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Abstract

The Enchantment Lakes Basin in the Alpine Lakes Wilderness, Washington, preserves two 

sets of moraines that record distinct post-Wisconsin maximum advances of cirque glaciers in the 

eastern North Cascades. Cores collected from five lakes adjacent to the moraines indicate that there 

were tw o Neoglacial advances, culminating w ith the Little Ice Age, and one slightly larger advance 

that ended coincident with the termination of the North Atlantic Younger Dryas event. The cores 

show no evidence for an early Holocene advance, in contrast to some other studies in the North 

Cascades, (e.g., Heine,1998; Thomas, 1997; Thomas et al., 2000).

Upstream glacier activity, as indicated by rock-flour production, is recorded in the lake 

sediments as fluctuations in magnetic susceptibility, organic content, and sediment particle size. 

Tephra identification, AMS *"^C dating, and paleomagnetic secular variation of the sediments provide 

detailed age constraints for the lake cores. The presence of the 475 cal yr B.P. Mount St. Helens W^ 

tephra within outvvash associated with the inner (Brynhild) moraines indicates that they are Little Ice 

Age (LIA) equivalent. The age constraints on the lake sediments show that this advance began 

between ~ 1000-800 cal yr B.P. and culminated after the W^ tephra was deposited. The age of the 

outer (Brisingamen) moraines, previously reported as early Holocene (Waitt et al.,1982), are instead 

latest Pleistocene; close limiting dates demonstrate that this advance ended shortly before 

~11,300 cal yr B.P., suggesting temporal equivalence with the North Atlantic Younger Dryas climatic 

reversal (12,940 ± 260 - 11,640 ± 250 cal yr B.P; Alley et al., 1993). A ~500-yr interval of high 

rock-flour flux in the cores records an early Neoglacial advance between -3300 and -2800 cal yr B.P. 

that was less extensive than the subsequent LIA advance. Steady-state equilibrium-line altitudes 

(ELAs) for Br>nhild and Brisingamen advances estimated with accumulation-area ratio and balance- 

ratio methods are distinct but nearly indistinguishable at -2355 m, roughly 200 m below the modem 

ELA. Conditions required to form and sustain the Brisingamen and Brynhild paleoglaciers include a 

summer temperature depression of -3° C, an increase of -90 cm water-equivalent in winter 

precipitation, or, more likel}’, some lesser combination of the two. These constraints imply a local 

climate that could support only small-scale advances in both the latest Pleistocene and late Holocene, 

and warmer as well as drier conditions throughout the early Holocene.
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Introduction
Small alpine cirque glaciers have been the dominant form of glaciation in the North 

American Cordillera for the past 12,000-15,000 years. High-resolution records of past fluctuations 

of these Holocene and latest Pleistocene glaciers can provide insight into local paleoclimatic changes 

as well as the regional spatial and temporal patterns of glacial fluctuations. Glaciers expand and 

contract in response to climatic factors such as summer temperature and winter precipitation and can 

therefore be used as paleoclimatic indicators (e.g.. Porter, 1981; Matthews and Karlen, 1992; Clark 

and Gillespie, 1997). Although local exceptions exist, records of Holocene glacier activity in most 

regions are only broadly constrained. This limited understanding reflects the difficulty of obtaining 

continuous and accurately dated records of advances and retreats in these usually remote regions. 

Holocene moraines in the western U.S. rarely contain datable organic material. Also, exposure dates 

on Holocene landforms based on in-situ cosmogenic nuclides usually suffer from low resolution 

because of large signal-to-noise ratios in young samples and uncertainties with production rates (e.g., 

Clark et al., 1995).

In this study, we establish a continuous radiocarbon- and paleomagnetic-controlled time 

series of glacial fluctuations in the Enchantment Lakes Basin, North Cascades, Washington, since the 

retreat of the large Pleistocene glaciers. We use paleomagnetic techniques combined with more 

traditional AMS radiocarbon dating and tephrochronology of lake sediments to provide a continuous 

proxy of fluctuations of the adjacent cirque paleoglaciers in the Enchantment Lakes Basin. Previous 

studies have shown that lake sediments can yield high-resolution temporal constraints based on 

secular variation of the Earth‘s magnetic field (Lund and Bamerjee 1985; Verosub et al., 1986; Ridge 

et al., 1990; King and Channell, 1991). To estimate past temperature and precipitation conditions 

associated w ith the glacial fluctuations, we reconstructed equilibrium glacial snowlines related to 

moraines formed during local Holocene glacial maxima.

Geologic Setting
The Enchantment Lakes Basin, located in the Alpine Lakes Wilderness southwest of 

Leavenworth, Washington (Fig. 1), provides an excellent location to study the Holocene glacial 

geology of the northeastern Cascades because the basin includes a number of alpine and sub-alpine 

tarns that adjoin two moraine sets hypothesized to be Holocene-age (Waitt et al., 1982). In addition, 

the basin is dominated by scoured, granitoid bedrock, which reduces the potential for “old” carbon 

that might systematically affect radiocarbon dates in lake sediments. During the last glacial 

maximum, all but the highest peaks of the Enchantment Lakes Basin were glacierized under an



extensive ice field. The last glacial maximum in the Leavenworth area was characterized by two 

major advances of nearly equal extent, the first between about 24.000 and 22,000 ^^Cl yr ago, and the 

second ending about 17,000 ^^Cl yr ago (Swanson and Porter, 1997). Following these advances, the 

ice flowing from the Enchantment Lakes Basin retreated into the valleys south of Icicle Creek (Fig.

1). About 14,000 to 13,000 ^^Cl yr ago. Enchantment Basin glaciers reached the confluence with 

Icicle Creek during the Rat Creek advance (Swanson and Porter, 1997) and then retreated again and 

perhaps disappeared as global climate warmed into the early Holocene H>psithermal period.

Globally, the H\psithermal period reached peak temperatures of probably two or three degrees 

Celsius warmer than current mean global temperatures about 6,000 years ago (Denton and Porter, 

1970). The Hvpsithermal period lasted until about 4,500 years ago when global climate began to 

cool, resulting in a series of small glacier advances around the world, known as the Neoglacial Period 

(Denton and Porter, 1970). The most recent of these small glacier advances, the Little Ice Age (LLA), 

began about 700 years ago, reached ama.ximum in most regions about 100-200 years ago, and ended 

at the beginning of the 20th centuiy (Grove, 1988).

The Enchantment Lakes Basin contains fivo well-preserved sets of moraines. These 

moraines record periods when climate was substantially colder and/or wetter than present. Waitt et al. 

(1982) argue that the inner belt of moraines (Biy-nhild moraines) are LIA equivalent based on the 

absence of a 475 cal yr B.P. Mount St. Helens tephra (WJ on the moraines and the glacially scoured 

surface inside the moraines. This inner belt of moraines therefore provides a means to test the timing 

of the LIA maximum in the Washington Cascades. The timing is important for establishing local 

climatic patterns.

