px   
217. }   
218. .adaptability {   
219.      
220.   top: 205px;   
221.   left: 95px;    
222.   font-size: 20px   
223. }   
224. .rivalrousness {   
225.      
226.   top: 236px;   
227.   left: -235px;   
228.   font-size: 20px   
229.      
230. }   
231. .excludability {   
232.      
233.   top: 267px;   
234.   left: -238px;   
235.   font-size: 20px   
236.      
237. }   
238. .marketability {   
239.      
240.   top: 301px;   
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241.   left: -238px;   
242.   font-size: 20px   
243.      
244. }   
245. .redundancy {   
246.      
247.   top: 267px;   
248.   left: -120px;   
249.   font-size: 20px   
250.      
251. }   
252. .robustness {   
253.      
254.   top: 267px;   
255.   left: 0px;   
256.   font-size: 20px   
257.      
258. }   
259. .gravity {   
260.      
261.   top: 267px;   
262.   left: 110px;   
263.   font-size: 20px   
264.      
265. }   
266. .centrality {   
267.      
268.   top: 236px;   
269.   left: 105px;   
270.   font-size: 20px   
271.      
272. }   
273. .substitutability {   
274.      
275.   top: 301px;   
276.   left: -60px;   
277.   font-size: 20px   
278.      
279. }   
280. .connectedness {   
281.      
282.   top: 301px;   
283.   left: 85px;   
284.   font-size: 20px   
285.      
286. }   
287. .social {   
288.      
289.   top: 360px;   
290.   left: -115px;   
291.   font-size: 20px   
292.      
293. }   
294. .political {   
295.      
296.   top: 360px;   
297.   left: -20px;   
298.   font-size: 20px   
299.      
300. }   
301. .economic {   
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302.      
303.   top: 390px;   
304.   left: -15px;   
305.   font-size: 20px   
306.      
307. }   
308. .human {   
309.      
310.   top: 390px;   
311.   left: -115px;   
312.   font-size: 20px   
313.      
314. }   
315. .built {   
316.      
317.   top: 420px;   
318.   left: -115px;   
319.   font-size: 20px   
320.      
321. }   
322. .natural {   
323.      
324.   top: 420px;   
325.   left: -15px;   
326.   font-size: 20px   
327.      
328. }   
329. .cultural {   
330.      
331.   top: 450px;   
332.   left: -65px;   
333.   font-size: 20px   
334.      
335. }   
336.    
337. .desc{   
338.     padding-top:40px;   
339.     width:760px;   
340.     margin:0px auto   
341. }   
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