The outer moraine belt (Brisingamen moraines) is substantially older than the inner moraines 

based on relative weathering characteristics and the presence of the -6800 *"^C yr B.P. Mount 

Mazama ash in the meadow s inside these ladforms (Waitt et al.,1982). Waitt et al. (1982) contend 

that these moraines are early Holocene rather than latest Pleistocene on the basis of qualitative 

weathering characteristics. However, the only numerical constraints for the advance indicate that it is 

older than -6800 '"^C vt B.P. and younger than about 13,000 ^^Cl B.P. (Rat Creek Advance). The 

distinction between whether the Brisingamen moraines are early Holocene or latest Pleistocene is 

important to paleoclimatic studies because the early Holocene has generally been regarded as a time 

of warmth and regional glacier retreat. If the outer moraines are early Holocene, they might indicate 

significant climatic fluctuations at the onset of the H>psithermal interval in northwestern Washington 

(e g.. Beget, 1981 and 1983), a situation perhaps analogous to modem climate trends. Conversely, if 

the outer moraines are latest Pleistocene, they should record the nature of the transition between the
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last glacial maximum and the H>psithermal interval, perhaps relating to the North Atlantic Younger 

Divas interval (e.g., Davis, 2003 and 1994, and Zielinski and Davis, 1987)

Methods

Mapping

We mapped glacial deposits in the upper Enchantment Basin and the surrounding areas at 

1:24,000 scale through combined field investigation, aerial photo interpretation, and a laser 

theodolite survey. Our mapping refines previous mapping by Waitt et al. (1982). We distinguish 

moraines based on stratigraphic position, moraine preservation, extent of w'eathering, and the degree 

of lichen and tree growth. Tw o distinctive moraine belts, Brynhild and Brisingamen, occur in the 

Enchantment Lakes area. Biyiihild moraines lie inside the Brisingamen moraines and are broad, 

fresh, multi-crested moraines that exhibit little or no post-depositional erosion, boulder weathering, 

or tree growth, and lichen growth is minimal. Brisingamen moraines, by contrast, are low-volume 

moraines that support significant tree and lichen growth. In addition, significant grus, tephra, and 

organic material accumulated in the meadows behind the Brisingamen moraines in the upper 

Enchantment Basin.

In addition to minor refinements to the mapping of Waitt et al. (1982), our mapping 

identified Biynhild and Brisingamen deposits and trim lines to the west, north and east of the upper 

basin (Fig. 2). Substantial refinements of the area previously mapped by Waitt et al. (1982) include 

three-dimensional mapping of the moraines using a laser total station (Appendix 1, Bilderback, 2004) 

and collection of additional striation data (Fig. 2).

Sediment Coring

The lake sediment cores that form the primary data set for this study were collected from five 

lakes in the Enchantment Lakes Basin during the spring of 2000 and 2001 (Appendix 1, Bilderback, 

2004). Twelve continuous, 3-inch diameter lake cores ranging in length from 1 to 3 meters were 

acquired using a modified version of the percussion Reasoner corer (Reasoner, 1993). Cores from 

Lake Viviane, Ciy stal Lake and Lake Inspiration (Fig. 2) are presented in this paper. The main 

modifications to the Reasoner corer made for this study are the replacement of a core catcher with a 

double 0-ring piston, to reduce sediment disturbance, and the doubling of the hammer length, to 

facilitate coring through unusually dense, thick Mazama tephra.

Cores were collected in the spring while the lake surfaces were still frozen. The cores were 

collected vertically and were azimuthally unoriented. After extraction, the cores were cut into
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approximately 1-meter seetions, eapped, and sealed for transport out of the field. The cores were 

kept vertical until sampling to reduce post-coring disturbance of the sediments. At Western 

Washington University, the cores were stored in a refrigerated room at 4° C. During or after transport, 

most of the core sections experienced 3-10 cm of settling and dewatering. Integrity of fine 

stratigraphic horizons in the cores, how'ever, indicated that this settling was fairly uniform and did 

not disrupt the stratigraphy.

In the lab, we split the cores with a 1.5-meter long demagnetized stainless steel knife, 

reducing disturbance of remanent magnetism of the sediments. The visual stratigraphy of the cores 

was logged, photographed, and sampled for AMS dating and other core analyses.

Sediment Analysis

The two main goals of our core analyses are to identify periods of glacial vs. non-glacial 

sedimentation in the basin, and to date the sediments associated with those periods. Analyses of the 

lake sediment cores include magnetic susceptibility, organic content (through loss-on-ignition), 

particle size analysis, magnetic grain size, anhysteretic remanent magnetization (ARM), 

paleomagnetic field secular variation, tephra identification, and AMS radiocarbon dating.

Magnetic Susceptibility

Magnetic susceptibility (k) measurements provide a rapid, quantitative measure of how 

magnetic a sample is (Watkins and Maher, 2003). Depending on local bedrock lithologies and 

depositional environment, higher k typically corresponds to greater abundances of clastic sediment 

(e.g., rock flour or Aeolian dust), whereas low k indicates greater oiganic content (e.g., Benson et al., 

1996, BischofF et al., 1997, and Armour et al., 2002). Bulk sediment mass-normalized magnetic 

susceptibilitx (x) was measured on an AGICO KLY3-S anisotropy of magnetic susceptibility bridge. 

Measurements were made on 8 cm^ cubes of sediment taken every 4 cm down core. The use of the 

magnetic susceptibility bridge and discrete samples eliminated the strong influence that tephra layers 

in lake cores can have on the measurements of adjacent sediments, when a core-scanning 

susceptibility meter is used. This is important for isolating sedimentary contacts when high % 

materials (tephra) are juxtaposed against very low x materials. Susceptibility measurements were 

also made on as wide a compositional range as possible of unweathered bedrock samples from the 

upper Enchantment Basin to gain an understanding of the possible range of X from bedrock-derived 

materials.
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Loss on Ignition

Burning sediment samples (loss on ignition - LOI) provides a measure of the organic content 

at different horizons in the lake cores. We measured LOI using sediment samples of 8 cm^ collected 

every 4 cm down core. The wet sediment samples were weighed, dried at -100° C overnight, cooled 

in a desiccator, and then reweighed. To bum off the organics, the dry samples were placed in ceramic 

cmcibles and baked in a muffle furnace at 500° C for 4 hours. Because LOI can be strongly 

dependent on the exposure time (Heiri et al., 2001), we choose a bum time of 4 hours instead of the 

standard 1-hour. After the bum, the sample ash and cmcibles were cooled in a desiccator and then 

reweighed. The percent mass difference between the dry sample weight and the ash closely 

approximates the percent organics present in each sample.

Particle size analysis

The particle size analyses of lake sediments can provide detailed proxy records of changes in 

sediment sources. Approximately 1-cc sediment samples were collected at least every 4 cm down 

core. Locally, samples were collected at shorter intervals in order to assess changes evident in the 

visual stratigraphy. The goal of the particle size analysis is to assess changes in clastic particle sizes 

relating to changing sources and energies of sediment production and transport.

The sizes of organics in lake sediments do not directly relate to the energy of the depositional 

environment and they need to be removed from the sediments before particle size analysis. In order 

to isolate the clastic sediments, organics in the sediments were chemically removed with a 30% 

hydrogen peroxide pretreatment. Similarly, diatoms also interfere with clastic grain-size analysis, 

and must be removed if they occur in abundance. Diatom abundance in the sediments was assessed 

by counting diatoms in several discrete samples from the longest Lake Viviane core. Diatoms were 

not removed from any of the lake cores because at their peak abundance they represented only about 

4% by volume of a given sediment sample in the Lake Viviane core.

Particle size was analyzed w ith a Malvern Mastersizer 2000, which has a nominal analytic 

range of 0.02 to 2000 microns. A small amount of calgon was added to the samples before 

measurement to facilitate dispersion. Samples were introduced into the Mastersizer dispersion unit 

using an autosampler, which eliminates subsampling bias. Two or three aliquots of each sample were 

measured, depending on sample abundance, and each aliquot was measured 3 times. All aliquots of 

each sample were combined to produce an average measurement for each sample. For rare cases in 

which a sample had an extreme outlier compared to the other aliquots or the second aliquot did not 

contain enough sample to be properly measured, the outliers were excluded from the final sample
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average.

Magnetic Grain Size and Anhysteretic Remanent Magnetization

We used anhysteretic remanent magnetization (ARM) to further investigate magnetic mineral 

concentration and partial anhysteretic remanent magnetization (pARM) as a proxy for magnetic grain 

size (Jackson et al., 1988). We made pARM measurements in each of three representative cores on 8 

cm^ cubes of sediment taken every 4 cm down, to about the Mount St. Helens tephra (3780 cal yr 

B.R; Mullineaux, 1986). Partial ARM measurements were made by imparting a DC bias field (0.5

mT) between two specified values of a decaying alternating field and then measuring the resulting

remanence. The pARMs and ARMs were imparted using a D-Tech D-2000 af demagnetizer, and the

resulting magnetizations were measured with a 2-G Enterprises 755 superconducting rock

magnetometer. The results are displayed as a ratio between 10 mT-wide coercivity windows centered

on 15 and 85mT for each sample. The remanence of magnetic grains at a specific coercivity window

is highly size dependent; the 10-20 mT range will preferentially magnetize magnetite of 5-10 micron

size, and the 80-90 mT range will preferentially magnetize much smaller (1 to 0.1 micron) magnetite

(Jackson et al ., 1988). High values of the ARM 15/ARM 85 ratio represent larger magnetic grain

sizes and small values represent smaller magnetic grain sizes.

For the Lake Viviane and Crystal Lake cores, remanence was measured using incremental 

coercivity windows from 0 to at least 125 mT. When the remanence for each coercivity window is 

added together the result is the total anhysteretic remanent magnetization (ARM) for each sample. 

Total ARM, in contrast to magnetic susceptibility, provides a measurement of the concentration of 

just the magnetic Fe-Ti oxide grains in a sample. In order to best compare ARM samples to each 

other within and between lake cores, all ARM results presented in this paper are mass normalized. 

Only coercivity windows centered on 15 and 85mT were measured for the Lake Inspiration core, so a 

direct measurement of total ARM was not possible for this core. A comparison between the total 

ARM vs. depth curve and the sum of the measured remanence at the 10 mT coercivity windows 

centered on 15 mT and 85 mT vs. depth curve for Lake Viviane (Fig. 3) and Crystal Lake shows that 

the 15 mT plus 85 mT curve and the total ARM curve correlate strongly. We use the mass 

normalized 15 mT plus 85 mT vs. depth curve for Lake Inspiration as a proxy for total ARM.

Paleosecular Variation

To help refine the age models of our cores, and to aid correlation to other published records, 

we analyzed paleomagnetic field secular variation (PSV) in cores from Lake Viviane and Crystal

6



Lake. Verosub et al. (1986) have documented the value of such core analyses for these purposes. 

Discrete PSV samples were collected at 4 cm intervals by pressing 8 cm^ plastic cubes into the 

middle of the split cores. The carrier of most of the remanence in the field area bedrock, and 

probably the lake sediments, is magnetite (Housen et al., 2003).

In order to identify any post-depositional disturbance of the sediments, not visually apparent 

in the lake cores, and to estimate the quality of the paleomagnetic record preserved in the sediments. 

Anisotropy of Magnetic Susceptibility (AMS) was measured with an AGICO KLY3-S susceptibility 

bridge. In lacustrine depositional environments elongate particles will tend to settle subparrallel to 

the lake bottom. Since magnetic susceptibility is usually at a maximum parallel to the long axis of 

detrital magnetic grains, the inclination of the maximum susceptibility axis of the lake's sediment 

should be close to horizontal and the inclination of the minimum susceptibility axis should be close 

to vertical. In addition, the magnetic susceptibility ellipsoid for lake sediments should be oblate with 

maximum (Kl) and intermediate (K2) susceptibility axes lying in the bedding plane and the 

minimum axis (K3) near vertical. We assessed possible disturbance in the Lake Viviane and Crystal 

Lake cores using both the K3 inclinations (e.g., Rosenbaum et al., 2000) and the shape of the 

magnetic susceptibility ellipsoid (e.g., Schwehr and Tauxe, 2003) for each PSV sample.

Natural remanent magnetization (NRM) of the samples was measured with a 2-G Enterprises 

Model 755 cryogenic magnetometer. Samples were measured after progressive alternating field (AF) 

demagnetization at 2.5 mT steps up to 25 mT, samples were then measured at 5 mT steps up to 55 

mT and at 10 mT steps up until they had lost at least 90% of their initial remanence (e.g.. Fig. 4). The 

magnetization components were defined visually with the aid of orthogonal vector plots (Fig 4). 

Directional components of magnetization were determined using principle component analyses (PCA, 

Kirschvink, 1980). Two magnetization components were generally present. The first-removed 

component was generally isolated between 2.5 and 10 mT demagnetization steps. The second- 

removed component was isolated between the 10 and 90 mT demagnetization steps (Fig.

4)(Appendix 2, Bilderback, 2004).

Tephra Identification

Tephras in the lake cores form distinctive light grey layers and contain abundant microscopic 

glass shards. The tephras present in the Enchantment area were originally identified by Waitt et al.

(1982) as the Mount St Helens Mount St Helens and the Mount Mazama tephras; we identify 

them in our cores based on stratigraphic position and ages of adjoining radiocarbon dates.
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Dating

Discrete bulk sediment samples and macrofossils, including wood and plant material, were 

collected from the sediment cores immediately after the cores were split for AMS-radiocarbon 

analyses. The samples were dried and stored in glass vials before analysis. The samples were 

analyzed at the Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory'. 

All but two of the analyses presented here are of macrofossils. The exception is of organic-rich gyttja. 

To assess the validity of the bulk samples, we analyzed adjacent bulk and macrofossil samples from 

several horizons.

Equilibrium Line Altitude Estimates
Equilibrium line altitudes (ELA) are determined by net accumulation and net ablation, which 

in turn depend on climatic conditions, glacial surface topography, hypsometry, and glacier aspect 

(Torsnes et al., 1993). In most locations winter precipitation and summer mean temperature are the 

main climatic factors that influence accumulation and ablation (Sutherland, 1984). The position of 

the ELA is thus a climatically sensitive parameter that can be used to estimate the climatic conditions 

in which the glacier existed.

Steady-state ELAs for the Colchuck and upper Enchantment Basin Brynhild ice limits and 

for all mapped Brisingamen ice limits were estimated using both an accumulation area ratio (AAR) 

of 0.65 and a net-balance ratio of 2 (Furbish and Andrews, 1984). The measurements for these 

methodologies are based on iterative topographic reconstructions of the paleoglacier surfaces using 

our mapped ice limits (trim lines, erratics, moraines) and maintaining ice thicknesses capable of flow 

(e.g.. Porter, 1975). If the two methods were in close agreement the AAR was used. All but one of 

the ELAs reported in this study are derived from the AAR method. The AAR method of estimating 

ELAs of paleoglaciers is more commonly used and less time consuming than the balance-ratio 

method; however, it is best suited for glaciers with simple hypsometries (which most of the 

paleoglaciers in the Enchantment Basin have) and can provide poor ELA estimations for glaeiers 

with complex hypsometric distributions. The north Enchantment Brisingamen paleoglacier (Fig. 5) 

is the only reconstructed glacier in the study area with a complex hypsometry (skewed toward high 

glacial elevations) that is more appropriate for the balance-ratio method. The upper Enchantment 

Basin Brynhild and Brisingamen paleoglaciers were divided into two discrete glaciers along an ice 

divide, based on flow indicators, in order to achieve more meaningful ELA estimates for these 

glaciers (Fig. 5). The eastern-most paleoglaciers created by this split were used for ELA estimation 

because they had unconfined flow paths making them good candidates for area-based (AAR) ELA
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estimation. The western-most paleoglaciers flowed into a confined bedrock bowl giving them a very 

limited distribution of elevations. The estimated ELAs of the western-most paleoglaciers are a poor 

indicator of paleoclimate because of this characteristic.

Climatic Change Estimates

The magnitude of climate change needed to form and sustain the Brisingamen and Brynhild 

paleoglaciers was estimated following Leonard (1989). The modem summer mean temperature and 

water-equivalent winter accumulation for the Enchantment Lakes Basin at the calculated paleo-ELAs 

of the Biynhild and Brisingamen paleoglaciers were extrapolated from linear lapse rates calculated 

from lower-altitude w eather data. The summer mean temperature regression was calculated using 

temperature data from 1993-2002 from nine sites around the study area ranging in altitude from 344 

m to 1640 m. The summer mean temperature regression is statistically significant {p = 0.005) and 

altitude explains 82% of the variance in summer temperature. Winter precipitation is not as well 

correlated with altitude as temperature is (Leonard, 1989). In addition, in the Cascades, the dominant 

w inter w eather pattern is movement of moisture from west to east off the Pacific Ocean. This 

weather pattern influences the relationship between winter precipitation and altitude. At the same 

altitude, the west side of the Cascades receives far more precipitation than the east side of the range. 

In order to account for the effect the Cascade rain shadow, only weather stations east of the Cascade 

crest, approximating the precipitation regime of the field area, were used to calculate the winter 

precipitation lapse rate. The modem winter precipitation regression was calculated using winter 

precipitation data from 1993-2002 from seven sites east of the cascade crest around the study area 

ranging in altitude form 344 m to 1640 m. The winter precipitation regression is statistically 

significant (p = 0.02), and altitude explains 70% of the variance in winter precipitation.

Because the ELAs in this study are above the highest weather station, the lapse rates had to 

be extrapolated. From these extrapolations, the predicted climate at the ELAs of the Brynhild and 

Brisingamen paleoglaciers were plotted on a graph of winter accumulation versus summer mean 

temperature. This graph (Fig. 6) includes climates at the ELAs of modem glaciers from around the 

world that define an envelope of w inter accumulation and summer mean temperature within which 

glaciers form. To estimate the change in climatic conditions that would sustain the Brynhild and 

Brisingamen paleoglaciers, the extrapolated modem climate at the ELAs of the paleoglaciers was 

shifted into the envelope of modem glacier conditions (e g., Leonard, 1989).
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Results

Age Constraints

The age constraint for the sediments from the lake cores is provided by four dating 

methodologies: tephra chronology, AMS correlation with dated paleosecular variation 

curves, and age interpolation based on sedimentation rates between dated horizons. There are three 

major tephra marker beds in the lake cores: the Mount St Helens and tephras and the tephra 

deposited by the climatic emption of Mount Mazama. The Mount St Helens tephra is 475 cal yr 

B.P. (AD 1480) dated by dendrochronology (Yamaguchi, 1983). The Mount St Helens Y^^ tephra is 

3780 cal yr B.P. (3510 ± 80 yr BP) (Mullineaux, 1986). The Mount Mazama emption is dated at 

7627 ± 150 cal yr B.P. (Zdanowicz et al., 1999). AMS dates are from macrofossils and two bulk- 

sediment samples, from the pre-Mazama section of the Lake Viviane core, and from the Crystal Lake 

core (Fig. 7a and 7b) (Appendix 3, Bilderback, 2004). Where AMS ^"^C dates were not done, clastic 

horizons are constrained by interpolated sedimentation rates between dated horizons in Crystal Lake 

and Inspiration Lake (Fig. 7b and 7c).

The AMS sediment disturbance evaluation of the post-Mazama section of the Lake Viviane 

core shows that K3 is nearly vertical and that the shape of the magnetic susceptibility ellipsoid is 

oblate between about 10 and 75 cm depth (Fig. 8). Over this interval the average inclination of K3 

(INCj^j) is 80.5 and the standard deviation of K3 inclinations (STDj.3) is 4. Rosenbaum et al. (2000) 

found that an INC,,3 of greater that about 81 and a STDj,3 less that about 6.5 generally indicates very 

little deformation in a sediment core. The shape of the magnetic susceptibility ellipsoid was 

determined from our AMS data by calculating the shape factor (T) follow ing Jelinek (1981) (Fig. 8). 

Schw ehr and Tauxe (2003) demonstrated that undeformed sediments generally exhibit an oblate 

magnetic susceptibility ellipsoid rather than a triaxial or prolate ellipsoid. Using the criteria of 

Rosenbaum et al. (2000) and Schwehr and Tauxe (2003) as a guide, we submit that the 10 to 75 cm 

depth interval in the Lake Viviane eore suffered very little post depositional disturbance. In eontrast 

to the Lake Viviane core, the AMS data indicate that the Crystal Lake core suffered extensive post 

deposition disturbance. For the Cry stal Lake core the INCj^j is 55, the STD|^3 is 29 and about 39% of 

the samples exhibited a prolate or triaxial magnetic susceptibility ellipsoid. The Crystal Lake core 

does have intaet visual stratigraphy, but the AMS data shows that it is unusable for paleomagnetic 

studies.

The post-Mazama section of the Lake Viviane core is dated by correlation of its PSV record 

(Fig. 9) to the ^"*C-dated PSV record in Fish Lake, Oregon (Verosub et al., 1986). The Lake Viviane 

eore was not azimuthly oriented during coring. In order to compare the declination curves from Lake
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Viviane and Fish Lake, we attempted to orient the Lake Viviane PSV record by calculating the mean 

declination for the time period between the Mount St Helens Y„ tephra and the Mount St Helens W„ 

tephra for the Lake Viviane core and comparing that to the mean declination for the same time period 

from the Fish Lake PSV record. The difference between the two mean declinations, over the same 

time period, was used to orient the Lake Viviane PSV record with respect to the Fish Lake PSV 

record. Even with this azimuthal reorientation, however, the declination curve from Lake Viviane 

does not correlate well with the Fish Lake curve or the Hagstrum and Champion (2002) volcanic 

rock derived declination curve (Fig. 10). The inclination curve, on the other hand, does show good 

correlation w ith the other curves (Fig. 10), and the Lake Viviane inclination curve was used to derive 

a PSV-correlated age model for the post-Mazama sediment of the Lake Viviane core (Fig. 7a and 10).

The PSV-correlated age model for the post-Mazama sediment of the Lake Viviane core was 

obtained by using the AnalySeries time-series analysis program (Paillard et al., 1996) to transform 

the Lake Viviane inclination versus depth curve (Fig. 9) into an inclination versus age curve using the 

Fish Lake inclination curve as the reference signal. In this process, major spikes and troughs in the 

inclination curves as well as both the Mount St. Helens tephras were used as tie-points between the 

curves; a constant sedimentation rate was assumed between tie-points (Appendix 4, Bilderback, 

2004). The correlation coefficient between the unadjusted Lake Viviane curve and the Fish Lake 

curve is 0.786, and the correlation coefficient between the adjusted Lake Viviane curve and the Fish 

Lake curve is 0.856, with a correlation coefficient of one (1) representing perfect correlation and 

negative one (-1) representing perfect inverse correlation. The process for creating the Lake Viviane 

PSV age model is qualitative, but does provide a reasonable first order age model. We used the Fish 

Lake curve (Verosub et al., 1986) instead of the volcanic rock curve (Hagstrum and Champion, 2002) 

to compile the post-Mazama age model for the Lake Viviane core because the depositional process 

that resulted in a record of PSV is most similar for the Lake Viviane and Fish Lake records.

Lake Sedimentology
The focus of the lake sedimentology is on grey clastic horizons that represent sedimentary 

environments distinct from the more organic or tephra rich horizons that dominate the lake cores (Fig. 

7a, 7b and 7c). Two distinct post- Mount St Helens clastic intervals appear in all of the cores and 

are characterized by low X, low ARM, trends toward lower organic percentages, a smaller particle 

size mode, and an increase in the relative proportion of clay- and silt-sized particles that make up the 

sediments (Fig. 7a, 7b and 7c). In addition to these characteristics, the magnetic particle size ratio of 

pARM 15mT/85mT generally decreases coincident with the clastic intervals and reaches a low point
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in sediment overlving the clastic intervals. The younger post- Mount St Helens clastic interval is 

conspicuously interrupted by the Mount St Helens tephra; however, the pre and post intervals 

of this sediment appear to have consistent sedimentary characteristics.

Only the Lake Viviane core penetrated the extremely thick Mazama tephra and recovered 

pre-Mazama organic and clastic sediments. The pre-Mazama sequence includes about 35 cm of 

highly organic sediment, which overlies an unknown thickness of grey clastic sediment (Fig. 7a). 

Although we cored about a half-meter into the pre-Mazama grey clastic sediment, only five cm were 

retrieved fully intact (Fig. 7a) due to partial wash-out during extraction from about 40 m of water. 

This pre-Mazama clastic sediment exhibits x that is slightly elevated compared to the highly organic 

interval that overlies it, and the percent organic content in this interval is much lower than the 

overh’ing interval. Also, the particle size mode and the relative proportions of clay, very fine sand, 

and medium sand in this interval are elevated compared to the overlying organic interval.

Equilibrium Line Altitudes
The modem orographic ELA in the upper Enchantment Lakes Basin is close to or above the 

elevation of the ridge (-2560 m) that defines the southern-most extent of the upper basin 

paleoglaciers (Fig. 5), because only perennial snowfields, not active glaciers, currently occupy the 

upper basin. Steady-state equilibrium-line altitudes (ELAs) for Brynhild and Brisingamen advances 

are distinct in that the Brisingamen glaciers were consistently larger than the Brynhild glaciers, and 

therefore required a lower ELA; however, the ELA estimates are insensitive to these differences 

because the bench-like hypsometry of the ablation zones of the glaciers dictates that small changes in 

ELA can cause substantial changes in glacier extent. Based on our methods, the ELAs of the two 

advances are therefore statistically indistinguishable at about 2355 m (Table 1, Fig. 5). If the 

perennial snowfields can be used as an indicator of local ELA, then about a 200 m ELA depression 

was required to grow' the Brisingamen and Brynhild paleoglaciers.

Discussion

Fish Lake, Oregon, provides a robust radiocarbon-constrained master chronology of 

paleosecular variation for the western U.S. (Verosub et al., 1986; Hanna and Verosub, 1988) and is 

therefore a reasonable tool for developing age models of similar lake sediments. Unfortunately, 

without control on the post-Mazama sediments from Lake Viviane, we caimot compare the age 

model we develop for the core from our PSV data with a more conventional '"'C age model. The 

PSV age model does provide a reasonable first order estimate of numeric ages for the sediments.

12



however. The Lake Viviane inclination curve agrees well with the Fish Lake and volcanic rock 

inclination curves (Fig. 10). In addition, the Fish Lake PSV derived Lake Viviane age model 

indicates higher sedimentation rates during an interval of elevated flux of medium sand and coarser 

sediments between about 31 and 41 cm depth (Fig. 7a) (Appendix 4, Bilderback, 2004). This 

provides some support for the adjusted age model because periods of coarser sedimentation 

(indicating higher energies of transport) probably also experience increased sedimentation rates. It is 

not known why the inclinations of Lake Viviane samples appear too steep (Fig. 10) compared to the 

inclinations of the other PSV curves. A sub-vertical core barrel penetrating horizontally bedded lake 

sediments could, depending on the orientation, result in too steep inclinations. However, for this to 

explain all the difference between the Lake Viviane inclinations and inclinations of the other PSV 

curves, the core barrel would have to be tilted about 10 degrees with respect to vertical, and such a 

tilt would have been evident in the bedding of the split core. This amount of tilt was not evident in 

the Lake Viviane core (Fig. 7a).

The highlighted intervals of sedimentary and magnetic characteristics in Figures 7a, 7b and 

7c exhibit distinctive properties that distinguish them from the other sediment in the cores and 

suggest that they represent periods of upstream glacial activity. During these periods % and ARM are 

relatively low. In contrast to other published studies (e.g., Benson et al., 1996; Bischoffet al., 1997; 

Armour et al., 2002), the coincidence of clastic horizons and low magnetic signals in the 

Enchantment Lakes Basin generally indicates increased input of bedrock-derived clastic sediment 

(rock flour) from the upper basin (Fig. 1). The bedrock in the field area varies from granodiorite in 

the south, where the paleoglaciers were located, to quartz diorite in the northern part of the 

Enchantment Lakes drainage (Fig. 2) (Erikson, 1977; Tabor et al., 1982). % tests done on both of 

these rock types indicate that ferimagnetic mineral concentration is relatively low (x between 7.6E- 

09 to 5.5E-08 m^/kg). Erikson (1977) documents that the granodiorite phase of the batholith has one 

to three weight percent less total iron than the quartz diorite, which could result in measurably 

different x and ARM. We suggest that low x and ARM sediment includes a higher proportion of 

bedrock-derived materials and, furthermore, that the sediments with the lowest x and ARM are 

sediments derived mainly from the granodiorite in the southern part of the field area. Particle size 

analysis indicates that during the periods of low x and ARM sediment input (in the middle and late 

Holocene), there was an increase in clay- and silt-sized particles (Fig. 7a, 7b and 7c). Similarly, an 

increase in clay- and very fine sand-sized particles at the base of the Lake Viviane core (latest 

Pleistocene) also coincides with low x (Fig. 7a). The finer grained clastic sediment probably 

represents increased rock flour production during these periods. The Brisingamen and Brynhild
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moraines in the southern part of the field area, upstream from the cored lakes, provide an explanation 

for the lower organic, low X, low ARM, and finer grained sediments because during moraine building 

glacial events, downstream sedimentation would have been dominated by inorganic, low % and ARM 

granodiorite rock flower. The relationship between glacial activity and downstream sedimentation 

has been well established (e g., Leonard, 1986 a and b; Clark and Gillespie, 1997; Heine, 1998). The 

magnetic particle size ratio of pARM 15mT/85mT is also an indicator of distinct sediment sources. 

Magnetic particle sizes decrease during the periods of increased rock flour flux (low X and ARM) 

and attain minima following these periods during the middle and late Holocene (Fig. 7a, 7b and 7c). 

Watkins and Maher (2003) conclude that aeolian dust was the main source of North Atlantic 

sediments that contain fine-grained magnetic particles. The higher proportion of fine-grained 

magnetic particles deposited in the cored Enchantment lakes may also indicate a larger aeolian dust 

constituent during recession, with maxima (low pARM 15mT/85mT ratio) shortly following 

deglaciation.

The low-%, low-organic, clay- to very fine sand-sized pre-Mazama sediment in the Lake 

Viviane core represents distinctive sedimentation that post-dates the Rat Creek advance 14,000 to 

13,000 ^^Cl yr ago (Swanson and Porter, 1997), and appears to be latest Pleistocene in age.

Similarity to late-Holocene sediments clearly related to the LIA outwash, and absence of any other 

pre-Mazama rock-flour intervals in the cores, indicate that the sediment was probably deposited 

during the building and retreat from the Brisingamen moraines. The sediments associated with the 

Brisingamen advance in Lake Viviane are slightly different than those of the middle- and late- 

Holocene glacial advances (Fig. 7a). Brisingamen sediments in Lake Viviane exhibit very slightly 

elevated lower organic content, an elevated particle size mode, and an elevated proportion of very 

fine-sand sized sediments when compared to the middle- and late-Holocene glacial sediments. These 

differences most likely reflect a greater abundance of loose, coarse-grained sediments following 

deglaciation after the Rat Creek advance, and the greater size (sediment input) and closer proximity 

of glaciers to Lake Viviane during the Brisingamen advance (Fig. 2).

Timing of Glacial Activity in the Enchantment Lakes Basin
Sediments in Lake Viviane, Inspiration Lake, and Crystal Lake indicate that there were at 

least two Neoglacial advances and an older pre-Mazama glacial advance. The sediment from the 

younger Neoglacial advance (LIA) and the pre-Mazama glacial advance can be positively correlated 

to the Brynhild and Brisingamen moraines, respectively, based on moraine position in the 

Enchantment Lakes drainage and association with Mount St Helens Wj^, Mount St Helens and the
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Mount Mazama tephras.
The sedimentary record further indicates that the onset of the Brynhild or LIA advance was 

between 1000 and 800 cal yr B.P. However, this advance did not reach its maximum position until 

after 475 cal yr B.P. as indicated by the lack of Mount St Helens W„tephra on or behind the Brynhild 

moraines (Waitt et al., 1982). The timing of the maximum extent of the Brynhild advance agrees 

with many other LIA moraines in the region (Heikkinen, 1984; Leonard, 1974; Miller, 1969;

Sigafoos and Hendricks, 1961; Burbank, 1981 and Osborn and Luckman, 1988). The lake cores also 

show that there was an earlier, less extensive. Neoglacial advance in the Enchantment Lakes Basin 

between -3300 and 2800 cal yr B.P. This advance does not have associated moraines preserved 

upstream of the cored lakes, but the sedimentary response during this interval is similar to that during 

the Brynhild advance (LIA) (Fig. 7a and 7c) and the longer lasting and more extensive Brynhild 

advance probably overrode and erased any evidence of the moraines of this earlier Neoglacial 

advance.
The Lake Viviane core indicates that there were no active glaciers upstream of the lake 

between about 11,160 cal yr B.P. (9715±40 yr B.P.) and the deposition of the Mazama tephra at 

about 7630 cal yr B.P. (Zdanowicz et al., 1999). In fact, this interval exhibits the highest 

organic/lowest clastic input of any time period from any core collected in the Enchantment Lakes 

catchment (Fig. 7a, 7b and 7c). This finding contrasts with work by Heine (1998) and Thomas et al. 

(2000) from the more maritime settings of Mount Rainier and Mount Baker. Heine (1998) describes 

an advance on Mount Rainier between about 10,900 and 9950 cal yr B.P. and Thomas et al. (2000) 

describes an advance on Mount Baker between about 9450 and 8400 cal yr B.P. We see no evidence 

of such advances in the Enchantment Lakes Basin.
Our constraints on the Brisingamen advance lend further support to the notion that glacier 

and climate dynamics at the end of the Pleistocene were complex in the Pacific Northwest (e.g., 

Clark, 2003). The Brisingamen advance ended at ~ 11,300 cal yr BP based on a stratigraphically 

close AMS date and sedimentation rates of the highly organic sediment at the bottom of the Lake 

Viviane core (Fig. 7a). This minimum age constraint for the Brisingamen advance, as indicated by 

the correlated glacial sediment in Lake Viviane, suggests the advance may correlate to the North 

Atlantic Younger Dryas climatic reversal (12940 ± 260 - 11640 ± 250 cal yr BP; Alley et al., 1993), 

and that the Enchantment Lakes Basin responded differently during this time than other glaciers west 

of the crest of the Cascades (Heine, 1998; Thomas et al., 2000; Kovanen and Easterbrook, 2001; 

Kovanen and Sla>miaker, 2004 in review). Heine (1998) argues that there was no glacier advance 

during the Younger Dryas Chronozone on Mount Rainier, whereas Kovanen and Easterbrook (2001)
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indicate that alpine glaciers around Mount Baker advanced during the Younger Dryas climatic 

reversal, imph ing the glaciers reached altitudes as low as 150 m in the North Fork Nooksaek River. 

More recently, Easterbrook (2003) and Kovanen and Slaymaker (2004, in review) have modified 

these interpretations, indicating that the Younger Diyas advance around Mount Baker was 

significantly less extensive, but still significant (e.g., an ELA depression of 355-400 m relative to 

modem). Glaciers in the Enehantment Lakes Basin apparently advanced during the Younger Dryas 

period, but the response was subdued, producing (Brisingamen) glaciers only slightly laiger than 

those that advanced during the LIA (Fig. 2 and 5). Age constraints allow the possibility of similar 

small-scale glacier advances on and near Mount Baker coeval with the Younger Diy as climatic 

reversal (Burrow s, 2000; Thomas et al., 2000). Matthewes et al. (1993) document evidence for a 

cool interval during the Younger Diy as Chronozone in terrestrial macrofossils in marine sediments 

offshore of British Columbia, although the magnitude of the cooling onshore is unclear. The 

combination of these studies with the new constraints on timing of the Brisingamen advance suggests 

that climates shifted rapidly both spatially and temporally at the end of the Pleistocene, and that the 

climatic patterns were not analogous to those of the late Holocene.

Climatic Significance
The similarity of the Biyuhild and Brisingamen ELA estimates for the upper Enchantment 

Lakes Basin reflects both the complexities of local orographic factors, such as slope, aspect, and 

wand-drift accumulation that lower the local ELA below that of the regional ELA, and the 

uncertainties inherent to ELA estimates, especially when applied to small cirque glaciers (Meierding, 

1982). All of the areas in the Enchantment Lakes Basin occupied by glaciers during the latest 

Pleistocene and Neoglacial times sit in local ELA depressions based on the presence of current or 

historic glaciers at a lower elevation than the regional ELA. Because the local orographic effects 

become progressively less as the glaciers grow beyond the cirques, the Enchantment glaciers will be 

less sensitive to lowering of the regional ELA than laiger valley glaciers that are less affected by local 

orography. It is apparent, how ever, that the paleoclimatic perturbation associated with the 

Brisingamen advance was slightly greater than that associated with the Brynhild advance because 

throughout the Enchantment Lakes field area, Brisingamen moraines are preserved outside the 

younger LIA equivalent Biyoihild moraines.
To constrain the magnitude of climate change required to produee the Brisingamen and 

Brynhild paleoglaciers, we compared the modem climate (summer temperature and winter 

aeeumulation) at the ELA of the paleoglaciers to the climates at the ELAs of modem glaciers from
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around the world that define an envelope of conditions that characterize steady-state glaciers (c.g., 

Leonard, 1989). We assessed the climate change based on w hat would be required to bring the 

Brisingamen and Brynhild ELA climates into the envelop within which glaciers form. This 

procedure yields two endpoint possible paleoclimate regimes and an intermediate paleoclimatic 

estimate, which is the smallest possible climatic change required to move the Enchantment Lakes 

Basin modem climate in to the glacier-forming envelope (Fig. 11). The maximum summer 

temperature depression and zero winter precipitation increase endpoint is three degrees C below 

modem mean summer temperature and the maximum winter precipitation increase and zero 

temperature depression endpoint is a winter precipitation increase of 88 cm water equivalent above 

modem precipitation. The intermediate paleoclimatic estimate is a mean summer temperature 

depression of two degrees C and a winter precipitation increase of 26 cm water equivalent. The 

paleoclimate estimates presented here, while a first order estimate of the climate at the time of 

glaciation, are probably less precise than those made on larger glaciers that suffer less from error 

associated with ELA reconstmction and potential local climatic controls.

Conclusions
The sediments recovered from lakes in the Enchantment Lakes Basin record periods of 

distinct sediment input that can be correlated with upstream glacial activity. Tephra chronology,

AMS correlation with dated paleosecular variation curves, and age interpolation based on 

sedimentation rates between dated horizons refined the age constraints of the Brisingamen and 

Brynhild moraine-building glacial advances (Waitt et al., 1982) and a smaller early Neoglacial 

advance. These lines of temporal evidence in association with the sedimentology indicate that the 

Brisingamen advance occurred during the North Atlantic Younger Dryas climatic reversal, that 

glacial advances did not occur in the Early Holocene and that the onset of Neoglaciation in the 

Enchantment Lakes Basin occurred in the Middle Holocene. The timing and extent of the Younger 

Diy as equivalent Brisingamen advance in the Enchantment Lakes Basin differs from other studies in 

the North Cascades that report either a larger glacial response (Kovanen and Easterbrook, 2001; 

Kovanen and Sla>Tnaker, 2004 in review) or virtually no glacial response (Heine, 1998) during this 

time period. The Enchantment Lakes Basin did experience a glacial advance that overlaps, at least to 

some degree, with the North Atlantic Younger Dryas climatic reversal. The response, however, was 

muted compared to that in the North Atlantic and to an advance proposed at Mount Baker (Kovanen 

and Easterbrook, 2001; Kovanen and Slaymaker, 2004 in review), producing glaciers with areas 

about 1.5 to 3 times greater than those associated with the LIA maximum in the basin, and little
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change in estimated ELAs. The apparent variability of glacier activity in the North Cascades during 

the Younger Diyas Chronozone suggests that there may have been significant variability in local 

climatic patterns at the close of the Pleistocene. This variability may have continued into the early 

Holocene, with significant glacier advances to the northwest (Mount Baker; Thomas, et al., 2000) 

and the southwest (Mount Rainier; Heine, 1998), but not in the Enehantments. Alternatively, some 

of the reeords from these sites may have been misinterpreted. In contrast to these intervals, late- 

Holocene glacial expansions in the Caseades appear to roughly coincide in time with each other, with 

the Holoeene maximum being achieved in the late LIA period throughout the North Caseades.
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Leavenworth, WA

Figure 1. General location map of the field area
showing lakes, streams, and major peaks.
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Figure 3. Curves depicting mass normalized 
total ARM and the 15+85 mT 
coercivity verses depth for the 
post-Mazama section of the Lake 
Viviane core. The 15+85 mT 
coercivity verses depth curve was 
multiplied by a factor of 2 to display 
it at the same scale as the total 
ARM curve. These curves 
correspond very well, enabling us 
to use the15+85 mT coercivity 
verses depth curve as a proxy for 
the total ARM curve where complete 
total ARM data were not collected.

Lake Viviane
Totai ARM and 15+85 mT Coercivity 

(Ampm^/kg) xIO"*

Figure 4. Two alternating-field
demagnetization plots for typical 
Lake Viviane samples. The black 
path is inclination and the grey 
path is declination. The 
demagnetization field strength is 
noted in mTs for each step along 
the demagnetization path. The 
approximate orientations of the 
first removed components are 
indicated with grey arrows and the 
approximate orientations of the 
second removed components are 
indicated with black arrows.

Lake Viviane Core 1,30-32 cm Lake Viviane Core 1,54-56 cm
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Figure 5. Approximate location and altitude 
in meters of the calculated ELAs 
of the Brisingamen and Brynhild 
paleoglaciers.
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Figure 6. Plot of winter accumulation versus 
summer mean temperature at the 
ELA of modern glaciers from 
around the world. Lines define an 
envelope of conditions at which 
modern glaciers exist (Leonard, 
1989).
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Paleoglacier Name: ELA (meters)
Brisingamen Colchuck 1805
Brisingamen North Enchantment 2330
Brisingamen Upper Basin 2340
Brisingamen McClellan 2270
Brynhild Colchuck 2145
Brynhild Upper Basin 2365
Modern Colchuck Glacier 2165

Table 1. Table of the ELA estimates for the reconstructed 
paleoglaciers and the one active glacier (modern 
Colchuck Glacier) in the Enchantment Lakes 
Basin Field area.
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Figure 8. AMS results from the post 
Mazama section of the Lake 
Viviane core. The graph on the 
left shows the inclination of the 
K1 and K3 susceptibility axes 
and the graph on the right 
shows the shape factor (T) 
(Jelinek, 1881) of the magnetic 
susceptibility ellipsoid. The 
shaded area indicates an area 
of probable disturbed sediment 
following Rosenbaum et al. 
(2000) and Schwehr and Tauxe 
(2003).

n

Figure 9. Paleosecular variation 
curves for Lake Viviane. 
The mean angular 
deviation (MAD) is used 
as a rough error bar for 
each sample. Where the 
error bars are not 
present, the MAD is 
contained within the 
plotted points.
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Lake Viviane
Paleosecular Variation Curve

Volcanic Rock PSV curve 
(Hags&un & Champion, 2002)

Rsh Lakes PSV curve 
(Verosub, et ai., 1986)

Lake Viviane sedmentatlon 
rate dated PSV curve

Lake Viviane Rsh Lake 
correlated inclination curve

Figure 10. Paleosecular variation (PSV) curves for Lake Viviane plotted against 
PSV curves for Fish Lake, OR (Verosub, et al. 1986) and a compilation 
volcanic rock PSV curve (Hagstrum & Champion, 2002), both of which 
have been recalculated to the latitude and longitude of Lake Viviane. 
Also noted on the inclination curve, are the Mt. St Helens and 
tephras. The Mt. St Helens tephra calibrated age is plotted with its 2- 
sigma age range (black bar).
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Winter Accumulation vs. 
Summer Mean Temperature

Figure 11. Plot of winter accumulation versus summer mean temperature at 
the ELA of modern glaciers from around the world. Lines define 
an envelope of conditions at which modern glaciers exist (Leonard, 
1989). Also plotted are modern climatic conditions at the ELAs of 
the Brisingamen and Brynhild paleoglaciers and potential changes 
in climate required to shift the Brisingamen and Brynhild 
paleoglaciers into the glacier-supporting envelope.
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Appendix 4
Age-depth analysis using AnalySeries

2000 5000 8000

Figure 1.
cal yr B.P.

To compare the Fish Lake inclination curve (Verosub et al., 1986) with the 
volcanic rock (Hagstrum and Champion, 2002) and Lake Viviane inclination 
curves, the Fish Lake curve was first smoothed to eliminate the high frequency 
signal. The Fish Lake inclination curve was smoothed using an 11-point least 
squares smoothing function.

Figure 2. In order to show how well other PSV curves correlate, the correlation
coefficient between the Fish Lake inclination curve (Verosub et aL, 1986) and 
volcanic rock inclination curve (Hagstrum and Champion, 2002) was 
calculated. To get the best correlation, the 280 year offset between the two 
curves (Hagstrum and Champion, 2002) was eliminated by shifting the 
volcanic rock inclination curve back in time 280 years.
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Appendix 4

Figure 3. The correlation coefficient between the Fish Lake inclination curve and the 
sedimentation rate based Lake Viviane inclination curve age model. The 
sedimentation rate age model for the Lake Viviane inclination curve is based 
on a constant sedimentation rate between the The Mt. St Helens Wn tephra 
(475 cal. yr B.P) and the Mt. St Helens Yn tephra (3780 cal. yr B.P.). This 
sedimentation rate (97 yr/cm) was then applied to the pre Mt. St Helens Yn 
tephra sediment.

Depth (Lake Viviane core)

Figure 4. The correlation coefficient between the Fish Lake inclination vs. time curve 
and the Lake Viviane inclination vs. depth curve. This graph represents the 
first step in transforming the Lake Viviane inclination versus depth cur>e into 
an inclination versus age curve using the Fish Lake inclination curve as the 
reference signal.
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Appendix 4

cal yr B.P.
Figure 5. The result of adjusting the Lake Viviane inclination vs. depth curve to the Fish 

Lake inclination vs. time curve using the tie points shown and assuming a 
constant sedimentation rate between tie points.

Figure 6. The final PSV derived age model for Lake Viviane plotted against the intra- 
tephra sedimentation rate derived age model for Lake Viviane.
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